xref: /dragonfly/sys/kern/usched_dfly.c (revision 279dd846)
1 /*
2  * Copyright (c) 2012 The DragonFly Project.  All rights reserved.
3  * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org>.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Matthew Dillon <dillon@backplane.com>,
7  * by Mihai Carabas <mihai.carabas@gmail.com>
8  * and many others.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  * 3. Neither the name of The DragonFly Project nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific, prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/queue.h>
42 #include <sys/proc.h>
43 #include <sys/rtprio.h>
44 #include <sys/uio.h>
45 #include <sys/sysctl.h>
46 #include <sys/resourcevar.h>
47 #include <sys/spinlock.h>
48 #include <sys/cpu_topology.h>
49 #include <sys/thread2.h>
50 #include <sys/spinlock2.h>
51 #include <sys/mplock2.h>
52 
53 #include <sys/ktr.h>
54 
55 #include <machine/cpu.h>
56 #include <machine/smp.h>
57 
58 /*
59  * Priorities.  Note that with 32 run queues per scheduler each queue
60  * represents four priority levels.
61  */
62 
63 int dfly_rebalanced;
64 
65 #define MAXPRI			128
66 #define PRIMASK			(MAXPRI - 1)
67 #define PRIBASE_REALTIME	0
68 #define PRIBASE_NORMAL		MAXPRI
69 #define PRIBASE_IDLE		(MAXPRI * 2)
70 #define PRIBASE_THREAD		(MAXPRI * 3)
71 #define PRIBASE_NULL		(MAXPRI * 4)
72 
73 #define NQS	32			/* 32 run queues. */
74 #define PPQ	(MAXPRI / NQS)		/* priorities per queue */
75 #define PPQMASK	(PPQ - 1)
76 
77 /*
78  * NICEPPQ	- number of nice units per priority queue
79  * ESTCPUPPQ	- number of estcpu units per priority queue
80  * ESTCPUMAX	- number of estcpu units
81  */
82 #define NICEPPQ		2
83 #define ESTCPUPPQ	512
84 #define ESTCPUMAX	(ESTCPUPPQ * NQS)
85 #define BATCHMAX	(ESTCPUFREQ * 30)
86 #define PRIO_RANGE	(PRIO_MAX - PRIO_MIN + 1)
87 
88 #define ESTCPULIM(v)	min((v), ESTCPUMAX)
89 
90 TAILQ_HEAD(rq, lwp);
91 
92 #define lwp_priority	lwp_usdata.dfly.priority
93 #define lwp_forked	lwp_usdata.dfly.forked
94 #define lwp_rqindex	lwp_usdata.dfly.rqindex
95 #define lwp_estcpu	lwp_usdata.dfly.estcpu
96 #define lwp_estfast	lwp_usdata.dfly.estfast
97 #define lwp_uload	lwp_usdata.dfly.uload
98 #define lwp_rqtype	lwp_usdata.dfly.rqtype
99 #define lwp_qcpu	lwp_usdata.dfly.qcpu
100 #define lwp_rrcount	lwp_usdata.dfly.rrcount
101 
102 struct usched_dfly_pcpu {
103 	struct spinlock spin;
104 	struct thread	helper_thread;
105 	short		unusde01;
106 	short		upri;
107 	int		uload;
108 	int		ucount;
109 	struct lwp	*uschedcp;
110 	struct rq	queues[NQS];
111 	struct rq	rtqueues[NQS];
112 	struct rq	idqueues[NQS];
113 	u_int32_t	queuebits;
114 	u_int32_t	rtqueuebits;
115 	u_int32_t	idqueuebits;
116 	int		runqcount;
117 	int		cpuid;
118 	cpumask_t	cpumask;
119 	cpu_node_t	*cpunode;
120 };
121 
122 typedef struct usched_dfly_pcpu	*dfly_pcpu_t;
123 
124 static void dfly_acquire_curproc(struct lwp *lp);
125 static void dfly_release_curproc(struct lwp *lp);
126 static void dfly_select_curproc(globaldata_t gd);
127 static void dfly_setrunqueue(struct lwp *lp);
128 static void dfly_setrunqueue_dd(dfly_pcpu_t rdd, struct lwp *lp);
129 static void dfly_schedulerclock(struct lwp *lp, sysclock_t period,
130 				sysclock_t cpstamp);
131 static void dfly_recalculate_estcpu(struct lwp *lp);
132 static void dfly_resetpriority(struct lwp *lp);
133 static void dfly_forking(struct lwp *plp, struct lwp *lp);
134 static void dfly_exiting(struct lwp *lp, struct proc *);
135 static void dfly_uload_update(struct lwp *lp);
136 static void dfly_yield(struct lwp *lp);
137 static void dfly_changeqcpu_locked(struct lwp *lp,
138 				dfly_pcpu_t dd, dfly_pcpu_t rdd);
139 static dfly_pcpu_t dfly_choose_best_queue(struct lwp *lp);
140 static dfly_pcpu_t dfly_choose_worst_queue(dfly_pcpu_t dd);
141 static dfly_pcpu_t dfly_choose_queue_simple(dfly_pcpu_t dd, struct lwp *lp);
142 static void dfly_need_user_resched_remote(void *dummy);
143 static struct lwp *dfly_chooseproc_locked(dfly_pcpu_t rdd, dfly_pcpu_t dd,
144 					  struct lwp *chklp, int worst);
145 static void dfly_remrunqueue_locked(dfly_pcpu_t dd, struct lwp *lp);
146 static void dfly_setrunqueue_locked(dfly_pcpu_t dd, struct lwp *lp);
147 static void dfly_changedcpu(struct lwp *lp);
148 
149 struct usched usched_dfly = {
150 	{ NULL },
151 	"dfly", "Original DragonFly Scheduler",
152 	NULL,			/* default registration */
153 	NULL,			/* default deregistration */
154 	dfly_acquire_curproc,
155 	dfly_release_curproc,
156 	dfly_setrunqueue,
157 	dfly_schedulerclock,
158 	dfly_recalculate_estcpu,
159 	dfly_resetpriority,
160 	dfly_forking,
161 	dfly_exiting,
162 	dfly_uload_update,
163 	NULL,			/* setcpumask not supported */
164 	dfly_yield,
165 	dfly_changedcpu
166 };
167 
168 /*
169  * We have NQS (32) run queues per scheduling class.  For the normal
170  * class, there are 128 priorities scaled onto these 32 queues.  New
171  * processes are added to the last entry in each queue, and processes
172  * are selected for running by taking them from the head and maintaining
173  * a simple FIFO arrangement.  Realtime and Idle priority processes have
174  * and explicit 0-31 priority which maps directly onto their class queue
175  * index.  When a queue has something in it, the corresponding bit is
176  * set in the queuebits variable, allowing a single read to determine
177  * the state of all 32 queues and then a ffs() to find the first busy
178  * queue.
179  */
180 					/* currently running a user process */
181 static cpumask_t dfly_curprocmask = CPUMASK_INITIALIZER_ALLONES;
182 static cpumask_t dfly_rdyprocmask;	/* ready to accept a user process */
183 static volatile int dfly_scancpu;
184 static volatile int dfly_ucount;	/* total running on whole system */
185 static struct usched_dfly_pcpu dfly_pcpu[MAXCPU];
186 static struct sysctl_ctx_list usched_dfly_sysctl_ctx;
187 static struct sysctl_oid *usched_dfly_sysctl_tree;
188 
189 /* Debug info exposed through debug.* sysctl */
190 
191 static int usched_dfly_debug = -1;
192 SYSCTL_INT(_debug, OID_AUTO, dfly_scdebug, CTLFLAG_RW,
193 	   &usched_dfly_debug, 0,
194 	   "Print debug information for this pid");
195 
196 static int usched_dfly_pid_debug = -1;
197 SYSCTL_INT(_debug, OID_AUTO, dfly_pid_debug, CTLFLAG_RW,
198 	   &usched_dfly_pid_debug, 0,
199 	   "Print KTR debug information for this pid");
200 
201 static int usched_dfly_chooser = 0;
202 SYSCTL_INT(_debug, OID_AUTO, dfly_chooser, CTLFLAG_RW,
203 	   &usched_dfly_chooser, 0,
204 	   "Print KTR debug information for this pid");
205 
206 /*
207  * Tunning usched_dfly - configurable through kern.usched_dfly.
208  *
209  * weight1 - Tries to keep threads on their current cpu.  If you
210  *	     make this value too large the scheduler will not be
211  *	     able to load-balance large loads.
212  *
213  * weight2 - If non-zero, detects thread pairs undergoing synchronous
214  *	     communications and tries to move them closer together.
215  *	     Behavior is adjusted by bit 4 of features (0x10).
216  *
217  *	     WARNING!  Weight2 is a ridiculously sensitive parameter,
218  *	     a small value is recommended.
219  *
220  * weight3 - Weighting based on the number of recently runnable threads
221  *	     on the userland scheduling queue (ignoring their loads).
222  *	     A nominal value here prevents high-priority (low-load)
223  *	     threads from accumulating on one cpu core when other
224  *	     cores are available.
225  *
226  *	     This value should be left fairly small relative to weight1
227  *	     and weight4.
228  *
229  * weight4 - Weighting based on other cpu queues being available
230  *	     or running processes with higher lwp_priority's.
231  *
232  *	     This allows a thread to migrate to another nearby cpu if it
233  *	     is unable to run on the current cpu based on the other cpu
234  *	     being idle or running a lower priority (higher lwp_priority)
235  *	     thread.  This value should be large enough to override weight1
236  *
237  * features - These flags can be set or cleared to enable or disable various
238  *	      features.
239  *
240  *	      0x01	Enable idle-cpu pulling			(default)
241  *	      0x02	Enable proactive pushing		(default)
242  *	      0x04	Enable rebalancing rover		(default)
243  *	      0x08	Enable more proactive pushing		(default)
244  *	      0x10	(flip weight2 limit on same cpu)	(default)
245  *	      0x20	choose best cpu for forked process
246  *	      0x40	choose current cpu for forked process
247  *	      0x80	choose random cpu for forked process	(default)
248  */
249 static int usched_dfly_smt = 0;
250 static int usched_dfly_cache_coherent = 0;
251 static int usched_dfly_weight1 = 200;	/* keep thread on current cpu */
252 static int usched_dfly_weight2 = 180;	/* synchronous peer's current cpu */
253 static int usched_dfly_weight3 = 40;	/* number of threads on queue */
254 static int usched_dfly_weight4 = 160;	/* availability of idle cores */
255 static int usched_dfly_features = 0x8F;	/* allow pulls */
256 static int usched_dfly_fast_resched = 0;/* delta priority / resched */
257 static int usched_dfly_swmask = ~PPQMASK; /* allow pulls */
258 static int usched_dfly_rrinterval = (ESTCPUFREQ + 9) / 10;
259 static int usched_dfly_decay = 8;
260 
261 /* KTR debug printings */
262 
263 KTR_INFO_MASTER(usched);
264 
265 #if !defined(KTR_USCHED_DFLY)
266 #define	KTR_USCHED_DFLY	KTR_ALL
267 #endif
268 
269 KTR_INFO(KTR_USCHED_DFLY, usched, chooseproc, 0,
270     "USCHED_DFLY(chooseproc: pid %d, old_cpuid %d, curr_cpuid %d)",
271     pid_t pid, int old_cpuid, int curr);
272 
273 /*
274  * This function is called when the kernel intends to return to userland.
275  * It is responsible for making the thread the current designated userland
276  * thread for this cpu, blocking if necessary.
277  *
278  * The kernel will not depress our LWKT priority until after we return,
279  * in case we have to shove over to another cpu.
280  *
281  * We must determine our thread's disposition before we switch away.  This
282  * is very sensitive code.
283  *
284  * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE
285  * TO ANOTHER CPU!  Because most of the kernel assumes that no migration will
286  * occur, this function is called only under very controlled circumstances.
287  */
288 static void
289 dfly_acquire_curproc(struct lwp *lp)
290 {
291 	globaldata_t gd;
292 	dfly_pcpu_t dd;
293 	dfly_pcpu_t rdd;
294 	thread_t td;
295 	int force_resched;
296 
297 	/*
298 	 * Make sure we aren't sitting on a tsleep queue.
299 	 */
300 	td = lp->lwp_thread;
301 	crit_enter_quick(td);
302 	if (td->td_flags & TDF_TSLEEPQ)
303 		tsleep_remove(td);
304 	dfly_recalculate_estcpu(lp);
305 
306 	gd = mycpu;
307 	dd = &dfly_pcpu[gd->gd_cpuid];
308 
309 	/*
310 	 * Process any pending interrupts/ipi's, then handle reschedule
311 	 * requests.  dfly_release_curproc() will try to assign a new
312 	 * uschedcp that isn't us and otherwise NULL it out.
313 	 */
314 	force_resched = 0;
315 	if ((td->td_mpflags & TDF_MP_BATCH_DEMARC) &&
316 	    lp->lwp_rrcount >= usched_dfly_rrinterval / 2) {
317 		force_resched = 1;
318 	}
319 
320 	if (user_resched_wanted()) {
321 		if (dd->uschedcp == lp)
322 			force_resched = 1;
323 		clear_user_resched();
324 		dfly_release_curproc(lp);
325 	}
326 
327 	/*
328 	 * Loop until we are the current user thread.
329 	 *
330 	 * NOTE: dd spinlock not held at top of loop.
331 	 */
332 	if (dd->uschedcp == lp)
333 		lwkt_yield_quick();
334 
335 	while (dd->uschedcp != lp) {
336 		lwkt_yield_quick();
337 
338 		spin_lock(&dd->spin);
339 
340 		if (force_resched &&
341 		   (usched_dfly_features & 0x08) &&
342 		   (rdd = dfly_choose_best_queue(lp)) != dd) {
343 			/*
344 			 * We are not or are no longer the current lwp and a
345 			 * forced reschedule was requested.  Figure out the
346 			 * best cpu to run on (our current cpu will be given
347 			 * significant weight).
348 			 *
349 			 * (if a reschedule was not requested we want to
350 			 *  move this step after the uschedcp tests).
351 			 */
352 			dfly_changeqcpu_locked(lp, dd, rdd);
353 			spin_unlock(&dd->spin);
354 			lwkt_deschedule(lp->lwp_thread);
355 			dfly_setrunqueue_dd(rdd, lp);
356 			lwkt_switch();
357 			gd = mycpu;
358 			dd = &dfly_pcpu[gd->gd_cpuid];
359 			continue;
360 		}
361 
362 		/*
363 		 * Either no reschedule was requested or the best queue was
364 		 * dd, and no current process has been selected.  We can
365 		 * trivially become the current lwp on the current cpu.
366 		 */
367 		if (dd->uschedcp == NULL) {
368 			atomic_clear_int(&lp->lwp_thread->td_mpflags,
369 					 TDF_MP_DIDYIELD);
370 			ATOMIC_CPUMASK_ORBIT(dfly_curprocmask, gd->gd_cpuid);
371 			dd->uschedcp = lp;
372 			dd->upri = lp->lwp_priority;
373 			KKASSERT(lp->lwp_qcpu == dd->cpuid);
374 			spin_unlock(&dd->spin);
375 			break;
376 		}
377 
378 		/*
379 		 * Put us back on the same run queue unconditionally.
380 		 *
381 		 * Set rrinterval to force placement at end of queue.
382 		 * Select the worst queue to ensure we round-robin,
383 		 * but do not change estcpu.
384 		 */
385 		if (lp->lwp_thread->td_mpflags & TDF_MP_DIDYIELD) {
386 			u_int32_t tsqbits;
387 
388 			switch(lp->lwp_rqtype) {
389 			case RTP_PRIO_NORMAL:
390 				tsqbits = dd->queuebits;
391 				spin_unlock(&dd->spin);
392 
393 				lp->lwp_rrcount = usched_dfly_rrinterval;
394 				if (tsqbits)
395 					lp->lwp_rqindex = bsrl(tsqbits);
396 				break;
397 			default:
398 				spin_unlock(&dd->spin);
399 				break;
400 			}
401 			lwkt_deschedule(lp->lwp_thread);
402 			dfly_setrunqueue_dd(dd, lp);
403 			atomic_clear_int(&lp->lwp_thread->td_mpflags,
404 					 TDF_MP_DIDYIELD);
405 			lwkt_switch();
406 			gd = mycpu;
407 			dd = &dfly_pcpu[gd->gd_cpuid];
408 			continue;
409 		}
410 
411 		/*
412 		 * Can we steal the current designated user thread?
413 		 *
414 		 * If we do the other thread will stall when it tries to
415 		 * return to userland, possibly rescheduling elsewhere.
416 		 *
417 		 * It is important to do a masked test to avoid the edge
418 		 * case where two near-equal-priority threads are constantly
419 		 * interrupting each other.
420 		 *
421 		 * In the exact match case another thread has already gained
422 		 * uschedcp and lowered its priority, if we steal it the
423 		 * other thread will stay stuck on the LWKT runq and not
424 		 * push to another cpu.  So don't steal on equal-priority even
425 		 * though it might appear to be more beneficial due to not
426 		 * having to switch back to the other thread's context.
427 		 *
428 		 * usched_dfly_fast_resched requires that two threads be
429 		 * significantly far apart in priority in order to interrupt.
430 		 *
431 		 * If better but not sufficiently far apart, the current
432 		 * uschedcp will be interrupted at the next scheduler clock.
433 		 */
434 		if (dd->uschedcp &&
435 		   (dd->upri & ~PPQMASK) >
436 		   (lp->lwp_priority & ~PPQMASK) + usched_dfly_fast_resched) {
437 			dd->uschedcp = lp;
438 			dd->upri = lp->lwp_priority;
439 			KKASSERT(lp->lwp_qcpu == dd->cpuid);
440 			spin_unlock(&dd->spin);
441 			break;
442 		}
443 		/*
444 		 * We are not the current lwp, figure out the best cpu
445 		 * to run on (our current cpu will be given significant
446 		 * weight).  Loop on cpu change.
447 		 */
448 		if ((usched_dfly_features & 0x02) &&
449 		    force_resched == 0 &&
450 		    (rdd = dfly_choose_best_queue(lp)) != dd) {
451 			dfly_changeqcpu_locked(lp, dd, rdd);
452 			spin_unlock(&dd->spin);
453 			lwkt_deschedule(lp->lwp_thread);
454 			dfly_setrunqueue_dd(rdd, lp);
455 			lwkt_switch();
456 			gd = mycpu;
457 			dd = &dfly_pcpu[gd->gd_cpuid];
458 			continue;
459 		}
460 
461 		/*
462 		 * We cannot become the current lwp, place the lp on the
463 		 * run-queue of this or another cpu and deschedule ourselves.
464 		 *
465 		 * When we are reactivated we will have another chance.
466 		 *
467 		 * Reload after a switch or setrunqueue/switch possibly
468 		 * moved us to another cpu.
469 		 */
470 		spin_unlock(&dd->spin);
471 		lwkt_deschedule(lp->lwp_thread);
472 		dfly_setrunqueue_dd(dd, lp);
473 		lwkt_switch();
474 		gd = mycpu;
475 		dd = &dfly_pcpu[gd->gd_cpuid];
476 	}
477 
478 	/*
479 	 * Make sure upri is synchronized, then yield to LWKT threads as
480 	 * needed before returning.  This could result in another reschedule.
481 	 * XXX
482 	 */
483 	crit_exit_quick(td);
484 
485 	KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
486 }
487 
488 /*
489  * DFLY_RELEASE_CURPROC
490  *
491  * This routine detaches the current thread from the userland scheduler,
492  * usually because the thread needs to run or block in the kernel (at
493  * kernel priority) for a while.
494  *
495  * This routine is also responsible for selecting a new thread to
496  * make the current thread.
497  *
498  * NOTE: This implementation differs from the dummy example in that
499  * dfly_select_curproc() is able to select the current process, whereas
500  * dummy_select_curproc() is not able to select the current process.
501  * This means we have to NULL out uschedcp.
502  *
503  * Additionally, note that we may already be on a run queue if releasing
504  * via the lwkt_switch() in dfly_setrunqueue().
505  */
506 static void
507 dfly_release_curproc(struct lwp *lp)
508 {
509 	globaldata_t gd = mycpu;
510 	dfly_pcpu_t dd = &dfly_pcpu[gd->gd_cpuid];
511 
512 	/*
513 	 * Make sure td_wakefromcpu is defaulted.  This will be overwritten
514 	 * by wakeup().
515 	 */
516 	if (dd->uschedcp == lp) {
517 		KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
518 		spin_lock(&dd->spin);
519 		if (dd->uschedcp == lp) {
520 			dd->uschedcp = NULL;	/* don't let lp be selected */
521 			dd->upri = PRIBASE_NULL;
522 			ATOMIC_CPUMASK_NANDBIT(dfly_curprocmask, gd->gd_cpuid);
523 			spin_unlock(&dd->spin);
524 			dfly_select_curproc(gd);
525 		} else {
526 			spin_unlock(&dd->spin);
527 		}
528 	}
529 }
530 
531 /*
532  * DFLY_SELECT_CURPROC
533  *
534  * Select a new current process for this cpu and clear any pending user
535  * reschedule request.  The cpu currently has no current process.
536  *
537  * This routine is also responsible for equal-priority round-robining,
538  * typically triggered from dfly_schedulerclock().  In our dummy example
539  * all the 'user' threads are LWKT scheduled all at once and we just
540  * call lwkt_switch().
541  *
542  * The calling process is not on the queue and cannot be selected.
543  */
544 static
545 void
546 dfly_select_curproc(globaldata_t gd)
547 {
548 	dfly_pcpu_t dd = &dfly_pcpu[gd->gd_cpuid];
549 	struct lwp *nlp;
550 	int cpuid = gd->gd_cpuid;
551 
552 	crit_enter_gd(gd);
553 
554 	spin_lock(&dd->spin);
555 	nlp = dfly_chooseproc_locked(dd, dd, dd->uschedcp, 0);
556 
557 	if (nlp) {
558 		ATOMIC_CPUMASK_ORBIT(dfly_curprocmask, cpuid);
559 		dd->upri = nlp->lwp_priority;
560 		dd->uschedcp = nlp;
561 #if 0
562 		dd->rrcount = 0;		/* reset round robin */
563 #endif
564 		spin_unlock(&dd->spin);
565 		lwkt_acquire(nlp->lwp_thread);
566 		lwkt_schedule(nlp->lwp_thread);
567 	} else {
568 		spin_unlock(&dd->spin);
569 	}
570 	crit_exit_gd(gd);
571 }
572 
573 /*
574  * Place the specified lwp on the user scheduler's run queue.  This routine
575  * must be called with the thread descheduled.  The lwp must be runnable.
576  * It must not be possible for anyone else to explicitly schedule this thread.
577  *
578  * The thread may be the current thread as a special case.
579  */
580 static void
581 dfly_setrunqueue(struct lwp *lp)
582 {
583 	dfly_pcpu_t dd;
584 	dfly_pcpu_t rdd;
585 
586 	/*
587 	 * First validate the process LWKT state.
588 	 */
589 	KASSERT(lp->lwp_stat == LSRUN, ("setrunqueue: lwp not LSRUN"));
590 	KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0,
591 	    ("lwp %d/%d already on runq! flag %08x/%08x", lp->lwp_proc->p_pid,
592 	     lp->lwp_tid, lp->lwp_proc->p_flags, lp->lwp_flags));
593 	KKASSERT((lp->lwp_thread->td_flags & TDF_RUNQ) == 0);
594 
595 	/*
596 	 * NOTE: dd/rdd do not necessarily represent the current cpu.
597 	 *	 Instead they may represent the cpu the thread was last
598 	 *	 scheduled on or inherited by its parent.
599 	 */
600 	dd = &dfly_pcpu[lp->lwp_qcpu];
601 	rdd = dd;
602 
603 	/*
604 	 * This process is not supposed to be scheduled anywhere or assigned
605 	 * as the current process anywhere.  Assert the condition.
606 	 */
607 	KKASSERT(rdd->uschedcp != lp);
608 
609 	/*
610 	 * Ok, we have to setrunqueue some target cpu and request a reschedule
611 	 * if necessary.
612 	 *
613 	 * We have to choose the best target cpu.  It might not be the current
614 	 * target even if the current cpu has no running user thread (for
615 	 * example, because the current cpu might be a hyperthread and its
616 	 * sibling has a thread assigned).
617 	 *
618 	 * If we just forked it is most optimal to run the child on the same
619 	 * cpu just in case the parent decides to wait for it (thus getting
620 	 * off that cpu).  As long as there is nothing else runnable on the
621 	 * cpu, that is.  If we did this unconditionally a parent forking
622 	 * multiple children before waiting (e.g. make -j N) leaves other
623 	 * cpus idle that could be working.
624 	 */
625 	if (lp->lwp_forked) {
626 		lp->lwp_forked = 0;
627 		if (usched_dfly_features & 0x20)
628 			rdd = dfly_choose_best_queue(lp);
629 		else if (usched_dfly_features & 0x40)
630 			rdd = &dfly_pcpu[lp->lwp_qcpu];
631 		else if (usched_dfly_features & 0x80)
632 			rdd = dfly_choose_queue_simple(rdd, lp);
633 		else if (dfly_pcpu[lp->lwp_qcpu].runqcount)
634 			rdd = dfly_choose_best_queue(lp);
635 		else
636 			rdd = &dfly_pcpu[lp->lwp_qcpu];
637 	} else {
638 		rdd = dfly_choose_best_queue(lp);
639 		/* rdd = &dfly_pcpu[lp->lwp_qcpu]; */
640 	}
641 	if (lp->lwp_qcpu != rdd->cpuid) {
642 		spin_lock(&dd->spin);
643 		dfly_changeqcpu_locked(lp, dd, rdd);
644 		spin_unlock(&dd->spin);
645 	}
646 	dfly_setrunqueue_dd(rdd, lp);
647 }
648 
649 /*
650  * Change qcpu to rdd->cpuid.  The dd the lp is CURRENTLY on must be
651  * spin-locked on-call.  rdd does not have to be.
652  */
653 static void
654 dfly_changeqcpu_locked(struct lwp *lp, dfly_pcpu_t dd, dfly_pcpu_t rdd)
655 {
656 	if (lp->lwp_qcpu != rdd->cpuid) {
657 		if (lp->lwp_mpflags & LWP_MP_ULOAD) {
658 			atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
659 			atomic_add_int(&dd->uload, -lp->lwp_uload);
660 			atomic_add_int(&dd->ucount, -1);
661 			atomic_add_int(&dfly_ucount, -1);
662 		}
663 		lp->lwp_qcpu = rdd->cpuid;
664 	}
665 }
666 
667 /*
668  * Place lp on rdd's runqueue.  Nothing is locked on call.  This function
669  * also performs all necessary ancillary notification actions.
670  */
671 static void
672 dfly_setrunqueue_dd(dfly_pcpu_t rdd, struct lwp *lp)
673 {
674 	globaldata_t rgd;
675 
676 	/*
677 	 * We might be moving the lp to another cpu's run queue, and once
678 	 * on the runqueue (even if it is our cpu's), another cpu can rip
679 	 * it away from us.
680 	 *
681 	 * TDF_MIGRATING might already be set if this is part of a
682 	 * remrunqueue+setrunqueue sequence.
683 	 */
684 	if ((lp->lwp_thread->td_flags & TDF_MIGRATING) == 0)
685 		lwkt_giveaway(lp->lwp_thread);
686 
687 	rgd = globaldata_find(rdd->cpuid);
688 
689 	/*
690 	 * We lose control of the lp the moment we release the spinlock
691 	 * after having placed it on the queue.  i.e. another cpu could pick
692 	 * it up, or it could exit, or its priority could be further
693 	 * adjusted, or something like that.
694 	 *
695 	 * WARNING! rdd can point to a foreign cpu!
696 	 */
697 	spin_lock(&rdd->spin);
698 	dfly_setrunqueue_locked(rdd, lp);
699 
700 	/*
701 	 * Potentially interrupt the currently-running thread
702 	 */
703 	if ((rdd->upri & ~PPQMASK) <= (lp->lwp_priority & ~PPQMASK)) {
704 		/*
705 		 * Currently running thread is better or same, do not
706 		 * interrupt.
707 		 */
708 		spin_unlock(&rdd->spin);
709 	} else if ((rdd->upri & ~PPQMASK) <= (lp->lwp_priority & ~PPQMASK) +
710 		   usched_dfly_fast_resched) {
711 		/*
712 		 * Currently running thread is not better, but not so bad
713 		 * that we need to interrupt it.  Let it run for one more
714 		 * scheduler tick.
715 		 */
716 		if (rdd->uschedcp &&
717 		    rdd->uschedcp->lwp_rrcount < usched_dfly_rrinterval) {
718 			rdd->uschedcp->lwp_rrcount = usched_dfly_rrinterval - 1;
719 		}
720 		spin_unlock(&rdd->spin);
721 	} else if (rgd == mycpu) {
722 		/*
723 		 * We should interrupt the currently running thread, which
724 		 * is on the current cpu.  However, if DIDYIELD is set we
725 		 * round-robin unconditionally and do not interrupt it.
726 		 */
727 		spin_unlock(&rdd->spin);
728 		if (rdd->uschedcp == NULL)
729 			wakeup_mycpu(&rdd->helper_thread); /* XXX */
730 		if ((lp->lwp_thread->td_mpflags & TDF_MP_DIDYIELD) == 0)
731 			need_user_resched();
732 	} else {
733 		/*
734 		 * We should interrupt the currently running thread, which
735 		 * is on a different cpu.
736 		 */
737 		spin_unlock(&rdd->spin);
738 		lwkt_send_ipiq(rgd, dfly_need_user_resched_remote, NULL);
739 	}
740 }
741 
742 /*
743  * This routine is called from a systimer IPI.  It MUST be MP-safe and
744  * the BGL IS NOT HELD ON ENTRY.  This routine is called at ESTCPUFREQ on
745  * each cpu.
746  */
747 static
748 void
749 dfly_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp)
750 {
751 	globaldata_t gd = mycpu;
752 	dfly_pcpu_t dd = &dfly_pcpu[gd->gd_cpuid];
753 
754 	/*
755 	 * Spinlocks also hold a critical section so there should not be
756 	 * any active.
757 	 */
758 	KKASSERT(gd->gd_spinlocks == 0);
759 
760 	if (lp == NULL)
761 		return;
762 
763 	/*
764 	 * Do we need to round-robin?  We round-robin 10 times a second.
765 	 * This should only occur for cpu-bound batch processes.
766 	 */
767 	if (++lp->lwp_rrcount >= usched_dfly_rrinterval) {
768 		lp->lwp_thread->td_wakefromcpu = -1;
769 		need_user_resched();
770 	}
771 
772 	/*
773 	 * Adjust estcpu upward using a real time equivalent calculation,
774 	 * and recalculate lp's priority.
775 	 */
776 	lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUMAX / ESTCPUFREQ + 1);
777 	dfly_resetpriority(lp);
778 
779 	/*
780 	 * Rebalance two cpus every 8 ticks, pulling the worst thread
781 	 * from the worst cpu's queue into a rotating cpu number.
782 	 *
783 	 * This mechanic is needed because the push algorithms can
784 	 * steady-state in an non-optimal configuration.  We need to mix it
785 	 * up a little, even if it means breaking up a paired thread, so
786 	 * the push algorithms can rebalance the degenerate conditions.
787 	 * This portion of the algorithm exists to ensure stability at the
788 	 * selected weightings.
789 	 *
790 	 * Because we might be breaking up optimal conditions we do not want
791 	 * to execute this too quickly, hence we only rebalance approximately
792 	 * ~7-8 times per second.  The push's, on the otherhand, are capable
793 	 * moving threads to other cpus at a much higher rate.
794 	 *
795 	 * We choose the most heavily loaded thread from the worst queue
796 	 * in order to ensure that multiple heavy-weight threads on the same
797 	 * queue get broken up, and also because these threads are the most
798 	 * likely to be able to remain in place.  Hopefully then any pairings,
799 	 * if applicable, migrate to where these threads are.
800 	 */
801 	if ((usched_dfly_features & 0x04) &&
802 	    ((u_int)sched_ticks & 7) == 0 &&
803 	    (u_int)sched_ticks / 8 % ncpus == gd->gd_cpuid) {
804 		/*
805 		 * Our cpu is up.
806 		 */
807 		struct lwp *nlp;
808 		dfly_pcpu_t rdd;
809 
810 		rdd = dfly_choose_worst_queue(dd);
811 		if (rdd) {
812 			spin_lock(&dd->spin);
813 			if (spin_trylock(&rdd->spin)) {
814 				nlp = dfly_chooseproc_locked(rdd, dd, NULL, 1);
815 				spin_unlock(&rdd->spin);
816 				if (nlp == NULL)
817 					spin_unlock(&dd->spin);
818 			} else {
819 				spin_unlock(&dd->spin);
820 				nlp = NULL;
821 			}
822 		} else {
823 			nlp = NULL;
824 		}
825 		/* dd->spin held if nlp != NULL */
826 
827 		/*
828 		 * Either schedule it or add it to our queue.
829 		 */
830 		if (nlp &&
831 		    (nlp->lwp_priority & ~PPQMASK) < (dd->upri & ~PPQMASK)) {
832 			ATOMIC_CPUMASK_ORMASK(dfly_curprocmask, dd->cpumask);
833 			dd->upri = nlp->lwp_priority;
834 			dd->uschedcp = nlp;
835 #if 0
836 			dd->rrcount = 0;	/* reset round robin */
837 #endif
838 			spin_unlock(&dd->spin);
839 			lwkt_acquire(nlp->lwp_thread);
840 			lwkt_schedule(nlp->lwp_thread);
841 		} else if (nlp) {
842 			dfly_setrunqueue_locked(dd, nlp);
843 			spin_unlock(&dd->spin);
844 		}
845 	}
846 }
847 
848 /*
849  * Called from acquire and from kern_synch's one-second timer (one of the
850  * callout helper threads) with a critical section held.
851  *
852  * Adjust p_estcpu based on our single-cpu load, p_nice, and compensate for
853  * overall system load.
854  *
855  * Note that no recalculation occurs for a process which sleeps and wakes
856  * up in the same tick.  That is, a system doing thousands of context
857  * switches per second will still only do serious estcpu calculations
858  * ESTCPUFREQ times per second.
859  */
860 static
861 void
862 dfly_recalculate_estcpu(struct lwp *lp)
863 {
864 	globaldata_t gd = mycpu;
865 	sysclock_t cpbase;
866 	sysclock_t ttlticks;
867 	int estcpu;
868 	int decay_factor;
869 	int ucount;
870 
871 	/*
872 	 * We have to subtract periodic to get the last schedclock
873 	 * timeout time, otherwise we would get the upcoming timeout.
874 	 * Keep in mind that a process can migrate between cpus and
875 	 * while the scheduler clock should be very close, boundary
876 	 * conditions could lead to a small negative delta.
877 	 */
878 	cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
879 
880 	if (lp->lwp_slptime > 1) {
881 		/*
882 		 * Too much time has passed, do a coarse correction.
883 		 */
884 		lp->lwp_estcpu = lp->lwp_estcpu >> 1;
885 		dfly_resetpriority(lp);
886 		lp->lwp_cpbase = cpbase;
887 		lp->lwp_cpticks = 0;
888 		lp->lwp_estfast = 0;
889 	} else if (lp->lwp_cpbase != cpbase) {
890 		/*
891 		 * Adjust estcpu if we are in a different tick.  Don't waste
892 		 * time if we are in the same tick.
893 		 *
894 		 * First calculate the number of ticks in the measurement
895 		 * interval.  The ttlticks calculation can wind up 0 due to
896 		 * a bug in the handling of lwp_slptime  (as yet not found),
897 		 * so make sure we do not get a divide by 0 panic.
898 		 */
899 		ttlticks = (cpbase - lp->lwp_cpbase) /
900 			   gd->gd_schedclock.periodic;
901 		if ((ssysclock_t)ttlticks < 0) {
902 			ttlticks = 0;
903 			lp->lwp_cpbase = cpbase;
904 		}
905 		if (ttlticks == 0)
906 			return;
907 		updatepcpu(lp, lp->lwp_cpticks, ttlticks);
908 
909 		/*
910 		 * Calculate the percentage of one cpu being used then
911 		 * compensate for any system load in excess of ncpus.
912 		 *
913 		 * For example, if we have 8 cores and 16 running cpu-bound
914 		 * processes then all things being equal each process will
915 		 * get 50% of one cpu.  We need to pump this value back
916 		 * up to 100% so the estcpu calculation properly adjusts
917 		 * the process's dynamic priority.
918 		 *
919 		 * estcpu is scaled by ESTCPUMAX, pctcpu is scaled by FSCALE.
920 		 */
921 		estcpu = (lp->lwp_pctcpu * ESTCPUMAX) >> FSHIFT;
922 		ucount = dfly_ucount;
923 		if (ucount > ncpus) {
924 			estcpu += estcpu * (ucount - ncpus) / ncpus;
925 		}
926 
927 		if (usched_dfly_debug == lp->lwp_proc->p_pid) {
928 			kprintf("pid %d lwp %p estcpu %3d %3d cp %d/%d",
929 				lp->lwp_proc->p_pid, lp,
930 				estcpu, lp->lwp_estcpu,
931 				lp->lwp_cpticks, ttlticks);
932 		}
933 
934 		/*
935 		 * Adjust lp->lwp_esetcpu.  The decay factor determines how
936 		 * quickly lwp_estcpu collapses to its realtime calculation.
937 		 * A slower collapse gives us a more accurate number over
938 		 * the long term but can create problems with bursty threads
939 		 * or threads which become cpu hogs.
940 		 *
941 		 * To solve this problem, newly started lwps and lwps which
942 		 * are restarting after having been asleep for a while are
943 		 * given a much, much faster decay in order to quickly
944 		 * detect whether they become cpu-bound.
945 		 *
946 		 * NOTE: p_nice is accounted for in dfly_resetpriority(),
947 		 *	 and not here, but we must still ensure that a
948 		 *	 cpu-bound nice -20 process does not completely
949 		 *	 override a cpu-bound nice +20 process.
950 		 *
951 		 * NOTE: We must use ESTCPULIM() here to deal with any
952 		 *	 overshoot.
953 		 */
954 		decay_factor = usched_dfly_decay;
955 		if (decay_factor < 1)
956 			decay_factor = 1;
957 		if (decay_factor > 1024)
958 			decay_factor = 1024;
959 
960 		if (lp->lwp_estfast < usched_dfly_decay) {
961 			++lp->lwp_estfast;
962 			lp->lwp_estcpu = ESTCPULIM(
963 				(lp->lwp_estcpu * lp->lwp_estfast + estcpu) /
964 				(lp->lwp_estfast + 1));
965 		} else {
966 			lp->lwp_estcpu = ESTCPULIM(
967 				(lp->lwp_estcpu * decay_factor + estcpu) /
968 				(decay_factor + 1));
969 		}
970 
971 		if (usched_dfly_debug == lp->lwp_proc->p_pid)
972 			kprintf(" finalestcpu %d\n", lp->lwp_estcpu);
973 		dfly_resetpriority(lp);
974 		lp->lwp_cpbase += ttlticks * gd->gd_schedclock.periodic;
975 		lp->lwp_cpticks = 0;
976 	}
977 }
978 
979 /*
980  * Compute the priority of a process when running in user mode.
981  * Arrange to reschedule if the resulting priority is better
982  * than that of the current process.
983  *
984  * This routine may be called with any process.
985  *
986  * This routine is called by fork1() for initial setup with the process
987  * of the run queue, and also may be called normally with the process on or
988  * off the run queue.
989  */
990 static void
991 dfly_resetpriority(struct lwp *lp)
992 {
993 	dfly_pcpu_t rdd;
994 	int newpriority;
995 	u_short newrqtype;
996 	int rcpu;
997 	int checkpri;
998 	int estcpu;
999 	int delta_uload;
1000 
1001 	crit_enter();
1002 
1003 	/*
1004 	 * Lock the scheduler (lp) belongs to.  This can be on a different
1005 	 * cpu.  Handle races.  This loop breaks out with the appropriate
1006 	 * rdd locked.
1007 	 */
1008 	for (;;) {
1009 		rcpu = lp->lwp_qcpu;
1010 		cpu_ccfence();
1011 		rdd = &dfly_pcpu[rcpu];
1012 		spin_lock(&rdd->spin);
1013 		if (rcpu == lp->lwp_qcpu)
1014 			break;
1015 		spin_unlock(&rdd->spin);
1016 	}
1017 
1018 	/*
1019 	 * Calculate the new priority and queue type
1020 	 */
1021 	newrqtype = lp->lwp_rtprio.type;
1022 
1023 	switch(newrqtype) {
1024 	case RTP_PRIO_REALTIME:
1025 	case RTP_PRIO_FIFO:
1026 		newpriority = PRIBASE_REALTIME +
1027 			     (lp->lwp_rtprio.prio & PRIMASK);
1028 		break;
1029 	case RTP_PRIO_NORMAL:
1030 		/*
1031 		 *
1032 		 */
1033 		estcpu = lp->lwp_estcpu;
1034 
1035 		/*
1036 		 * p_nice piece		Adds (0-40) * 2		0-80
1037 		 * estcpu		Adds 16384  * 4 / 512   0-128
1038 		 */
1039 		newpriority = (lp->lwp_proc->p_nice - PRIO_MIN) * PPQ / NICEPPQ;
1040 		newpriority += estcpu * PPQ / ESTCPUPPQ;
1041 		newpriority = newpriority * MAXPRI / (PRIO_RANGE * PPQ /
1042 			      NICEPPQ + ESTCPUMAX * PPQ / ESTCPUPPQ);
1043 		newpriority = PRIBASE_NORMAL + (newpriority & PRIMASK);
1044 		break;
1045 	case RTP_PRIO_IDLE:
1046 		newpriority = PRIBASE_IDLE + (lp->lwp_rtprio.prio & PRIMASK);
1047 		break;
1048 	case RTP_PRIO_THREAD:
1049 		newpriority = PRIBASE_THREAD + (lp->lwp_rtprio.prio & PRIMASK);
1050 		break;
1051 	default:
1052 		panic("Bad RTP_PRIO %d", newrqtype);
1053 		/* NOT REACHED */
1054 	}
1055 
1056 	/*
1057 	 * The LWKT scheduler doesn't dive usched structures, give it a hint
1058 	 * on the relative priority of user threads running in the kernel.
1059 	 * The LWKT scheduler will always ensure that a user thread running
1060 	 * in the kernel will get cpu some time, regardless of its upri,
1061 	 * but can decide not to instantly switch from one kernel or user
1062 	 * mode user thread to a kernel-mode user thread when it has a less
1063 	 * desireable user priority.
1064 	 *
1065 	 * td_upri has normal sense (higher values are more desireable), so
1066 	 * negate it.
1067 	 */
1068 	lp->lwp_thread->td_upri = -(newpriority & usched_dfly_swmask);
1069 
1070 	/*
1071 	 * The newpriority incorporates the queue type so do a simple masked
1072 	 * check to determine if the process has moved to another queue.  If
1073 	 * it has, and it is currently on a run queue, then move it.
1074 	 *
1075 	 * Since uload is ~PPQMASK masked, no modifications are necessary if
1076 	 * we end up in the same run queue.
1077 	 */
1078 	if ((lp->lwp_priority ^ newpriority) & ~PPQMASK) {
1079 		if (lp->lwp_mpflags & LWP_MP_ONRUNQ) {
1080 			dfly_remrunqueue_locked(rdd, lp);
1081 			lp->lwp_priority = newpriority;
1082 			lp->lwp_rqtype = newrqtype;
1083 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
1084 			dfly_setrunqueue_locked(rdd, lp);
1085 			checkpri = 1;
1086 		} else {
1087 			lp->lwp_priority = newpriority;
1088 			lp->lwp_rqtype = newrqtype;
1089 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
1090 			checkpri = 0;
1091 		}
1092 	} else {
1093 		/*
1094 		 * In the same PPQ, uload cannot change.
1095 		 */
1096 		lp->lwp_priority = newpriority;
1097 		checkpri = 1;
1098 		rcpu = -1;
1099 	}
1100 
1101 	/*
1102 	 * Adjust effective load.
1103 	 *
1104 	 * Calculate load then scale up or down geometrically based on p_nice.
1105 	 * Processes niced up (positive) are less important, and processes
1106 	 * niced downard (negative) are more important.  The higher the uload,
1107 	 * the more important the thread.
1108 	 */
1109 	/* 0-511, 0-100% cpu */
1110 	delta_uload = lp->lwp_estcpu / NQS;
1111 	delta_uload -= delta_uload * lp->lwp_proc->p_nice / (PRIO_MAX + 1);
1112 
1113 
1114 	delta_uload -= lp->lwp_uload;
1115 	lp->lwp_uload += delta_uload;
1116 	if (lp->lwp_mpflags & LWP_MP_ULOAD)
1117 		atomic_add_int(&dfly_pcpu[lp->lwp_qcpu].uload, delta_uload);
1118 
1119 	/*
1120 	 * Determine if we need to reschedule the target cpu.  This only
1121 	 * occurs if the LWP is already on a scheduler queue, which means
1122 	 * that idle cpu notification has already occured.  At most we
1123 	 * need only issue a need_user_resched() on the appropriate cpu.
1124 	 *
1125 	 * The LWP may be owned by a CPU different from the current one,
1126 	 * in which case dd->uschedcp may be modified without an MP lock
1127 	 * or a spinlock held.  The worst that happens is that the code
1128 	 * below causes a spurious need_user_resched() on the target CPU
1129 	 * and dd->pri to be wrong for a short period of time, both of
1130 	 * which are harmless.
1131 	 *
1132 	 * If checkpri is 0 we are adjusting the priority of the current
1133 	 * process, possibly higher (less desireable), so ignore the upri
1134 	 * check which will fail in that case.
1135 	 */
1136 	if (rcpu >= 0) {
1137 		if (CPUMASK_TESTBIT(dfly_rdyprocmask, rcpu) &&
1138 		    (checkpri == 0 ||
1139 		     (rdd->upri & ~PRIMASK) >
1140 		     (lp->lwp_priority & ~PRIMASK))) {
1141 			if (rcpu == mycpu->gd_cpuid) {
1142 				spin_unlock(&rdd->spin);
1143 				need_user_resched();
1144 			} else {
1145 				spin_unlock(&rdd->spin);
1146 				lwkt_send_ipiq(globaldata_find(rcpu),
1147 					       dfly_need_user_resched_remote,
1148 					       NULL);
1149 			}
1150 		} else {
1151 			spin_unlock(&rdd->spin);
1152 		}
1153 	} else {
1154 		spin_unlock(&rdd->spin);
1155 	}
1156 	crit_exit();
1157 }
1158 
1159 static
1160 void
1161 dfly_yield(struct lwp *lp)
1162 {
1163 	if (lp->lwp_qcpu != mycpu->gd_cpuid)
1164 		return;
1165 	KKASSERT(lp == curthread->td_lwp);
1166 
1167 	/*
1168 	 * Don't set need_user_resched() or mess with rrcount or anything.
1169 	 * the TDF flag will override everything as long as we release.
1170 	 */
1171 	atomic_set_int(&lp->lwp_thread->td_mpflags, TDF_MP_DIDYIELD);
1172 	dfly_release_curproc(lp);
1173 }
1174 
1175 /*
1176  * Thread was forcefully migrated to another cpu.  Normally forced migrations
1177  * are used for iterations and the kernel returns to the original cpu before
1178  * returning and this is not needed.  However, if the kernel migrates a
1179  * thread to another cpu and wants to leave it there, it has to call this
1180  * scheduler helper.
1181  *
1182  * Note that the lwkt_migratecpu() function also released the thread, so
1183  * we don't have to worry about that.
1184  */
1185 static
1186 void
1187 dfly_changedcpu(struct lwp *lp)
1188 {
1189 	dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1190 	dfly_pcpu_t rdd = &dfly_pcpu[mycpu->gd_cpuid];
1191 
1192 	if (dd != rdd) {
1193 		spin_lock(&dd->spin);
1194 		dfly_changeqcpu_locked(lp, dd, rdd);
1195 		spin_unlock(&dd->spin);
1196 	}
1197 }
1198 
1199 /*
1200  * Called from fork1() when a new child process is being created.
1201  *
1202  * Give the child process an initial estcpu that is more batch then
1203  * its parent and dock the parent for the fork (but do not
1204  * reschedule the parent).
1205  *
1206  * fast
1207  *
1208  * XXX lwp should be "spawning" instead of "forking"
1209  */
1210 static void
1211 dfly_forking(struct lwp *plp, struct lwp *lp)
1212 {
1213 	/*
1214 	 * Put the child 4 queue slots (out of 32) higher than the parent
1215 	 * (less desireable than the parent).
1216 	 */
1217 	lp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ * 4);
1218 	lp->lwp_forked = 1;
1219 	lp->lwp_estfast = 0;
1220 
1221 	/*
1222 	 * Dock the parent a cost for the fork, protecting us from fork
1223 	 * bombs.  If the parent is forking quickly make the child more
1224 	 * batchy.
1225 	 */
1226 	plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ / 16);
1227 }
1228 
1229 /*
1230  * Called when a lwp is being removed from this scheduler, typically
1231  * during lwp_exit().  We have to clean out any ULOAD accounting before
1232  * we can let the lp go.  The dd->spin lock is not needed for uload
1233  * updates.
1234  *
1235  * Scheduler dequeueing has already occurred, no further action in that
1236  * regard is needed.
1237  */
1238 static void
1239 dfly_exiting(struct lwp *lp, struct proc *child_proc)
1240 {
1241 	dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1242 
1243 	if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1244 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
1245 		atomic_add_int(&dd->uload, -lp->lwp_uload);
1246 		atomic_add_int(&dd->ucount, -1);
1247 		atomic_add_int(&dfly_ucount, -1);
1248 	}
1249 }
1250 
1251 /*
1252  * This function cannot block in any way, but spinlocks are ok.
1253  *
1254  * Update the uload based on the state of the thread (whether it is going
1255  * to sleep or running again).  The uload is meant to be a longer-term
1256  * load and not an instantanious load.
1257  */
1258 static void
1259 dfly_uload_update(struct lwp *lp)
1260 {
1261 	dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1262 
1263 	if (lp->lwp_thread->td_flags & TDF_RUNQ) {
1264 		if ((lp->lwp_mpflags & LWP_MP_ULOAD) == 0) {
1265 			spin_lock(&dd->spin);
1266 			if ((lp->lwp_mpflags & LWP_MP_ULOAD) == 0) {
1267 				atomic_set_int(&lp->lwp_mpflags,
1268 					       LWP_MP_ULOAD);
1269 				atomic_add_int(&dd->uload, lp->lwp_uload);
1270 				atomic_add_int(&dd->ucount, 1);
1271 				atomic_add_int(&dfly_ucount, 1);
1272 			}
1273 			spin_unlock(&dd->spin);
1274 		}
1275 	} else if (lp->lwp_slptime > 0) {
1276 		if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1277 			spin_lock(&dd->spin);
1278 			if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1279 				atomic_clear_int(&lp->lwp_mpflags,
1280 						 LWP_MP_ULOAD);
1281 				atomic_add_int(&dd->uload, -lp->lwp_uload);
1282 				atomic_add_int(&dd->ucount, -1);
1283 				atomic_add_int(&dfly_ucount, -1);
1284 			}
1285 			spin_unlock(&dd->spin);
1286 		}
1287 	}
1288 }
1289 
1290 /*
1291  * chooseproc() is called when a cpu needs a user process to LWKT schedule,
1292  * it selects a user process and returns it.  If chklp is non-NULL and chklp
1293  * has a better or equal priority then the process that would otherwise be
1294  * chosen, NULL is returned.
1295  *
1296  * Until we fix the RUNQ code the chklp test has to be strict or we may
1297  * bounce between processes trying to acquire the current process designation.
1298  *
1299  * Must be called with rdd->spin locked.  The spinlock is left intact through
1300  * the entire routine.  dd->spin does not have to be locked.
1301  *
1302  * If worst is non-zero this function finds the worst thread instead of the
1303  * best thread (used by the schedulerclock-based rover).
1304  */
1305 static
1306 struct lwp *
1307 dfly_chooseproc_locked(dfly_pcpu_t rdd, dfly_pcpu_t dd,
1308 		       struct lwp *chklp, int worst)
1309 {
1310 	struct lwp *lp;
1311 	struct rq *q;
1312 	u_int32_t *which;
1313 	u_int32_t pri;
1314 	u_int32_t rtqbits;
1315 	u_int32_t tsqbits;
1316 	u_int32_t idqbits;
1317 
1318 	rtqbits = rdd->rtqueuebits;
1319 	tsqbits = rdd->queuebits;
1320 	idqbits = rdd->idqueuebits;
1321 
1322 	if (worst) {
1323 		if (idqbits) {
1324 			pri = bsrl(idqbits);
1325 			q = &rdd->idqueues[pri];
1326 			which = &rdd->idqueuebits;
1327 		} else if (tsqbits) {
1328 			pri = bsrl(tsqbits);
1329 			q = &rdd->queues[pri];
1330 			which = &rdd->queuebits;
1331 		} else if (rtqbits) {
1332 			pri = bsrl(rtqbits);
1333 			q = &rdd->rtqueues[pri];
1334 			which = &rdd->rtqueuebits;
1335 		} else {
1336 			return (NULL);
1337 		}
1338 		lp = TAILQ_LAST(q, rq);
1339 	} else {
1340 		if (rtqbits) {
1341 			pri = bsfl(rtqbits);
1342 			q = &rdd->rtqueues[pri];
1343 			which = &rdd->rtqueuebits;
1344 		} else if (tsqbits) {
1345 			pri = bsfl(tsqbits);
1346 			q = &rdd->queues[pri];
1347 			which = &rdd->queuebits;
1348 		} else if (idqbits) {
1349 			pri = bsfl(idqbits);
1350 			q = &rdd->idqueues[pri];
1351 			which = &rdd->idqueuebits;
1352 		} else {
1353 			return (NULL);
1354 		}
1355 		lp = TAILQ_FIRST(q);
1356 	}
1357 	KASSERT(lp, ("chooseproc: no lwp on busy queue"));
1358 
1359 	/*
1360 	 * If the passed lwp <chklp> is reasonably close to the selected
1361 	 * lwp <lp>, return NULL (indicating that <chklp> should be kept).
1362 	 *
1363 	 * Note that we must error on the side of <chklp> to avoid bouncing
1364 	 * between threads in the acquire code.
1365 	 */
1366 	if (chklp) {
1367 		if (chklp->lwp_priority < lp->lwp_priority + PPQ)
1368 			return(NULL);
1369 	}
1370 
1371 	KTR_COND_LOG(usched_chooseproc,
1372 	    lp->lwp_proc->p_pid == usched_dfly_pid_debug,
1373 	    lp->lwp_proc->p_pid,
1374 	    lp->lwp_thread->td_gd->gd_cpuid,
1375 	    mycpu->gd_cpuid);
1376 
1377 	KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) != 0, ("not on runq6!"));
1378 	atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1379 	TAILQ_REMOVE(q, lp, lwp_procq);
1380 	--rdd->runqcount;
1381 	if (TAILQ_EMPTY(q))
1382 		*which &= ~(1 << pri);
1383 
1384 	/*
1385 	 * If we are choosing a process from rdd with the intent to
1386 	 * move it to dd, lwp_qcpu must be adjusted while rdd's spinlock
1387 	 * is still held.
1388 	 */
1389 	if (rdd != dd) {
1390 		if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1391 			atomic_add_int(&rdd->uload, -lp->lwp_uload);
1392 			atomic_add_int(&rdd->ucount, -1);
1393 			atomic_add_int(&dfly_ucount, -1);
1394 		}
1395 		lp->lwp_qcpu = dd->cpuid;
1396 		atomic_add_int(&dd->uload, lp->lwp_uload);
1397 		atomic_add_int(&dd->ucount, 1);
1398 		atomic_add_int(&dfly_ucount, 1);
1399 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
1400 	}
1401 	return lp;
1402 }
1403 
1404 /*
1405  * USED TO PUSH RUNNABLE LWPS TO THE LEAST LOADED CPU.
1406  *
1407  * Choose a cpu node to schedule lp on, hopefully nearby its current
1408  * node.
1409  *
1410  * We give the current node a modest advantage for obvious reasons.
1411  *
1412  * We also give the node the thread was woken up FROM a slight advantage
1413  * in order to try to schedule paired threads which synchronize/block waiting
1414  * for each other fairly close to each other.  Similarly in a network setting
1415  * this feature will also attempt to place a user process near the kernel
1416  * protocol thread that is feeding it data.  THIS IS A CRITICAL PART of the
1417  * algorithm as it heuristically groups synchronizing processes for locality
1418  * of reference in multi-socket systems.
1419  *
1420  * We check against running processes and give a big advantage if there
1421  * are none running.
1422  *
1423  * The caller will normally dfly_setrunqueue() lp on the returned queue.
1424  *
1425  * When the topology is known choose a cpu whos group has, in aggregate,
1426  * has the lowest weighted load.
1427  */
1428 static
1429 dfly_pcpu_t
1430 dfly_choose_best_queue(struct lwp *lp)
1431 {
1432 	cpumask_t wakemask;
1433 	cpumask_t mask;
1434 	cpu_node_t *cpup;
1435 	cpu_node_t *cpun;
1436 	cpu_node_t *cpub;
1437 	dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1438 	dfly_pcpu_t rdd;
1439 	int wakecpu;
1440 	int cpuid;
1441 	int n;
1442 	int count;
1443 	int load;
1444 	int lowest_load;
1445 
1446 	/*
1447 	 * When the topology is unknown choose a random cpu that is hopefully
1448 	 * idle.
1449 	 */
1450 	if (dd->cpunode == NULL)
1451 		return (dfly_choose_queue_simple(dd, lp));
1452 
1453 	/*
1454 	 * Pairing mask
1455 	 */
1456 	if ((wakecpu = lp->lwp_thread->td_wakefromcpu) >= 0)
1457 		wakemask = dfly_pcpu[wakecpu].cpumask;
1458 	else
1459 		CPUMASK_ASSZERO(wakemask);
1460 
1461 	/*
1462 	 * When the topology is known choose a cpu whos group has, in
1463 	 * aggregate, has the lowest weighted load.
1464 	 */
1465 	cpup = root_cpu_node;
1466 	rdd = dd;
1467 
1468 	while (cpup) {
1469 		/*
1470 		 * Degenerate case super-root
1471 		 */
1472 		if (cpup->child_no == 1) {
1473 			cpup = cpup->child_node[0];
1474 			continue;
1475 		}
1476 
1477 		/*
1478 		 * Terminal cpunode
1479 		 */
1480 		if (cpup->child_no == 0) {
1481 			rdd = &dfly_pcpu[BSFCPUMASK(cpup->members)];
1482 			break;
1483 		}
1484 
1485 		cpub = NULL;
1486 		lowest_load = 0x7FFFFFFF;
1487 
1488 		for (n = 0; n < cpup->child_no; ++n) {
1489 			/*
1490 			 * Accumulate load information for all cpus
1491 			 * which are members of this node.
1492 			 */
1493 			cpun = cpup->child_node[n];
1494 			mask = cpun->members;
1495 			CPUMASK_ANDMASK(mask, usched_global_cpumask);
1496 			CPUMASK_ANDMASK(mask, smp_active_mask);
1497 			CPUMASK_ANDMASK(mask, lp->lwp_cpumask);
1498 			if (CPUMASK_TESTZERO(mask))
1499 				continue;
1500 
1501 			count = 0;
1502 			load = 0;
1503 
1504 			while (CPUMASK_TESTNZERO(mask)) {
1505 				cpuid = BSFCPUMASK(mask);
1506 				rdd = &dfly_pcpu[cpuid];
1507 				load += rdd->uload;
1508 				load += rdd->ucount * usched_dfly_weight3;
1509 
1510 				if (rdd->uschedcp == NULL &&
1511 				    rdd->runqcount == 0 &&
1512 				    globaldata_find(cpuid)->gd_tdrunqcount == 0
1513 				) {
1514 					load -= usched_dfly_weight4;
1515 				}
1516 #if 0
1517 				else if (rdd->upri > lp->lwp_priority + PPQ) {
1518 					load -= usched_dfly_weight4 / 2;
1519 				}
1520 #endif
1521 				CPUMASK_NANDBIT(mask, cpuid);
1522 				++count;
1523 			}
1524 
1525 			/*
1526 			 * Compensate if the lp is already accounted for in
1527 			 * the aggregate uload for this mask set.  We want
1528 			 * to calculate the loads as if lp were not present,
1529 			 * otherwise the calculation is bogus.
1530 			 */
1531 			if ((lp->lwp_mpflags & LWP_MP_ULOAD) &&
1532 			    CPUMASK_TESTMASK(dd->cpumask, cpun->members)) {
1533 				load -= lp->lwp_uload;
1534 				load -= usched_dfly_weight3;
1535 			}
1536 
1537 			load /= count;
1538 
1539 			/*
1540 			 * Advantage the cpu group (lp) is already on.
1541 			 */
1542 			if (CPUMASK_TESTMASK(cpun->members, dd->cpumask))
1543 				load -= usched_dfly_weight1;
1544 
1545 			/*
1546 			 * Advantage the cpu group we want to pair (lp) to,
1547 			 * but don't let it go to the exact same cpu as
1548 			 * the wakecpu target.
1549 			 *
1550 			 * We do this by checking whether cpun is a
1551 			 * terminal node or not.  All cpun's at the same
1552 			 * level will either all be terminal or all not
1553 			 * terminal.
1554 			 *
1555 			 * If it is and we match we disadvantage the load.
1556 			 * If it is and we don't match we advantage the load.
1557 			 *
1558 			 * Also note that we are effectively disadvantaging
1559 			 * all-but-one by the same amount, so it won't effect
1560 			 * the weight1 factor for the all-but-one nodes.
1561 			 */
1562 			if (CPUMASK_TESTMASK(cpun->members, wakemask)) {
1563 				if (cpun->child_no != 0) {
1564 					/* advantage */
1565 					load -= usched_dfly_weight2;
1566 				} else {
1567 					if (usched_dfly_features & 0x10)
1568 						load += usched_dfly_weight2;
1569 					else
1570 						load -= usched_dfly_weight2;
1571 				}
1572 			}
1573 
1574 			/*
1575 			 * Calculate the best load
1576 			 */
1577 			if (cpub == NULL || lowest_load > load ||
1578 			    (lowest_load == load &&
1579 			     CPUMASK_TESTMASK(cpun->members, dd->cpumask))
1580 			) {
1581 				lowest_load = load;
1582 				cpub = cpun;
1583 			}
1584 		}
1585 		cpup = cpub;
1586 	}
1587 	if (usched_dfly_chooser)
1588 		kprintf("lp %02d->%02d %s\n",
1589 			lp->lwp_qcpu, rdd->cpuid, lp->lwp_proc->p_comm);
1590 	return (rdd);
1591 }
1592 
1593 /*
1594  * USED TO PULL RUNNABLE LWPS FROM THE MOST LOADED CPU.
1595  *
1596  * Choose the worst queue close to dd's cpu node with a non-empty runq
1597  * that is NOT dd.  Also require that the moving of the highest-load thread
1598  * from rdd to dd does not cause the uload's to cross each other.
1599  *
1600  * This is used by the thread chooser when the current cpu's queues are
1601  * empty to steal a thread from another cpu's queue.  We want to offload
1602  * the most heavily-loaded queue.
1603  */
1604 static
1605 dfly_pcpu_t
1606 dfly_choose_worst_queue(dfly_pcpu_t dd)
1607 {
1608 	cpumask_t mask;
1609 	cpu_node_t *cpup;
1610 	cpu_node_t *cpun;
1611 	cpu_node_t *cpub;
1612 	dfly_pcpu_t rdd;
1613 	int cpuid;
1614 	int n;
1615 	int count;
1616 	int load;
1617 #if 0
1618 	int pri;
1619 	int hpri;
1620 #endif
1621 	int highest_load;
1622 
1623 	/*
1624 	 * When the topology is unknown choose a random cpu that is hopefully
1625 	 * idle.
1626 	 */
1627 	if (dd->cpunode == NULL) {
1628 		return (NULL);
1629 	}
1630 
1631 	/*
1632 	 * When the topology is known choose a cpu whos group has, in
1633 	 * aggregate, has the lowest weighted load.
1634 	 */
1635 	cpup = root_cpu_node;
1636 	rdd = dd;
1637 	while (cpup) {
1638 		/*
1639 		 * Degenerate case super-root
1640 		 */
1641 		if (cpup->child_no == 1) {
1642 			cpup = cpup->child_node[0];
1643 			continue;
1644 		}
1645 
1646 		/*
1647 		 * Terminal cpunode
1648 		 */
1649 		if (cpup->child_no == 0) {
1650 			rdd = &dfly_pcpu[BSFCPUMASK(cpup->members)];
1651 			break;
1652 		}
1653 
1654 		cpub = NULL;
1655 		highest_load = 0;
1656 
1657 		for (n = 0; n < cpup->child_no; ++n) {
1658 			/*
1659 			 * Accumulate load information for all cpus
1660 			 * which are members of this node.
1661 			 */
1662 			cpun = cpup->child_node[n];
1663 			mask = cpun->members;
1664 			CPUMASK_ANDMASK(mask, usched_global_cpumask);
1665 			CPUMASK_ANDMASK(mask, smp_active_mask);
1666 			if (CPUMASK_TESTZERO(mask))
1667 				continue;
1668 			count = 0;
1669 			load = 0;
1670 
1671 			while (CPUMASK_TESTNZERO(mask)) {
1672 				cpuid = BSFCPUMASK(mask);
1673 				rdd = &dfly_pcpu[cpuid];
1674 				load += rdd->uload;
1675 				load += rdd->ucount * usched_dfly_weight3;
1676 				if (rdd->uschedcp == NULL &&
1677 				    rdd->runqcount == 0 &&
1678 				    globaldata_find(cpuid)->gd_tdrunqcount == 0
1679 				) {
1680 					load -= usched_dfly_weight4;
1681 				}
1682 #if 0
1683 				else if (rdd->upri > dd->upri + PPQ) {
1684 					load -= usched_dfly_weight4 / 2;
1685 				}
1686 #endif
1687 				CPUMASK_NANDBIT(mask, cpuid);
1688 				++count;
1689 			}
1690 			load /= count;
1691 
1692 			/*
1693 			 * Prefer candidates which are somewhat closer to
1694 			 * our cpu.
1695 			 */
1696 			if (CPUMASK_TESTMASK(dd->cpumask, cpun->members))
1697 				load += usched_dfly_weight1;
1698 
1699 			/*
1700 			 * The best candidate is the one with the worst
1701 			 * (highest) load.
1702 			 */
1703 			if (cpub == NULL || highest_load < load) {
1704 				highest_load = load;
1705 				cpub = cpun;
1706 			}
1707 		}
1708 		cpup = cpub;
1709 	}
1710 
1711 	/*
1712 	 * We never return our own node (dd), and only return a remote
1713 	 * node if it's load is significantly worse than ours (i.e. where
1714 	 * stealing a thread would be considered reasonable).
1715 	 *
1716 	 * This also helps us avoid breaking paired threads apart which
1717 	 * can have disastrous effects on performance.
1718 	 */
1719 	if (rdd == dd)
1720 		return(NULL);
1721 
1722 #if 0
1723 	hpri = 0;
1724 	if (rdd->rtqueuebits && hpri < (pri = bsrl(rdd->rtqueuebits)))
1725 		hpri = pri;
1726 	if (rdd->queuebits && hpri < (pri = bsrl(rdd->queuebits)))
1727 		hpri = pri;
1728 	if (rdd->idqueuebits && hpri < (pri = bsrl(rdd->idqueuebits)))
1729 		hpri = pri;
1730 	hpri *= PPQ;
1731 	if (rdd->uload - hpri < dd->uload + hpri)
1732 		return(NULL);
1733 #endif
1734 	return (rdd);
1735 }
1736 
1737 static
1738 dfly_pcpu_t
1739 dfly_choose_queue_simple(dfly_pcpu_t dd, struct lwp *lp)
1740 {
1741 	dfly_pcpu_t rdd;
1742 	cpumask_t tmpmask;
1743 	cpumask_t mask;
1744 	int cpuid;
1745 
1746 	/*
1747 	 * Fallback to the original heuristic, select random cpu,
1748 	 * first checking cpus not currently running a user thread.
1749 	 */
1750 	++dfly_scancpu;
1751 	cpuid = (dfly_scancpu & 0xFFFF) % ncpus;
1752 	mask = dfly_rdyprocmask;
1753 	CPUMASK_NANDMASK(mask, dfly_curprocmask);
1754 	CPUMASK_ANDMASK(mask, lp->lwp_cpumask);
1755 	CPUMASK_ANDMASK(mask, smp_active_mask);
1756 	CPUMASK_ANDMASK(mask, usched_global_cpumask);
1757 
1758 	while (CPUMASK_TESTNZERO(mask)) {
1759 		CPUMASK_ASSNBMASK(tmpmask, cpuid);
1760 		if (CPUMASK_TESTMASK(tmpmask, mask)) {
1761 			CPUMASK_ANDMASK(tmpmask, mask);
1762 			cpuid = BSFCPUMASK(tmpmask);
1763 		} else {
1764 			cpuid = BSFCPUMASK(mask);
1765 		}
1766 		rdd = &dfly_pcpu[cpuid];
1767 
1768 		if ((rdd->upri & ~PPQMASK) >= (lp->lwp_priority & ~PPQMASK))
1769 			goto found;
1770 		CPUMASK_NANDBIT(mask, cpuid);
1771 	}
1772 
1773 	/*
1774 	 * Then cpus which might have a currently running lp
1775 	 */
1776 	cpuid = (dfly_scancpu & 0xFFFF) % ncpus;
1777 	mask = dfly_rdyprocmask;
1778 	CPUMASK_ANDMASK(mask, dfly_curprocmask);
1779 	CPUMASK_ANDMASK(mask, lp->lwp_cpumask);
1780 	CPUMASK_ANDMASK(mask, smp_active_mask);
1781 	CPUMASK_ANDMASK(mask, usched_global_cpumask);
1782 
1783 	while (CPUMASK_TESTNZERO(mask)) {
1784 		CPUMASK_ASSNBMASK(tmpmask, cpuid);
1785 		if (CPUMASK_TESTMASK(tmpmask, mask)) {
1786 			CPUMASK_ANDMASK(tmpmask, mask);
1787 			cpuid = BSFCPUMASK(tmpmask);
1788 		} else {
1789 			cpuid = BSFCPUMASK(mask);
1790 		}
1791 		rdd = &dfly_pcpu[cpuid];
1792 
1793 		if ((rdd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK))
1794 			goto found;
1795 		CPUMASK_NANDBIT(mask, cpuid);
1796 	}
1797 
1798 	/*
1799 	 * If we cannot find a suitable cpu we reload from dfly_scancpu
1800 	 * and round-robin.  Other cpus will pickup as they release their
1801 	 * current lwps or become ready.
1802 	 *
1803 	 * Avoid a degenerate system lockup case if usched_global_cpumask
1804 	 * is set to 0 or otherwise does not cover lwp_cpumask.
1805 	 *
1806 	 * We only kick the target helper thread in this case, we do not
1807 	 * set the user resched flag because
1808 	 */
1809 	cpuid = (dfly_scancpu & 0xFFFF) % ncpus;
1810 	if (CPUMASK_TESTBIT(usched_global_cpumask, cpuid) == 0)
1811 		cpuid = 0;
1812 	rdd = &dfly_pcpu[cpuid];
1813 found:
1814 	return (rdd);
1815 }
1816 
1817 static
1818 void
1819 dfly_need_user_resched_remote(void *dummy)
1820 {
1821 	globaldata_t gd = mycpu;
1822 	dfly_pcpu_t  dd = &dfly_pcpu[gd->gd_cpuid];
1823 
1824 	/*
1825 	 * Flag reschedule needed
1826 	 */
1827 	need_user_resched();
1828 
1829 	/*
1830 	 * If no user thread is currently running we need to kick the helper
1831 	 * on our cpu to recover.  Otherwise the cpu will never schedule
1832 	 * anything again.
1833 	 *
1834 	 * We cannot schedule the process ourselves because this is an
1835 	 * IPI callback and we cannot acquire spinlocks in an IPI callback.
1836 	 *
1837 	 * Call wakeup_mycpu to avoid sending IPIs to other CPUs
1838 	 */
1839 	if (dd->uschedcp == NULL &&
1840 	    CPUMASK_TESTBIT(dfly_rdyprocmask, gd->gd_cpuid)) {
1841 		ATOMIC_CPUMASK_NANDBIT(dfly_rdyprocmask, gd->gd_cpuid);
1842 		wakeup_mycpu(&dd->helper_thread);
1843 	}
1844 }
1845 
1846 /*
1847  * dfly_remrunqueue_locked() removes a given process from the run queue
1848  * that it is on, clearing the queue busy bit if it becomes empty.
1849  *
1850  * Note that user process scheduler is different from the LWKT schedule.
1851  * The user process scheduler only manages user processes but it uses LWKT
1852  * underneath, and a user process operating in the kernel will often be
1853  * 'released' from our management.
1854  *
1855  * uload is NOT adjusted here.  It is only adjusted if the lwkt_thread goes
1856  * to sleep or the lwp is moved to a different runq.
1857  */
1858 static void
1859 dfly_remrunqueue_locked(dfly_pcpu_t rdd, struct lwp *lp)
1860 {
1861 	struct rq *q;
1862 	u_int32_t *which;
1863 	u_int8_t pri;
1864 
1865 	KKASSERT(rdd->runqcount >= 0);
1866 
1867 	pri = lp->lwp_rqindex;
1868 
1869 	switch(lp->lwp_rqtype) {
1870 	case RTP_PRIO_NORMAL:
1871 		q = &rdd->queues[pri];
1872 		which = &rdd->queuebits;
1873 		break;
1874 	case RTP_PRIO_REALTIME:
1875 	case RTP_PRIO_FIFO:
1876 		q = &rdd->rtqueues[pri];
1877 		which = &rdd->rtqueuebits;
1878 		break;
1879 	case RTP_PRIO_IDLE:
1880 		q = &rdd->idqueues[pri];
1881 		which = &rdd->idqueuebits;
1882 		break;
1883 	default:
1884 		panic("remrunqueue: invalid rtprio type");
1885 		/* NOT REACHED */
1886 	}
1887 	KKASSERT(lp->lwp_mpflags & LWP_MP_ONRUNQ);
1888 	atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1889 	TAILQ_REMOVE(q, lp, lwp_procq);
1890 	--rdd->runqcount;
1891 	if (TAILQ_EMPTY(q)) {
1892 		KASSERT((*which & (1 << pri)) != 0,
1893 			("remrunqueue: remove from empty queue"));
1894 		*which &= ~(1 << pri);
1895 	}
1896 }
1897 
1898 /*
1899  * dfly_setrunqueue_locked()
1900  *
1901  * Add a process whos rqtype and rqindex had previously been calculated
1902  * onto the appropriate run queue.   Determine if the addition requires
1903  * a reschedule on a cpu and return the cpuid or -1.
1904  *
1905  * NOTE: 	  Lower priorities are better priorities.
1906  *
1907  * NOTE ON ULOAD: This variable specifies the aggregate load on a cpu, the
1908  *		  sum of the rough lwp_priority for all running and runnable
1909  *		  processes.  Lower priority processes (higher lwp_priority
1910  *		  values) actually DO count as more load, not less, because
1911  *		  these are the programs which require the most care with
1912  *		  regards to cpu selection.
1913  */
1914 static void
1915 dfly_setrunqueue_locked(dfly_pcpu_t rdd, struct lwp *lp)
1916 {
1917 	struct rq *q;
1918 	u_int32_t *which;
1919 	int pri;
1920 
1921 	KKASSERT(lp->lwp_qcpu == rdd->cpuid);
1922 
1923 	if ((lp->lwp_mpflags & LWP_MP_ULOAD) == 0) {
1924 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
1925 		atomic_add_int(&dfly_pcpu[lp->lwp_qcpu].uload, lp->lwp_uload);
1926 		atomic_add_int(&dfly_pcpu[lp->lwp_qcpu].ucount, 1);
1927 		atomic_add_int(&dfly_ucount, 1);
1928 	}
1929 
1930 	pri = lp->lwp_rqindex;
1931 
1932 	switch(lp->lwp_rqtype) {
1933 	case RTP_PRIO_NORMAL:
1934 		q = &rdd->queues[pri];
1935 		which = &rdd->queuebits;
1936 		break;
1937 	case RTP_PRIO_REALTIME:
1938 	case RTP_PRIO_FIFO:
1939 		q = &rdd->rtqueues[pri];
1940 		which = &rdd->rtqueuebits;
1941 		break;
1942 	case RTP_PRIO_IDLE:
1943 		q = &rdd->idqueues[pri];
1944 		which = &rdd->idqueuebits;
1945 		break;
1946 	default:
1947 		panic("remrunqueue: invalid rtprio type");
1948 		/* NOT REACHED */
1949 	}
1950 
1951 	/*
1952 	 * Place us on the selected queue.  Determine if we should be
1953 	 * placed at the head of the queue or at the end.
1954 	 *
1955 	 * We are placed at the tail if our round-robin count has expired,
1956 	 * or is about to expire and the system thinks its a good place to
1957 	 * round-robin, or there is already a next thread on the queue
1958 	 * (it might be trying to pick up where it left off and we don't
1959 	 * want to interfere).
1960 	 */
1961 	KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1962 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1963 	++rdd->runqcount;
1964 
1965 	if (lp->lwp_rrcount >= usched_dfly_rrinterval ||
1966 	    (lp->lwp_rrcount >= usched_dfly_rrinterval / 2 &&
1967 	     (lp->lwp_thread->td_mpflags & TDF_MP_BATCH_DEMARC)) ||
1968 	    !TAILQ_EMPTY(q)
1969 	) {
1970 		atomic_clear_int(&lp->lwp_thread->td_mpflags,
1971 				 TDF_MP_BATCH_DEMARC);
1972 		lp->lwp_rrcount = 0;
1973 		TAILQ_INSERT_TAIL(q, lp, lwp_procq);
1974 	} else {
1975 		if (TAILQ_EMPTY(q))
1976 			lp->lwp_rrcount = 0;
1977 		TAILQ_INSERT_HEAD(q, lp, lwp_procq);
1978 	}
1979 	*which |= 1 << pri;
1980 }
1981 
1982 /*
1983  * For SMP systems a user scheduler helper thread is created for each
1984  * cpu and is used to allow one cpu to wakeup another for the purposes of
1985  * scheduling userland threads from setrunqueue().
1986  *
1987  * UP systems do not need the helper since there is only one cpu.
1988  *
1989  * We can't use the idle thread for this because we might block.
1990  * Additionally, doing things this way allows us to HLT idle cpus
1991  * on MP systems.
1992  */
1993 static void
1994 dfly_helper_thread(void *dummy)
1995 {
1996     globaldata_t gd;
1997     dfly_pcpu_t dd;
1998     dfly_pcpu_t rdd;
1999     struct lwp *nlp;
2000     cpumask_t mask;
2001     int cpuid;
2002 
2003     gd = mycpu;
2004     cpuid = gd->gd_cpuid;	/* doesn't change */
2005     mask = gd->gd_cpumask;	/* doesn't change */
2006     dd = &dfly_pcpu[cpuid];
2007 
2008     /*
2009      * Since we only want to be woken up only when no user processes
2010      * are scheduled on a cpu, run at an ultra low priority.
2011      */
2012     lwkt_setpri_self(TDPRI_USER_SCHEDULER);
2013 
2014     tsleep(&dd->helper_thread, 0, "schslp", 0);
2015 
2016     for (;;) {
2017 	/*
2018 	 * We use the LWKT deschedule-interlock trick to avoid racing
2019 	 * dfly_rdyprocmask.  This means we cannot block through to the
2020 	 * manual lwkt_switch() call we make below.
2021 	 */
2022 	crit_enter_gd(gd);
2023 	tsleep_interlock(&dd->helper_thread, 0);
2024 
2025 	spin_lock(&dd->spin);
2026 
2027 	ATOMIC_CPUMASK_ORMASK(dfly_rdyprocmask, mask);
2028 	clear_user_resched();	/* This satisfied the reschedule request */
2029 #if 0
2030 	dd->rrcount = 0;	/* Reset the round-robin counter */
2031 #endif
2032 
2033 	if (dd->runqcount || dd->uschedcp != NULL) {
2034 		/*
2035 		 * Threads are available.  A thread may or may not be
2036 		 * currently scheduled.  Get the best thread already queued
2037 		 * to this cpu.
2038 		 */
2039 		nlp = dfly_chooseproc_locked(dd, dd, dd->uschedcp, 0);
2040 		if (nlp) {
2041 			ATOMIC_CPUMASK_ORMASK(dfly_curprocmask, mask);
2042 			dd->upri = nlp->lwp_priority;
2043 			dd->uschedcp = nlp;
2044 #if 0
2045 			dd->rrcount = 0;	/* reset round robin */
2046 #endif
2047 			spin_unlock(&dd->spin);
2048 			lwkt_acquire(nlp->lwp_thread);
2049 			lwkt_schedule(nlp->lwp_thread);
2050 		} else {
2051 			/*
2052 			 * This situation should not occur because we had
2053 			 * at least one thread available.
2054 			 */
2055 			spin_unlock(&dd->spin);
2056 		}
2057 	} else if (usched_dfly_features & 0x01) {
2058 		/*
2059 		 * This cpu is devoid of runnable threads, steal a thread
2060 		 * from another cpu.  Since we're stealing, might as well
2061 		 * load balance at the same time.
2062 		 *
2063 		 * We choose the highest-loaded thread from the worst queue.
2064 		 *
2065 		 * NOTE! This function only returns a non-NULL rdd when
2066 		 *	 another cpu's queue is obviously overloaded.  We
2067 		 *	 do not want to perform the type of rebalancing
2068 		 *	 the schedclock does here because it would result
2069 		 *	 in insane process pulling when 'steady' state is
2070 		 *	 partially unbalanced (e.g. 6 runnables and only
2071 		 *	 4 cores).
2072 		 */
2073 		rdd = dfly_choose_worst_queue(dd);
2074 		if (rdd && spin_trylock(&rdd->spin)) {
2075 			nlp = dfly_chooseproc_locked(rdd, dd, NULL, 1);
2076 			spin_unlock(&rdd->spin);
2077 		} else {
2078 			nlp = NULL;
2079 		}
2080 		if (nlp) {
2081 			ATOMIC_CPUMASK_ORMASK(dfly_curprocmask, mask);
2082 			dd->upri = nlp->lwp_priority;
2083 			dd->uschedcp = nlp;
2084 #if 0
2085 			dd->rrcount = 0;	/* reset round robin */
2086 #endif
2087 			spin_unlock(&dd->spin);
2088 			lwkt_acquire(nlp->lwp_thread);
2089 			lwkt_schedule(nlp->lwp_thread);
2090 		} else {
2091 			/*
2092 			 * Leave the thread on our run queue.  Another
2093 			 * scheduler will try to pull it later.
2094 			 */
2095 			spin_unlock(&dd->spin);
2096 		}
2097 	} else {
2098 		/*
2099 		 * devoid of runnable threads and not allowed to steal
2100 		 * any.
2101 		 */
2102 		spin_unlock(&dd->spin);
2103 	}
2104 
2105 	/*
2106 	 * We're descheduled unless someone scheduled us.  Switch away.
2107 	 * Exiting the critical section will cause splz() to be called
2108 	 * for us if interrupts and such are pending.
2109 	 */
2110 	crit_exit_gd(gd);
2111 	tsleep(&dd->helper_thread, PINTERLOCKED, "schslp", 0);
2112     }
2113 }
2114 
2115 #if 0
2116 static int
2117 sysctl_usched_dfly_stick_to_level(SYSCTL_HANDLER_ARGS)
2118 {
2119 	int error, new_val;
2120 
2121 	new_val = usched_dfly_stick_to_level;
2122 
2123 	error = sysctl_handle_int(oidp, &new_val, 0, req);
2124         if (error != 0 || req->newptr == NULL)
2125 		return (error);
2126 	if (new_val > cpu_topology_levels_number - 1 || new_val < 0)
2127 		return (EINVAL);
2128 	usched_dfly_stick_to_level = new_val;
2129 	return (0);
2130 }
2131 #endif
2132 
2133 /*
2134  * Setup the queues and scheduler helpers (scheduler helpers are SMP only).
2135  * Note that curprocmask bit 0 has already been cleared by rqinit() and
2136  * we should not mess with it further.
2137  */
2138 static void
2139 usched_dfly_cpu_init(void)
2140 {
2141 	int i;
2142 	int j;
2143 	int smt_not_supported = 0;
2144 	int cache_coherent_not_supported = 0;
2145 
2146 	if (bootverbose)
2147 		kprintf("Start usched_dfly helpers on cpus:\n");
2148 
2149 	sysctl_ctx_init(&usched_dfly_sysctl_ctx);
2150 	usched_dfly_sysctl_tree =
2151 		SYSCTL_ADD_NODE(&usched_dfly_sysctl_ctx,
2152 				SYSCTL_STATIC_CHILDREN(_kern), OID_AUTO,
2153 				"usched_dfly", CTLFLAG_RD, 0, "");
2154 
2155 	for (i = 0; i < ncpus; ++i) {
2156 		dfly_pcpu_t dd = &dfly_pcpu[i];
2157 		cpumask_t mask;
2158 
2159 		CPUMASK_ASSBIT(mask, i);
2160 		if (CPUMASK_TESTMASK(mask, smp_active_mask) == 0)
2161 		    continue;
2162 
2163 		spin_init(&dd->spin, "uschedcpuinit");
2164 		dd->cpunode = get_cpu_node_by_cpuid(i);
2165 		dd->cpuid = i;
2166 		CPUMASK_ASSBIT(dd->cpumask, i);
2167 		for (j = 0; j < NQS; j++) {
2168 			TAILQ_INIT(&dd->queues[j]);
2169 			TAILQ_INIT(&dd->rtqueues[j]);
2170 			TAILQ_INIT(&dd->idqueues[j]);
2171 		}
2172 		ATOMIC_CPUMASK_NANDBIT(dfly_curprocmask, 0);
2173 
2174 		if (dd->cpunode == NULL) {
2175 			smt_not_supported = 1;
2176 			cache_coherent_not_supported = 1;
2177 			if (bootverbose)
2178 				kprintf ("    cpu%d - WARNING: No CPU NODE "
2179 					 "found for cpu\n", i);
2180 		} else {
2181 			switch (dd->cpunode->type) {
2182 			case THREAD_LEVEL:
2183 				if (bootverbose)
2184 					kprintf ("    cpu%d - HyperThreading "
2185 						 "available. Core siblings: ",
2186 						 i);
2187 				break;
2188 			case CORE_LEVEL:
2189 				smt_not_supported = 1;
2190 
2191 				if (bootverbose)
2192 					kprintf ("    cpu%d - No HT available, "
2193 						 "multi-core/physical "
2194 						 "cpu. Physical siblings: ",
2195 						 i);
2196 				break;
2197 			case CHIP_LEVEL:
2198 				smt_not_supported = 1;
2199 
2200 				if (bootverbose)
2201 					kprintf ("    cpu%d - No HT available, "
2202 						 "single-core/physical cpu. "
2203 						 "Package siblings: ",
2204 						 i);
2205 				break;
2206 			default:
2207 				/* Let's go for safe defaults here */
2208 				smt_not_supported = 1;
2209 				cache_coherent_not_supported = 1;
2210 				if (bootverbose)
2211 					kprintf ("    cpu%d - Unknown cpunode->"
2212 						 "type=%u. siblings: ",
2213 						 i,
2214 						 (u_int)dd->cpunode->type);
2215 				break;
2216 			}
2217 
2218 			if (bootverbose) {
2219 				if (dd->cpunode->parent_node != NULL) {
2220 					kprint_cpuset(&dd->cpunode->
2221 							parent_node->members);
2222 					kprintf("\n");
2223 				} else {
2224 					kprintf(" no siblings\n");
2225 				}
2226 			}
2227 		}
2228 
2229 		lwkt_create(dfly_helper_thread, NULL, NULL, &dd->helper_thread,
2230 			    0, i, "usched %d", i);
2231 
2232 		/*
2233 		 * Allow user scheduling on the target cpu.  cpu #0 has already
2234 		 * been enabled in rqinit().
2235 		 */
2236 		if (i)
2237 			ATOMIC_CPUMASK_NANDMASK(dfly_curprocmask, mask);
2238 		ATOMIC_CPUMASK_ORMASK(dfly_rdyprocmask, mask);
2239 		dd->upri = PRIBASE_NULL;
2240 
2241 	}
2242 
2243 	/* usched_dfly sysctl configurable parameters */
2244 
2245 	SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2246 		       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2247 		       OID_AUTO, "rrinterval", CTLFLAG_RW,
2248 		       &usched_dfly_rrinterval, 0, "");
2249 	SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2250 		       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2251 		       OID_AUTO, "decay", CTLFLAG_RW,
2252 		       &usched_dfly_decay, 0, "Extra decay when not running");
2253 
2254 	/* Add enable/disable option for SMT scheduling if supported */
2255 	if (smt_not_supported) {
2256 		usched_dfly_smt = 0;
2257 		SYSCTL_ADD_STRING(&usched_dfly_sysctl_ctx,
2258 				  SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2259 				  OID_AUTO, "smt", CTLFLAG_RD,
2260 				  "NOT SUPPORTED", 0, "SMT NOT SUPPORTED");
2261 	} else {
2262 		usched_dfly_smt = 1;
2263 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2264 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2265 			       OID_AUTO, "smt", CTLFLAG_RW,
2266 			       &usched_dfly_smt, 0, "Enable SMT scheduling");
2267 	}
2268 
2269 	/*
2270 	 * Add enable/disable option for cache coherent scheduling
2271 	 * if supported
2272 	 */
2273 	if (cache_coherent_not_supported) {
2274 		usched_dfly_cache_coherent = 0;
2275 		SYSCTL_ADD_STRING(&usched_dfly_sysctl_ctx,
2276 				  SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2277 				  OID_AUTO, "cache_coherent", CTLFLAG_RD,
2278 				  "NOT SUPPORTED", 0,
2279 				  "Cache coherence NOT SUPPORTED");
2280 	} else {
2281 		usched_dfly_cache_coherent = 1;
2282 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2283 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2284 			       OID_AUTO, "cache_coherent", CTLFLAG_RW,
2285 			       &usched_dfly_cache_coherent, 0,
2286 			       "Enable/Disable cache coherent scheduling");
2287 
2288 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2289 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2290 			       OID_AUTO, "weight1", CTLFLAG_RW,
2291 			       &usched_dfly_weight1, 200,
2292 			       "Weight selection for current cpu");
2293 
2294 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2295 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2296 			       OID_AUTO, "weight2", CTLFLAG_RW,
2297 			       &usched_dfly_weight2, 180,
2298 			       "Weight selection for wakefrom cpu");
2299 
2300 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2301 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2302 			       OID_AUTO, "weight3", CTLFLAG_RW,
2303 			       &usched_dfly_weight3, 40,
2304 			       "Weight selection for num threads on queue");
2305 
2306 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2307 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2308 			       OID_AUTO, "weight4", CTLFLAG_RW,
2309 			       &usched_dfly_weight4, 160,
2310 			       "Availability of other idle cpus");
2311 
2312 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2313 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2314 			       OID_AUTO, "fast_resched", CTLFLAG_RW,
2315 			       &usched_dfly_fast_resched, 0,
2316 			       "Availability of other idle cpus");
2317 
2318 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2319 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2320 			       OID_AUTO, "features", CTLFLAG_RW,
2321 			       &usched_dfly_features, 0x8F,
2322 			       "Allow pulls into empty queues");
2323 
2324 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2325 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2326 			       OID_AUTO, "swmask", CTLFLAG_RW,
2327 			       &usched_dfly_swmask, ~PPQMASK,
2328 			       "Queue mask to force thread switch");
2329 
2330 #if 0
2331 		SYSCTL_ADD_PROC(&usched_dfly_sysctl_ctx,
2332 				SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2333 				OID_AUTO, "stick_to_level",
2334 				CTLTYPE_INT | CTLFLAG_RW,
2335 				NULL, sizeof usched_dfly_stick_to_level,
2336 				sysctl_usched_dfly_stick_to_level, "I",
2337 				"Stick a process to this level. See sysctl"
2338 				"paremter hw.cpu_topology.level_description");
2339 #endif
2340 	}
2341 }
2342 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
2343 	usched_dfly_cpu_init, NULL);
2344