xref: /dragonfly/sys/kern/usched_dfly.c (revision 61c0377f)
1 /*
2  * Copyright (c) 2012 The DragonFly Project.  All rights reserved.
3  * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org>.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Matthew Dillon <dillon@backplane.com>,
7  * by Mihai Carabas <mihai.carabas@gmail.com>
8  * and many others.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  * 3. Neither the name of The DragonFly Project nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific, prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/queue.h>
42 #include <sys/proc.h>
43 #include <sys/rtprio.h>
44 #include <sys/uio.h>
45 #include <sys/sysctl.h>
46 #include <sys/resourcevar.h>
47 #include <sys/spinlock.h>
48 #include <sys/cpu_topology.h>
49 #include <sys/thread2.h>
50 #include <sys/spinlock2.h>
51 #include <sys/mplock2.h>
52 
53 #include <sys/ktr.h>
54 
55 #include <machine/cpu.h>
56 #include <machine/smp.h>
57 
58 /*
59  * Priorities.  Note that with 32 run queues per scheduler each queue
60  * represents four priority levels.
61  */
62 
63 int dfly_rebalanced;
64 
65 #define MAXPRI			128
66 #define PRIMASK			(MAXPRI - 1)
67 #define PRIBASE_REALTIME	0
68 #define PRIBASE_NORMAL		MAXPRI
69 #define PRIBASE_IDLE		(MAXPRI * 2)
70 #define PRIBASE_THREAD		(MAXPRI * 3)
71 #define PRIBASE_NULL		(MAXPRI * 4)
72 
73 #define NQS	32			/* 32 run queues. */
74 #define PPQ	(MAXPRI / NQS)		/* priorities per queue */
75 #define PPQMASK	(PPQ - 1)
76 
77 /*
78  * NICEPPQ	- number of nice units per priority queue
79  * ESTCPUPPQ	- number of estcpu units per priority queue
80  * ESTCPUMAX	- number of estcpu units
81  */
82 #define NICEPPQ		2
83 #define ESTCPUPPQ	512
84 #define ESTCPUMAX	(ESTCPUPPQ * NQS)
85 #define BATCHMAX	(ESTCPUFREQ * 30)
86 #define PRIO_RANGE	(PRIO_MAX - PRIO_MIN + 1)
87 
88 #define ESTCPULIM(v)	min((v), ESTCPUMAX)
89 
90 TAILQ_HEAD(rq, lwp);
91 
92 #define lwp_priority	lwp_usdata.dfly.priority
93 #define lwp_forked	lwp_usdata.dfly.forked
94 #define lwp_rqindex	lwp_usdata.dfly.rqindex
95 #define lwp_estcpu	lwp_usdata.dfly.estcpu
96 #define lwp_estfast	lwp_usdata.dfly.estfast
97 #define lwp_uload	lwp_usdata.dfly.uload
98 #define lwp_rqtype	lwp_usdata.dfly.rqtype
99 #define lwp_qcpu	lwp_usdata.dfly.qcpu
100 #define lwp_rrcount	lwp_usdata.dfly.rrcount
101 
102 struct usched_dfly_pcpu {
103 	struct spinlock spin;
104 	struct thread	helper_thread;
105 	short		unusde01;
106 	short		upri;
107 	int		uload;
108 	int		ucount;
109 	struct lwp	*uschedcp;
110 	struct rq	queues[NQS];
111 	struct rq	rtqueues[NQS];
112 	struct rq	idqueues[NQS];
113 	u_int32_t	queuebits;
114 	u_int32_t	rtqueuebits;
115 	u_int32_t	idqueuebits;
116 	int		runqcount;
117 	int		cpuid;
118 	cpumask_t	cpumask;
119 	cpu_node_t	*cpunode;
120 };
121 
122 typedef struct usched_dfly_pcpu	*dfly_pcpu_t;
123 
124 static void dfly_acquire_curproc(struct lwp *lp);
125 static void dfly_release_curproc(struct lwp *lp);
126 static void dfly_select_curproc(globaldata_t gd);
127 static void dfly_setrunqueue(struct lwp *lp);
128 static void dfly_setrunqueue_dd(dfly_pcpu_t rdd, struct lwp *lp);
129 static void dfly_schedulerclock(struct lwp *lp, sysclock_t period,
130 				sysclock_t cpstamp);
131 static void dfly_recalculate_estcpu(struct lwp *lp);
132 static void dfly_resetpriority(struct lwp *lp);
133 static void dfly_forking(struct lwp *plp, struct lwp *lp);
134 static void dfly_exiting(struct lwp *lp, struct proc *);
135 static void dfly_uload_update(struct lwp *lp);
136 static void dfly_yield(struct lwp *lp);
137 static void dfly_changeqcpu_locked(struct lwp *lp,
138 				dfly_pcpu_t dd, dfly_pcpu_t rdd);
139 static dfly_pcpu_t dfly_choose_best_queue(struct lwp *lp);
140 static dfly_pcpu_t dfly_choose_worst_queue(dfly_pcpu_t dd);
141 static dfly_pcpu_t dfly_choose_queue_simple(dfly_pcpu_t dd, struct lwp *lp);
142 static void dfly_need_user_resched_remote(void *dummy);
143 static struct lwp *dfly_chooseproc_locked(dfly_pcpu_t rdd, dfly_pcpu_t dd,
144 					  struct lwp *chklp, int worst);
145 static void dfly_remrunqueue_locked(dfly_pcpu_t dd, struct lwp *lp);
146 static void dfly_setrunqueue_locked(dfly_pcpu_t dd, struct lwp *lp);
147 static void dfly_changedcpu(struct lwp *lp);
148 
149 struct usched usched_dfly = {
150 	{ NULL },
151 	"dfly", "Original DragonFly Scheduler",
152 	NULL,			/* default registration */
153 	NULL,			/* default deregistration */
154 	dfly_acquire_curproc,
155 	dfly_release_curproc,
156 	dfly_setrunqueue,
157 	dfly_schedulerclock,
158 	dfly_recalculate_estcpu,
159 	dfly_resetpriority,
160 	dfly_forking,
161 	dfly_exiting,
162 	dfly_uload_update,
163 	NULL,			/* setcpumask not supported */
164 	dfly_yield,
165 	dfly_changedcpu
166 };
167 
168 /*
169  * We have NQS (32) run queues per scheduling class.  For the normal
170  * class, there are 128 priorities scaled onto these 32 queues.  New
171  * processes are added to the last entry in each queue, and processes
172  * are selected for running by taking them from the head and maintaining
173  * a simple FIFO arrangement.  Realtime and Idle priority processes have
174  * and explicit 0-31 priority which maps directly onto their class queue
175  * index.  When a queue has something in it, the corresponding bit is
176  * set in the queuebits variable, allowing a single read to determine
177  * the state of all 32 queues and then a ffs() to find the first busy
178  * queue.
179  */
180 static cpumask_t dfly_curprocmask = -1;	/* currently running a user process */
181 static cpumask_t dfly_rdyprocmask;	/* ready to accept a user process */
182 static volatile int dfly_scancpu;
183 static volatile int dfly_ucount;	/* total running on whole system */
184 static struct usched_dfly_pcpu dfly_pcpu[MAXCPU];
185 static struct sysctl_ctx_list usched_dfly_sysctl_ctx;
186 static struct sysctl_oid *usched_dfly_sysctl_tree;
187 
188 /* Debug info exposed through debug.* sysctl */
189 
190 static int usched_dfly_debug = -1;
191 SYSCTL_INT(_debug, OID_AUTO, dfly_scdebug, CTLFLAG_RW,
192 	   &usched_dfly_debug, 0,
193 	   "Print debug information for this pid");
194 
195 static int usched_dfly_pid_debug = -1;
196 SYSCTL_INT(_debug, OID_AUTO, dfly_pid_debug, CTLFLAG_RW,
197 	   &usched_dfly_pid_debug, 0,
198 	   "Print KTR debug information for this pid");
199 
200 static int usched_dfly_chooser = 0;
201 SYSCTL_INT(_debug, OID_AUTO, dfly_chooser, CTLFLAG_RW,
202 	   &usched_dfly_chooser, 0,
203 	   "Print KTR debug information for this pid");
204 
205 /*
206  * Tunning usched_dfly - configurable through kern.usched_dfly.
207  *
208  * weight1 - Tries to keep threads on their current cpu.  If you
209  *	     make this value too large the scheduler will not be
210  *	     able to load-balance large loads.
211  *
212  * weight2 - If non-zero, detects thread pairs undergoing synchronous
213  *	     communications and tries to move them closer together.
214  *	     Behavior is adjusted by bit 4 of features (0x10).
215  *
216  *	     WARNING!  Weight2 is a ridiculously sensitive parameter,
217  *	     a small value is recommended.
218  *
219  * weight3 - Weighting based on the number of recently runnable threads
220  *	     on the userland scheduling queue (ignoring their loads).
221  *	     A nominal value here prevents high-priority (low-load)
222  *	     threads from accumulating on one cpu core when other
223  *	     cores are available.
224  *
225  *	     This value should be left fairly small relative to weight1
226  *	     and weight4.
227  *
228  * weight4 - Weighting based on other cpu queues being available
229  *	     or running processes with higher lwp_priority's.
230  *
231  *	     This allows a thread to migrate to another nearby cpu if it
232  *	     is unable to run on the current cpu based on the other cpu
233  *	     being idle or running a lower priority (higher lwp_priority)
234  *	     thread.  This value should be large enough to override weight1
235  *
236  * features - These flags can be set or cleared to enable or disable various
237  *	      features.
238  *
239  *	      0x01	Enable idle-cpu pulling			(default)
240  *	      0x02	Enable proactive pushing		(default)
241  *	      0x04	Enable rebalancing rover		(default)
242  *	      0x08	Enable more proactive pushing		(default)
243  *	      0x10	(flip weight2 limit on same cpu)	(default)
244  *	      0x20	choose best cpu for forked process
245  *	      0x40	choose current cpu for forked process
246  *	      0x80	choose random cpu for forked process	(default)
247  */
248 static int usched_dfly_smt = 0;
249 static int usched_dfly_cache_coherent = 0;
250 static int usched_dfly_weight1 = 200;	/* keep thread on current cpu */
251 static int usched_dfly_weight2 = 180;	/* synchronous peer's current cpu */
252 static int usched_dfly_weight3 = 40;	/* number of threads on queue */
253 static int usched_dfly_weight4 = 160;	/* availability of idle cores */
254 static int usched_dfly_features = 0x8F;	/* allow pulls */
255 static int usched_dfly_fast_resched = 0;/* delta priority / resched */
256 static int usched_dfly_swmask = ~PPQMASK; /* allow pulls */
257 static int usched_dfly_rrinterval = (ESTCPUFREQ + 9) / 10;
258 static int usched_dfly_decay = 8;
259 
260 /* KTR debug printings */
261 
262 KTR_INFO_MASTER(usched);
263 
264 #if !defined(KTR_USCHED_DFLY)
265 #define	KTR_USCHED_DFLY	KTR_ALL
266 #endif
267 
268 KTR_INFO(KTR_USCHED_DFLY, usched, chooseproc, 0,
269     "USCHED_DFLY(chooseproc: pid %d, old_cpuid %d, curr_cpuid %d)",
270     pid_t pid, int old_cpuid, int curr);
271 
272 /*
273  * This function is called when the kernel intends to return to userland.
274  * It is responsible for making the thread the current designated userland
275  * thread for this cpu, blocking if necessary.
276  *
277  * The kernel will not depress our LWKT priority until after we return,
278  * in case we have to shove over to another cpu.
279  *
280  * We must determine our thread's disposition before we switch away.  This
281  * is very sensitive code.
282  *
283  * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE
284  * TO ANOTHER CPU!  Because most of the kernel assumes that no migration will
285  * occur, this function is called only under very controlled circumstances.
286  */
287 static void
288 dfly_acquire_curproc(struct lwp *lp)
289 {
290 	globaldata_t gd;
291 	dfly_pcpu_t dd;
292 	dfly_pcpu_t rdd;
293 	thread_t td;
294 	int force_resched;
295 
296 	/*
297 	 * Make sure we aren't sitting on a tsleep queue.
298 	 */
299 	td = lp->lwp_thread;
300 	crit_enter_quick(td);
301 	if (td->td_flags & TDF_TSLEEPQ)
302 		tsleep_remove(td);
303 	dfly_recalculate_estcpu(lp);
304 
305 	gd = mycpu;
306 	dd = &dfly_pcpu[gd->gd_cpuid];
307 
308 	/*
309 	 * Process any pending interrupts/ipi's, then handle reschedule
310 	 * requests.  dfly_release_curproc() will try to assign a new
311 	 * uschedcp that isn't us and otherwise NULL it out.
312 	 */
313 	force_resched = 0;
314 	if ((td->td_mpflags & TDF_MP_BATCH_DEMARC) &&
315 	    lp->lwp_rrcount >= usched_dfly_rrinterval / 2) {
316 		force_resched = 1;
317 	}
318 
319 	if (user_resched_wanted()) {
320 		if (dd->uschedcp == lp)
321 			force_resched = 1;
322 		clear_user_resched();
323 		dfly_release_curproc(lp);
324 	}
325 
326 	/*
327 	 * Loop until we are the current user thread.
328 	 *
329 	 * NOTE: dd spinlock not held at top of loop.
330 	 */
331 	if (dd->uschedcp == lp)
332 		lwkt_yield_quick();
333 
334 	while (dd->uschedcp != lp) {
335 		lwkt_yield_quick();
336 
337 		spin_lock(&dd->spin);
338 
339 		if (force_resched &&
340 		   (usched_dfly_features & 0x08) &&
341 		   (rdd = dfly_choose_best_queue(lp)) != dd) {
342 			/*
343 			 * We are not or are no longer the current lwp and a
344 			 * forced reschedule was requested.  Figure out the
345 			 * best cpu to run on (our current cpu will be given
346 			 * significant weight).
347 			 *
348 			 * (if a reschedule was not requested we want to
349 			 *  move this step after the uschedcp tests).
350 			 */
351 			dfly_changeqcpu_locked(lp, dd, rdd);
352 			spin_unlock(&dd->spin);
353 			lwkt_deschedule(lp->lwp_thread);
354 			dfly_setrunqueue_dd(rdd, lp);
355 			lwkt_switch();
356 			gd = mycpu;
357 			dd = &dfly_pcpu[gd->gd_cpuid];
358 			continue;
359 		}
360 
361 		/*
362 		 * Either no reschedule was requested or the best queue was
363 		 * dd, and no current process has been selected.  We can
364 		 * trivially become the current lwp on the current cpu.
365 		 */
366 		if (dd->uschedcp == NULL) {
367 			atomic_clear_int(&lp->lwp_thread->td_mpflags,
368 					 TDF_MP_DIDYIELD);
369 			atomic_set_cpumask(&dfly_curprocmask, gd->gd_cpumask);
370 			dd->uschedcp = lp;
371 			dd->upri = lp->lwp_priority;
372 			KKASSERT(lp->lwp_qcpu == dd->cpuid);
373 			spin_unlock(&dd->spin);
374 			break;
375 		}
376 
377 		/*
378 		 * Put us back on the same run queue unconditionally.
379 		 *
380 		 * Set rrinterval to force placement at end of queue.
381 		 * Select the worst queue to ensure we round-robin,
382 		 * but do not change estcpu.
383 		 */
384 		if (lp->lwp_thread->td_mpflags & TDF_MP_DIDYIELD) {
385 			u_int32_t tsqbits;
386 
387 			switch(lp->lwp_rqtype) {
388 			case RTP_PRIO_NORMAL:
389 				tsqbits = dd->queuebits;
390 				spin_unlock(&dd->spin);
391 
392 				lp->lwp_rrcount = usched_dfly_rrinterval;
393 				if (tsqbits)
394 					lp->lwp_rqindex = bsrl(tsqbits);
395 				break;
396 			default:
397 				spin_unlock(&dd->spin);
398 				break;
399 			}
400 			lwkt_deschedule(lp->lwp_thread);
401 			dfly_setrunqueue_dd(dd, lp);
402 			atomic_clear_int(&lp->lwp_thread->td_mpflags,
403 					 TDF_MP_DIDYIELD);
404 			lwkt_switch();
405 			gd = mycpu;
406 			dd = &dfly_pcpu[gd->gd_cpuid];
407 			continue;
408 		}
409 
410 		/*
411 		 * Can we steal the current designated user thread?
412 		 *
413 		 * If we do the other thread will stall when it tries to
414 		 * return to userland, possibly rescheduling elsewhere.
415 		 *
416 		 * It is important to do a masked test to avoid the edge
417 		 * case where two near-equal-priority threads are constantly
418 		 * interrupting each other.
419 		 *
420 		 * In the exact match case another thread has already gained
421 		 * uschedcp and lowered its priority, if we steal it the
422 		 * other thread will stay stuck on the LWKT runq and not
423 		 * push to another cpu.  So don't steal on equal-priority even
424 		 * though it might appear to be more beneficial due to not
425 		 * having to switch back to the other thread's context.
426 		 *
427 		 * usched_dfly_fast_resched requires that two threads be
428 		 * significantly far apart in priority in order to interrupt.
429 		 *
430 		 * If better but not sufficiently far apart, the current
431 		 * uschedcp will be interrupted at the next scheduler clock.
432 		 */
433 		if (dd->uschedcp &&
434 		   (dd->upri & ~PPQMASK) >
435 		   (lp->lwp_priority & ~PPQMASK) + usched_dfly_fast_resched) {
436 			dd->uschedcp = lp;
437 			dd->upri = lp->lwp_priority;
438 			KKASSERT(lp->lwp_qcpu == dd->cpuid);
439 			spin_unlock(&dd->spin);
440 			break;
441 		}
442 		/*
443 		 * We are not the current lwp, figure out the best cpu
444 		 * to run on (our current cpu will be given significant
445 		 * weight).  Loop on cpu change.
446 		 */
447 		if ((usched_dfly_features & 0x02) &&
448 		    force_resched == 0 &&
449 		    (rdd = dfly_choose_best_queue(lp)) != dd) {
450 			dfly_changeqcpu_locked(lp, dd, rdd);
451 			spin_unlock(&dd->spin);
452 			lwkt_deschedule(lp->lwp_thread);
453 			dfly_setrunqueue_dd(rdd, lp);
454 			lwkt_switch();
455 			gd = mycpu;
456 			dd = &dfly_pcpu[gd->gd_cpuid];
457 			continue;
458 		}
459 
460 		/*
461 		 * We cannot become the current lwp, place the lp on the
462 		 * run-queue of this or another cpu and deschedule ourselves.
463 		 *
464 		 * When we are reactivated we will have another chance.
465 		 *
466 		 * Reload after a switch or setrunqueue/switch possibly
467 		 * moved us to another cpu.
468 		 */
469 		spin_unlock(&dd->spin);
470 		lwkt_deschedule(lp->lwp_thread);
471 		dfly_setrunqueue_dd(dd, lp);
472 		lwkt_switch();
473 		gd = mycpu;
474 		dd = &dfly_pcpu[gd->gd_cpuid];
475 	}
476 
477 	/*
478 	 * Make sure upri is synchronized, then yield to LWKT threads as
479 	 * needed before returning.  This could result in another reschedule.
480 	 * XXX
481 	 */
482 	crit_exit_quick(td);
483 
484 	KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
485 }
486 
487 /*
488  * DFLY_RELEASE_CURPROC
489  *
490  * This routine detaches the current thread from the userland scheduler,
491  * usually because the thread needs to run or block in the kernel (at
492  * kernel priority) for a while.
493  *
494  * This routine is also responsible for selecting a new thread to
495  * make the current thread.
496  *
497  * NOTE: This implementation differs from the dummy example in that
498  * dfly_select_curproc() is able to select the current process, whereas
499  * dummy_select_curproc() is not able to select the current process.
500  * This means we have to NULL out uschedcp.
501  *
502  * Additionally, note that we may already be on a run queue if releasing
503  * via the lwkt_switch() in dfly_setrunqueue().
504  */
505 static void
506 dfly_release_curproc(struct lwp *lp)
507 {
508 	globaldata_t gd = mycpu;
509 	dfly_pcpu_t dd = &dfly_pcpu[gd->gd_cpuid];
510 
511 	/*
512 	 * Make sure td_wakefromcpu is defaulted.  This will be overwritten
513 	 * by wakeup().
514 	 */
515 	if (dd->uschedcp == lp) {
516 		KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
517 		spin_lock(&dd->spin);
518 		if (dd->uschedcp == lp) {
519 			dd->uschedcp = NULL;	/* don't let lp be selected */
520 			dd->upri = PRIBASE_NULL;
521 			atomic_clear_cpumask(&dfly_curprocmask, gd->gd_cpumask);
522 			spin_unlock(&dd->spin);
523 			dfly_select_curproc(gd);
524 		} else {
525 			spin_unlock(&dd->spin);
526 		}
527 	}
528 }
529 
530 /*
531  * DFLY_SELECT_CURPROC
532  *
533  * Select a new current process for this cpu and clear any pending user
534  * reschedule request.  The cpu currently has no current process.
535  *
536  * This routine is also responsible for equal-priority round-robining,
537  * typically triggered from dfly_schedulerclock().  In our dummy example
538  * all the 'user' threads are LWKT scheduled all at once and we just
539  * call lwkt_switch().
540  *
541  * The calling process is not on the queue and cannot be selected.
542  */
543 static
544 void
545 dfly_select_curproc(globaldata_t gd)
546 {
547 	dfly_pcpu_t dd = &dfly_pcpu[gd->gd_cpuid];
548 	struct lwp *nlp;
549 	int cpuid = gd->gd_cpuid;
550 
551 	crit_enter_gd(gd);
552 
553 	spin_lock(&dd->spin);
554 	nlp = dfly_chooseproc_locked(dd, dd, dd->uschedcp, 0);
555 
556 	if (nlp) {
557 		atomic_set_cpumask(&dfly_curprocmask, CPUMASK(cpuid));
558 		dd->upri = nlp->lwp_priority;
559 		dd->uschedcp = nlp;
560 #if 0
561 		dd->rrcount = 0;		/* reset round robin */
562 #endif
563 		spin_unlock(&dd->spin);
564 		lwkt_acquire(nlp->lwp_thread);
565 		lwkt_schedule(nlp->lwp_thread);
566 	} else {
567 		spin_unlock(&dd->spin);
568 	}
569 	crit_exit_gd(gd);
570 }
571 
572 /*
573  * Place the specified lwp on the user scheduler's run queue.  This routine
574  * must be called with the thread descheduled.  The lwp must be runnable.
575  * It must not be possible for anyone else to explicitly schedule this thread.
576  *
577  * The thread may be the current thread as a special case.
578  */
579 static void
580 dfly_setrunqueue(struct lwp *lp)
581 {
582 	dfly_pcpu_t dd;
583 	dfly_pcpu_t rdd;
584 
585 	/*
586 	 * First validate the process LWKT state.
587 	 */
588 	KASSERT(lp->lwp_stat == LSRUN, ("setrunqueue: lwp not LSRUN"));
589 	KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0,
590 	    ("lwp %d/%d already on runq! flag %08x/%08x", lp->lwp_proc->p_pid,
591 	     lp->lwp_tid, lp->lwp_proc->p_flags, lp->lwp_flags));
592 	KKASSERT((lp->lwp_thread->td_flags & TDF_RUNQ) == 0);
593 
594 	/*
595 	 * NOTE: dd/rdd do not necessarily represent the current cpu.
596 	 *	 Instead they may represent the cpu the thread was last
597 	 *	 scheduled on or inherited by its parent.
598 	 */
599 	dd = &dfly_pcpu[lp->lwp_qcpu];
600 	rdd = dd;
601 
602 	/*
603 	 * This process is not supposed to be scheduled anywhere or assigned
604 	 * as the current process anywhere.  Assert the condition.
605 	 */
606 	KKASSERT(rdd->uschedcp != lp);
607 
608 	/*
609 	 * Ok, we have to setrunqueue some target cpu and request a reschedule
610 	 * if necessary.
611 	 *
612 	 * We have to choose the best target cpu.  It might not be the current
613 	 * target even if the current cpu has no running user thread (for
614 	 * example, because the current cpu might be a hyperthread and its
615 	 * sibling has a thread assigned).
616 	 *
617 	 * If we just forked it is most optimal to run the child on the same
618 	 * cpu just in case the parent decides to wait for it (thus getting
619 	 * off that cpu).  As long as there is nothing else runnable on the
620 	 * cpu, that is.  If we did this unconditionally a parent forking
621 	 * multiple children before waiting (e.g. make -j N) leaves other
622 	 * cpus idle that could be working.
623 	 */
624 	if (lp->lwp_forked) {
625 		lp->lwp_forked = 0;
626 		if (usched_dfly_features & 0x20)
627 			rdd = dfly_choose_best_queue(lp);
628 		else if (usched_dfly_features & 0x40)
629 			rdd = &dfly_pcpu[lp->lwp_qcpu];
630 		else if (usched_dfly_features & 0x80)
631 			rdd = dfly_choose_queue_simple(rdd, lp);
632 		else if (dfly_pcpu[lp->lwp_qcpu].runqcount)
633 			rdd = dfly_choose_best_queue(lp);
634 		else
635 			rdd = &dfly_pcpu[lp->lwp_qcpu];
636 	} else {
637 		rdd = dfly_choose_best_queue(lp);
638 		/* rdd = &dfly_pcpu[lp->lwp_qcpu]; */
639 	}
640 	if (lp->lwp_qcpu != rdd->cpuid) {
641 		spin_lock(&dd->spin);
642 		dfly_changeqcpu_locked(lp, dd, rdd);
643 		spin_unlock(&dd->spin);
644 	}
645 	dfly_setrunqueue_dd(rdd, lp);
646 }
647 
648 /*
649  * Change qcpu to rdd->cpuid.  The dd the lp is CURRENTLY on must be
650  * spin-locked on-call.  rdd does not have to be.
651  */
652 static void
653 dfly_changeqcpu_locked(struct lwp *lp, dfly_pcpu_t dd, dfly_pcpu_t rdd)
654 {
655 	if (lp->lwp_qcpu != rdd->cpuid) {
656 		if (lp->lwp_mpflags & LWP_MP_ULOAD) {
657 			atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
658 			atomic_add_int(&dd->uload, -lp->lwp_uload);
659 			atomic_add_int(&dd->ucount, -1);
660 			atomic_add_int(&dfly_ucount, -1);
661 		}
662 		lp->lwp_qcpu = rdd->cpuid;
663 	}
664 }
665 
666 /*
667  * Place lp on rdd's runqueue.  Nothing is locked on call.  This function
668  * also performs all necessary ancillary notification actions.
669  */
670 static void
671 dfly_setrunqueue_dd(dfly_pcpu_t rdd, struct lwp *lp)
672 {
673 	globaldata_t rgd;
674 
675 	/*
676 	 * We might be moving the lp to another cpu's run queue, and once
677 	 * on the runqueue (even if it is our cpu's), another cpu can rip
678 	 * it away from us.
679 	 *
680 	 * TDF_MIGRATING might already be set if this is part of a
681 	 * remrunqueue+setrunqueue sequence.
682 	 */
683 	if ((lp->lwp_thread->td_flags & TDF_MIGRATING) == 0)
684 		lwkt_giveaway(lp->lwp_thread);
685 
686 	rgd = globaldata_find(rdd->cpuid);
687 
688 	/*
689 	 * We lose control of the lp the moment we release the spinlock
690 	 * after having placed it on the queue.  i.e. another cpu could pick
691 	 * it up, or it could exit, or its priority could be further
692 	 * adjusted, or something like that.
693 	 *
694 	 * WARNING! rdd can point to a foreign cpu!
695 	 */
696 	spin_lock(&rdd->spin);
697 	dfly_setrunqueue_locked(rdd, lp);
698 
699 	/*
700 	 * Potentially interrupt the currently-running thread
701 	 */
702 	if ((rdd->upri & ~PPQMASK) <= (lp->lwp_priority & ~PPQMASK)) {
703 		/*
704 		 * Currently running thread is better or same, do not
705 		 * interrupt.
706 		 */
707 		spin_unlock(&rdd->spin);
708 	} else if ((rdd->upri & ~PPQMASK) <= (lp->lwp_priority & ~PPQMASK) +
709 		   usched_dfly_fast_resched) {
710 		/*
711 		 * Currently running thread is not better, but not so bad
712 		 * that we need to interrupt it.  Let it run for one more
713 		 * scheduler tick.
714 		 */
715 		if (rdd->uschedcp &&
716 		    rdd->uschedcp->lwp_rrcount < usched_dfly_rrinterval) {
717 			rdd->uschedcp->lwp_rrcount = usched_dfly_rrinterval - 1;
718 		}
719 		spin_unlock(&rdd->spin);
720 	} else if (rgd == mycpu) {
721 		/*
722 		 * We should interrupt the currently running thread, which
723 		 * is on the current cpu.  However, if DIDYIELD is set we
724 		 * round-robin unconditionally and do not interrupt it.
725 		 */
726 		spin_unlock(&rdd->spin);
727 		if (rdd->uschedcp == NULL)
728 			wakeup_mycpu(&rdd->helper_thread); /* XXX */
729 		if ((lp->lwp_thread->td_mpflags & TDF_MP_DIDYIELD) == 0)
730 			need_user_resched();
731 	} else {
732 		/*
733 		 * We should interrupt the currently running thread, which
734 		 * is on a different cpu.
735 		 */
736 		spin_unlock(&rdd->spin);
737 		lwkt_send_ipiq(rgd, dfly_need_user_resched_remote, NULL);
738 	}
739 }
740 
741 /*
742  * This routine is called from a systimer IPI.  It MUST be MP-safe and
743  * the BGL IS NOT HELD ON ENTRY.  This routine is called at ESTCPUFREQ on
744  * each cpu.
745  */
746 static
747 void
748 dfly_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp)
749 {
750 	globaldata_t gd = mycpu;
751 	dfly_pcpu_t dd = &dfly_pcpu[gd->gd_cpuid];
752 
753 	/*
754 	 * Spinlocks also hold a critical section so there should not be
755 	 * any active.
756 	 */
757 	KKASSERT(gd->gd_spinlocks == 0);
758 
759 	if (lp == NULL)
760 		return;
761 
762 	/*
763 	 * Do we need to round-robin?  We round-robin 10 times a second.
764 	 * This should only occur for cpu-bound batch processes.
765 	 */
766 	if (++lp->lwp_rrcount >= usched_dfly_rrinterval) {
767 		lp->lwp_thread->td_wakefromcpu = -1;
768 		need_user_resched();
769 	}
770 
771 	/*
772 	 * Adjust estcpu upward using a real time equivalent calculation,
773 	 * and recalculate lp's priority.
774 	 */
775 	lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUMAX / ESTCPUFREQ + 1);
776 	dfly_resetpriority(lp);
777 
778 	/*
779 	 * Rebalance two cpus every 8 ticks, pulling the worst thread
780 	 * from the worst cpu's queue into a rotating cpu number.
781 	 *
782 	 * This mechanic is needed because the push algorithms can
783 	 * steady-state in an non-optimal configuration.  We need to mix it
784 	 * up a little, even if it means breaking up a paired thread, so
785 	 * the push algorithms can rebalance the degenerate conditions.
786 	 * This portion of the algorithm exists to ensure stability at the
787 	 * selected weightings.
788 	 *
789 	 * Because we might be breaking up optimal conditions we do not want
790 	 * to execute this too quickly, hence we only rebalance approximately
791 	 * ~7-8 times per second.  The push's, on the otherhand, are capable
792 	 * moving threads to other cpus at a much higher rate.
793 	 *
794 	 * We choose the most heavily loaded thread from the worst queue
795 	 * in order to ensure that multiple heavy-weight threads on the same
796 	 * queue get broken up, and also because these threads are the most
797 	 * likely to be able to remain in place.  Hopefully then any pairings,
798 	 * if applicable, migrate to where these threads are.
799 	 */
800 	if ((usched_dfly_features & 0x04) &&
801 	    ((u_int)sched_ticks & 7) == 0 &&
802 	    (u_int)sched_ticks / 8 % ncpus == gd->gd_cpuid) {
803 		/*
804 		 * Our cpu is up.
805 		 */
806 		struct lwp *nlp;
807 		dfly_pcpu_t rdd;
808 
809 		rdd = dfly_choose_worst_queue(dd);
810 		if (rdd) {
811 			spin_lock(&dd->spin);
812 			if (spin_trylock(&rdd->spin)) {
813 				nlp = dfly_chooseproc_locked(rdd, dd, NULL, 1);
814 				spin_unlock(&rdd->spin);
815 				if (nlp == NULL)
816 					spin_unlock(&dd->spin);
817 			} else {
818 				spin_unlock(&dd->spin);
819 				nlp = NULL;
820 			}
821 		} else {
822 			nlp = NULL;
823 		}
824 		/* dd->spin held if nlp != NULL */
825 
826 		/*
827 		 * Either schedule it or add it to our queue.
828 		 */
829 		if (nlp &&
830 		    (nlp->lwp_priority & ~PPQMASK) < (dd->upri & ~PPQMASK)) {
831 			atomic_set_cpumask(&dfly_curprocmask, dd->cpumask);
832 			dd->upri = nlp->lwp_priority;
833 			dd->uschedcp = nlp;
834 #if 0
835 			dd->rrcount = 0;	/* reset round robin */
836 #endif
837 			spin_unlock(&dd->spin);
838 			lwkt_acquire(nlp->lwp_thread);
839 			lwkt_schedule(nlp->lwp_thread);
840 		} else if (nlp) {
841 			dfly_setrunqueue_locked(dd, nlp);
842 			spin_unlock(&dd->spin);
843 		}
844 	}
845 }
846 
847 /*
848  * Called from acquire and from kern_synch's one-second timer (one of the
849  * callout helper threads) with a critical section held.
850  *
851  * Adjust p_estcpu based on our single-cpu load, p_nice, and compensate for
852  * overall system load.
853  *
854  * Note that no recalculation occurs for a process which sleeps and wakes
855  * up in the same tick.  That is, a system doing thousands of context
856  * switches per second will still only do serious estcpu calculations
857  * ESTCPUFREQ times per second.
858  */
859 static
860 void
861 dfly_recalculate_estcpu(struct lwp *lp)
862 {
863 	globaldata_t gd = mycpu;
864 	sysclock_t cpbase;
865 	sysclock_t ttlticks;
866 	int estcpu;
867 	int decay_factor;
868 	int ucount;
869 
870 	/*
871 	 * We have to subtract periodic to get the last schedclock
872 	 * timeout time, otherwise we would get the upcoming timeout.
873 	 * Keep in mind that a process can migrate between cpus and
874 	 * while the scheduler clock should be very close, boundary
875 	 * conditions could lead to a small negative delta.
876 	 */
877 	cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
878 
879 	if (lp->lwp_slptime > 1) {
880 		/*
881 		 * Too much time has passed, do a coarse correction.
882 		 */
883 		lp->lwp_estcpu = lp->lwp_estcpu >> 1;
884 		dfly_resetpriority(lp);
885 		lp->lwp_cpbase = cpbase;
886 		lp->lwp_cpticks = 0;
887 		lp->lwp_estfast = 0;
888 	} else if (lp->lwp_cpbase != cpbase) {
889 		/*
890 		 * Adjust estcpu if we are in a different tick.  Don't waste
891 		 * time if we are in the same tick.
892 		 *
893 		 * First calculate the number of ticks in the measurement
894 		 * interval.  The ttlticks calculation can wind up 0 due to
895 		 * a bug in the handling of lwp_slptime  (as yet not found),
896 		 * so make sure we do not get a divide by 0 panic.
897 		 */
898 		ttlticks = (cpbase - lp->lwp_cpbase) /
899 			   gd->gd_schedclock.periodic;
900 		if ((ssysclock_t)ttlticks < 0) {
901 			ttlticks = 0;
902 			lp->lwp_cpbase = cpbase;
903 		}
904 		if (ttlticks == 0)
905 			return;
906 		updatepcpu(lp, lp->lwp_cpticks, ttlticks);
907 
908 		/*
909 		 * Calculate the percentage of one cpu being used then
910 		 * compensate for any system load in excess of ncpus.
911 		 *
912 		 * For example, if we have 8 cores and 16 running cpu-bound
913 		 * processes then all things being equal each process will
914 		 * get 50% of one cpu.  We need to pump this value back
915 		 * up to 100% so the estcpu calculation properly adjusts
916 		 * the process's dynamic priority.
917 		 *
918 		 * estcpu is scaled by ESTCPUMAX, pctcpu is scaled by FSCALE.
919 		 */
920 		estcpu = (lp->lwp_pctcpu * ESTCPUMAX) >> FSHIFT;
921 		ucount = dfly_ucount;
922 		if (ucount > ncpus) {
923 			estcpu += estcpu * (ucount - ncpus) / ncpus;
924 		}
925 
926 		if (usched_dfly_debug == lp->lwp_proc->p_pid) {
927 			kprintf("pid %d lwp %p estcpu %3d %3d cp %d/%d",
928 				lp->lwp_proc->p_pid, lp,
929 				estcpu, lp->lwp_estcpu,
930 				lp->lwp_cpticks, ttlticks);
931 		}
932 
933 		/*
934 		 * Adjust lp->lwp_esetcpu.  The decay factor determines how
935 		 * quickly lwp_estcpu collapses to its realtime calculation.
936 		 * A slower collapse gives us a more accurate number over
937 		 * the long term but can create problems with bursty threads
938 		 * or threads which become cpu hogs.
939 		 *
940 		 * To solve this problem, newly started lwps and lwps which
941 		 * are restarting after having been asleep for a while are
942 		 * given a much, much faster decay in order to quickly
943 		 * detect whether they become cpu-bound.
944 		 *
945 		 * NOTE: p_nice is accounted for in dfly_resetpriority(),
946 		 *	 and not here, but we must still ensure that a
947 		 *	 cpu-bound nice -20 process does not completely
948 		 *	 override a cpu-bound nice +20 process.
949 		 *
950 		 * NOTE: We must use ESTCPULIM() here to deal with any
951 		 *	 overshoot.
952 		 */
953 		decay_factor = usched_dfly_decay;
954 		if (decay_factor < 1)
955 			decay_factor = 1;
956 		if (decay_factor > 1024)
957 			decay_factor = 1024;
958 
959 		if (lp->lwp_estfast < usched_dfly_decay) {
960 			++lp->lwp_estfast;
961 			lp->lwp_estcpu = ESTCPULIM(
962 				(lp->lwp_estcpu * lp->lwp_estfast + estcpu) /
963 				(lp->lwp_estfast + 1));
964 		} else {
965 			lp->lwp_estcpu = ESTCPULIM(
966 				(lp->lwp_estcpu * decay_factor + estcpu) /
967 				(decay_factor + 1));
968 		}
969 
970 		if (usched_dfly_debug == lp->lwp_proc->p_pid)
971 			kprintf(" finalestcpu %d\n", lp->lwp_estcpu);
972 		dfly_resetpriority(lp);
973 		lp->lwp_cpbase += ttlticks * gd->gd_schedclock.periodic;
974 		lp->lwp_cpticks = 0;
975 	}
976 }
977 
978 /*
979  * Compute the priority of a process when running in user mode.
980  * Arrange to reschedule if the resulting priority is better
981  * than that of the current process.
982  *
983  * This routine may be called with any process.
984  *
985  * This routine is called by fork1() for initial setup with the process
986  * of the run queue, and also may be called normally with the process on or
987  * off the run queue.
988  */
989 static void
990 dfly_resetpriority(struct lwp *lp)
991 {
992 	dfly_pcpu_t rdd;
993 	int newpriority;
994 	u_short newrqtype;
995 	int rcpu;
996 	int checkpri;
997 	int estcpu;
998 	int delta_uload;
999 
1000 	crit_enter();
1001 
1002 	/*
1003 	 * Lock the scheduler (lp) belongs to.  This can be on a different
1004 	 * cpu.  Handle races.  This loop breaks out with the appropriate
1005 	 * rdd locked.
1006 	 */
1007 	for (;;) {
1008 		rcpu = lp->lwp_qcpu;
1009 		cpu_ccfence();
1010 		rdd = &dfly_pcpu[rcpu];
1011 		spin_lock(&rdd->spin);
1012 		if (rcpu == lp->lwp_qcpu)
1013 			break;
1014 		spin_unlock(&rdd->spin);
1015 	}
1016 
1017 	/*
1018 	 * Calculate the new priority and queue type
1019 	 */
1020 	newrqtype = lp->lwp_rtprio.type;
1021 
1022 	switch(newrqtype) {
1023 	case RTP_PRIO_REALTIME:
1024 	case RTP_PRIO_FIFO:
1025 		newpriority = PRIBASE_REALTIME +
1026 			     (lp->lwp_rtprio.prio & PRIMASK);
1027 		break;
1028 	case RTP_PRIO_NORMAL:
1029 		/*
1030 		 *
1031 		 */
1032 		estcpu = lp->lwp_estcpu;
1033 
1034 		/*
1035 		 * p_nice piece		Adds (0-40) * 2		0-80
1036 		 * estcpu		Adds 16384  * 4 / 512   0-128
1037 		 */
1038 		newpriority = (lp->lwp_proc->p_nice - PRIO_MIN) * PPQ / NICEPPQ;
1039 		newpriority += estcpu * PPQ / ESTCPUPPQ;
1040 		newpriority = newpriority * MAXPRI / (PRIO_RANGE * PPQ /
1041 			      NICEPPQ + ESTCPUMAX * PPQ / ESTCPUPPQ);
1042 		newpriority = PRIBASE_NORMAL + (newpriority & PRIMASK);
1043 		break;
1044 	case RTP_PRIO_IDLE:
1045 		newpriority = PRIBASE_IDLE + (lp->lwp_rtprio.prio & PRIMASK);
1046 		break;
1047 	case RTP_PRIO_THREAD:
1048 		newpriority = PRIBASE_THREAD + (lp->lwp_rtprio.prio & PRIMASK);
1049 		break;
1050 	default:
1051 		panic("Bad RTP_PRIO %d", newrqtype);
1052 		/* NOT REACHED */
1053 	}
1054 
1055 	/*
1056 	 * The LWKT scheduler doesn't dive usched structures, give it a hint
1057 	 * on the relative priority of user threads running in the kernel.
1058 	 * The LWKT scheduler will always ensure that a user thread running
1059 	 * in the kernel will get cpu some time, regardless of its upri,
1060 	 * but can decide not to instantly switch from one kernel or user
1061 	 * mode user thread to a kernel-mode user thread when it has a less
1062 	 * desireable user priority.
1063 	 *
1064 	 * td_upri has normal sense (higher values are more desireable), so
1065 	 * negate it.
1066 	 */
1067 	lp->lwp_thread->td_upri = -(newpriority & usched_dfly_swmask);
1068 
1069 	/*
1070 	 * The newpriority incorporates the queue type so do a simple masked
1071 	 * check to determine if the process has moved to another queue.  If
1072 	 * it has, and it is currently on a run queue, then move it.
1073 	 *
1074 	 * Since uload is ~PPQMASK masked, no modifications are necessary if
1075 	 * we end up in the same run queue.
1076 	 */
1077 	if ((lp->lwp_priority ^ newpriority) & ~PPQMASK) {
1078 		if (lp->lwp_mpflags & LWP_MP_ONRUNQ) {
1079 			dfly_remrunqueue_locked(rdd, lp);
1080 			lp->lwp_priority = newpriority;
1081 			lp->lwp_rqtype = newrqtype;
1082 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
1083 			dfly_setrunqueue_locked(rdd, lp);
1084 			checkpri = 1;
1085 		} else {
1086 			lp->lwp_priority = newpriority;
1087 			lp->lwp_rqtype = newrqtype;
1088 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
1089 			checkpri = 0;
1090 		}
1091 	} else {
1092 		/*
1093 		 * In the same PPQ, uload cannot change.
1094 		 */
1095 		lp->lwp_priority = newpriority;
1096 		checkpri = 1;
1097 		rcpu = -1;
1098 	}
1099 
1100 	/*
1101 	 * Adjust effective load.
1102 	 *
1103 	 * Calculate load then scale up or down geometrically based on p_nice.
1104 	 * Processes niced up (positive) are less important, and processes
1105 	 * niced downard (negative) are more important.  The higher the uload,
1106 	 * the more important the thread.
1107 	 */
1108 	/* 0-511, 0-100% cpu */
1109 	delta_uload = lp->lwp_estcpu / NQS;
1110 	delta_uload -= delta_uload * lp->lwp_proc->p_nice / (PRIO_MAX + 1);
1111 
1112 
1113 	delta_uload -= lp->lwp_uload;
1114 	lp->lwp_uload += delta_uload;
1115 	if (lp->lwp_mpflags & LWP_MP_ULOAD)
1116 		atomic_add_int(&dfly_pcpu[lp->lwp_qcpu].uload, delta_uload);
1117 
1118 	/*
1119 	 * Determine if we need to reschedule the target cpu.  This only
1120 	 * occurs if the LWP is already on a scheduler queue, which means
1121 	 * that idle cpu notification has already occured.  At most we
1122 	 * need only issue a need_user_resched() on the appropriate cpu.
1123 	 *
1124 	 * The LWP may be owned by a CPU different from the current one,
1125 	 * in which case dd->uschedcp may be modified without an MP lock
1126 	 * or a spinlock held.  The worst that happens is that the code
1127 	 * below causes a spurious need_user_resched() on the target CPU
1128 	 * and dd->pri to be wrong for a short period of time, both of
1129 	 * which are harmless.
1130 	 *
1131 	 * If checkpri is 0 we are adjusting the priority of the current
1132 	 * process, possibly higher (less desireable), so ignore the upri
1133 	 * check which will fail in that case.
1134 	 */
1135 	if (rcpu >= 0) {
1136 		if ((dfly_rdyprocmask & CPUMASK(rcpu)) &&
1137 		    (checkpri == 0 ||
1138 		     (rdd->upri & ~PRIMASK) >
1139 		     (lp->lwp_priority & ~PRIMASK))) {
1140 			if (rcpu == mycpu->gd_cpuid) {
1141 				spin_unlock(&rdd->spin);
1142 				need_user_resched();
1143 			} else {
1144 				spin_unlock(&rdd->spin);
1145 				lwkt_send_ipiq(globaldata_find(rcpu),
1146 					       dfly_need_user_resched_remote,
1147 					       NULL);
1148 			}
1149 		} else {
1150 			spin_unlock(&rdd->spin);
1151 		}
1152 	} else {
1153 		spin_unlock(&rdd->spin);
1154 	}
1155 	crit_exit();
1156 }
1157 
1158 static
1159 void
1160 dfly_yield(struct lwp *lp)
1161 {
1162 	if (lp->lwp_qcpu != mycpu->gd_cpuid)
1163 		return;
1164 	KKASSERT(lp == curthread->td_lwp);
1165 
1166 	/*
1167 	 * Don't set need_user_resched() or mess with rrcount or anything.
1168 	 * the TDF flag will override everything as long as we release.
1169 	 */
1170 	atomic_set_int(&lp->lwp_thread->td_mpflags, TDF_MP_DIDYIELD);
1171 	dfly_release_curproc(lp);
1172 }
1173 
1174 /*
1175  * Thread was forcefully migrated to another cpu.  Normally forced migrations
1176  * are used for iterations and the kernel returns to the original cpu before
1177  * returning and this is not needed.  However, if the kernel migrates a
1178  * thread to another cpu and wants to leave it there, it has to call this
1179  * scheduler helper.
1180  *
1181  * Note that the lwkt_migratecpu() function also released the thread, so
1182  * we don't have to worry about that.
1183  */
1184 static
1185 void
1186 dfly_changedcpu(struct lwp *lp)
1187 {
1188 	dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1189 	dfly_pcpu_t rdd = &dfly_pcpu[mycpu->gd_cpuid];
1190 
1191 	if (dd != rdd) {
1192 		spin_lock(&dd->spin);
1193 		dfly_changeqcpu_locked(lp, dd, rdd);
1194 		spin_unlock(&dd->spin);
1195 	}
1196 }
1197 
1198 /*
1199  * Called from fork1() when a new child process is being created.
1200  *
1201  * Give the child process an initial estcpu that is more batch then
1202  * its parent and dock the parent for the fork (but do not
1203  * reschedule the parent).
1204  *
1205  * fast
1206  *
1207  * XXX lwp should be "spawning" instead of "forking"
1208  */
1209 static void
1210 dfly_forking(struct lwp *plp, struct lwp *lp)
1211 {
1212 	/*
1213 	 * Put the child 4 queue slots (out of 32) higher than the parent
1214 	 * (less desireable than the parent).
1215 	 */
1216 	lp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ * 4);
1217 	lp->lwp_forked = 1;
1218 	lp->lwp_estfast = 0;
1219 
1220 	/*
1221 	 * Dock the parent a cost for the fork, protecting us from fork
1222 	 * bombs.  If the parent is forking quickly make the child more
1223 	 * batchy.
1224 	 */
1225 	plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ / 16);
1226 }
1227 
1228 /*
1229  * Called when a lwp is being removed from this scheduler, typically
1230  * during lwp_exit().  We have to clean out any ULOAD accounting before
1231  * we can let the lp go.  The dd->spin lock is not needed for uload
1232  * updates.
1233  *
1234  * Scheduler dequeueing has already occurred, no further action in that
1235  * regard is needed.
1236  */
1237 static void
1238 dfly_exiting(struct lwp *lp, struct proc *child_proc)
1239 {
1240 	dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1241 
1242 	if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1243 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
1244 		atomic_add_int(&dd->uload, -lp->lwp_uload);
1245 		atomic_add_int(&dd->ucount, -1);
1246 		atomic_add_int(&dfly_ucount, -1);
1247 	}
1248 }
1249 
1250 /*
1251  * This function cannot block in any way, but spinlocks are ok.
1252  *
1253  * Update the uload based on the state of the thread (whether it is going
1254  * to sleep or running again).  The uload is meant to be a longer-term
1255  * load and not an instantanious load.
1256  */
1257 static void
1258 dfly_uload_update(struct lwp *lp)
1259 {
1260 	dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1261 
1262 	if (lp->lwp_thread->td_flags & TDF_RUNQ) {
1263 		if ((lp->lwp_mpflags & LWP_MP_ULOAD) == 0) {
1264 			spin_lock(&dd->spin);
1265 			if ((lp->lwp_mpflags & LWP_MP_ULOAD) == 0) {
1266 				atomic_set_int(&lp->lwp_mpflags,
1267 					       LWP_MP_ULOAD);
1268 				atomic_add_int(&dd->uload, lp->lwp_uload);
1269 				atomic_add_int(&dd->ucount, 1);
1270 				atomic_add_int(&dfly_ucount, 1);
1271 			}
1272 			spin_unlock(&dd->spin);
1273 		}
1274 	} else if (lp->lwp_slptime > 0) {
1275 		if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1276 			spin_lock(&dd->spin);
1277 			if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1278 				atomic_clear_int(&lp->lwp_mpflags,
1279 						 LWP_MP_ULOAD);
1280 				atomic_add_int(&dd->uload, -lp->lwp_uload);
1281 				atomic_add_int(&dd->ucount, -1);
1282 				atomic_add_int(&dfly_ucount, -1);
1283 			}
1284 			spin_unlock(&dd->spin);
1285 		}
1286 	}
1287 }
1288 
1289 /*
1290  * chooseproc() is called when a cpu needs a user process to LWKT schedule,
1291  * it selects a user process and returns it.  If chklp is non-NULL and chklp
1292  * has a better or equal priority then the process that would otherwise be
1293  * chosen, NULL is returned.
1294  *
1295  * Until we fix the RUNQ code the chklp test has to be strict or we may
1296  * bounce between processes trying to acquire the current process designation.
1297  *
1298  * Must be called with rdd->spin locked.  The spinlock is left intact through
1299  * the entire routine.  dd->spin does not have to be locked.
1300  *
1301  * If worst is non-zero this function finds the worst thread instead of the
1302  * best thread (used by the schedulerclock-based rover).
1303  */
1304 static
1305 struct lwp *
1306 dfly_chooseproc_locked(dfly_pcpu_t rdd, dfly_pcpu_t dd,
1307 		       struct lwp *chklp, int worst)
1308 {
1309 	struct lwp *lp;
1310 	struct rq *q;
1311 	u_int32_t *which;
1312 	u_int32_t pri;
1313 	u_int32_t rtqbits;
1314 	u_int32_t tsqbits;
1315 	u_int32_t idqbits;
1316 
1317 	rtqbits = rdd->rtqueuebits;
1318 	tsqbits = rdd->queuebits;
1319 	idqbits = rdd->idqueuebits;
1320 
1321 	if (worst) {
1322 		if (idqbits) {
1323 			pri = bsrl(idqbits);
1324 			q = &rdd->idqueues[pri];
1325 			which = &rdd->idqueuebits;
1326 		} else if (tsqbits) {
1327 			pri = bsrl(tsqbits);
1328 			q = &rdd->queues[pri];
1329 			which = &rdd->queuebits;
1330 		} else if (rtqbits) {
1331 			pri = bsrl(rtqbits);
1332 			q = &rdd->rtqueues[pri];
1333 			which = &rdd->rtqueuebits;
1334 		} else {
1335 			return (NULL);
1336 		}
1337 		lp = TAILQ_LAST(q, rq);
1338 	} else {
1339 		if (rtqbits) {
1340 			pri = bsfl(rtqbits);
1341 			q = &rdd->rtqueues[pri];
1342 			which = &rdd->rtqueuebits;
1343 		} else if (tsqbits) {
1344 			pri = bsfl(tsqbits);
1345 			q = &rdd->queues[pri];
1346 			which = &rdd->queuebits;
1347 		} else if (idqbits) {
1348 			pri = bsfl(idqbits);
1349 			q = &rdd->idqueues[pri];
1350 			which = &rdd->idqueuebits;
1351 		} else {
1352 			return (NULL);
1353 		}
1354 		lp = TAILQ_FIRST(q);
1355 	}
1356 	KASSERT(lp, ("chooseproc: no lwp on busy queue"));
1357 
1358 	/*
1359 	 * If the passed lwp <chklp> is reasonably close to the selected
1360 	 * lwp <lp>, return NULL (indicating that <chklp> should be kept).
1361 	 *
1362 	 * Note that we must error on the side of <chklp> to avoid bouncing
1363 	 * between threads in the acquire code.
1364 	 */
1365 	if (chklp) {
1366 		if (chklp->lwp_priority < lp->lwp_priority + PPQ)
1367 			return(NULL);
1368 	}
1369 
1370 	KTR_COND_LOG(usched_chooseproc,
1371 	    lp->lwp_proc->p_pid == usched_dfly_pid_debug,
1372 	    lp->lwp_proc->p_pid,
1373 	    lp->lwp_thread->td_gd->gd_cpuid,
1374 	    mycpu->gd_cpuid);
1375 
1376 	KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) != 0, ("not on runq6!"));
1377 	atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1378 	TAILQ_REMOVE(q, lp, lwp_procq);
1379 	--rdd->runqcount;
1380 	if (TAILQ_EMPTY(q))
1381 		*which &= ~(1 << pri);
1382 
1383 	/*
1384 	 * If we are choosing a process from rdd with the intent to
1385 	 * move it to dd, lwp_qcpu must be adjusted while rdd's spinlock
1386 	 * is still held.
1387 	 */
1388 	if (rdd != dd) {
1389 		if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1390 			atomic_add_int(&rdd->uload, -lp->lwp_uload);
1391 			atomic_add_int(&rdd->ucount, -1);
1392 			atomic_add_int(&dfly_ucount, -1);
1393 		}
1394 		lp->lwp_qcpu = dd->cpuid;
1395 		atomic_add_int(&dd->uload, lp->lwp_uload);
1396 		atomic_add_int(&dd->ucount, 1);
1397 		atomic_add_int(&dfly_ucount, 1);
1398 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
1399 	}
1400 	return lp;
1401 }
1402 
1403 /*
1404  * USED TO PUSH RUNNABLE LWPS TO THE LEAST LOADED CPU.
1405  *
1406  * Choose a cpu node to schedule lp on, hopefully nearby its current
1407  * node.
1408  *
1409  * We give the current node a modest advantage for obvious reasons.
1410  *
1411  * We also give the node the thread was woken up FROM a slight advantage
1412  * in order to try to schedule paired threads which synchronize/block waiting
1413  * for each other fairly close to each other.  Similarly in a network setting
1414  * this feature will also attempt to place a user process near the kernel
1415  * protocol thread that is feeding it data.  THIS IS A CRITICAL PART of the
1416  * algorithm as it heuristically groups synchronizing processes for locality
1417  * of reference in multi-socket systems.
1418  *
1419  * We check against running processes and give a big advantage if there
1420  * are none running.
1421  *
1422  * The caller will normally dfly_setrunqueue() lp on the returned queue.
1423  *
1424  * When the topology is known choose a cpu whos group has, in aggregate,
1425  * has the lowest weighted load.
1426  */
1427 static
1428 dfly_pcpu_t
1429 dfly_choose_best_queue(struct lwp *lp)
1430 {
1431 	cpumask_t wakemask;
1432 	cpumask_t mask;
1433 	cpu_node_t *cpup;
1434 	cpu_node_t *cpun;
1435 	cpu_node_t *cpub;
1436 	dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1437 	dfly_pcpu_t rdd;
1438 	int wakecpu;
1439 	int cpuid;
1440 	int n;
1441 	int count;
1442 	int load;
1443 	int lowest_load;
1444 
1445 	/*
1446 	 * When the topology is unknown choose a random cpu that is hopefully
1447 	 * idle.
1448 	 */
1449 	if (dd->cpunode == NULL)
1450 		return (dfly_choose_queue_simple(dd, lp));
1451 
1452 	/*
1453 	 * Pairing mask
1454 	 */
1455 	if ((wakecpu = lp->lwp_thread->td_wakefromcpu) >= 0)
1456 		wakemask = dfly_pcpu[wakecpu].cpumask;
1457 	else
1458 		wakemask = 0;
1459 
1460 	/*
1461 	 * When the topology is known choose a cpu whos group has, in
1462 	 * aggregate, has the lowest weighted load.
1463 	 */
1464 	cpup = root_cpu_node;
1465 	rdd = dd;
1466 
1467 	while (cpup) {
1468 		/*
1469 		 * Degenerate case super-root
1470 		 */
1471 		if (cpup->child_no == 1) {
1472 			cpup = cpup->child_node[0];
1473 			continue;
1474 		}
1475 
1476 		/*
1477 		 * Terminal cpunode
1478 		 */
1479 		if (cpup->child_no == 0) {
1480 			rdd = &dfly_pcpu[BSFCPUMASK(cpup->members)];
1481 			break;
1482 		}
1483 
1484 		cpub = NULL;
1485 		lowest_load = 0x7FFFFFFF;
1486 
1487 		for (n = 0; n < cpup->child_no; ++n) {
1488 			/*
1489 			 * Accumulate load information for all cpus
1490 			 * which are members of this node.
1491 			 */
1492 			cpun = cpup->child_node[n];
1493 			mask = cpun->members & usched_global_cpumask &
1494 			       smp_active_mask & lp->lwp_cpumask;
1495 			if (mask == 0)
1496 				continue;
1497 
1498 			count = 0;
1499 			load = 0;
1500 
1501 			while (mask) {
1502 				cpuid = BSFCPUMASK(mask);
1503 				rdd = &dfly_pcpu[cpuid];
1504 				load += rdd->uload;
1505 				load += rdd->ucount * usched_dfly_weight3;
1506 
1507 				if (rdd->uschedcp == NULL &&
1508 				    rdd->runqcount == 0 &&
1509 				    globaldata_find(cpuid)->gd_tdrunqcount == 0
1510 				) {
1511 					load -= usched_dfly_weight4;
1512 				}
1513 #if 0
1514 				else if (rdd->upri > lp->lwp_priority + PPQ) {
1515 					load -= usched_dfly_weight4 / 2;
1516 				}
1517 #endif
1518 				mask &= ~CPUMASK(cpuid);
1519 				++count;
1520 			}
1521 
1522 			/*
1523 			 * Compensate if the lp is already accounted for in
1524 			 * the aggregate uload for this mask set.  We want
1525 			 * to calculate the loads as if lp were not present,
1526 			 * otherwise the calculation is bogus.
1527 			 */
1528 			if ((lp->lwp_mpflags & LWP_MP_ULOAD) &&
1529 			    (dd->cpumask & cpun->members)) {
1530 				load -= lp->lwp_uload;
1531 				load -= usched_dfly_weight3;
1532 			}
1533 
1534 			load /= count;
1535 
1536 			/*
1537 			 * Advantage the cpu group (lp) is already on.
1538 			 */
1539 			if (cpun->members & dd->cpumask)
1540 				load -= usched_dfly_weight1;
1541 
1542 			/*
1543 			 * Advantage the cpu group we want to pair (lp) to,
1544 			 * but don't let it go to the exact same cpu as
1545 			 * the wakecpu target.
1546 			 *
1547 			 * We do this by checking whether cpun is a
1548 			 * terminal node or not.  All cpun's at the same
1549 			 * level will either all be terminal or all not
1550 			 * terminal.
1551 			 *
1552 			 * If it is and we match we disadvantage the load.
1553 			 * If it is and we don't match we advantage the load.
1554 			 *
1555 			 * Also note that we are effectively disadvantaging
1556 			 * all-but-one by the same amount, so it won't effect
1557 			 * the weight1 factor for the all-but-one nodes.
1558 			 */
1559 			if (cpun->members & wakemask) {
1560 				if (cpun->child_no != 0) {
1561 					/* advantage */
1562 					load -= usched_dfly_weight2;
1563 				} else {
1564 					if (usched_dfly_features & 0x10)
1565 						load += usched_dfly_weight2;
1566 					else
1567 						load -= usched_dfly_weight2;
1568 				}
1569 			}
1570 
1571 			/*
1572 			 * Calculate the best load
1573 			 */
1574 			if (cpub == NULL || lowest_load > load ||
1575 			    (lowest_load == load &&
1576 			     (cpun->members & dd->cpumask))
1577 			) {
1578 				lowest_load = load;
1579 				cpub = cpun;
1580 			}
1581 		}
1582 		cpup = cpub;
1583 	}
1584 	if (usched_dfly_chooser)
1585 		kprintf("lp %02d->%02d %s\n",
1586 			lp->lwp_qcpu, rdd->cpuid, lp->lwp_proc->p_comm);
1587 	return (rdd);
1588 }
1589 
1590 /*
1591  * USED TO PULL RUNNABLE LWPS FROM THE MOST LOADED CPU.
1592  *
1593  * Choose the worst queue close to dd's cpu node with a non-empty runq
1594  * that is NOT dd.  Also require that the moving of the highest-load thread
1595  * from rdd to dd does not cause the uload's to cross each other.
1596  *
1597  * This is used by the thread chooser when the current cpu's queues are
1598  * empty to steal a thread from another cpu's queue.  We want to offload
1599  * the most heavily-loaded queue.
1600  */
1601 static
1602 dfly_pcpu_t
1603 dfly_choose_worst_queue(dfly_pcpu_t dd)
1604 {
1605 	cpumask_t mask;
1606 	cpu_node_t *cpup;
1607 	cpu_node_t *cpun;
1608 	cpu_node_t *cpub;
1609 	dfly_pcpu_t rdd;
1610 	int cpuid;
1611 	int n;
1612 	int count;
1613 	int load;
1614 #if 0
1615 	int pri;
1616 	int hpri;
1617 #endif
1618 	int highest_load;
1619 
1620 	/*
1621 	 * When the topology is unknown choose a random cpu that is hopefully
1622 	 * idle.
1623 	 */
1624 	if (dd->cpunode == NULL) {
1625 		return (NULL);
1626 	}
1627 
1628 	/*
1629 	 * When the topology is known choose a cpu whos group has, in
1630 	 * aggregate, has the lowest weighted load.
1631 	 */
1632 	cpup = root_cpu_node;
1633 	rdd = dd;
1634 	while (cpup) {
1635 		/*
1636 		 * Degenerate case super-root
1637 		 */
1638 		if (cpup->child_no == 1) {
1639 			cpup = cpup->child_node[0];
1640 			continue;
1641 		}
1642 
1643 		/*
1644 		 * Terminal cpunode
1645 		 */
1646 		if (cpup->child_no == 0) {
1647 			rdd = &dfly_pcpu[BSFCPUMASK(cpup->members)];
1648 			break;
1649 		}
1650 
1651 		cpub = NULL;
1652 		highest_load = 0;
1653 
1654 		for (n = 0; n < cpup->child_no; ++n) {
1655 			/*
1656 			 * Accumulate load information for all cpus
1657 			 * which are members of this node.
1658 			 */
1659 			cpun = cpup->child_node[n];
1660 			mask = cpun->members & usched_global_cpumask &
1661 			       smp_active_mask;
1662 			if (mask == 0)
1663 				continue;
1664 			count = 0;
1665 			load = 0;
1666 
1667 			while (mask) {
1668 				cpuid = BSFCPUMASK(mask);
1669 				rdd = &dfly_pcpu[cpuid];
1670 				load += rdd->uload;
1671 				load += rdd->ucount * usched_dfly_weight3;
1672 				if (rdd->uschedcp == NULL &&
1673 				    rdd->runqcount == 0 &&
1674 				    globaldata_find(cpuid)->gd_tdrunqcount == 0
1675 				) {
1676 					load -= usched_dfly_weight4;
1677 				}
1678 #if 0
1679 				else if (rdd->upri > dd->upri + PPQ) {
1680 					load -= usched_dfly_weight4 / 2;
1681 				}
1682 #endif
1683 				mask &= ~CPUMASK(cpuid);
1684 				++count;
1685 			}
1686 			load /= count;
1687 
1688 			/*
1689 			 * Prefer candidates which are somewhat closer to
1690 			 * our cpu.
1691 			 */
1692 			if (dd->cpumask & cpun->members)
1693 				load += usched_dfly_weight1;
1694 
1695 			/*
1696 			 * The best candidate is the one with the worst
1697 			 * (highest) load.
1698 			 */
1699 			if (cpub == NULL || highest_load < load) {
1700 				highest_load = load;
1701 				cpub = cpun;
1702 			}
1703 		}
1704 		cpup = cpub;
1705 	}
1706 
1707 	/*
1708 	 * We never return our own node (dd), and only return a remote
1709 	 * node if it's load is significantly worse than ours (i.e. where
1710 	 * stealing a thread would be considered reasonable).
1711 	 *
1712 	 * This also helps us avoid breaking paired threads apart which
1713 	 * can have disastrous effects on performance.
1714 	 */
1715 	if (rdd == dd)
1716 		return(NULL);
1717 
1718 #if 0
1719 	hpri = 0;
1720 	if (rdd->rtqueuebits && hpri < (pri = bsrl(rdd->rtqueuebits)))
1721 		hpri = pri;
1722 	if (rdd->queuebits && hpri < (pri = bsrl(rdd->queuebits)))
1723 		hpri = pri;
1724 	if (rdd->idqueuebits && hpri < (pri = bsrl(rdd->idqueuebits)))
1725 		hpri = pri;
1726 	hpri *= PPQ;
1727 	if (rdd->uload - hpri < dd->uload + hpri)
1728 		return(NULL);
1729 #endif
1730 	return (rdd);
1731 }
1732 
1733 static
1734 dfly_pcpu_t
1735 dfly_choose_queue_simple(dfly_pcpu_t dd, struct lwp *lp)
1736 {
1737 	dfly_pcpu_t rdd;
1738 	cpumask_t tmpmask;
1739 	cpumask_t mask;
1740 	int cpuid;
1741 
1742 	/*
1743 	 * Fallback to the original heuristic, select random cpu,
1744 	 * first checking cpus not currently running a user thread.
1745 	 */
1746 	++dfly_scancpu;
1747 	cpuid = (dfly_scancpu & 0xFFFF) % ncpus;
1748 	mask = ~dfly_curprocmask & dfly_rdyprocmask & lp->lwp_cpumask &
1749 	       smp_active_mask & usched_global_cpumask;
1750 
1751 	while (mask) {
1752 		tmpmask = ~(CPUMASK(cpuid) - 1);
1753 		if (mask & tmpmask)
1754 			cpuid = BSFCPUMASK(mask & tmpmask);
1755 		else
1756 			cpuid = BSFCPUMASK(mask);
1757 		rdd = &dfly_pcpu[cpuid];
1758 
1759 		if ((rdd->upri & ~PPQMASK) >= (lp->lwp_priority & ~PPQMASK))
1760 			goto found;
1761 		mask &= ~CPUMASK(cpuid);
1762 	}
1763 
1764 	/*
1765 	 * Then cpus which might have a currently running lp
1766 	 */
1767 	cpuid = (dfly_scancpu & 0xFFFF) % ncpus;
1768 	mask = dfly_curprocmask & dfly_rdyprocmask &
1769 	       lp->lwp_cpumask & smp_active_mask & usched_global_cpumask;
1770 
1771 	while (mask) {
1772 		tmpmask = ~(CPUMASK(cpuid) - 1);
1773 		if (mask & tmpmask)
1774 			cpuid = BSFCPUMASK(mask & tmpmask);
1775 		else
1776 			cpuid = BSFCPUMASK(mask);
1777 		rdd = &dfly_pcpu[cpuid];
1778 
1779 		if ((rdd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK))
1780 			goto found;
1781 		mask &= ~CPUMASK(cpuid);
1782 	}
1783 
1784 	/*
1785 	 * If we cannot find a suitable cpu we reload from dfly_scancpu
1786 	 * and round-robin.  Other cpus will pickup as they release their
1787 	 * current lwps or become ready.
1788 	 *
1789 	 * Avoid a degenerate system lockup case if usched_global_cpumask
1790 	 * is set to 0 or otherwise does not cover lwp_cpumask.
1791 	 *
1792 	 * We only kick the target helper thread in this case, we do not
1793 	 * set the user resched flag because
1794 	 */
1795 	cpuid = (dfly_scancpu & 0xFFFF) % ncpus;
1796 	if ((CPUMASK(cpuid) & usched_global_cpumask) == 0)
1797 		cpuid = 0;
1798 	rdd = &dfly_pcpu[cpuid];
1799 found:
1800 	return (rdd);
1801 }
1802 
1803 static
1804 void
1805 dfly_need_user_resched_remote(void *dummy)
1806 {
1807 	globaldata_t gd = mycpu;
1808 	dfly_pcpu_t  dd = &dfly_pcpu[gd->gd_cpuid];
1809 
1810 	/*
1811 	 * Flag reschedule needed
1812 	 */
1813 	need_user_resched();
1814 
1815 	/*
1816 	 * If no user thread is currently running we need to kick the helper
1817 	 * on our cpu to recover.  Otherwise the cpu will never schedule
1818 	 * anything again.
1819 	 *
1820 	 * We cannot schedule the process ourselves because this is an
1821 	 * IPI callback and we cannot acquire spinlocks in an IPI callback.
1822 	 *
1823 	 * Call wakeup_mycpu to avoid sending IPIs to other CPUs
1824 	 */
1825 	if (dd->uschedcp == NULL && (dfly_rdyprocmask & gd->gd_cpumask)) {
1826 		atomic_clear_cpumask(&dfly_rdyprocmask, gd->gd_cpumask);
1827 		wakeup_mycpu(&dd->helper_thread);
1828 	}
1829 }
1830 
1831 /*
1832  * dfly_remrunqueue_locked() removes a given process from the run queue
1833  * that it is on, clearing the queue busy bit if it becomes empty.
1834  *
1835  * Note that user process scheduler is different from the LWKT schedule.
1836  * The user process scheduler only manages user processes but it uses LWKT
1837  * underneath, and a user process operating in the kernel will often be
1838  * 'released' from our management.
1839  *
1840  * uload is NOT adjusted here.  It is only adjusted if the lwkt_thread goes
1841  * to sleep or the lwp is moved to a different runq.
1842  */
1843 static void
1844 dfly_remrunqueue_locked(dfly_pcpu_t rdd, struct lwp *lp)
1845 {
1846 	struct rq *q;
1847 	u_int32_t *which;
1848 	u_int8_t pri;
1849 
1850 	KKASSERT(rdd->runqcount >= 0);
1851 
1852 	pri = lp->lwp_rqindex;
1853 
1854 	switch(lp->lwp_rqtype) {
1855 	case RTP_PRIO_NORMAL:
1856 		q = &rdd->queues[pri];
1857 		which = &rdd->queuebits;
1858 		break;
1859 	case RTP_PRIO_REALTIME:
1860 	case RTP_PRIO_FIFO:
1861 		q = &rdd->rtqueues[pri];
1862 		which = &rdd->rtqueuebits;
1863 		break;
1864 	case RTP_PRIO_IDLE:
1865 		q = &rdd->idqueues[pri];
1866 		which = &rdd->idqueuebits;
1867 		break;
1868 	default:
1869 		panic("remrunqueue: invalid rtprio type");
1870 		/* NOT REACHED */
1871 	}
1872 	KKASSERT(lp->lwp_mpflags & LWP_MP_ONRUNQ);
1873 	atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1874 	TAILQ_REMOVE(q, lp, lwp_procq);
1875 	--rdd->runqcount;
1876 	if (TAILQ_EMPTY(q)) {
1877 		KASSERT((*which & (1 << pri)) != 0,
1878 			("remrunqueue: remove from empty queue"));
1879 		*which &= ~(1 << pri);
1880 	}
1881 }
1882 
1883 /*
1884  * dfly_setrunqueue_locked()
1885  *
1886  * Add a process whos rqtype and rqindex had previously been calculated
1887  * onto the appropriate run queue.   Determine if the addition requires
1888  * a reschedule on a cpu and return the cpuid or -1.
1889  *
1890  * NOTE: 	  Lower priorities are better priorities.
1891  *
1892  * NOTE ON ULOAD: This variable specifies the aggregate load on a cpu, the
1893  *		  sum of the rough lwp_priority for all running and runnable
1894  *		  processes.  Lower priority processes (higher lwp_priority
1895  *		  values) actually DO count as more load, not less, because
1896  *		  these are the programs which require the most care with
1897  *		  regards to cpu selection.
1898  */
1899 static void
1900 dfly_setrunqueue_locked(dfly_pcpu_t rdd, struct lwp *lp)
1901 {
1902 	struct rq *q;
1903 	u_int32_t *which;
1904 	int pri;
1905 
1906 	KKASSERT(lp->lwp_qcpu == rdd->cpuid);
1907 
1908 	if ((lp->lwp_mpflags & LWP_MP_ULOAD) == 0) {
1909 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
1910 		atomic_add_int(&dfly_pcpu[lp->lwp_qcpu].uload, lp->lwp_uload);
1911 		atomic_add_int(&dfly_pcpu[lp->lwp_qcpu].ucount, 1);
1912 		atomic_add_int(&dfly_ucount, 1);
1913 	}
1914 
1915 	pri = lp->lwp_rqindex;
1916 
1917 	switch(lp->lwp_rqtype) {
1918 	case RTP_PRIO_NORMAL:
1919 		q = &rdd->queues[pri];
1920 		which = &rdd->queuebits;
1921 		break;
1922 	case RTP_PRIO_REALTIME:
1923 	case RTP_PRIO_FIFO:
1924 		q = &rdd->rtqueues[pri];
1925 		which = &rdd->rtqueuebits;
1926 		break;
1927 	case RTP_PRIO_IDLE:
1928 		q = &rdd->idqueues[pri];
1929 		which = &rdd->idqueuebits;
1930 		break;
1931 	default:
1932 		panic("remrunqueue: invalid rtprio type");
1933 		/* NOT REACHED */
1934 	}
1935 
1936 	/*
1937 	 * Place us on the selected queue.  Determine if we should be
1938 	 * placed at the head of the queue or at the end.
1939 	 *
1940 	 * We are placed at the tail if our round-robin count has expired,
1941 	 * or is about to expire and the system thinks its a good place to
1942 	 * round-robin, or there is already a next thread on the queue
1943 	 * (it might be trying to pick up where it left off and we don't
1944 	 * want to interfere).
1945 	 */
1946 	KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1947 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1948 	++rdd->runqcount;
1949 
1950 	if (lp->lwp_rrcount >= usched_dfly_rrinterval ||
1951 	    (lp->lwp_rrcount >= usched_dfly_rrinterval / 2 &&
1952 	     (lp->lwp_thread->td_mpflags & TDF_MP_BATCH_DEMARC)) ||
1953 	    !TAILQ_EMPTY(q)
1954 	) {
1955 		atomic_clear_int(&lp->lwp_thread->td_mpflags,
1956 				 TDF_MP_BATCH_DEMARC);
1957 		lp->lwp_rrcount = 0;
1958 		TAILQ_INSERT_TAIL(q, lp, lwp_procq);
1959 	} else {
1960 		if (TAILQ_EMPTY(q))
1961 			lp->lwp_rrcount = 0;
1962 		TAILQ_INSERT_HEAD(q, lp, lwp_procq);
1963 	}
1964 	*which |= 1 << pri;
1965 }
1966 
1967 /*
1968  * For SMP systems a user scheduler helper thread is created for each
1969  * cpu and is used to allow one cpu to wakeup another for the purposes of
1970  * scheduling userland threads from setrunqueue().
1971  *
1972  * UP systems do not need the helper since there is only one cpu.
1973  *
1974  * We can't use the idle thread for this because we might block.
1975  * Additionally, doing things this way allows us to HLT idle cpus
1976  * on MP systems.
1977  */
1978 static void
1979 dfly_helper_thread(void *dummy)
1980 {
1981     globaldata_t gd;
1982     dfly_pcpu_t dd;
1983     dfly_pcpu_t rdd;
1984     struct lwp *nlp;
1985     cpumask_t mask;
1986     int cpuid;
1987 
1988     gd = mycpu;
1989     cpuid = gd->gd_cpuid;	/* doesn't change */
1990     mask = gd->gd_cpumask;	/* doesn't change */
1991     dd = &dfly_pcpu[cpuid];
1992 
1993     /*
1994      * Since we only want to be woken up only when no user processes
1995      * are scheduled on a cpu, run at an ultra low priority.
1996      */
1997     lwkt_setpri_self(TDPRI_USER_SCHEDULER);
1998 
1999     tsleep(&dd->helper_thread, 0, "schslp", 0);
2000 
2001     for (;;) {
2002 	/*
2003 	 * We use the LWKT deschedule-interlock trick to avoid racing
2004 	 * dfly_rdyprocmask.  This means we cannot block through to the
2005 	 * manual lwkt_switch() call we make below.
2006 	 */
2007 	crit_enter_gd(gd);
2008 	tsleep_interlock(&dd->helper_thread, 0);
2009 
2010 	spin_lock(&dd->spin);
2011 
2012 	atomic_set_cpumask(&dfly_rdyprocmask, mask);
2013 	clear_user_resched();	/* This satisfied the reschedule request */
2014 #if 0
2015 	dd->rrcount = 0;	/* Reset the round-robin counter */
2016 #endif
2017 
2018 	if (dd->runqcount || dd->uschedcp != NULL) {
2019 		/*
2020 		 * Threads are available.  A thread may or may not be
2021 		 * currently scheduled.  Get the best thread already queued
2022 		 * to this cpu.
2023 		 */
2024 		nlp = dfly_chooseproc_locked(dd, dd, dd->uschedcp, 0);
2025 		if (nlp) {
2026 			atomic_set_cpumask(&dfly_curprocmask, mask);
2027 			dd->upri = nlp->lwp_priority;
2028 			dd->uschedcp = nlp;
2029 #if 0
2030 			dd->rrcount = 0;	/* reset round robin */
2031 #endif
2032 			spin_unlock(&dd->spin);
2033 			lwkt_acquire(nlp->lwp_thread);
2034 			lwkt_schedule(nlp->lwp_thread);
2035 		} else {
2036 			/*
2037 			 * This situation should not occur because we had
2038 			 * at least one thread available.
2039 			 */
2040 			spin_unlock(&dd->spin);
2041 		}
2042 	} else if (usched_dfly_features & 0x01) {
2043 		/*
2044 		 * This cpu is devoid of runnable threads, steal a thread
2045 		 * from another cpu.  Since we're stealing, might as well
2046 		 * load balance at the same time.
2047 		 *
2048 		 * We choose the highest-loaded thread from the worst queue.
2049 		 *
2050 		 * NOTE! This function only returns a non-NULL rdd when
2051 		 *	 another cpu's queue is obviously overloaded.  We
2052 		 *	 do not want to perform the type of rebalancing
2053 		 *	 the schedclock does here because it would result
2054 		 *	 in insane process pulling when 'steady' state is
2055 		 *	 partially unbalanced (e.g. 6 runnables and only
2056 		 *	 4 cores).
2057 		 */
2058 		rdd = dfly_choose_worst_queue(dd);
2059 		if (rdd && spin_trylock(&rdd->spin)) {
2060 			nlp = dfly_chooseproc_locked(rdd, dd, NULL, 1);
2061 			spin_unlock(&rdd->spin);
2062 		} else {
2063 			nlp = NULL;
2064 		}
2065 		if (nlp) {
2066 			atomic_set_cpumask(&dfly_curprocmask, mask);
2067 			dd->upri = nlp->lwp_priority;
2068 			dd->uschedcp = nlp;
2069 #if 0
2070 			dd->rrcount = 0;	/* reset round robin */
2071 #endif
2072 			spin_unlock(&dd->spin);
2073 			lwkt_acquire(nlp->lwp_thread);
2074 			lwkt_schedule(nlp->lwp_thread);
2075 		} else {
2076 			/*
2077 			 * Leave the thread on our run queue.  Another
2078 			 * scheduler will try to pull it later.
2079 			 */
2080 			spin_unlock(&dd->spin);
2081 		}
2082 	} else {
2083 		/*
2084 		 * devoid of runnable threads and not allowed to steal
2085 		 * any.
2086 		 */
2087 		spin_unlock(&dd->spin);
2088 	}
2089 
2090 	/*
2091 	 * We're descheduled unless someone scheduled us.  Switch away.
2092 	 * Exiting the critical section will cause splz() to be called
2093 	 * for us if interrupts and such are pending.
2094 	 */
2095 	crit_exit_gd(gd);
2096 	tsleep(&dd->helper_thread, PINTERLOCKED, "schslp", 0);
2097     }
2098 }
2099 
2100 #if 0
2101 static int
2102 sysctl_usched_dfly_stick_to_level(SYSCTL_HANDLER_ARGS)
2103 {
2104 	int error, new_val;
2105 
2106 	new_val = usched_dfly_stick_to_level;
2107 
2108 	error = sysctl_handle_int(oidp, &new_val, 0, req);
2109         if (error != 0 || req->newptr == NULL)
2110 		return (error);
2111 	if (new_val > cpu_topology_levels_number - 1 || new_val < 0)
2112 		return (EINVAL);
2113 	usched_dfly_stick_to_level = new_val;
2114 	return (0);
2115 }
2116 #endif
2117 
2118 /*
2119  * Setup the queues and scheduler helpers (scheduler helpers are SMP only).
2120  * Note that curprocmask bit 0 has already been cleared by rqinit() and
2121  * we should not mess with it further.
2122  */
2123 static void
2124 usched_dfly_cpu_init(void)
2125 {
2126 	int i;
2127 	int j;
2128 	int cpuid;
2129 	int smt_not_supported = 0;
2130 	int cache_coherent_not_supported = 0;
2131 
2132 	if (bootverbose)
2133 		kprintf("Start scheduler helpers on cpus:\n");
2134 
2135 	sysctl_ctx_init(&usched_dfly_sysctl_ctx);
2136 	usched_dfly_sysctl_tree =
2137 		SYSCTL_ADD_NODE(&usched_dfly_sysctl_ctx,
2138 				SYSCTL_STATIC_CHILDREN(_kern), OID_AUTO,
2139 				"usched_dfly", CTLFLAG_RD, 0, "");
2140 
2141 	for (i = 0; i < ncpus; ++i) {
2142 		dfly_pcpu_t dd = &dfly_pcpu[i];
2143 		cpumask_t mask = CPUMASK(i);
2144 
2145 		if ((mask & smp_active_mask) == 0)
2146 		    continue;
2147 
2148 		spin_init(&dd->spin);
2149 		dd->cpunode = get_cpu_node_by_cpuid(i);
2150 		dd->cpuid = i;
2151 		dd->cpumask = CPUMASK(i);
2152 		for (j = 0; j < NQS; j++) {
2153 			TAILQ_INIT(&dd->queues[j]);
2154 			TAILQ_INIT(&dd->rtqueues[j]);
2155 			TAILQ_INIT(&dd->idqueues[j]);
2156 		}
2157 		atomic_clear_cpumask(&dfly_curprocmask, 1);
2158 
2159 		if (dd->cpunode == NULL) {
2160 			smt_not_supported = 1;
2161 			cache_coherent_not_supported = 1;
2162 			if (bootverbose)
2163 				kprintf ("\tcpu%d - WARNING: No CPU NODE "
2164 					 "found for cpu\n", i);
2165 		} else {
2166 			switch (dd->cpunode->type) {
2167 			case THREAD_LEVEL:
2168 				if (bootverbose)
2169 					kprintf ("\tcpu%d - HyperThreading "
2170 						 "available. Core siblings: ",
2171 						 i);
2172 				break;
2173 			case CORE_LEVEL:
2174 				smt_not_supported = 1;
2175 
2176 				if (bootverbose)
2177 					kprintf ("\tcpu%d - No HT available, "
2178 						 "multi-core/physical "
2179 						 "cpu. Physical siblings: ",
2180 						 i);
2181 				break;
2182 			case CHIP_LEVEL:
2183 				smt_not_supported = 1;
2184 
2185 				if (bootverbose)
2186 					kprintf ("\tcpu%d - No HT available, "
2187 						 "single-core/physical cpu. "
2188 						 "Package Siblings: ",
2189 						 i);
2190 				break;
2191 			default:
2192 				/* Let's go for safe defaults here */
2193 				smt_not_supported = 1;
2194 				cache_coherent_not_supported = 1;
2195 				if (bootverbose)
2196 					kprintf ("\tcpu%d - Unknown cpunode->"
2197 						 "type=%u. Siblings: ",
2198 						 i,
2199 						 (u_int)dd->cpunode->type);
2200 				break;
2201 			}
2202 
2203 			if (bootverbose) {
2204 				if (dd->cpunode->parent_node != NULL) {
2205 					CPUSET_FOREACH(cpuid, dd->cpunode->parent_node->members)
2206 						kprintf("cpu%d ", cpuid);
2207 					kprintf("\n");
2208 				} else {
2209 					kprintf(" no siblings\n");
2210 				}
2211 			}
2212 		}
2213 
2214 		lwkt_create(dfly_helper_thread, NULL, NULL, &dd->helper_thread,
2215 			    0, i, "usched %d", i);
2216 
2217 		/*
2218 		 * Allow user scheduling on the target cpu.  cpu #0 has already
2219 		 * been enabled in rqinit().
2220 		 */
2221 		if (i)
2222 		    atomic_clear_cpumask(&dfly_curprocmask, mask);
2223 		atomic_set_cpumask(&dfly_rdyprocmask, mask);
2224 		dd->upri = PRIBASE_NULL;
2225 
2226 	}
2227 
2228 	/* usched_dfly sysctl configurable parameters */
2229 
2230 	SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2231 		       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2232 		       OID_AUTO, "rrinterval", CTLFLAG_RW,
2233 		       &usched_dfly_rrinterval, 0, "");
2234 	SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2235 		       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2236 		       OID_AUTO, "decay", CTLFLAG_RW,
2237 		       &usched_dfly_decay, 0, "Extra decay when not running");
2238 
2239 	/* Add enable/disable option for SMT scheduling if supported */
2240 	if (smt_not_supported) {
2241 		usched_dfly_smt = 0;
2242 		SYSCTL_ADD_STRING(&usched_dfly_sysctl_ctx,
2243 				  SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2244 				  OID_AUTO, "smt", CTLFLAG_RD,
2245 				  "NOT SUPPORTED", 0, "SMT NOT SUPPORTED");
2246 	} else {
2247 		usched_dfly_smt = 1;
2248 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2249 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2250 			       OID_AUTO, "smt", CTLFLAG_RW,
2251 			       &usched_dfly_smt, 0, "Enable SMT scheduling");
2252 	}
2253 
2254 	/*
2255 	 * Add enable/disable option for cache coherent scheduling
2256 	 * if supported
2257 	 */
2258 	if (cache_coherent_not_supported) {
2259 		usched_dfly_cache_coherent = 0;
2260 		SYSCTL_ADD_STRING(&usched_dfly_sysctl_ctx,
2261 				  SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2262 				  OID_AUTO, "cache_coherent", CTLFLAG_RD,
2263 				  "NOT SUPPORTED", 0,
2264 				  "Cache coherence NOT SUPPORTED");
2265 	} else {
2266 		usched_dfly_cache_coherent = 1;
2267 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2268 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2269 			       OID_AUTO, "cache_coherent", CTLFLAG_RW,
2270 			       &usched_dfly_cache_coherent, 0,
2271 			       "Enable/Disable cache coherent scheduling");
2272 
2273 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2274 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2275 			       OID_AUTO, "weight1", CTLFLAG_RW,
2276 			       &usched_dfly_weight1, 200,
2277 			       "Weight selection for current cpu");
2278 
2279 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2280 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2281 			       OID_AUTO, "weight2", CTLFLAG_RW,
2282 			       &usched_dfly_weight2, 180,
2283 			       "Weight selection for wakefrom cpu");
2284 
2285 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2286 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2287 			       OID_AUTO, "weight3", CTLFLAG_RW,
2288 			       &usched_dfly_weight3, 40,
2289 			       "Weight selection for num threads on queue");
2290 
2291 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2292 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2293 			       OID_AUTO, "weight4", CTLFLAG_RW,
2294 			       &usched_dfly_weight4, 160,
2295 			       "Availability of other idle cpus");
2296 
2297 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2298 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2299 			       OID_AUTO, "fast_resched", CTLFLAG_RW,
2300 			       &usched_dfly_fast_resched, 0,
2301 			       "Availability of other idle cpus");
2302 
2303 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2304 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2305 			       OID_AUTO, "features", CTLFLAG_RW,
2306 			       &usched_dfly_features, 0x8F,
2307 			       "Allow pulls into empty queues");
2308 
2309 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2310 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2311 			       OID_AUTO, "swmask", CTLFLAG_RW,
2312 			       &usched_dfly_swmask, ~PPQMASK,
2313 			       "Queue mask to force thread switch");
2314 
2315 #if 0
2316 		SYSCTL_ADD_PROC(&usched_dfly_sysctl_ctx,
2317 				SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2318 				OID_AUTO, "stick_to_level",
2319 				CTLTYPE_INT | CTLFLAG_RW,
2320 				NULL, sizeof usched_dfly_stick_to_level,
2321 				sysctl_usched_dfly_stick_to_level, "I",
2322 				"Stick a process to this level. See sysctl"
2323 				"paremter hw.cpu_topology.level_description");
2324 #endif
2325 	}
2326 }
2327 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
2328 	usched_dfly_cpu_init, NULL)
2329