xref: /dragonfly/sys/kern/vfs_bio.c (revision 235099c3)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <vm/vm_page2.h>
61 
62 #include "opt_ddb.h"
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 /*
68  * Buffer queues.
69  */
70 enum bufq_type {
71 	BQUEUE_NONE,    	/* not on any queue */
72 	BQUEUE_LOCKED,  	/* locked buffers */
73 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
74 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
75 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
76 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
77 	BQUEUE_EMPTY,    	/* empty buffer headers */
78 
79 	BUFFER_QUEUES		/* number of buffer queues */
80 };
81 
82 typedef enum bufq_type bufq_type_t;
83 
84 #define BD_WAKE_SIZE	16384
85 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
86 
87 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
88 struct spinlock	bufspin = SPINLOCK_INITIALIZER(&bufspin);
89 
90 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
91 
92 struct buf *buf;		/* buffer header pool */
93 
94 static void vfs_clean_pages(struct buf *bp);
95 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
96 static void vfs_vmio_release(struct buf *bp);
97 static int flushbufqueues(bufq_type_t q);
98 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
99 
100 static void bd_signal(int totalspace);
101 static void buf_daemon(void);
102 static void buf_daemon_hw(void);
103 
104 /*
105  * bogus page -- for I/O to/from partially complete buffers
106  * this is a temporary solution to the problem, but it is not
107  * really that bad.  it would be better to split the buffer
108  * for input in the case of buffers partially already in memory,
109  * but the code is intricate enough already.
110  */
111 vm_page_t bogus_page;
112 
113 /*
114  * These are all static, but make the ones we export globals so we do
115  * not need to use compiler magic.
116  */
117 int bufspace, maxbufspace,
118 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
119 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
120 static int lorunningspace, hirunningspace, runningbufreq;
121 int dirtybufspace, dirtybufspacehw, lodirtybufspace, hidirtybufspace;
122 int dirtybufcount, dirtybufcounthw;
123 int runningbufspace, runningbufcount;
124 static int getnewbufcalls;
125 static int getnewbufrestarts;
126 static int recoverbufcalls;
127 static int needsbuffer;		/* locked by needsbuffer_spin */
128 static int bd_request;		/* locked by needsbuffer_spin */
129 static int bd_request_hw;	/* locked by needsbuffer_spin */
130 static u_int bd_wake_ary[BD_WAKE_SIZE];
131 static u_int bd_wake_index;
132 static struct spinlock needsbuffer_spin;
133 
134 static struct thread *bufdaemon_td;
135 static struct thread *bufdaemonhw_td;
136 
137 
138 /*
139  * Sysctls for operational control of the buffer cache.
140  */
141 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
142 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
143 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
144 	"High watermark used to trigger explicit flushing of dirty buffers");
145 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
146 	"Minimum amount of buffer space required for active I/O");
147 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
148 	"Maximum amount of buffer space to usable for active I/O");
149 /*
150  * Sysctls determining current state of the buffer cache.
151  */
152 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
153 	"Total number of buffers in buffer cache");
154 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
155 	"Pending bytes of dirty buffers (all)");
156 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
157 	"Pending bytes of dirty buffers (heavy weight)");
158 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
159 	"Pending number of dirty buffers");
160 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
161 	"Pending number of dirty buffers (heavy weight)");
162 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
163 	"I/O bytes currently in progress due to asynchronous writes");
164 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
165 	"I/O buffers currently in progress due to asynchronous writes");
166 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
167 	"Hard limit on maximum amount of memory usable for buffer space");
168 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
169 	"Soft limit on maximum amount of memory usable for buffer space");
170 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
171 	"Minimum amount of memory to reserve for system buffer space");
172 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
173 	"Amount of memory available for buffers");
174 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
175 	0, "Maximum amount of memory reserved for buffers using malloc");
176 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
177 	"Amount of memory left for buffers using malloc-scheme");
178 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
179 	"New buffer header acquisition requests");
180 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
181 	0, "New buffer header acquisition restarts");
182 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
183 	"Recover VM space in an emergency");
184 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
185 	"Buffer acquisition restarts due to fragmented buffer map");
186 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
187 	"Amount of time KVA space was deallocated in an arbitrary buffer");
188 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
189 	"Amount of time buffer re-use operations were successful");
190 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
191 	"sizeof(struct buf)");
192 
193 char *buf_wmesg = BUF_WMESG;
194 
195 extern int vm_swap_size;
196 
197 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
198 #define VFS_BIO_NEED_UNUSED02	0x02
199 #define VFS_BIO_NEED_UNUSED04	0x04
200 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
201 
202 /*
203  * bufspacewakeup:
204  *
205  *	Called when buffer space is potentially available for recovery.
206  *	getnewbuf() will block on this flag when it is unable to free
207  *	sufficient buffer space.  Buffer space becomes recoverable when
208  *	bp's get placed back in the queues.
209  */
210 
211 static __inline void
212 bufspacewakeup(void)
213 {
214 	/*
215 	 * If someone is waiting for BUF space, wake them up.  Even
216 	 * though we haven't freed the kva space yet, the waiting
217 	 * process will be able to now.
218 	 */
219 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
220 		spin_lock_wr(&needsbuffer_spin);
221 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
222 		spin_unlock_wr(&needsbuffer_spin);
223 		wakeup(&needsbuffer);
224 	}
225 }
226 
227 /*
228  * runningbufwakeup:
229  *
230  *	Accounting for I/O in progress.
231  *
232  */
233 static __inline void
234 runningbufwakeup(struct buf *bp)
235 {
236 	int totalspace;
237 	int limit;
238 
239 	if ((totalspace = bp->b_runningbufspace) != 0) {
240 		atomic_subtract_int(&runningbufspace, totalspace);
241 		atomic_subtract_int(&runningbufcount, 1);
242 		bp->b_runningbufspace = 0;
243 
244 		/*
245 		 * see waitrunningbufspace() for limit test.
246 		 */
247 		limit = hirunningspace * 2 / 3;
248 		if (runningbufreq && runningbufspace <= limit) {
249 			runningbufreq = 0;
250 			wakeup(&runningbufreq);
251 		}
252 		bd_signal(totalspace);
253 	}
254 }
255 
256 /*
257  * bufcountwakeup:
258  *
259  *	Called when a buffer has been added to one of the free queues to
260  *	account for the buffer and to wakeup anyone waiting for free buffers.
261  *	This typically occurs when large amounts of metadata are being handled
262  *	by the buffer cache ( else buffer space runs out first, usually ).
263  *
264  * MPSAFE
265  */
266 static __inline void
267 bufcountwakeup(void)
268 {
269 	if (needsbuffer) {
270 		spin_lock_wr(&needsbuffer_spin);
271 		needsbuffer &= ~VFS_BIO_NEED_ANY;
272 		spin_unlock_wr(&needsbuffer_spin);
273 		wakeup(&needsbuffer);
274 	}
275 }
276 
277 /*
278  * waitrunningbufspace()
279  *
280  * Wait for the amount of running I/O to drop to hirunningspace * 2 / 3.
281  * This is the point where write bursting stops so we don't want to wait
282  * for the running amount to drop below it (at least if we still want bioq
283  * to burst writes).
284  *
285  * The caller may be using this function to block in a tight loop, we
286  * must block while runningbufspace is greater then or equal to
287  * hirunningspace * 2 / 3.
288  *
289  * And even with that it may not be enough, due to the presence of
290  * B_LOCKED dirty buffers, so also wait for at least one running buffer
291  * to complete.
292  */
293 static __inline void
294 waitrunningbufspace(void)
295 {
296 	int limit = hirunningspace * 2 / 3;
297 
298 	crit_enter();
299 	if (runningbufspace > limit) {
300 		while (runningbufspace > limit) {
301 			++runningbufreq;
302 			tsleep(&runningbufreq, 0, "wdrn1", 0);
303 		}
304 	} else if (runningbufspace) {
305 		++runningbufreq;
306 		tsleep(&runningbufreq, 0, "wdrn2", 1);
307 	}
308 	crit_exit();
309 }
310 
311 /*
312  * buf_dirty_count_severe:
313  *
314  *	Return true if we have too many dirty buffers.
315  */
316 int
317 buf_dirty_count_severe(void)
318 {
319 	return (runningbufspace + dirtybufspace >= hidirtybufspace ||
320 	        dirtybufcount >= nbuf / 2);
321 }
322 
323 /*
324  * Return true if the amount of running I/O is severe and BIOQ should
325  * start bursting.
326  */
327 int
328 buf_runningbufspace_severe(void)
329 {
330 	return (runningbufspace >= hirunningspace * 2 / 3);
331 }
332 
333 /*
334  * vfs_buf_test_cache:
335  *
336  * Called when a buffer is extended.  This function clears the B_CACHE
337  * bit if the newly extended portion of the buffer does not contain
338  * valid data.
339  *
340  * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
341  * cache buffers.  The VM pages remain dirty, as someone had mmap()'d
342  * them while a clean buffer was present.
343  */
344 static __inline__
345 void
346 vfs_buf_test_cache(struct buf *bp,
347 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
348 		  vm_page_t m)
349 {
350 	if (bp->b_flags & B_CACHE) {
351 		int base = (foff + off) & PAGE_MASK;
352 		if (vm_page_is_valid(m, base, size) == 0)
353 			bp->b_flags &= ~B_CACHE;
354 	}
355 }
356 
357 /*
358  * bd_speedup()
359  *
360  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
361  * low water mark.
362  *
363  * MPSAFE
364  */
365 static __inline__
366 void
367 bd_speedup(void)
368 {
369 	if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
370 		return;
371 
372 	if (bd_request == 0 &&
373 	    (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
374 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
375 		spin_lock_wr(&needsbuffer_spin);
376 		bd_request = 1;
377 		spin_unlock_wr(&needsbuffer_spin);
378 		wakeup(&bd_request);
379 	}
380 	if (bd_request_hw == 0 &&
381 	    (dirtybufspacehw > lodirtybufspace / 2 ||
382 	     dirtybufcounthw >= nbuf / 2)) {
383 		spin_lock_wr(&needsbuffer_spin);
384 		bd_request_hw = 1;
385 		spin_unlock_wr(&needsbuffer_spin);
386 		wakeup(&bd_request_hw);
387 	}
388 }
389 
390 /*
391  * bd_heatup()
392  *
393  *	Get the buf_daemon heated up when the number of running and dirty
394  *	buffers exceeds the mid-point.
395  *
396  *	Return the total number of dirty bytes past the second mid point
397  *	as a measure of how much excess dirty data there is in the system.
398  *
399  * MPSAFE
400  */
401 int
402 bd_heatup(void)
403 {
404 	int mid1;
405 	int mid2;
406 	int totalspace;
407 
408 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
409 
410 	totalspace = runningbufspace + dirtybufspace;
411 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
412 		bd_speedup();
413 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
414 		if (totalspace >= mid2)
415 			return(totalspace - mid2);
416 	}
417 	return(0);
418 }
419 
420 /*
421  * bd_wait()
422  *
423  *	Wait for the buffer cache to flush (totalspace) bytes worth of
424  *	buffers, then return.
425  *
426  *	Regardless this function blocks while the number of dirty buffers
427  *	exceeds hidirtybufspace.
428  *
429  * MPSAFE
430  */
431 void
432 bd_wait(int totalspace)
433 {
434 	u_int i;
435 	int count;
436 
437 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
438 		return;
439 
440 	while (totalspace > 0) {
441 		bd_heatup();
442 		if (totalspace > runningbufspace + dirtybufspace)
443 			totalspace = runningbufspace + dirtybufspace;
444 		count = totalspace / BKVASIZE;
445 		if (count >= BD_WAKE_SIZE)
446 			count = BD_WAKE_SIZE - 1;
447 
448 		spin_lock_wr(&needsbuffer_spin);
449 		i = (bd_wake_index + count) & BD_WAKE_MASK;
450 		++bd_wake_ary[i];
451 		tsleep_interlock(&bd_wake_ary[i], 0);
452 		spin_unlock_wr(&needsbuffer_spin);
453 		tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz);
454 
455 		totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
456 	}
457 }
458 
459 /*
460  * bd_signal()
461  *
462  *	This function is called whenever runningbufspace or dirtybufspace
463  *	is reduced.  Track threads waiting for run+dirty buffer I/O
464  *	complete.
465  *
466  * MPSAFE
467  */
468 static void
469 bd_signal(int totalspace)
470 {
471 	u_int i;
472 
473 	if (totalspace > 0) {
474 		if (totalspace > BKVASIZE * BD_WAKE_SIZE)
475 			totalspace = BKVASIZE * BD_WAKE_SIZE;
476 		spin_lock_wr(&needsbuffer_spin);
477 		while (totalspace > 0) {
478 			i = bd_wake_index++;
479 			i &= BD_WAKE_MASK;
480 			if (bd_wake_ary[i]) {
481 				bd_wake_ary[i] = 0;
482 				spin_unlock_wr(&needsbuffer_spin);
483 				wakeup(&bd_wake_ary[i]);
484 				spin_lock_wr(&needsbuffer_spin);
485 			}
486 			totalspace -= BKVASIZE;
487 		}
488 		spin_unlock_wr(&needsbuffer_spin);
489 	}
490 }
491 
492 /*
493  * BIO tracking support routines.
494  *
495  * Release a ref on a bio_track.  Wakeup requests are atomically released
496  * along with the last reference so bk_active will never wind up set to
497  * only 0x80000000.
498  *
499  * MPSAFE
500  */
501 static
502 void
503 bio_track_rel(struct bio_track *track)
504 {
505 	int	active;
506 	int	desired;
507 
508 	/*
509 	 * Shortcut
510 	 */
511 	active = track->bk_active;
512 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
513 		return;
514 
515 	/*
516 	 * Full-on.  Note that the wait flag is only atomically released on
517 	 * the 1->0 count transition.
518 	 *
519 	 * We check for a negative count transition using bit 30 since bit 31
520 	 * has a different meaning.
521 	 */
522 	for (;;) {
523 		desired = (active & 0x7FFFFFFF) - 1;
524 		if (desired)
525 			desired |= active & 0x80000000;
526 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
527 			if (desired & 0x40000000)
528 				panic("bio_track_rel: bad count: %p\n", track);
529 			if (active & 0x80000000)
530 				wakeup(track);
531 			break;
532 		}
533 		active = track->bk_active;
534 	}
535 }
536 
537 /*
538  * Wait for the tracking count to reach 0.
539  *
540  * Use atomic ops such that the wait flag is only set atomically when
541  * bk_active is non-zero.
542  *
543  * MPSAFE
544  */
545 int
546 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
547 {
548 	int	active;
549 	int	desired;
550 	int	error;
551 
552 	/*
553 	 * Shortcut
554 	 */
555 	if (track->bk_active == 0)
556 		return(0);
557 
558 	/*
559 	 * Full-on.  Note that the wait flag may only be atomically set if
560 	 * the active count is non-zero.
561 	 */
562 	error = 0;
563 	while ((active = track->bk_active) != 0) {
564 		desired = active | 0x80000000;
565 		tsleep_interlock(track, slp_flags);
566 		if (active == desired ||
567 		    atomic_cmpset_int(&track->bk_active, active, desired)) {
568 			error = tsleep(track, slp_flags | PINTERLOCKED,
569 				       "iowait", slp_timo);
570 			if (error)
571 				break;
572 		}
573 	}
574 	return (error);
575 }
576 
577 /*
578  * bufinit:
579  *
580  *	Load time initialisation of the buffer cache, called from machine
581  *	dependant initialization code.
582  */
583 void
584 bufinit(void)
585 {
586 	struct buf *bp;
587 	vm_offset_t bogus_offset;
588 	int i;
589 
590 	spin_init(&needsbuffer_spin);
591 
592 	/* next, make a null set of free lists */
593 	for (i = 0; i < BUFFER_QUEUES; i++)
594 		TAILQ_INIT(&bufqueues[i]);
595 
596 	/* finally, initialize each buffer header and stick on empty q */
597 	for (i = 0; i < nbuf; i++) {
598 		bp = &buf[i];
599 		bzero(bp, sizeof *bp);
600 		bp->b_flags = B_INVAL;	/* we're just an empty header */
601 		bp->b_cmd = BUF_CMD_DONE;
602 		bp->b_qindex = BQUEUE_EMPTY;
603 		initbufbio(bp);
604 		xio_init(&bp->b_xio);
605 		buf_dep_init(bp);
606 		BUF_LOCKINIT(bp);
607 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
608 	}
609 
610 	/*
611 	 * maxbufspace is the absolute maximum amount of buffer space we are
612 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
613 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
614 	 * used by most other processes.  The differential is required to
615 	 * ensure that buf_daemon is able to run when other processes might
616 	 * be blocked waiting for buffer space.
617 	 *
618 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
619 	 * this may result in KVM fragmentation which is not handled optimally
620 	 * by the system.
621 	 */
622 	maxbufspace = nbuf * BKVASIZE;
623 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
624 	lobufspace = hibufspace - MAXBSIZE;
625 
626 	lorunningspace = 512 * 1024;
627 	/* hirunningspace -- see below */
628 
629 	/*
630 	 * Limit the amount of malloc memory since it is wired permanently
631 	 * into the kernel space.  Even though this is accounted for in
632 	 * the buffer allocation, we don't want the malloced region to grow
633 	 * uncontrolled.  The malloc scheme improves memory utilization
634 	 * significantly on average (small) directories.
635 	 */
636 	maxbufmallocspace = hibufspace / 20;
637 
638 	/*
639 	 * Reduce the chance of a deadlock occuring by limiting the number
640 	 * of delayed-write dirty buffers we allow to stack up.
641 	 *
642 	 * We don't want too much actually queued to the device at once
643 	 * (XXX this needs to be per-mount!), because the buffers will
644 	 * wind up locked for a very long period of time while the I/O
645 	 * drains.
646 	 */
647 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
648 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
649 	if (hirunningspace < 1024 * 1024)
650 		hirunningspace = 1024 * 1024;
651 
652 	dirtybufspace = 0;
653 	dirtybufspacehw = 0;
654 
655 	lodirtybufspace = hidirtybufspace / 2;
656 
657 	/*
658 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
659 	 * somewhat of a hack at the moment, we really need to limit ourselves
660 	 * based on the number of bytes of I/O in-transit that were initiated
661 	 * from buf_daemon.
662 	 */
663 
664 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
665 	bogus_page = vm_page_alloc(&kernel_object,
666 				   (bogus_offset >> PAGE_SHIFT),
667 				   VM_ALLOC_NORMAL);
668 	vmstats.v_wire_count++;
669 
670 }
671 
672 /*
673  * Initialize the embedded bio structures
674  */
675 void
676 initbufbio(struct buf *bp)
677 {
678 	bp->b_bio1.bio_buf = bp;
679 	bp->b_bio1.bio_prev = NULL;
680 	bp->b_bio1.bio_offset = NOOFFSET;
681 	bp->b_bio1.bio_next = &bp->b_bio2;
682 	bp->b_bio1.bio_done = NULL;
683 	bp->b_bio1.bio_flags = 0;
684 
685 	bp->b_bio2.bio_buf = bp;
686 	bp->b_bio2.bio_prev = &bp->b_bio1;
687 	bp->b_bio2.bio_offset = NOOFFSET;
688 	bp->b_bio2.bio_next = NULL;
689 	bp->b_bio2.bio_done = NULL;
690 	bp->b_bio2.bio_flags = 0;
691 }
692 
693 /*
694  * Reinitialize the embedded bio structures as well as any additional
695  * translation cache layers.
696  */
697 void
698 reinitbufbio(struct buf *bp)
699 {
700 	struct bio *bio;
701 
702 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
703 		bio->bio_done = NULL;
704 		bio->bio_offset = NOOFFSET;
705 	}
706 }
707 
708 /*
709  * Push another BIO layer onto an existing BIO and return it.  The new
710  * BIO layer may already exist, holding cached translation data.
711  */
712 struct bio *
713 push_bio(struct bio *bio)
714 {
715 	struct bio *nbio;
716 
717 	if ((nbio = bio->bio_next) == NULL) {
718 		int index = bio - &bio->bio_buf->b_bio_array[0];
719 		if (index >= NBUF_BIO - 1) {
720 			panic("push_bio: too many layers bp %p\n",
721 				bio->bio_buf);
722 		}
723 		nbio = &bio->bio_buf->b_bio_array[index + 1];
724 		bio->bio_next = nbio;
725 		nbio->bio_prev = bio;
726 		nbio->bio_buf = bio->bio_buf;
727 		nbio->bio_offset = NOOFFSET;
728 		nbio->bio_done = NULL;
729 		nbio->bio_next = NULL;
730 	}
731 	KKASSERT(nbio->bio_done == NULL);
732 	return(nbio);
733 }
734 
735 /*
736  * Pop a BIO translation layer, returning the previous layer.  The
737  * must have been previously pushed.
738  */
739 struct bio *
740 pop_bio(struct bio *bio)
741 {
742 	return(bio->bio_prev);
743 }
744 
745 void
746 clearbiocache(struct bio *bio)
747 {
748 	while (bio) {
749 		bio->bio_offset = NOOFFSET;
750 		bio = bio->bio_next;
751 	}
752 }
753 
754 /*
755  * bfreekva:
756  *
757  *	Free the KVA allocation for buffer 'bp'.
758  *
759  *	Must be called from a critical section as this is the only locking for
760  *	buffer_map.
761  *
762  *	Since this call frees up buffer space, we call bufspacewakeup().
763  *
764  * MPALMOSTSAFE
765  */
766 static void
767 bfreekva(struct buf *bp)
768 {
769 	int count;
770 
771 	if (bp->b_kvasize) {
772 		get_mplock();
773 		++buffreekvacnt;
774 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
775 		vm_map_lock(&buffer_map);
776 		bufspace -= bp->b_kvasize;
777 		vm_map_delete(&buffer_map,
778 		    (vm_offset_t) bp->b_kvabase,
779 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
780 		    &count
781 		);
782 		vm_map_unlock(&buffer_map);
783 		vm_map_entry_release(count);
784 		bp->b_kvasize = 0;
785 		bufspacewakeup();
786 		rel_mplock();
787 	}
788 }
789 
790 /*
791  * bremfree:
792  *
793  *	Remove the buffer from the appropriate free list.
794  */
795 static __inline void
796 _bremfree(struct buf *bp)
797 {
798 	if (bp->b_qindex != BQUEUE_NONE) {
799 		KASSERT(BUF_REFCNTNB(bp) == 1,
800 				("bremfree: bp %p not locked",bp));
801 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
802 		bp->b_qindex = BQUEUE_NONE;
803 	} else {
804 		if (BUF_REFCNTNB(bp) <= 1)
805 			panic("bremfree: removing a buffer not on a queue");
806 	}
807 }
808 
809 void
810 bremfree(struct buf *bp)
811 {
812 	spin_lock_wr(&bufspin);
813 	_bremfree(bp);
814 	spin_unlock_wr(&bufspin);
815 }
816 
817 static void
818 bremfree_locked(struct buf *bp)
819 {
820 	_bremfree(bp);
821 }
822 
823 /*
824  * bread:
825  *
826  *	Get a buffer with the specified data.  Look in the cache first.  We
827  *	must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
828  *	is set, the buffer is valid and we do not have to do anything ( see
829  *	getblk() ).
830  *
831  * MPALMOSTSAFE
832  */
833 int
834 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
835 {
836 	struct buf *bp;
837 
838 	bp = getblk(vp, loffset, size, 0, 0);
839 	*bpp = bp;
840 
841 	/* if not found in cache, do some I/O */
842 	if ((bp->b_flags & B_CACHE) == 0) {
843 		get_mplock();
844 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
845 		bp->b_cmd = BUF_CMD_READ;
846 		bp->b_bio1.bio_done = biodone_sync;
847 		bp->b_bio1.bio_flags |= BIO_SYNC;
848 		vfs_busy_pages(vp, bp);
849 		vn_strategy(vp, &bp->b_bio1);
850 		rel_mplock();
851 		return (biowait(&bp->b_bio1, "biord"));
852 	}
853 	return (0);
854 }
855 
856 /*
857  * breadn:
858  *
859  *	Operates like bread, but also starts asynchronous I/O on
860  *	read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
861  *	to initiating I/O . If B_CACHE is set, the buffer is valid
862  *	and we do not have to do anything.
863  *
864  * MPALMOSTSAFE
865  */
866 int
867 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
868 	int *rabsize, int cnt, struct buf **bpp)
869 {
870 	struct buf *bp, *rabp;
871 	int i;
872 	int rv = 0, readwait = 0;
873 
874 	*bpp = bp = getblk(vp, loffset, size, 0, 0);
875 
876 	/* if not found in cache, do some I/O */
877 	if ((bp->b_flags & B_CACHE) == 0) {
878 		get_mplock();
879 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
880 		bp->b_cmd = BUF_CMD_READ;
881 		bp->b_bio1.bio_done = biodone_sync;
882 		bp->b_bio1.bio_flags |= BIO_SYNC;
883 		vfs_busy_pages(vp, bp);
884 		vn_strategy(vp, &bp->b_bio1);
885 		++readwait;
886 		rel_mplock();
887 	}
888 
889 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
890 		if (inmem(vp, *raoffset))
891 			continue;
892 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
893 
894 		if ((rabp->b_flags & B_CACHE) == 0) {
895 			get_mplock();
896 			rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
897 			rabp->b_cmd = BUF_CMD_READ;
898 			vfs_busy_pages(vp, rabp);
899 			BUF_KERNPROC(rabp);
900 			vn_strategy(vp, &rabp->b_bio1);
901 			rel_mplock();
902 		} else {
903 			brelse(rabp);
904 		}
905 	}
906 	if (readwait)
907 		rv = biowait(&bp->b_bio1, "biord");
908 	return (rv);
909 }
910 
911 /*
912  * bwrite:
913  *
914  *	Synchronous write, waits for completion.
915  *
916  *	Write, release buffer on completion.  (Done by iodone
917  *	if async).  Do not bother writing anything if the buffer
918  *	is invalid.
919  *
920  *	Note that we set B_CACHE here, indicating that buffer is
921  *	fully valid and thus cacheable.  This is true even of NFS
922  *	now so we set it generally.  This could be set either here
923  *	or in biodone() since the I/O is synchronous.  We put it
924  *	here.
925  */
926 int
927 bwrite(struct buf *bp)
928 {
929 	int error;
930 
931 	if (bp->b_flags & B_INVAL) {
932 		brelse(bp);
933 		return (0);
934 	}
935 	if (BUF_REFCNTNB(bp) == 0)
936 		panic("bwrite: buffer is not busy???");
937 
938 	/* Mark the buffer clean */
939 	bundirty(bp);
940 
941 	bp->b_flags &= ~(B_ERROR | B_EINTR);
942 	bp->b_flags |= B_CACHE;
943 	bp->b_cmd = BUF_CMD_WRITE;
944 	bp->b_bio1.bio_done = biodone_sync;
945 	bp->b_bio1.bio_flags |= BIO_SYNC;
946 	vfs_busy_pages(bp->b_vp, bp);
947 
948 	/*
949 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
950 	 * valid for vnode-backed buffers.
951 	 */
952 	bp->b_runningbufspace = bp->b_bufsize;
953 	if (bp->b_runningbufspace) {
954 		runningbufspace += bp->b_runningbufspace;
955 		++runningbufcount;
956 	}
957 
958 	vn_strategy(bp->b_vp, &bp->b_bio1);
959 	error = biowait(&bp->b_bio1, "biows");
960 	brelse(bp);
961 	return (error);
962 }
963 
964 /*
965  * bawrite:
966  *
967  *	Asynchronous write.  Start output on a buffer, but do not wait for
968  *	it to complete.  The buffer is released when the output completes.
969  *
970  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
971  *	B_INVAL buffers.  Not us.
972  */
973 void
974 bawrite(struct buf *bp)
975 {
976 	if (bp->b_flags & B_INVAL) {
977 		brelse(bp);
978 		return;
979 	}
980 	if (BUF_REFCNTNB(bp) == 0)
981 		panic("bwrite: buffer is not busy???");
982 
983 	/* Mark the buffer clean */
984 	bundirty(bp);
985 
986 	bp->b_flags &= ~(B_ERROR | B_EINTR);
987 	bp->b_flags |= B_CACHE;
988 	bp->b_cmd = BUF_CMD_WRITE;
989 	KKASSERT(bp->b_bio1.bio_done == NULL);
990 	vfs_busy_pages(bp->b_vp, bp);
991 
992 	/*
993 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
994 	 * valid for vnode-backed buffers.
995 	 */
996 	bp->b_runningbufspace = bp->b_bufsize;
997 	if (bp->b_runningbufspace) {
998 		runningbufspace += bp->b_runningbufspace;
999 		++runningbufcount;
1000 	}
1001 
1002 	BUF_KERNPROC(bp);
1003 	vn_strategy(bp->b_vp, &bp->b_bio1);
1004 }
1005 
1006 /*
1007  * bowrite:
1008  *
1009  *	Ordered write.  Start output on a buffer, and flag it so that the
1010  *	device will write it in the order it was queued.  The buffer is
1011  *	released when the output completes.  bwrite() ( or the VOP routine
1012  *	anyway ) is responsible for handling B_INVAL buffers.
1013  */
1014 int
1015 bowrite(struct buf *bp)
1016 {
1017 	bp->b_flags |= B_ORDERED;
1018 	bawrite(bp);
1019 	return (0);
1020 }
1021 
1022 /*
1023  * bdwrite:
1024  *
1025  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1026  *	anything if the buffer is marked invalid.
1027  *
1028  *	Note that since the buffer must be completely valid, we can safely
1029  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1030  *	biodone() in order to prevent getblk from writing the buffer
1031  *	out synchronously.
1032  */
1033 void
1034 bdwrite(struct buf *bp)
1035 {
1036 	if (BUF_REFCNTNB(bp) == 0)
1037 		panic("bdwrite: buffer is not busy");
1038 
1039 	if (bp->b_flags & B_INVAL) {
1040 		brelse(bp);
1041 		return;
1042 	}
1043 	bdirty(bp);
1044 
1045 	/*
1046 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1047 	 * true even of NFS now.
1048 	 */
1049 	bp->b_flags |= B_CACHE;
1050 
1051 	/*
1052 	 * This bmap keeps the system from needing to do the bmap later,
1053 	 * perhaps when the system is attempting to do a sync.  Since it
1054 	 * is likely that the indirect block -- or whatever other datastructure
1055 	 * that the filesystem needs is still in memory now, it is a good
1056 	 * thing to do this.  Note also, that if the pageout daemon is
1057 	 * requesting a sync -- there might not be enough memory to do
1058 	 * the bmap then...  So, this is important to do.
1059 	 */
1060 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1061 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1062 			 NULL, NULL, BUF_CMD_WRITE);
1063 	}
1064 
1065 	/*
1066 	 * Because the underlying pages may still be mapped and
1067 	 * writable trying to set the dirty buffer (b_dirtyoff/end)
1068 	 * range here will be inaccurate.
1069 	 *
1070 	 * However, we must still clean the pages to satisfy the
1071 	 * vnode_pager and pageout daemon, so theythink the pages
1072 	 * have been "cleaned".  What has really occured is that
1073 	 * they've been earmarked for later writing by the buffer
1074 	 * cache.
1075 	 *
1076 	 * So we get the b_dirtyoff/end update but will not actually
1077 	 * depend on it (NFS that is) until the pages are busied for
1078 	 * writing later on.
1079 	 */
1080 	vfs_clean_pages(bp);
1081 	bqrelse(bp);
1082 
1083 	/*
1084 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1085 	 * due to the softdep code.
1086 	 */
1087 }
1088 
1089 /*
1090  * bdirty:
1091  *
1092  *	Turn buffer into delayed write request by marking it B_DELWRI.
1093  *	B_RELBUF and B_NOCACHE must be cleared.
1094  *
1095  *	We reassign the buffer to itself to properly update it in the
1096  *	dirty/clean lists.
1097  *
1098  *	Must be called from a critical section.
1099  *	The buffer must be on BQUEUE_NONE.
1100  */
1101 void
1102 bdirty(struct buf *bp)
1103 {
1104 	KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1105 	if (bp->b_flags & B_NOCACHE) {
1106 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1107 		bp->b_flags &= ~B_NOCACHE;
1108 	}
1109 	if (bp->b_flags & B_INVAL) {
1110 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1111 	}
1112 	bp->b_flags &= ~B_RELBUF;
1113 
1114 	if ((bp->b_flags & B_DELWRI) == 0) {
1115 		bp->b_flags |= B_DELWRI;
1116 		reassignbuf(bp);
1117 		atomic_add_int(&dirtybufcount, 1);
1118 		dirtybufspace += bp->b_bufsize;
1119 		if (bp->b_flags & B_HEAVY) {
1120 			atomic_add_int(&dirtybufcounthw, 1);
1121 			atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1122 		}
1123 		bd_heatup();
1124 	}
1125 }
1126 
1127 /*
1128  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1129  * needs to be flushed with a different buf_daemon thread to avoid
1130  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1131  */
1132 void
1133 bheavy(struct buf *bp)
1134 {
1135 	if ((bp->b_flags & B_HEAVY) == 0) {
1136 		bp->b_flags |= B_HEAVY;
1137 		if (bp->b_flags & B_DELWRI) {
1138 			atomic_add_int(&dirtybufcounthw, 1);
1139 			atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1140 		}
1141 	}
1142 }
1143 
1144 /*
1145  * bundirty:
1146  *
1147  *	Clear B_DELWRI for buffer.
1148  *
1149  *	Must be called from a critical section.
1150  *
1151  *	The buffer is typically on BQUEUE_NONE but there is one case in
1152  *	brelse() that calls this function after placing the buffer on
1153  *	a different queue.
1154  *
1155  * MPSAFE
1156  */
1157 void
1158 bundirty(struct buf *bp)
1159 {
1160 	if (bp->b_flags & B_DELWRI) {
1161 		bp->b_flags &= ~B_DELWRI;
1162 		reassignbuf(bp);
1163 		atomic_subtract_int(&dirtybufcount, 1);
1164 		atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1165 		if (bp->b_flags & B_HEAVY) {
1166 			atomic_subtract_int(&dirtybufcounthw, 1);
1167 			atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1168 		}
1169 		bd_signal(bp->b_bufsize);
1170 	}
1171 	/*
1172 	 * Since it is now being written, we can clear its deferred write flag.
1173 	 */
1174 	bp->b_flags &= ~B_DEFERRED;
1175 }
1176 
1177 /*
1178  * brelse:
1179  *
1180  *	Release a busy buffer and, if requested, free its resources.  The
1181  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1182  *	to be accessed later as a cache entity or reused for other purposes.
1183  *
1184  * MPALMOSTSAFE
1185  */
1186 void
1187 brelse(struct buf *bp)
1188 {
1189 #ifdef INVARIANTS
1190 	int saved_flags = bp->b_flags;
1191 #endif
1192 
1193 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1194 
1195 	/*
1196 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1197 	 * its backing store.  Clear B_DELWRI.
1198 	 *
1199 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1200 	 * to destroy the buffer and backing store and (2) when the caller
1201 	 * wants to destroy the buffer and backing store after a write
1202 	 * completes.
1203 	 */
1204 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1205 		bundirty(bp);
1206 	}
1207 
1208 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1209 		/*
1210 		 * A re-dirtied buffer is only subject to destruction
1211 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1212 		 */
1213 		/* leave buffer intact */
1214 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1215 		   (bp->b_bufsize <= 0)) {
1216 		/*
1217 		 * Either a failed read or we were asked to free or not
1218 		 * cache the buffer.  This path is reached with B_DELWRI
1219 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1220 		 * backing store destruction.
1221 		 *
1222 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1223 		 * buffer cannot be immediately freed.
1224 		 */
1225 		bp->b_flags |= B_INVAL;
1226 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1227 			get_mplock();
1228 			buf_deallocate(bp);
1229 			rel_mplock();
1230 		}
1231 		if (bp->b_flags & B_DELWRI) {
1232 			atomic_subtract_int(&dirtybufcount, 1);
1233 			atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1234 			if (bp->b_flags & B_HEAVY) {
1235 				atomic_subtract_int(&dirtybufcounthw, 1);
1236 				atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1237 			}
1238 			bd_signal(bp->b_bufsize);
1239 		}
1240 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1241 	}
1242 
1243 	/*
1244 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1245 	 * If vfs_vmio_release() is called with either bit set, the
1246 	 * underlying pages may wind up getting freed causing a previous
1247 	 * write (bdwrite()) to get 'lost' because pages associated with
1248 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1249 	 * B_LOCKED buffer may be mapped by the filesystem.
1250 	 *
1251 	 * If we want to release the buffer ourselves (rather then the
1252 	 * originator asking us to release it), give the originator a
1253 	 * chance to countermand the release by setting B_LOCKED.
1254 	 *
1255 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1256 	 * if B_DELWRI is set.
1257 	 *
1258 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1259 	 * on pages to return pages to the VM page queues.
1260 	 */
1261 	if (bp->b_flags & (B_DELWRI | B_LOCKED)) {
1262 		bp->b_flags &= ~B_RELBUF;
1263 	} else if (vm_page_count_severe()) {
1264 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1265 			get_mplock();
1266 			buf_deallocate(bp);		/* can set B_LOCKED */
1267 			rel_mplock();
1268 		}
1269 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1270 			bp->b_flags &= ~B_RELBUF;
1271 		else
1272 			bp->b_flags |= B_RELBUF;
1273 	}
1274 
1275 	/*
1276 	 * Make sure b_cmd is clear.  It may have already been cleared by
1277 	 * biodone().
1278 	 *
1279 	 * At this point destroying the buffer is governed by the B_INVAL
1280 	 * or B_RELBUF flags.
1281 	 */
1282 	bp->b_cmd = BUF_CMD_DONE;
1283 
1284 	/*
1285 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1286 	 * after an I/O may have replaces some of the pages with bogus pages
1287 	 * in order to not destroy dirty pages in a fill-in read.
1288 	 *
1289 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1290 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1291 	 * B_INVAL may still be set, however.
1292 	 *
1293 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1294 	 * but not the backing store.   B_NOCACHE will destroy the backing
1295 	 * store.
1296 	 *
1297 	 * Note that dirty NFS buffers contain byte-granular write ranges
1298 	 * and should not be destroyed w/ B_INVAL even if the backing store
1299 	 * is left intact.
1300 	 */
1301 	if (bp->b_flags & B_VMIO) {
1302 		/*
1303 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1304 		 */
1305 		int i, j, resid;
1306 		vm_page_t m;
1307 		off_t foff;
1308 		vm_pindex_t poff;
1309 		vm_object_t obj;
1310 		struct vnode *vp;
1311 
1312 		vp = bp->b_vp;
1313 
1314 		/*
1315 		 * Get the base offset and length of the buffer.  Note that
1316 		 * in the VMIO case if the buffer block size is not
1317 		 * page-aligned then b_data pointer may not be page-aligned.
1318 		 * But our b_xio.xio_pages array *IS* page aligned.
1319 		 *
1320 		 * block sizes less then DEV_BSIZE (usually 512) are not
1321 		 * supported due to the page granularity bits (m->valid,
1322 		 * m->dirty, etc...).
1323 		 *
1324 		 * See man buf(9) for more information
1325 		 */
1326 
1327 		resid = bp->b_bufsize;
1328 		foff = bp->b_loffset;
1329 
1330 		get_mplock();
1331 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1332 			m = bp->b_xio.xio_pages[i];
1333 			vm_page_flag_clear(m, PG_ZERO);
1334 			/*
1335 			 * If we hit a bogus page, fixup *all* of them
1336 			 * now.  Note that we left these pages wired
1337 			 * when we removed them so they had better exist,
1338 			 * and they cannot be ripped out from under us so
1339 			 * no critical section protection is necessary.
1340 			 */
1341 			if (m == bogus_page) {
1342 				obj = vp->v_object;
1343 				poff = OFF_TO_IDX(bp->b_loffset);
1344 
1345 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1346 					vm_page_t mtmp;
1347 
1348 					mtmp = bp->b_xio.xio_pages[j];
1349 					if (mtmp == bogus_page) {
1350 						mtmp = vm_page_lookup(obj, poff + j);
1351 						if (!mtmp) {
1352 							panic("brelse: page missing");
1353 						}
1354 						bp->b_xio.xio_pages[j] = mtmp;
1355 					}
1356 				}
1357 
1358 				if ((bp->b_flags & B_INVAL) == 0) {
1359 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1360 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1361 				}
1362 				m = bp->b_xio.xio_pages[i];
1363 			}
1364 
1365 			/*
1366 			 * Invalidate the backing store if B_NOCACHE is set
1367 			 * (e.g. used with vinvalbuf()).  If this is NFS
1368 			 * we impose a requirement that the block size be
1369 			 * a multiple of PAGE_SIZE and create a temporary
1370 			 * hack to basically invalidate the whole page.  The
1371 			 * problem is that NFS uses really odd buffer sizes
1372 			 * especially when tracking piecemeal writes and
1373 			 * it also vinvalbuf()'s a lot, which would result
1374 			 * in only partial page validation and invalidation
1375 			 * here.  If the file page is mmap()'d, however,
1376 			 * all the valid bits get set so after we invalidate
1377 			 * here we would end up with weird m->valid values
1378 			 * like 0xfc.  nfs_getpages() can't handle this so
1379 			 * we clear all the valid bits for the NFS case
1380 			 * instead of just some of them.
1381 			 *
1382 			 * The real bug is the VM system having to set m->valid
1383 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1384 			 * itself is an artifact of the whole 512-byte
1385 			 * granular mess that exists to support odd block
1386 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1387 			 * A complete rewrite is required.
1388 			 *
1389 			 * XXX
1390 			 */
1391 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1392 				int poffset = foff & PAGE_MASK;
1393 				int presid;
1394 
1395 				presid = PAGE_SIZE - poffset;
1396 				if (bp->b_vp->v_tag == VT_NFS &&
1397 				    bp->b_vp->v_type == VREG) {
1398 					; /* entire page */
1399 				} else if (presid > resid) {
1400 					presid = resid;
1401 				}
1402 				KASSERT(presid >= 0, ("brelse: extra page"));
1403 				vm_page_set_invalid(m, poffset, presid);
1404 			}
1405 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1406 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1407 		}
1408 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1409 			vfs_vmio_release(bp);
1410 		rel_mplock();
1411 	} else {
1412 		/*
1413 		 * Rundown for non-VMIO buffers.
1414 		 */
1415 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1416 			get_mplock();
1417 			if (bp->b_bufsize)
1418 				allocbuf(bp, 0);
1419 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1420 			if (bp->b_vp)
1421 				brelvp(bp);
1422 			rel_mplock();
1423 		}
1424 	}
1425 
1426 	if (bp->b_qindex != BQUEUE_NONE)
1427 		panic("brelse: free buffer onto another queue???");
1428 	if (BUF_REFCNTNB(bp) > 1) {
1429 		/* Temporary panic to verify exclusive locking */
1430 		/* This panic goes away when we allow shared refs */
1431 		panic("brelse: multiple refs");
1432 		/* NOT REACHED */
1433 		return;
1434 	}
1435 
1436 	/*
1437 	 * Figure out the correct queue to place the cleaned up buffer on.
1438 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1439 	 * disassociated from their vnode.
1440 	 */
1441 	spin_lock_wr(&bufspin);
1442 	if (bp->b_flags & B_LOCKED) {
1443 		/*
1444 		 * Buffers that are locked are placed in the locked queue
1445 		 * immediately, regardless of their state.
1446 		 */
1447 		bp->b_qindex = BQUEUE_LOCKED;
1448 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1449 	} else if (bp->b_bufsize == 0) {
1450 		/*
1451 		 * Buffers with no memory.  Due to conditionals near the top
1452 		 * of brelse() such buffers should probably already be
1453 		 * marked B_INVAL and disassociated from their vnode.
1454 		 */
1455 		bp->b_flags |= B_INVAL;
1456 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1457 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1458 		if (bp->b_kvasize) {
1459 			bp->b_qindex = BQUEUE_EMPTYKVA;
1460 		} else {
1461 			bp->b_qindex = BQUEUE_EMPTY;
1462 		}
1463 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1464 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1465 		/*
1466 		 * Buffers with junk contents.   Again these buffers had better
1467 		 * already be disassociated from their vnode.
1468 		 */
1469 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1470 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1471 		bp->b_flags |= B_INVAL;
1472 		bp->b_qindex = BQUEUE_CLEAN;
1473 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1474 	} else {
1475 		/*
1476 		 * Remaining buffers.  These buffers are still associated with
1477 		 * their vnode.
1478 		 */
1479 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1480 		case B_DELWRI:
1481 		    bp->b_qindex = BQUEUE_DIRTY;
1482 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1483 		    break;
1484 		case B_DELWRI | B_HEAVY:
1485 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1486 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1487 				      b_freelist);
1488 		    break;
1489 		default:
1490 		    /*
1491 		     * NOTE: Buffers are always placed at the end of the
1492 		     * queue.  If B_AGE is not set the buffer will cycle
1493 		     * through the queue twice.
1494 		     */
1495 		    bp->b_qindex = BQUEUE_CLEAN;
1496 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1497 		    break;
1498 		}
1499 	}
1500 	spin_unlock_wr(&bufspin);
1501 
1502 	/*
1503 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1504 	 * on the correct queue.
1505 	 */
1506 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1507 		bundirty(bp);
1508 
1509 	/*
1510 	 * The bp is on an appropriate queue unless locked.  If it is not
1511 	 * locked or dirty we can wakeup threads waiting for buffer space.
1512 	 *
1513 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1514 	 * if B_INVAL is set ).
1515 	 */
1516 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1517 		bufcountwakeup();
1518 
1519 	/*
1520 	 * Something we can maybe free or reuse
1521 	 */
1522 	if (bp->b_bufsize || bp->b_kvasize)
1523 		bufspacewakeup();
1524 
1525 	/*
1526 	 * Clean up temporary flags and unlock the buffer.
1527 	 */
1528 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1529 	BUF_UNLOCK(bp);
1530 }
1531 
1532 /*
1533  * bqrelse:
1534  *
1535  *	Release a buffer back to the appropriate queue but do not try to free
1536  *	it.  The buffer is expected to be used again soon.
1537  *
1538  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1539  *	biodone() to requeue an async I/O on completion.  It is also used when
1540  *	known good buffers need to be requeued but we think we may need the data
1541  *	again soon.
1542  *
1543  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1544  *
1545  * MPSAFE
1546  */
1547 void
1548 bqrelse(struct buf *bp)
1549 {
1550 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1551 
1552 	if (bp->b_qindex != BQUEUE_NONE)
1553 		panic("bqrelse: free buffer onto another queue???");
1554 	if (BUF_REFCNTNB(bp) > 1) {
1555 		/* do not release to free list */
1556 		panic("bqrelse: multiple refs");
1557 		return;
1558 	}
1559 
1560 	spin_lock_wr(&bufspin);
1561 	if (bp->b_flags & B_LOCKED) {
1562 		/*
1563 		 * Locked buffers are released to the locked queue.  However,
1564 		 * if the buffer is dirty it will first go into the dirty
1565 		 * queue and later on after the I/O completes successfully it
1566 		 * will be released to the locked queue.
1567 		 */
1568 		bp->b_qindex = BQUEUE_LOCKED;
1569 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1570 	} else if (bp->b_flags & B_DELWRI) {
1571 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1572 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1573 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1574 	} else if (vm_page_count_severe()) {
1575 		/*
1576 		 * We are too low on memory, we have to try to free the
1577 		 * buffer (most importantly: the wired pages making up its
1578 		 * backing store) *now*.
1579 		 */
1580 		spin_unlock_wr(&bufspin);
1581 		brelse(bp);
1582 		return;
1583 	} else {
1584 		bp->b_qindex = BQUEUE_CLEAN;
1585 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1586 	}
1587 	spin_unlock_wr(&bufspin);
1588 
1589 	if ((bp->b_flags & B_LOCKED) == 0 &&
1590 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1591 		bufcountwakeup();
1592 	}
1593 
1594 	/*
1595 	 * Something we can maybe free or reuse.
1596 	 */
1597 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1598 		bufspacewakeup();
1599 
1600 	/*
1601 	 * Final cleanup and unlock.  Clear bits that are only used while a
1602 	 * buffer is actively locked.
1603 	 */
1604 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1605 	BUF_UNLOCK(bp);
1606 }
1607 
1608 /*
1609  * vfs_vmio_release:
1610  *
1611  *	Return backing pages held by the buffer 'bp' back to the VM system
1612  *	if possible.  The pages are freed if they are no longer valid or
1613  *	attempt to free if it was used for direct I/O otherwise they are
1614  *	sent to the page cache.
1615  *
1616  *	Pages that were marked busy are left alone and skipped.
1617  *
1618  *	The KVA mapping (b_data) for the underlying pages is removed by
1619  *	this function.
1620  */
1621 static void
1622 vfs_vmio_release(struct buf *bp)
1623 {
1624 	int i;
1625 	vm_page_t m;
1626 
1627 	crit_enter();
1628 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1629 		m = bp->b_xio.xio_pages[i];
1630 		bp->b_xio.xio_pages[i] = NULL;
1631 		/*
1632 		 * In order to keep page LRU ordering consistent, put
1633 		 * everything on the inactive queue.
1634 		 */
1635 		vm_page_unwire(m, 0);
1636 		/*
1637 		 * We don't mess with busy pages, it is
1638 		 * the responsibility of the process that
1639 		 * busied the pages to deal with them.
1640 		 */
1641 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1642 			continue;
1643 
1644 		if (m->wire_count == 0) {
1645 			vm_page_flag_clear(m, PG_ZERO);
1646 			/*
1647 			 * Might as well free the page if we can and it has
1648 			 * no valid data.  We also free the page if the
1649 			 * buffer was used for direct I/O.
1650 			 */
1651 #if 0
1652 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1653 					m->hold_count == 0) {
1654 				vm_page_busy(m);
1655 				vm_page_protect(m, VM_PROT_NONE);
1656 				vm_page_free(m);
1657 			} else
1658 #endif
1659 			if (bp->b_flags & B_DIRECT) {
1660 				vm_page_try_to_free(m);
1661 			} else if (vm_page_count_severe()) {
1662 				vm_page_try_to_cache(m);
1663 			}
1664 		}
1665 	}
1666 	crit_exit();
1667 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1668 	if (bp->b_bufsize) {
1669 		bufspacewakeup();
1670 		bp->b_bufsize = 0;
1671 	}
1672 	bp->b_xio.xio_npages = 0;
1673 	bp->b_flags &= ~B_VMIO;
1674 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1675 	if (bp->b_vp) {
1676 		get_mplock();
1677 		brelvp(bp);
1678 		rel_mplock();
1679 	}
1680 }
1681 
1682 /*
1683  * vfs_bio_awrite:
1684  *
1685  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1686  *	This is much better then the old way of writing only one buffer at
1687  *	a time.  Note that we may not be presented with the buffers in the
1688  *	correct order, so we search for the cluster in both directions.
1689  *
1690  *	The buffer is locked on call.
1691  */
1692 int
1693 vfs_bio_awrite(struct buf *bp)
1694 {
1695 	int i;
1696 	int j;
1697 	off_t loffset = bp->b_loffset;
1698 	struct vnode *vp = bp->b_vp;
1699 	int nbytes;
1700 	struct buf *bpa;
1701 	int nwritten;
1702 	int size;
1703 
1704 	/*
1705 	 * right now we support clustered writing only to regular files.  If
1706 	 * we find a clusterable block we could be in the middle of a cluster
1707 	 * rather then at the beginning.
1708 	 *
1709 	 * NOTE: b_bio1 contains the logical loffset and is aliased
1710 	 * to b_loffset.  b_bio2 contains the translated block number.
1711 	 */
1712 	if ((vp->v_type == VREG) &&
1713 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1714 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1715 
1716 		size = vp->v_mount->mnt_stat.f_iosize;
1717 
1718 		for (i = size; i < MAXPHYS; i += size) {
1719 			if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) &&
1720 			    BUF_REFCNT(bpa) == 0 &&
1721 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1722 			    (B_DELWRI | B_CLUSTEROK)) &&
1723 			    (bpa->b_bufsize == size)) {
1724 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1725 				    (bpa->b_bio2.bio_offset !=
1726 				     bp->b_bio2.bio_offset + i))
1727 					break;
1728 			} else {
1729 				break;
1730 			}
1731 		}
1732 		for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1733 			if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) &&
1734 			    BUF_REFCNT(bpa) == 0 &&
1735 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1736 			    (B_DELWRI | B_CLUSTEROK)) &&
1737 			    (bpa->b_bufsize == size)) {
1738 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1739 				    (bpa->b_bio2.bio_offset !=
1740 				     bp->b_bio2.bio_offset - j))
1741 					break;
1742 			} else {
1743 				break;
1744 			}
1745 		}
1746 		j -= size;
1747 		nbytes = (i + j);
1748 
1749 		/*
1750 		 * this is a possible cluster write
1751 		 */
1752 		if (nbytes != size) {
1753 			BUF_UNLOCK(bp);
1754 			nwritten = cluster_wbuild(vp, size,
1755 						  loffset - j, nbytes);
1756 			return nwritten;
1757 		}
1758 	}
1759 
1760 	/*
1761 	 * default (old) behavior, writing out only one block
1762 	 *
1763 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1764 	 */
1765 	nwritten = bp->b_bufsize;
1766 	bremfree(bp);
1767 	bawrite(bp);
1768 
1769 	return nwritten;
1770 }
1771 
1772 /*
1773  * getnewbuf:
1774  *
1775  *	Find and initialize a new buffer header, freeing up existing buffers
1776  *	in the bufqueues as necessary.  The new buffer is returned locked.
1777  *
1778  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1779  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1780  *
1781  *	We block if:
1782  *		We have insufficient buffer headers
1783  *		We have insufficient buffer space
1784  *		buffer_map is too fragmented ( space reservation fails )
1785  *		If we have to flush dirty buffers ( but we try to avoid this )
1786  *
1787  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1788  *	Instead we ask the buf daemon to do it for us.  We attempt to
1789  *	avoid piecemeal wakeups of the pageout daemon.
1790  *
1791  * MPALMOSTSAFE
1792  */
1793 static struct buf *
1794 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1795 {
1796 	struct buf *bp;
1797 	struct buf *nbp;
1798 	int defrag = 0;
1799 	int nqindex;
1800 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1801 	static int flushingbufs;
1802 
1803 	/*
1804 	 * We can't afford to block since we might be holding a vnode lock,
1805 	 * which may prevent system daemons from running.  We deal with
1806 	 * low-memory situations by proactively returning memory and running
1807 	 * async I/O rather then sync I/O.
1808 	 */
1809 
1810 	++getnewbufcalls;
1811 	--getnewbufrestarts;
1812 restart:
1813 	++getnewbufrestarts;
1814 
1815 	/*
1816 	 * Setup for scan.  If we do not have enough free buffers,
1817 	 * we setup a degenerate case that immediately fails.  Note
1818 	 * that if we are specially marked process, we are allowed to
1819 	 * dip into our reserves.
1820 	 *
1821 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1822 	 *
1823 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1824 	 * However, there are a number of cases (defragging, reusing, ...)
1825 	 * where we cannot backup.
1826 	 */
1827 	nqindex = BQUEUE_EMPTYKVA;
1828 	spin_lock_wr(&bufspin);
1829 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1830 
1831 	if (nbp == NULL) {
1832 		/*
1833 		 * If no EMPTYKVA buffers and we are either
1834 		 * defragging or reusing, locate a CLEAN buffer
1835 		 * to free or reuse.  If bufspace useage is low
1836 		 * skip this step so we can allocate a new buffer.
1837 		 */
1838 		if (defrag || bufspace >= lobufspace) {
1839 			nqindex = BQUEUE_CLEAN;
1840 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1841 		}
1842 
1843 		/*
1844 		 * If we could not find or were not allowed to reuse a
1845 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1846 		 * buffer.  We can only use an EMPTY buffer if allocating
1847 		 * its KVA would not otherwise run us out of buffer space.
1848 		 */
1849 		if (nbp == NULL && defrag == 0 &&
1850 		    bufspace + maxsize < hibufspace) {
1851 			nqindex = BQUEUE_EMPTY;
1852 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1853 		}
1854 	}
1855 
1856 	/*
1857 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1858 	 * depending.
1859 	 *
1860 	 * WARNING!  bufspin is held!
1861 	 */
1862 	while ((bp = nbp) != NULL) {
1863 		int qindex = nqindex;
1864 
1865 		nbp = TAILQ_NEXT(bp, b_freelist);
1866 
1867 		/*
1868 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
1869 		 * cycles through the queue twice before being selected.
1870 		 */
1871 		if (qindex == BQUEUE_CLEAN &&
1872 		    (bp->b_flags & B_AGE) == 0 && nbp) {
1873 			bp->b_flags |= B_AGE;
1874 			TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
1875 			TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
1876 			continue;
1877 		}
1878 
1879 		/*
1880 		 * Calculate next bp ( we can only use it if we do not block
1881 		 * or do other fancy things ).
1882 		 */
1883 		if (nbp == NULL) {
1884 			switch(qindex) {
1885 			case BQUEUE_EMPTY:
1886 				nqindex = BQUEUE_EMPTYKVA;
1887 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1888 					break;
1889 				/* fall through */
1890 			case BQUEUE_EMPTYKVA:
1891 				nqindex = BQUEUE_CLEAN;
1892 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1893 					break;
1894 				/* fall through */
1895 			case BQUEUE_CLEAN:
1896 				/*
1897 				 * nbp is NULL.
1898 				 */
1899 				break;
1900 			}
1901 		}
1902 
1903 		/*
1904 		 * Sanity Checks
1905 		 */
1906 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1907 
1908 		/*
1909 		 * Note: we no longer distinguish between VMIO and non-VMIO
1910 		 * buffers.
1911 		 */
1912 
1913 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1914 
1915 		/*
1916 		 * If we are defragging then we need a buffer with
1917 		 * b_kvasize != 0.  XXX this situation should no longer
1918 		 * occur, if defrag is non-zero the buffer's b_kvasize
1919 		 * should also be non-zero at this point.  XXX
1920 		 */
1921 		if (defrag && bp->b_kvasize == 0) {
1922 			kprintf("Warning: defrag empty buffer %p\n", bp);
1923 			continue;
1924 		}
1925 
1926 		/*
1927 		 * Start freeing the bp.  This is somewhat involved.  nbp
1928 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
1929 		 * on the clean list must be disassociated from their
1930 		 * current vnode.  Buffers on the empty[kva] lists have
1931 		 * already been disassociated.
1932 		 */
1933 
1934 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1935 			spin_unlock_wr(&bufspin);
1936 			kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp);
1937 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
1938 			goto restart;
1939 		}
1940 		if (bp->b_qindex != qindex) {
1941 			spin_unlock_wr(&bufspin);
1942 			kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
1943 			BUF_UNLOCK(bp);
1944 			goto restart;
1945 		}
1946 		bremfree_locked(bp);
1947 		spin_unlock_wr(&bufspin);
1948 
1949 		/*
1950 		 * Dependancies must be handled before we disassociate the
1951 		 * vnode.
1952 		 *
1953 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
1954 		 * be immediately disassociated.  HAMMER then becomes
1955 		 * responsible for releasing the buffer.
1956 		 *
1957 		 * NOTE: bufspin is UNLOCKED now.
1958 		 */
1959 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1960 			get_mplock();
1961 			buf_deallocate(bp);
1962 			rel_mplock();
1963 			if (bp->b_flags & B_LOCKED) {
1964 				bqrelse(bp);
1965 				goto restart;
1966 			}
1967 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
1968 		}
1969 
1970 		if (qindex == BQUEUE_CLEAN) {
1971 			get_mplock();
1972 			if (bp->b_flags & B_VMIO) {
1973 				get_mplock();
1974 				vfs_vmio_release(bp);
1975 				rel_mplock();
1976 			}
1977 			if (bp->b_vp)
1978 				brelvp(bp);
1979 			rel_mplock();
1980 		}
1981 
1982 		/*
1983 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1984 		 * the scan from this point on.
1985 		 *
1986 		 * Get the rest of the buffer freed up.  b_kva* is still
1987 		 * valid after this operation.
1988 		 */
1989 
1990 		KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
1991 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1992 
1993 		/*
1994 		 * critical section protection is not required when
1995 		 * scrapping a buffer's contents because it is already
1996 		 * wired.
1997 		 */
1998 		if (bp->b_bufsize) {
1999 			get_mplock();
2000 			allocbuf(bp, 0);
2001 			rel_mplock();
2002 		}
2003 
2004 		bp->b_flags = B_BNOCLIP;
2005 		bp->b_cmd = BUF_CMD_DONE;
2006 		bp->b_vp = NULL;
2007 		bp->b_error = 0;
2008 		bp->b_resid = 0;
2009 		bp->b_bcount = 0;
2010 		bp->b_xio.xio_npages = 0;
2011 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2012 		reinitbufbio(bp);
2013 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2014 		buf_dep_init(bp);
2015 		if (blkflags & GETBLK_BHEAVY)
2016 			bp->b_flags |= B_HEAVY;
2017 
2018 		/*
2019 		 * If we are defragging then free the buffer.
2020 		 */
2021 		if (defrag) {
2022 			bp->b_flags |= B_INVAL;
2023 			bfreekva(bp);
2024 			brelse(bp);
2025 			defrag = 0;
2026 			goto restart;
2027 		}
2028 
2029 		/*
2030 		 * If we are overcomitted then recover the buffer and its
2031 		 * KVM space.  This occurs in rare situations when multiple
2032 		 * processes are blocked in getnewbuf() or allocbuf().
2033 		 */
2034 		if (bufspace >= hibufspace)
2035 			flushingbufs = 1;
2036 		if (flushingbufs && bp->b_kvasize != 0) {
2037 			bp->b_flags |= B_INVAL;
2038 			bfreekva(bp);
2039 			brelse(bp);
2040 			goto restart;
2041 		}
2042 		if (bufspace < lobufspace)
2043 			flushingbufs = 0;
2044 		break;
2045 		/* NOT REACHED, bufspin not held */
2046 	}
2047 
2048 	/*
2049 	 * If we exhausted our list, sleep as appropriate.  We may have to
2050 	 * wakeup various daemons and write out some dirty buffers.
2051 	 *
2052 	 * Generally we are sleeping due to insufficient buffer space.
2053 	 *
2054 	 * NOTE: bufspin is held if bp is NULL, else it is not held.
2055 	 */
2056 	if (bp == NULL) {
2057 		int flags;
2058 		char *waitmsg;
2059 
2060 		spin_unlock_wr(&bufspin);
2061 		if (defrag) {
2062 			flags = VFS_BIO_NEED_BUFSPACE;
2063 			waitmsg = "nbufkv";
2064 		} else if (bufspace >= hibufspace) {
2065 			waitmsg = "nbufbs";
2066 			flags = VFS_BIO_NEED_BUFSPACE;
2067 		} else {
2068 			waitmsg = "newbuf";
2069 			flags = VFS_BIO_NEED_ANY;
2070 		}
2071 
2072 		needsbuffer |= flags;
2073 		bd_speedup();	/* heeeelp */
2074 		while (needsbuffer & flags) {
2075 			if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo))
2076 				return (NULL);
2077 		}
2078 	} else {
2079 		/*
2080 		 * We finally have a valid bp.  We aren't quite out of the
2081 		 * woods, we still have to reserve kva space.  In order
2082 		 * to keep fragmentation sane we only allocate kva in
2083 		 * BKVASIZE chunks.
2084 		 *
2085 		 * (bufspin is not held)
2086 		 */
2087 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2088 
2089 		if (maxsize != bp->b_kvasize) {
2090 			vm_offset_t addr = 0;
2091 			int count;
2092 
2093 			bfreekva(bp);
2094 
2095 			get_mplock();
2096 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2097 			vm_map_lock(&buffer_map);
2098 
2099 			if (vm_map_findspace(&buffer_map,
2100 				    vm_map_min(&buffer_map), maxsize,
2101 				    maxsize, 0, &addr)) {
2102 				/*
2103 				 * Uh oh.  Buffer map is too fragmented.  We
2104 				 * must defragment the map.
2105 				 */
2106 				vm_map_unlock(&buffer_map);
2107 				vm_map_entry_release(count);
2108 				++bufdefragcnt;
2109 				defrag = 1;
2110 				bp->b_flags |= B_INVAL;
2111 				rel_mplock();
2112 				brelse(bp);
2113 				goto restart;
2114 			}
2115 			if (addr) {
2116 				vm_map_insert(&buffer_map, &count,
2117 					NULL, 0,
2118 					addr, addr + maxsize,
2119 					VM_MAPTYPE_NORMAL,
2120 					VM_PROT_ALL, VM_PROT_ALL,
2121 					MAP_NOFAULT);
2122 
2123 				bp->b_kvabase = (caddr_t) addr;
2124 				bp->b_kvasize = maxsize;
2125 				bufspace += bp->b_kvasize;
2126 				++bufreusecnt;
2127 			}
2128 			vm_map_unlock(&buffer_map);
2129 			vm_map_entry_release(count);
2130 			rel_mplock();
2131 		}
2132 		bp->b_data = bp->b_kvabase;
2133 	}
2134 	return(bp);
2135 }
2136 
2137 /*
2138  * This routine is called in an emergency to recover VM pages from the
2139  * buffer cache by cashing in clean buffers.  The idea is to recover
2140  * enough pages to be able to satisfy a stuck bio_page_alloc().
2141  */
2142 static int
2143 recoverbufpages(void)
2144 {
2145 	struct buf *bp;
2146 	int bytes = 0;
2147 
2148 	++recoverbufcalls;
2149 
2150 	spin_lock_wr(&bufspin);
2151 	while (bytes < MAXBSIZE) {
2152 		bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2153 		if (bp == NULL)
2154 			break;
2155 
2156 		/*
2157 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2158 		 * cycles through the queue twice before being selected.
2159 		 */
2160 		if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2161 			bp->b_flags |= B_AGE;
2162 			TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2163 			TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2164 					  bp, b_freelist);
2165 			continue;
2166 		}
2167 
2168 		/*
2169 		 * Sanity Checks
2170 		 */
2171 		KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2172 		KKASSERT((bp->b_flags & B_DELWRI) == 0);
2173 
2174 		/*
2175 		 * Start freeing the bp.  This is somewhat involved.
2176 		 *
2177 		 * Buffers on the clean list must be disassociated from
2178 		 * their current vnode
2179 		 */
2180 
2181 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2182 			kprintf("recoverbufpages: warning, locked buf %p, race corrected\n", bp);
2183 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
2184 			continue;
2185 		}
2186 		if (bp->b_qindex != BQUEUE_CLEAN) {
2187 			kprintf("recoverbufpages: warning, BUF_LOCK blocked unexpectedly on buf %p index %d, race corrected\n", bp, bp->b_qindex);
2188 			BUF_UNLOCK(bp);
2189 			continue;
2190 		}
2191 		bremfree_locked(bp);
2192 		spin_unlock_wr(&bufspin);
2193 
2194 		/*
2195 		 * Dependancies must be handled before we disassociate the
2196 		 * vnode.
2197 		 *
2198 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2199 		 * be immediately disassociated.  HAMMER then becomes
2200 		 * responsible for releasing the buffer.
2201 		 */
2202 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2203 			buf_deallocate(bp);
2204 			if (bp->b_flags & B_LOCKED) {
2205 				bqrelse(bp);
2206 				spin_lock_wr(&bufspin);
2207 				continue;
2208 			}
2209 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2210 		}
2211 
2212 		bytes += bp->b_bufsize;
2213 
2214 		get_mplock();
2215 		if (bp->b_flags & B_VMIO) {
2216 			bp->b_flags |= B_DIRECT;    /* try to free pages */
2217 			vfs_vmio_release(bp);
2218 		}
2219 		if (bp->b_vp)
2220 			brelvp(bp);
2221 
2222 		KKASSERT(bp->b_vp == NULL);
2223 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2224 
2225 		/*
2226 		 * critical section protection is not required when
2227 		 * scrapping a buffer's contents because it is already
2228 		 * wired.
2229 		 */
2230 		if (bp->b_bufsize)
2231 			allocbuf(bp, 0);
2232 		rel_mplock();
2233 
2234 		bp->b_flags = B_BNOCLIP;
2235 		bp->b_cmd = BUF_CMD_DONE;
2236 		bp->b_vp = NULL;
2237 		bp->b_error = 0;
2238 		bp->b_resid = 0;
2239 		bp->b_bcount = 0;
2240 		bp->b_xio.xio_npages = 0;
2241 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2242 		reinitbufbio(bp);
2243 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2244 		buf_dep_init(bp);
2245 		bp->b_flags |= B_INVAL;
2246 		/* bfreekva(bp); */
2247 		brelse(bp);
2248 		spin_lock_wr(&bufspin);
2249 	}
2250 	spin_unlock_wr(&bufspin);
2251 	return(bytes);
2252 }
2253 
2254 /*
2255  * buf_daemon:
2256  *
2257  *	Buffer flushing daemon.  Buffers are normally flushed by the
2258  *	update daemon but if it cannot keep up this process starts to
2259  *	take the load in an attempt to prevent getnewbuf() from blocking.
2260  *
2261  *	Once a flush is initiated it does not stop until the number
2262  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2263  *	waiting at the mid-point.
2264  */
2265 
2266 static struct kproc_desc buf_kp = {
2267 	"bufdaemon",
2268 	buf_daemon,
2269 	&bufdaemon_td
2270 };
2271 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2272 	kproc_start, &buf_kp)
2273 
2274 static struct kproc_desc bufhw_kp = {
2275 	"bufdaemon_hw",
2276 	buf_daemon_hw,
2277 	&bufdaemonhw_td
2278 };
2279 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2280 	kproc_start, &bufhw_kp)
2281 
2282 static void
2283 buf_daemon(void)
2284 {
2285 	int limit;
2286 
2287 	/*
2288 	 * This process needs to be suspended prior to shutdown sync.
2289 	 */
2290 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2291 			      bufdaemon_td, SHUTDOWN_PRI_LAST);
2292 	curthread->td_flags |= TDF_SYSTHREAD;
2293 
2294 	/*
2295 	 * This process is allowed to take the buffer cache to the limit
2296 	 */
2297 	crit_enter();
2298 
2299 	for (;;) {
2300 		kproc_suspend_loop();
2301 
2302 		/*
2303 		 * Do the flush as long as the number of dirty buffers
2304 		 * (including those running) exceeds lodirtybufspace.
2305 		 *
2306 		 * When flushing limit running I/O to hirunningspace
2307 		 * Do the flush.  Limit the amount of in-transit I/O we
2308 		 * allow to build up, otherwise we would completely saturate
2309 		 * the I/O system.  Wakeup any waiting processes before we
2310 		 * normally would so they can run in parallel with our drain.
2311 		 *
2312 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2313 		 * but because we split the operation into two threads we
2314 		 * have to cut it in half for each thread.
2315 		 */
2316 		waitrunningbufspace();
2317 		limit = lodirtybufspace / 2;
2318 		while (runningbufspace + dirtybufspace > limit ||
2319 		       dirtybufcount - dirtybufcounthw >= nbuf / 2) {
2320 			if (flushbufqueues(BQUEUE_DIRTY) == 0)
2321 				break;
2322 			if (runningbufspace < hirunningspace)
2323 				continue;
2324 			waitrunningbufspace();
2325 		}
2326 
2327 		/*
2328 		 * We reached our low water mark, reset the
2329 		 * request and sleep until we are needed again.
2330 		 * The sleep is just so the suspend code works.
2331 		 */
2332 		spin_lock_wr(&needsbuffer_spin);
2333 		if (bd_request == 0) {
2334 			ssleep(&bd_request, &needsbuffer_spin, 0,
2335 			       "psleep", hz);
2336 		}
2337 		bd_request = 0;
2338 		spin_unlock_wr(&needsbuffer_spin);
2339 	}
2340 }
2341 
2342 static void
2343 buf_daemon_hw(void)
2344 {
2345 	int limit;
2346 
2347 	/*
2348 	 * This process needs to be suspended prior to shutdown sync.
2349 	 */
2350 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2351 			      bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2352 	curthread->td_flags |= TDF_SYSTHREAD;
2353 
2354 	/*
2355 	 * This process is allowed to take the buffer cache to the limit
2356 	 */
2357 	crit_enter();
2358 
2359 	for (;;) {
2360 		kproc_suspend_loop();
2361 
2362 		/*
2363 		 * Do the flush.  Limit the amount of in-transit I/O we
2364 		 * allow to build up, otherwise we would completely saturate
2365 		 * the I/O system.  Wakeup any waiting processes before we
2366 		 * normally would so they can run in parallel with our drain.
2367 		 *
2368 		 * Once we decide to flush push the queued I/O up to
2369 		 * hirunningspace in order to trigger bursting by the bioq
2370 		 * subsystem.
2371 		 *
2372 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2373 		 * but because we split the operation into two threads we
2374 		 * have to cut it in half for each thread.
2375 		 */
2376 		waitrunningbufspace();
2377 		limit = lodirtybufspace / 2;
2378 		while (runningbufspace + dirtybufspacehw > limit ||
2379 		       dirtybufcounthw >= nbuf / 2) {
2380 			if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2381 				break;
2382 			if (runningbufspace < hirunningspace)
2383 				continue;
2384 			waitrunningbufspace();
2385 		}
2386 
2387 		/*
2388 		 * We reached our low water mark, reset the
2389 		 * request and sleep until we are needed again.
2390 		 * The sleep is just so the suspend code works.
2391 		 */
2392 		spin_lock_wr(&needsbuffer_spin);
2393 		if (bd_request_hw == 0) {
2394 			ssleep(&bd_request_hw, &needsbuffer_spin, 0,
2395 			       "psleep", hz);
2396 		}
2397 		bd_request_hw = 0;
2398 		spin_unlock_wr(&needsbuffer_spin);
2399 	}
2400 }
2401 
2402 /*
2403  * flushbufqueues:
2404  *
2405  *	Try to flush a buffer in the dirty queue.  We must be careful to
2406  *	free up B_INVAL buffers instead of write them, which NFS is
2407  *	particularly sensitive to.
2408  *
2409  *	B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate
2410  *	that we really want to try to get the buffer out and reuse it
2411  *	due to the write load on the machine.
2412  */
2413 static int
2414 flushbufqueues(bufq_type_t q)
2415 {
2416 	struct buf *bp;
2417 	int r = 0;
2418 	int spun;
2419 
2420 	spin_lock_wr(&bufspin);
2421 	spun = 1;
2422 
2423 	bp = TAILQ_FIRST(&bufqueues[q]);
2424 	while (bp) {
2425 		KASSERT((bp->b_flags & B_DELWRI),
2426 			("unexpected clean buffer %p", bp));
2427 
2428 		if (bp->b_flags & B_DELWRI) {
2429 			if (bp->b_flags & B_INVAL) {
2430 				spin_unlock_wr(&bufspin);
2431 				spun = 0;
2432 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2433 					panic("flushbufqueues: locked buf");
2434 				bremfree(bp);
2435 				brelse(bp);
2436 				++r;
2437 				break;
2438 			}
2439 			if (LIST_FIRST(&bp->b_dep) != NULL &&
2440 			    (bp->b_flags & B_DEFERRED) == 0 &&
2441 			    buf_countdeps(bp, 0)) {
2442 				TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2443 				TAILQ_INSERT_TAIL(&bufqueues[q], bp,
2444 						  b_freelist);
2445 				bp->b_flags |= B_DEFERRED;
2446 				bp = TAILQ_FIRST(&bufqueues[q]);
2447 				continue;
2448 			}
2449 
2450 			/*
2451 			 * Only write it out if we can successfully lock
2452 			 * it.  If the buffer has a dependancy,
2453 			 * buf_checkwrite must also return 0 for us to
2454 			 * be able to initate the write.
2455 			 *
2456 			 * If the buffer is flagged B_ERROR it may be
2457 			 * requeued over and over again, we try to
2458 			 * avoid a live lock.
2459 			 */
2460 			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
2461 				spin_unlock_wr(&bufspin);
2462 				spun = 0;
2463 				if (LIST_FIRST(&bp->b_dep) != NULL &&
2464 				    buf_checkwrite(bp)) {
2465 					bremfree(bp);
2466 					brelse(bp);
2467 				} else if (bp->b_flags & B_ERROR) {
2468 					tsleep(bp, 0, "bioer", 1);
2469 					bp->b_flags &= ~B_AGE;
2470 					vfs_bio_awrite(bp);
2471 				} else {
2472 					bp->b_flags |= B_AGE;
2473 					vfs_bio_awrite(bp);
2474 				}
2475 				++r;
2476 				break;
2477 			}
2478 		}
2479 		bp = TAILQ_NEXT(bp, b_freelist);
2480 	}
2481 	if (spun)
2482 		spin_unlock_wr(&bufspin);
2483 	return (r);
2484 }
2485 
2486 /*
2487  * inmem:
2488  *
2489  *	Returns true if no I/O is needed to access the associated VM object.
2490  *	This is like findblk except it also hunts around in the VM system for
2491  *	the data.
2492  *
2493  *	Note that we ignore vm_page_free() races from interrupts against our
2494  *	lookup, since if the caller is not protected our return value will not
2495  *	be any more valid then otherwise once we exit the critical section.
2496  */
2497 int
2498 inmem(struct vnode *vp, off_t loffset)
2499 {
2500 	vm_object_t obj;
2501 	vm_offset_t toff, tinc, size;
2502 	vm_page_t m;
2503 
2504 	if (findblk(vp, loffset, FINDBLK_TEST))
2505 		return 1;
2506 	if (vp->v_mount == NULL)
2507 		return 0;
2508 	if ((obj = vp->v_object) == NULL)
2509 		return 0;
2510 
2511 	size = PAGE_SIZE;
2512 	if (size > vp->v_mount->mnt_stat.f_iosize)
2513 		size = vp->v_mount->mnt_stat.f_iosize;
2514 
2515 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2516 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2517 		if (m == NULL)
2518 			return 0;
2519 		tinc = size;
2520 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2521 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2522 		if (vm_page_is_valid(m,
2523 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2524 			return 0;
2525 	}
2526 	return 1;
2527 }
2528 
2529 /*
2530  * findblk:
2531  *
2532  *	Locate and return the specified buffer.  Unless flagged otherwise,
2533  *	a locked buffer will be returned if it exists or NULL if it does not.
2534  *
2535  *	findblk()'d buffers are still on the bufqueues and if you intend
2536  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2537  *	and possibly do other stuff to it.
2538  *
2539  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2540  *			  for locking the buffer and ensuring that it remains
2541  *			  the desired buffer after locking.
2542  *
2543  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2544  *			  to acquire the lock we return NULL, even if the
2545  *			  buffer exists.
2546  *
2547  *	(0)		- Lock the buffer blocking.
2548  *
2549  * MPSAFE
2550  */
2551 struct buf *
2552 findblk(struct vnode *vp, off_t loffset, int flags)
2553 {
2554 	lwkt_tokref vlock;
2555 	struct buf *bp;
2556 	int lkflags;
2557 
2558 	lkflags = LK_EXCLUSIVE;
2559 	if (flags & FINDBLK_NBLOCK)
2560 		lkflags |= LK_NOWAIT;
2561 
2562 	for (;;) {
2563 		lwkt_gettoken(&vlock, &vp->v_token);
2564 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2565 		lwkt_reltoken(&vlock);
2566 		if (bp == NULL || (flags & FINDBLK_TEST))
2567 			break;
2568 		if (BUF_LOCK(bp, lkflags)) {
2569 			bp = NULL;
2570 			break;
2571 		}
2572 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2573 			break;
2574 		BUF_UNLOCK(bp);
2575 	}
2576 	return(bp);
2577 }
2578 
2579 /*
2580  * getcacheblk:
2581  *
2582  *	Similar to getblk() except only returns the buffer if it is
2583  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2584  *	is returned.
2585  *
2586  *	If B_RAM is set the buffer might be just fine, but we return
2587  *	NULL anyway because we want the code to fall through to the
2588  *	cluster read.  Otherwise read-ahead breaks.
2589  */
2590 struct buf *
2591 getcacheblk(struct vnode *vp, off_t loffset)
2592 {
2593 	struct buf *bp;
2594 
2595 	bp = findblk(vp, loffset, 0);
2596 	if (bp) {
2597 		if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) {
2598 			bp->b_flags &= ~B_AGE;
2599 			bremfree(bp);
2600 		} else {
2601 			BUF_UNLOCK(bp);
2602 			bp = NULL;
2603 		}
2604 	}
2605 	return (bp);
2606 }
2607 
2608 /*
2609  * getblk:
2610  *
2611  *	Get a block given a specified block and offset into a file/device.
2612  * 	B_INVAL may or may not be set on return.  The caller should clear
2613  *	B_INVAL prior to initiating a READ.
2614  *
2615  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2616  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2617  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2618  *	without doing any of those things the system will likely believe
2619  *	the buffer to be valid (especially if it is not B_VMIO), and the
2620  *	next getblk() will return the buffer with B_CACHE set.
2621  *
2622  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2623  *	an existing buffer.
2624  *
2625  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2626  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2627  *	and then cleared based on the backing VM.  If the previous buffer is
2628  *	non-0-sized but invalid, B_CACHE will be cleared.
2629  *
2630  *	If getblk() must create a new buffer, the new buffer is returned with
2631  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2632  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2633  *	backing VM.
2634  *
2635  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2636  *	B_CACHE bit is clear.
2637  *
2638  *	What this means, basically, is that the caller should use B_CACHE to
2639  *	determine whether the buffer is fully valid or not and should clear
2640  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2641  *	the buffer by loading its data area with something, the caller needs
2642  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2643  *	the caller should set B_CACHE ( as an optimization ), else the caller
2644  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2645  *	a write attempt or if it was a successfull read.  If the caller
2646  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2647  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2648  *
2649  *	getblk flags:
2650  *
2651  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2652  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2653  *
2654  * MPALMOSTSAFE
2655  */
2656 struct buf *
2657 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2658 {
2659 	struct buf *bp;
2660 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2661 	int error;
2662 	int lkflags;
2663 
2664 	if (size > MAXBSIZE)
2665 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2666 	if (vp->v_object == NULL)
2667 		panic("getblk: vnode %p has no object!", vp);
2668 
2669 loop:
2670 	if ((bp = findblk(vp, loffset, FINDBLK_TEST)) != NULL) {
2671 		/*
2672 		 * The buffer was found in the cache, but we need to lock it.
2673 		 * Even with LK_NOWAIT the lockmgr may break our critical
2674 		 * section, so double-check the validity of the buffer
2675 		 * once the lock has been obtained.
2676 		 */
2677 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2678 			if (blkflags & GETBLK_NOWAIT)
2679 				return(NULL);
2680 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2681 			if (blkflags & GETBLK_PCATCH)
2682 				lkflags |= LK_PCATCH;
2683 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2684 			if (error) {
2685 				if (error == ENOLCK)
2686 					goto loop;
2687 				return (NULL);
2688 			}
2689 			/* buffer may have changed on us */
2690 		}
2691 
2692 		/*
2693 		 * Once the buffer has been locked, make sure we didn't race
2694 		 * a buffer recyclement.  Buffers that are no longer hashed
2695 		 * will have b_vp == NULL, so this takes care of that check
2696 		 * as well.
2697 		 */
2698 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2699 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2700 				"was recycled\n",
2701 				bp, vp, (long long)loffset);
2702 			BUF_UNLOCK(bp);
2703 			goto loop;
2704 		}
2705 
2706 		/*
2707 		 * If SZMATCH any pre-existing buffer must be of the requested
2708 		 * size or NULL is returned.  The caller absolutely does not
2709 		 * want getblk() to bwrite() the buffer on a size mismatch.
2710 		 */
2711 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2712 			BUF_UNLOCK(bp);
2713 			return(NULL);
2714 		}
2715 
2716 		/*
2717 		 * All vnode-based buffers must be backed by a VM object.
2718 		 */
2719 		KKASSERT(bp->b_flags & B_VMIO);
2720 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2721 		bp->b_flags &= ~B_AGE;
2722 
2723 		/*
2724 		 * Make sure that B_INVAL buffers do not have a cached
2725 		 * block number translation.
2726 		 */
2727 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2728 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2729 				" did not have cleared bio_offset cache\n",
2730 				bp, vp, (long long)loffset);
2731 			clearbiocache(&bp->b_bio2);
2732 		}
2733 
2734 		/*
2735 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2736 		 * invalid.
2737 		 */
2738 		if (bp->b_flags & B_INVAL)
2739 			bp->b_flags &= ~B_CACHE;
2740 		bremfree(bp);
2741 
2742 		/*
2743 		 * Any size inconsistancy with a dirty buffer or a buffer
2744 		 * with a softupdates dependancy must be resolved.  Resizing
2745 		 * the buffer in such circumstances can lead to problems.
2746 		 *
2747 		 * Dirty or dependant buffers are written synchronously.
2748 		 * Other types of buffers are simply released and
2749 		 * reconstituted as they may be backed by valid, dirty VM
2750 		 * pages (but not marked B_DELWRI).
2751 		 *
2752 		 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2753 		 * and may be left over from a prior truncation (and thus
2754 		 * no longer represent the actual EOF point), so we
2755 		 * definitely do not want to B_NOCACHE the backing store.
2756 		 */
2757 		if (size != bp->b_bcount) {
2758 			get_mplock();
2759 			if (bp->b_flags & B_DELWRI) {
2760 				bp->b_flags |= B_RELBUF;
2761 				bwrite(bp);
2762 			} else if (LIST_FIRST(&bp->b_dep)) {
2763 				bp->b_flags |= B_RELBUF;
2764 				bwrite(bp);
2765 			} else {
2766 				bp->b_flags |= B_RELBUF;
2767 				brelse(bp);
2768 			}
2769 			rel_mplock();
2770 			goto loop;
2771 		}
2772 		KKASSERT(size <= bp->b_kvasize);
2773 		KASSERT(bp->b_loffset != NOOFFSET,
2774 			("getblk: no buffer offset"));
2775 
2776 		/*
2777 		 * A buffer with B_DELWRI set and B_CACHE clear must
2778 		 * be committed before we can return the buffer in
2779 		 * order to prevent the caller from issuing a read
2780 		 * ( due to B_CACHE not being set ) and overwriting
2781 		 * it.
2782 		 *
2783 		 * Most callers, including NFS and FFS, need this to
2784 		 * operate properly either because they assume they
2785 		 * can issue a read if B_CACHE is not set, or because
2786 		 * ( for example ) an uncached B_DELWRI might loop due
2787 		 * to softupdates re-dirtying the buffer.  In the latter
2788 		 * case, B_CACHE is set after the first write completes,
2789 		 * preventing further loops.
2790 		 *
2791 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2792 		 * above while extending the buffer, we cannot allow the
2793 		 * buffer to remain with B_CACHE set after the write
2794 		 * completes or it will represent a corrupt state.  To
2795 		 * deal with this we set B_NOCACHE to scrap the buffer
2796 		 * after the write.
2797 		 *
2798 		 * XXX Should this be B_RELBUF instead of B_NOCACHE?
2799 		 *     I'm not even sure this state is still possible
2800 		 *     now that getblk() writes out any dirty buffers
2801 		 *     on size changes.
2802 		 *
2803 		 * We might be able to do something fancy, like setting
2804 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2805 		 * so the below call doesn't set B_CACHE, but that gets real
2806 		 * confusing.  This is much easier.
2807 		 */
2808 
2809 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2810 			get_mplock();
2811 			kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
2812 				"and CACHE clear, b_flags %08x\n",
2813 				bp, (intmax_t)bp->b_loffset, bp->b_flags);
2814 			bp->b_flags |= B_NOCACHE;
2815 			bwrite(bp);
2816 			rel_mplock();
2817 			goto loop;
2818 		}
2819 	} else {
2820 		/*
2821 		 * Buffer is not in-core, create new buffer.  The buffer
2822 		 * returned by getnewbuf() is locked.  Note that the returned
2823 		 * buffer is also considered valid (not marked B_INVAL).
2824 		 *
2825 		 * Calculating the offset for the I/O requires figuring out
2826 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
2827 		 * the mount's f_iosize otherwise.  If the vnode does not
2828 		 * have an associated mount we assume that the passed size is
2829 		 * the block size.
2830 		 *
2831 		 * Note that vn_isdisk() cannot be used here since it may
2832 		 * return a failure for numerous reasons.   Note that the
2833 		 * buffer size may be larger then the block size (the caller
2834 		 * will use block numbers with the proper multiple).  Beware
2835 		 * of using any v_* fields which are part of unions.  In
2836 		 * particular, in DragonFly the mount point overloading
2837 		 * mechanism uses the namecache only and the underlying
2838 		 * directory vnode is not a special case.
2839 		 */
2840 		int bsize, maxsize;
2841 
2842 		if (vp->v_type == VBLK || vp->v_type == VCHR)
2843 			bsize = DEV_BSIZE;
2844 		else if (vp->v_mount)
2845 			bsize = vp->v_mount->mnt_stat.f_iosize;
2846 		else
2847 			bsize = size;
2848 
2849 		maxsize = size + (loffset & PAGE_MASK);
2850 		maxsize = imax(maxsize, bsize);
2851 
2852 		bp = getnewbuf(blkflags, slptimeo, size, maxsize);
2853 		if (bp == NULL) {
2854 			if (slpflags || slptimeo)
2855 				return NULL;
2856 			goto loop;
2857 		}
2858 
2859 		/*
2860 		 * Atomically insert the buffer into the hash, so that it can
2861 		 * be found by findblk().
2862 		 *
2863 		 * If bgetvp() returns non-zero a collision occured, and the
2864 		 * bp will not be associated with the vnode.
2865 		 *
2866 		 * Make sure the translation layer has been cleared.
2867 		 */
2868 		bp->b_loffset = loffset;
2869 		bp->b_bio2.bio_offset = NOOFFSET;
2870 		/* bp->b_bio2.bio_next = NULL; */
2871 
2872 		if (bgetvp(vp, bp)) {
2873 			bp->b_flags |= B_INVAL;
2874 			brelse(bp);
2875 			goto loop;
2876 		}
2877 
2878 		/*
2879 		 * All vnode-based buffers must be backed by a VM object.
2880 		 */
2881 		KKASSERT(vp->v_object != NULL);
2882 		bp->b_flags |= B_VMIO;
2883 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2884 
2885 		get_mplock();
2886 		allocbuf(bp, size);
2887 		rel_mplock();
2888 	}
2889 	return (bp);
2890 }
2891 
2892 /*
2893  * regetblk(bp)
2894  *
2895  * Reacquire a buffer that was previously released to the locked queue,
2896  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
2897  * set B_LOCKED (which handles the acquisition race).
2898  *
2899  * To this end, either B_LOCKED must be set or the dependancy list must be
2900  * non-empty.
2901  *
2902  * MPSAFE
2903  */
2904 void
2905 regetblk(struct buf *bp)
2906 {
2907 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
2908 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
2909 	bremfree(bp);
2910 }
2911 
2912 /*
2913  * geteblk:
2914  *
2915  *	Get an empty, disassociated buffer of given size.  The buffer is
2916  *	initially set to B_INVAL.
2917  *
2918  *	critical section protection is not required for the allocbuf()
2919  *	call because races are impossible here.
2920  *
2921  * MPALMOSTSAFE
2922  */
2923 struct buf *
2924 geteblk(int size)
2925 {
2926 	struct buf *bp;
2927 	int maxsize;
2928 
2929 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2930 
2931 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2932 		;
2933 	get_mplock();
2934 	allocbuf(bp, size);
2935 	rel_mplock();
2936 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2937 	return (bp);
2938 }
2939 
2940 
2941 /*
2942  * allocbuf:
2943  *
2944  *	This code constitutes the buffer memory from either anonymous system
2945  *	memory (in the case of non-VMIO operations) or from an associated
2946  *	VM object (in the case of VMIO operations).  This code is able to
2947  *	resize a buffer up or down.
2948  *
2949  *	Note that this code is tricky, and has many complications to resolve
2950  *	deadlock or inconsistant data situations.  Tread lightly!!!
2951  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
2952  *	the caller.  Calling this code willy nilly can result in the loss of data.
2953  *
2954  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2955  *	B_CACHE for the non-VMIO case.
2956  *
2957  *	This routine does not need to be called from a critical section but you
2958  *	must own the buffer.
2959  *
2960  * NOTMPSAFE
2961  */
2962 int
2963 allocbuf(struct buf *bp, int size)
2964 {
2965 	int newbsize, mbsize;
2966 	int i;
2967 
2968 	if (BUF_REFCNT(bp) == 0)
2969 		panic("allocbuf: buffer not busy");
2970 
2971 	if (bp->b_kvasize < size)
2972 		panic("allocbuf: buffer too small");
2973 
2974 	if ((bp->b_flags & B_VMIO) == 0) {
2975 		caddr_t origbuf;
2976 		int origbufsize;
2977 		/*
2978 		 * Just get anonymous memory from the kernel.  Don't
2979 		 * mess with B_CACHE.
2980 		 */
2981 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2982 		if (bp->b_flags & B_MALLOC)
2983 			newbsize = mbsize;
2984 		else
2985 			newbsize = round_page(size);
2986 
2987 		if (newbsize < bp->b_bufsize) {
2988 			/*
2989 			 * Malloced buffers are not shrunk
2990 			 */
2991 			if (bp->b_flags & B_MALLOC) {
2992 				if (newbsize) {
2993 					bp->b_bcount = size;
2994 				} else {
2995 					kfree(bp->b_data, M_BIOBUF);
2996 					if (bp->b_bufsize) {
2997 						bufmallocspace -= bp->b_bufsize;
2998 						bufspacewakeup();
2999 						bp->b_bufsize = 0;
3000 					}
3001 					bp->b_data = bp->b_kvabase;
3002 					bp->b_bcount = 0;
3003 					bp->b_flags &= ~B_MALLOC;
3004 				}
3005 				return 1;
3006 			}
3007 			vm_hold_free_pages(
3008 			    bp,
3009 			    (vm_offset_t) bp->b_data + newbsize,
3010 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3011 		} else if (newbsize > bp->b_bufsize) {
3012 			/*
3013 			 * We only use malloced memory on the first allocation.
3014 			 * and revert to page-allocated memory when the buffer
3015 			 * grows.
3016 			 */
3017 			if ((bufmallocspace < maxbufmallocspace) &&
3018 				(bp->b_bufsize == 0) &&
3019 				(mbsize <= PAGE_SIZE/2)) {
3020 
3021 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3022 				bp->b_bufsize = mbsize;
3023 				bp->b_bcount = size;
3024 				bp->b_flags |= B_MALLOC;
3025 				bufmallocspace += mbsize;
3026 				return 1;
3027 			}
3028 			origbuf = NULL;
3029 			origbufsize = 0;
3030 			/*
3031 			 * If the buffer is growing on its other-than-first
3032 			 * allocation, then we revert to the page-allocation
3033 			 * scheme.
3034 			 */
3035 			if (bp->b_flags & B_MALLOC) {
3036 				origbuf = bp->b_data;
3037 				origbufsize = bp->b_bufsize;
3038 				bp->b_data = bp->b_kvabase;
3039 				if (bp->b_bufsize) {
3040 					bufmallocspace -= bp->b_bufsize;
3041 					bufspacewakeup();
3042 					bp->b_bufsize = 0;
3043 				}
3044 				bp->b_flags &= ~B_MALLOC;
3045 				newbsize = round_page(newbsize);
3046 			}
3047 			vm_hold_load_pages(
3048 			    bp,
3049 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3050 			    (vm_offset_t) bp->b_data + newbsize);
3051 			if (origbuf) {
3052 				bcopy(origbuf, bp->b_data, origbufsize);
3053 				kfree(origbuf, M_BIOBUF);
3054 			}
3055 		}
3056 	} else {
3057 		vm_page_t m;
3058 		int desiredpages;
3059 
3060 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3061 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3062 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3063 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3064 
3065 		if (bp->b_flags & B_MALLOC)
3066 			panic("allocbuf: VMIO buffer can't be malloced");
3067 		/*
3068 		 * Set B_CACHE initially if buffer is 0 length or will become
3069 		 * 0-length.
3070 		 */
3071 		if (size == 0 || bp->b_bufsize == 0)
3072 			bp->b_flags |= B_CACHE;
3073 
3074 		if (newbsize < bp->b_bufsize) {
3075 			/*
3076 			 * DEV_BSIZE aligned new buffer size is less then the
3077 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3078 			 * if we have to remove any pages.
3079 			 */
3080 			if (desiredpages < bp->b_xio.xio_npages) {
3081 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3082 					/*
3083 					 * the page is not freed here -- it
3084 					 * is the responsibility of
3085 					 * vnode_pager_setsize
3086 					 */
3087 					m = bp->b_xio.xio_pages[i];
3088 					KASSERT(m != bogus_page,
3089 					    ("allocbuf: bogus page found"));
3090 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
3091 						;
3092 
3093 					bp->b_xio.xio_pages[i] = NULL;
3094 					vm_page_unwire(m, 0);
3095 				}
3096 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3097 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3098 				bp->b_xio.xio_npages = desiredpages;
3099 			}
3100 		} else if (size > bp->b_bcount) {
3101 			/*
3102 			 * We are growing the buffer, possibly in a
3103 			 * byte-granular fashion.
3104 			 */
3105 			struct vnode *vp;
3106 			vm_object_t obj;
3107 			vm_offset_t toff;
3108 			vm_offset_t tinc;
3109 
3110 			/*
3111 			 * Step 1, bring in the VM pages from the object,
3112 			 * allocating them if necessary.  We must clear
3113 			 * B_CACHE if these pages are not valid for the
3114 			 * range covered by the buffer.
3115 			 *
3116 			 * critical section protection is required to protect
3117 			 * against interrupts unbusying and freeing pages
3118 			 * between our vm_page_lookup() and our
3119 			 * busycheck/wiring call.
3120 			 */
3121 			vp = bp->b_vp;
3122 			obj = vp->v_object;
3123 
3124 			crit_enter();
3125 			while (bp->b_xio.xio_npages < desiredpages) {
3126 				vm_page_t m;
3127 				vm_pindex_t pi;
3128 
3129 				pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
3130 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
3131 					/*
3132 					 * note: must allocate system pages
3133 					 * since blocking here could intefere
3134 					 * with paging I/O, no matter which
3135 					 * process we are.
3136 					 */
3137 					m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
3138 					if (m) {
3139 						vm_page_wire(m);
3140 						vm_page_wakeup(m);
3141 						bp->b_flags &= ~B_CACHE;
3142 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3143 						++bp->b_xio.xio_npages;
3144 					}
3145 					continue;
3146 				}
3147 
3148 				/*
3149 				 * We found a page.  If we have to sleep on it,
3150 				 * retry because it might have gotten freed out
3151 				 * from under us.
3152 				 *
3153 				 * We can only test PG_BUSY here.  Blocking on
3154 				 * m->busy might lead to a deadlock:
3155 				 *
3156 				 *  vm_fault->getpages->cluster_read->allocbuf
3157 				 *
3158 				 */
3159 
3160 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
3161 					continue;
3162 				vm_page_flag_clear(m, PG_ZERO);
3163 				vm_page_wire(m);
3164 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3165 				++bp->b_xio.xio_npages;
3166 			}
3167 			crit_exit();
3168 
3169 			/*
3170 			 * Step 2.  We've loaded the pages into the buffer,
3171 			 * we have to figure out if we can still have B_CACHE
3172 			 * set.  Note that B_CACHE is set according to the
3173 			 * byte-granular range ( bcount and size ), not the
3174 			 * aligned range ( newbsize ).
3175 			 *
3176 			 * The VM test is against m->valid, which is DEV_BSIZE
3177 			 * aligned.  Needless to say, the validity of the data
3178 			 * needs to also be DEV_BSIZE aligned.  Note that this
3179 			 * fails with NFS if the server or some other client
3180 			 * extends the file's EOF.  If our buffer is resized,
3181 			 * B_CACHE may remain set! XXX
3182 			 */
3183 
3184 			toff = bp->b_bcount;
3185 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3186 
3187 			while ((bp->b_flags & B_CACHE) && toff < size) {
3188 				vm_pindex_t pi;
3189 
3190 				if (tinc > (size - toff))
3191 					tinc = size - toff;
3192 
3193 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3194 				    PAGE_SHIFT;
3195 
3196 				vfs_buf_test_cache(
3197 				    bp,
3198 				    bp->b_loffset,
3199 				    toff,
3200 				    tinc,
3201 				    bp->b_xio.xio_pages[pi]
3202 				);
3203 				toff += tinc;
3204 				tinc = PAGE_SIZE;
3205 			}
3206 
3207 			/*
3208 			 * Step 3, fixup the KVM pmap.  Remember that
3209 			 * bp->b_data is relative to bp->b_loffset, but
3210 			 * bp->b_loffset may be offset into the first page.
3211 			 */
3212 
3213 			bp->b_data = (caddr_t)
3214 			    trunc_page((vm_offset_t)bp->b_data);
3215 			pmap_qenter(
3216 			    (vm_offset_t)bp->b_data,
3217 			    bp->b_xio.xio_pages,
3218 			    bp->b_xio.xio_npages
3219 			);
3220 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3221 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3222 		}
3223 	}
3224 
3225 	/* adjust space use on already-dirty buffer */
3226 	if (bp->b_flags & B_DELWRI) {
3227 		dirtybufspace += newbsize - bp->b_bufsize;
3228 		if (bp->b_flags & B_HEAVY)
3229 			dirtybufspacehw += newbsize - bp->b_bufsize;
3230 	}
3231 	if (newbsize < bp->b_bufsize)
3232 		bufspacewakeup();
3233 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3234 	bp->b_bcount = size;		/* requested buffer size	*/
3235 	return 1;
3236 }
3237 
3238 /*
3239  * biowait:
3240  *
3241  *	Wait for buffer I/O completion, returning error status. B_EINTR
3242  *	is converted into an EINTR error but not cleared (since a chain
3243  *	of biowait() calls may occur).
3244  *
3245  *	On return bpdone() will have been called but the buffer will remain
3246  *	locked and will not have been brelse()'d.
3247  *
3248  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3249  *	likely still in progress on return.
3250  *
3251  *	NOTE!  This operation is on a BIO, not a BUF.
3252  *
3253  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3254  *
3255  * MPSAFE
3256  */
3257 static __inline int
3258 _biowait(struct bio *bio, const char *wmesg, int to)
3259 {
3260 	struct buf *bp = bio->bio_buf;
3261 	u_int32_t flags;
3262 	u_int32_t nflags;
3263 	int error;
3264 
3265 	KKASSERT(bio == &bp->b_bio1);
3266 	for (;;) {
3267 		flags = bio->bio_flags;
3268 		if (flags & BIO_DONE)
3269 			break;
3270 		tsleep_interlock(bio, 0);
3271 		nflags = flags | BIO_WANT;
3272 		tsleep_interlock(bio, 0);
3273 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3274 			if (wmesg)
3275 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3276 			else if (bp->b_cmd == BUF_CMD_READ)
3277 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3278 			else
3279 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3280 			if (error) {
3281 				kprintf("tsleep error biowait %d\n", error);
3282 				return (error);
3283 			}
3284 			break;
3285 		}
3286 	}
3287 
3288 	/*
3289 	 * Finish up.
3290 	 */
3291 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3292 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3293 	if (bp->b_flags & B_EINTR)
3294 		return (EINTR);
3295 	if (bp->b_flags & B_ERROR)
3296 		return (bp->b_error ? bp->b_error : EIO);
3297 	return (0);
3298 }
3299 
3300 int
3301 biowait(struct bio *bio, const char *wmesg)
3302 {
3303 	return(_biowait(bio, wmesg, 0));
3304 }
3305 
3306 int
3307 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3308 {
3309 	return(_biowait(bio, wmesg, to));
3310 }
3311 
3312 /*
3313  * This associates a tracking count with an I/O.  vn_strategy() and
3314  * dev_dstrategy() do this automatically but there are a few cases
3315  * where a vnode or device layer is bypassed when a block translation
3316  * is cached.  In such cases bio_start_transaction() may be called on
3317  * the bypassed layers so the system gets an I/O in progress indication
3318  * for those higher layers.
3319  */
3320 void
3321 bio_start_transaction(struct bio *bio, struct bio_track *track)
3322 {
3323 	bio->bio_track = track;
3324 	bio_track_ref(track);
3325 }
3326 
3327 /*
3328  * Initiate I/O on a vnode.
3329  */
3330 void
3331 vn_strategy(struct vnode *vp, struct bio *bio)
3332 {
3333 	struct bio_track *track;
3334 
3335 	KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE);
3336         if (bio->bio_buf->b_cmd == BUF_CMD_READ)
3337                 track = &vp->v_track_read;
3338         else
3339                 track = &vp->v_track_write;
3340 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3341 	bio->bio_track = track;
3342 	bio_track_ref(track);
3343         vop_strategy(*vp->v_ops, vp, bio);
3344 }
3345 
3346 /*
3347  * bpdone:
3348  *
3349  *	Finish I/O on a buffer after all BIOs have been processed.
3350  *	Called when the bio chain is exhausted or by biowait.  If called
3351  *	by biowait, elseit is typically 0.
3352  *
3353  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3354  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3355  *	assuming B_INVAL is clear.
3356  *
3357  *	For the VMIO case, we set B_CACHE if the op was a read and no
3358  *	read error occured, or if the op was a write.  B_CACHE is never
3359  *	set if the buffer is invalid or otherwise uncacheable.
3360  *
3361  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3362  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3363  *	in the biodone routine.
3364  */
3365 void
3366 bpdone(struct buf *bp, int elseit)
3367 {
3368 	buf_cmd_t cmd;
3369 
3370 	KASSERT(BUF_REFCNTNB(bp) > 0,
3371 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3372 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3373 		("biodone: bp %p already done!", bp));
3374 
3375 	/*
3376 	 * No more BIOs are left.  All completion functions have been dealt
3377 	 * with, now we clean up the buffer.
3378 	 */
3379 	cmd = bp->b_cmd;
3380 	bp->b_cmd = BUF_CMD_DONE;
3381 
3382 	/*
3383 	 * Only reads and writes are processed past this point.
3384 	 */
3385 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3386 		if (cmd == BUF_CMD_FREEBLKS)
3387 			bp->b_flags |= B_NOCACHE;
3388 		if (elseit)
3389 			brelse(bp);
3390 		return;
3391 	}
3392 
3393 	/*
3394 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3395 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3396 	 */
3397 	if (LIST_FIRST(&bp->b_dep) != NULL)
3398 		buf_complete(bp);
3399 
3400 	/*
3401 	 * A failed write must re-dirty the buffer unless B_INVAL
3402 	 * was set.  Only applicable to normal buffers (with VPs).
3403 	 * vinum buffers may not have a vp.
3404 	 */
3405 	if (cmd == BUF_CMD_WRITE &&
3406 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3407 		bp->b_flags &= ~B_NOCACHE;
3408 		if (bp->b_vp)
3409 			bdirty(bp);
3410 	}
3411 
3412 	if (bp->b_flags & B_VMIO) {
3413 		int i;
3414 		vm_ooffset_t foff;
3415 		vm_page_t m;
3416 		vm_object_t obj;
3417 		int iosize;
3418 		struct vnode *vp = bp->b_vp;
3419 
3420 		obj = vp->v_object;
3421 
3422 #if defined(VFS_BIO_DEBUG)
3423 		if (vp->v_auxrefs == 0)
3424 			panic("biodone: zero vnode hold count");
3425 		if ((vp->v_flag & VOBJBUF) == 0)
3426 			panic("biodone: vnode is not setup for merged cache");
3427 #endif
3428 
3429 		foff = bp->b_loffset;
3430 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3431 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3432 
3433 #if defined(VFS_BIO_DEBUG)
3434 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3435 			kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3436 			    obj->paging_in_progress, bp->b_xio.xio_npages);
3437 		}
3438 #endif
3439 
3440 		/*
3441 		 * Set B_CACHE if the op was a normal read and no error
3442 		 * occured.  B_CACHE is set for writes in the b*write()
3443 		 * routines.
3444 		 */
3445 		iosize = bp->b_bcount - bp->b_resid;
3446 		if (cmd == BUF_CMD_READ &&
3447 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3448 			bp->b_flags |= B_CACHE;
3449 		}
3450 
3451 		crit_enter();
3452 		get_mplock();
3453 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3454 			int bogusflag = 0;
3455 			int resid;
3456 
3457 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3458 			if (resid > iosize)
3459 				resid = iosize;
3460 
3461 			/*
3462 			 * cleanup bogus pages, restoring the originals.  Since
3463 			 * the originals should still be wired, we don't have
3464 			 * to worry about interrupt/freeing races destroying
3465 			 * the VM object association.
3466 			 */
3467 			m = bp->b_xio.xio_pages[i];
3468 			if (m == bogus_page) {
3469 				bogusflag = 1;
3470 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3471 				if (m == NULL)
3472 					panic("biodone: page disappeared");
3473 				bp->b_xio.xio_pages[i] = m;
3474 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3475 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3476 			}
3477 #if defined(VFS_BIO_DEBUG)
3478 			if (OFF_TO_IDX(foff) != m->pindex) {
3479 				kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3480 					"mismatch\n",
3481 					(unsigned long)foff, (long)m->pindex);
3482 			}
3483 #endif
3484 
3485 			/*
3486 			 * In the write case, the valid and clean bits are
3487 			 * already changed correctly (see bdwrite()), so we
3488 			 * only need to do this here in the read case.
3489 			 */
3490 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3491 				vfs_clean_one_page(bp, i, m);
3492 			}
3493 			vm_page_flag_clear(m, PG_ZERO);
3494 
3495 			/*
3496 			 * when debugging new filesystems or buffer I/O
3497 			 * methods, this is the most common error that pops
3498 			 * up.  if you see this, you have not set the page
3499 			 * busy flag correctly!!!
3500 			 */
3501 			if (m->busy == 0) {
3502 				kprintf("biodone: page busy < 0, "
3503 				    "pindex: %d, foff: 0x(%x,%x), "
3504 				    "resid: %d, index: %d\n",
3505 				    (int) m->pindex, (int)(foff >> 32),
3506 						(int) foff & 0xffffffff, resid, i);
3507 				if (!vn_isdisk(vp, NULL))
3508 					kprintf(" iosize: %ld, loffset: %lld, "
3509 						"flags: 0x%08x, npages: %d\n",
3510 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3511 					    (long long)bp->b_loffset,
3512 					    bp->b_flags, bp->b_xio.xio_npages);
3513 				else
3514 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3515 					    (long long)bp->b_loffset,
3516 					    bp->b_flags, bp->b_xio.xio_npages);
3517 				kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3518 				    m->valid, m->dirty, m->wire_count);
3519 				panic("biodone: page busy < 0");
3520 			}
3521 			vm_page_io_finish(m);
3522 			vm_object_pip_subtract(obj, 1);
3523 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3524 			iosize -= resid;
3525 		}
3526 		if (obj)
3527 			vm_object_pip_wakeupn(obj, 0);
3528 		rel_mplock();
3529 		crit_exit();
3530 	}
3531 
3532 	/*
3533 	 * Finish up by releasing the buffer.  There are no more synchronous
3534 	 * or asynchronous completions, those were handled by bio_done
3535 	 * callbacks.
3536 	 */
3537 	if (elseit) {
3538 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3539 			brelse(bp);
3540 		else
3541 			bqrelse(bp);
3542 	}
3543 }
3544 
3545 /*
3546  * Normal biodone.
3547  */
3548 void
3549 biodone(struct bio *bio)
3550 {
3551 	struct buf *bp = bio->bio_buf;
3552 
3553 	runningbufwakeup(bp);
3554 
3555 	/*
3556 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3557 	 */
3558 	while (bio) {
3559 		biodone_t *done_func;
3560 		struct bio_track *track;
3561 
3562 		/*
3563 		 * BIO tracking.  Most but not all BIOs are tracked.
3564 		 */
3565 		if ((track = bio->bio_track) != NULL) {
3566 			bio_track_rel(track);
3567 			bio->bio_track = NULL;
3568 		}
3569 
3570 		/*
3571 		 * A bio_done function terminates the loop.  The function
3572 		 * will be responsible for any further chaining and/or
3573 		 * buffer management.
3574 		 *
3575 		 * WARNING!  The done function can deallocate the buffer!
3576 		 */
3577 		if ((done_func = bio->bio_done) != NULL) {
3578 			bio->bio_done = NULL;
3579 			done_func(bio);
3580 			return;
3581 		}
3582 		bio = bio->bio_prev;
3583 	}
3584 
3585 	/*
3586 	 * If we've run out of bio's do normal [a]synchronous completion.
3587 	 */
3588 	bpdone(bp, 1);
3589 }
3590 
3591 /*
3592  * Synchronous biodone - this terminates a synchronous BIO.
3593  *
3594  * bpdone() is called with elseit=FALSE, leaving the buffer completed
3595  * but still locked.  The caller must brelse() the buffer after waiting
3596  * for completion.
3597  */
3598 void
3599 biodone_sync(struct bio *bio)
3600 {
3601 	struct buf *bp = bio->bio_buf;
3602 	int flags;
3603 	int nflags;
3604 
3605 	KKASSERT(bio == &bp->b_bio1);
3606 	bpdone(bp, 0);
3607 
3608 	for (;;) {
3609 		flags = bio->bio_flags;
3610 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
3611 
3612 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3613 			if (flags & BIO_WANT)
3614 				wakeup(bio);
3615 			break;
3616 		}
3617 	}
3618 }
3619 
3620 /*
3621  * vfs_unbusy_pages:
3622  *
3623  *	This routine is called in lieu of iodone in the case of
3624  *	incomplete I/O.  This keeps the busy status for pages
3625  *	consistant.
3626  */
3627 void
3628 vfs_unbusy_pages(struct buf *bp)
3629 {
3630 	int i;
3631 
3632 	runningbufwakeup(bp);
3633 	if (bp->b_flags & B_VMIO) {
3634 		struct vnode *vp = bp->b_vp;
3635 		vm_object_t obj;
3636 
3637 		obj = vp->v_object;
3638 
3639 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3640 			vm_page_t m = bp->b_xio.xio_pages[i];
3641 
3642 			/*
3643 			 * When restoring bogus changes the original pages
3644 			 * should still be wired, so we are in no danger of
3645 			 * losing the object association and do not need
3646 			 * critical section protection particularly.
3647 			 */
3648 			if (m == bogus_page) {
3649 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3650 				if (!m) {
3651 					panic("vfs_unbusy_pages: page missing");
3652 				}
3653 				bp->b_xio.xio_pages[i] = m;
3654 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3655 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3656 			}
3657 			vm_object_pip_subtract(obj, 1);
3658 			vm_page_flag_clear(m, PG_ZERO);
3659 			vm_page_io_finish(m);
3660 		}
3661 		vm_object_pip_wakeupn(obj, 0);
3662 	}
3663 }
3664 
3665 /*
3666  * vfs_busy_pages:
3667  *
3668  *	This routine is called before a device strategy routine.
3669  *	It is used to tell the VM system that paging I/O is in
3670  *	progress, and treat the pages associated with the buffer
3671  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
3672  *	flag is handled to make sure that the object doesn't become
3673  *	inconsistant.
3674  *
3675  *	Since I/O has not been initiated yet, certain buffer flags
3676  *	such as B_ERROR or B_INVAL may be in an inconsistant state
3677  *	and should be ignored.
3678  */
3679 void
3680 vfs_busy_pages(struct vnode *vp, struct buf *bp)
3681 {
3682 	int i, bogus;
3683 	struct lwp *lp = curthread->td_lwp;
3684 
3685 	/*
3686 	 * The buffer's I/O command must already be set.  If reading,
3687 	 * B_CACHE must be 0 (double check against callers only doing
3688 	 * I/O when B_CACHE is 0).
3689 	 */
3690 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3691 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3692 
3693 	if (bp->b_flags & B_VMIO) {
3694 		vm_object_t obj;
3695 
3696 		obj = vp->v_object;
3697 		KASSERT(bp->b_loffset != NOOFFSET,
3698 			("vfs_busy_pages: no buffer offset"));
3699 
3700 		/*
3701 		 * Loop until none of the pages are busy.
3702 		 */
3703 retry:
3704 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3705 			vm_page_t m = bp->b_xio.xio_pages[i];
3706 
3707 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3708 				goto retry;
3709 		}
3710 
3711 		/*
3712 		 * Setup for I/O, soft-busy the page right now because
3713 		 * the next loop may block.
3714 		 */
3715 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3716 			vm_page_t m = bp->b_xio.xio_pages[i];
3717 
3718 			vm_page_flag_clear(m, PG_ZERO);
3719 			if ((bp->b_flags & B_CLUSTER) == 0) {
3720 				vm_object_pip_add(obj, 1);
3721 				vm_page_io_start(m);
3722 			}
3723 		}
3724 
3725 		/*
3726 		 * Adjust protections for I/O and do bogus-page mapping.
3727 		 * Assume that vm_page_protect() can block (it can block
3728 		 * if VM_PROT_NONE, don't take any chances regardless).
3729 		 *
3730 		 * In particularly note that for writes we must incorporate
3731 		 * page dirtyness from the VM system into the buffer's
3732 		 * dirty range.
3733 		 *
3734 		 * For reads we theoretically must incorporate page dirtyness
3735 		 * from the VM system to determine if the page needs bogus
3736 		 * replacement, but we shortcut the test by simply checking
3737 		 * that all m->valid bits are set, indicating that the page
3738 		 * is fully valid and does not need to be re-read.  For any
3739 		 * VM system dirtyness the page will also be fully valid
3740 		 * since it was mapped at one point.
3741 		 */
3742 		bogus = 0;
3743 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3744 			vm_page_t m = bp->b_xio.xio_pages[i];
3745 
3746 			vm_page_flag_clear(m, PG_ZERO);	/* XXX */
3747 			if (bp->b_cmd == BUF_CMD_WRITE) {
3748 				/*
3749 				 * When readying a vnode-backed buffer for
3750 				 * a write we must zero-fill any invalid
3751 				 * portions of the backing VM pages, mark
3752 				 * it valid and clear related dirty bits.
3753 				 *
3754 				 * vfs_clean_one_page() incorporates any
3755 				 * VM dirtyness and updates the b_dirtyoff
3756 				 * range (after we've made the page RO).
3757 				 *
3758 				 * It is also expected that the pmap modified
3759 				 * bit has already been cleared by the
3760 				 * vm_page_protect().  We may not be able
3761 				 * to clear all dirty bits for a page if it
3762 				 * was also memory mapped (NFS).
3763 				 */
3764 				vm_page_protect(m, VM_PROT_READ);
3765 				vfs_clean_one_page(bp, i, m);
3766 			} else if (m->valid == VM_PAGE_BITS_ALL) {
3767 				/*
3768 				 * When readying a vnode-backed buffer for
3769 				 * read we must replace any dirty pages with
3770 				 * a bogus page so dirty data is not destroyed
3771 				 * when filling gaps.
3772 				 *
3773 				 * To avoid testing whether the page is
3774 				 * dirty we instead test that the page was
3775 				 * at some point mapped (m->valid fully
3776 				 * valid) with the understanding that
3777 				 * this also covers the dirty case.
3778 				 */
3779 				bp->b_xio.xio_pages[i] = bogus_page;
3780 				bogus++;
3781 			} else if (m->valid & m->dirty) {
3782 				/*
3783 				 * This case should not occur as partial
3784 				 * dirtyment can only happen if the buffer
3785 				 * is B_CACHE, and this code is not entered
3786 				 * if the buffer is B_CACHE.
3787 				 */
3788 				kprintf("Warning: vfs_busy_pages - page not "
3789 					"fully valid! loff=%jx bpf=%08x "
3790 					"idx=%d val=%02x dir=%02x\n",
3791 					(intmax_t)bp->b_loffset, bp->b_flags,
3792 					i, m->valid, m->dirty);
3793 				vm_page_protect(m, VM_PROT_NONE);
3794 			} else {
3795 				/*
3796 				 * The page is not valid and can be made
3797 				 * part of the read.
3798 				 */
3799 				vm_page_protect(m, VM_PROT_NONE);
3800 			}
3801 		}
3802 		if (bogus) {
3803 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3804 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3805 		}
3806 	}
3807 
3808 	/*
3809 	 * This is the easiest place to put the process accounting for the I/O
3810 	 * for now.
3811 	 */
3812 	if (lp != NULL) {
3813 		if (bp->b_cmd == BUF_CMD_READ)
3814 			lp->lwp_ru.ru_inblock++;
3815 		else
3816 			lp->lwp_ru.ru_oublock++;
3817 	}
3818 }
3819 
3820 /*
3821  * vfs_clean_pages:
3822  *
3823  *	Tell the VM system that the pages associated with this buffer
3824  *	are clean.  This is used for delayed writes where the data is
3825  *	going to go to disk eventually without additional VM intevention.
3826  *
3827  *	Note that while we only really need to clean through to b_bcount, we
3828  *	just go ahead and clean through to b_bufsize.
3829  */
3830 static void
3831 vfs_clean_pages(struct buf *bp)
3832 {
3833 	vm_page_t m;
3834 	int i;
3835 
3836 	if ((bp->b_flags & B_VMIO) == 0)
3837 		return;
3838 
3839 	KASSERT(bp->b_loffset != NOOFFSET,
3840 		("vfs_clean_pages: no buffer offset"));
3841 
3842 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
3843 		m = bp->b_xio.xio_pages[i];
3844 		vfs_clean_one_page(bp, i, m);
3845 	}
3846 }
3847 
3848 /*
3849  * vfs_clean_one_page:
3850  *
3851  *	Set the valid bits and clear the dirty bits in a page within a
3852  *	buffer.  The range is restricted to the buffer's size and the
3853  *	buffer's logical offset might index into the first page.
3854  *
3855  *	The caller has busied or soft-busied the page and it is not mapped,
3856  *	test and incorporate the dirty bits into b_dirtyoff/end before
3857  *	clearing them.  Note that we need to clear the pmap modified bits
3858  *	after determining the the page was dirty, vm_page_set_validclean()
3859  *	does not do it for us.
3860  *
3861  *	This routine is typically called after a read completes (dirty should
3862  *	be zero in that case as we are not called on bogus-replace pages),
3863  *	or before a write is initiated.
3864  */
3865 static void
3866 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
3867 {
3868 	int bcount;
3869 	int xoff;
3870 	int soff;
3871 	int eoff;
3872 
3873 	/*
3874 	 * Calculate offset range within the page but relative to buffer's
3875 	 * loffset.  loffset might be offset into the first page.
3876 	 */
3877 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
3878 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
3879 
3880 	if (pageno == 0) {
3881 		soff = xoff;
3882 		eoff = PAGE_SIZE;
3883 	} else {
3884 		soff = (pageno << PAGE_SHIFT);
3885 		eoff = soff + PAGE_SIZE;
3886 	}
3887 	if (eoff > bcount)
3888 		eoff = bcount;
3889 	if (soff >= eoff)
3890 		return;
3891 
3892 	/*
3893 	 * Test dirty bits and adjust b_dirtyoff/end.
3894 	 *
3895 	 * If dirty pages are incorporated into the bp any prior
3896 	 * B_NEEDCOMMIT state (NFS) must be cleared because the
3897 	 * caller has not taken into account the new dirty data.
3898 	 *
3899 	 * If the page was memory mapped the dirty bits might go beyond the
3900 	 * end of the buffer, but we can't really make the assumption that
3901 	 * a file EOF straddles the buffer (even though this is the case for
3902 	 * NFS if B_NEEDCOMMIT is also set).  So for the purposes of clearing
3903 	 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
3904 	 * This also saves some console spam.
3905 	 */
3906 	vm_page_test_dirty(m);
3907 	if (m->dirty) {
3908 		pmap_clear_modify(m);
3909 		if ((bp->b_flags & B_NEEDCOMMIT) &&
3910 		    (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
3911 			kprintf("Warning: vfs_clean_one_page: bp %p "
3912 				"loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT\n",
3913 				bp, (intmax_t)bp->b_loffset, bp->b_bcount,
3914 				bp->b_flags);
3915 			bp->b_flags &= ~B_NEEDCOMMIT;
3916 		}
3917 		if (bp->b_dirtyoff > soff - xoff)
3918 			bp->b_dirtyoff = soff - xoff;
3919 		if (bp->b_dirtyend < eoff - xoff)
3920 			bp->b_dirtyend = eoff - xoff;
3921 	}
3922 
3923 	/*
3924 	 * Set related valid bits, clear related dirty bits.
3925 	 * Does not mess with the pmap modified bit.
3926 	 *
3927 	 * WARNING!  We cannot just clear all of m->dirty here as the
3928 	 *	     buffer cache buffers may use a DEV_BSIZE'd aligned
3929 	 *	     block size, or have an odd size (e.g. NFS at file EOF).
3930 	 *	     The putpages code can clear m->dirty to 0.
3931 	 *
3932 	 *	     If a VOP_WRITE generates a buffer cache buffer which
3933 	 *	     covers the same space as mapped writable pages the
3934 	 *	     buffer flush might not be able to clear all the dirty
3935 	 *	     bits and still require a putpages from the VM system
3936 	 *	     to finish it off.
3937 	 */
3938 	vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
3939 }
3940 
3941 /*
3942  * vfs_bio_clrbuf:
3943  *
3944  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
3945  *	to clear B_ERROR and B_INVAL.
3946  *
3947  *	Note that while we only theoretically need to clear through b_bcount,
3948  *	we go ahead and clear through b_bufsize.
3949  */
3950 
3951 void
3952 vfs_bio_clrbuf(struct buf *bp)
3953 {
3954 	int i, mask = 0;
3955 	caddr_t sa, ea;
3956 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3957 		bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
3958 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3959 		    (bp->b_loffset & PAGE_MASK) == 0) {
3960 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3961 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3962 				bp->b_resid = 0;
3963 				return;
3964 			}
3965 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3966 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3967 				bzero(bp->b_data, bp->b_bufsize);
3968 				bp->b_xio.xio_pages[0]->valid |= mask;
3969 				bp->b_resid = 0;
3970 				return;
3971 			}
3972 		}
3973 		sa = bp->b_data;
3974 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3975 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3976 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3977 			ea = (caddr_t)(vm_offset_t)ulmin(
3978 			    (u_long)(vm_offset_t)ea,
3979 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3980 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3981 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3982 				continue;
3983 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3984 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3985 					bzero(sa, ea - sa);
3986 				}
3987 			} else {
3988 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3989 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3990 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3991 						bzero(sa, DEV_BSIZE);
3992 				}
3993 			}
3994 			bp->b_xio.xio_pages[i]->valid |= mask;
3995 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3996 		}
3997 		bp->b_resid = 0;
3998 	} else {
3999 		clrbuf(bp);
4000 	}
4001 }
4002 
4003 /*
4004  * vm_hold_load_pages:
4005  *
4006  *	Load pages into the buffer's address space.  The pages are
4007  *	allocated from the kernel object in order to reduce interference
4008  *	with the any VM paging I/O activity.  The range of loaded
4009  *	pages will be wired.
4010  *
4011  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
4012  *	retrieve the full range (to - from) of pages.
4013  *
4014  */
4015 void
4016 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4017 {
4018 	vm_offset_t pg;
4019 	vm_page_t p;
4020 	int index;
4021 
4022 	to = round_page(to);
4023 	from = round_page(from);
4024 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4025 
4026 	pg = from;
4027 	while (pg < to) {
4028 		/*
4029 		 * Note: must allocate system pages since blocking here
4030 		 * could intefere with paging I/O, no matter which
4031 		 * process we are.
4032 		 */
4033 		p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
4034 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4035 		if (p) {
4036 			vm_page_wire(p);
4037 			p->valid = VM_PAGE_BITS_ALL;
4038 			vm_page_flag_clear(p, PG_ZERO);
4039 			pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4040 			bp->b_xio.xio_pages[index] = p;
4041 			vm_page_wakeup(p);
4042 
4043 			pg += PAGE_SIZE;
4044 			++index;
4045 		}
4046 	}
4047 	bp->b_xio.xio_npages = index;
4048 }
4049 
4050 /*
4051  * Allocate pages for a buffer cache buffer.
4052  *
4053  * Under extremely severe memory conditions even allocating out of the
4054  * system reserve can fail.  If this occurs we must allocate out of the
4055  * interrupt reserve to avoid a deadlock with the pageout daemon.
4056  *
4057  * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf).
4058  * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock
4059  * against the pageout daemon if pages are not freed from other sources.
4060  */
4061 static
4062 vm_page_t
4063 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
4064 {
4065 	vm_page_t p;
4066 
4067 	/*
4068 	 * Try a normal allocation, allow use of system reserve.
4069 	 */
4070 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
4071 	if (p)
4072 		return(p);
4073 
4074 	/*
4075 	 * The normal allocation failed and we clearly have a page
4076 	 * deficit.  Try to reclaim some clean VM pages directly
4077 	 * from the buffer cache.
4078 	 */
4079 	vm_pageout_deficit += deficit;
4080 	recoverbufpages();
4081 
4082 	/*
4083 	 * We may have blocked, the caller will know what to do if the
4084 	 * page now exists.
4085 	 */
4086 	if (vm_page_lookup(obj, pg))
4087 		return(NULL);
4088 
4089 	/*
4090 	 * Allocate and allow use of the interrupt reserve.
4091 	 *
4092 	 * If after all that we still can't allocate a VM page we are
4093 	 * in real trouble, but we slog on anyway hoping that the system
4094 	 * won't deadlock.
4095 	 */
4096 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
4097 				   VM_ALLOC_INTERRUPT);
4098 	if (p) {
4099 		if (vm_page_count_severe()) {
4100 			kprintf("bio_page_alloc: WARNING emergency page "
4101 				"allocation\n");
4102 			vm_wait(hz / 20);
4103 		}
4104 	} else {
4105 		kprintf("bio_page_alloc: WARNING emergency page "
4106 			"allocation failed\n");
4107 		vm_wait(hz * 5);
4108 	}
4109 	return(p);
4110 }
4111 
4112 /*
4113  * vm_hold_free_pages:
4114  *
4115  *	Return pages associated with the buffer back to the VM system.
4116  *
4117  *	The range of pages underlying the buffer's address space will
4118  *	be unmapped and un-wired.
4119  */
4120 void
4121 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4122 {
4123 	vm_offset_t pg;
4124 	vm_page_t p;
4125 	int index, newnpages;
4126 
4127 	from = round_page(from);
4128 	to = round_page(to);
4129 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4130 
4131 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4132 		p = bp->b_xio.xio_pages[index];
4133 		if (p && (index < bp->b_xio.xio_npages)) {
4134 			if (p->busy) {
4135 				kprintf("vm_hold_free_pages: doffset: %lld, "
4136 					"loffset: %lld\n",
4137 					(long long)bp->b_bio2.bio_offset,
4138 					(long long)bp->b_loffset);
4139 			}
4140 			bp->b_xio.xio_pages[index] = NULL;
4141 			pmap_kremove(pg);
4142 			vm_page_busy(p);
4143 			vm_page_unwire(p, 0);
4144 			vm_page_free(p);
4145 		}
4146 	}
4147 	bp->b_xio.xio_npages = newnpages;
4148 }
4149 
4150 /*
4151  * vmapbuf:
4152  *
4153  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
4154  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4155  *	initialized.
4156  */
4157 int
4158 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4159 {
4160 	caddr_t addr;
4161 	vm_offset_t va;
4162 	vm_page_t m;
4163 	int vmprot;
4164 	int error;
4165 	int pidx;
4166 	int i;
4167 
4168 	/*
4169 	 * bp had better have a command and it better be a pbuf.
4170 	 */
4171 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4172 	KKASSERT(bp->b_flags & B_PAGING);
4173 
4174 	if (bytes < 0)
4175 		return (-1);
4176 
4177 	/*
4178 	 * Map the user data into KVM.  Mappings have to be page-aligned.
4179 	 */
4180 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
4181 	pidx = 0;
4182 
4183 	vmprot = VM_PROT_READ;
4184 	if (bp->b_cmd == BUF_CMD_READ)
4185 		vmprot |= VM_PROT_WRITE;
4186 
4187 	while (addr < udata + bytes) {
4188 		/*
4189 		 * Do the vm_fault if needed; do the copy-on-write thing
4190 		 * when reading stuff off device into memory.
4191 		 *
4192 		 * vm_fault_page*() returns a held VM page.
4193 		 */
4194 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4195 		va = trunc_page(va);
4196 
4197 		m = vm_fault_page_quick(va, vmprot, &error);
4198 		if (m == NULL) {
4199 			for (i = 0; i < pidx; ++i) {
4200 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
4201 			    bp->b_xio.xio_pages[i] = NULL;
4202 			}
4203 			return(-1);
4204 		}
4205 		bp->b_xio.xio_pages[pidx] = m;
4206 		addr += PAGE_SIZE;
4207 		++pidx;
4208 	}
4209 
4210 	/*
4211 	 * Map the page array and set the buffer fields to point to
4212 	 * the mapped data buffer.
4213 	 */
4214 	if (pidx > btoc(MAXPHYS))
4215 		panic("vmapbuf: mapped more than MAXPHYS");
4216 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4217 
4218 	bp->b_xio.xio_npages = pidx;
4219 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4220 	bp->b_bcount = bytes;
4221 	bp->b_bufsize = bytes;
4222 	return(0);
4223 }
4224 
4225 /*
4226  * vunmapbuf:
4227  *
4228  *	Free the io map PTEs associated with this IO operation.
4229  *	We also invalidate the TLB entries and restore the original b_addr.
4230  */
4231 void
4232 vunmapbuf(struct buf *bp)
4233 {
4234 	int pidx;
4235 	int npages;
4236 
4237 	KKASSERT(bp->b_flags & B_PAGING);
4238 
4239 	npages = bp->b_xio.xio_npages;
4240 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4241 	for (pidx = 0; pidx < npages; ++pidx) {
4242 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4243 		bp->b_xio.xio_pages[pidx] = NULL;
4244 	}
4245 	bp->b_xio.xio_npages = 0;
4246 	bp->b_data = bp->b_kvabase;
4247 }
4248 
4249 /*
4250  * Scan all buffers in the system and issue the callback.
4251  */
4252 int
4253 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4254 {
4255 	int count = 0;
4256 	int error;
4257 	int n;
4258 
4259 	for (n = 0; n < nbuf; ++n) {
4260 		if ((error = callback(&buf[n], info)) < 0) {
4261 			count = error;
4262 			break;
4263 		}
4264 		count += error;
4265 	}
4266 	return (count);
4267 }
4268 
4269 /*
4270  * print out statistics from the current status of the buffer pool
4271  * this can be toggeled by the system control option debug.syncprt
4272  */
4273 #ifdef DEBUG
4274 void
4275 vfs_bufstats(void)
4276 {
4277         int i, j, count;
4278         struct buf *bp;
4279         struct bqueues *dp;
4280         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4281         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4282 
4283         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4284                 count = 0;
4285                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4286                         counts[j] = 0;
4287 		crit_enter();
4288                 TAILQ_FOREACH(bp, dp, b_freelist) {
4289                         counts[bp->b_bufsize/PAGE_SIZE]++;
4290                         count++;
4291                 }
4292 		crit_exit();
4293                 kprintf("%s: total-%d", bname[i], count);
4294                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4295                         if (counts[j] != 0)
4296                                 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4297                 kprintf("\n");
4298         }
4299 }
4300 #endif
4301 
4302 #ifdef DDB
4303 
4304 DB_SHOW_COMMAND(buffer, db_show_buffer)
4305 {
4306 	/* get args */
4307 	struct buf *bp = (struct buf *)addr;
4308 
4309 	if (!have_addr) {
4310 		db_printf("usage: show buffer <addr>\n");
4311 		return;
4312 	}
4313 
4314 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4315 	db_printf("b_cmd = %d\n", bp->b_cmd);
4316 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4317 		  "b_resid = %d\n, b_data = %p, "
4318 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4319 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4320 		  bp->b_data,
4321 		  (long long)bp->b_bio2.bio_offset,
4322 		  (long long)(bp->b_bio2.bio_next ?
4323 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4324 	if (bp->b_xio.xio_npages) {
4325 		int i;
4326 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4327 			bp->b_xio.xio_npages);
4328 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4329 			vm_page_t m;
4330 			m = bp->b_xio.xio_pages[i];
4331 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4332 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4333 			if ((i + 1) < bp->b_xio.xio_npages)
4334 				db_printf(",");
4335 		}
4336 		db_printf("\n");
4337 	}
4338 }
4339 #endif /* DDB */
4340