xref: /dragonfly/sys/kern/usched_dfly.c (revision 77b0c609)
1 /*
2  * Copyright (c) 2012 The DragonFly Project.  All rights reserved.
3  * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org>.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Matthew Dillon <dillon@backplane.com>,
7  * by Mihai Carabas <mihai.carabas@gmail.com>
8  * and many others.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  * 3. Neither the name of The DragonFly Project nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific, prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/queue.h>
42 #include <sys/proc.h>
43 #include <sys/rtprio.h>
44 #include <sys/uio.h>
45 #include <sys/sysctl.h>
46 #include <sys/resourcevar.h>
47 #include <sys/spinlock.h>
48 #include <sys/cpu_topology.h>
49 #include <sys/thread2.h>
50 #include <sys/spinlock2.h>
51 #include <sys/mplock2.h>
52 
53 #include <sys/ktr.h>
54 
55 #include <machine/cpu.h>
56 #include <machine/smp.h>
57 
58 /*
59  * Priorities.  Note that with 32 run queues per scheduler each queue
60  * represents four priority levels.
61  */
62 
63 int dfly_rebalanced;
64 
65 #define MAXPRI			128
66 #define PRIMASK			(MAXPRI - 1)
67 #define PRIBASE_REALTIME	0
68 #define PRIBASE_NORMAL		MAXPRI
69 #define PRIBASE_IDLE		(MAXPRI * 2)
70 #define PRIBASE_THREAD		(MAXPRI * 3)
71 #define PRIBASE_NULL		(MAXPRI * 4)
72 
73 #define NQS	32			/* 32 run queues. */
74 #define PPQ	(MAXPRI / NQS)		/* priorities per queue */
75 #define PPQMASK	(PPQ - 1)
76 
77 /*
78  * NICEPPQ	- number of nice units per priority queue
79  * ESTCPUPPQ	- number of estcpu units per priority queue
80  * ESTCPUMAX	- number of estcpu units
81  */
82 #define NICEPPQ		2
83 #define ESTCPUPPQ	512
84 #define ESTCPUMAX	(ESTCPUPPQ * NQS)
85 #define BATCHMAX	(ESTCPUFREQ * 30)
86 #define PRIO_RANGE	(PRIO_MAX - PRIO_MIN + 1)
87 
88 #define ESTCPULIM(v)	min((v), ESTCPUMAX)
89 
90 TAILQ_HEAD(rq, lwp);
91 
92 #define lwp_priority	lwp_usdata.dfly.priority
93 #define lwp_forked	lwp_usdata.dfly.forked
94 #define lwp_rqindex	lwp_usdata.dfly.rqindex
95 #define lwp_estcpu	lwp_usdata.dfly.estcpu
96 #define lwp_estfast	lwp_usdata.dfly.estfast
97 #define lwp_uload	lwp_usdata.dfly.uload
98 #define lwp_rqtype	lwp_usdata.dfly.rqtype
99 #define lwp_qcpu	lwp_usdata.dfly.qcpu
100 #define lwp_rrcount	lwp_usdata.dfly.rrcount
101 
102 struct usched_dfly_pcpu {
103 	struct spinlock spin;
104 	struct thread	helper_thread;
105 	short		unusde01;
106 	short		upri;
107 	int		uload;
108 	int		ucount;
109 	struct lwp	*uschedcp;
110 	struct rq	queues[NQS];
111 	struct rq	rtqueues[NQS];
112 	struct rq	idqueues[NQS];
113 	u_int32_t	queuebits;
114 	u_int32_t	rtqueuebits;
115 	u_int32_t	idqueuebits;
116 	int		runqcount;
117 	int		cpuid;
118 	cpumask_t	cpumask;
119 #ifdef SMP
120 	cpu_node_t	*cpunode;
121 #endif
122 };
123 
124 typedef struct usched_dfly_pcpu	*dfly_pcpu_t;
125 
126 static void dfly_acquire_curproc(struct lwp *lp);
127 static void dfly_release_curproc(struct lwp *lp);
128 static void dfly_select_curproc(globaldata_t gd);
129 static void dfly_setrunqueue(struct lwp *lp);
130 static void dfly_setrunqueue_dd(dfly_pcpu_t rdd, struct lwp *lp);
131 static void dfly_schedulerclock(struct lwp *lp, sysclock_t period,
132 				sysclock_t cpstamp);
133 static void dfly_recalculate_estcpu(struct lwp *lp);
134 static void dfly_resetpriority(struct lwp *lp);
135 static void dfly_forking(struct lwp *plp, struct lwp *lp);
136 static void dfly_exiting(struct lwp *lp, struct proc *);
137 static void dfly_uload_update(struct lwp *lp);
138 static void dfly_yield(struct lwp *lp);
139 #ifdef SMP
140 static void dfly_changeqcpu_locked(struct lwp *lp,
141 				dfly_pcpu_t dd, dfly_pcpu_t rdd);
142 static dfly_pcpu_t dfly_choose_best_queue(struct lwp *lp);
143 static dfly_pcpu_t dfly_choose_worst_queue(dfly_pcpu_t dd);
144 static dfly_pcpu_t dfly_choose_queue_simple(dfly_pcpu_t dd, struct lwp *lp);
145 #endif
146 
147 #ifdef SMP
148 static void dfly_need_user_resched_remote(void *dummy);
149 #endif
150 static struct lwp *dfly_chooseproc_locked(dfly_pcpu_t rdd, dfly_pcpu_t dd,
151 					  struct lwp *chklp, int worst);
152 static void dfly_remrunqueue_locked(dfly_pcpu_t dd, struct lwp *lp);
153 static void dfly_setrunqueue_locked(dfly_pcpu_t dd, struct lwp *lp);
154 
155 struct usched usched_dfly = {
156 	{ NULL },
157 	"dfly", "Original DragonFly Scheduler",
158 	NULL,			/* default registration */
159 	NULL,			/* default deregistration */
160 	dfly_acquire_curproc,
161 	dfly_release_curproc,
162 	dfly_setrunqueue,
163 	dfly_schedulerclock,
164 	dfly_recalculate_estcpu,
165 	dfly_resetpriority,
166 	dfly_forking,
167 	dfly_exiting,
168 	dfly_uload_update,
169 	NULL,			/* setcpumask not supported */
170 	dfly_yield
171 };
172 
173 /*
174  * We have NQS (32) run queues per scheduling class.  For the normal
175  * class, there are 128 priorities scaled onto these 32 queues.  New
176  * processes are added to the last entry in each queue, and processes
177  * are selected for running by taking them from the head and maintaining
178  * a simple FIFO arrangement.  Realtime and Idle priority processes have
179  * and explicit 0-31 priority which maps directly onto their class queue
180  * index.  When a queue has something in it, the corresponding bit is
181  * set in the queuebits variable, allowing a single read to determine
182  * the state of all 32 queues and then a ffs() to find the first busy
183  * queue.
184  */
185 static cpumask_t dfly_curprocmask = -1;	/* currently running a user process */
186 static cpumask_t dfly_rdyprocmask;	/* ready to accept a user process */
187 #ifdef SMP
188 static volatile int dfly_scancpu;
189 #endif
190 static volatile int dfly_ucount;	/* total running on whole system */
191 static struct usched_dfly_pcpu dfly_pcpu[MAXCPU];
192 static struct sysctl_ctx_list usched_dfly_sysctl_ctx;
193 static struct sysctl_oid *usched_dfly_sysctl_tree;
194 
195 /* Debug info exposed through debug.* sysctl */
196 
197 static int usched_dfly_debug = -1;
198 SYSCTL_INT(_debug, OID_AUTO, dfly_scdebug, CTLFLAG_RW,
199 	   &usched_dfly_debug, 0,
200 	   "Print debug information for this pid");
201 
202 static int usched_dfly_pid_debug = -1;
203 SYSCTL_INT(_debug, OID_AUTO, dfly_pid_debug, CTLFLAG_RW,
204 	   &usched_dfly_pid_debug, 0,
205 	   "Print KTR debug information for this pid");
206 
207 static int usched_dfly_chooser = 0;
208 SYSCTL_INT(_debug, OID_AUTO, dfly_chooser, CTLFLAG_RW,
209 	   &usched_dfly_chooser, 0,
210 	   "Print KTR debug information for this pid");
211 
212 /*
213  * Tunning usched_dfly - configurable through kern.usched_dfly.
214  *
215  * weight1 - Tries to keep threads on their current cpu.  If you
216  *	     make this value too large the scheduler will not be
217  *	     able to load-balance large loads.
218  *
219  * weight2 - If non-zero, detects thread pairs undergoing synchronous
220  *	     communications and tries to move them closer together.
221  *	     Behavior is adjusted by bit 4 of features (0x10).
222  *
223  *	     WARNING!  Weight2 is a ridiculously sensitive parameter,
224  *	     a small value is recommended.
225  *
226  * weight3 - Weighting based on the number of recently runnable threads
227  *	     on the userland scheduling queue (ignoring their loads).
228  *	     A nominal value here prevents high-priority (low-load)
229  *	     threads from accumulating on one cpu core when other
230  *	     cores are available.
231  *
232  *	     This value should be left fairly small relative to weight1
233  *	     and weight4.
234  *
235  * weight4 - Weighting based on other cpu queues being available
236  *	     or running processes with higher lwp_priority's.
237  *
238  *	     This allows a thread to migrate to another nearby cpu if it
239  *	     is unable to run on the current cpu based on the other cpu
240  *	     being idle or running a lower priority (higher lwp_priority)
241  *	     thread.  This value should be large enough to override weight1
242  *
243  * features - These flags can be set or cleared to enable or disable various
244  *	      features.
245  *
246  *	      0x01	Enable idle-cpu pulling			(default)
247  *	      0x02	Enable proactive pushing		(default)
248  *	      0x04	Enable rebalancing rover		(default)
249  *	      0x08	Enable more proactive pushing		(default)
250  *	      0x10	(flip weight2 limit on same cpu)	(default)
251  *	      0x20	choose best cpu for forked process
252  *	      0x40	choose current cpu for forked process
253  *	      0x80	choose random cpu for forked process	(default)
254  */
255 #ifdef SMP
256 static int usched_dfly_smt = 0;
257 static int usched_dfly_cache_coherent = 0;
258 static int usched_dfly_weight1 = 200;	/* keep thread on current cpu */
259 static int usched_dfly_weight2 = 180;	/* synchronous peer's current cpu */
260 static int usched_dfly_weight3 = 40;	/* number of threads on queue */
261 static int usched_dfly_weight4 = 160;	/* availability of idle cores */
262 static int usched_dfly_features = 0x8F;	/* allow pulls */
263 #endif
264 static int usched_dfly_fast_resched = 0;/* delta priority / resched */
265 static int usched_dfly_swmask = ~PPQMASK; /* allow pulls */
266 static int usched_dfly_rrinterval = (ESTCPUFREQ + 9) / 10;
267 static int usched_dfly_decay = 8;
268 
269 /* KTR debug printings */
270 
271 KTR_INFO_MASTER(usched);
272 
273 #if !defined(KTR_USCHED_DFLY)
274 #define	KTR_USCHED_DFLY	KTR_ALL
275 #endif
276 
277 KTR_INFO(KTR_USCHED_DFLY, usched, chooseproc, 0,
278     "USCHED_DFLY(chooseproc: pid %d, old_cpuid %d, curr_cpuid %d)",
279     pid_t pid, int old_cpuid, int curr);
280 
281 /*
282  * This function is called when the kernel intends to return to userland.
283  * It is responsible for making the thread the current designated userland
284  * thread for this cpu, blocking if necessary.
285  *
286  * The kernel will not depress our LWKT priority until after we return,
287  * in case we have to shove over to another cpu.
288  *
289  * We must determine our thread's disposition before we switch away.  This
290  * is very sensitive code.
291  *
292  * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE
293  * TO ANOTHER CPU!  Because most of the kernel assumes that no migration will
294  * occur, this function is called only under very controlled circumstances.
295  */
296 static void
297 dfly_acquire_curproc(struct lwp *lp)
298 {
299 	globaldata_t gd;
300 	dfly_pcpu_t dd;
301 #ifdef SMP
302 	dfly_pcpu_t rdd;
303 #endif
304 	thread_t td;
305 	int force_resched;
306 
307 	/*
308 	 * Make sure we aren't sitting on a tsleep queue.
309 	 */
310 	td = lp->lwp_thread;
311 	crit_enter_quick(td);
312 	if (td->td_flags & TDF_TSLEEPQ)
313 		tsleep_remove(td);
314 	dfly_recalculate_estcpu(lp);
315 
316 	gd = mycpu;
317 	dd = &dfly_pcpu[gd->gd_cpuid];
318 
319 	/*
320 	 * Process any pending interrupts/ipi's, then handle reschedule
321 	 * requests.  dfly_release_curproc() will try to assign a new
322 	 * uschedcp that isn't us and otherwise NULL it out.
323 	 */
324 	force_resched = 0;
325 	if ((td->td_mpflags & TDF_MP_BATCH_DEMARC) &&
326 	    lp->lwp_rrcount >= usched_dfly_rrinterval / 2) {
327 		force_resched = 1;
328 	}
329 
330 	if (user_resched_wanted()) {
331 		if (dd->uschedcp == lp)
332 			force_resched = 1;
333 		clear_user_resched();
334 		dfly_release_curproc(lp);
335 	}
336 
337 	/*
338 	 * Loop until we are the current user thread.
339 	 *
340 	 * NOTE: dd spinlock not held at top of loop.
341 	 */
342 	if (dd->uschedcp == lp)
343 		lwkt_yield_quick();
344 
345 	while (dd->uschedcp != lp) {
346 		lwkt_yield_quick();
347 
348 		spin_lock(&dd->spin);
349 
350 		/*
351 		 * We are not or are no longer the current lwp and a forced
352 		 * reschedule was requested.  Figure out the best cpu to
353 		 * run on (our current cpu will be given significant weight).
354 		 *
355 		 * (if a reschedule was not requested we want to move this
356 		 *  step after the uschedcp tests).
357 		 */
358 #ifdef SMP
359 		if (force_resched &&
360 		    (usched_dfly_features & 0x08) &&
361 		    (rdd = dfly_choose_best_queue(lp)) != dd) {
362 			dfly_changeqcpu_locked(lp, dd, rdd);
363 			spin_unlock(&dd->spin);
364 			lwkt_deschedule(lp->lwp_thread);
365 			dfly_setrunqueue_dd(rdd, lp);
366 			lwkt_switch();
367 			gd = mycpu;
368 			dd = &dfly_pcpu[gd->gd_cpuid];
369 			continue;
370 		}
371 #endif
372 
373 		/*
374 		 * Either no reschedule was requested or the best queue was
375 		 * dd, and no current process has been selected.  We can
376 		 * trivially become the current lwp on the current cpu.
377 		 */
378 		if (dd->uschedcp == NULL) {
379 			atomic_set_cpumask(&dfly_curprocmask, gd->gd_cpumask);
380 			dd->uschedcp = lp;
381 			dd->upri = lp->lwp_priority;
382 			KKASSERT(lp->lwp_qcpu == dd->cpuid);
383 			spin_unlock(&dd->spin);
384 			break;
385 		}
386 
387 		/*
388 		 * Can we steal the current designated user thread?
389 		 *
390 		 * If we do the other thread will stall when it tries to
391 		 * return to userland, possibly rescheduling elsewhere.
392 		 *
393 		 * It is important to do a masked test to avoid the edge
394 		 * case where two near-equal-priority threads are constantly
395 		 * interrupting each other.
396 		 *
397 		 * In the exact match case another thread has already gained
398 		 * uschedcp and lowered its priority, if we steal it the
399 		 * other thread will stay stuck on the LWKT runq and not
400 		 * push to another cpu.  So don't steal on equal-priority even
401 		 * though it might appear to be more beneficial due to not
402 		 * having to switch back to the other thread's context.
403 		 *
404 		 * usched_dfly_fast_resched requires that two threads be
405 		 * significantly far apart in priority in order to interrupt.
406 		 *
407 		 * If better but not sufficiently far apart, the current
408 		 * uschedcp will be interrupted at the next scheduler clock.
409 		 */
410 		if (dd->uschedcp &&
411 		   (dd->upri & ~PPQMASK) >
412 		   (lp->lwp_priority & ~PPQMASK) + usched_dfly_fast_resched) {
413 			dd->uschedcp = lp;
414 			dd->upri = lp->lwp_priority;
415 			KKASSERT(lp->lwp_qcpu == dd->cpuid);
416 			spin_unlock(&dd->spin);
417 			break;
418 		}
419 #ifdef SMP
420 		/*
421 		 * We are not the current lwp, figure out the best cpu
422 		 * to run on (our current cpu will be given significant
423 		 * weight).  Loop on cpu change.
424 		 */
425 		if ((usched_dfly_features & 0x02) &&
426 		    force_resched == 0 &&
427 		    (rdd = dfly_choose_best_queue(lp)) != dd) {
428 			dfly_changeqcpu_locked(lp, dd, rdd);
429 			spin_unlock(&dd->spin);
430 			lwkt_deschedule(lp->lwp_thread);
431 			dfly_setrunqueue_dd(rdd, lp);
432 			lwkt_switch();
433 			gd = mycpu;
434 			dd = &dfly_pcpu[gd->gd_cpuid];
435 			continue;
436 		}
437 #endif
438 
439 		/*
440 		 * We cannot become the current lwp, place the lp on the
441 		 * run-queue of this or another cpu and deschedule ourselves.
442 		 *
443 		 * When we are reactivated we will have another chance.
444 		 *
445 		 * Reload after a switch or setrunqueue/switch possibly
446 		 * moved us to another cpu.
447 		 */
448 		spin_unlock(&dd->spin);
449 		lwkt_deschedule(lp->lwp_thread);
450 		dfly_setrunqueue_dd(dd, lp);
451 		lwkt_switch();
452 		gd = mycpu;
453 		dd = &dfly_pcpu[gd->gd_cpuid];
454 	}
455 
456 	/*
457 	 * Make sure upri is synchronized, then yield to LWKT threads as
458 	 * needed before returning.  This could result in another reschedule.
459 	 * XXX
460 	 */
461 	crit_exit_quick(td);
462 
463 	KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
464 }
465 
466 /*
467  * DFLY_RELEASE_CURPROC
468  *
469  * This routine detaches the current thread from the userland scheduler,
470  * usually because the thread needs to run or block in the kernel (at
471  * kernel priority) for a while.
472  *
473  * This routine is also responsible for selecting a new thread to
474  * make the current thread.
475  *
476  * NOTE: This implementation differs from the dummy example in that
477  * dfly_select_curproc() is able to select the current process, whereas
478  * dummy_select_curproc() is not able to select the current process.
479  * This means we have to NULL out uschedcp.
480  *
481  * Additionally, note that we may already be on a run queue if releasing
482  * via the lwkt_switch() in dfly_setrunqueue().
483  */
484 static void
485 dfly_release_curproc(struct lwp *lp)
486 {
487 	globaldata_t gd = mycpu;
488 	dfly_pcpu_t dd = &dfly_pcpu[gd->gd_cpuid];
489 
490 	/*
491 	 * Make sure td_wakefromcpu is defaulted.  This will be overwritten
492 	 * by wakeup().
493 	 */
494 	if (dd->uschedcp == lp) {
495 		KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
496 		spin_lock(&dd->spin);
497 		if (dd->uschedcp == lp) {
498 			dd->uschedcp = NULL;	/* don't let lp be selected */
499 			dd->upri = PRIBASE_NULL;
500 			atomic_clear_cpumask(&dfly_curprocmask, gd->gd_cpumask);
501 			spin_unlock(&dd->spin);
502 			dfly_select_curproc(gd);
503 		} else {
504 			spin_unlock(&dd->spin);
505 		}
506 	}
507 }
508 
509 /*
510  * DFLY_SELECT_CURPROC
511  *
512  * Select a new current process for this cpu and clear any pending user
513  * reschedule request.  The cpu currently has no current process.
514  *
515  * This routine is also responsible for equal-priority round-robining,
516  * typically triggered from dfly_schedulerclock().  In our dummy example
517  * all the 'user' threads are LWKT scheduled all at once and we just
518  * call lwkt_switch().
519  *
520  * The calling process is not on the queue and cannot be selected.
521  */
522 static
523 void
524 dfly_select_curproc(globaldata_t gd)
525 {
526 	dfly_pcpu_t dd = &dfly_pcpu[gd->gd_cpuid];
527 	struct lwp *nlp;
528 	int cpuid = gd->gd_cpuid;
529 
530 	crit_enter_gd(gd);
531 
532 	spin_lock(&dd->spin);
533 	nlp = dfly_chooseproc_locked(dd, dd, dd->uschedcp, 0);
534 
535 	if (nlp) {
536 		atomic_set_cpumask(&dfly_curprocmask, CPUMASK(cpuid));
537 		dd->upri = nlp->lwp_priority;
538 		dd->uschedcp = nlp;
539 #if 0
540 		dd->rrcount = 0;		/* reset round robin */
541 #endif
542 		spin_unlock(&dd->spin);
543 #ifdef SMP
544 		lwkt_acquire(nlp->lwp_thread);
545 #endif
546 		lwkt_schedule(nlp->lwp_thread);
547 	} else {
548 		spin_unlock(&dd->spin);
549 	}
550 	crit_exit_gd(gd);
551 }
552 
553 /*
554  * Place the specified lwp on the user scheduler's run queue.  This routine
555  * must be called with the thread descheduled.  The lwp must be runnable.
556  * It must not be possible for anyone else to explicitly schedule this thread.
557  *
558  * The thread may be the current thread as a special case.
559  */
560 static void
561 dfly_setrunqueue(struct lwp *lp)
562 {
563 	dfly_pcpu_t dd;
564 	dfly_pcpu_t rdd;
565 
566 	/*
567 	 * First validate the process LWKT state.
568 	 */
569 	KASSERT(lp->lwp_stat == LSRUN, ("setrunqueue: lwp not LSRUN"));
570 	KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0,
571 	    ("lwp %d/%d already on runq! flag %08x/%08x", lp->lwp_proc->p_pid,
572 	     lp->lwp_tid, lp->lwp_proc->p_flags, lp->lwp_flags));
573 	KKASSERT((lp->lwp_thread->td_flags & TDF_RUNQ) == 0);
574 
575 	/*
576 	 * NOTE: dd/rdd do not necessarily represent the current cpu.
577 	 *	 Instead they may represent the cpu the thread was last
578 	 *	 scheduled on or inherited by its parent.
579 	 */
580 	dd = &dfly_pcpu[lp->lwp_qcpu];
581 	rdd = dd;
582 
583 	/*
584 	 * This process is not supposed to be scheduled anywhere or assigned
585 	 * as the current process anywhere.  Assert the condition.
586 	 */
587 	KKASSERT(rdd->uschedcp != lp);
588 
589 #ifndef SMP
590 	/*
591 	 * If we are not SMP we do not have a scheduler helper to kick
592 	 * and must directly activate the process if none are scheduled.
593 	 *
594 	 * This is really only an issue when bootstrapping init since
595 	 * the caller in all other cases will be a user process, and
596 	 * even if released (rdd->uschedcp == NULL), that process will
597 	 * kickstart the scheduler when it returns to user mode from
598 	 * the kernel.
599 	 *
600 	 * NOTE: On SMP we can't just set some other cpu's uschedcp.
601 	 */
602 	if (rdd->uschedcp == NULL) {
603 		spin_lock(&rdd->spin);
604 		if (rdd->uschedcp == NULL) {
605 			atomic_set_cpumask(&dfly_curprocmask, 1);
606 			rdd->uschedcp = lp;
607 			rdd->upri = lp->lwp_priority;
608 			spin_unlock(&rdd->spin);
609 			lwkt_schedule(lp->lwp_thread);
610 			return;
611 		}
612 		spin_unlock(&rdd->spin);
613 	}
614 #endif
615 
616 #ifdef SMP
617 	/*
618 	 * Ok, we have to setrunqueue some target cpu and request a reschedule
619 	 * if necessary.
620 	 *
621 	 * We have to choose the best target cpu.  It might not be the current
622 	 * target even if the current cpu has no running user thread (for
623 	 * example, because the current cpu might be a hyperthread and its
624 	 * sibling has a thread assigned).
625 	 *
626 	 * If we just forked it is most optimal to run the child on the same
627 	 * cpu just in case the parent decides to wait for it (thus getting
628 	 * off that cpu).  As long as there is nothing else runnable on the
629 	 * cpu, that is.  If we did this unconditionally a parent forking
630 	 * multiple children before waiting (e.g. make -j N) leaves other
631 	 * cpus idle that could be working.
632 	 */
633 	if (lp->lwp_forked) {
634 		lp->lwp_forked = 0;
635 		if (usched_dfly_features & 0x20)
636 			rdd = dfly_choose_best_queue(lp);
637 		else if (usched_dfly_features & 0x40)
638 			rdd = &dfly_pcpu[lp->lwp_qcpu];
639 		else if (usched_dfly_features & 0x80)
640 			rdd = dfly_choose_queue_simple(rdd, lp);
641 		else if (dfly_pcpu[lp->lwp_qcpu].runqcount)
642 			rdd = dfly_choose_best_queue(lp);
643 		else
644 			rdd = &dfly_pcpu[lp->lwp_qcpu];
645 	} else {
646 		rdd = dfly_choose_best_queue(lp);
647 		/* rdd = &dfly_pcpu[lp->lwp_qcpu]; */
648 	}
649 	if (lp->lwp_qcpu != rdd->cpuid) {
650 		spin_lock(&dd->spin);
651 		dfly_changeqcpu_locked(lp, dd, rdd);
652 		spin_unlock(&dd->spin);
653 	}
654 #endif
655 	dfly_setrunqueue_dd(rdd, lp);
656 }
657 
658 #ifdef SMP
659 
660 /*
661  * Change qcpu to rdd->cpuid.  The dd the lp is CURRENTLY on must be
662  * spin-locked on-call.  rdd does not have to be.
663  */
664 static void
665 dfly_changeqcpu_locked(struct lwp *lp, dfly_pcpu_t dd, dfly_pcpu_t rdd)
666 {
667 	if (lp->lwp_qcpu != rdd->cpuid) {
668 		if (lp->lwp_mpflags & LWP_MP_ULOAD) {
669 			atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
670 			atomic_add_int(&dd->uload, -lp->lwp_uload);
671 			atomic_add_int(&dd->ucount, -1);
672 			atomic_add_int(&dfly_ucount, -1);
673 		}
674 		lp->lwp_qcpu = rdd->cpuid;
675 	}
676 }
677 
678 #endif
679 
680 /*
681  * Place lp on rdd's runqueue.  Nothing is locked on call.  This function
682  * also performs all necessary ancillary notification actions.
683  */
684 static void
685 dfly_setrunqueue_dd(dfly_pcpu_t rdd, struct lwp *lp)
686 {
687 #ifdef SMP
688 	globaldata_t rgd;
689 
690 	/*
691 	 * We might be moving the lp to another cpu's run queue, and once
692 	 * on the runqueue (even if it is our cpu's), another cpu can rip
693 	 * it away from us.
694 	 *
695 	 * TDF_MIGRATING might already be set if this is part of a
696 	 * remrunqueue+setrunqueue sequence.
697 	 */
698 	if ((lp->lwp_thread->td_flags & TDF_MIGRATING) == 0)
699 		lwkt_giveaway(lp->lwp_thread);
700 
701 	rgd = globaldata_find(rdd->cpuid);
702 
703 	/*
704 	 * We lose control of the lp the moment we release the spinlock
705 	 * after having placed it on the queue.  i.e. another cpu could pick
706 	 * it up, or it could exit, or its priority could be further
707 	 * adjusted, or something like that.
708 	 *
709 	 * WARNING! rdd can point to a foreign cpu!
710 	 */
711 	spin_lock(&rdd->spin);
712 	dfly_setrunqueue_locked(rdd, lp);
713 
714 	/*
715 	 * Potentially interrupt the currently-running thread
716 	 */
717 	if ((rdd->upri & ~PPQMASK) <= (lp->lwp_priority & ~PPQMASK)) {
718 		/*
719 		 * Currently running thread is better or same, do not
720 		 * interrupt.
721 		 */
722 		spin_unlock(&rdd->spin);
723 	} else if ((rdd->upri & ~PPQMASK) <= (lp->lwp_priority & ~PPQMASK) +
724 		   usched_dfly_fast_resched) {
725 		/*
726 		 * Currently running thread is not better, but not so bad
727 		 * that we need to interrupt it.  Let it run for one more
728 		 * scheduler tick.
729 		 */
730 		if (rdd->uschedcp &&
731 		    rdd->uschedcp->lwp_rrcount < usched_dfly_rrinterval) {
732 			rdd->uschedcp->lwp_rrcount = usched_dfly_rrinterval - 1;
733 		}
734 		spin_unlock(&rdd->spin);
735 	} else if (rgd == mycpu) {
736 		/*
737 		 * We should interrupt the currently running thread, which
738 		 * is on the current cpu.
739 		 */
740 		spin_unlock(&rdd->spin);
741 		if (rdd->uschedcp == NULL) {
742 			wakeup_mycpu(&rdd->helper_thread); /* XXX */
743 			need_user_resched();
744 		} else {
745 			need_user_resched();
746 		}
747 	} else {
748 		/*
749 		 * We should interrupt the currently running thread, which
750 		 * is on a different cpu.
751 		 */
752 		spin_unlock(&rdd->spin);
753 		lwkt_send_ipiq(rgd, dfly_need_user_resched_remote, NULL);
754 	}
755 #else
756 	/*
757 	 * Request a reschedule if appropriate.
758 	 */
759 	spin_lock(&rdd->spin);
760 	dfly_setrunqueue_locked(rdd, lp);
761 	spin_unlock(&rdd->spin);
762 	if ((rdd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
763 		need_user_resched();
764 	}
765 #endif
766 }
767 
768 /*
769  * This routine is called from a systimer IPI.  It MUST be MP-safe and
770  * the BGL IS NOT HELD ON ENTRY.  This routine is called at ESTCPUFREQ on
771  * each cpu.
772  */
773 static
774 void
775 dfly_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp)
776 {
777 	globaldata_t gd = mycpu;
778 #ifdef SMP
779 	dfly_pcpu_t dd = &dfly_pcpu[gd->gd_cpuid];
780 #endif
781 
782 	/*
783 	 * Spinlocks also hold a critical section so there should not be
784 	 * any active.
785 	 */
786 	KKASSERT(gd->gd_spinlocks == 0);
787 
788 	if (lp == NULL)
789 		return;
790 
791 	/*
792 	 * Do we need to round-robin?  We round-robin 10 times a second.
793 	 * This should only occur for cpu-bound batch processes.
794 	 */
795 	if (++lp->lwp_rrcount >= usched_dfly_rrinterval) {
796 		lp->lwp_thread->td_wakefromcpu = -1;
797 		need_user_resched();
798 	}
799 
800 	/*
801 	 * Adjust estcpu upward using a real time equivalent calculation,
802 	 * and recalculate lp's priority.
803 	 */
804 	lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUMAX / ESTCPUFREQ + 1);
805 	dfly_resetpriority(lp);
806 
807 	/*
808 	 * Rebalance two cpus every 8 ticks, pulling the worst thread
809 	 * from the worst cpu's queue into a rotating cpu number.
810 	 *
811 	 * This mechanic is needed because the push algorithms can
812 	 * steady-state in an non-optimal configuration.  We need to mix it
813 	 * up a little, even if it means breaking up a paired thread, so
814 	 * the push algorithms can rebalance the degenerate conditions.
815 	 * This portion of the algorithm exists to ensure stability at the
816 	 * selected weightings.
817 	 *
818 	 * Because we might be breaking up optimal conditions we do not want
819 	 * to execute this too quickly, hence we only rebalance approximately
820 	 * ~7-8 times per second.  The push's, on the otherhand, are capable
821 	 * moving threads to other cpus at a much higher rate.
822 	 *
823 	 * We choose the most heavily loaded thread from the worst queue
824 	 * in order to ensure that multiple heavy-weight threads on the same
825 	 * queue get broken up, and also because these threads are the most
826 	 * likely to be able to remain in place.  Hopefully then any pairings,
827 	 * if applicable, migrate to where these threads are.
828 	 */
829 #ifdef SMP
830 	if ((usched_dfly_features & 0x04) &&
831 	    ((u_int)sched_ticks & 7) == 0 &&
832 	    (u_int)sched_ticks / 8 % ncpus == gd->gd_cpuid) {
833 		/*
834 		 * Our cpu is up.
835 		 */
836 		struct lwp *nlp;
837 		dfly_pcpu_t rdd;
838 
839 		rdd = dfly_choose_worst_queue(dd);
840 		if (rdd) {
841 			spin_lock(&dd->spin);
842 			if (spin_trylock(&rdd->spin)) {
843 				nlp = dfly_chooseproc_locked(rdd, dd, NULL, 1);
844 				spin_unlock(&rdd->spin);
845 				if (nlp == NULL)
846 					spin_unlock(&dd->spin);
847 			} else {
848 				spin_unlock(&dd->spin);
849 				nlp = NULL;
850 			}
851 		} else {
852 			nlp = NULL;
853 		}
854 		/* dd->spin held if nlp != NULL */
855 
856 		/*
857 		 * Either schedule it or add it to our queue.
858 		 */
859 		if (nlp &&
860 		    (nlp->lwp_priority & ~PPQMASK) < (dd->upri & ~PPQMASK)) {
861 			atomic_set_cpumask(&dfly_curprocmask, dd->cpumask);
862 			dd->upri = nlp->lwp_priority;
863 			dd->uschedcp = nlp;
864 #if 0
865 			dd->rrcount = 0;	/* reset round robin */
866 #endif
867 			spin_unlock(&dd->spin);
868 			lwkt_acquire(nlp->lwp_thread);
869 			lwkt_schedule(nlp->lwp_thread);
870 		} else if (nlp) {
871 			dfly_setrunqueue_locked(dd, nlp);
872 			spin_unlock(&dd->spin);
873 		}
874 	}
875 #endif
876 }
877 
878 /*
879  * Called from acquire and from kern_synch's one-second timer (one of the
880  * callout helper threads) with a critical section held.
881  *
882  * Adjust p_estcpu based on our single-cpu load, p_nice, and compensate for
883  * overall system load.
884  *
885  * Note that no recalculation occurs for a process which sleeps and wakes
886  * up in the same tick.  That is, a system doing thousands of context
887  * switches per second will still only do serious estcpu calculations
888  * ESTCPUFREQ times per second.
889  */
890 static
891 void
892 dfly_recalculate_estcpu(struct lwp *lp)
893 {
894 	globaldata_t gd = mycpu;
895 	sysclock_t cpbase;
896 	sysclock_t ttlticks;
897 	int estcpu;
898 	int decay_factor;
899 	int ucount;
900 
901 	/*
902 	 * We have to subtract periodic to get the last schedclock
903 	 * timeout time, otherwise we would get the upcoming timeout.
904 	 * Keep in mind that a process can migrate between cpus and
905 	 * while the scheduler clock should be very close, boundary
906 	 * conditions could lead to a small negative delta.
907 	 */
908 	cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
909 
910 	if (lp->lwp_slptime > 1) {
911 		/*
912 		 * Too much time has passed, do a coarse correction.
913 		 */
914 		lp->lwp_estcpu = lp->lwp_estcpu >> 1;
915 		dfly_resetpriority(lp);
916 		lp->lwp_cpbase = cpbase;
917 		lp->lwp_cpticks = 0;
918 		lp->lwp_estfast = 0;
919 	} else if (lp->lwp_cpbase != cpbase) {
920 		/*
921 		 * Adjust estcpu if we are in a different tick.  Don't waste
922 		 * time if we are in the same tick.
923 		 *
924 		 * First calculate the number of ticks in the measurement
925 		 * interval.  The ttlticks calculation can wind up 0 due to
926 		 * a bug in the handling of lwp_slptime  (as yet not found),
927 		 * so make sure we do not get a divide by 0 panic.
928 		 */
929 		ttlticks = (cpbase - lp->lwp_cpbase) /
930 			   gd->gd_schedclock.periodic;
931 		if ((ssysclock_t)ttlticks < 0) {
932 			ttlticks = 0;
933 			lp->lwp_cpbase = cpbase;
934 		}
935 		if (ttlticks == 0)
936 			return;
937 		updatepcpu(lp, lp->lwp_cpticks, ttlticks);
938 
939 		/*
940 		 * Calculate the percentage of one cpu being used then
941 		 * compensate for any system load in excess of ncpus.
942 		 *
943 		 * For example, if we have 8 cores and 16 running cpu-bound
944 		 * processes then all things being equal each process will
945 		 * get 50% of one cpu.  We need to pump this value back
946 		 * up to 100% so the estcpu calculation properly adjusts
947 		 * the process's dynamic priority.
948 		 *
949 		 * estcpu is scaled by ESTCPUMAX, pctcpu is scaled by FSCALE.
950 		 */
951 		estcpu = (lp->lwp_pctcpu * ESTCPUMAX) >> FSHIFT;
952 		ucount = dfly_ucount;
953 		if (ucount > ncpus) {
954 			estcpu += estcpu * (ucount - ncpus) / ncpus;
955 		}
956 
957 		if (usched_dfly_debug == lp->lwp_proc->p_pid) {
958 			kprintf("pid %d lwp %p estcpu %3d %3d cp %d/%d",
959 				lp->lwp_proc->p_pid, lp,
960 				estcpu, lp->lwp_estcpu,
961 				lp->lwp_cpticks, ttlticks);
962 		}
963 
964 		/*
965 		 * Adjust lp->lwp_esetcpu.  The decay factor determines how
966 		 * quickly lwp_estcpu collapses to its realtime calculation.
967 		 * A slower collapse gives us a more accurate number over
968 		 * the long term but can create problems with bursty threads
969 		 * or threads which become cpu hogs.
970 		 *
971 		 * To solve this problem, newly started lwps and lwps which
972 		 * are restarting after having been asleep for a while are
973 		 * given a much, much faster decay in order to quickly
974 		 * detect whether they become cpu-bound.
975 		 *
976 		 * NOTE: p_nice is accounted for in dfly_resetpriority(),
977 		 *	 and not here, but we must still ensure that a
978 		 *	 cpu-bound nice -20 process does not completely
979 		 *	 override a cpu-bound nice +20 process.
980 		 *
981 		 * NOTE: We must use ESTCPULIM() here to deal with any
982 		 *	 overshoot.
983 		 */
984 		decay_factor = usched_dfly_decay;
985 		if (decay_factor < 1)
986 			decay_factor = 1;
987 		if (decay_factor > 1024)
988 			decay_factor = 1024;
989 
990 		if (lp->lwp_estfast < usched_dfly_decay) {
991 			++lp->lwp_estfast;
992 			lp->lwp_estcpu = ESTCPULIM(
993 				(lp->lwp_estcpu * lp->lwp_estfast + estcpu) /
994 				(lp->lwp_estfast + 1));
995 		} else {
996 			lp->lwp_estcpu = ESTCPULIM(
997 				(lp->lwp_estcpu * decay_factor + estcpu) /
998 				(decay_factor + 1));
999 		}
1000 
1001 		if (usched_dfly_debug == lp->lwp_proc->p_pid)
1002 			kprintf(" finalestcpu %d\n", lp->lwp_estcpu);
1003 		dfly_resetpriority(lp);
1004 		lp->lwp_cpbase += ttlticks * gd->gd_schedclock.periodic;
1005 		lp->lwp_cpticks = 0;
1006 	}
1007 }
1008 
1009 /*
1010  * Compute the priority of a process when running in user mode.
1011  * Arrange to reschedule if the resulting priority is better
1012  * than that of the current process.
1013  *
1014  * This routine may be called with any process.
1015  *
1016  * This routine is called by fork1() for initial setup with the process
1017  * of the run queue, and also may be called normally with the process on or
1018  * off the run queue.
1019  */
1020 static void
1021 dfly_resetpriority(struct lwp *lp)
1022 {
1023 	dfly_pcpu_t rdd;
1024 	int newpriority;
1025 	u_short newrqtype;
1026 	int rcpu;
1027 	int checkpri;
1028 	int estcpu;
1029 	int delta_uload;
1030 
1031 	crit_enter();
1032 
1033 	/*
1034 	 * Lock the scheduler (lp) belongs to.  This can be on a different
1035 	 * cpu.  Handle races.  This loop breaks out with the appropriate
1036 	 * rdd locked.
1037 	 */
1038 	for (;;) {
1039 		rcpu = lp->lwp_qcpu;
1040 		cpu_ccfence();
1041 		rdd = &dfly_pcpu[rcpu];
1042 		spin_lock(&rdd->spin);
1043 		if (rcpu == lp->lwp_qcpu)
1044 			break;
1045 		spin_unlock(&rdd->spin);
1046 	}
1047 
1048 	/*
1049 	 * Calculate the new priority and queue type
1050 	 */
1051 	newrqtype = lp->lwp_rtprio.type;
1052 
1053 	switch(newrqtype) {
1054 	case RTP_PRIO_REALTIME:
1055 	case RTP_PRIO_FIFO:
1056 		newpriority = PRIBASE_REALTIME +
1057 			     (lp->lwp_rtprio.prio & PRIMASK);
1058 		break;
1059 	case RTP_PRIO_NORMAL:
1060 		/*
1061 		 *
1062 		 */
1063 		estcpu = lp->lwp_estcpu;
1064 
1065 		/*
1066 		 * p_nice piece		Adds (0-40) * 2		0-80
1067 		 * estcpu		Adds 16384  * 4 / 512   0-128
1068 		 */
1069 		newpriority = (lp->lwp_proc->p_nice - PRIO_MIN) * PPQ / NICEPPQ;
1070 		newpriority += estcpu * PPQ / ESTCPUPPQ;
1071 		newpriority = newpriority * MAXPRI / (PRIO_RANGE * PPQ /
1072 			      NICEPPQ + ESTCPUMAX * PPQ / ESTCPUPPQ);
1073 		newpriority = PRIBASE_NORMAL + (newpriority & PRIMASK);
1074 		break;
1075 	case RTP_PRIO_IDLE:
1076 		newpriority = PRIBASE_IDLE + (lp->lwp_rtprio.prio & PRIMASK);
1077 		break;
1078 	case RTP_PRIO_THREAD:
1079 		newpriority = PRIBASE_THREAD + (lp->lwp_rtprio.prio & PRIMASK);
1080 		break;
1081 	default:
1082 		panic("Bad RTP_PRIO %d", newrqtype);
1083 		/* NOT REACHED */
1084 	}
1085 
1086 	/*
1087 	 * The LWKT scheduler doesn't dive usched structures, give it a hint
1088 	 * on the relative priority of user threads running in the kernel.
1089 	 * The LWKT scheduler will always ensure that a user thread running
1090 	 * in the kernel will get cpu some time, regardless of its upri,
1091 	 * but can decide not to instantly switch from one kernel or user
1092 	 * mode user thread to a kernel-mode user thread when it has a less
1093 	 * desireable user priority.
1094 	 *
1095 	 * td_upri has normal sense (higher values are more desireable), so
1096 	 * negate it.
1097 	 */
1098 	lp->lwp_thread->td_upri = -(newpriority & usched_dfly_swmask);
1099 
1100 	/*
1101 	 * The newpriority incorporates the queue type so do a simple masked
1102 	 * check to determine if the process has moved to another queue.  If
1103 	 * it has, and it is currently on a run queue, then move it.
1104 	 *
1105 	 * Since uload is ~PPQMASK masked, no modifications are necessary if
1106 	 * we end up in the same run queue.
1107 	 */
1108 	if ((lp->lwp_priority ^ newpriority) & ~PPQMASK) {
1109 		if (lp->lwp_mpflags & LWP_MP_ONRUNQ) {
1110 			dfly_remrunqueue_locked(rdd, lp);
1111 			lp->lwp_priority = newpriority;
1112 			lp->lwp_rqtype = newrqtype;
1113 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
1114 			dfly_setrunqueue_locked(rdd, lp);
1115 			checkpri = 1;
1116 		} else {
1117 			lp->lwp_priority = newpriority;
1118 			lp->lwp_rqtype = newrqtype;
1119 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
1120 			checkpri = 0;
1121 		}
1122 	} else {
1123 		/*
1124 		 * In the same PPQ, uload cannot change.
1125 		 */
1126 		lp->lwp_priority = newpriority;
1127 		checkpri = 1;
1128 		rcpu = -1;
1129 	}
1130 
1131 	/*
1132 	 * Adjust effective load.
1133 	 *
1134 	 * Calculate load then scale up or down geometrically based on p_nice.
1135 	 * Processes niced up (positive) are less important, and processes
1136 	 * niced downard (negative) are more important.  The higher the uload,
1137 	 * the more important the thread.
1138 	 */
1139 	/* 0-511, 0-100% cpu */
1140 	delta_uload = lp->lwp_estcpu / NQS;
1141 	delta_uload -= delta_uload * lp->lwp_proc->p_nice / (PRIO_MAX + 1);
1142 
1143 
1144 	delta_uload -= lp->lwp_uload;
1145 	lp->lwp_uload += delta_uload;
1146 	if (lp->lwp_mpflags & LWP_MP_ULOAD)
1147 		atomic_add_int(&dfly_pcpu[lp->lwp_qcpu].uload, delta_uload);
1148 
1149 	/*
1150 	 * Determine if we need to reschedule the target cpu.  This only
1151 	 * occurs if the LWP is already on a scheduler queue, which means
1152 	 * that idle cpu notification has already occured.  At most we
1153 	 * need only issue a need_user_resched() on the appropriate cpu.
1154 	 *
1155 	 * The LWP may be owned by a CPU different from the current one,
1156 	 * in which case dd->uschedcp may be modified without an MP lock
1157 	 * or a spinlock held.  The worst that happens is that the code
1158 	 * below causes a spurious need_user_resched() on the target CPU
1159 	 * and dd->pri to be wrong for a short period of time, both of
1160 	 * which are harmless.
1161 	 *
1162 	 * If checkpri is 0 we are adjusting the priority of the current
1163 	 * process, possibly higher (less desireable), so ignore the upri
1164 	 * check which will fail in that case.
1165 	 */
1166 	if (rcpu >= 0) {
1167 		if ((dfly_rdyprocmask & CPUMASK(rcpu)) &&
1168 		    (checkpri == 0 ||
1169 		     (rdd->upri & ~PRIMASK) >
1170 		     (lp->lwp_priority & ~PRIMASK))) {
1171 #ifdef SMP
1172 			if (rcpu == mycpu->gd_cpuid) {
1173 				spin_unlock(&rdd->spin);
1174 				need_user_resched();
1175 			} else {
1176 				spin_unlock(&rdd->spin);
1177 				lwkt_send_ipiq(globaldata_find(rcpu),
1178 					       dfly_need_user_resched_remote,
1179 					       NULL);
1180 			}
1181 #else
1182 			spin_unlock(&rdd->spin);
1183 			need_user_resched();
1184 #endif
1185 		} else {
1186 			spin_unlock(&rdd->spin);
1187 		}
1188 	} else {
1189 		spin_unlock(&rdd->spin);
1190 	}
1191 	crit_exit();
1192 }
1193 
1194 static
1195 void
1196 dfly_yield(struct lwp *lp)
1197 {
1198 #if 0
1199 	/* FUTURE (or something similar) */
1200 	switch(lp->lwp_rqtype) {
1201 	case RTP_PRIO_NORMAL:
1202 		lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR);
1203 		break;
1204 	default:
1205 		break;
1206 	}
1207 #endif
1208         need_user_resched();
1209 }
1210 
1211 /*
1212  * Called from fork1() when a new child process is being created.
1213  *
1214  * Give the child process an initial estcpu that is more batch then
1215  * its parent and dock the parent for the fork (but do not
1216  * reschedule the parent).
1217  *
1218  * fast
1219  *
1220  * XXX lwp should be "spawning" instead of "forking"
1221  */
1222 static void
1223 dfly_forking(struct lwp *plp, struct lwp *lp)
1224 {
1225 	/*
1226 	 * Put the child 4 queue slots (out of 32) higher than the parent
1227 	 * (less desireable than the parent).
1228 	 */
1229 	lp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ * 4);
1230 	lp->lwp_forked = 1;
1231 	lp->lwp_estfast = 0;
1232 
1233 	/*
1234 	 * Dock the parent a cost for the fork, protecting us from fork
1235 	 * bombs.  If the parent is forking quickly make the child more
1236 	 * batchy.
1237 	 */
1238 	plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ / 16);
1239 }
1240 
1241 /*
1242  * Called when a lwp is being removed from this scheduler, typically
1243  * during lwp_exit().  We have to clean out any ULOAD accounting before
1244  * we can let the lp go.  The dd->spin lock is not needed for uload
1245  * updates.
1246  *
1247  * Scheduler dequeueing has already occurred, no further action in that
1248  * regard is needed.
1249  */
1250 static void
1251 dfly_exiting(struct lwp *lp, struct proc *child_proc)
1252 {
1253 	dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1254 
1255 	if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1256 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
1257 		atomic_add_int(&dd->uload, -lp->lwp_uload);
1258 		atomic_add_int(&dd->ucount, -1);
1259 		atomic_add_int(&dfly_ucount, -1);
1260 	}
1261 }
1262 
1263 /*
1264  * This function cannot block in any way, but spinlocks are ok.
1265  *
1266  * Update the uload based on the state of the thread (whether it is going
1267  * to sleep or running again).  The uload is meant to be a longer-term
1268  * load and not an instantanious load.
1269  */
1270 static void
1271 dfly_uload_update(struct lwp *lp)
1272 {
1273 	dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1274 
1275 	if (lp->lwp_thread->td_flags & TDF_RUNQ) {
1276 		if ((lp->lwp_mpflags & LWP_MP_ULOAD) == 0) {
1277 			spin_lock(&dd->spin);
1278 			if ((lp->lwp_mpflags & LWP_MP_ULOAD) == 0) {
1279 				atomic_set_int(&lp->lwp_mpflags,
1280 					       LWP_MP_ULOAD);
1281 				atomic_add_int(&dd->uload, lp->lwp_uload);
1282 				atomic_add_int(&dd->ucount, 1);
1283 				atomic_add_int(&dfly_ucount, 1);
1284 			}
1285 			spin_unlock(&dd->spin);
1286 		}
1287 	} else if (lp->lwp_slptime > 0) {
1288 		if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1289 			spin_lock(&dd->spin);
1290 			if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1291 				atomic_clear_int(&lp->lwp_mpflags,
1292 						 LWP_MP_ULOAD);
1293 				atomic_add_int(&dd->uload, -lp->lwp_uload);
1294 				atomic_add_int(&dd->ucount, -1);
1295 				atomic_add_int(&dfly_ucount, -1);
1296 			}
1297 			spin_unlock(&dd->spin);
1298 		}
1299 	}
1300 }
1301 
1302 /*
1303  * chooseproc() is called when a cpu needs a user process to LWKT schedule,
1304  * it selects a user process and returns it.  If chklp is non-NULL and chklp
1305  * has a better or equal priority then the process that would otherwise be
1306  * chosen, NULL is returned.
1307  *
1308  * Until we fix the RUNQ code the chklp test has to be strict or we may
1309  * bounce between processes trying to acquire the current process designation.
1310  *
1311  * Must be called with rdd->spin locked.  The spinlock is left intact through
1312  * the entire routine.  dd->spin does not have to be locked.
1313  *
1314  * If worst is non-zero this function finds the worst thread instead of the
1315  * best thread (used by the schedulerclock-based rover).
1316  */
1317 static
1318 struct lwp *
1319 dfly_chooseproc_locked(dfly_pcpu_t rdd, dfly_pcpu_t dd,
1320 		       struct lwp *chklp, int worst)
1321 {
1322 	struct lwp *lp;
1323 	struct rq *q;
1324 	u_int32_t *which, *which2;
1325 	u_int32_t pri;
1326 	u_int32_t rtqbits;
1327 	u_int32_t tsqbits;
1328 	u_int32_t idqbits;
1329 
1330 	rtqbits = rdd->rtqueuebits;
1331 	tsqbits = rdd->queuebits;
1332 	idqbits = rdd->idqueuebits;
1333 
1334 	if (worst) {
1335 		if (idqbits) {
1336 			pri = bsrl(idqbits);
1337 			q = &rdd->idqueues[pri];
1338 			which = &rdd->idqueuebits;
1339 			which2 = &idqbits;
1340 		} else if (tsqbits) {
1341 			pri = bsrl(tsqbits);
1342 			q = &rdd->queues[pri];
1343 			which = &rdd->queuebits;
1344 			which2 = &tsqbits;
1345 		} else if (rtqbits) {
1346 			pri = bsrl(rtqbits);
1347 			q = &rdd->rtqueues[pri];
1348 			which = &rdd->rtqueuebits;
1349 			which2 = &rtqbits;
1350 		} else {
1351 			return (NULL);
1352 		}
1353 		lp = TAILQ_LAST(q, rq);
1354 	} else {
1355 		if (rtqbits) {
1356 			pri = bsfl(rtqbits);
1357 			q = &rdd->rtqueues[pri];
1358 			which = &rdd->rtqueuebits;
1359 			which2 = &rtqbits;
1360 		} else if (tsqbits) {
1361 			pri = bsfl(tsqbits);
1362 			q = &rdd->queues[pri];
1363 			which = &rdd->queuebits;
1364 			which2 = &tsqbits;
1365 		} else if (idqbits) {
1366 			pri = bsfl(idqbits);
1367 			q = &rdd->idqueues[pri];
1368 			which = &rdd->idqueuebits;
1369 			which2 = &idqbits;
1370 		} else {
1371 			return (NULL);
1372 		}
1373 		lp = TAILQ_FIRST(q);
1374 	}
1375 	KASSERT(lp, ("chooseproc: no lwp on busy queue"));
1376 
1377 	/*
1378 	 * If the passed lwp <chklp> is reasonably close to the selected
1379 	 * lwp <lp>, return NULL (indicating that <chklp> should be kept).
1380 	 *
1381 	 * Note that we must error on the side of <chklp> to avoid bouncing
1382 	 * between threads in the acquire code.
1383 	 */
1384 	if (chklp) {
1385 		if (chklp->lwp_priority < lp->lwp_priority + PPQ)
1386 			return(NULL);
1387 	}
1388 
1389 	KTR_COND_LOG(usched_chooseproc,
1390 	    lp->lwp_proc->p_pid == usched_dfly_pid_debug,
1391 	    lp->lwp_proc->p_pid,
1392 	    lp->lwp_thread->td_gd->gd_cpuid,
1393 	    mycpu->gd_cpuid);
1394 
1395 	KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) != 0, ("not on runq6!"));
1396 	atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1397 	TAILQ_REMOVE(q, lp, lwp_procq);
1398 	--rdd->runqcount;
1399 	if (TAILQ_EMPTY(q))
1400 		*which &= ~(1 << pri);
1401 
1402 	/*
1403 	 * If we are choosing a process from rdd with the intent to
1404 	 * move it to dd, lwp_qcpu must be adjusted while rdd's spinlock
1405 	 * is still held.
1406 	 */
1407 	if (rdd != dd) {
1408 		if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1409 			atomic_add_int(&rdd->uload, -lp->lwp_uload);
1410 			atomic_add_int(&rdd->ucount, -1);
1411 			atomic_add_int(&dfly_ucount, -1);
1412 		}
1413 		lp->lwp_qcpu = dd->cpuid;
1414 		atomic_add_int(&dd->uload, lp->lwp_uload);
1415 		atomic_add_int(&dd->ucount, 1);
1416 		atomic_add_int(&dfly_ucount, 1);
1417 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
1418 	}
1419 	return lp;
1420 }
1421 
1422 #ifdef SMP
1423 
1424 /*
1425  * USED TO PUSH RUNNABLE LWPS TO THE LEAST LOADED CPU.
1426  *
1427  * Choose a cpu node to schedule lp on, hopefully nearby its current
1428  * node.
1429  *
1430  * We give the current node a modest advantage for obvious reasons.
1431  *
1432  * We also give the node the thread was woken up FROM a slight advantage
1433  * in order to try to schedule paired threads which synchronize/block waiting
1434  * for each other fairly close to each other.  Similarly in a network setting
1435  * this feature will also attempt to place a user process near the kernel
1436  * protocol thread that is feeding it data.  THIS IS A CRITICAL PART of the
1437  * algorithm as it heuristically groups synchronizing processes for locality
1438  * of reference in multi-socket systems.
1439  *
1440  * We check against running processes and give a big advantage if there
1441  * are none running.
1442  *
1443  * The caller will normally dfly_setrunqueue() lp on the returned queue.
1444  *
1445  * When the topology is known choose a cpu whos group has, in aggregate,
1446  * has the lowest weighted load.
1447  */
1448 static
1449 dfly_pcpu_t
1450 dfly_choose_best_queue(struct lwp *lp)
1451 {
1452 	cpumask_t wakemask;
1453 	cpumask_t mask;
1454 	cpu_node_t *cpup;
1455 	cpu_node_t *cpun;
1456 	cpu_node_t *cpub;
1457 	dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1458 	dfly_pcpu_t rdd;
1459 	int wakecpu;
1460 	int cpuid;
1461 	int n;
1462 	int count;
1463 	int load;
1464 	int lowest_load;
1465 
1466 	/*
1467 	 * When the topology is unknown choose a random cpu that is hopefully
1468 	 * idle.
1469 	 */
1470 	if (dd->cpunode == NULL)
1471 		return (dfly_choose_queue_simple(dd, lp));
1472 
1473 	/*
1474 	 * Pairing mask
1475 	 */
1476 	if ((wakecpu = lp->lwp_thread->td_wakefromcpu) >= 0)
1477 		wakemask = dfly_pcpu[wakecpu].cpumask;
1478 	else
1479 		wakemask = 0;
1480 
1481 	/*
1482 	 * When the topology is known choose a cpu whos group has, in
1483 	 * aggregate, has the lowest weighted load.
1484 	 */
1485 	cpup = root_cpu_node;
1486 	rdd = dd;
1487 
1488 	while (cpup) {
1489 		/*
1490 		 * Degenerate case super-root
1491 		 */
1492 		if (cpup->child_node && cpup->child_no == 1) {
1493 			cpup = cpup->child_node;
1494 			continue;
1495 		}
1496 
1497 		/*
1498 		 * Terminal cpunode
1499 		 */
1500 		if (cpup->child_node == NULL) {
1501 			rdd = &dfly_pcpu[BSFCPUMASK(cpup->members)];
1502 			break;
1503 		}
1504 
1505 		cpub = NULL;
1506 		lowest_load = 0x7FFFFFFF;
1507 
1508 		for (n = 0; n < cpup->child_no; ++n) {
1509 			/*
1510 			 * Accumulate load information for all cpus
1511 			 * which are members of this node.
1512 			 */
1513 			cpun = &cpup->child_node[n];
1514 			mask = cpun->members & usched_global_cpumask &
1515 			       smp_active_mask & lp->lwp_cpumask;
1516 			if (mask == 0)
1517 				continue;
1518 
1519 			count = 0;
1520 			load = 0;
1521 
1522 			while (mask) {
1523 				cpuid = BSFCPUMASK(mask);
1524 				rdd = &dfly_pcpu[cpuid];
1525 				load += rdd->uload;
1526 				load += rdd->ucount * usched_dfly_weight3;
1527 
1528 				if (rdd->uschedcp == NULL &&
1529 				    rdd->runqcount == 0 &&
1530 				    globaldata_find(cpuid)->gd_tdrunqcount == 0
1531 				) {
1532 					load -= usched_dfly_weight4;
1533 				}
1534 #if 0
1535 				else if (rdd->upri > lp->lwp_priority + PPQ) {
1536 					load -= usched_dfly_weight4 / 2;
1537 				}
1538 #endif
1539 				mask &= ~CPUMASK(cpuid);
1540 				++count;
1541 			}
1542 
1543 			/*
1544 			 * Compensate if the lp is already accounted for in
1545 			 * the aggregate uload for this mask set.  We want
1546 			 * to calculate the loads as if lp were not present,
1547 			 * otherwise the calculation is bogus.
1548 			 */
1549 			if ((lp->lwp_mpflags & LWP_MP_ULOAD) &&
1550 			    (dd->cpumask & cpun->members)) {
1551 				load -= lp->lwp_uload;
1552 				load -= usched_dfly_weight3;
1553 			}
1554 
1555 			load /= count;
1556 
1557 			/*
1558 			 * Advantage the cpu group (lp) is already on.
1559 			 */
1560 			if (cpun->members & dd->cpumask)
1561 				load -= usched_dfly_weight1;
1562 
1563 			/*
1564 			 * Advantage the cpu group we want to pair (lp) to,
1565 			 * but don't let it go to the exact same cpu as
1566 			 * the wakecpu target.
1567 			 *
1568 			 * We do this by checking whether cpun is a
1569 			 * terminal node or not.  All cpun's at the same
1570 			 * level will either all be terminal or all not
1571 			 * terminal.
1572 			 *
1573 			 * If it is and we match we disadvantage the load.
1574 			 * If it is and we don't match we advantage the load.
1575 			 *
1576 			 * Also note that we are effectively disadvantaging
1577 			 * all-but-one by the same amount, so it won't effect
1578 			 * the weight1 factor for the all-but-one nodes.
1579 			 */
1580 			if (cpun->members & wakemask) {
1581 				if (cpun->child_node != NULL) {
1582 					/* advantage */
1583 					load -= usched_dfly_weight2;
1584 				} else {
1585 					if (usched_dfly_features & 0x10)
1586 						load += usched_dfly_weight2;
1587 					else
1588 						load -= usched_dfly_weight2;
1589 				}
1590 			}
1591 
1592 			/*
1593 			 * Calculate the best load
1594 			 */
1595 			if (cpub == NULL || lowest_load > load ||
1596 			    (lowest_load == load &&
1597 			     (cpun->members & dd->cpumask))
1598 			) {
1599 				lowest_load = load;
1600 				cpub = cpun;
1601 			}
1602 		}
1603 		cpup = cpub;
1604 	}
1605 	if (usched_dfly_chooser)
1606 		kprintf("lp %02d->%02d %s\n",
1607 			lp->lwp_qcpu, rdd->cpuid, lp->lwp_proc->p_comm);
1608 	return (rdd);
1609 }
1610 
1611 /*
1612  * USED TO PULL RUNNABLE LWPS FROM THE MOST LOADED CPU.
1613  *
1614  * Choose the worst queue close to dd's cpu node with a non-empty runq
1615  * that is NOT dd.  Also require that the moving of the highest-load thread
1616  * from rdd to dd does not cause the uload's to cross each other.
1617  *
1618  * This is used by the thread chooser when the current cpu's queues are
1619  * empty to steal a thread from another cpu's queue.  We want to offload
1620  * the most heavily-loaded queue.
1621  */
1622 static
1623 dfly_pcpu_t
1624 dfly_choose_worst_queue(dfly_pcpu_t dd)
1625 {
1626 	cpumask_t mask;
1627 	cpu_node_t *cpup;
1628 	cpu_node_t *cpun;
1629 	cpu_node_t *cpub;
1630 	dfly_pcpu_t rdd;
1631 	int cpuid;
1632 	int n;
1633 	int count;
1634 	int load;
1635 #if 0
1636 	int pri;
1637 	int hpri;
1638 #endif
1639 	int highest_load;
1640 
1641 	/*
1642 	 * When the topology is unknown choose a random cpu that is hopefully
1643 	 * idle.
1644 	 */
1645 	if (dd->cpunode == NULL) {
1646 		return (NULL);
1647 	}
1648 
1649 	/*
1650 	 * When the topology is known choose a cpu whos group has, in
1651 	 * aggregate, has the lowest weighted load.
1652 	 */
1653 	cpup = root_cpu_node;
1654 	rdd = dd;
1655 	while (cpup) {
1656 		/*
1657 		 * Degenerate case super-root
1658 		 */
1659 		if (cpup->child_node && cpup->child_no == 1) {
1660 			cpup = cpup->child_node;
1661 			continue;
1662 		}
1663 
1664 		/*
1665 		 * Terminal cpunode
1666 		 */
1667 		if (cpup->child_node == NULL) {
1668 			rdd = &dfly_pcpu[BSFCPUMASK(cpup->members)];
1669 			break;
1670 		}
1671 
1672 		cpub = NULL;
1673 		highest_load = 0;
1674 
1675 		for (n = 0; n < cpup->child_no; ++n) {
1676 			/*
1677 			 * Accumulate load information for all cpus
1678 			 * which are members of this node.
1679 			 */
1680 			cpun = &cpup->child_node[n];
1681 			mask = cpun->members & usched_global_cpumask &
1682 			       smp_active_mask;
1683 			if (mask == 0)
1684 				continue;
1685 			count = 0;
1686 			load = 0;
1687 
1688 			while (mask) {
1689 				cpuid = BSFCPUMASK(mask);
1690 				rdd = &dfly_pcpu[cpuid];
1691 				load += rdd->uload;
1692 				load += rdd->ucount * usched_dfly_weight3;
1693 				if (rdd->uschedcp == NULL &&
1694 				    rdd->runqcount == 0 &&
1695 				    globaldata_find(cpuid)->gd_tdrunqcount == 0
1696 				) {
1697 					load -= usched_dfly_weight4;
1698 				}
1699 #if 0
1700 				else if (rdd->upri > dd->upri + PPQ) {
1701 					load -= usched_dfly_weight4 / 2;
1702 				}
1703 #endif
1704 				mask &= ~CPUMASK(cpuid);
1705 				++count;
1706 			}
1707 			load /= count;
1708 
1709 			/*
1710 			 * Prefer candidates which are somewhat closer to
1711 			 * our cpu.
1712 			 */
1713 			if (dd->cpumask & cpun->members)
1714 				load += usched_dfly_weight1;
1715 
1716 			/*
1717 			 * The best candidate is the one with the worst
1718 			 * (highest) load.
1719 			 */
1720 			if (cpub == NULL || highest_load < load) {
1721 				highest_load = load;
1722 				cpub = cpun;
1723 			}
1724 		}
1725 		cpup = cpub;
1726 	}
1727 
1728 	/*
1729 	 * We never return our own node (dd), and only return a remote
1730 	 * node if it's load is significantly worse than ours (i.e. where
1731 	 * stealing a thread would be considered reasonable).
1732 	 *
1733 	 * This also helps us avoid breaking paired threads apart which
1734 	 * can have disastrous effects on performance.
1735 	 */
1736 	if (rdd == dd)
1737 		return(NULL);
1738 
1739 #if 0
1740 	hpri = 0;
1741 	if (rdd->rtqueuebits && hpri < (pri = bsrl(rdd->rtqueuebits)))
1742 		hpri = pri;
1743 	if (rdd->queuebits && hpri < (pri = bsrl(rdd->queuebits)))
1744 		hpri = pri;
1745 	if (rdd->idqueuebits && hpri < (pri = bsrl(rdd->idqueuebits)))
1746 		hpri = pri;
1747 	hpri *= PPQ;
1748 	if (rdd->uload - hpri < dd->uload + hpri)
1749 		return(NULL);
1750 #endif
1751 	return (rdd);
1752 }
1753 
1754 static
1755 dfly_pcpu_t
1756 dfly_choose_queue_simple(dfly_pcpu_t dd, struct lwp *lp)
1757 {
1758 	dfly_pcpu_t rdd;
1759 	cpumask_t tmpmask;
1760 	cpumask_t mask;
1761 	int cpuid;
1762 
1763 	/*
1764 	 * Fallback to the original heuristic, select random cpu,
1765 	 * first checking cpus not currently running a user thread.
1766 	 */
1767 	++dfly_scancpu;
1768 	cpuid = (dfly_scancpu & 0xFFFF) % ncpus;
1769 	mask = ~dfly_curprocmask & dfly_rdyprocmask & lp->lwp_cpumask &
1770 	       smp_active_mask & usched_global_cpumask;
1771 
1772 	while (mask) {
1773 		tmpmask = ~(CPUMASK(cpuid) - 1);
1774 		if (mask & tmpmask)
1775 			cpuid = BSFCPUMASK(mask & tmpmask);
1776 		else
1777 			cpuid = BSFCPUMASK(mask);
1778 		rdd = &dfly_pcpu[cpuid];
1779 
1780 		if ((rdd->upri & ~PPQMASK) >= (lp->lwp_priority & ~PPQMASK))
1781 			goto found;
1782 		mask &= ~CPUMASK(cpuid);
1783 	}
1784 
1785 	/*
1786 	 * Then cpus which might have a currently running lp
1787 	 */
1788 	cpuid = (dfly_scancpu & 0xFFFF) % ncpus;
1789 	mask = dfly_curprocmask & dfly_rdyprocmask &
1790 	       lp->lwp_cpumask & smp_active_mask & usched_global_cpumask;
1791 
1792 	while (mask) {
1793 		tmpmask = ~(CPUMASK(cpuid) - 1);
1794 		if (mask & tmpmask)
1795 			cpuid = BSFCPUMASK(mask & tmpmask);
1796 		else
1797 			cpuid = BSFCPUMASK(mask);
1798 		rdd = &dfly_pcpu[cpuid];
1799 
1800 		if ((rdd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK))
1801 			goto found;
1802 		mask &= ~CPUMASK(cpuid);
1803 	}
1804 
1805 	/*
1806 	 * If we cannot find a suitable cpu we reload from dfly_scancpu
1807 	 * and round-robin.  Other cpus will pickup as they release their
1808 	 * current lwps or become ready.
1809 	 *
1810 	 * Avoid a degenerate system lockup case if usched_global_cpumask
1811 	 * is set to 0 or otherwise does not cover lwp_cpumask.
1812 	 *
1813 	 * We only kick the target helper thread in this case, we do not
1814 	 * set the user resched flag because
1815 	 */
1816 	cpuid = (dfly_scancpu & 0xFFFF) % ncpus;
1817 	if ((CPUMASK(cpuid) & usched_global_cpumask) == 0)
1818 		cpuid = 0;
1819 	rdd = &dfly_pcpu[cpuid];
1820 found:
1821 	return (rdd);
1822 }
1823 
1824 static
1825 void
1826 dfly_need_user_resched_remote(void *dummy)
1827 {
1828 	globaldata_t gd = mycpu;
1829 	dfly_pcpu_t  dd = &dfly_pcpu[gd->gd_cpuid];
1830 
1831 	/*
1832 	 * Flag reschedule needed
1833 	 */
1834 	need_user_resched();
1835 
1836 	/*
1837 	 * If no user thread is currently running we need to kick the helper
1838 	 * on our cpu to recover.  Otherwise the cpu will never schedule
1839 	 * anything again.
1840 	 *
1841 	 * We cannot schedule the process ourselves because this is an
1842 	 * IPI callback and we cannot acquire spinlocks in an IPI callback.
1843 	 *
1844 	 * Call wakeup_mycpu to avoid sending IPIs to other CPUs
1845 	 */
1846 	if (dd->uschedcp == NULL && (dfly_rdyprocmask & gd->gd_cpumask)) {
1847 		atomic_clear_cpumask(&dfly_rdyprocmask, gd->gd_cpumask);
1848 		wakeup_mycpu(&dd->helper_thread);
1849 	}
1850 }
1851 
1852 #endif
1853 
1854 /*
1855  * dfly_remrunqueue_locked() removes a given process from the run queue
1856  * that it is on, clearing the queue busy bit if it becomes empty.
1857  *
1858  * Note that user process scheduler is different from the LWKT schedule.
1859  * The user process scheduler only manages user processes but it uses LWKT
1860  * underneath, and a user process operating in the kernel will often be
1861  * 'released' from our management.
1862  *
1863  * uload is NOT adjusted here.  It is only adjusted if the lwkt_thread goes
1864  * to sleep or the lwp is moved to a different runq.
1865  */
1866 static void
1867 dfly_remrunqueue_locked(dfly_pcpu_t rdd, struct lwp *lp)
1868 {
1869 	struct rq *q;
1870 	u_int32_t *which;
1871 	u_int8_t pri;
1872 
1873 	KKASSERT(rdd->runqcount >= 0);
1874 
1875 	pri = lp->lwp_rqindex;
1876 
1877 	switch(lp->lwp_rqtype) {
1878 	case RTP_PRIO_NORMAL:
1879 		q = &rdd->queues[pri];
1880 		which = &rdd->queuebits;
1881 		break;
1882 	case RTP_PRIO_REALTIME:
1883 	case RTP_PRIO_FIFO:
1884 		q = &rdd->rtqueues[pri];
1885 		which = &rdd->rtqueuebits;
1886 		break;
1887 	case RTP_PRIO_IDLE:
1888 		q = &rdd->idqueues[pri];
1889 		which = &rdd->idqueuebits;
1890 		break;
1891 	default:
1892 		panic("remrunqueue: invalid rtprio type");
1893 		/* NOT REACHED */
1894 	}
1895 	KKASSERT(lp->lwp_mpflags & LWP_MP_ONRUNQ);
1896 	atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1897 	TAILQ_REMOVE(q, lp, lwp_procq);
1898 	--rdd->runqcount;
1899 	if (TAILQ_EMPTY(q)) {
1900 		KASSERT((*which & (1 << pri)) != 0,
1901 			("remrunqueue: remove from empty queue"));
1902 		*which &= ~(1 << pri);
1903 	}
1904 }
1905 
1906 /*
1907  * dfly_setrunqueue_locked()
1908  *
1909  * Add a process whos rqtype and rqindex had previously been calculated
1910  * onto the appropriate run queue.   Determine if the addition requires
1911  * a reschedule on a cpu and return the cpuid or -1.
1912  *
1913  * NOTE: 	  Lower priorities are better priorities.
1914  *
1915  * NOTE ON ULOAD: This variable specifies the aggregate load on a cpu, the
1916  *		  sum of the rough lwp_priority for all running and runnable
1917  *		  processes.  Lower priority processes (higher lwp_priority
1918  *		  values) actually DO count as more load, not less, because
1919  *		  these are the programs which require the most care with
1920  *		  regards to cpu selection.
1921  */
1922 static void
1923 dfly_setrunqueue_locked(dfly_pcpu_t rdd, struct lwp *lp)
1924 {
1925 	struct rq *q;
1926 	u_int32_t *which;
1927 	int pri;
1928 
1929 	KKASSERT(lp->lwp_qcpu == rdd->cpuid);
1930 
1931 	if ((lp->lwp_mpflags & LWP_MP_ULOAD) == 0) {
1932 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
1933 		atomic_add_int(&dfly_pcpu[lp->lwp_qcpu].uload, lp->lwp_uload);
1934 		atomic_add_int(&dfly_pcpu[lp->lwp_qcpu].ucount, 1);
1935 		atomic_add_int(&dfly_ucount, 1);
1936 	}
1937 
1938 	pri = lp->lwp_rqindex;
1939 
1940 	switch(lp->lwp_rqtype) {
1941 	case RTP_PRIO_NORMAL:
1942 		q = &rdd->queues[pri];
1943 		which = &rdd->queuebits;
1944 		break;
1945 	case RTP_PRIO_REALTIME:
1946 	case RTP_PRIO_FIFO:
1947 		q = &rdd->rtqueues[pri];
1948 		which = &rdd->rtqueuebits;
1949 		break;
1950 	case RTP_PRIO_IDLE:
1951 		q = &rdd->idqueues[pri];
1952 		which = &rdd->idqueuebits;
1953 		break;
1954 	default:
1955 		panic("remrunqueue: invalid rtprio type");
1956 		/* NOT REACHED */
1957 	}
1958 
1959 	/*
1960 	 * Place us on the selected queue.  Determine if we should be
1961 	 * placed at the head of the queue or at the end.
1962 	 *
1963 	 * We are placed at the tail if our round-robin count has expired,
1964 	 * or is about to expire and the system thinks its a good place to
1965 	 * round-robin, or there is already a next thread on the queue
1966 	 * (it might be trying to pick up where it left off and we don't
1967 	 * want to interfere).
1968 	 */
1969 	KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1970 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1971 	++rdd->runqcount;
1972 
1973 	if (lp->lwp_rrcount >= usched_dfly_rrinterval ||
1974 	    (lp->lwp_rrcount >= usched_dfly_rrinterval / 2 &&
1975 	     (lp->lwp_thread->td_mpflags & TDF_MP_BATCH_DEMARC)) ||
1976 	    !TAILQ_EMPTY(q)
1977 	) {
1978 		atomic_clear_int(&lp->lwp_thread->td_mpflags,
1979 				 TDF_MP_BATCH_DEMARC);
1980 		lp->lwp_rrcount = 0;
1981 		TAILQ_INSERT_TAIL(q, lp, lwp_procq);
1982 	} else {
1983 		if (TAILQ_EMPTY(q))
1984 			lp->lwp_rrcount = 0;
1985 		TAILQ_INSERT_HEAD(q, lp, lwp_procq);
1986 	}
1987 	*which |= 1 << pri;
1988 }
1989 
1990 #ifdef SMP
1991 
1992 /*
1993  * For SMP systems a user scheduler helper thread is created for each
1994  * cpu and is used to allow one cpu to wakeup another for the purposes of
1995  * scheduling userland threads from setrunqueue().
1996  *
1997  * UP systems do not need the helper since there is only one cpu.
1998  *
1999  * We can't use the idle thread for this because we might block.
2000  * Additionally, doing things this way allows us to HLT idle cpus
2001  * on MP systems.
2002  */
2003 static void
2004 dfly_helper_thread(void *dummy)
2005 {
2006     globaldata_t gd;
2007     dfly_pcpu_t dd;
2008     dfly_pcpu_t rdd;
2009     struct lwp *nlp;
2010     cpumask_t mask;
2011     int cpuid;
2012 
2013     gd = mycpu;
2014     cpuid = gd->gd_cpuid;	/* doesn't change */
2015     mask = gd->gd_cpumask;	/* doesn't change */
2016     dd = &dfly_pcpu[cpuid];
2017 
2018     /*
2019      * Since we only want to be woken up only when no user processes
2020      * are scheduled on a cpu, run at an ultra low priority.
2021      */
2022     lwkt_setpri_self(TDPRI_USER_SCHEDULER);
2023 
2024     tsleep(&dd->helper_thread, 0, "schslp", 0);
2025 
2026     for (;;) {
2027 	/*
2028 	 * We use the LWKT deschedule-interlock trick to avoid racing
2029 	 * dfly_rdyprocmask.  This means we cannot block through to the
2030 	 * manual lwkt_switch() call we make below.
2031 	 */
2032 	crit_enter_gd(gd);
2033 	tsleep_interlock(&dd->helper_thread, 0);
2034 
2035 	spin_lock(&dd->spin);
2036 
2037 	atomic_set_cpumask(&dfly_rdyprocmask, mask);
2038 	clear_user_resched();	/* This satisfied the reschedule request */
2039 #if 0
2040 	dd->rrcount = 0;	/* Reset the round-robin counter */
2041 #endif
2042 
2043 	if (dd->runqcount || dd->uschedcp != NULL) {
2044 		/*
2045 		 * Threads are available.  A thread may or may not be
2046 		 * currently scheduled.  Get the best thread already queued
2047 		 * to this cpu.
2048 		 */
2049 		nlp = dfly_chooseproc_locked(dd, dd, dd->uschedcp, 0);
2050 		if (nlp) {
2051 			atomic_set_cpumask(&dfly_curprocmask, mask);
2052 			dd->upri = nlp->lwp_priority;
2053 			dd->uschedcp = nlp;
2054 #if 0
2055 			dd->rrcount = 0;	/* reset round robin */
2056 #endif
2057 			spin_unlock(&dd->spin);
2058 			lwkt_acquire(nlp->lwp_thread);
2059 			lwkt_schedule(nlp->lwp_thread);
2060 		} else {
2061 			/*
2062 			 * This situation should not occur because we had
2063 			 * at least one thread available.
2064 			 */
2065 			spin_unlock(&dd->spin);
2066 		}
2067 	} else if (usched_dfly_features & 0x01) {
2068 		/*
2069 		 * This cpu is devoid of runnable threads, steal a thread
2070 		 * from another cpu.  Since we're stealing, might as well
2071 		 * load balance at the same time.
2072 		 *
2073 		 * We choose the highest-loaded thread from the worst queue.
2074 		 *
2075 		 * NOTE! This function only returns a non-NULL rdd when
2076 		 *	 another cpu's queue is obviously overloaded.  We
2077 		 *	 do not want to perform the type of rebalancing
2078 		 *	 the schedclock does here because it would result
2079 		 *	 in insane process pulling when 'steady' state is
2080 		 *	 partially unbalanced (e.g. 6 runnables and only
2081 		 *	 4 cores).
2082 		 */
2083 		rdd = dfly_choose_worst_queue(dd);
2084 		if (rdd && spin_trylock(&rdd->spin)) {
2085 			nlp = dfly_chooseproc_locked(rdd, dd, NULL, 1);
2086 			spin_unlock(&rdd->spin);
2087 		} else {
2088 			nlp = NULL;
2089 		}
2090 		if (nlp) {
2091 			atomic_set_cpumask(&dfly_curprocmask, mask);
2092 			dd->upri = nlp->lwp_priority;
2093 			dd->uschedcp = nlp;
2094 #if 0
2095 			dd->rrcount = 0;	/* reset round robin */
2096 #endif
2097 			spin_unlock(&dd->spin);
2098 			lwkt_acquire(nlp->lwp_thread);
2099 			lwkt_schedule(nlp->lwp_thread);
2100 		} else {
2101 			/*
2102 			 * Leave the thread on our run queue.  Another
2103 			 * scheduler will try to pull it later.
2104 			 */
2105 			spin_unlock(&dd->spin);
2106 		}
2107 	} else {
2108 		/*
2109 		 * devoid of runnable threads and not allowed to steal
2110 		 * any.
2111 		 */
2112 		spin_unlock(&dd->spin);
2113 	}
2114 
2115 	/*
2116 	 * We're descheduled unless someone scheduled us.  Switch away.
2117 	 * Exiting the critical section will cause splz() to be called
2118 	 * for us if interrupts and such are pending.
2119 	 */
2120 	crit_exit_gd(gd);
2121 	tsleep(&dd->helper_thread, PINTERLOCKED, "schslp", 0);
2122     }
2123 }
2124 
2125 #if 0
2126 static int
2127 sysctl_usched_dfly_stick_to_level(SYSCTL_HANDLER_ARGS)
2128 {
2129 	int error, new_val;
2130 
2131 	new_val = usched_dfly_stick_to_level;
2132 
2133 	error = sysctl_handle_int(oidp, &new_val, 0, req);
2134         if (error != 0 || req->newptr == NULL)
2135 		return (error);
2136 	if (new_val > cpu_topology_levels_number - 1 || new_val < 0)
2137 		return (EINVAL);
2138 	usched_dfly_stick_to_level = new_val;
2139 	return (0);
2140 }
2141 #endif
2142 
2143 /*
2144  * Setup our scheduler helpers.  Note that curprocmask bit 0 has already
2145  * been cleared by rqinit() and we should not mess with it further.
2146  */
2147 static void
2148 dfly_helper_thread_cpu_init(void)
2149 {
2150 	int i;
2151 	int j;
2152 	int cpuid;
2153 	int smt_not_supported = 0;
2154 	int cache_coherent_not_supported = 0;
2155 
2156 	if (bootverbose)
2157 		kprintf("Start scheduler helpers on cpus:\n");
2158 
2159 	sysctl_ctx_init(&usched_dfly_sysctl_ctx);
2160 	usched_dfly_sysctl_tree =
2161 		SYSCTL_ADD_NODE(&usched_dfly_sysctl_ctx,
2162 				SYSCTL_STATIC_CHILDREN(_kern), OID_AUTO,
2163 				"usched_dfly", CTLFLAG_RD, 0, "");
2164 
2165 	for (i = 0; i < ncpus; ++i) {
2166 		dfly_pcpu_t dd = &dfly_pcpu[i];
2167 		cpumask_t mask = CPUMASK(i);
2168 
2169 		if ((mask & smp_active_mask) == 0)
2170 		    continue;
2171 
2172 		spin_init(&dd->spin);
2173 		dd->cpunode = get_cpu_node_by_cpuid(i);
2174 		dd->cpuid = i;
2175 		dd->cpumask = CPUMASK(i);
2176 		for (j = 0; j < NQS; j++) {
2177 			TAILQ_INIT(&dd->queues[j]);
2178 			TAILQ_INIT(&dd->rtqueues[j]);
2179 			TAILQ_INIT(&dd->idqueues[j]);
2180 		}
2181 		atomic_clear_cpumask(&dfly_curprocmask, 1);
2182 
2183 		if (dd->cpunode == NULL) {
2184 			smt_not_supported = 1;
2185 			cache_coherent_not_supported = 1;
2186 			if (bootverbose)
2187 				kprintf ("\tcpu%d - WARNING: No CPU NODE "
2188 					 "found for cpu\n", i);
2189 		} else {
2190 			switch (dd->cpunode->type) {
2191 			case THREAD_LEVEL:
2192 				if (bootverbose)
2193 					kprintf ("\tcpu%d - HyperThreading "
2194 						 "available. Core siblings: ",
2195 						 i);
2196 				break;
2197 			case CORE_LEVEL:
2198 				smt_not_supported = 1;
2199 
2200 				if (bootverbose)
2201 					kprintf ("\tcpu%d - No HT available, "
2202 						 "multi-core/physical "
2203 						 "cpu. Physical siblings: ",
2204 						 i);
2205 				break;
2206 			case CHIP_LEVEL:
2207 				smt_not_supported = 1;
2208 
2209 				if (bootverbose)
2210 					kprintf ("\tcpu%d - No HT available, "
2211 						 "single-core/physical cpu. "
2212 						 "Package Siblings: ",
2213 						 i);
2214 				break;
2215 			default:
2216 				/* Let's go for safe defaults here */
2217 				smt_not_supported = 1;
2218 				cache_coherent_not_supported = 1;
2219 				if (bootverbose)
2220 					kprintf ("\tcpu%d - Unknown cpunode->"
2221 						 "type=%u. Siblings: ",
2222 						 i,
2223 						 (u_int)dd->cpunode->type);
2224 				break;
2225 			}
2226 
2227 			if (bootverbose) {
2228 				if (dd->cpunode->parent_node != NULL) {
2229 					CPUSET_FOREACH(cpuid, dd->cpunode->parent_node->members)
2230 						kprintf("cpu%d ", cpuid);
2231 					kprintf("\n");
2232 				} else {
2233 					kprintf(" no siblings\n");
2234 				}
2235 			}
2236 		}
2237 
2238 		lwkt_create(dfly_helper_thread, NULL, NULL, &dd->helper_thread,
2239 			    0, i, "usched %d", i);
2240 
2241 		/*
2242 		 * Allow user scheduling on the target cpu.  cpu #0 has already
2243 		 * been enabled in rqinit().
2244 		 */
2245 		if (i)
2246 		    atomic_clear_cpumask(&dfly_curprocmask, mask);
2247 		atomic_set_cpumask(&dfly_rdyprocmask, mask);
2248 		dd->upri = PRIBASE_NULL;
2249 
2250 	}
2251 
2252 	/* usched_dfly sysctl configurable parameters */
2253 
2254 	SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2255 		       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2256 		       OID_AUTO, "rrinterval", CTLFLAG_RW,
2257 		       &usched_dfly_rrinterval, 0, "");
2258 	SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2259 		       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2260 		       OID_AUTO, "decay", CTLFLAG_RW,
2261 		       &usched_dfly_decay, 0, "Extra decay when not running");
2262 
2263 	/* Add enable/disable option for SMT scheduling if supported */
2264 	if (smt_not_supported) {
2265 		usched_dfly_smt = 0;
2266 		SYSCTL_ADD_STRING(&usched_dfly_sysctl_ctx,
2267 				  SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2268 				  OID_AUTO, "smt", CTLFLAG_RD,
2269 				  "NOT SUPPORTED", 0, "SMT NOT SUPPORTED");
2270 	} else {
2271 		usched_dfly_smt = 1;
2272 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2273 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2274 			       OID_AUTO, "smt", CTLFLAG_RW,
2275 			       &usched_dfly_smt, 0, "Enable SMT scheduling");
2276 	}
2277 
2278 	/*
2279 	 * Add enable/disable option for cache coherent scheduling
2280 	 * if supported
2281 	 */
2282 	if (cache_coherent_not_supported) {
2283 		usched_dfly_cache_coherent = 0;
2284 		SYSCTL_ADD_STRING(&usched_dfly_sysctl_ctx,
2285 				  SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2286 				  OID_AUTO, "cache_coherent", CTLFLAG_RD,
2287 				  "NOT SUPPORTED", 0,
2288 				  "Cache coherence NOT SUPPORTED");
2289 	} else {
2290 		usched_dfly_cache_coherent = 1;
2291 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2292 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2293 			       OID_AUTO, "cache_coherent", CTLFLAG_RW,
2294 			       &usched_dfly_cache_coherent, 0,
2295 			       "Enable/Disable cache coherent scheduling");
2296 
2297 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2298 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2299 			       OID_AUTO, "weight1", CTLFLAG_RW,
2300 			       &usched_dfly_weight1, 200,
2301 			       "Weight selection for current cpu");
2302 
2303 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2304 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2305 			       OID_AUTO, "weight2", CTLFLAG_RW,
2306 			       &usched_dfly_weight2, 180,
2307 			       "Weight selection for wakefrom cpu");
2308 
2309 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2310 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2311 			       OID_AUTO, "weight3", CTLFLAG_RW,
2312 			       &usched_dfly_weight3, 40,
2313 			       "Weight selection for num threads on queue");
2314 
2315 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2316 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2317 			       OID_AUTO, "weight4", CTLFLAG_RW,
2318 			       &usched_dfly_weight4, 160,
2319 			       "Availability of other idle cpus");
2320 
2321 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2322 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2323 			       OID_AUTO, "fast_resched", CTLFLAG_RW,
2324 			       &usched_dfly_fast_resched, 0,
2325 			       "Availability of other idle cpus");
2326 
2327 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2328 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2329 			       OID_AUTO, "features", CTLFLAG_RW,
2330 			       &usched_dfly_features, 0x8F,
2331 			       "Allow pulls into empty queues");
2332 
2333 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2334 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2335 			       OID_AUTO, "swmask", CTLFLAG_RW,
2336 			       &usched_dfly_swmask, ~PPQMASK,
2337 			       "Queue mask to force thread switch");
2338 
2339 
2340 #if 0
2341 		SYSCTL_ADD_PROC(&usched_dfly_sysctl_ctx,
2342 				SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2343 				OID_AUTO, "stick_to_level",
2344 				CTLTYPE_INT | CTLFLAG_RW,
2345 				NULL, sizeof usched_dfly_stick_to_level,
2346 				sysctl_usched_dfly_stick_to_level, "I",
2347 				"Stick a process to this level. See sysctl"
2348 				"paremter hw.cpu_topology.level_description");
2349 #endif
2350 	}
2351 }
2352 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
2353 	dfly_helper_thread_cpu_init, NULL)
2354 
2355 #else /* No SMP options - just add the configurable parameters to sysctl */
2356 
2357 static void
2358 sched_sysctl_tree_init(void)
2359 {
2360 	sysctl_ctx_init(&usched_dfly_sysctl_ctx);
2361 	usched_dfly_sysctl_tree =
2362 		SYSCTL_ADD_NODE(&usched_dfly_sysctl_ctx,
2363 				SYSCTL_STATIC_CHILDREN(_kern), OID_AUTO,
2364 				"usched_dfly", CTLFLAG_RD, 0, "");
2365 
2366 	/* usched_dfly sysctl configurable parameters */
2367 	SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2368 		       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2369 		       OID_AUTO, "rrinterval", CTLFLAG_RW,
2370 		       &usched_dfly_rrinterval, 0, "");
2371 	SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2372 		       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2373 		       OID_AUTO, "decay", CTLFLAG_RW,
2374 		       &usched_dfly_decay, 0, "Extra decay when not running");
2375 }
2376 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
2377 	sched_sysctl_tree_init, NULL)
2378 #endif
2379