xref: /dragonfly/sys/kern/vfs_bio.c (revision 10cbe914)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/devicestat.h>
36 #include <sys/eventhandler.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mount.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/proc.h>
43 #include <sys/reboot.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 #include <sys/dsched.h>
49 #include <sys/proc.h>
50 #include <vm/vm.h>
51 #include <vm/vm_param.h>
52 #include <vm/vm_kern.h>
53 #include <vm/vm_pageout.h>
54 #include <vm/vm_page.h>
55 #include <vm/vm_object.h>
56 #include <vm/vm_extern.h>
57 #include <vm/vm_map.h>
58 #include <vm/vm_pager.h>
59 #include <vm/swap_pager.h>
60 
61 #include <sys/buf2.h>
62 #include <sys/thread2.h>
63 #include <sys/spinlock2.h>
64 #include <sys/mplock2.h>
65 #include <vm/vm_page2.h>
66 
67 #include "opt_ddb.h"
68 #ifdef DDB
69 #include <ddb/ddb.h>
70 #endif
71 
72 /*
73  * Buffer queues.
74  */
75 enum bufq_type {
76 	BQUEUE_NONE,    	/* not on any queue */
77 	BQUEUE_LOCKED,  	/* locked buffers */
78 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
79 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
80 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
81 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
82 	BQUEUE_EMPTY,    	/* empty buffer headers */
83 
84 	BUFFER_QUEUES		/* number of buffer queues */
85 };
86 
87 typedef enum bufq_type bufq_type_t;
88 
89 #define BD_WAKE_SIZE	16384
90 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
91 
92 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
93 static struct spinlock bufqspin = SPINLOCK_INITIALIZER(&bufqspin);
94 static struct spinlock bufcspin = SPINLOCK_INITIALIZER(&bufcspin);
95 
96 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
97 
98 struct buf *buf;		/* buffer header pool */
99 
100 static void vfs_clean_pages(struct buf *bp);
101 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
102 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
103 static void vfs_vmio_release(struct buf *bp);
104 static int flushbufqueues(bufq_type_t q);
105 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
106 
107 static void bd_signal(int totalspace);
108 static void buf_daemon(void);
109 static void buf_daemon_hw(void);
110 
111 /*
112  * bogus page -- for I/O to/from partially complete buffers
113  * this is a temporary solution to the problem, but it is not
114  * really that bad.  it would be better to split the buffer
115  * for input in the case of buffers partially already in memory,
116  * but the code is intricate enough already.
117  */
118 vm_page_t bogus_page;
119 
120 /*
121  * These are all static, but make the ones we export globals so we do
122  * not need to use compiler magic.
123  */
124 int bufspace;			/* locked by buffer_map */
125 int maxbufspace;
126 static int bufmallocspace;	/* atomic ops */
127 int maxbufmallocspace, lobufspace, hibufspace;
128 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
129 static int lorunningspace;
130 static int hirunningspace;
131 static int runningbufreq;		/* locked by bufcspin */
132 static int dirtybufspace;		/* locked by bufcspin */
133 static int dirtybufcount;		/* locked by bufcspin */
134 static int dirtybufspacehw;		/* locked by bufcspin */
135 static int dirtybufcounthw;		/* locked by bufcspin */
136 static int runningbufspace;		/* locked by bufcspin */
137 static int runningbufcount;		/* locked by bufcspin */
138 int lodirtybufspace;
139 int hidirtybufspace;
140 static int getnewbufcalls;
141 static int getnewbufrestarts;
142 static int recoverbufcalls;
143 static int needsbuffer;		/* locked by bufcspin */
144 static int bd_request;		/* locked by bufcspin */
145 static int bd_request_hw;	/* locked by bufcspin */
146 static u_int bd_wake_ary[BD_WAKE_SIZE];
147 static u_int bd_wake_index;
148 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
149 static int debug_commit;
150 
151 static struct thread *bufdaemon_td;
152 static struct thread *bufdaemonhw_td;
153 static u_int lowmempgallocs;
154 static u_int lowmempgfails;
155 
156 /*
157  * Sysctls for operational control of the buffer cache.
158  */
159 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
160 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
161 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
162 	"High watermark used to trigger explicit flushing of dirty buffers");
163 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
164 	"Minimum amount of buffer space required for active I/O");
165 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
166 	"Maximum amount of buffer space to usable for active I/O");
167 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
168 	"Page allocations done during periods of very low free memory");
169 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0,
170 	"Page allocations which failed during periods of very low free memory");
171 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
172 	"Recycle pages to active or inactive queue transition pt 0-64");
173 /*
174  * Sysctls determining current state of the buffer cache.
175  */
176 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
177 	"Total number of buffers in buffer cache");
178 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
179 	"Pending bytes of dirty buffers (all)");
180 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
181 	"Pending bytes of dirty buffers (heavy weight)");
182 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
183 	"Pending number of dirty buffers");
184 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
185 	"Pending number of dirty buffers (heavy weight)");
186 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
187 	"I/O bytes currently in progress due to asynchronous writes");
188 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
189 	"I/O buffers currently in progress due to asynchronous writes");
190 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
191 	"Hard limit on maximum amount of memory usable for buffer space");
192 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
193 	"Soft limit on maximum amount of memory usable for buffer space");
194 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
195 	"Minimum amount of memory to reserve for system buffer space");
196 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
197 	"Amount of memory available for buffers");
198 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
199 	0, "Maximum amount of memory reserved for buffers using malloc");
200 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
201 	"Amount of memory left for buffers using malloc-scheme");
202 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
203 	"New buffer header acquisition requests");
204 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
205 	0, "New buffer header acquisition restarts");
206 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
207 	"Recover VM space in an emergency");
208 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
209 	"Buffer acquisition restarts due to fragmented buffer map");
210 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
211 	"Amount of time KVA space was deallocated in an arbitrary buffer");
212 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
213 	"Amount of time buffer re-use operations were successful");
214 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
215 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
216 	"sizeof(struct buf)");
217 
218 char *buf_wmesg = BUF_WMESG;
219 
220 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
221 #define VFS_BIO_NEED_UNUSED02	0x02
222 #define VFS_BIO_NEED_UNUSED04	0x04
223 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
224 
225 /*
226  * bufspacewakeup:
227  *
228  *	Called when buffer space is potentially available for recovery.
229  *	getnewbuf() will block on this flag when it is unable to free
230  *	sufficient buffer space.  Buffer space becomes recoverable when
231  *	bp's get placed back in the queues.
232  */
233 static __inline void
234 bufspacewakeup(void)
235 {
236 	/*
237 	 * If someone is waiting for BUF space, wake them up.  Even
238 	 * though we haven't freed the kva space yet, the waiting
239 	 * process will be able to now.
240 	 */
241 	spin_lock(&bufcspin);
242 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
243 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
244 		spin_unlock(&bufcspin);
245 		wakeup(&needsbuffer);
246 	} else {
247 		spin_unlock(&bufcspin);
248 	}
249 }
250 
251 /*
252  * runningbufwakeup:
253  *
254  *	Accounting for I/O in progress.
255  *
256  */
257 static __inline void
258 runningbufwakeup(struct buf *bp)
259 {
260 	int totalspace;
261 	int limit;
262 
263 	if ((totalspace = bp->b_runningbufspace) != 0) {
264 		spin_lock(&bufcspin);
265 		runningbufspace -= totalspace;
266 		--runningbufcount;
267 		bp->b_runningbufspace = 0;
268 
269 		/*
270 		 * see waitrunningbufspace() for limit test.
271 		 */
272 		limit = hirunningspace * 4 / 6;
273 		if (runningbufreq && runningbufspace <= limit) {
274 			runningbufreq = 0;
275 			spin_unlock(&bufcspin);
276 			wakeup(&runningbufreq);
277 		} else {
278 			spin_unlock(&bufcspin);
279 		}
280 		bd_signal(totalspace);
281 	}
282 }
283 
284 /*
285  * bufcountwakeup:
286  *
287  *	Called when a buffer has been added to one of the free queues to
288  *	account for the buffer and to wakeup anyone waiting for free buffers.
289  *	This typically occurs when large amounts of metadata are being handled
290  *	by the buffer cache ( else buffer space runs out first, usually ).
291  *
292  * MPSAFE
293  */
294 static __inline void
295 bufcountwakeup(void)
296 {
297 	spin_lock(&bufcspin);
298 	if (needsbuffer) {
299 		needsbuffer &= ~VFS_BIO_NEED_ANY;
300 		spin_unlock(&bufcspin);
301 		wakeup(&needsbuffer);
302 	} else {
303 		spin_unlock(&bufcspin);
304 	}
305 }
306 
307 /*
308  * waitrunningbufspace()
309  *
310  * Wait for the amount of running I/O to drop to hirunningspace * 4 / 6.
311  * This is the point where write bursting stops so we don't want to wait
312  * for the running amount to drop below it (at least if we still want bioq
313  * to burst writes).
314  *
315  * The caller may be using this function to block in a tight loop, we
316  * must block while runningbufspace is greater then or equal to
317  * hirunningspace * 4 / 6.
318  *
319  * And even with that it may not be enough, due to the presence of
320  * B_LOCKED dirty buffers, so also wait for at least one running buffer
321  * to complete.
322  */
323 void
324 waitrunningbufspace(void)
325 {
326 	int limit = hirunningspace * 4 / 6;
327 	int dummy;
328 
329 	spin_lock(&bufcspin);
330 	if (runningbufspace > limit) {
331 		while (runningbufspace > limit) {
332 			++runningbufreq;
333 			ssleep(&runningbufreq, &bufcspin, 0, "wdrn1", 0);
334 		}
335 		spin_unlock(&bufcspin);
336 	} else if (runningbufspace > limit / 2) {
337 		++runningbufreq;
338 		spin_unlock(&bufcspin);
339 		tsleep(&dummy, 0, "wdrn2", 1);
340 	} else {
341 		spin_unlock(&bufcspin);
342 	}
343 }
344 
345 /*
346  * buf_dirty_count_severe:
347  *
348  *	Return true if we have too many dirty buffers.
349  */
350 int
351 buf_dirty_count_severe(void)
352 {
353 	return (runningbufspace + dirtybufspace >= hidirtybufspace ||
354 	        dirtybufcount >= nbuf / 2);
355 }
356 
357 /*
358  * Return true if the amount of running I/O is severe and BIOQ should
359  * start bursting.
360  */
361 int
362 buf_runningbufspace_severe(void)
363 {
364 	return (runningbufspace >= hirunningspace * 4 / 6);
365 }
366 
367 /*
368  * vfs_buf_test_cache:
369  *
370  * Called when a buffer is extended.  This function clears the B_CACHE
371  * bit if the newly extended portion of the buffer does not contain
372  * valid data.
373  *
374  * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
375  * cache buffers.  The VM pages remain dirty, as someone had mmap()'d
376  * them while a clean buffer was present.
377  */
378 static __inline__
379 void
380 vfs_buf_test_cache(struct buf *bp,
381 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
382 		  vm_page_t m)
383 {
384 	if (bp->b_flags & B_CACHE) {
385 		int base = (foff + off) & PAGE_MASK;
386 		if (vm_page_is_valid(m, base, size) == 0)
387 			bp->b_flags &= ~B_CACHE;
388 	}
389 }
390 
391 /*
392  * bd_speedup()
393  *
394  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
395  * low water mark.
396  *
397  * MPSAFE
398  */
399 static __inline__
400 void
401 bd_speedup(void)
402 {
403 	if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
404 		return;
405 
406 	if (bd_request == 0 &&
407 	    (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
408 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
409 		spin_lock(&bufcspin);
410 		bd_request = 1;
411 		spin_unlock(&bufcspin);
412 		wakeup(&bd_request);
413 	}
414 	if (bd_request_hw == 0 &&
415 	    (dirtybufspacehw > lodirtybufspace / 2 ||
416 	     dirtybufcounthw >= nbuf / 2)) {
417 		spin_lock(&bufcspin);
418 		bd_request_hw = 1;
419 		spin_unlock(&bufcspin);
420 		wakeup(&bd_request_hw);
421 	}
422 }
423 
424 /*
425  * bd_heatup()
426  *
427  *	Get the buf_daemon heated up when the number of running and dirty
428  *	buffers exceeds the mid-point.
429  *
430  *	Return the total number of dirty bytes past the second mid point
431  *	as a measure of how much excess dirty data there is in the system.
432  *
433  * MPSAFE
434  */
435 int
436 bd_heatup(void)
437 {
438 	int mid1;
439 	int mid2;
440 	int totalspace;
441 
442 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
443 
444 	totalspace = runningbufspace + dirtybufspace;
445 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
446 		bd_speedup();
447 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
448 		if (totalspace >= mid2)
449 			return(totalspace - mid2);
450 	}
451 	return(0);
452 }
453 
454 /*
455  * bd_wait()
456  *
457  *	Wait for the buffer cache to flush (totalspace) bytes worth of
458  *	buffers, then return.
459  *
460  *	Regardless this function blocks while the number of dirty buffers
461  *	exceeds hidirtybufspace.
462  *
463  * MPSAFE
464  */
465 void
466 bd_wait(int totalspace)
467 {
468 	u_int i;
469 	int count;
470 
471 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
472 		return;
473 
474 	while (totalspace > 0) {
475 		bd_heatup();
476 		if (totalspace > runningbufspace + dirtybufspace)
477 			totalspace = runningbufspace + dirtybufspace;
478 		count = totalspace / BKVASIZE;
479 		if (count >= BD_WAKE_SIZE)
480 			count = BD_WAKE_SIZE - 1;
481 
482 		spin_lock(&bufcspin);
483 		i = (bd_wake_index + count) & BD_WAKE_MASK;
484 		++bd_wake_ary[i];
485 
486 		/*
487 		 * This is not a strict interlock, so we play a bit loose
488 		 * with locking access to dirtybufspace*
489 		 */
490 		tsleep_interlock(&bd_wake_ary[i], 0);
491 		spin_unlock(&bufcspin);
492 		tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz);
493 
494 		totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
495 	}
496 }
497 
498 /*
499  * bd_signal()
500  *
501  *	This function is called whenever runningbufspace or dirtybufspace
502  *	is reduced.  Track threads waiting for run+dirty buffer I/O
503  *	complete.
504  *
505  * MPSAFE
506  */
507 static void
508 bd_signal(int totalspace)
509 {
510 	u_int i;
511 
512 	if (totalspace > 0) {
513 		if (totalspace > BKVASIZE * BD_WAKE_SIZE)
514 			totalspace = BKVASIZE * BD_WAKE_SIZE;
515 		spin_lock(&bufcspin);
516 		while (totalspace > 0) {
517 			i = bd_wake_index++;
518 			i &= BD_WAKE_MASK;
519 			if (bd_wake_ary[i]) {
520 				bd_wake_ary[i] = 0;
521 				spin_unlock(&bufcspin);
522 				wakeup(&bd_wake_ary[i]);
523 				spin_lock(&bufcspin);
524 			}
525 			totalspace -= BKVASIZE;
526 		}
527 		spin_unlock(&bufcspin);
528 	}
529 }
530 
531 /*
532  * BIO tracking support routines.
533  *
534  * Release a ref on a bio_track.  Wakeup requests are atomically released
535  * along with the last reference so bk_active will never wind up set to
536  * only 0x80000000.
537  *
538  * MPSAFE
539  */
540 static
541 void
542 bio_track_rel(struct bio_track *track)
543 {
544 	int	active;
545 	int	desired;
546 
547 	/*
548 	 * Shortcut
549 	 */
550 	active = track->bk_active;
551 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
552 		return;
553 
554 	/*
555 	 * Full-on.  Note that the wait flag is only atomically released on
556 	 * the 1->0 count transition.
557 	 *
558 	 * We check for a negative count transition using bit 30 since bit 31
559 	 * has a different meaning.
560 	 */
561 	for (;;) {
562 		desired = (active & 0x7FFFFFFF) - 1;
563 		if (desired)
564 			desired |= active & 0x80000000;
565 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
566 			if (desired & 0x40000000)
567 				panic("bio_track_rel: bad count: %p\n", track);
568 			if (active & 0x80000000)
569 				wakeup(track);
570 			break;
571 		}
572 		active = track->bk_active;
573 	}
574 }
575 
576 /*
577  * Wait for the tracking count to reach 0.
578  *
579  * Use atomic ops such that the wait flag is only set atomically when
580  * bk_active is non-zero.
581  *
582  * MPSAFE
583  */
584 int
585 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
586 {
587 	int	active;
588 	int	desired;
589 	int	error;
590 
591 	/*
592 	 * Shortcut
593 	 */
594 	if (track->bk_active == 0)
595 		return(0);
596 
597 	/*
598 	 * Full-on.  Note that the wait flag may only be atomically set if
599 	 * the active count is non-zero.
600 	 *
601 	 * NOTE: We cannot optimize active == desired since a wakeup could
602 	 *	 clear active prior to our tsleep_interlock().
603 	 */
604 	error = 0;
605 	while ((active = track->bk_active) != 0) {
606 		cpu_ccfence();
607 		desired = active | 0x80000000;
608 		tsleep_interlock(track, slp_flags);
609 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
610 			error = tsleep(track, slp_flags | PINTERLOCKED,
611 				       "trwait", slp_timo);
612 			if (error)
613 				break;
614 		}
615 	}
616 	return (error);
617 }
618 
619 /*
620  * bufinit:
621  *
622  *	Load time initialisation of the buffer cache, called from machine
623  *	dependant initialization code.
624  */
625 void
626 bufinit(void)
627 {
628 	struct buf *bp;
629 	vm_offset_t bogus_offset;
630 	int i;
631 
632 	/* next, make a null set of free lists */
633 	for (i = 0; i < BUFFER_QUEUES; i++)
634 		TAILQ_INIT(&bufqueues[i]);
635 
636 	/* finally, initialize each buffer header and stick on empty q */
637 	for (i = 0; i < nbuf; i++) {
638 		bp = &buf[i];
639 		bzero(bp, sizeof *bp);
640 		bp->b_flags = B_INVAL;	/* we're just an empty header */
641 		bp->b_cmd = BUF_CMD_DONE;
642 		bp->b_qindex = BQUEUE_EMPTY;
643 		initbufbio(bp);
644 		xio_init(&bp->b_xio);
645 		buf_dep_init(bp);
646 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
647 	}
648 
649 	/*
650 	 * maxbufspace is the absolute maximum amount of buffer space we are
651 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
652 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
653 	 * used by most other processes.  The differential is required to
654 	 * ensure that buf_daemon is able to run when other processes might
655 	 * be blocked waiting for buffer space.
656 	 *
657 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
658 	 * this may result in KVM fragmentation which is not handled optimally
659 	 * by the system.
660 	 */
661 	maxbufspace = nbuf * BKVASIZE;
662 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
663 	lobufspace = hibufspace - MAXBSIZE;
664 
665 	lorunningspace = 512 * 1024;
666 	/* hirunningspace -- see below */
667 
668 	/*
669 	 * Limit the amount of malloc memory since it is wired permanently
670 	 * into the kernel space.  Even though this is accounted for in
671 	 * the buffer allocation, we don't want the malloced region to grow
672 	 * uncontrolled.  The malloc scheme improves memory utilization
673 	 * significantly on average (small) directories.
674 	 */
675 	maxbufmallocspace = hibufspace / 20;
676 
677 	/*
678 	 * Reduce the chance of a deadlock occuring by limiting the number
679 	 * of delayed-write dirty buffers we allow to stack up.
680 	 *
681 	 * We don't want too much actually queued to the device at once
682 	 * (XXX this needs to be per-mount!), because the buffers will
683 	 * wind up locked for a very long period of time while the I/O
684 	 * drains.
685 	 */
686 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
687 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
688 	if (hirunningspace < 1024 * 1024)
689 		hirunningspace = 1024 * 1024;
690 
691 	dirtybufspace = 0;
692 	dirtybufspacehw = 0;
693 
694 	lodirtybufspace = hidirtybufspace / 2;
695 
696 	/*
697 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
698 	 * somewhat of a hack at the moment, we really need to limit ourselves
699 	 * based on the number of bytes of I/O in-transit that were initiated
700 	 * from buf_daemon.
701 	 */
702 
703 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
704 	bogus_page = vm_page_alloc(&kernel_object,
705 				   (bogus_offset >> PAGE_SHIFT),
706 				   VM_ALLOC_NORMAL);
707 	vmstats.v_wire_count++;
708 
709 }
710 
711 /*
712  * Initialize the embedded bio structures, typically used by
713  * deprecated code which tries to allocate its own struct bufs.
714  */
715 void
716 initbufbio(struct buf *bp)
717 {
718 	bp->b_bio1.bio_buf = bp;
719 	bp->b_bio1.bio_prev = NULL;
720 	bp->b_bio1.bio_offset = NOOFFSET;
721 	bp->b_bio1.bio_next = &bp->b_bio2;
722 	bp->b_bio1.bio_done = NULL;
723 	bp->b_bio1.bio_flags = 0;
724 
725 	bp->b_bio2.bio_buf = bp;
726 	bp->b_bio2.bio_prev = &bp->b_bio1;
727 	bp->b_bio2.bio_offset = NOOFFSET;
728 	bp->b_bio2.bio_next = NULL;
729 	bp->b_bio2.bio_done = NULL;
730 	bp->b_bio2.bio_flags = 0;
731 
732 	BUF_LOCKINIT(bp);
733 }
734 
735 /*
736  * Reinitialize the embedded bio structures as well as any additional
737  * translation cache layers.
738  */
739 void
740 reinitbufbio(struct buf *bp)
741 {
742 	struct bio *bio;
743 
744 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
745 		bio->bio_done = NULL;
746 		bio->bio_offset = NOOFFSET;
747 	}
748 }
749 
750 /*
751  * Undo the effects of an initbufbio().
752  */
753 void
754 uninitbufbio(struct buf *bp)
755 {
756 	dsched_exit_buf(bp);
757 	BUF_LOCKFREE(bp);
758 }
759 
760 /*
761  * Push another BIO layer onto an existing BIO and return it.  The new
762  * BIO layer may already exist, holding cached translation data.
763  */
764 struct bio *
765 push_bio(struct bio *bio)
766 {
767 	struct bio *nbio;
768 
769 	if ((nbio = bio->bio_next) == NULL) {
770 		int index = bio - &bio->bio_buf->b_bio_array[0];
771 		if (index >= NBUF_BIO - 1) {
772 			panic("push_bio: too many layers bp %p\n",
773 				bio->bio_buf);
774 		}
775 		nbio = &bio->bio_buf->b_bio_array[index + 1];
776 		bio->bio_next = nbio;
777 		nbio->bio_prev = bio;
778 		nbio->bio_buf = bio->bio_buf;
779 		nbio->bio_offset = NOOFFSET;
780 		nbio->bio_done = NULL;
781 		nbio->bio_next = NULL;
782 	}
783 	KKASSERT(nbio->bio_done == NULL);
784 	return(nbio);
785 }
786 
787 /*
788  * Pop a BIO translation layer, returning the previous layer.  The
789  * must have been previously pushed.
790  */
791 struct bio *
792 pop_bio(struct bio *bio)
793 {
794 	return(bio->bio_prev);
795 }
796 
797 void
798 clearbiocache(struct bio *bio)
799 {
800 	while (bio) {
801 		bio->bio_offset = NOOFFSET;
802 		bio = bio->bio_next;
803 	}
804 }
805 
806 /*
807  * bfreekva:
808  *
809  *	Free the KVA allocation for buffer 'bp'.
810  *
811  *	Must be called from a critical section as this is the only locking for
812  *	buffer_map.
813  *
814  *	Since this call frees up buffer space, we call bufspacewakeup().
815  *
816  * MPALMOSTSAFE
817  */
818 static void
819 bfreekva(struct buf *bp)
820 {
821 	int count;
822 
823 	if (bp->b_kvasize) {
824 		++buffreekvacnt;
825 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
826 		vm_map_lock(&buffer_map);
827 		bufspace -= bp->b_kvasize;
828 		vm_map_delete(&buffer_map,
829 		    (vm_offset_t) bp->b_kvabase,
830 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
831 		    &count
832 		);
833 		vm_map_unlock(&buffer_map);
834 		vm_map_entry_release(count);
835 		bp->b_kvasize = 0;
836 		bp->b_kvabase = NULL;
837 		bufspacewakeup();
838 	}
839 }
840 
841 /*
842  * bremfree:
843  *
844  *	Remove the buffer from the appropriate free list.
845  */
846 static __inline void
847 _bremfree(struct buf *bp)
848 {
849 	if (bp->b_qindex != BQUEUE_NONE) {
850 		KASSERT(BUF_REFCNTNB(bp) == 1,
851 				("bremfree: bp %p not locked",bp));
852 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
853 		bp->b_qindex = BQUEUE_NONE;
854 	} else {
855 		if (BUF_REFCNTNB(bp) <= 1)
856 			panic("bremfree: removing a buffer not on a queue");
857 	}
858 }
859 
860 void
861 bremfree(struct buf *bp)
862 {
863 	spin_lock(&bufqspin);
864 	_bremfree(bp);
865 	spin_unlock(&bufqspin);
866 }
867 
868 static void
869 bremfree_locked(struct buf *bp)
870 {
871 	_bremfree(bp);
872 }
873 
874 /*
875  * bread:
876  *
877  *	Get a buffer with the specified data.  Look in the cache first.  We
878  *	must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
879  *	is set, the buffer is valid and we do not have to do anything ( see
880  *	getblk() ).
881  *
882  * MPALMOSTSAFE
883  */
884 int
885 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
886 {
887 	struct buf *bp;
888 
889 	bp = getblk(vp, loffset, size, 0, 0);
890 	*bpp = bp;
891 
892 	/* if not found in cache, do some I/O */
893 	if ((bp->b_flags & B_CACHE) == 0) {
894 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
895 		bp->b_cmd = BUF_CMD_READ;
896 		bp->b_bio1.bio_done = biodone_sync;
897 		bp->b_bio1.bio_flags |= BIO_SYNC;
898 		vfs_busy_pages(vp, bp);
899 		vn_strategy(vp, &bp->b_bio1);
900 		return (biowait(&bp->b_bio1, "biord"));
901 	}
902 	return (0);
903 }
904 
905 /*
906  * breadn:
907  *
908  *	Operates like bread, but also starts asynchronous I/O on
909  *	read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
910  *	to initiating I/O . If B_CACHE is set, the buffer is valid
911  *	and we do not have to do anything.
912  *
913  * MPALMOSTSAFE
914  */
915 int
916 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
917 	int *rabsize, int cnt, struct buf **bpp)
918 {
919 	struct buf *bp, *rabp;
920 	int i;
921 	int rv = 0, readwait = 0;
922 
923 	*bpp = bp = getblk(vp, loffset, size, 0, 0);
924 
925 	/* if not found in cache, do some I/O */
926 	if ((bp->b_flags & B_CACHE) == 0) {
927 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
928 		bp->b_cmd = BUF_CMD_READ;
929 		bp->b_bio1.bio_done = biodone_sync;
930 		bp->b_bio1.bio_flags |= BIO_SYNC;
931 		vfs_busy_pages(vp, bp);
932 		vn_strategy(vp, &bp->b_bio1);
933 		++readwait;
934 	}
935 
936 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
937 		if (inmem(vp, *raoffset))
938 			continue;
939 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
940 
941 		if ((rabp->b_flags & B_CACHE) == 0) {
942 			rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
943 			rabp->b_cmd = BUF_CMD_READ;
944 			vfs_busy_pages(vp, rabp);
945 			BUF_KERNPROC(rabp);
946 			vn_strategy(vp, &rabp->b_bio1);
947 		} else {
948 			brelse(rabp);
949 		}
950 	}
951 	if (readwait)
952 		rv = biowait(&bp->b_bio1, "biord");
953 	return (rv);
954 }
955 
956 /*
957  * bwrite:
958  *
959  *	Synchronous write, waits for completion.
960  *
961  *	Write, release buffer on completion.  (Done by iodone
962  *	if async).  Do not bother writing anything if the buffer
963  *	is invalid.
964  *
965  *	Note that we set B_CACHE here, indicating that buffer is
966  *	fully valid and thus cacheable.  This is true even of NFS
967  *	now so we set it generally.  This could be set either here
968  *	or in biodone() since the I/O is synchronous.  We put it
969  *	here.
970  */
971 int
972 bwrite(struct buf *bp)
973 {
974 	int error;
975 
976 	if (bp->b_flags & B_INVAL) {
977 		brelse(bp);
978 		return (0);
979 	}
980 	if (BUF_REFCNTNB(bp) == 0)
981 		panic("bwrite: buffer is not busy???");
982 
983 	/* Mark the buffer clean */
984 	bundirty(bp);
985 
986 	bp->b_flags &= ~(B_ERROR | B_EINTR);
987 	bp->b_flags |= B_CACHE;
988 	bp->b_cmd = BUF_CMD_WRITE;
989 	bp->b_bio1.bio_done = biodone_sync;
990 	bp->b_bio1.bio_flags |= BIO_SYNC;
991 	vfs_busy_pages(bp->b_vp, bp);
992 
993 	/*
994 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
995 	 * valid for vnode-backed buffers.
996 	 */
997 	bsetrunningbufspace(bp, bp->b_bufsize);
998 	vn_strategy(bp->b_vp, &bp->b_bio1);
999 	error = biowait(&bp->b_bio1, "biows");
1000 	brelse(bp);
1001 
1002 	return (error);
1003 }
1004 
1005 /*
1006  * bawrite:
1007  *
1008  *	Asynchronous write.  Start output on a buffer, but do not wait for
1009  *	it to complete.  The buffer is released when the output completes.
1010  *
1011  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1012  *	B_INVAL buffers.  Not us.
1013  */
1014 void
1015 bawrite(struct buf *bp)
1016 {
1017 	if (bp->b_flags & B_INVAL) {
1018 		brelse(bp);
1019 		return;
1020 	}
1021 	if (BUF_REFCNTNB(bp) == 0)
1022 		panic("bwrite: buffer is not busy???");
1023 
1024 	/* Mark the buffer clean */
1025 	bundirty(bp);
1026 
1027 	bp->b_flags &= ~(B_ERROR | B_EINTR);
1028 	bp->b_flags |= B_CACHE;
1029 	bp->b_cmd = BUF_CMD_WRITE;
1030 	KKASSERT(bp->b_bio1.bio_done == NULL);
1031 	vfs_busy_pages(bp->b_vp, bp);
1032 
1033 	/*
1034 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1035 	 * valid for vnode-backed buffers.
1036 	 */
1037 	bsetrunningbufspace(bp, bp->b_bufsize);
1038 	BUF_KERNPROC(bp);
1039 	vn_strategy(bp->b_vp, &bp->b_bio1);
1040 }
1041 
1042 /*
1043  * bowrite:
1044  *
1045  *	Ordered write.  Start output on a buffer, and flag it so that the
1046  *	device will write it in the order it was queued.  The buffer is
1047  *	released when the output completes.  bwrite() ( or the VOP routine
1048  *	anyway ) is responsible for handling B_INVAL buffers.
1049  */
1050 int
1051 bowrite(struct buf *bp)
1052 {
1053 	bp->b_flags |= B_ORDERED;
1054 	bawrite(bp);
1055 	return (0);
1056 }
1057 
1058 /*
1059  * bdwrite:
1060  *
1061  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1062  *	anything if the buffer is marked invalid.
1063  *
1064  *	Note that since the buffer must be completely valid, we can safely
1065  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1066  *	biodone() in order to prevent getblk from writing the buffer
1067  *	out synchronously.
1068  */
1069 void
1070 bdwrite(struct buf *bp)
1071 {
1072 	if (BUF_REFCNTNB(bp) == 0)
1073 		panic("bdwrite: buffer is not busy");
1074 
1075 	if (bp->b_flags & B_INVAL) {
1076 		brelse(bp);
1077 		return;
1078 	}
1079 	bdirty(bp);
1080 
1081 	if (dsched_is_clear_buf_priv(bp))
1082 		dsched_new_buf(bp);
1083 
1084 	/*
1085 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1086 	 * true even of NFS now.
1087 	 */
1088 	bp->b_flags |= B_CACHE;
1089 
1090 	/*
1091 	 * This bmap keeps the system from needing to do the bmap later,
1092 	 * perhaps when the system is attempting to do a sync.  Since it
1093 	 * is likely that the indirect block -- or whatever other datastructure
1094 	 * that the filesystem needs is still in memory now, it is a good
1095 	 * thing to do this.  Note also, that if the pageout daemon is
1096 	 * requesting a sync -- there might not be enough memory to do
1097 	 * the bmap then...  So, this is important to do.
1098 	 */
1099 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1100 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1101 			 NULL, NULL, BUF_CMD_WRITE);
1102 	}
1103 
1104 	/*
1105 	 * Because the underlying pages may still be mapped and
1106 	 * writable trying to set the dirty buffer (b_dirtyoff/end)
1107 	 * range here will be inaccurate.
1108 	 *
1109 	 * However, we must still clean the pages to satisfy the
1110 	 * vnode_pager and pageout daemon, so theythink the pages
1111 	 * have been "cleaned".  What has really occured is that
1112 	 * they've been earmarked for later writing by the buffer
1113 	 * cache.
1114 	 *
1115 	 * So we get the b_dirtyoff/end update but will not actually
1116 	 * depend on it (NFS that is) until the pages are busied for
1117 	 * writing later on.
1118 	 */
1119 	vfs_clean_pages(bp);
1120 	bqrelse(bp);
1121 
1122 	/*
1123 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1124 	 * due to the softdep code.
1125 	 */
1126 }
1127 
1128 /*
1129  * Fake write - return pages to VM system as dirty, leave the buffer clean.
1130  * This is used by tmpfs.
1131  *
1132  * It is important for any VFS using this routine to NOT use it for
1133  * IO_SYNC or IO_ASYNC operations which occur when the system really
1134  * wants to flush VM pages to backing store.
1135  */
1136 void
1137 buwrite(struct buf *bp)
1138 {
1139 	vm_page_t m;
1140 	int i;
1141 
1142 	/*
1143 	 * Only works for VMIO buffers.  If the buffer is already
1144 	 * marked for delayed-write we can't avoid the bdwrite().
1145 	 */
1146 	if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1147 		bdwrite(bp);
1148 		return;
1149 	}
1150 
1151 	/*
1152 	 * Set valid & dirty.
1153 	 *
1154 	 * WARNING! vfs_dirty_one_page() assumes vm_token is held for now.
1155 	 */
1156 	lwkt_gettoken(&vm_token);
1157 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1158 		m = bp->b_xio.xio_pages[i];
1159 		vfs_dirty_one_page(bp, i, m);
1160 	}
1161 	lwkt_reltoken(&vm_token);
1162 	bqrelse(bp);
1163 }
1164 
1165 /*
1166  * bdirty:
1167  *
1168  *	Turn buffer into delayed write request by marking it B_DELWRI.
1169  *	B_RELBUF and B_NOCACHE must be cleared.
1170  *
1171  *	We reassign the buffer to itself to properly update it in the
1172  *	dirty/clean lists.
1173  *
1174  *	Must be called from a critical section.
1175  *	The buffer must be on BQUEUE_NONE.
1176  */
1177 void
1178 bdirty(struct buf *bp)
1179 {
1180 	KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1181 	if (bp->b_flags & B_NOCACHE) {
1182 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1183 		bp->b_flags &= ~B_NOCACHE;
1184 	}
1185 	if (bp->b_flags & B_INVAL) {
1186 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1187 	}
1188 	bp->b_flags &= ~B_RELBUF;
1189 
1190 	if ((bp->b_flags & B_DELWRI) == 0) {
1191 		lwkt_gettoken(&bp->b_vp->v_token);
1192 		bp->b_flags |= B_DELWRI;
1193 		reassignbuf(bp);
1194 		lwkt_reltoken(&bp->b_vp->v_token);
1195 
1196 		spin_lock(&bufcspin);
1197 		++dirtybufcount;
1198 		dirtybufspace += bp->b_bufsize;
1199 		if (bp->b_flags & B_HEAVY) {
1200 			++dirtybufcounthw;
1201 			dirtybufspacehw += bp->b_bufsize;
1202 		}
1203 		spin_unlock(&bufcspin);
1204 
1205 		bd_heatup();
1206 	}
1207 }
1208 
1209 /*
1210  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1211  * needs to be flushed with a different buf_daemon thread to avoid
1212  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1213  */
1214 void
1215 bheavy(struct buf *bp)
1216 {
1217 	if ((bp->b_flags & B_HEAVY) == 0) {
1218 		bp->b_flags |= B_HEAVY;
1219 		if (bp->b_flags & B_DELWRI) {
1220 			spin_lock(&bufcspin);
1221 			++dirtybufcounthw;
1222 			dirtybufspacehw += bp->b_bufsize;
1223 			spin_unlock(&bufcspin);
1224 		}
1225 	}
1226 }
1227 
1228 /*
1229  * bundirty:
1230  *
1231  *	Clear B_DELWRI for buffer.
1232  *
1233  *	Must be called from a critical section.
1234  *
1235  *	The buffer is typically on BQUEUE_NONE but there is one case in
1236  *	brelse() that calls this function after placing the buffer on
1237  *	a different queue.
1238  *
1239  * MPSAFE
1240  */
1241 void
1242 bundirty(struct buf *bp)
1243 {
1244 	if (bp->b_flags & B_DELWRI) {
1245 		lwkt_gettoken(&bp->b_vp->v_token);
1246 		bp->b_flags &= ~B_DELWRI;
1247 		reassignbuf(bp);
1248 		lwkt_reltoken(&bp->b_vp->v_token);
1249 
1250 		spin_lock(&bufcspin);
1251 		--dirtybufcount;
1252 		dirtybufspace -= bp->b_bufsize;
1253 		if (bp->b_flags & B_HEAVY) {
1254 			--dirtybufcounthw;
1255 			dirtybufspacehw -= bp->b_bufsize;
1256 		}
1257 		spin_unlock(&bufcspin);
1258 
1259 		bd_signal(bp->b_bufsize);
1260 	}
1261 	/*
1262 	 * Since it is now being written, we can clear its deferred write flag.
1263 	 */
1264 	bp->b_flags &= ~B_DEFERRED;
1265 }
1266 
1267 /*
1268  * Set the b_runningbufspace field, used to track how much I/O is
1269  * in progress at any given moment.
1270  */
1271 void
1272 bsetrunningbufspace(struct buf *bp, int bytes)
1273 {
1274 	bp->b_runningbufspace = bytes;
1275 	if (bytes) {
1276 		spin_lock(&bufcspin);
1277 		runningbufspace += bytes;
1278 		++runningbufcount;
1279 		spin_unlock(&bufcspin);
1280 	}
1281 }
1282 
1283 /*
1284  * brelse:
1285  *
1286  *	Release a busy buffer and, if requested, free its resources.  The
1287  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1288  *	to be accessed later as a cache entity or reused for other purposes.
1289  *
1290  * MPALMOSTSAFE
1291  */
1292 void
1293 brelse(struct buf *bp)
1294 {
1295 #ifdef INVARIANTS
1296 	int saved_flags = bp->b_flags;
1297 #endif
1298 
1299 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1300 
1301 	/*
1302 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1303 	 * its backing store.  Clear B_DELWRI.
1304 	 *
1305 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1306 	 * to destroy the buffer and backing store and (2) when the caller
1307 	 * wants to destroy the buffer and backing store after a write
1308 	 * completes.
1309 	 */
1310 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1311 		bundirty(bp);
1312 	}
1313 
1314 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1315 		/*
1316 		 * A re-dirtied buffer is only subject to destruction
1317 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1318 		 */
1319 		/* leave buffer intact */
1320 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1321 		   (bp->b_bufsize <= 0)) {
1322 		/*
1323 		 * Either a failed read or we were asked to free or not
1324 		 * cache the buffer.  This path is reached with B_DELWRI
1325 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1326 		 * backing store destruction.
1327 		 *
1328 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1329 		 * buffer cannot be immediately freed.
1330 		 */
1331 		bp->b_flags |= B_INVAL;
1332 		if (LIST_FIRST(&bp->b_dep) != NULL)
1333 			buf_deallocate(bp);
1334 		if (bp->b_flags & B_DELWRI) {
1335 			spin_lock(&bufcspin);
1336 			--dirtybufcount;
1337 			dirtybufspace -= bp->b_bufsize;
1338 			if (bp->b_flags & B_HEAVY) {
1339 				--dirtybufcounthw;
1340 				dirtybufspacehw -= bp->b_bufsize;
1341 			}
1342 			spin_unlock(&bufcspin);
1343 
1344 			bd_signal(bp->b_bufsize);
1345 		}
1346 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1347 	}
1348 
1349 	/*
1350 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1351 	 * If vfs_vmio_release() is called with either bit set, the
1352 	 * underlying pages may wind up getting freed causing a previous
1353 	 * write (bdwrite()) to get 'lost' because pages associated with
1354 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1355 	 * B_LOCKED buffer may be mapped by the filesystem.
1356 	 *
1357 	 * If we want to release the buffer ourselves (rather then the
1358 	 * originator asking us to release it), give the originator a
1359 	 * chance to countermand the release by setting B_LOCKED.
1360 	 *
1361 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1362 	 * if B_DELWRI is set.
1363 	 *
1364 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1365 	 * on pages to return pages to the VM page queues.
1366 	 */
1367 	if (bp->b_flags & (B_DELWRI | B_LOCKED)) {
1368 		bp->b_flags &= ~B_RELBUF;
1369 	} else if (vm_page_count_severe()) {
1370 		if (LIST_FIRST(&bp->b_dep) != NULL)
1371 			buf_deallocate(bp);		/* can set B_LOCKED */
1372 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1373 			bp->b_flags &= ~B_RELBUF;
1374 		else
1375 			bp->b_flags |= B_RELBUF;
1376 	}
1377 
1378 	/*
1379 	 * Make sure b_cmd is clear.  It may have already been cleared by
1380 	 * biodone().
1381 	 *
1382 	 * At this point destroying the buffer is governed by the B_INVAL
1383 	 * or B_RELBUF flags.
1384 	 */
1385 	bp->b_cmd = BUF_CMD_DONE;
1386 	dsched_exit_buf(bp);
1387 
1388 	/*
1389 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1390 	 * after an I/O may have replaces some of the pages with bogus pages
1391 	 * in order to not destroy dirty pages in a fill-in read.
1392 	 *
1393 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1394 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1395 	 * B_INVAL may still be set, however.
1396 	 *
1397 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1398 	 * but not the backing store.   B_NOCACHE will destroy the backing
1399 	 * store.
1400 	 *
1401 	 * Note that dirty NFS buffers contain byte-granular write ranges
1402 	 * and should not be destroyed w/ B_INVAL even if the backing store
1403 	 * is left intact.
1404 	 */
1405 	if (bp->b_flags & B_VMIO) {
1406 		/*
1407 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1408 		 */
1409 		int i, j, resid;
1410 		vm_page_t m;
1411 		off_t foff;
1412 		vm_pindex_t poff;
1413 		vm_object_t obj;
1414 		struct vnode *vp;
1415 
1416 		vp = bp->b_vp;
1417 
1418 		/*
1419 		 * Get the base offset and length of the buffer.  Note that
1420 		 * in the VMIO case if the buffer block size is not
1421 		 * page-aligned then b_data pointer may not be page-aligned.
1422 		 * But our b_xio.xio_pages array *IS* page aligned.
1423 		 *
1424 		 * block sizes less then DEV_BSIZE (usually 512) are not
1425 		 * supported due to the page granularity bits (m->valid,
1426 		 * m->dirty, etc...).
1427 		 *
1428 		 * See man buf(9) for more information
1429 		 */
1430 
1431 		resid = bp->b_bufsize;
1432 		foff = bp->b_loffset;
1433 
1434 		lwkt_gettoken(&vm_token);
1435 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1436 			m = bp->b_xio.xio_pages[i];
1437 			vm_page_flag_clear(m, PG_ZERO);
1438 			/*
1439 			 * If we hit a bogus page, fixup *all* of them
1440 			 * now.  Note that we left these pages wired
1441 			 * when we removed them so they had better exist,
1442 			 * and they cannot be ripped out from under us so
1443 			 * no critical section protection is necessary.
1444 			 */
1445 			if (m == bogus_page) {
1446 				obj = vp->v_object;
1447 				poff = OFF_TO_IDX(bp->b_loffset);
1448 
1449 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1450 					vm_page_t mtmp;
1451 
1452 					mtmp = bp->b_xio.xio_pages[j];
1453 					if (mtmp == bogus_page) {
1454 						mtmp = vm_page_lookup(obj, poff + j);
1455 						if (!mtmp) {
1456 							panic("brelse: page missing");
1457 						}
1458 						bp->b_xio.xio_pages[j] = mtmp;
1459 					}
1460 				}
1461 				bp->b_flags &= ~B_HASBOGUS;
1462 
1463 				if ((bp->b_flags & B_INVAL) == 0) {
1464 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1465 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1466 				}
1467 				m = bp->b_xio.xio_pages[i];
1468 			}
1469 
1470 			/*
1471 			 * Invalidate the backing store if B_NOCACHE is set
1472 			 * (e.g. used with vinvalbuf()).  If this is NFS
1473 			 * we impose a requirement that the block size be
1474 			 * a multiple of PAGE_SIZE and create a temporary
1475 			 * hack to basically invalidate the whole page.  The
1476 			 * problem is that NFS uses really odd buffer sizes
1477 			 * especially when tracking piecemeal writes and
1478 			 * it also vinvalbuf()'s a lot, which would result
1479 			 * in only partial page validation and invalidation
1480 			 * here.  If the file page is mmap()'d, however,
1481 			 * all the valid bits get set so after we invalidate
1482 			 * here we would end up with weird m->valid values
1483 			 * like 0xfc.  nfs_getpages() can't handle this so
1484 			 * we clear all the valid bits for the NFS case
1485 			 * instead of just some of them.
1486 			 *
1487 			 * The real bug is the VM system having to set m->valid
1488 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1489 			 * itself is an artifact of the whole 512-byte
1490 			 * granular mess that exists to support odd block
1491 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1492 			 * A complete rewrite is required.
1493 			 *
1494 			 * XXX
1495 			 */
1496 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1497 				int poffset = foff & PAGE_MASK;
1498 				int presid;
1499 
1500 				presid = PAGE_SIZE - poffset;
1501 				if (bp->b_vp->v_tag == VT_NFS &&
1502 				    bp->b_vp->v_type == VREG) {
1503 					; /* entire page */
1504 				} else if (presid > resid) {
1505 					presid = resid;
1506 				}
1507 				KASSERT(presid >= 0, ("brelse: extra page"));
1508 				vm_page_set_invalid(m, poffset, presid);
1509 
1510 				/*
1511 				 * Also make sure any swap cache is removed
1512 				 * as it is now stale (HAMMER in particular
1513 				 * uses B_NOCACHE to deal with buffer
1514 				 * aliasing).
1515 				 */
1516 				swap_pager_unswapped(m);
1517 			}
1518 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1519 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1520 		}
1521 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1522 			vfs_vmio_release(bp);
1523 		lwkt_reltoken(&vm_token);
1524 	} else {
1525 		/*
1526 		 * Rundown for non-VMIO buffers.
1527 		 */
1528 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1529 			if (bp->b_bufsize)
1530 				allocbuf(bp, 0);
1531 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1532 			if (bp->b_vp)
1533 				brelvp(bp);
1534 		}
1535 	}
1536 
1537 	if (bp->b_qindex != BQUEUE_NONE)
1538 		panic("brelse: free buffer onto another queue???");
1539 	if (BUF_REFCNTNB(bp) > 1) {
1540 		/* Temporary panic to verify exclusive locking */
1541 		/* This panic goes away when we allow shared refs */
1542 		panic("brelse: multiple refs");
1543 		/* NOT REACHED */
1544 		return;
1545 	}
1546 
1547 	/*
1548 	 * Figure out the correct queue to place the cleaned up buffer on.
1549 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1550 	 * disassociated from their vnode.
1551 	 */
1552 	spin_lock(&bufqspin);
1553 	if (bp->b_flags & B_LOCKED) {
1554 		/*
1555 		 * Buffers that are locked are placed in the locked queue
1556 		 * immediately, regardless of their state.
1557 		 */
1558 		bp->b_qindex = BQUEUE_LOCKED;
1559 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1560 	} else if (bp->b_bufsize == 0) {
1561 		/*
1562 		 * Buffers with no memory.  Due to conditionals near the top
1563 		 * of brelse() such buffers should probably already be
1564 		 * marked B_INVAL and disassociated from their vnode.
1565 		 */
1566 		bp->b_flags |= B_INVAL;
1567 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1568 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1569 		if (bp->b_kvasize) {
1570 			bp->b_qindex = BQUEUE_EMPTYKVA;
1571 		} else {
1572 			bp->b_qindex = BQUEUE_EMPTY;
1573 		}
1574 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1575 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1576 		/*
1577 		 * Buffers with junk contents.   Again these buffers had better
1578 		 * already be disassociated from their vnode.
1579 		 */
1580 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1581 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1582 		bp->b_flags |= B_INVAL;
1583 		bp->b_qindex = BQUEUE_CLEAN;
1584 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1585 	} else {
1586 		/*
1587 		 * Remaining buffers.  These buffers are still associated with
1588 		 * their vnode.
1589 		 */
1590 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1591 		case B_DELWRI:
1592 		    bp->b_qindex = BQUEUE_DIRTY;
1593 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1594 		    break;
1595 		case B_DELWRI | B_HEAVY:
1596 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1597 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1598 				      b_freelist);
1599 		    break;
1600 		default:
1601 		    /*
1602 		     * NOTE: Buffers are always placed at the end of the
1603 		     * queue.  If B_AGE is not set the buffer will cycle
1604 		     * through the queue twice.
1605 		     */
1606 		    bp->b_qindex = BQUEUE_CLEAN;
1607 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1608 		    break;
1609 		}
1610 	}
1611 	spin_unlock(&bufqspin);
1612 
1613 	/*
1614 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1615 	 * on the correct queue.
1616 	 */
1617 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1618 		bundirty(bp);
1619 
1620 	/*
1621 	 * The bp is on an appropriate queue unless locked.  If it is not
1622 	 * locked or dirty we can wakeup threads waiting for buffer space.
1623 	 *
1624 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1625 	 * if B_INVAL is set ).
1626 	 */
1627 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1628 		bufcountwakeup();
1629 
1630 	/*
1631 	 * Something we can maybe free or reuse
1632 	 */
1633 	if (bp->b_bufsize || bp->b_kvasize)
1634 		bufspacewakeup();
1635 
1636 	/*
1637 	 * Clean up temporary flags and unlock the buffer.
1638 	 */
1639 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1640 	BUF_UNLOCK(bp);
1641 }
1642 
1643 /*
1644  * bqrelse:
1645  *
1646  *	Release a buffer back to the appropriate queue but do not try to free
1647  *	it.  The buffer is expected to be used again soon.
1648  *
1649  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1650  *	biodone() to requeue an async I/O on completion.  It is also used when
1651  *	known good buffers need to be requeued but we think we may need the data
1652  *	again soon.
1653  *
1654  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1655  *
1656  * MPSAFE
1657  */
1658 void
1659 bqrelse(struct buf *bp)
1660 {
1661 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1662 
1663 	if (bp->b_qindex != BQUEUE_NONE)
1664 		panic("bqrelse: free buffer onto another queue???");
1665 	if (BUF_REFCNTNB(bp) > 1) {
1666 		/* do not release to free list */
1667 		panic("bqrelse: multiple refs");
1668 		return;
1669 	}
1670 
1671 	buf_act_advance(bp);
1672 
1673 	spin_lock(&bufqspin);
1674 	if (bp->b_flags & B_LOCKED) {
1675 		/*
1676 		 * Locked buffers are released to the locked queue.  However,
1677 		 * if the buffer is dirty it will first go into the dirty
1678 		 * queue and later on after the I/O completes successfully it
1679 		 * will be released to the locked queue.
1680 		 */
1681 		bp->b_qindex = BQUEUE_LOCKED;
1682 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1683 	} else if (bp->b_flags & B_DELWRI) {
1684 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1685 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1686 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1687 	} else if (vm_page_count_severe()) {
1688 		/*
1689 		 * We are too low on memory, we have to try to free the
1690 		 * buffer (most importantly: the wired pages making up its
1691 		 * backing store) *now*.
1692 		 */
1693 		spin_unlock(&bufqspin);
1694 		brelse(bp);
1695 		return;
1696 	} else {
1697 		bp->b_qindex = BQUEUE_CLEAN;
1698 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1699 	}
1700 	spin_unlock(&bufqspin);
1701 
1702 	if ((bp->b_flags & B_LOCKED) == 0 &&
1703 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1704 		bufcountwakeup();
1705 	}
1706 
1707 	/*
1708 	 * Something we can maybe free or reuse.
1709 	 */
1710 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1711 		bufspacewakeup();
1712 
1713 	/*
1714 	 * Final cleanup and unlock.  Clear bits that are only used while a
1715 	 * buffer is actively locked.
1716 	 */
1717 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1718 	dsched_exit_buf(bp);
1719 	BUF_UNLOCK(bp);
1720 }
1721 
1722 /*
1723  * vfs_vmio_release:
1724  *
1725  *	Return backing pages held by the buffer 'bp' back to the VM system
1726  *	if possible.  The pages are freed if they are no longer valid or
1727  *	attempt to free if it was used for direct I/O otherwise they are
1728  *	sent to the page cache.
1729  *
1730  *	Pages that were marked busy are left alone and skipped.
1731  *
1732  *	The KVA mapping (b_data) for the underlying pages is removed by
1733  *	this function.
1734  */
1735 static void
1736 vfs_vmio_release(struct buf *bp)
1737 {
1738 	int i;
1739 	vm_page_t m;
1740 
1741 	lwkt_gettoken(&vm_token);
1742 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1743 		m = bp->b_xio.xio_pages[i];
1744 		bp->b_xio.xio_pages[i] = NULL;
1745 
1746 		/*
1747 		 * The VFS is telling us this is not a meta-data buffer
1748 		 * even if it is backed by a block device.
1749 		 */
1750 		if (bp->b_flags & B_NOTMETA)
1751 			vm_page_flag_set(m, PG_NOTMETA);
1752 
1753 		/*
1754 		 * This is a very important bit of code.  We try to track
1755 		 * VM page use whether the pages are wired into the buffer
1756 		 * cache or not.  While wired into the buffer cache the
1757 		 * bp tracks the act_count.
1758 		 *
1759 		 * We can choose to place unwired pages on the inactive
1760 		 * queue (0) or active queue (1).  If we place too many
1761 		 * on the active queue the queue will cycle the act_count
1762 		 * on pages we'd like to keep, just from single-use pages
1763 		 * (such as when doing a tar-up or file scan).
1764 		 */
1765 		if (bp->b_act_count < vm_cycle_point)
1766 			vm_page_unwire(m, 0);
1767 		else
1768 			vm_page_unwire(m, 1);
1769 
1770 		/*
1771 		 * We don't mess with busy pages, it is the responsibility
1772 		 * of the process that busied the pages to deal with them.
1773 		 *
1774 		 * However, the caller may have marked the page invalid and
1775 		 * we must still make sure the page is no longer mapped.
1776 		 */
1777 		if ((m->flags & PG_BUSY) || (m->busy != 0)) {
1778 			vm_page_protect(m, VM_PROT_NONE);
1779 			continue;
1780 		}
1781 
1782 		if (m->wire_count == 0) {
1783 			vm_page_flag_clear(m, PG_ZERO);
1784 			/*
1785 			 * Might as well free the page if we can and it has
1786 			 * no valid data.  We also free the page if the
1787 			 * buffer was used for direct I/O.
1788 			 */
1789 #if 0
1790 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1791 					m->hold_count == 0) {
1792 				vm_page_busy(m);
1793 				vm_page_protect(m, VM_PROT_NONE);
1794 				vm_page_free(m);
1795 			} else
1796 #endif
1797 			if (bp->b_flags & B_DIRECT) {
1798 				vm_page_try_to_free(m);
1799 			} else if (vm_page_count_severe()) {
1800 				m->act_count = bp->b_act_count;
1801 				vm_page_try_to_cache(m);
1802 			} else {
1803 				m->act_count = bp->b_act_count;
1804 			}
1805 		}
1806 	}
1807 	lwkt_reltoken(&vm_token);
1808 
1809 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data),
1810 		     bp->b_xio.xio_npages);
1811 	if (bp->b_bufsize) {
1812 		bufspacewakeup();
1813 		bp->b_bufsize = 0;
1814 	}
1815 	bp->b_xio.xio_npages = 0;
1816 	bp->b_flags &= ~B_VMIO;
1817 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1818 	if (bp->b_vp)
1819 		brelvp(bp);
1820 }
1821 
1822 /*
1823  * vfs_bio_awrite:
1824  *
1825  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1826  *	This is much better then the old way of writing only one buffer at
1827  *	a time.  Note that we may not be presented with the buffers in the
1828  *	correct order, so we search for the cluster in both directions.
1829  *
1830  *	The buffer is locked on call.
1831  */
1832 int
1833 vfs_bio_awrite(struct buf *bp)
1834 {
1835 	int i;
1836 	int j;
1837 	off_t loffset = bp->b_loffset;
1838 	struct vnode *vp = bp->b_vp;
1839 	int nbytes;
1840 	struct buf *bpa;
1841 	int nwritten;
1842 	int size;
1843 
1844 	/*
1845 	 * right now we support clustered writing only to regular files.  If
1846 	 * we find a clusterable block we could be in the middle of a cluster
1847 	 * rather then at the beginning.
1848 	 *
1849 	 * NOTE: b_bio1 contains the logical loffset and is aliased
1850 	 * to b_loffset.  b_bio2 contains the translated block number.
1851 	 */
1852 	if ((vp->v_type == VREG) &&
1853 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1854 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1855 
1856 		size = vp->v_mount->mnt_stat.f_iosize;
1857 
1858 		for (i = size; i < MAXPHYS; i += size) {
1859 			if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) &&
1860 			    BUF_REFCNT(bpa) == 0 &&
1861 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1862 			    (B_DELWRI | B_CLUSTEROK)) &&
1863 			    (bpa->b_bufsize == size)) {
1864 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1865 				    (bpa->b_bio2.bio_offset !=
1866 				     bp->b_bio2.bio_offset + i))
1867 					break;
1868 			} else {
1869 				break;
1870 			}
1871 		}
1872 		for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1873 			if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) &&
1874 			    BUF_REFCNT(bpa) == 0 &&
1875 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1876 			    (B_DELWRI | B_CLUSTEROK)) &&
1877 			    (bpa->b_bufsize == size)) {
1878 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1879 				    (bpa->b_bio2.bio_offset !=
1880 				     bp->b_bio2.bio_offset - j))
1881 					break;
1882 			} else {
1883 				break;
1884 			}
1885 		}
1886 		j -= size;
1887 		nbytes = (i + j);
1888 
1889 		/*
1890 		 * this is a possible cluster write
1891 		 */
1892 		if (nbytes != size) {
1893 			BUF_UNLOCK(bp);
1894 			nwritten = cluster_wbuild(vp, size,
1895 						  loffset - j, nbytes);
1896 			return nwritten;
1897 		}
1898 	}
1899 
1900 	/*
1901 	 * default (old) behavior, writing out only one block
1902 	 *
1903 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1904 	 */
1905 	nwritten = bp->b_bufsize;
1906 	bremfree(bp);
1907 	bawrite(bp);
1908 
1909 	return nwritten;
1910 }
1911 
1912 /*
1913  * getnewbuf:
1914  *
1915  *	Find and initialize a new buffer header, freeing up existing buffers
1916  *	in the bufqueues as necessary.  The new buffer is returned locked.
1917  *
1918  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1919  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1920  *
1921  *	We block if:
1922  *		We have insufficient buffer headers
1923  *		We have insufficient buffer space
1924  *		buffer_map is too fragmented ( space reservation fails )
1925  *		If we have to flush dirty buffers ( but we try to avoid this )
1926  *
1927  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1928  *	Instead we ask the buf daemon to do it for us.  We attempt to
1929  *	avoid piecemeal wakeups of the pageout daemon.
1930  *
1931  * MPALMOSTSAFE
1932  */
1933 static struct buf *
1934 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1935 {
1936 	struct buf *bp;
1937 	struct buf *nbp;
1938 	int defrag = 0;
1939 	int nqindex;
1940 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1941 	static int flushingbufs;
1942 
1943 	/*
1944 	 * We can't afford to block since we might be holding a vnode lock,
1945 	 * which may prevent system daemons from running.  We deal with
1946 	 * low-memory situations by proactively returning memory and running
1947 	 * async I/O rather then sync I/O.
1948 	 */
1949 
1950 	++getnewbufcalls;
1951 	--getnewbufrestarts;
1952 restart:
1953 	++getnewbufrestarts;
1954 
1955 	/*
1956 	 * Setup for scan.  If we do not have enough free buffers,
1957 	 * we setup a degenerate case that immediately fails.  Note
1958 	 * that if we are specially marked process, we are allowed to
1959 	 * dip into our reserves.
1960 	 *
1961 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1962 	 *
1963 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1964 	 * However, there are a number of cases (defragging, reusing, ...)
1965 	 * where we cannot backup.
1966 	 */
1967 	nqindex = BQUEUE_EMPTYKVA;
1968 	spin_lock(&bufqspin);
1969 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1970 
1971 	if (nbp == NULL) {
1972 		/*
1973 		 * If no EMPTYKVA buffers and we are either
1974 		 * defragging or reusing, locate a CLEAN buffer
1975 		 * to free or reuse.  If bufspace useage is low
1976 		 * skip this step so we can allocate a new buffer.
1977 		 */
1978 		if (defrag || bufspace >= lobufspace) {
1979 			nqindex = BQUEUE_CLEAN;
1980 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1981 		}
1982 
1983 		/*
1984 		 * If we could not find or were not allowed to reuse a
1985 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1986 		 * buffer.  We can only use an EMPTY buffer if allocating
1987 		 * its KVA would not otherwise run us out of buffer space.
1988 		 */
1989 		if (nbp == NULL && defrag == 0 &&
1990 		    bufspace + maxsize < hibufspace) {
1991 			nqindex = BQUEUE_EMPTY;
1992 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1993 		}
1994 	}
1995 
1996 	/*
1997 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1998 	 * depending.
1999 	 *
2000 	 * WARNING!  bufqspin is held!
2001 	 */
2002 	while ((bp = nbp) != NULL) {
2003 		int qindex = nqindex;
2004 
2005 		nbp = TAILQ_NEXT(bp, b_freelist);
2006 
2007 		/*
2008 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2009 		 * cycles through the queue twice before being selected.
2010 		 */
2011 		if (qindex == BQUEUE_CLEAN &&
2012 		    (bp->b_flags & B_AGE) == 0 && nbp) {
2013 			bp->b_flags |= B_AGE;
2014 			TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
2015 			TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
2016 			continue;
2017 		}
2018 
2019 		/*
2020 		 * Calculate next bp ( we can only use it if we do not block
2021 		 * or do other fancy things ).
2022 		 */
2023 		if (nbp == NULL) {
2024 			switch(qindex) {
2025 			case BQUEUE_EMPTY:
2026 				nqindex = BQUEUE_EMPTYKVA;
2027 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
2028 					break;
2029 				/* fall through */
2030 			case BQUEUE_EMPTYKVA:
2031 				nqindex = BQUEUE_CLEAN;
2032 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
2033 					break;
2034 				/* fall through */
2035 			case BQUEUE_CLEAN:
2036 				/*
2037 				 * nbp is NULL.
2038 				 */
2039 				break;
2040 			}
2041 		}
2042 
2043 		/*
2044 		 * Sanity Checks
2045 		 */
2046 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2047 
2048 		/*
2049 		 * Note: we no longer distinguish between VMIO and non-VMIO
2050 		 * buffers.
2051 		 */
2052 		KASSERT((bp->b_flags & B_DELWRI) == 0,
2053 			("delwri buffer %p found in queue %d", bp, qindex));
2054 
2055 		/*
2056 		 * Do not try to reuse a buffer with a non-zero b_refs.
2057 		 * This is an unsynchronized test.  A synchronized test
2058 		 * is also performed after we lock the buffer.
2059 		 */
2060 		if (bp->b_refs)
2061 			continue;
2062 
2063 		/*
2064 		 * If we are defragging then we need a buffer with
2065 		 * b_kvasize != 0.  XXX this situation should no longer
2066 		 * occur, if defrag is non-zero the buffer's b_kvasize
2067 		 * should also be non-zero at this point.  XXX
2068 		 */
2069 		if (defrag && bp->b_kvasize == 0) {
2070 			kprintf("Warning: defrag empty buffer %p\n", bp);
2071 			continue;
2072 		}
2073 
2074 		/*
2075 		 * Start freeing the bp.  This is somewhat involved.  nbp
2076 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
2077 		 * on the clean list must be disassociated from their
2078 		 * current vnode.  Buffers on the empty[kva] lists have
2079 		 * already been disassociated.
2080 		 */
2081 
2082 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2083 			spin_unlock(&bufqspin);
2084 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
2085 			goto restart;
2086 		}
2087 		if (bp->b_qindex != qindex) {
2088 			spin_unlock(&bufqspin);
2089 			kprintf("getnewbuf: warning, BUF_LOCK blocked "
2090 				"unexpectedly on buf %p index %d->%d, "
2091 				"race corrected\n",
2092 				bp, qindex, bp->b_qindex);
2093 			BUF_UNLOCK(bp);
2094 			goto restart;
2095 		}
2096 		bremfree_locked(bp);
2097 		spin_unlock(&bufqspin);
2098 
2099 		/*
2100 		 * Dependancies must be handled before we disassociate the
2101 		 * vnode.
2102 		 *
2103 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2104 		 * be immediately disassociated.  HAMMER then becomes
2105 		 * responsible for releasing the buffer.
2106 		 *
2107 		 * NOTE: bufqspin is UNLOCKED now.
2108 		 */
2109 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2110 			buf_deallocate(bp);
2111 			if (bp->b_flags & B_LOCKED) {
2112 				bqrelse(bp);
2113 				goto restart;
2114 			}
2115 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2116 		}
2117 
2118 		if (qindex == BQUEUE_CLEAN) {
2119 			if (bp->b_flags & B_VMIO)
2120 				vfs_vmio_release(bp);
2121 			if (bp->b_vp)
2122 				brelvp(bp);
2123 		}
2124 
2125 		/*
2126 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2127 		 * the scan from this point on.
2128 		 *
2129 		 * Get the rest of the buffer freed up.  b_kva* is still
2130 		 * valid after this operation.
2131 		 */
2132 
2133 		KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
2134 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2135 
2136 		/*
2137 		 * critical section protection is not required when
2138 		 * scrapping a buffer's contents because it is already
2139 		 * wired.
2140 		 */
2141 		if (bp->b_bufsize)
2142 			allocbuf(bp, 0);
2143 
2144 		bp->b_flags = B_BNOCLIP;
2145 		bp->b_cmd = BUF_CMD_DONE;
2146 		bp->b_vp = NULL;
2147 		bp->b_error = 0;
2148 		bp->b_resid = 0;
2149 		bp->b_bcount = 0;
2150 		bp->b_xio.xio_npages = 0;
2151 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2152 		bp->b_act_count = ACT_INIT;
2153 		reinitbufbio(bp);
2154 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2155 		buf_dep_init(bp);
2156 		if (blkflags & GETBLK_BHEAVY)
2157 			bp->b_flags |= B_HEAVY;
2158 
2159 		/*
2160 		 * If we are defragging then free the buffer.
2161 		 */
2162 		if (defrag) {
2163 			bp->b_flags |= B_INVAL;
2164 			bfreekva(bp);
2165 			brelse(bp);
2166 			defrag = 0;
2167 			goto restart;
2168 		}
2169 
2170 		/*
2171 		 * If we are overcomitted then recover the buffer and its
2172 		 * KVM space.  This occurs in rare situations when multiple
2173 		 * processes are blocked in getnewbuf() or allocbuf().
2174 		 */
2175 		if (bufspace >= hibufspace)
2176 			flushingbufs = 1;
2177 		if (flushingbufs && bp->b_kvasize != 0) {
2178 			bp->b_flags |= B_INVAL;
2179 			bfreekva(bp);
2180 			brelse(bp);
2181 			goto restart;
2182 		}
2183 		if (bufspace < lobufspace)
2184 			flushingbufs = 0;
2185 
2186 		/*
2187 		 * The brelvp() above interlocked the buffer, test b_refs
2188 		 * to determine if the buffer can be reused.  b_refs
2189 		 * interlocks lookup/blocking-lock operations and allowing
2190 		 * buffer reuse can create deadlocks depending on what
2191 		 * (vp,loffset) is assigned to the reused buffer (see getblk).
2192 		 */
2193 		if (bp->b_refs) {
2194 			bp->b_flags |= B_INVAL;
2195 			bfreekva(bp);
2196 			brelse(bp);
2197 			goto restart;
2198 		}
2199 
2200 		break;
2201 		/* NOT REACHED, bufqspin not held */
2202 	}
2203 
2204 	/*
2205 	 * If we exhausted our list, sleep as appropriate.  We may have to
2206 	 * wakeup various daemons and write out some dirty buffers.
2207 	 *
2208 	 * Generally we are sleeping due to insufficient buffer space.
2209 	 *
2210 	 * NOTE: bufqspin is held if bp is NULL, else it is not held.
2211 	 */
2212 	if (bp == NULL) {
2213 		int flags;
2214 		char *waitmsg;
2215 
2216 		spin_unlock(&bufqspin);
2217 		if (defrag) {
2218 			flags = VFS_BIO_NEED_BUFSPACE;
2219 			waitmsg = "nbufkv";
2220 		} else if (bufspace >= hibufspace) {
2221 			waitmsg = "nbufbs";
2222 			flags = VFS_BIO_NEED_BUFSPACE;
2223 		} else {
2224 			waitmsg = "newbuf";
2225 			flags = VFS_BIO_NEED_ANY;
2226 		}
2227 
2228 		bd_speedup();	/* heeeelp */
2229 		spin_lock(&bufcspin);
2230 		needsbuffer |= flags;
2231 		while (needsbuffer & flags) {
2232 			if (ssleep(&needsbuffer, &bufcspin,
2233 				   slpflags, waitmsg, slptimeo)) {
2234 				spin_unlock(&bufcspin);
2235 				return (NULL);
2236 			}
2237 		}
2238 		spin_unlock(&bufcspin);
2239 	} else {
2240 		/*
2241 		 * We finally have a valid bp.  We aren't quite out of the
2242 		 * woods, we still have to reserve kva space.  In order
2243 		 * to keep fragmentation sane we only allocate kva in
2244 		 * BKVASIZE chunks.
2245 		 *
2246 		 * (bufqspin is not held)
2247 		 */
2248 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2249 
2250 		if (maxsize != bp->b_kvasize) {
2251 			vm_offset_t addr = 0;
2252 			int count;
2253 
2254 			bfreekva(bp);
2255 
2256 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2257 			vm_map_lock(&buffer_map);
2258 
2259 			if (vm_map_findspace(&buffer_map,
2260 				    vm_map_min(&buffer_map), maxsize,
2261 				    maxsize, 0, &addr)) {
2262 				/*
2263 				 * Uh oh.  Buffer map is too fragmented.  We
2264 				 * must defragment the map.
2265 				 */
2266 				vm_map_unlock(&buffer_map);
2267 				vm_map_entry_release(count);
2268 				++bufdefragcnt;
2269 				defrag = 1;
2270 				bp->b_flags |= B_INVAL;
2271 				brelse(bp);
2272 				goto restart;
2273 			}
2274 			if (addr) {
2275 				vm_map_insert(&buffer_map, &count,
2276 					NULL, 0,
2277 					addr, addr + maxsize,
2278 					VM_MAPTYPE_NORMAL,
2279 					VM_PROT_ALL, VM_PROT_ALL,
2280 					MAP_NOFAULT);
2281 
2282 				bp->b_kvabase = (caddr_t) addr;
2283 				bp->b_kvasize = maxsize;
2284 				bufspace += bp->b_kvasize;
2285 				++bufreusecnt;
2286 			}
2287 			vm_map_unlock(&buffer_map);
2288 			vm_map_entry_release(count);
2289 		}
2290 		bp->b_data = bp->b_kvabase;
2291 	}
2292 	return(bp);
2293 }
2294 
2295 /*
2296  * This routine is called in an emergency to recover VM pages from the
2297  * buffer cache by cashing in clean buffers.  The idea is to recover
2298  * enough pages to be able to satisfy a stuck bio_page_alloc().
2299  *
2300  * MPSAFE
2301  */
2302 static int
2303 recoverbufpages(void)
2304 {
2305 	struct buf *bp;
2306 	int bytes = 0;
2307 
2308 	++recoverbufcalls;
2309 
2310 	spin_lock(&bufqspin);
2311 	while (bytes < MAXBSIZE) {
2312 		bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2313 		if (bp == NULL)
2314 			break;
2315 
2316 		/*
2317 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2318 		 * cycles through the queue twice before being selected.
2319 		 */
2320 		if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2321 			bp->b_flags |= B_AGE;
2322 			TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2323 			TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2324 					  bp, b_freelist);
2325 			continue;
2326 		}
2327 
2328 		/*
2329 		 * Sanity Checks
2330 		 */
2331 		KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2332 		KKASSERT((bp->b_flags & B_DELWRI) == 0);
2333 
2334 		/*
2335 		 * Start freeing the bp.  This is somewhat involved.
2336 		 *
2337 		 * Buffers on the clean list must be disassociated from
2338 		 * their current vnode
2339 		 */
2340 
2341 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2342 			kprintf("recoverbufpages: warning, locked buf %p, "
2343 				"race corrected\n",
2344 				bp);
2345 			ssleep(&bd_request, &bufqspin, 0, "gnbxxx", hz / 100);
2346 			continue;
2347 		}
2348 		if (bp->b_qindex != BQUEUE_CLEAN) {
2349 			kprintf("recoverbufpages: warning, BUF_LOCK blocked "
2350 				"unexpectedly on buf %p index %d, race "
2351 				"corrected\n",
2352 				bp, bp->b_qindex);
2353 			BUF_UNLOCK(bp);
2354 			continue;
2355 		}
2356 		bremfree_locked(bp);
2357 		spin_unlock(&bufqspin);
2358 
2359 		/*
2360 		 * Dependancies must be handled before we disassociate the
2361 		 * vnode.
2362 		 *
2363 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2364 		 * be immediately disassociated.  HAMMER then becomes
2365 		 * responsible for releasing the buffer.
2366 		 */
2367 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2368 			buf_deallocate(bp);
2369 			if (bp->b_flags & B_LOCKED) {
2370 				bqrelse(bp);
2371 				spin_lock(&bufqspin);
2372 				continue;
2373 			}
2374 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2375 		}
2376 
2377 		bytes += bp->b_bufsize;
2378 
2379 		if (bp->b_flags & B_VMIO) {
2380 			bp->b_flags |= B_DIRECT;    /* try to free pages */
2381 			vfs_vmio_release(bp);
2382 		}
2383 		if (bp->b_vp)
2384 			brelvp(bp);
2385 
2386 		KKASSERT(bp->b_vp == NULL);
2387 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2388 
2389 		/*
2390 		 * critical section protection is not required when
2391 		 * scrapping a buffer's contents because it is already
2392 		 * wired.
2393 		 */
2394 		if (bp->b_bufsize)
2395 			allocbuf(bp, 0);
2396 
2397 		bp->b_flags = B_BNOCLIP;
2398 		bp->b_cmd = BUF_CMD_DONE;
2399 		bp->b_vp = NULL;
2400 		bp->b_error = 0;
2401 		bp->b_resid = 0;
2402 		bp->b_bcount = 0;
2403 		bp->b_xio.xio_npages = 0;
2404 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2405 		reinitbufbio(bp);
2406 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2407 		buf_dep_init(bp);
2408 		bp->b_flags |= B_INVAL;
2409 		/* bfreekva(bp); */
2410 		brelse(bp);
2411 		spin_lock(&bufqspin);
2412 	}
2413 	spin_unlock(&bufqspin);
2414 	return(bytes);
2415 }
2416 
2417 /*
2418  * buf_daemon:
2419  *
2420  *	Buffer flushing daemon.  Buffers are normally flushed by the
2421  *	update daemon but if it cannot keep up this process starts to
2422  *	take the load in an attempt to prevent getnewbuf() from blocking.
2423  *
2424  *	Once a flush is initiated it does not stop until the number
2425  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2426  *	waiting at the mid-point.
2427  */
2428 
2429 static struct kproc_desc buf_kp = {
2430 	"bufdaemon",
2431 	buf_daemon,
2432 	&bufdaemon_td
2433 };
2434 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2435 	kproc_start, &buf_kp)
2436 
2437 static struct kproc_desc bufhw_kp = {
2438 	"bufdaemon_hw",
2439 	buf_daemon_hw,
2440 	&bufdaemonhw_td
2441 };
2442 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2443 	kproc_start, &bufhw_kp)
2444 
2445 /*
2446  * MPSAFE thread
2447  */
2448 static void
2449 buf_daemon(void)
2450 {
2451 	int limit;
2452 
2453 	/*
2454 	 * This process needs to be suspended prior to shutdown sync.
2455 	 */
2456 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2457 			      bufdaemon_td, SHUTDOWN_PRI_LAST);
2458 	curthread->td_flags |= TDF_SYSTHREAD;
2459 
2460 	/*
2461 	 * This process is allowed to take the buffer cache to the limit
2462 	 */
2463 	for (;;) {
2464 		kproc_suspend_loop();
2465 
2466 		/*
2467 		 * Do the flush as long as the number of dirty buffers
2468 		 * (including those running) exceeds lodirtybufspace.
2469 		 *
2470 		 * When flushing limit running I/O to hirunningspace
2471 		 * Do the flush.  Limit the amount of in-transit I/O we
2472 		 * allow to build up, otherwise we would completely saturate
2473 		 * the I/O system.  Wakeup any waiting processes before we
2474 		 * normally would so they can run in parallel with our drain.
2475 		 *
2476 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2477 		 * but because we split the operation into two threads we
2478 		 * have to cut it in half for each thread.
2479 		 */
2480 		waitrunningbufspace();
2481 		limit = lodirtybufspace / 2;
2482 		while (runningbufspace + dirtybufspace > limit ||
2483 		       dirtybufcount - dirtybufcounthw >= nbuf / 2) {
2484 			if (flushbufqueues(BQUEUE_DIRTY) == 0)
2485 				break;
2486 			if (runningbufspace < hirunningspace)
2487 				continue;
2488 			waitrunningbufspace();
2489 		}
2490 
2491 		/*
2492 		 * We reached our low water mark, reset the
2493 		 * request and sleep until we are needed again.
2494 		 * The sleep is just so the suspend code works.
2495 		 */
2496 		spin_lock(&bufcspin);
2497 		if (bd_request == 0)
2498 			ssleep(&bd_request, &bufcspin, 0, "psleep", hz);
2499 		bd_request = 0;
2500 		spin_unlock(&bufcspin);
2501 	}
2502 }
2503 
2504 /*
2505  * MPSAFE thread
2506  */
2507 static void
2508 buf_daemon_hw(void)
2509 {
2510 	int limit;
2511 
2512 	/*
2513 	 * This process needs to be suspended prior to shutdown sync.
2514 	 */
2515 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2516 			      bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2517 	curthread->td_flags |= TDF_SYSTHREAD;
2518 
2519 	/*
2520 	 * This process is allowed to take the buffer cache to the limit
2521 	 */
2522 	for (;;) {
2523 		kproc_suspend_loop();
2524 
2525 		/*
2526 		 * Do the flush.  Limit the amount of in-transit I/O we
2527 		 * allow to build up, otherwise we would completely saturate
2528 		 * the I/O system.  Wakeup any waiting processes before we
2529 		 * normally would so they can run in parallel with our drain.
2530 		 *
2531 		 * Once we decide to flush push the queued I/O up to
2532 		 * hirunningspace in order to trigger bursting by the bioq
2533 		 * subsystem.
2534 		 *
2535 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2536 		 * but because we split the operation into two threads we
2537 		 * have to cut it in half for each thread.
2538 		 */
2539 		waitrunningbufspace();
2540 		limit = lodirtybufspace / 2;
2541 		while (runningbufspace + dirtybufspacehw > limit ||
2542 		       dirtybufcounthw >= nbuf / 2) {
2543 			if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2544 				break;
2545 			if (runningbufspace < hirunningspace)
2546 				continue;
2547 			waitrunningbufspace();
2548 		}
2549 
2550 		/*
2551 		 * We reached our low water mark, reset the
2552 		 * request and sleep until we are needed again.
2553 		 * The sleep is just so the suspend code works.
2554 		 */
2555 		spin_lock(&bufcspin);
2556 		if (bd_request_hw == 0)
2557 			ssleep(&bd_request_hw, &bufcspin, 0, "psleep", hz);
2558 		bd_request_hw = 0;
2559 		spin_unlock(&bufcspin);
2560 	}
2561 }
2562 
2563 /*
2564  * flushbufqueues:
2565  *
2566  *	Try to flush a buffer in the dirty queue.  We must be careful to
2567  *	free up B_INVAL buffers instead of write them, which NFS is
2568  *	particularly sensitive to.
2569  *
2570  *	B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate
2571  *	that we really want to try to get the buffer out and reuse it
2572  *	due to the write load on the machine.
2573  *
2574  *	We must lock the buffer in order to check its validity before we
2575  *	can mess with its contents.  bufqspin isn't enough.
2576  */
2577 static int
2578 flushbufqueues(bufq_type_t q)
2579 {
2580 	struct buf *bp;
2581 	int r = 0;
2582 	int spun;
2583 
2584 	spin_lock(&bufqspin);
2585 	spun = 1;
2586 
2587 	bp = TAILQ_FIRST(&bufqueues[q]);
2588 	while (bp) {
2589 		if ((bp->b_flags & B_DELWRI) == 0) {
2590 			kprintf("Unexpected clean buffer %p\n", bp);
2591 			bp = TAILQ_NEXT(bp, b_freelist);
2592 			continue;
2593 		}
2594 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2595 			bp = TAILQ_NEXT(bp, b_freelist);
2596 			continue;
2597 		}
2598 		KKASSERT(bp->b_qindex == q);
2599 
2600 		/*
2601 		 * Must recheck B_DELWRI after successfully locking
2602 		 * the buffer.
2603 		 */
2604 		if ((bp->b_flags & B_DELWRI) == 0) {
2605 			BUF_UNLOCK(bp);
2606 			bp = TAILQ_NEXT(bp, b_freelist);
2607 			continue;
2608 		}
2609 
2610 		if (bp->b_flags & B_INVAL) {
2611 			_bremfree(bp);
2612 			spin_unlock(&bufqspin);
2613 			spun = 0;
2614 			brelse(bp);
2615 			++r;
2616 			break;
2617 		}
2618 
2619 		spin_unlock(&bufqspin);
2620 		spun = 0;
2621 
2622 		if (LIST_FIRST(&bp->b_dep) != NULL &&
2623 		    (bp->b_flags & B_DEFERRED) == 0 &&
2624 		    buf_countdeps(bp, 0)) {
2625 			spin_lock(&bufqspin);
2626 			spun = 1;
2627 			TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2628 			TAILQ_INSERT_TAIL(&bufqueues[q], bp, b_freelist);
2629 			bp->b_flags |= B_DEFERRED;
2630 			BUF_UNLOCK(bp);
2631 			bp = TAILQ_FIRST(&bufqueues[q]);
2632 			continue;
2633 		}
2634 
2635 		/*
2636 		 * If the buffer has a dependancy, buf_checkwrite() must
2637 		 * also return 0 for us to be able to initate the write.
2638 		 *
2639 		 * If the buffer is flagged B_ERROR it may be requeued
2640 		 * over and over again, we try to avoid a live lock.
2641 		 *
2642 		 * NOTE: buf_checkwrite is MPSAFE.
2643 		 */
2644 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2645 			bremfree(bp);
2646 			brelse(bp);
2647 		} else if (bp->b_flags & B_ERROR) {
2648 			tsleep(bp, 0, "bioer", 1);
2649 			bp->b_flags &= ~B_AGE;
2650 			vfs_bio_awrite(bp);
2651 		} else {
2652 			bp->b_flags |= B_AGE;
2653 			vfs_bio_awrite(bp);
2654 		}
2655 		++r;
2656 		break;
2657 	}
2658 	if (spun)
2659 		spin_unlock(&bufqspin);
2660 	return (r);
2661 }
2662 
2663 /*
2664  * inmem:
2665  *
2666  *	Returns true if no I/O is needed to access the associated VM object.
2667  *	This is like findblk except it also hunts around in the VM system for
2668  *	the data.
2669  *
2670  *	Note that we ignore vm_page_free() races from interrupts against our
2671  *	lookup, since if the caller is not protected our return value will not
2672  *	be any more valid then otherwise once we exit the critical section.
2673  */
2674 int
2675 inmem(struct vnode *vp, off_t loffset)
2676 {
2677 	vm_object_t obj;
2678 	vm_offset_t toff, tinc, size;
2679 	vm_page_t m;
2680 
2681 	if (findblk(vp, loffset, FINDBLK_TEST))
2682 		return 1;
2683 	if (vp->v_mount == NULL)
2684 		return 0;
2685 	if ((obj = vp->v_object) == NULL)
2686 		return 0;
2687 
2688 	size = PAGE_SIZE;
2689 	if (size > vp->v_mount->mnt_stat.f_iosize)
2690 		size = vp->v_mount->mnt_stat.f_iosize;
2691 
2692 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2693 		lwkt_gettoken(&vm_token);
2694 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2695 		lwkt_reltoken(&vm_token);
2696 		if (m == NULL)
2697 			return 0;
2698 		tinc = size;
2699 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2700 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2701 		if (vm_page_is_valid(m,
2702 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2703 			return 0;
2704 	}
2705 	return 1;
2706 }
2707 
2708 /*
2709  * findblk:
2710  *
2711  *	Locate and return the specified buffer.  Unless flagged otherwise,
2712  *	a locked buffer will be returned if it exists or NULL if it does not.
2713  *
2714  *	findblk()'d buffers are still on the bufqueues and if you intend
2715  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2716  *	and possibly do other stuff to it.
2717  *
2718  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2719  *			  for locking the buffer and ensuring that it remains
2720  *			  the desired buffer after locking.
2721  *
2722  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2723  *			  to acquire the lock we return NULL, even if the
2724  *			  buffer exists.
2725  *
2726  *	FINDBLK_REF	- Returns the buffer ref'd, which prevents reuse
2727  *			  by getnewbuf() but does not prevent disassociation
2728  *			  while we are locked.  Used to avoid deadlocks
2729  *			  against random (vp,loffset)s due to reassignment.
2730  *
2731  *	(0)		- Lock the buffer blocking.
2732  *
2733  * MPSAFE
2734  */
2735 struct buf *
2736 findblk(struct vnode *vp, off_t loffset, int flags)
2737 {
2738 	struct buf *bp;
2739 	int lkflags;
2740 
2741 	lkflags = LK_EXCLUSIVE;
2742 	if (flags & FINDBLK_NBLOCK)
2743 		lkflags |= LK_NOWAIT;
2744 
2745 	for (;;) {
2746 		/*
2747 		 * Lookup.  Ref the buf while holding v_token to prevent
2748 		 * reuse (but does not prevent diassociation).
2749 		 */
2750 		lwkt_gettoken(&vp->v_token);
2751 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2752 		if (bp == NULL) {
2753 			lwkt_reltoken(&vp->v_token);
2754 			return(NULL);
2755 		}
2756 		atomic_add_int(&bp->b_refs, 1);
2757 		lwkt_reltoken(&vp->v_token);
2758 
2759 		/*
2760 		 * If testing only break and return bp, do not lock.
2761 		 */
2762 		if (flags & FINDBLK_TEST)
2763 			break;
2764 
2765 		/*
2766 		 * Lock the buffer, return an error if the lock fails.
2767 		 * (only FINDBLK_NBLOCK can cause the lock to fail).
2768 		 */
2769 		if (BUF_LOCK(bp, lkflags)) {
2770 			atomic_subtract_int(&bp->b_refs, 1);
2771 			/* bp = NULL; not needed */
2772 			return(NULL);
2773 		}
2774 
2775 		/*
2776 		 * Revalidate the locked buf before allowing it to be
2777 		 * returned.
2778 		 */
2779 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2780 			break;
2781 		atomic_subtract_int(&bp->b_refs, 1);
2782 		BUF_UNLOCK(bp);
2783 	}
2784 
2785 	/*
2786 	 * Success
2787 	 */
2788 	if ((flags & FINDBLK_REF) == 0)
2789 		atomic_subtract_int(&bp->b_refs, 1);
2790 	return(bp);
2791 }
2792 
2793 void
2794 unrefblk(struct buf *bp)
2795 {
2796 	atomic_subtract_int(&bp->b_refs, 1);
2797 }
2798 
2799 /*
2800  * getcacheblk:
2801  *
2802  *	Similar to getblk() except only returns the buffer if it is
2803  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2804  *	is returned.
2805  *
2806  *	If B_RAM is set the buffer might be just fine, but we return
2807  *	NULL anyway because we want the code to fall through to the
2808  *	cluster read.  Otherwise read-ahead breaks.
2809  */
2810 struct buf *
2811 getcacheblk(struct vnode *vp, off_t loffset)
2812 {
2813 	struct buf *bp;
2814 
2815 	bp = findblk(vp, loffset, 0);
2816 	if (bp) {
2817 		if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) {
2818 			bp->b_flags &= ~B_AGE;
2819 			bremfree(bp);
2820 		} else {
2821 			BUF_UNLOCK(bp);
2822 			bp = NULL;
2823 		}
2824 	}
2825 	return (bp);
2826 }
2827 
2828 /*
2829  * getblk:
2830  *
2831  *	Get a block given a specified block and offset into a file/device.
2832  * 	B_INVAL may or may not be set on return.  The caller should clear
2833  *	B_INVAL prior to initiating a READ.
2834  *
2835  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2836  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2837  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2838  *	without doing any of those things the system will likely believe
2839  *	the buffer to be valid (especially if it is not B_VMIO), and the
2840  *	next getblk() will return the buffer with B_CACHE set.
2841  *
2842  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2843  *	an existing buffer.
2844  *
2845  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2846  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2847  *	and then cleared based on the backing VM.  If the previous buffer is
2848  *	non-0-sized but invalid, B_CACHE will be cleared.
2849  *
2850  *	If getblk() must create a new buffer, the new buffer is returned with
2851  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2852  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2853  *	backing VM.
2854  *
2855  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2856  *	B_CACHE bit is clear.
2857  *
2858  *	What this means, basically, is that the caller should use B_CACHE to
2859  *	determine whether the buffer is fully valid or not and should clear
2860  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2861  *	the buffer by loading its data area with something, the caller needs
2862  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2863  *	the caller should set B_CACHE ( as an optimization ), else the caller
2864  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2865  *	a write attempt or if it was a successfull read.  If the caller
2866  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2867  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2868  *
2869  *	getblk flags:
2870  *
2871  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2872  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2873  *
2874  * MPALMOSTSAFE
2875  */
2876 struct buf *
2877 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2878 {
2879 	struct buf *bp;
2880 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2881 	int error;
2882 	int lkflags;
2883 
2884 	if (size > MAXBSIZE)
2885 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2886 	if (vp->v_object == NULL)
2887 		panic("getblk: vnode %p has no object!", vp);
2888 
2889 loop:
2890 	if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2891 		/*
2892 		 * The buffer was found in the cache, but we need to lock it.
2893 		 * We must acquire a ref on the bp to prevent reuse, but
2894 		 * this will not prevent disassociation (brelvp()) so we
2895 		 * must recheck (vp,loffset) after acquiring the lock.
2896 		 *
2897 		 * Without the ref the buffer could potentially be reused
2898 		 * before we acquire the lock and create a deadlock
2899 		 * situation between the thread trying to reuse the buffer
2900 		 * and us due to the fact that we would wind up blocking
2901 		 * on a random (vp,loffset).
2902 		 */
2903 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2904 			if (blkflags & GETBLK_NOWAIT) {
2905 				unrefblk(bp);
2906 				return(NULL);
2907 			}
2908 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2909 			if (blkflags & GETBLK_PCATCH)
2910 				lkflags |= LK_PCATCH;
2911 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2912 			if (error) {
2913 				unrefblk(bp);
2914 				if (error == ENOLCK)
2915 					goto loop;
2916 				return (NULL);
2917 			}
2918 			/* buffer may have changed on us */
2919 		}
2920 		unrefblk(bp);
2921 
2922 		/*
2923 		 * Once the buffer has been locked, make sure we didn't race
2924 		 * a buffer recyclement.  Buffers that are no longer hashed
2925 		 * will have b_vp == NULL, so this takes care of that check
2926 		 * as well.
2927 		 */
2928 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2929 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2930 				"was recycled\n",
2931 				bp, vp, (long long)loffset);
2932 			BUF_UNLOCK(bp);
2933 			goto loop;
2934 		}
2935 
2936 		/*
2937 		 * If SZMATCH any pre-existing buffer must be of the requested
2938 		 * size or NULL is returned.  The caller absolutely does not
2939 		 * want getblk() to bwrite() the buffer on a size mismatch.
2940 		 */
2941 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2942 			BUF_UNLOCK(bp);
2943 			return(NULL);
2944 		}
2945 
2946 		/*
2947 		 * All vnode-based buffers must be backed by a VM object.
2948 		 */
2949 		KKASSERT(bp->b_flags & B_VMIO);
2950 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2951 		bp->b_flags &= ~B_AGE;
2952 
2953 		/*
2954 		 * Make sure that B_INVAL buffers do not have a cached
2955 		 * block number translation.
2956 		 */
2957 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2958 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2959 				" did not have cleared bio_offset cache\n",
2960 				bp, vp, (long long)loffset);
2961 			clearbiocache(&bp->b_bio2);
2962 		}
2963 
2964 		/*
2965 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2966 		 * invalid.
2967 		 */
2968 		if (bp->b_flags & B_INVAL)
2969 			bp->b_flags &= ~B_CACHE;
2970 		bremfree(bp);
2971 
2972 		/*
2973 		 * Any size inconsistancy with a dirty buffer or a buffer
2974 		 * with a softupdates dependancy must be resolved.  Resizing
2975 		 * the buffer in such circumstances can lead to problems.
2976 		 *
2977 		 * Dirty or dependant buffers are written synchronously.
2978 		 * Other types of buffers are simply released and
2979 		 * reconstituted as they may be backed by valid, dirty VM
2980 		 * pages (but not marked B_DELWRI).
2981 		 *
2982 		 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2983 		 * and may be left over from a prior truncation (and thus
2984 		 * no longer represent the actual EOF point), so we
2985 		 * definitely do not want to B_NOCACHE the backing store.
2986 		 */
2987 		if (size != bp->b_bcount) {
2988 			if (bp->b_flags & B_DELWRI) {
2989 				bp->b_flags |= B_RELBUF;
2990 				bwrite(bp);
2991 			} else if (LIST_FIRST(&bp->b_dep)) {
2992 				bp->b_flags |= B_RELBUF;
2993 				bwrite(bp);
2994 			} else {
2995 				bp->b_flags |= B_RELBUF;
2996 				brelse(bp);
2997 			}
2998 			goto loop;
2999 		}
3000 		KKASSERT(size <= bp->b_kvasize);
3001 		KASSERT(bp->b_loffset != NOOFFSET,
3002 			("getblk: no buffer offset"));
3003 
3004 		/*
3005 		 * A buffer with B_DELWRI set and B_CACHE clear must
3006 		 * be committed before we can return the buffer in
3007 		 * order to prevent the caller from issuing a read
3008 		 * ( due to B_CACHE not being set ) and overwriting
3009 		 * it.
3010 		 *
3011 		 * Most callers, including NFS and FFS, need this to
3012 		 * operate properly either because they assume they
3013 		 * can issue a read if B_CACHE is not set, or because
3014 		 * ( for example ) an uncached B_DELWRI might loop due
3015 		 * to softupdates re-dirtying the buffer.  In the latter
3016 		 * case, B_CACHE is set after the first write completes,
3017 		 * preventing further loops.
3018 		 *
3019 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3020 		 * above while extending the buffer, we cannot allow the
3021 		 * buffer to remain with B_CACHE set after the write
3022 		 * completes or it will represent a corrupt state.  To
3023 		 * deal with this we set B_NOCACHE to scrap the buffer
3024 		 * after the write.
3025 		 *
3026 		 * XXX Should this be B_RELBUF instead of B_NOCACHE?
3027 		 *     I'm not even sure this state is still possible
3028 		 *     now that getblk() writes out any dirty buffers
3029 		 *     on size changes.
3030 		 *
3031 		 * We might be able to do something fancy, like setting
3032 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3033 		 * so the below call doesn't set B_CACHE, but that gets real
3034 		 * confusing.  This is much easier.
3035 		 */
3036 
3037 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3038 			kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
3039 				"and CACHE clear, b_flags %08x\n",
3040 				bp, (intmax_t)bp->b_loffset, bp->b_flags);
3041 			bp->b_flags |= B_NOCACHE;
3042 			bwrite(bp);
3043 			goto loop;
3044 		}
3045 	} else {
3046 		/*
3047 		 * Buffer is not in-core, create new buffer.  The buffer
3048 		 * returned by getnewbuf() is locked.  Note that the returned
3049 		 * buffer is also considered valid (not marked B_INVAL).
3050 		 *
3051 		 * Calculating the offset for the I/O requires figuring out
3052 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
3053 		 * the mount's f_iosize otherwise.  If the vnode does not
3054 		 * have an associated mount we assume that the passed size is
3055 		 * the block size.
3056 		 *
3057 		 * Note that vn_isdisk() cannot be used here since it may
3058 		 * return a failure for numerous reasons.   Note that the
3059 		 * buffer size may be larger then the block size (the caller
3060 		 * will use block numbers with the proper multiple).  Beware
3061 		 * of using any v_* fields which are part of unions.  In
3062 		 * particular, in DragonFly the mount point overloading
3063 		 * mechanism uses the namecache only and the underlying
3064 		 * directory vnode is not a special case.
3065 		 */
3066 		int bsize, maxsize;
3067 
3068 		if (vp->v_type == VBLK || vp->v_type == VCHR)
3069 			bsize = DEV_BSIZE;
3070 		else if (vp->v_mount)
3071 			bsize = vp->v_mount->mnt_stat.f_iosize;
3072 		else
3073 			bsize = size;
3074 
3075 		maxsize = size + (loffset & PAGE_MASK);
3076 		maxsize = imax(maxsize, bsize);
3077 
3078 		bp = getnewbuf(blkflags, slptimeo, size, maxsize);
3079 		if (bp == NULL) {
3080 			if (slpflags || slptimeo)
3081 				return NULL;
3082 			goto loop;
3083 		}
3084 
3085 		/*
3086 		 * Atomically insert the buffer into the hash, so that it can
3087 		 * be found by findblk().
3088 		 *
3089 		 * If bgetvp() returns non-zero a collision occured, and the
3090 		 * bp will not be associated with the vnode.
3091 		 *
3092 		 * Make sure the translation layer has been cleared.
3093 		 */
3094 		bp->b_loffset = loffset;
3095 		bp->b_bio2.bio_offset = NOOFFSET;
3096 		/* bp->b_bio2.bio_next = NULL; */
3097 
3098 		if (bgetvp(vp, bp, size)) {
3099 			bp->b_flags |= B_INVAL;
3100 			brelse(bp);
3101 			goto loop;
3102 		}
3103 
3104 		/*
3105 		 * All vnode-based buffers must be backed by a VM object.
3106 		 */
3107 		KKASSERT(vp->v_object != NULL);
3108 		bp->b_flags |= B_VMIO;
3109 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3110 
3111 		allocbuf(bp, size);
3112 	}
3113 	KKASSERT(dsched_is_clear_buf_priv(bp));
3114 	return (bp);
3115 }
3116 
3117 /*
3118  * regetblk(bp)
3119  *
3120  * Reacquire a buffer that was previously released to the locked queue,
3121  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3122  * set B_LOCKED (which handles the acquisition race).
3123  *
3124  * To this end, either B_LOCKED must be set or the dependancy list must be
3125  * non-empty.
3126  *
3127  * MPSAFE
3128  */
3129 void
3130 regetblk(struct buf *bp)
3131 {
3132 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3133 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3134 	bremfree(bp);
3135 }
3136 
3137 /*
3138  * geteblk:
3139  *
3140  *	Get an empty, disassociated buffer of given size.  The buffer is
3141  *	initially set to B_INVAL.
3142  *
3143  *	critical section protection is not required for the allocbuf()
3144  *	call because races are impossible here.
3145  *
3146  * MPALMOSTSAFE
3147  */
3148 struct buf *
3149 geteblk(int size)
3150 {
3151 	struct buf *bp;
3152 	int maxsize;
3153 
3154 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3155 
3156 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
3157 		;
3158 	allocbuf(bp, size);
3159 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3160 	KKASSERT(dsched_is_clear_buf_priv(bp));
3161 	return (bp);
3162 }
3163 
3164 
3165 /*
3166  * allocbuf:
3167  *
3168  *	This code constitutes the buffer memory from either anonymous system
3169  *	memory (in the case of non-VMIO operations) or from an associated
3170  *	VM object (in the case of VMIO operations).  This code is able to
3171  *	resize a buffer up or down.
3172  *
3173  *	Note that this code is tricky, and has many complications to resolve
3174  *	deadlock or inconsistant data situations.  Tread lightly!!!
3175  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
3176  *	the caller.  Calling this code willy nilly can result in the loss of
3177  *	data.
3178  *
3179  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3180  *	B_CACHE for the non-VMIO case.
3181  *
3182  *	This routine does not need to be called from a critical section but you
3183  *	must own the buffer.
3184  *
3185  * MPSAFE
3186  */
3187 int
3188 allocbuf(struct buf *bp, int size)
3189 {
3190 	int newbsize, mbsize;
3191 	int i;
3192 
3193 	if (BUF_REFCNT(bp) == 0)
3194 		panic("allocbuf: buffer not busy");
3195 
3196 	if (bp->b_kvasize < size)
3197 		panic("allocbuf: buffer too small");
3198 
3199 	if ((bp->b_flags & B_VMIO) == 0) {
3200 		caddr_t origbuf;
3201 		int origbufsize;
3202 		/*
3203 		 * Just get anonymous memory from the kernel.  Don't
3204 		 * mess with B_CACHE.
3205 		 */
3206 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3207 		if (bp->b_flags & B_MALLOC)
3208 			newbsize = mbsize;
3209 		else
3210 			newbsize = round_page(size);
3211 
3212 		if (newbsize < bp->b_bufsize) {
3213 			/*
3214 			 * Malloced buffers are not shrunk
3215 			 */
3216 			if (bp->b_flags & B_MALLOC) {
3217 				if (newbsize) {
3218 					bp->b_bcount = size;
3219 				} else {
3220 					kfree(bp->b_data, M_BIOBUF);
3221 					if (bp->b_bufsize) {
3222 						atomic_subtract_int(&bufmallocspace, bp->b_bufsize);
3223 						bufspacewakeup();
3224 						bp->b_bufsize = 0;
3225 					}
3226 					bp->b_data = bp->b_kvabase;
3227 					bp->b_bcount = 0;
3228 					bp->b_flags &= ~B_MALLOC;
3229 				}
3230 				return 1;
3231 			}
3232 			vm_hold_free_pages(
3233 			    bp,
3234 			    (vm_offset_t) bp->b_data + newbsize,
3235 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3236 		} else if (newbsize > bp->b_bufsize) {
3237 			/*
3238 			 * We only use malloced memory on the first allocation.
3239 			 * and revert to page-allocated memory when the buffer
3240 			 * grows.
3241 			 */
3242 			if ((bufmallocspace < maxbufmallocspace) &&
3243 				(bp->b_bufsize == 0) &&
3244 				(mbsize <= PAGE_SIZE/2)) {
3245 
3246 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3247 				bp->b_bufsize = mbsize;
3248 				bp->b_bcount = size;
3249 				bp->b_flags |= B_MALLOC;
3250 				atomic_add_int(&bufmallocspace, mbsize);
3251 				return 1;
3252 			}
3253 			origbuf = NULL;
3254 			origbufsize = 0;
3255 			/*
3256 			 * If the buffer is growing on its other-than-first
3257 			 * allocation, then we revert to the page-allocation
3258 			 * scheme.
3259 			 */
3260 			if (bp->b_flags & B_MALLOC) {
3261 				origbuf = bp->b_data;
3262 				origbufsize = bp->b_bufsize;
3263 				bp->b_data = bp->b_kvabase;
3264 				if (bp->b_bufsize) {
3265 					atomic_subtract_int(&bufmallocspace,
3266 							    bp->b_bufsize);
3267 					bufspacewakeup();
3268 					bp->b_bufsize = 0;
3269 				}
3270 				bp->b_flags &= ~B_MALLOC;
3271 				newbsize = round_page(newbsize);
3272 			}
3273 			vm_hold_load_pages(
3274 			    bp,
3275 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3276 			    (vm_offset_t) bp->b_data + newbsize);
3277 			if (origbuf) {
3278 				bcopy(origbuf, bp->b_data, origbufsize);
3279 				kfree(origbuf, M_BIOBUF);
3280 			}
3281 		}
3282 	} else {
3283 		vm_page_t m;
3284 		int desiredpages;
3285 
3286 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3287 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3288 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3289 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3290 
3291 		if (bp->b_flags & B_MALLOC)
3292 			panic("allocbuf: VMIO buffer can't be malloced");
3293 		/*
3294 		 * Set B_CACHE initially if buffer is 0 length or will become
3295 		 * 0-length.
3296 		 */
3297 		if (size == 0 || bp->b_bufsize == 0)
3298 			bp->b_flags |= B_CACHE;
3299 
3300 		if (newbsize < bp->b_bufsize) {
3301 			/*
3302 			 * DEV_BSIZE aligned new buffer size is less then the
3303 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3304 			 * if we have to remove any pages.
3305 			 */
3306 			if (desiredpages < bp->b_xio.xio_npages) {
3307 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3308 					/*
3309 					 * the page is not freed here -- it
3310 					 * is the responsibility of
3311 					 * vnode_pager_setsize
3312 					 */
3313 					m = bp->b_xio.xio_pages[i];
3314 					KASSERT(m != bogus_page,
3315 					    ("allocbuf: bogus page found"));
3316 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
3317 						;
3318 
3319 					bp->b_xio.xio_pages[i] = NULL;
3320 					vm_page_unwire(m, 0);
3321 				}
3322 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3323 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3324 				bp->b_xio.xio_npages = desiredpages;
3325 			}
3326 		} else if (size > bp->b_bcount) {
3327 			/*
3328 			 * We are growing the buffer, possibly in a
3329 			 * byte-granular fashion.
3330 			 */
3331 			struct vnode *vp;
3332 			vm_object_t obj;
3333 			vm_offset_t toff;
3334 			vm_offset_t tinc;
3335 
3336 			/*
3337 			 * Step 1, bring in the VM pages from the object,
3338 			 * allocating them if necessary.  We must clear
3339 			 * B_CACHE if these pages are not valid for the
3340 			 * range covered by the buffer.
3341 			 *
3342 			 * critical section protection is required to protect
3343 			 * against interrupts unbusying and freeing pages
3344 			 * between our vm_page_lookup() and our
3345 			 * busycheck/wiring call.
3346 			 */
3347 			vp = bp->b_vp;
3348 			obj = vp->v_object;
3349 
3350 			lwkt_gettoken(&vm_token);
3351 			while (bp->b_xio.xio_npages < desiredpages) {
3352 				vm_page_t m;
3353 				vm_pindex_t pi;
3354 
3355 				pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
3356 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
3357 					/*
3358 					 * note: must allocate system pages
3359 					 * since blocking here could intefere
3360 					 * with paging I/O, no matter which
3361 					 * process we are.
3362 					 */
3363 					m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
3364 					if (m) {
3365 						vm_page_wire(m);
3366 						vm_page_wakeup(m);
3367 						vm_page_flag_clear(m, PG_ZERO);
3368 						bp->b_flags &= ~B_CACHE;
3369 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3370 						++bp->b_xio.xio_npages;
3371 					}
3372 					continue;
3373 				}
3374 
3375 				/*
3376 				 * We found a page.  If we have to sleep on it,
3377 				 * retry because it might have gotten freed out
3378 				 * from under us.
3379 				 *
3380 				 * We can only test PG_BUSY here.  Blocking on
3381 				 * m->busy might lead to a deadlock:
3382 				 *
3383 				 *  vm_fault->getpages->cluster_read->allocbuf
3384 				 *
3385 				 */
3386 
3387 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
3388 					continue;
3389 				vm_page_flag_clear(m, PG_ZERO);
3390 				vm_page_wire(m);
3391 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3392 				++bp->b_xio.xio_npages;
3393 				if (bp->b_act_count < m->act_count)
3394 					bp->b_act_count = m->act_count;
3395 			}
3396 			lwkt_reltoken(&vm_token);
3397 
3398 			/*
3399 			 * Step 2.  We've loaded the pages into the buffer,
3400 			 * we have to figure out if we can still have B_CACHE
3401 			 * set.  Note that B_CACHE is set according to the
3402 			 * byte-granular range ( bcount and size ), not the
3403 			 * aligned range ( newbsize ).
3404 			 *
3405 			 * The VM test is against m->valid, which is DEV_BSIZE
3406 			 * aligned.  Needless to say, the validity of the data
3407 			 * needs to also be DEV_BSIZE aligned.  Note that this
3408 			 * fails with NFS if the server or some other client
3409 			 * extends the file's EOF.  If our buffer is resized,
3410 			 * B_CACHE may remain set! XXX
3411 			 */
3412 
3413 			toff = bp->b_bcount;
3414 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3415 
3416 			while ((bp->b_flags & B_CACHE) && toff < size) {
3417 				vm_pindex_t pi;
3418 
3419 				if (tinc > (size - toff))
3420 					tinc = size - toff;
3421 
3422 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3423 				    PAGE_SHIFT;
3424 
3425 				vfs_buf_test_cache(
3426 				    bp,
3427 				    bp->b_loffset,
3428 				    toff,
3429 				    tinc,
3430 				    bp->b_xio.xio_pages[pi]
3431 				);
3432 				toff += tinc;
3433 				tinc = PAGE_SIZE;
3434 			}
3435 
3436 			/*
3437 			 * Step 3, fixup the KVM pmap.  Remember that
3438 			 * bp->b_data is relative to bp->b_loffset, but
3439 			 * bp->b_loffset may be offset into the first page.
3440 			 */
3441 
3442 			bp->b_data = (caddr_t)
3443 			    trunc_page((vm_offset_t)bp->b_data);
3444 			pmap_qenter(
3445 			    (vm_offset_t)bp->b_data,
3446 			    bp->b_xio.xio_pages,
3447 			    bp->b_xio.xio_npages
3448 			);
3449 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3450 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3451 		}
3452 	}
3453 
3454 	/* adjust space use on already-dirty buffer */
3455 	if (bp->b_flags & B_DELWRI) {
3456 		spin_lock(&bufcspin);
3457 		dirtybufspace += newbsize - bp->b_bufsize;
3458 		if (bp->b_flags & B_HEAVY)
3459 			dirtybufspacehw += newbsize - bp->b_bufsize;
3460 		spin_unlock(&bufcspin);
3461 	}
3462 	if (newbsize < bp->b_bufsize)
3463 		bufspacewakeup();
3464 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3465 	bp->b_bcount = size;		/* requested buffer size	*/
3466 	return 1;
3467 }
3468 
3469 /*
3470  * biowait:
3471  *
3472  *	Wait for buffer I/O completion, returning error status. B_EINTR
3473  *	is converted into an EINTR error but not cleared (since a chain
3474  *	of biowait() calls may occur).
3475  *
3476  *	On return bpdone() will have been called but the buffer will remain
3477  *	locked and will not have been brelse()'d.
3478  *
3479  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3480  *	likely still in progress on return.
3481  *
3482  *	NOTE!  This operation is on a BIO, not a BUF.
3483  *
3484  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3485  *
3486  * MPSAFE
3487  */
3488 static __inline int
3489 _biowait(struct bio *bio, const char *wmesg, int to)
3490 {
3491 	struct buf *bp = bio->bio_buf;
3492 	u_int32_t flags;
3493 	u_int32_t nflags;
3494 	int error;
3495 
3496 	KKASSERT(bio == &bp->b_bio1);
3497 	for (;;) {
3498 		flags = bio->bio_flags;
3499 		if (flags & BIO_DONE)
3500 			break;
3501 		tsleep_interlock(bio, 0);
3502 		nflags = flags | BIO_WANT;
3503 		tsleep_interlock(bio, 0);
3504 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3505 			if (wmesg)
3506 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3507 			else if (bp->b_cmd == BUF_CMD_READ)
3508 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3509 			else
3510 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3511 			if (error) {
3512 				kprintf("tsleep error biowait %d\n", error);
3513 				return (error);
3514 			}
3515 		}
3516 	}
3517 
3518 	/*
3519 	 * Finish up.
3520 	 */
3521 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3522 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3523 	if (bp->b_flags & B_EINTR)
3524 		return (EINTR);
3525 	if (bp->b_flags & B_ERROR)
3526 		return (bp->b_error ? bp->b_error : EIO);
3527 	return (0);
3528 }
3529 
3530 int
3531 biowait(struct bio *bio, const char *wmesg)
3532 {
3533 	return(_biowait(bio, wmesg, 0));
3534 }
3535 
3536 int
3537 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3538 {
3539 	return(_biowait(bio, wmesg, to));
3540 }
3541 
3542 /*
3543  * This associates a tracking count with an I/O.  vn_strategy() and
3544  * dev_dstrategy() do this automatically but there are a few cases
3545  * where a vnode or device layer is bypassed when a block translation
3546  * is cached.  In such cases bio_start_transaction() may be called on
3547  * the bypassed layers so the system gets an I/O in progress indication
3548  * for those higher layers.
3549  */
3550 void
3551 bio_start_transaction(struct bio *bio, struct bio_track *track)
3552 {
3553 	bio->bio_track = track;
3554 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3555 		dsched_new_buf(bio->bio_buf);
3556 	bio_track_ref(track);
3557 }
3558 
3559 /*
3560  * Initiate I/O on a vnode.
3561  *
3562  * SWAPCACHE OPERATION:
3563  *
3564  *	Real buffer cache buffers have a non-NULL bp->b_vp.  Unfortunately
3565  *	devfs also uses b_vp for fake buffers so we also have to check
3566  *	that B_PAGING is 0.  In this case the passed 'vp' is probably the
3567  *	underlying block device.  The swap assignments are related to the
3568  *	buffer cache buffer's b_vp, not the passed vp.
3569  *
3570  *	The passed vp == bp->b_vp only in the case where the strategy call
3571  *	is made on the vp itself for its own buffers (a regular file or
3572  *	block device vp).  The filesystem usually then re-calls vn_strategy()
3573  *	after translating the request to an underlying device.
3574  *
3575  *	Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3576  *	underlying buffer cache buffers.
3577  *
3578  *	We can only deal with page-aligned buffers at the moment, because
3579  *	we can't tell what the real dirty state for pages straddling a buffer
3580  *	are.
3581  *
3582  *	In order to call swap_pager_strategy() we must provide the VM object
3583  *	and base offset for the underlying buffer cache pages so it can find
3584  *	the swap blocks.
3585  */
3586 void
3587 vn_strategy(struct vnode *vp, struct bio *bio)
3588 {
3589 	struct bio_track *track;
3590 	struct buf *bp = bio->bio_buf;
3591 
3592 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3593 
3594 	/*
3595 	 * Set when an I/O is issued on the bp.  Cleared by consumers
3596 	 * (aka HAMMER), allowing the consumer to determine if I/O had
3597 	 * actually occurred.
3598 	 */
3599 	bp->b_flags |= B_IODEBUG;
3600 
3601 	/*
3602 	 * Handle the swap cache intercept.
3603 	 */
3604 	if (vn_cache_strategy(vp, bio))
3605 		return;
3606 
3607 	/*
3608 	 * Otherwise do the operation through the filesystem
3609 	 */
3610         if (bp->b_cmd == BUF_CMD_READ)
3611                 track = &vp->v_track_read;
3612         else
3613                 track = &vp->v_track_write;
3614 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3615 	bio->bio_track = track;
3616 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3617 		dsched_new_buf(bio->bio_buf);
3618 	bio_track_ref(track);
3619         vop_strategy(*vp->v_ops, vp, bio);
3620 }
3621 
3622 static void vn_cache_strategy_callback(struct bio *bio);
3623 
3624 int
3625 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3626 {
3627 	struct buf *bp = bio->bio_buf;
3628 	struct bio *nbio;
3629 	vm_object_t object;
3630 	vm_page_t m;
3631 	int i;
3632 
3633 	/*
3634 	 * Is this buffer cache buffer suitable for reading from
3635 	 * the swap cache?
3636 	 */
3637 	if (vm_swapcache_read_enable == 0 ||
3638 	    bp->b_cmd != BUF_CMD_READ ||
3639 	    ((bp->b_flags & B_CLUSTER) == 0 &&
3640 	     (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3641 	    ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3642 	    (bp->b_bcount & PAGE_MASK) != 0) {
3643 		return(0);
3644 	}
3645 
3646 	/*
3647 	 * Figure out the original VM object (it will match the underlying
3648 	 * VM pages).  Note that swap cached data uses page indices relative
3649 	 * to that object, not relative to bio->bio_offset.
3650 	 */
3651 	if (bp->b_flags & B_CLUSTER)
3652 		object = vp->v_object;
3653 	else
3654 		object = bp->b_vp->v_object;
3655 
3656 	/*
3657 	 * In order to be able to use the swap cache all underlying VM
3658 	 * pages must be marked as such, and we can't have any bogus pages.
3659 	 */
3660 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3661 		m = bp->b_xio.xio_pages[i];
3662 		if ((m->flags & PG_SWAPPED) == 0)
3663 			break;
3664 		if (m == bogus_page)
3665 			break;
3666 	}
3667 
3668 	/*
3669 	 * If we are good then issue the I/O using swap_pager_strategy().
3670 	 */
3671 	if (i == bp->b_xio.xio_npages) {
3672 		m = bp->b_xio.xio_pages[0];
3673 		nbio = push_bio(bio);
3674 		nbio->bio_done = vn_cache_strategy_callback;
3675 		nbio->bio_offset = ptoa(m->pindex);
3676 		KKASSERT(m->object == object);
3677 		swap_pager_strategy(object, nbio);
3678 		return(1);
3679 	}
3680 	return(0);
3681 }
3682 
3683 /*
3684  * This is a bit of a hack but since the vn_cache_strategy() function can
3685  * override a VFS's strategy function we must make sure that the bio, which
3686  * is probably bio2, doesn't leak an unexpected offset value back to the
3687  * filesystem.  The filesystem (e.g. UFS) might otherwise assume that the
3688  * bio went through its own file strategy function and the the bio2 offset
3689  * is a cached disk offset when, in fact, it isn't.
3690  */
3691 static void
3692 vn_cache_strategy_callback(struct bio *bio)
3693 {
3694 	bio->bio_offset = NOOFFSET;
3695 	biodone(pop_bio(bio));
3696 }
3697 
3698 /*
3699  * bpdone:
3700  *
3701  *	Finish I/O on a buffer after all BIOs have been processed.
3702  *	Called when the bio chain is exhausted or by biowait.  If called
3703  *	by biowait, elseit is typically 0.
3704  *
3705  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3706  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3707  *	assuming B_INVAL is clear.
3708  *
3709  *	For the VMIO case, we set B_CACHE if the op was a read and no
3710  *	read error occured, or if the op was a write.  B_CACHE is never
3711  *	set if the buffer is invalid or otherwise uncacheable.
3712  *
3713  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3714  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3715  *	in the biodone routine.
3716  */
3717 void
3718 bpdone(struct buf *bp, int elseit)
3719 {
3720 	buf_cmd_t cmd;
3721 
3722 	KASSERT(BUF_REFCNTNB(bp) > 0,
3723 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3724 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3725 		("biodone: bp %p already done!", bp));
3726 
3727 	/*
3728 	 * No more BIOs are left.  All completion functions have been dealt
3729 	 * with, now we clean up the buffer.
3730 	 */
3731 	cmd = bp->b_cmd;
3732 	bp->b_cmd = BUF_CMD_DONE;
3733 
3734 	/*
3735 	 * Only reads and writes are processed past this point.
3736 	 */
3737 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3738 		if (cmd == BUF_CMD_FREEBLKS)
3739 			bp->b_flags |= B_NOCACHE;
3740 		if (elseit)
3741 			brelse(bp);
3742 		return;
3743 	}
3744 
3745 	/*
3746 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3747 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3748 	 */
3749 	if (LIST_FIRST(&bp->b_dep) != NULL)
3750 		buf_complete(bp);	/* MPSAFE */
3751 
3752 	/*
3753 	 * A failed write must re-dirty the buffer unless B_INVAL
3754 	 * was set.  Only applicable to normal buffers (with VPs).
3755 	 * vinum buffers may not have a vp.
3756 	 */
3757 	if (cmd == BUF_CMD_WRITE &&
3758 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3759 		bp->b_flags &= ~B_NOCACHE;
3760 		if (bp->b_vp)
3761 			bdirty(bp);
3762 	}
3763 
3764 	if (bp->b_flags & B_VMIO) {
3765 		int i;
3766 		vm_ooffset_t foff;
3767 		vm_page_t m;
3768 		vm_object_t obj;
3769 		int iosize;
3770 		struct vnode *vp = bp->b_vp;
3771 
3772 		obj = vp->v_object;
3773 
3774 #if defined(VFS_BIO_DEBUG)
3775 		if (vp->v_auxrefs == 0)
3776 			panic("biodone: zero vnode hold count");
3777 		if ((vp->v_flag & VOBJBUF) == 0)
3778 			panic("biodone: vnode is not setup for merged cache");
3779 #endif
3780 
3781 		foff = bp->b_loffset;
3782 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3783 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3784 
3785 #if defined(VFS_BIO_DEBUG)
3786 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3787 			kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3788 			    obj->paging_in_progress, bp->b_xio.xio_npages);
3789 		}
3790 #endif
3791 
3792 		/*
3793 		 * Set B_CACHE if the op was a normal read and no error
3794 		 * occured.  B_CACHE is set for writes in the b*write()
3795 		 * routines.
3796 		 */
3797 		iosize = bp->b_bcount - bp->b_resid;
3798 		if (cmd == BUF_CMD_READ &&
3799 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3800 			bp->b_flags |= B_CACHE;
3801 		}
3802 
3803 		lwkt_gettoken(&vm_token);
3804 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3805 			int bogusflag = 0;
3806 			int resid;
3807 
3808 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3809 			if (resid > iosize)
3810 				resid = iosize;
3811 
3812 			/*
3813 			 * cleanup bogus pages, restoring the originals.  Since
3814 			 * the originals should still be wired, we don't have
3815 			 * to worry about interrupt/freeing races destroying
3816 			 * the VM object association.
3817 			 */
3818 			m = bp->b_xio.xio_pages[i];
3819 			if (m == bogus_page) {
3820 				bogusflag = 1;
3821 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3822 				if (m == NULL)
3823 					panic("biodone: page disappeared");
3824 				bp->b_xio.xio_pages[i] = m;
3825 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3826 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3827 			}
3828 #if defined(VFS_BIO_DEBUG)
3829 			if (OFF_TO_IDX(foff) != m->pindex) {
3830 				kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3831 					"mismatch\n",
3832 					(unsigned long)foff, (long)m->pindex);
3833 			}
3834 #endif
3835 
3836 			/*
3837 			 * In the write case, the valid and clean bits are
3838 			 * already changed correctly (see bdwrite()), so we
3839 			 * only need to do this here in the read case.
3840 			 */
3841 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3842 				vfs_clean_one_page(bp, i, m);
3843 			}
3844 			vm_page_flag_clear(m, PG_ZERO);
3845 
3846 			/*
3847 			 * when debugging new filesystems or buffer I/O
3848 			 * methods, this is the most common error that pops
3849 			 * up.  if you see this, you have not set the page
3850 			 * busy flag correctly!!!
3851 			 */
3852 			if (m->busy == 0) {
3853 				kprintf("biodone: page busy < 0, "
3854 				    "pindex: %d, foff: 0x(%x,%x), "
3855 				    "resid: %d, index: %d\n",
3856 				    (int) m->pindex, (int)(foff >> 32),
3857 						(int) foff & 0xffffffff, resid, i);
3858 				if (!vn_isdisk(vp, NULL))
3859 					kprintf(" iosize: %ld, loffset: %lld, "
3860 						"flags: 0x%08x, npages: %d\n",
3861 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3862 					    (long long)bp->b_loffset,
3863 					    bp->b_flags, bp->b_xio.xio_npages);
3864 				else
3865 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3866 					    (long long)bp->b_loffset,
3867 					    bp->b_flags, bp->b_xio.xio_npages);
3868 				kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3869 				    m->valid, m->dirty, m->wire_count);
3870 				panic("biodone: page busy < 0");
3871 			}
3872 			vm_page_io_finish(m);
3873 			vm_object_pip_subtract(obj, 1);
3874 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3875 			iosize -= resid;
3876 		}
3877 		bp->b_flags &= ~B_HASBOGUS;
3878 		if (obj)
3879 			vm_object_pip_wakeupn(obj, 0);
3880 		lwkt_reltoken(&vm_token);
3881 	}
3882 
3883 	/*
3884 	 * Finish up by releasing the buffer.  There are no more synchronous
3885 	 * or asynchronous completions, those were handled by bio_done
3886 	 * callbacks.
3887 	 */
3888 	if (elseit) {
3889 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3890 			brelse(bp);
3891 		else
3892 			bqrelse(bp);
3893 	}
3894 }
3895 
3896 /*
3897  * Normal biodone.
3898  */
3899 void
3900 biodone(struct bio *bio)
3901 {
3902 	struct buf *bp = bio->bio_buf;
3903 
3904 	runningbufwakeup(bp);
3905 
3906 	/*
3907 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3908 	 */
3909 	while (bio) {
3910 		biodone_t *done_func;
3911 		struct bio_track *track;
3912 
3913 		/*
3914 		 * BIO tracking.  Most but not all BIOs are tracked.
3915 		 */
3916 		if ((track = bio->bio_track) != NULL) {
3917 			bio_track_rel(track);
3918 			bio->bio_track = NULL;
3919 		}
3920 
3921 		/*
3922 		 * A bio_done function terminates the loop.  The function
3923 		 * will be responsible for any further chaining and/or
3924 		 * buffer management.
3925 		 *
3926 		 * WARNING!  The done function can deallocate the buffer!
3927 		 */
3928 		if ((done_func = bio->bio_done) != NULL) {
3929 			bio->bio_done = NULL;
3930 			done_func(bio);
3931 			return;
3932 		}
3933 		bio = bio->bio_prev;
3934 	}
3935 
3936 	/*
3937 	 * If we've run out of bio's do normal [a]synchronous completion.
3938 	 */
3939 	bpdone(bp, 1);
3940 }
3941 
3942 /*
3943  * Synchronous biodone - this terminates a synchronous BIO.
3944  *
3945  * bpdone() is called with elseit=FALSE, leaving the buffer completed
3946  * but still locked.  The caller must brelse() the buffer after waiting
3947  * for completion.
3948  */
3949 void
3950 biodone_sync(struct bio *bio)
3951 {
3952 	struct buf *bp = bio->bio_buf;
3953 	int flags;
3954 	int nflags;
3955 
3956 	KKASSERT(bio == &bp->b_bio1);
3957 	bpdone(bp, 0);
3958 
3959 	for (;;) {
3960 		flags = bio->bio_flags;
3961 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
3962 
3963 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3964 			if (flags & BIO_WANT)
3965 				wakeup(bio);
3966 			break;
3967 		}
3968 	}
3969 }
3970 
3971 /*
3972  * vfs_unbusy_pages:
3973  *
3974  *	This routine is called in lieu of iodone in the case of
3975  *	incomplete I/O.  This keeps the busy status for pages
3976  *	consistant.
3977  */
3978 void
3979 vfs_unbusy_pages(struct buf *bp)
3980 {
3981 	int i;
3982 
3983 	runningbufwakeup(bp);
3984 
3985 	lwkt_gettoken(&vm_token);
3986 	if (bp->b_flags & B_VMIO) {
3987 		struct vnode *vp = bp->b_vp;
3988 		vm_object_t obj;
3989 
3990 		obj = vp->v_object;
3991 
3992 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3993 			vm_page_t m = bp->b_xio.xio_pages[i];
3994 
3995 			/*
3996 			 * When restoring bogus changes the original pages
3997 			 * should still be wired, so we are in no danger of
3998 			 * losing the object association and do not need
3999 			 * critical section protection particularly.
4000 			 */
4001 			if (m == bogus_page) {
4002 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
4003 				if (!m) {
4004 					panic("vfs_unbusy_pages: page missing");
4005 				}
4006 				bp->b_xio.xio_pages[i] = m;
4007 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4008 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4009 			}
4010 			vm_object_pip_subtract(obj, 1);
4011 			vm_page_flag_clear(m, PG_ZERO);
4012 			vm_page_io_finish(m);
4013 		}
4014 		bp->b_flags &= ~B_HASBOGUS;
4015 		vm_object_pip_wakeupn(obj, 0);
4016 	}
4017 	lwkt_reltoken(&vm_token);
4018 }
4019 
4020 /*
4021  * vfs_busy_pages:
4022  *
4023  *	This routine is called before a device strategy routine.
4024  *	It is used to tell the VM system that paging I/O is in
4025  *	progress, and treat the pages associated with the buffer
4026  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
4027  *	flag is handled to make sure that the object doesn't become
4028  *	inconsistant.
4029  *
4030  *	Since I/O has not been initiated yet, certain buffer flags
4031  *	such as B_ERROR or B_INVAL may be in an inconsistant state
4032  *	and should be ignored.
4033  *
4034  * MPSAFE
4035  */
4036 void
4037 vfs_busy_pages(struct vnode *vp, struct buf *bp)
4038 {
4039 	int i, bogus;
4040 	struct lwp *lp = curthread->td_lwp;
4041 
4042 	/*
4043 	 * The buffer's I/O command must already be set.  If reading,
4044 	 * B_CACHE must be 0 (double check against callers only doing
4045 	 * I/O when B_CACHE is 0).
4046 	 */
4047 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4048 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
4049 
4050 	if (bp->b_flags & B_VMIO) {
4051 		vm_object_t obj;
4052 
4053 		lwkt_gettoken(&vm_token);
4054 
4055 		obj = vp->v_object;
4056 		KASSERT(bp->b_loffset != NOOFFSET,
4057 			("vfs_busy_pages: no buffer offset"));
4058 
4059 		/*
4060 		 * Loop until none of the pages are busy.
4061 		 */
4062 retry:
4063 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4064 			vm_page_t m = bp->b_xio.xio_pages[i];
4065 
4066 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
4067 				goto retry;
4068 		}
4069 
4070 		/*
4071 		 * Setup for I/O, soft-busy the page right now because
4072 		 * the next loop may block.
4073 		 */
4074 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4075 			vm_page_t m = bp->b_xio.xio_pages[i];
4076 
4077 			vm_page_flag_clear(m, PG_ZERO);
4078 			if ((bp->b_flags & B_CLUSTER) == 0) {
4079 				vm_object_pip_add(obj, 1);
4080 				vm_page_io_start(m);
4081 			}
4082 		}
4083 
4084 		/*
4085 		 * Adjust protections for I/O and do bogus-page mapping.
4086 		 * Assume that vm_page_protect() can block (it can block
4087 		 * if VM_PROT_NONE, don't take any chances regardless).
4088 		 *
4089 		 * In particular note that for writes we must incorporate
4090 		 * page dirtyness from the VM system into the buffer's
4091 		 * dirty range.
4092 		 *
4093 		 * For reads we theoretically must incorporate page dirtyness
4094 		 * from the VM system to determine if the page needs bogus
4095 		 * replacement, but we shortcut the test by simply checking
4096 		 * that all m->valid bits are set, indicating that the page
4097 		 * is fully valid and does not need to be re-read.  For any
4098 		 * VM system dirtyness the page will also be fully valid
4099 		 * since it was mapped at one point.
4100 		 */
4101 		bogus = 0;
4102 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4103 			vm_page_t m = bp->b_xio.xio_pages[i];
4104 
4105 			vm_page_flag_clear(m, PG_ZERO);	/* XXX */
4106 			if (bp->b_cmd == BUF_CMD_WRITE) {
4107 				/*
4108 				 * When readying a vnode-backed buffer for
4109 				 * a write we must zero-fill any invalid
4110 				 * portions of the backing VM pages, mark
4111 				 * it valid and clear related dirty bits.
4112 				 *
4113 				 * vfs_clean_one_page() incorporates any
4114 				 * VM dirtyness and updates the b_dirtyoff
4115 				 * range (after we've made the page RO).
4116 				 *
4117 				 * It is also expected that the pmap modified
4118 				 * bit has already been cleared by the
4119 				 * vm_page_protect().  We may not be able
4120 				 * to clear all dirty bits for a page if it
4121 				 * was also memory mapped (NFS).
4122 				 *
4123 				 * Finally be sure to unassign any swap-cache
4124 				 * backing store as it is now stale.
4125 				 */
4126 				vm_page_protect(m, VM_PROT_READ);
4127 				vfs_clean_one_page(bp, i, m);
4128 				swap_pager_unswapped(m);
4129 			} else if (m->valid == VM_PAGE_BITS_ALL) {
4130 				/*
4131 				 * When readying a vnode-backed buffer for
4132 				 * read we must replace any dirty pages with
4133 				 * a bogus page so dirty data is not destroyed
4134 				 * when filling gaps.
4135 				 *
4136 				 * To avoid testing whether the page is
4137 				 * dirty we instead test that the page was
4138 				 * at some point mapped (m->valid fully
4139 				 * valid) with the understanding that
4140 				 * this also covers the dirty case.
4141 				 */
4142 				bp->b_xio.xio_pages[i] = bogus_page;
4143 				bp->b_flags |= B_HASBOGUS;
4144 				bogus++;
4145 			} else if (m->valid & m->dirty) {
4146 				/*
4147 				 * This case should not occur as partial
4148 				 * dirtyment can only happen if the buffer
4149 				 * is B_CACHE, and this code is not entered
4150 				 * if the buffer is B_CACHE.
4151 				 */
4152 				kprintf("Warning: vfs_busy_pages - page not "
4153 					"fully valid! loff=%jx bpf=%08x "
4154 					"idx=%d val=%02x dir=%02x\n",
4155 					(intmax_t)bp->b_loffset, bp->b_flags,
4156 					i, m->valid, m->dirty);
4157 				vm_page_protect(m, VM_PROT_NONE);
4158 			} else {
4159 				/*
4160 				 * The page is not valid and can be made
4161 				 * part of the read.
4162 				 */
4163 				vm_page_protect(m, VM_PROT_NONE);
4164 			}
4165 		}
4166 		if (bogus) {
4167 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4168 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4169 		}
4170 		lwkt_reltoken(&vm_token);
4171 	}
4172 
4173 	/*
4174 	 * This is the easiest place to put the process accounting for the I/O
4175 	 * for now.
4176 	 */
4177 	if (lp != NULL) {
4178 		if (bp->b_cmd == BUF_CMD_READ)
4179 			lp->lwp_ru.ru_inblock++;
4180 		else
4181 			lp->lwp_ru.ru_oublock++;
4182 	}
4183 }
4184 
4185 /*
4186  * Tell the VM system that the pages associated with this buffer
4187  * are clean.  This is used for delayed writes where the data is
4188  * going to go to disk eventually without additional VM intevention.
4189  *
4190  * NOTE: While we only really need to clean through to b_bcount, we
4191  *	 just go ahead and clean through to b_bufsize.
4192  */
4193 static void
4194 vfs_clean_pages(struct buf *bp)
4195 {
4196 	vm_page_t m;
4197 	int i;
4198 
4199 	if ((bp->b_flags & B_VMIO) == 0)
4200 		return;
4201 
4202 	KASSERT(bp->b_loffset != NOOFFSET,
4203 		("vfs_clean_pages: no buffer offset"));
4204 
4205 	/*
4206 	 * vm_token must be held for vfs_clean_one_page() calls.
4207 	 */
4208 	lwkt_gettoken(&vm_token);
4209 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
4210 		m = bp->b_xio.xio_pages[i];
4211 		vfs_clean_one_page(bp, i, m);
4212 	}
4213 	lwkt_reltoken(&vm_token);
4214 }
4215 
4216 /*
4217  * vfs_clean_one_page:
4218  *
4219  *	Set the valid bits and clear the dirty bits in a page within a
4220  *	buffer.  The range is restricted to the buffer's size and the
4221  *	buffer's logical offset might index into the first page.
4222  *
4223  *	The caller has busied or soft-busied the page and it is not mapped,
4224  *	test and incorporate the dirty bits into b_dirtyoff/end before
4225  *	clearing them.  Note that we need to clear the pmap modified bits
4226  *	after determining the the page was dirty, vm_page_set_validclean()
4227  *	does not do it for us.
4228  *
4229  *	This routine is typically called after a read completes (dirty should
4230  *	be zero in that case as we are not called on bogus-replace pages),
4231  *	or before a write is initiated.
4232  *
4233  * NOTE: vm_token must be held by the caller, and vm_page_set_validclean()
4234  *	 currently assumes the vm_token is held.
4235  */
4236 static void
4237 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4238 {
4239 	int bcount;
4240 	int xoff;
4241 	int soff;
4242 	int eoff;
4243 
4244 	/*
4245 	 * Calculate offset range within the page but relative to buffer's
4246 	 * loffset.  loffset might be offset into the first page.
4247 	 */
4248 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4249 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4250 
4251 	if (pageno == 0) {
4252 		soff = xoff;
4253 		eoff = PAGE_SIZE;
4254 	} else {
4255 		soff = (pageno << PAGE_SHIFT);
4256 		eoff = soff + PAGE_SIZE;
4257 	}
4258 	if (eoff > bcount)
4259 		eoff = bcount;
4260 	if (soff >= eoff)
4261 		return;
4262 
4263 	/*
4264 	 * Test dirty bits and adjust b_dirtyoff/end.
4265 	 *
4266 	 * If dirty pages are incorporated into the bp any prior
4267 	 * B_NEEDCOMMIT state (NFS) must be cleared because the
4268 	 * caller has not taken into account the new dirty data.
4269 	 *
4270 	 * If the page was memory mapped the dirty bits might go beyond the
4271 	 * end of the buffer, but we can't really make the assumption that
4272 	 * a file EOF straddles the buffer (even though this is the case for
4273 	 * NFS if B_NEEDCOMMIT is also set).  So for the purposes of clearing
4274 	 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4275 	 * This also saves some console spam.
4276 	 *
4277 	 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4278 	 * NFS can handle huge commits but not huge writes.
4279 	 */
4280 	vm_page_test_dirty(m);
4281 	if (m->dirty) {
4282 		if ((bp->b_flags & B_NEEDCOMMIT) &&
4283 		    (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4284 			if (debug_commit)
4285 			kprintf("Warning: vfs_clean_one_page: bp %p "
4286 				"loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4287 				" cmd %d vd %02x/%02x x/s/e %d %d %d "
4288 				"doff/end %d %d\n",
4289 				bp, (intmax_t)bp->b_loffset, bp->b_bcount,
4290 				bp->b_flags, bp->b_cmd,
4291 				m->valid, m->dirty, xoff, soff, eoff,
4292 				bp->b_dirtyoff, bp->b_dirtyend);
4293 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4294 			if (debug_commit)
4295 				print_backtrace(-1);
4296 		}
4297 		/*
4298 		 * Only clear the pmap modified bits if ALL the dirty bits
4299 		 * are set, otherwise the system might mis-clear portions
4300 		 * of a page.
4301 		 */
4302 		if (m->dirty == VM_PAGE_BITS_ALL &&
4303 		    (bp->b_flags & B_NEEDCOMMIT) == 0) {
4304 			pmap_clear_modify(m);
4305 		}
4306 		if (bp->b_dirtyoff > soff - xoff)
4307 			bp->b_dirtyoff = soff - xoff;
4308 		if (bp->b_dirtyend < eoff - xoff)
4309 			bp->b_dirtyend = eoff - xoff;
4310 	}
4311 
4312 	/*
4313 	 * Set related valid bits, clear related dirty bits.
4314 	 * Does not mess with the pmap modified bit.
4315 	 *
4316 	 * WARNING!  We cannot just clear all of m->dirty here as the
4317 	 *	     buffer cache buffers may use a DEV_BSIZE'd aligned
4318 	 *	     block size, or have an odd size (e.g. NFS at file EOF).
4319 	 *	     The putpages code can clear m->dirty to 0.
4320 	 *
4321 	 *	     If a VOP_WRITE generates a buffer cache buffer which
4322 	 *	     covers the same space as mapped writable pages the
4323 	 *	     buffer flush might not be able to clear all the dirty
4324 	 *	     bits and still require a putpages from the VM system
4325 	 *	     to finish it off.
4326 	 *
4327 	 * WARNING!  vm_page_set_validclean() currently assumes vm_token
4328 	 *	     is held.  The page might not be busied (bdwrite() case).
4329 	 */
4330 	vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4331 }
4332 
4333 /*
4334  * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4335  * The page data is assumed to be valid (there is no zeroing here).
4336  */
4337 static void
4338 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4339 {
4340 	int bcount;
4341 	int xoff;
4342 	int soff;
4343 	int eoff;
4344 
4345 	/*
4346 	 * Calculate offset range within the page but relative to buffer's
4347 	 * loffset.  loffset might be offset into the first page.
4348 	 */
4349 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4350 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4351 
4352 	if (pageno == 0) {
4353 		soff = xoff;
4354 		eoff = PAGE_SIZE;
4355 	} else {
4356 		soff = (pageno << PAGE_SHIFT);
4357 		eoff = soff + PAGE_SIZE;
4358 	}
4359 	if (eoff > bcount)
4360 		eoff = bcount;
4361 	if (soff >= eoff)
4362 		return;
4363 	vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4364 }
4365 
4366 /*
4367  * vfs_bio_clrbuf:
4368  *
4369  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
4370  *	to clear B_ERROR and B_INVAL.
4371  *
4372  *	Note that while we only theoretically need to clear through b_bcount,
4373  *	we go ahead and clear through b_bufsize.
4374  */
4375 
4376 void
4377 vfs_bio_clrbuf(struct buf *bp)
4378 {
4379 	int i, mask = 0;
4380 	caddr_t sa, ea;
4381 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4382 		bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4383 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4384 		    (bp->b_loffset & PAGE_MASK) == 0) {
4385 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4386 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4387 				bp->b_resid = 0;
4388 				return;
4389 			}
4390 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
4391 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
4392 				bzero(bp->b_data, bp->b_bufsize);
4393 				bp->b_xio.xio_pages[0]->valid |= mask;
4394 				bp->b_resid = 0;
4395 				return;
4396 			}
4397 		}
4398 		sa = bp->b_data;
4399 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4400 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4401 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4402 			ea = (caddr_t)(vm_offset_t)ulmin(
4403 			    (u_long)(vm_offset_t)ea,
4404 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4405 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4406 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4407 				continue;
4408 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4409 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
4410 					bzero(sa, ea - sa);
4411 				}
4412 			} else {
4413 				for (; sa < ea; sa += DEV_BSIZE, j++) {
4414 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
4415 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
4416 						bzero(sa, DEV_BSIZE);
4417 				}
4418 			}
4419 			bp->b_xio.xio_pages[i]->valid |= mask;
4420 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4421 		}
4422 		bp->b_resid = 0;
4423 	} else {
4424 		clrbuf(bp);
4425 	}
4426 }
4427 
4428 /*
4429  * vm_hold_load_pages:
4430  *
4431  *	Load pages into the buffer's address space.  The pages are
4432  *	allocated from the kernel object in order to reduce interference
4433  *	with the any VM paging I/O activity.  The range of loaded
4434  *	pages will be wired.
4435  *
4436  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
4437  *	retrieve the full range (to - from) of pages.
4438  *
4439  * MPSAFE
4440  */
4441 void
4442 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4443 {
4444 	vm_offset_t pg;
4445 	vm_page_t p;
4446 	int index;
4447 
4448 	to = round_page(to);
4449 	from = round_page(from);
4450 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4451 
4452 	pg = from;
4453 	while (pg < to) {
4454 		/*
4455 		 * Note: must allocate system pages since blocking here
4456 		 * could intefere with paging I/O, no matter which
4457 		 * process we are.
4458 		 */
4459 		p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
4460 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4461 		if (p) {
4462 			vm_page_wire(p);
4463 			p->valid = VM_PAGE_BITS_ALL;
4464 			vm_page_flag_clear(p, PG_ZERO);
4465 			pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4466 			bp->b_xio.xio_pages[index] = p;
4467 			vm_page_wakeup(p);
4468 
4469 			pg += PAGE_SIZE;
4470 			++index;
4471 		}
4472 	}
4473 	bp->b_xio.xio_npages = index;
4474 }
4475 
4476 /*
4477  * Allocate pages for a buffer cache buffer.
4478  *
4479  * Under extremely severe memory conditions even allocating out of the
4480  * system reserve can fail.  If this occurs we must allocate out of the
4481  * interrupt reserve to avoid a deadlock with the pageout daemon.
4482  *
4483  * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf).
4484  * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock
4485  * against the pageout daemon if pages are not freed from other sources.
4486  *
4487  * MPSAFE
4488  */
4489 static
4490 vm_page_t
4491 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
4492 {
4493 	vm_page_t p;
4494 
4495 	/*
4496 	 * Try a normal allocation, allow use of system reserve.
4497 	 */
4498 	lwkt_gettoken(&vm_token);
4499 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
4500 	if (p) {
4501 		lwkt_reltoken(&vm_token);
4502 		return(p);
4503 	}
4504 
4505 	/*
4506 	 * The normal allocation failed and we clearly have a page
4507 	 * deficit.  Try to reclaim some clean VM pages directly
4508 	 * from the buffer cache.
4509 	 */
4510 	vm_pageout_deficit += deficit;
4511 	recoverbufpages();
4512 
4513 	/*
4514 	 * We may have blocked, the caller will know what to do if the
4515 	 * page now exists.
4516 	 */
4517 	if (vm_page_lookup(obj, pg)) {
4518 		lwkt_reltoken(&vm_token);
4519 		return(NULL);
4520 	}
4521 
4522 	/*
4523 	 * Allocate and allow use of the interrupt reserve.
4524 	 *
4525 	 * If after all that we still can't allocate a VM page we are
4526 	 * in real trouble, but we slog on anyway hoping that the system
4527 	 * won't deadlock.
4528 	 */
4529 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
4530 				   VM_ALLOC_INTERRUPT);
4531 	if (p) {
4532 		if (vm_page_count_severe()) {
4533 			++lowmempgallocs;
4534 			vm_wait(hz / 20 + 1);
4535 		}
4536 	} else {
4537 		kprintf("bio_page_alloc: Memory exhausted during bufcache "
4538 			"page allocation\n");
4539 		++lowmempgfails;
4540 		vm_wait(hz);
4541 	}
4542 	lwkt_reltoken(&vm_token);
4543 	return(p);
4544 }
4545 
4546 /*
4547  * vm_hold_free_pages:
4548  *
4549  *	Return pages associated with the buffer back to the VM system.
4550  *
4551  *	The range of pages underlying the buffer's address space will
4552  *	be unmapped and un-wired.
4553  *
4554  * MPSAFE
4555  */
4556 void
4557 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4558 {
4559 	vm_offset_t pg;
4560 	vm_page_t p;
4561 	int index, newnpages;
4562 
4563 	from = round_page(from);
4564 	to = round_page(to);
4565 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4566 	newnpages = index;
4567 
4568 	lwkt_gettoken(&vm_token);
4569 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4570 		p = bp->b_xio.xio_pages[index];
4571 		if (p && (index < bp->b_xio.xio_npages)) {
4572 			if (p->busy) {
4573 				kprintf("vm_hold_free_pages: doffset: %lld, "
4574 					"loffset: %lld\n",
4575 					(long long)bp->b_bio2.bio_offset,
4576 					(long long)bp->b_loffset);
4577 			}
4578 			bp->b_xio.xio_pages[index] = NULL;
4579 			pmap_kremove(pg);
4580 			vm_page_busy(p);
4581 			vm_page_unwire(p, 0);
4582 			vm_page_free(p);
4583 		}
4584 	}
4585 	bp->b_xio.xio_npages = newnpages;
4586 	lwkt_reltoken(&vm_token);
4587 }
4588 
4589 /*
4590  * vmapbuf:
4591  *
4592  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
4593  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4594  *	initialized.
4595  */
4596 int
4597 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4598 {
4599 	caddr_t addr;
4600 	vm_offset_t va;
4601 	vm_page_t m;
4602 	int vmprot;
4603 	int error;
4604 	int pidx;
4605 	int i;
4606 
4607 	/*
4608 	 * bp had better have a command and it better be a pbuf.
4609 	 */
4610 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4611 	KKASSERT(bp->b_flags & B_PAGING);
4612 	KKASSERT(bp->b_kvabase);
4613 
4614 	if (bytes < 0)
4615 		return (-1);
4616 
4617 	/*
4618 	 * Map the user data into KVM.  Mappings have to be page-aligned.
4619 	 */
4620 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
4621 	pidx = 0;
4622 
4623 	vmprot = VM_PROT_READ;
4624 	if (bp->b_cmd == BUF_CMD_READ)
4625 		vmprot |= VM_PROT_WRITE;
4626 
4627 	while (addr < udata + bytes) {
4628 		/*
4629 		 * Do the vm_fault if needed; do the copy-on-write thing
4630 		 * when reading stuff off device into memory.
4631 		 *
4632 		 * vm_fault_page*() returns a held VM page.
4633 		 */
4634 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4635 		va = trunc_page(va);
4636 
4637 		m = vm_fault_page_quick(va, vmprot, &error);
4638 		if (m == NULL) {
4639 			for (i = 0; i < pidx; ++i) {
4640 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
4641 			    bp->b_xio.xio_pages[i] = NULL;
4642 			}
4643 			return(-1);
4644 		}
4645 		bp->b_xio.xio_pages[pidx] = m;
4646 		addr += PAGE_SIZE;
4647 		++pidx;
4648 	}
4649 
4650 	/*
4651 	 * Map the page array and set the buffer fields to point to
4652 	 * the mapped data buffer.
4653 	 */
4654 	if (pidx > btoc(MAXPHYS))
4655 		panic("vmapbuf: mapped more than MAXPHYS");
4656 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4657 
4658 	bp->b_xio.xio_npages = pidx;
4659 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4660 	bp->b_bcount = bytes;
4661 	bp->b_bufsize = bytes;
4662 	return(0);
4663 }
4664 
4665 /*
4666  * vunmapbuf:
4667  *
4668  *	Free the io map PTEs associated with this IO operation.
4669  *	We also invalidate the TLB entries and restore the original b_addr.
4670  */
4671 void
4672 vunmapbuf(struct buf *bp)
4673 {
4674 	int pidx;
4675 	int npages;
4676 
4677 	KKASSERT(bp->b_flags & B_PAGING);
4678 
4679 	npages = bp->b_xio.xio_npages;
4680 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4681 	for (pidx = 0; pidx < npages; ++pidx) {
4682 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4683 		bp->b_xio.xio_pages[pidx] = NULL;
4684 	}
4685 	bp->b_xio.xio_npages = 0;
4686 	bp->b_data = bp->b_kvabase;
4687 }
4688 
4689 /*
4690  * Scan all buffers in the system and issue the callback.
4691  */
4692 int
4693 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4694 {
4695 	int count = 0;
4696 	int error;
4697 	int n;
4698 
4699 	for (n = 0; n < nbuf; ++n) {
4700 		if ((error = callback(&buf[n], info)) < 0) {
4701 			count = error;
4702 			break;
4703 		}
4704 		count += error;
4705 	}
4706 	return (count);
4707 }
4708 
4709 /*
4710  * nestiobuf_iodone: biodone callback for nested buffers and propagate
4711  * completion to the master buffer.
4712  */
4713 static void
4714 nestiobuf_iodone(struct bio *bio)
4715 {
4716 	struct bio *mbio;
4717 	struct buf *mbp, *bp;
4718 	struct devstat *stats;
4719 	int error;
4720 	int donebytes;
4721 
4722 	bp = bio->bio_buf;
4723 	mbio = bio->bio_caller_info1.ptr;
4724 	stats = bio->bio_caller_info2.ptr;
4725 	mbp = mbio->bio_buf;
4726 
4727 	KKASSERT(bp->b_bcount <= bp->b_bufsize);
4728 	KKASSERT(mbp != bp);
4729 
4730 	error = bp->b_error;
4731 	if (bp->b_error == 0 &&
4732 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4733 		/*
4734 		 * Not all got transfered, raise an error. We have no way to
4735 		 * propagate these conditions to mbp.
4736 		 */
4737 		error = EIO;
4738 	}
4739 
4740 	donebytes = bp->b_bufsize;
4741 
4742 	relpbuf(bp, NULL);
4743 
4744 	nestiobuf_done(mbio, donebytes, error, stats);
4745 }
4746 
4747 void
4748 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats)
4749 {
4750 	struct buf *mbp;
4751 
4752 	mbp = mbio->bio_buf;
4753 
4754 	KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4755 
4756 	/*
4757 	 * If an error occured, propagate it to the master buffer.
4758 	 *
4759 	 * Several biodone()s may wind up running concurrently so
4760 	 * use an atomic op to adjust b_flags.
4761 	 */
4762 	if (error) {
4763 		mbp->b_error = error;
4764 		atomic_set_int(&mbp->b_flags, B_ERROR);
4765 	}
4766 
4767 	/*
4768 	 * Decrement the operations in progress counter and terminate the
4769 	 * I/O if this was the last bit.
4770 	 */
4771 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4772 		mbp->b_resid = 0;
4773 		if (stats)
4774 			devstat_end_transaction_buf(stats, mbp);
4775 		biodone(mbio);
4776 	}
4777 }
4778 
4779 /*
4780  * Initialize a nestiobuf for use.  Set an initial count of 1 to prevent
4781  * the mbio from being biodone()'d while we are still adding sub-bios to
4782  * it.
4783  */
4784 void
4785 nestiobuf_init(struct bio *bio)
4786 {
4787 	bio->bio_driver_info = (void *)1;
4788 }
4789 
4790 /*
4791  * The BIOs added to the nestedio have already been started, remove the
4792  * count that placeheld our mbio and biodone() it if the count would
4793  * transition to 0.
4794  */
4795 void
4796 nestiobuf_start(struct bio *mbio)
4797 {
4798 	struct buf *mbp = mbio->bio_buf;
4799 
4800 	/*
4801 	 * Decrement the operations in progress counter and terminate the
4802 	 * I/O if this was the last bit.
4803 	 */
4804 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4805 		if (mbp->b_flags & B_ERROR)
4806 			mbp->b_resid = mbp->b_bcount;
4807 		else
4808 			mbp->b_resid = 0;
4809 		biodone(mbio);
4810 	}
4811 }
4812 
4813 /*
4814  * Set an intermediate error prior to calling nestiobuf_start()
4815  */
4816 void
4817 nestiobuf_error(struct bio *mbio, int error)
4818 {
4819 	struct buf *mbp = mbio->bio_buf;
4820 
4821 	if (error) {
4822 		mbp->b_error = error;
4823 		atomic_set_int(&mbp->b_flags, B_ERROR);
4824 	}
4825 }
4826 
4827 /*
4828  * nestiobuf_add: setup a "nested" buffer.
4829  *
4830  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4831  * => 'bp' should be a buffer allocated by getiobuf.
4832  * => 'offset' is a byte offset in the master buffer.
4833  * => 'size' is a size in bytes of this nested buffer.
4834  */
4835 void
4836 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats)
4837 {
4838 	struct buf *mbp = mbio->bio_buf;
4839 	struct vnode *vp = mbp->b_vp;
4840 
4841 	KKASSERT(mbp->b_bcount >= offset + size);
4842 
4843 	atomic_add_int((int *)&mbio->bio_driver_info, 1);
4844 
4845 	/* kernel needs to own the lock for it to be released in biodone */
4846 	BUF_KERNPROC(bp);
4847 	bp->b_vp = vp;
4848 	bp->b_cmd = mbp->b_cmd;
4849 	bp->b_bio1.bio_done = nestiobuf_iodone;
4850 	bp->b_data = (char *)mbp->b_data + offset;
4851 	bp->b_resid = bp->b_bcount = size;
4852 	bp->b_bufsize = bp->b_bcount;
4853 
4854 	bp->b_bio1.bio_track = NULL;
4855 	bp->b_bio1.bio_caller_info1.ptr = mbio;
4856 	bp->b_bio1.bio_caller_info2.ptr = stats;
4857 }
4858 
4859 /*
4860  * print out statistics from the current status of the buffer pool
4861  * this can be toggeled by the system control option debug.syncprt
4862  */
4863 #ifdef DEBUG
4864 void
4865 vfs_bufstats(void)
4866 {
4867         int i, j, count;
4868         struct buf *bp;
4869         struct bqueues *dp;
4870         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4871         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4872 
4873         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4874                 count = 0;
4875                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4876                         counts[j] = 0;
4877 
4878 		spin_lock(&bufqspin);
4879                 TAILQ_FOREACH(bp, dp, b_freelist) {
4880                         counts[bp->b_bufsize/PAGE_SIZE]++;
4881                         count++;
4882                 }
4883 		spin_unlock(&bufqspin);
4884 
4885                 kprintf("%s: total-%d", bname[i], count);
4886                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4887                         if (counts[j] != 0)
4888                                 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4889                 kprintf("\n");
4890         }
4891 }
4892 #endif
4893 
4894 #ifdef DDB
4895 
4896 DB_SHOW_COMMAND(buffer, db_show_buffer)
4897 {
4898 	/* get args */
4899 	struct buf *bp = (struct buf *)addr;
4900 
4901 	if (!have_addr) {
4902 		db_printf("usage: show buffer <addr>\n");
4903 		return;
4904 	}
4905 
4906 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4907 	db_printf("b_cmd = %d\n", bp->b_cmd);
4908 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4909 		  "b_resid = %d\n, b_data = %p, "
4910 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4911 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4912 		  bp->b_data,
4913 		  (long long)bp->b_bio2.bio_offset,
4914 		  (long long)(bp->b_bio2.bio_next ?
4915 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4916 	if (bp->b_xio.xio_npages) {
4917 		int i;
4918 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4919 			bp->b_xio.xio_npages);
4920 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4921 			vm_page_t m;
4922 			m = bp->b_xio.xio_pages[i];
4923 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4924 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4925 			if ((i + 1) < bp->b_xio.xio_npages)
4926 				db_printf(",");
4927 		}
4928 		db_printf("\n");
4929 	}
4930 }
4931 #endif /* DDB */
4932