xref: /dragonfly/sys/kern/vfs_bio.c (revision 279dd846)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  */
16 
17 /*
18  * this file contains a new buffer I/O scheme implementing a coherent
19  * VM object and buffer cache scheme.  Pains have been taken to make
20  * sure that the performance degradation associated with schemes such
21  * as this is not realized.
22  *
23  * Author:  John S. Dyson
24  * Significant help during the development and debugging phases
25  * had been provided by David Greenman, also of the FreeBSD core team.
26  *
27  * see man buf(9) for more info.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/conf.h>
34 #include <sys/devicestat.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/dsched.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 #include <vm/vm_pager.h>
57 #include <vm/swap_pager.h>
58 
59 #include <sys/buf2.h>
60 #include <sys/thread2.h>
61 #include <sys/spinlock2.h>
62 #include <sys/mplock2.h>
63 #include <vm/vm_page2.h>
64 
65 #include "opt_ddb.h"
66 #ifdef DDB
67 #include <ddb/ddb.h>
68 #endif
69 
70 /*
71  * Buffer queues.
72  */
73 enum bufq_type {
74 	BQUEUE_NONE,    	/* not on any queue */
75 	BQUEUE_LOCKED,  	/* locked buffers */
76 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
77 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
78 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
79 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
80 	BQUEUE_EMPTY,    	/* empty buffer headers */
81 
82 	BUFFER_QUEUES		/* number of buffer queues */
83 };
84 
85 typedef enum bufq_type bufq_type_t;
86 
87 #define BD_WAKE_SIZE	16384
88 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
89 
90 TAILQ_HEAD(bqueues, buf);
91 
92 struct bufpcpu {
93 	struct spinlock spin;
94 	struct bqueues bufqueues[BUFFER_QUEUES];
95 } __cachealign;
96 
97 struct bufpcpu bufpcpu[MAXCPU];
98 
99 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
100 
101 struct buf *buf;		/* buffer header pool */
102 
103 static void vfs_clean_pages(struct buf *bp);
104 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
105 #if 0
106 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
107 #endif
108 static void vfs_vmio_release(struct buf *bp);
109 static int flushbufqueues(struct buf *marker, bufq_type_t q);
110 static vm_page_t bio_page_alloc(struct buf *bp, vm_object_t obj,
111 				vm_pindex_t pg, int deficit);
112 
113 static void bd_signal(long totalspace);
114 static void buf_daemon(void);
115 static void buf_daemon_hw(void);
116 
117 /*
118  * bogus page -- for I/O to/from partially complete buffers
119  * this is a temporary solution to the problem, but it is not
120  * really that bad.  it would be better to split the buffer
121  * for input in the case of buffers partially already in memory,
122  * but the code is intricate enough already.
123  */
124 vm_page_t bogus_page;
125 
126 /*
127  * These are all static, but make the ones we export globals so we do
128  * not need to use compiler magic.
129  */
130 long bufspace;			/* locked by buffer_map */
131 long maxbufspace;
132 static long bufmallocspace;	/* atomic ops */
133 long maxbufmallocspace, lobufspace, hibufspace;
134 static long bufreusecnt, bufdefragcnt, buffreekvacnt;
135 static long lorunningspace;
136 static long hirunningspace;
137 static long dirtykvaspace;		/* atomic */
138 long dirtybufspace;			/* atomic (global for systat) */
139 static long dirtybufcount;		/* atomic */
140 static long dirtybufspacehw;		/* atomic */
141 static long dirtybufcounthw;		/* atomic */
142 static long runningbufspace;		/* atomic */
143 static long runningbufcount;		/* atomic */
144 long lodirtybufspace;
145 long hidirtybufspace;
146 static int getnewbufcalls;
147 static int getnewbufrestarts;
148 static int recoverbufcalls;
149 static int needsbuffer;			/* atomic */
150 static int runningbufreq;		/* atomic */
151 static int bd_request;			/* atomic */
152 static int bd_request_hw;		/* atomic */
153 static u_int bd_wake_ary[BD_WAKE_SIZE];
154 static u_int bd_wake_index;
155 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
156 static int debug_commit;
157 static int debug_bufbio;
158 
159 static struct thread *bufdaemon_td;
160 static struct thread *bufdaemonhw_td;
161 static u_int lowmempgallocs;
162 static u_int lowmempgfails;
163 
164 /*
165  * Sysctls for operational control of the buffer cache.
166  */
167 SYSCTL_LONG(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
168 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
169 SYSCTL_LONG(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
170 	"High watermark used to trigger explicit flushing of dirty buffers");
171 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
172 	"Minimum amount of buffer space required for active I/O");
173 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
174 	"Maximum amount of buffer space to usable for active I/O");
175 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
176 	"Page allocations done during periods of very low free memory");
177 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0,
178 	"Page allocations which failed during periods of very low free memory");
179 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
180 	"Recycle pages to active or inactive queue transition pt 0-64");
181 /*
182  * Sysctls determining current state of the buffer cache.
183  */
184 SYSCTL_LONG(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
185 	"Total number of buffers in buffer cache");
186 SYSCTL_LONG(_vfs, OID_AUTO, dirtykvaspace, CTLFLAG_RD, &dirtykvaspace, 0,
187 	"KVA reserved by dirty buffers (all)");
188 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
189 	"Pending bytes of dirty buffers (all)");
190 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
191 	"Pending bytes of dirty buffers (heavy weight)");
192 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
193 	"Pending number of dirty buffers");
194 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
195 	"Pending number of dirty buffers (heavy weight)");
196 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
197 	"I/O bytes currently in progress due to asynchronous writes");
198 SYSCTL_LONG(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
199 	"I/O buffers currently in progress due to asynchronous writes");
200 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
201 	"Hard limit on maximum amount of memory usable for buffer space");
202 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
203 	"Soft limit on maximum amount of memory usable for buffer space");
204 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
205 	"Minimum amount of memory to reserve for system buffer space");
206 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
207 	"Amount of memory available for buffers");
208 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
209 	0, "Maximum amount of memory reserved for buffers using malloc");
210 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
211 	"Amount of memory left for buffers using malloc-scheme");
212 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
213 	"New buffer header acquisition requests");
214 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
215 	0, "New buffer header acquisition restarts");
216 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
217 	"Recover VM space in an emergency");
218 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
219 	"Buffer acquisition restarts due to fragmented buffer map");
220 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
221 	"Amount of time KVA space was deallocated in an arbitrary buffer");
222 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
223 	"Amount of time buffer re-use operations were successful");
224 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
225 SYSCTL_INT(_vfs, OID_AUTO, debug_bufbio, CTLFLAG_RW, &debug_bufbio, 0, "");
226 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
227 	"sizeof(struct buf)");
228 
229 char *buf_wmesg = BUF_WMESG;
230 
231 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
232 #define VFS_BIO_NEED_UNUSED02	0x02
233 #define VFS_BIO_NEED_UNUSED04	0x04
234 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
235 
236 /*
237  * bufspacewakeup:
238  *
239  *	Called when buffer space is potentially available for recovery.
240  *	getnewbuf() will block on this flag when it is unable to free
241  *	sufficient buffer space.  Buffer space becomes recoverable when
242  *	bp's get placed back in the queues.
243  */
244 static __inline void
245 bufspacewakeup(void)
246 {
247 	/*
248 	 * If someone is waiting for BUF space, wake them up.  Even
249 	 * though we haven't freed the kva space yet, the waiting
250 	 * process will be able to now.
251 	 */
252 	for (;;) {
253 		int flags = needsbuffer;
254 		cpu_ccfence();
255 		if ((flags & VFS_BIO_NEED_BUFSPACE) == 0)
256 			break;
257 		if (atomic_cmpset_int(&needsbuffer, flags,
258 				      flags & ~VFS_BIO_NEED_BUFSPACE)) {
259 			wakeup(&needsbuffer);
260 			break;
261 		}
262 		/* retry */
263 	}
264 }
265 
266 /*
267  * runningbufwakeup:
268  *
269  *	Accounting for I/O in progress.
270  *
271  */
272 static __inline void
273 runningbufwakeup(struct buf *bp)
274 {
275 	long totalspace;
276 	long flags;
277 
278 	if ((totalspace = bp->b_runningbufspace) != 0) {
279 		atomic_add_long(&runningbufspace, -totalspace);
280 		atomic_add_long(&runningbufcount, -1);
281 		bp->b_runningbufspace = 0;
282 
283 		/*
284 		 * see waitrunningbufspace() for limit test.
285 		 */
286 		for (;;) {
287 			flags = runningbufreq;
288 			cpu_ccfence();
289 			if (flags == 0)
290 				break;
291 			if (atomic_cmpset_int(&runningbufreq, flags, 0)) {
292 				wakeup(&runningbufreq);
293 				break;
294 			}
295 			/* retry */
296 		}
297 		bd_signal(totalspace);
298 	}
299 }
300 
301 /*
302  * bufcountwakeup:
303  *
304  *	Called when a buffer has been added to one of the free queues to
305  *	account for the buffer and to wakeup anyone waiting for free buffers.
306  *	This typically occurs when large amounts of metadata are being handled
307  *	by the buffer cache ( else buffer space runs out first, usually ).
308  */
309 static __inline void
310 bufcountwakeup(void)
311 {
312 	long flags;
313 
314 	for (;;) {
315 		flags = needsbuffer;
316 		if (flags == 0)
317 			break;
318 		if (atomic_cmpset_int(&needsbuffer, flags,
319 				      (flags & ~VFS_BIO_NEED_ANY))) {
320 			wakeup(&needsbuffer);
321 			break;
322 		}
323 		/* retry */
324 	}
325 }
326 
327 /*
328  * waitrunningbufspace()
329  *
330  * If runningbufspace exceeds 4/6 hirunningspace we block until
331  * runningbufspace drops to 3/6 hirunningspace.  We also block if another
332  * thread blocked here in order to be fair, even if runningbufspace
333  * is now lower than the limit.
334  *
335  * The caller may be using this function to block in a tight loop, we
336  * must block while runningbufspace is greater than at least
337  * hirunningspace * 3 / 6.
338  */
339 void
340 waitrunningbufspace(void)
341 {
342 	long limit = hirunningspace * 4 / 6;
343 	long flags;
344 
345 	while (runningbufspace > limit || runningbufreq) {
346 		tsleep_interlock(&runningbufreq, 0);
347 		flags = atomic_fetchadd_int(&runningbufreq, 1);
348 		if (runningbufspace > limit || flags)
349 			tsleep(&runningbufreq, PINTERLOCKED, "wdrn1", hz);
350 	}
351 }
352 
353 /*
354  * buf_dirty_count_severe:
355  *
356  *	Return true if we have too many dirty buffers.
357  */
358 int
359 buf_dirty_count_severe(void)
360 {
361 	return (runningbufspace + dirtykvaspace >= hidirtybufspace ||
362 	        dirtybufcount >= nbuf / 2);
363 }
364 
365 /*
366  * Return true if the amount of running I/O is severe and BIOQ should
367  * start bursting.
368  */
369 int
370 buf_runningbufspace_severe(void)
371 {
372 	return (runningbufspace >= hirunningspace * 4 / 6);
373 }
374 
375 /*
376  * vfs_buf_test_cache:
377  *
378  * Called when a buffer is extended.  This function clears the B_CACHE
379  * bit if the newly extended portion of the buffer does not contain
380  * valid data.
381  *
382  * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
383  * cache buffers.  The VM pages remain dirty, as someone had mmap()'d
384  * them while a clean buffer was present.
385  */
386 static __inline__
387 void
388 vfs_buf_test_cache(struct buf *bp,
389 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
390 		  vm_page_t m)
391 {
392 	if (bp->b_flags & B_CACHE) {
393 		int base = (foff + off) & PAGE_MASK;
394 		if (vm_page_is_valid(m, base, size) == 0)
395 			bp->b_flags &= ~B_CACHE;
396 	}
397 }
398 
399 /*
400  * bd_speedup()
401  *
402  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
403  * low water mark.
404  */
405 static __inline__
406 void
407 bd_speedup(void)
408 {
409 	if (dirtykvaspace < lodirtybufspace && dirtybufcount < nbuf / 2)
410 		return;
411 
412 	if (bd_request == 0 &&
413 	    (dirtykvaspace > lodirtybufspace / 2 ||
414 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
415 		if (atomic_fetchadd_int(&bd_request, 1) == 0)
416 			wakeup(&bd_request);
417 	}
418 	if (bd_request_hw == 0 &&
419 	    (dirtykvaspace > lodirtybufspace / 2 ||
420 	     dirtybufcounthw >= nbuf / 2)) {
421 		if (atomic_fetchadd_int(&bd_request_hw, 1) == 0)
422 			wakeup(&bd_request_hw);
423 	}
424 }
425 
426 /*
427  * bd_heatup()
428  *
429  *	Get the buf_daemon heated up when the number of running and dirty
430  *	buffers exceeds the mid-point.
431  *
432  *	Return the total number of dirty bytes past the second mid point
433  *	as a measure of how much excess dirty data there is in the system.
434  */
435 long
436 bd_heatup(void)
437 {
438 	long mid1;
439 	long mid2;
440 	long totalspace;
441 
442 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
443 
444 	totalspace = runningbufspace + dirtykvaspace;
445 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
446 		bd_speedup();
447 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
448 		if (totalspace >= mid2)
449 			return(totalspace - mid2);
450 	}
451 	return(0);
452 }
453 
454 /*
455  * bd_wait()
456  *
457  *	Wait for the buffer cache to flush (totalspace) bytes worth of
458  *	buffers, then return.
459  *
460  *	Regardless this function blocks while the number of dirty buffers
461  *	exceeds hidirtybufspace.
462  */
463 void
464 bd_wait(long totalspace)
465 {
466 	u_int i;
467 	u_int j;
468 	u_int mi;
469 	int count;
470 
471 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
472 		return;
473 
474 	while (totalspace > 0) {
475 		bd_heatup();
476 
477 		/*
478 		 * Order is important.  Suppliers adjust bd_wake_index after
479 		 * updating runningbufspace/dirtykvaspace.  We want to fetch
480 		 * bd_wake_index before accessing.  Any error should thus
481 		 * be in our favor.
482 		 */
483 		i = atomic_fetchadd_int(&bd_wake_index, 0);
484 		if (totalspace > runningbufspace + dirtykvaspace)
485 			totalspace = runningbufspace + dirtykvaspace;
486 		count = totalspace / BKVASIZE;
487 		if (count >= BD_WAKE_SIZE / 2)
488 			count = BD_WAKE_SIZE / 2;
489 		i = i + count;
490 		mi = i & BD_WAKE_MASK;
491 
492 		/*
493 		 * This is not a strict interlock, so we play a bit loose
494 		 * with locking access to dirtybufspace*.  We have to re-check
495 		 * bd_wake_index to ensure that it hasn't passed us.
496 		 */
497 		tsleep_interlock(&bd_wake_ary[mi], 0);
498 		atomic_add_int(&bd_wake_ary[mi], 1);
499 		j = atomic_fetchadd_int(&bd_wake_index, 0);
500 		if ((int)(i - j) >= 0)
501 			tsleep(&bd_wake_ary[mi], PINTERLOCKED, "flstik", hz);
502 
503 		totalspace = runningbufspace + dirtykvaspace - hidirtybufspace;
504 	}
505 }
506 
507 /*
508  * bd_signal()
509  *
510  *	This function is called whenever runningbufspace or dirtykvaspace
511  *	is reduced.  Track threads waiting for run+dirty buffer I/O
512  *	complete.
513  */
514 static void
515 bd_signal(long totalspace)
516 {
517 	u_int i;
518 
519 	if (totalspace > 0) {
520 		if (totalspace > BKVASIZE * BD_WAKE_SIZE)
521 			totalspace = BKVASIZE * BD_WAKE_SIZE;
522 		while (totalspace > 0) {
523 			i = atomic_fetchadd_int(&bd_wake_index, 1);
524 			i &= BD_WAKE_MASK;
525 			if (atomic_readandclear_int(&bd_wake_ary[i]))
526 				wakeup(&bd_wake_ary[i]);
527 			totalspace -= BKVASIZE;
528 		}
529 	}
530 }
531 
532 /*
533  * BIO tracking support routines.
534  *
535  * Release a ref on a bio_track.  Wakeup requests are atomically released
536  * along with the last reference so bk_active will never wind up set to
537  * only 0x80000000.
538  */
539 static
540 void
541 bio_track_rel(struct bio_track *track)
542 {
543 	int	active;
544 	int	desired;
545 
546 	/*
547 	 * Shortcut
548 	 */
549 	active = track->bk_active;
550 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
551 		return;
552 
553 	/*
554 	 * Full-on.  Note that the wait flag is only atomically released on
555 	 * the 1->0 count transition.
556 	 *
557 	 * We check for a negative count transition using bit 30 since bit 31
558 	 * has a different meaning.
559 	 */
560 	for (;;) {
561 		desired = (active & 0x7FFFFFFF) - 1;
562 		if (desired)
563 			desired |= active & 0x80000000;
564 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
565 			if (desired & 0x40000000)
566 				panic("bio_track_rel: bad count: %p", track);
567 			if (active & 0x80000000)
568 				wakeup(track);
569 			break;
570 		}
571 		active = track->bk_active;
572 	}
573 }
574 
575 /*
576  * Wait for the tracking count to reach 0.
577  *
578  * Use atomic ops such that the wait flag is only set atomically when
579  * bk_active is non-zero.
580  */
581 int
582 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
583 {
584 	int	active;
585 	int	desired;
586 	int	error;
587 
588 	/*
589 	 * Shortcut
590 	 */
591 	if (track->bk_active == 0)
592 		return(0);
593 
594 	/*
595 	 * Full-on.  Note that the wait flag may only be atomically set if
596 	 * the active count is non-zero.
597 	 *
598 	 * NOTE: We cannot optimize active == desired since a wakeup could
599 	 *	 clear active prior to our tsleep_interlock().
600 	 */
601 	error = 0;
602 	while ((active = track->bk_active) != 0) {
603 		cpu_ccfence();
604 		desired = active | 0x80000000;
605 		tsleep_interlock(track, slp_flags);
606 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
607 			error = tsleep(track, slp_flags | PINTERLOCKED,
608 				       "trwait", slp_timo);
609 			if (error)
610 				break;
611 		}
612 	}
613 	return (error);
614 }
615 
616 /*
617  * bufinit:
618  *
619  *	Load time initialisation of the buffer cache, called from machine
620  *	dependant initialization code.
621  */
622 static
623 void
624 bufinit(void *dummy __unused)
625 {
626 	struct bufpcpu *pcpu;
627 	struct buf *bp;
628 	vm_offset_t bogus_offset;
629 	int i;
630 	int j;
631 	long n;
632 
633 	/* next, make a null set of free lists */
634 	for (i = 0; i < ncpus; ++i) {
635 		pcpu = &bufpcpu[i];
636 		spin_init(&pcpu->spin, "bufinit");
637 		for (j = 0; j < BUFFER_QUEUES; j++)
638 			TAILQ_INIT(&pcpu->bufqueues[j]);
639 	}
640 
641 	/* finally, initialize each buffer header and stick on empty q */
642 	i = 0;
643 	pcpu = &bufpcpu[i];
644 
645 	for (n = 0; n < nbuf; n++) {
646 		bp = &buf[n];
647 		bzero(bp, sizeof *bp);
648 		bp->b_flags = B_INVAL;	/* we're just an empty header */
649 		bp->b_cmd = BUF_CMD_DONE;
650 		bp->b_qindex = BQUEUE_EMPTY;
651 		bp->b_qcpu = i;
652 		initbufbio(bp);
653 		xio_init(&bp->b_xio);
654 		buf_dep_init(bp);
655 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
656 				  bp, b_freelist);
657 
658 		i = (i + 1) % ncpus;
659 		pcpu = &bufpcpu[i];
660 	}
661 
662 	/*
663 	 * maxbufspace is the absolute maximum amount of buffer space we are
664 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
665 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
666 	 * used by most other processes.  The differential is required to
667 	 * ensure that buf_daemon is able to run when other processes might
668 	 * be blocked waiting for buffer space.
669 	 *
670 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
671 	 * this may result in KVM fragmentation which is not handled optimally
672 	 * by the system.
673 	 */
674 	maxbufspace = nbuf * BKVASIZE;
675 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
676 	lobufspace = hibufspace - MAXBSIZE;
677 
678 	lorunningspace = 512 * 1024;
679 	/* hirunningspace -- see below */
680 
681 	/*
682 	 * Limit the amount of malloc memory since it is wired permanently
683 	 * into the kernel space.  Even though this is accounted for in
684 	 * the buffer allocation, we don't want the malloced region to grow
685 	 * uncontrolled.  The malloc scheme improves memory utilization
686 	 * significantly on average (small) directories.
687 	 */
688 	maxbufmallocspace = hibufspace / 20;
689 
690 	/*
691 	 * Reduce the chance of a deadlock occuring by limiting the number
692 	 * of delayed-write dirty buffers we allow to stack up.
693 	 *
694 	 * We don't want too much actually queued to the device at once
695 	 * (XXX this needs to be per-mount!), because the buffers will
696 	 * wind up locked for a very long period of time while the I/O
697 	 * drains.
698 	 */
699 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
700 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
701 	if (hirunningspace < 1024 * 1024)
702 		hirunningspace = 1024 * 1024;
703 
704 	dirtykvaspace = 0;
705 	dirtybufspace = 0;
706 	dirtybufspacehw = 0;
707 
708 	lodirtybufspace = hidirtybufspace / 2;
709 
710 	/*
711 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
712 	 * somewhat of a hack at the moment, we really need to limit ourselves
713 	 * based on the number of bytes of I/O in-transit that were initiated
714 	 * from buf_daemon.
715 	 */
716 
717 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
718 	vm_object_hold(&kernel_object);
719 	bogus_page = vm_page_alloc(&kernel_object,
720 				   (bogus_offset >> PAGE_SHIFT),
721 				   VM_ALLOC_NORMAL);
722 	vm_object_drop(&kernel_object);
723 	vmstats.v_wire_count++;
724 
725 }
726 
727 SYSINIT(do_bufinit, SI_BOOT2_MACHDEP, SI_ORDER_FIRST, bufinit, NULL);
728 
729 /*
730  * Initialize the embedded bio structures, typically used by
731  * deprecated code which tries to allocate its own struct bufs.
732  */
733 void
734 initbufbio(struct buf *bp)
735 {
736 	bp->b_bio1.bio_buf = bp;
737 	bp->b_bio1.bio_prev = NULL;
738 	bp->b_bio1.bio_offset = NOOFFSET;
739 	bp->b_bio1.bio_next = &bp->b_bio2;
740 	bp->b_bio1.bio_done = NULL;
741 	bp->b_bio1.bio_flags = 0;
742 
743 	bp->b_bio2.bio_buf = bp;
744 	bp->b_bio2.bio_prev = &bp->b_bio1;
745 	bp->b_bio2.bio_offset = NOOFFSET;
746 	bp->b_bio2.bio_next = NULL;
747 	bp->b_bio2.bio_done = NULL;
748 	bp->b_bio2.bio_flags = 0;
749 
750 	BUF_LOCKINIT(bp);
751 }
752 
753 /*
754  * Reinitialize the embedded bio structures as well as any additional
755  * translation cache layers.
756  */
757 void
758 reinitbufbio(struct buf *bp)
759 {
760 	struct bio *bio;
761 
762 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
763 		bio->bio_done = NULL;
764 		bio->bio_offset = NOOFFSET;
765 	}
766 }
767 
768 /*
769  * Undo the effects of an initbufbio().
770  */
771 void
772 uninitbufbio(struct buf *bp)
773 {
774 	dsched_exit_buf(bp);
775 	BUF_LOCKFREE(bp);
776 }
777 
778 /*
779  * Push another BIO layer onto an existing BIO and return it.  The new
780  * BIO layer may already exist, holding cached translation data.
781  */
782 struct bio *
783 push_bio(struct bio *bio)
784 {
785 	struct bio *nbio;
786 
787 	if ((nbio = bio->bio_next) == NULL) {
788 		int index = bio - &bio->bio_buf->b_bio_array[0];
789 		if (index >= NBUF_BIO - 1) {
790 			panic("push_bio: too many layers bp %p",
791 				bio->bio_buf);
792 		}
793 		nbio = &bio->bio_buf->b_bio_array[index + 1];
794 		bio->bio_next = nbio;
795 		nbio->bio_prev = bio;
796 		nbio->bio_buf = bio->bio_buf;
797 		nbio->bio_offset = NOOFFSET;
798 		nbio->bio_done = NULL;
799 		nbio->bio_next = NULL;
800 	}
801 	KKASSERT(nbio->bio_done == NULL);
802 	return(nbio);
803 }
804 
805 /*
806  * Pop a BIO translation layer, returning the previous layer.  The
807  * must have been previously pushed.
808  */
809 struct bio *
810 pop_bio(struct bio *bio)
811 {
812 	return(bio->bio_prev);
813 }
814 
815 void
816 clearbiocache(struct bio *bio)
817 {
818 	while (bio) {
819 		bio->bio_offset = NOOFFSET;
820 		bio = bio->bio_next;
821 	}
822 }
823 
824 /*
825  * bfreekva:
826  *
827  *	Free the KVA allocation for buffer 'bp'.
828  *
829  *	Must be called from a critical section as this is the only locking for
830  *	buffer_map.
831  *
832  *	Since this call frees up buffer space, we call bufspacewakeup().
833  */
834 static void
835 bfreekva(struct buf *bp)
836 {
837 	int count;
838 
839 	if (bp->b_kvasize) {
840 		++buffreekvacnt;
841 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
842 		vm_map_lock(&buffer_map);
843 		bufspace -= bp->b_kvasize;
844 		vm_map_delete(&buffer_map,
845 		    (vm_offset_t) bp->b_kvabase,
846 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
847 		    &count
848 		);
849 		vm_map_unlock(&buffer_map);
850 		vm_map_entry_release(count);
851 		bp->b_kvasize = 0;
852 		bp->b_kvabase = NULL;
853 		bufspacewakeup();
854 	}
855 }
856 
857 /*
858  * Remove the buffer from the appropriate free list.
859  * (caller must be locked)
860  */
861 static __inline void
862 _bremfree(struct buf *bp)
863 {
864 	struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
865 
866 	if (bp->b_qindex != BQUEUE_NONE) {
867 		KASSERT(BUF_REFCNTNB(bp) == 1,
868 			("bremfree: bp %p not locked",bp));
869 		TAILQ_REMOVE(&pcpu->bufqueues[bp->b_qindex], bp, b_freelist);
870 		bp->b_qindex = BQUEUE_NONE;
871 	} else {
872 		if (BUF_REFCNTNB(bp) <= 1)
873 			panic("bremfree: removing a buffer not on a queue");
874 	}
875 }
876 
877 /*
878  * bremfree() - must be called with a locked buffer
879  */
880 void
881 bremfree(struct buf *bp)
882 {
883 	struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
884 
885 	spin_lock(&pcpu->spin);
886 	_bremfree(bp);
887 	spin_unlock(&pcpu->spin);
888 }
889 
890 /*
891  * bremfree_locked - must be called with pcpu->spin locked
892  */
893 static void
894 bremfree_locked(struct buf *bp)
895 {
896 	_bremfree(bp);
897 }
898 
899 /*
900  * This version of bread issues any required I/O asyncnronously and
901  * makes a callback on completion.
902  *
903  * The callback must check whether BIO_DONE is set in the bio and issue
904  * the bpdone(bp, 0) if it isn't.  The callback is responsible for clearing
905  * BIO_DONE and disposing of the I/O (bqrelse()ing it).
906  */
907 void
908 breadcb(struct vnode *vp, off_t loffset, int size,
909 	void (*func)(struct bio *), void *arg)
910 {
911 	struct buf *bp;
912 
913 	bp = getblk(vp, loffset, size, 0, 0);
914 
915 	/* if not found in cache, do some I/O */
916 	if ((bp->b_flags & B_CACHE) == 0) {
917 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
918 		bp->b_cmd = BUF_CMD_READ;
919 		bp->b_bio1.bio_done = func;
920 		bp->b_bio1.bio_caller_info1.ptr = arg;
921 		vfs_busy_pages(vp, bp);
922 		BUF_KERNPROC(bp);
923 		vn_strategy(vp, &bp->b_bio1);
924 	} else if (func) {
925 		/*
926 		 * Since we are issuing the callback synchronously it cannot
927 		 * race the BIO_DONE, so no need for atomic ops here.
928 		 */
929 		/*bp->b_bio1.bio_done = func;*/
930 		bp->b_bio1.bio_caller_info1.ptr = arg;
931 		bp->b_bio1.bio_flags |= BIO_DONE;
932 		func(&bp->b_bio1);
933 	} else {
934 		bqrelse(bp);
935 	}
936 }
937 
938 /*
939  * breadnx() - Terminal function for bread() and breadn().
940  *
941  * This function will start asynchronous I/O on read-ahead blocks as well
942  * as satisfy the primary request.
943  *
944  * We must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE is
945  * set, the buffer is valid and we do not have to do anything.
946  */
947 int
948 breadnx(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
949 	int *rabsize, int cnt, struct buf **bpp)
950 {
951 	struct buf *bp, *rabp;
952 	int i;
953 	int rv = 0, readwait = 0;
954 
955 	if (*bpp)
956 		bp = *bpp;
957 	else
958 		*bpp = bp = getblk(vp, loffset, size, 0, 0);
959 
960 	/* if not found in cache, do some I/O */
961 	if ((bp->b_flags & B_CACHE) == 0) {
962 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
963 		bp->b_cmd = BUF_CMD_READ;
964 		bp->b_bio1.bio_done = biodone_sync;
965 		bp->b_bio1.bio_flags |= BIO_SYNC;
966 		vfs_busy_pages(vp, bp);
967 		vn_strategy(vp, &bp->b_bio1);
968 		++readwait;
969 	}
970 
971 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
972 		if (inmem(vp, *raoffset))
973 			continue;
974 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
975 
976 		if ((rabp->b_flags & B_CACHE) == 0) {
977 			rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
978 			rabp->b_cmd = BUF_CMD_READ;
979 			vfs_busy_pages(vp, rabp);
980 			BUF_KERNPROC(rabp);
981 			vn_strategy(vp, &rabp->b_bio1);
982 		} else {
983 			brelse(rabp);
984 		}
985 	}
986 	if (readwait)
987 		rv = biowait(&bp->b_bio1, "biord");
988 	return (rv);
989 }
990 
991 /*
992  * bwrite:
993  *
994  *	Synchronous write, waits for completion.
995  *
996  *	Write, release buffer on completion.  (Done by iodone
997  *	if async).  Do not bother writing anything if the buffer
998  *	is invalid.
999  *
1000  *	Note that we set B_CACHE here, indicating that buffer is
1001  *	fully valid and thus cacheable.  This is true even of NFS
1002  *	now so we set it generally.  This could be set either here
1003  *	or in biodone() since the I/O is synchronous.  We put it
1004  *	here.
1005  */
1006 int
1007 bwrite(struct buf *bp)
1008 {
1009 	int error;
1010 
1011 	if (bp->b_flags & B_INVAL) {
1012 		brelse(bp);
1013 		return (0);
1014 	}
1015 	if (BUF_REFCNTNB(bp) == 0)
1016 		panic("bwrite: buffer is not busy???");
1017 
1018 	/*
1019 	 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
1020 	 *	 call because it will remove the buffer from the vnode's
1021 	 *	 dirty buffer list prematurely and possibly cause filesystem
1022 	 *	 checks to race buffer flushes.  This is now handled in
1023 	 *	 bpdone().
1024 	 *
1025 	 *	 bundirty(bp); REMOVED
1026 	 */
1027 
1028 	bp->b_flags &= ~(B_ERROR | B_EINTR);
1029 	bp->b_flags |= B_CACHE;
1030 	bp->b_cmd = BUF_CMD_WRITE;
1031 	bp->b_bio1.bio_done = biodone_sync;
1032 	bp->b_bio1.bio_flags |= BIO_SYNC;
1033 	vfs_busy_pages(bp->b_vp, bp);
1034 
1035 	/*
1036 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1037 	 * valid for vnode-backed buffers.
1038 	 */
1039 	bsetrunningbufspace(bp, bp->b_bufsize);
1040 	vn_strategy(bp->b_vp, &bp->b_bio1);
1041 	error = biowait(&bp->b_bio1, "biows");
1042 	brelse(bp);
1043 
1044 	return (error);
1045 }
1046 
1047 /*
1048  * bawrite:
1049  *
1050  *	Asynchronous write.  Start output on a buffer, but do not wait for
1051  *	it to complete.  The buffer is released when the output completes.
1052  *
1053  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1054  *	B_INVAL buffers.  Not us.
1055  */
1056 void
1057 bawrite(struct buf *bp)
1058 {
1059 	if (bp->b_flags & B_INVAL) {
1060 		brelse(bp);
1061 		return;
1062 	}
1063 	if (BUF_REFCNTNB(bp) == 0)
1064 		panic("bwrite: buffer is not busy???");
1065 
1066 	/*
1067 	 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
1068 	 *	 call because it will remove the buffer from the vnode's
1069 	 *	 dirty buffer list prematurely and possibly cause filesystem
1070 	 *	 checks to race buffer flushes.  This is now handled in
1071 	 *	 bpdone().
1072 	 *
1073 	 *	 bundirty(bp); REMOVED
1074 	 */
1075 	bp->b_flags &= ~(B_ERROR | B_EINTR);
1076 	bp->b_flags |= B_CACHE;
1077 	bp->b_cmd = BUF_CMD_WRITE;
1078 	KKASSERT(bp->b_bio1.bio_done == NULL);
1079 	vfs_busy_pages(bp->b_vp, bp);
1080 
1081 	/*
1082 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1083 	 * valid for vnode-backed buffers.
1084 	 */
1085 	bsetrunningbufspace(bp, bp->b_bufsize);
1086 	BUF_KERNPROC(bp);
1087 	vn_strategy(bp->b_vp, &bp->b_bio1);
1088 }
1089 
1090 /*
1091  * bowrite:
1092  *
1093  *	Ordered write.  Start output on a buffer, and flag it so that the
1094  *	device will write it in the order it was queued.  The buffer is
1095  *	released when the output completes.  bwrite() ( or the VOP routine
1096  *	anyway ) is responsible for handling B_INVAL buffers.
1097  */
1098 int
1099 bowrite(struct buf *bp)
1100 {
1101 	bp->b_flags |= B_ORDERED;
1102 	bawrite(bp);
1103 	return (0);
1104 }
1105 
1106 /*
1107  * bdwrite:
1108  *
1109  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1110  *	anything if the buffer is marked invalid.
1111  *
1112  *	Note that since the buffer must be completely valid, we can safely
1113  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1114  *	biodone() in order to prevent getblk from writing the buffer
1115  *	out synchronously.
1116  */
1117 void
1118 bdwrite(struct buf *bp)
1119 {
1120 	if (BUF_REFCNTNB(bp) == 0)
1121 		panic("bdwrite: buffer is not busy");
1122 
1123 	if (bp->b_flags & B_INVAL) {
1124 		brelse(bp);
1125 		return;
1126 	}
1127 	bdirty(bp);
1128 
1129 	if (dsched_is_clear_buf_priv(bp))
1130 		dsched_new_buf(bp);
1131 
1132 	/*
1133 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1134 	 * true even of NFS now.
1135 	 */
1136 	bp->b_flags |= B_CACHE;
1137 
1138 	/*
1139 	 * This bmap keeps the system from needing to do the bmap later,
1140 	 * perhaps when the system is attempting to do a sync.  Since it
1141 	 * is likely that the indirect block -- or whatever other datastructure
1142 	 * that the filesystem needs is still in memory now, it is a good
1143 	 * thing to do this.  Note also, that if the pageout daemon is
1144 	 * requesting a sync -- there might not be enough memory to do
1145 	 * the bmap then...  So, this is important to do.
1146 	 */
1147 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1148 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1149 			 NULL, NULL, BUF_CMD_WRITE);
1150 	}
1151 
1152 	/*
1153 	 * Because the underlying pages may still be mapped and
1154 	 * writable trying to set the dirty buffer (b_dirtyoff/end)
1155 	 * range here will be inaccurate.
1156 	 *
1157 	 * However, we must still clean the pages to satisfy the
1158 	 * vnode_pager and pageout daemon, so theythink the pages
1159 	 * have been "cleaned".  What has really occured is that
1160 	 * they've been earmarked for later writing by the buffer
1161 	 * cache.
1162 	 *
1163 	 * So we get the b_dirtyoff/end update but will not actually
1164 	 * depend on it (NFS that is) until the pages are busied for
1165 	 * writing later on.
1166 	 */
1167 	vfs_clean_pages(bp);
1168 	bqrelse(bp);
1169 
1170 	/*
1171 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1172 	 * due to the softdep code.
1173 	 */
1174 }
1175 
1176 /*
1177  * Fake write - return pages to VM system as dirty, leave the buffer clean.
1178  * This is used by tmpfs.
1179  *
1180  * It is important for any VFS using this routine to NOT use it for
1181  * IO_SYNC or IO_ASYNC operations which occur when the system really
1182  * wants to flush VM pages to backing store.
1183  */
1184 void
1185 buwrite(struct buf *bp)
1186 {
1187 	vm_page_t m;
1188 	int i;
1189 
1190 	/*
1191 	 * Only works for VMIO buffers.  If the buffer is already
1192 	 * marked for delayed-write we can't avoid the bdwrite().
1193 	 */
1194 	if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1195 		bdwrite(bp);
1196 		return;
1197 	}
1198 
1199 	/*
1200 	 * Mark as needing a commit.
1201 	 */
1202 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1203 		m = bp->b_xio.xio_pages[i];
1204 		vm_page_need_commit(m);
1205 	}
1206 	bqrelse(bp);
1207 }
1208 
1209 /*
1210  * bdirty:
1211  *
1212  *	Turn buffer into delayed write request by marking it B_DELWRI.
1213  *	B_RELBUF and B_NOCACHE must be cleared.
1214  *
1215  *	We reassign the buffer to itself to properly update it in the
1216  *	dirty/clean lists.
1217  *
1218  *	Must be called from a critical section.
1219  *	The buffer must be on BQUEUE_NONE.
1220  */
1221 void
1222 bdirty(struct buf *bp)
1223 {
1224 	KASSERT(bp->b_qindex == BQUEUE_NONE,
1225 		("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1226 	if (bp->b_flags & B_NOCACHE) {
1227 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1228 		bp->b_flags &= ~B_NOCACHE;
1229 	}
1230 	if (bp->b_flags & B_INVAL) {
1231 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1232 	}
1233 	bp->b_flags &= ~B_RELBUF;
1234 
1235 	if ((bp->b_flags & B_DELWRI) == 0) {
1236 		lwkt_gettoken(&bp->b_vp->v_token);
1237 		bp->b_flags |= B_DELWRI;
1238 		reassignbuf(bp);
1239 		lwkt_reltoken(&bp->b_vp->v_token);
1240 
1241 		atomic_add_long(&dirtybufcount, 1);
1242 		atomic_add_long(&dirtykvaspace, bp->b_kvasize);
1243 		atomic_add_long(&dirtybufspace, bp->b_bufsize);
1244 		if (bp->b_flags & B_HEAVY) {
1245 			atomic_add_long(&dirtybufcounthw, 1);
1246 			atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1247 		}
1248 		bd_heatup();
1249 	}
1250 }
1251 
1252 /*
1253  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1254  * needs to be flushed with a different buf_daemon thread to avoid
1255  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1256  */
1257 void
1258 bheavy(struct buf *bp)
1259 {
1260 	if ((bp->b_flags & B_HEAVY) == 0) {
1261 		bp->b_flags |= B_HEAVY;
1262 		if (bp->b_flags & B_DELWRI) {
1263 			atomic_add_long(&dirtybufcounthw, 1);
1264 			atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1265 		}
1266 	}
1267 }
1268 
1269 /*
1270  * bundirty:
1271  *
1272  *	Clear B_DELWRI for buffer.
1273  *
1274  *	Must be called from a critical section.
1275  *
1276  *	The buffer is typically on BQUEUE_NONE but there is one case in
1277  *	brelse() that calls this function after placing the buffer on
1278  *	a different queue.
1279  */
1280 void
1281 bundirty(struct buf *bp)
1282 {
1283 	if (bp->b_flags & B_DELWRI) {
1284 		lwkt_gettoken(&bp->b_vp->v_token);
1285 		bp->b_flags &= ~B_DELWRI;
1286 		reassignbuf(bp);
1287 		lwkt_reltoken(&bp->b_vp->v_token);
1288 
1289 		atomic_add_long(&dirtybufcount, -1);
1290 		atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1291 		atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1292 		if (bp->b_flags & B_HEAVY) {
1293 			atomic_add_long(&dirtybufcounthw, -1);
1294 			atomic_add_long(&dirtybufspacehw, -bp->b_bufsize);
1295 		}
1296 		bd_signal(bp->b_bufsize);
1297 	}
1298 	/*
1299 	 * Since it is now being written, we can clear its deferred write flag.
1300 	 */
1301 	bp->b_flags &= ~B_DEFERRED;
1302 }
1303 
1304 /*
1305  * Set the b_runningbufspace field, used to track how much I/O is
1306  * in progress at any given moment.
1307  */
1308 void
1309 bsetrunningbufspace(struct buf *bp, int bytes)
1310 {
1311 	bp->b_runningbufspace = bytes;
1312 	if (bytes) {
1313 		atomic_add_long(&runningbufspace, bytes);
1314 		atomic_add_long(&runningbufcount, 1);
1315 	}
1316 }
1317 
1318 /*
1319  * brelse:
1320  *
1321  *	Release a busy buffer and, if requested, free its resources.  The
1322  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1323  *	to be accessed later as a cache entity or reused for other purposes.
1324  */
1325 void
1326 brelse(struct buf *bp)
1327 {
1328 	struct bufpcpu *pcpu;
1329 #ifdef INVARIANTS
1330 	int saved_flags = bp->b_flags;
1331 #endif
1332 
1333 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1334 		("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1335 
1336 	/*
1337 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1338 	 * its backing store.  Clear B_DELWRI.
1339 	 *
1340 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1341 	 * to destroy the buffer and backing store and (2) when the caller
1342 	 * wants to destroy the buffer and backing store after a write
1343 	 * completes.
1344 	 */
1345 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1346 		bundirty(bp);
1347 	}
1348 
1349 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1350 		/*
1351 		 * A re-dirtied buffer is only subject to destruction
1352 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1353 		 */
1354 		/* leave buffer intact */
1355 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1356 		   (bp->b_bufsize <= 0)) {
1357 		/*
1358 		 * Either a failed read or we were asked to free or not
1359 		 * cache the buffer.  This path is reached with B_DELWRI
1360 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1361 		 * backing store destruction.
1362 		 *
1363 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1364 		 * buffer cannot be immediately freed.
1365 		 */
1366 		bp->b_flags |= B_INVAL;
1367 		if (LIST_FIRST(&bp->b_dep) != NULL)
1368 			buf_deallocate(bp);
1369 		if (bp->b_flags & B_DELWRI) {
1370 			atomic_add_long(&dirtybufcount, -1);
1371 			atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1372 			atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1373 			if (bp->b_flags & B_HEAVY) {
1374 				atomic_add_long(&dirtybufcounthw, -1);
1375 				atomic_add_long(&dirtybufspacehw,
1376 						-bp->b_bufsize);
1377 			}
1378 			bd_signal(bp->b_bufsize);
1379 		}
1380 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1381 	}
1382 
1383 	/*
1384 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1385 	 * or if b_refs is non-zero.
1386 	 *
1387 	 * If vfs_vmio_release() is called with either bit set, the
1388 	 * underlying pages may wind up getting freed causing a previous
1389 	 * write (bdwrite()) to get 'lost' because pages associated with
1390 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1391 	 * B_LOCKED buffer may be mapped by the filesystem.
1392 	 *
1393 	 * If we want to release the buffer ourselves (rather then the
1394 	 * originator asking us to release it), give the originator a
1395 	 * chance to countermand the release by setting B_LOCKED.
1396 	 *
1397 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1398 	 * if B_DELWRI is set.
1399 	 *
1400 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1401 	 * on pages to return pages to the VM page queues.
1402 	 */
1403 	if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) {
1404 		bp->b_flags &= ~B_RELBUF;
1405 	} else if (vm_page_count_min(0)) {
1406 		if (LIST_FIRST(&bp->b_dep) != NULL)
1407 			buf_deallocate(bp);		/* can set B_LOCKED */
1408 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1409 			bp->b_flags &= ~B_RELBUF;
1410 		else
1411 			bp->b_flags |= B_RELBUF;
1412 	}
1413 
1414 	/*
1415 	 * Make sure b_cmd is clear.  It may have already been cleared by
1416 	 * biodone().
1417 	 *
1418 	 * At this point destroying the buffer is governed by the B_INVAL
1419 	 * or B_RELBUF flags.
1420 	 */
1421 	bp->b_cmd = BUF_CMD_DONE;
1422 	dsched_exit_buf(bp);
1423 
1424 	/*
1425 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1426 	 * after an I/O may have replaces some of the pages with bogus pages
1427 	 * in order to not destroy dirty pages in a fill-in read.
1428 	 *
1429 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1430 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1431 	 * B_INVAL may still be set, however.
1432 	 *
1433 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1434 	 * but not the backing store.   B_NOCACHE will destroy the backing
1435 	 * store.
1436 	 *
1437 	 * Note that dirty NFS buffers contain byte-granular write ranges
1438 	 * and should not be destroyed w/ B_INVAL even if the backing store
1439 	 * is left intact.
1440 	 */
1441 	if (bp->b_flags & B_VMIO) {
1442 		/*
1443 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1444 		 */
1445 		int i, j, resid;
1446 		vm_page_t m;
1447 		off_t foff;
1448 		vm_pindex_t poff;
1449 		vm_object_t obj;
1450 		struct vnode *vp;
1451 
1452 		vp = bp->b_vp;
1453 
1454 		/*
1455 		 * Get the base offset and length of the buffer.  Note that
1456 		 * in the VMIO case if the buffer block size is not
1457 		 * page-aligned then b_data pointer may not be page-aligned.
1458 		 * But our b_xio.xio_pages array *IS* page aligned.
1459 		 *
1460 		 * block sizes less then DEV_BSIZE (usually 512) are not
1461 		 * supported due to the page granularity bits (m->valid,
1462 		 * m->dirty, etc...).
1463 		 *
1464 		 * See man buf(9) for more information
1465 		 */
1466 
1467 		resid = bp->b_bufsize;
1468 		foff = bp->b_loffset;
1469 
1470 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1471 			m = bp->b_xio.xio_pages[i];
1472 			vm_page_flag_clear(m, PG_ZERO);
1473 			/*
1474 			 * If we hit a bogus page, fixup *all* of them
1475 			 * now.  Note that we left these pages wired
1476 			 * when we removed them so they had better exist,
1477 			 * and they cannot be ripped out from under us so
1478 			 * no critical section protection is necessary.
1479 			 */
1480 			if (m == bogus_page) {
1481 				obj = vp->v_object;
1482 				poff = OFF_TO_IDX(bp->b_loffset);
1483 
1484 				vm_object_hold(obj);
1485 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1486 					vm_page_t mtmp;
1487 
1488 					mtmp = bp->b_xio.xio_pages[j];
1489 					if (mtmp == bogus_page) {
1490 						mtmp = vm_page_lookup(obj, poff + j);
1491 						if (!mtmp) {
1492 							panic("brelse: page missing");
1493 						}
1494 						bp->b_xio.xio_pages[j] = mtmp;
1495 					}
1496 				}
1497 				bp->b_flags &= ~B_HASBOGUS;
1498 				vm_object_drop(obj);
1499 
1500 				if ((bp->b_flags & B_INVAL) == 0) {
1501 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1502 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1503 				}
1504 				m = bp->b_xio.xio_pages[i];
1505 			}
1506 
1507 			/*
1508 			 * Invalidate the backing store if B_NOCACHE is set
1509 			 * (e.g. used with vinvalbuf()).  If this is NFS
1510 			 * we impose a requirement that the block size be
1511 			 * a multiple of PAGE_SIZE and create a temporary
1512 			 * hack to basically invalidate the whole page.  The
1513 			 * problem is that NFS uses really odd buffer sizes
1514 			 * especially when tracking piecemeal writes and
1515 			 * it also vinvalbuf()'s a lot, which would result
1516 			 * in only partial page validation and invalidation
1517 			 * here.  If the file page is mmap()'d, however,
1518 			 * all the valid bits get set so after we invalidate
1519 			 * here we would end up with weird m->valid values
1520 			 * like 0xfc.  nfs_getpages() can't handle this so
1521 			 * we clear all the valid bits for the NFS case
1522 			 * instead of just some of them.
1523 			 *
1524 			 * The real bug is the VM system having to set m->valid
1525 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1526 			 * itself is an artifact of the whole 512-byte
1527 			 * granular mess that exists to support odd block
1528 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1529 			 * A complete rewrite is required.
1530 			 *
1531 			 * XXX
1532 			 */
1533 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1534 				int poffset = foff & PAGE_MASK;
1535 				int presid;
1536 
1537 				presid = PAGE_SIZE - poffset;
1538 				if (bp->b_vp->v_tag == VT_NFS &&
1539 				    bp->b_vp->v_type == VREG) {
1540 					; /* entire page */
1541 				} else if (presid > resid) {
1542 					presid = resid;
1543 				}
1544 				KASSERT(presid >= 0, ("brelse: extra page"));
1545 				vm_page_set_invalid(m, poffset, presid);
1546 
1547 				/*
1548 				 * Also make sure any swap cache is removed
1549 				 * as it is now stale (HAMMER in particular
1550 				 * uses B_NOCACHE to deal with buffer
1551 				 * aliasing).
1552 				 */
1553 				swap_pager_unswapped(m);
1554 			}
1555 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1556 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1557 		}
1558 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1559 			vfs_vmio_release(bp);
1560 	} else {
1561 		/*
1562 		 * Rundown for non-VMIO buffers.
1563 		 */
1564 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1565 			if (bp->b_bufsize)
1566 				allocbuf(bp, 0);
1567 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1568 			if (bp->b_vp)
1569 				brelvp(bp);
1570 		}
1571 	}
1572 
1573 	if (bp->b_qindex != BQUEUE_NONE)
1574 		panic("brelse: free buffer onto another queue???");
1575 	if (BUF_REFCNTNB(bp) > 1) {
1576 		/* Temporary panic to verify exclusive locking */
1577 		/* This panic goes away when we allow shared refs */
1578 		panic("brelse: multiple refs");
1579 		/* NOT REACHED */
1580 		return;
1581 	}
1582 
1583 	/*
1584 	 * Figure out the correct queue to place the cleaned up buffer on.
1585 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1586 	 * disassociated from their vnode.
1587 	 *
1588 	 * Return the buffer to its original pcpu area
1589 	 */
1590 	pcpu = &bufpcpu[bp->b_qcpu];
1591 	spin_lock(&pcpu->spin);
1592 
1593 	if (bp->b_flags & B_LOCKED) {
1594 		/*
1595 		 * Buffers that are locked are placed in the locked queue
1596 		 * immediately, regardless of their state.
1597 		 */
1598 		bp->b_qindex = BQUEUE_LOCKED;
1599 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1600 				  bp, b_freelist);
1601 	} else if (bp->b_bufsize == 0) {
1602 		/*
1603 		 * Buffers with no memory.  Due to conditionals near the top
1604 		 * of brelse() such buffers should probably already be
1605 		 * marked B_INVAL and disassociated from their vnode.
1606 		 */
1607 		bp->b_flags |= B_INVAL;
1608 		KASSERT(bp->b_vp == NULL,
1609 			("bp1 %p flags %08x/%08x vnode %p "
1610 			 "unexpectededly still associated!",
1611 			bp, saved_flags, bp->b_flags, bp->b_vp));
1612 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1613 		if (bp->b_kvasize) {
1614 			bp->b_qindex = BQUEUE_EMPTYKVA;
1615 		} else {
1616 			bp->b_qindex = BQUEUE_EMPTY;
1617 		}
1618 		TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1619 				  bp, b_freelist);
1620 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1621 		/*
1622 		 * Buffers with junk contents.   Again these buffers had better
1623 		 * already be disassociated from their vnode.
1624 		 */
1625 		KASSERT(bp->b_vp == NULL,
1626 			("bp2 %p flags %08x/%08x vnode %p unexpectededly "
1627 			 "still associated!",
1628 			bp, saved_flags, bp->b_flags, bp->b_vp));
1629 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1630 		bp->b_flags |= B_INVAL;
1631 		bp->b_qindex = BQUEUE_CLEAN;
1632 		TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1633 				  bp, b_freelist);
1634 	} else {
1635 		/*
1636 		 * Remaining buffers.  These buffers are still associated with
1637 		 * their vnode.
1638 		 */
1639 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1640 		case B_DELWRI:
1641 			bp->b_qindex = BQUEUE_DIRTY;
1642 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1643 					  bp, b_freelist);
1644 			break;
1645 		case B_DELWRI | B_HEAVY:
1646 			bp->b_qindex = BQUEUE_DIRTY_HW;
1647 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1648 					  bp, b_freelist);
1649 			break;
1650 		default:
1651 			/*
1652 			 * NOTE: Buffers are always placed at the end of the
1653 			 * queue.  If B_AGE is not set the buffer will cycle
1654 			 * through the queue twice.
1655 			 */
1656 			bp->b_qindex = BQUEUE_CLEAN;
1657 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1658 					  bp, b_freelist);
1659 			break;
1660 		}
1661 	}
1662 	spin_unlock(&pcpu->spin);
1663 
1664 	/*
1665 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1666 	 * on the correct queue but we have not yet unlocked it.
1667 	 */
1668 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1669 		bundirty(bp);
1670 
1671 	/*
1672 	 * The bp is on an appropriate queue unless locked.  If it is not
1673 	 * locked or dirty we can wakeup threads waiting for buffer space.
1674 	 *
1675 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1676 	 * if B_INVAL is set ).
1677 	 */
1678 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1679 		bufcountwakeup();
1680 
1681 	/*
1682 	 * Something we can maybe free or reuse
1683 	 */
1684 	if (bp->b_bufsize || bp->b_kvasize)
1685 		bufspacewakeup();
1686 
1687 	/*
1688 	 * Clean up temporary flags and unlock the buffer.
1689 	 */
1690 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1691 	BUF_UNLOCK(bp);
1692 }
1693 
1694 /*
1695  * bqrelse:
1696  *
1697  *	Release a buffer back to the appropriate queue but do not try to free
1698  *	it.  The buffer is expected to be used again soon.
1699  *
1700  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1701  *	biodone() to requeue an async I/O on completion.  It is also used when
1702  *	known good buffers need to be requeued but we think we may need the data
1703  *	again soon.
1704  *
1705  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1706  */
1707 void
1708 bqrelse(struct buf *bp)
1709 {
1710 	struct bufpcpu *pcpu;
1711 
1712 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1713 		("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1714 
1715 	if (bp->b_qindex != BQUEUE_NONE)
1716 		panic("bqrelse: free buffer onto another queue???");
1717 	if (BUF_REFCNTNB(bp) > 1) {
1718 		/* do not release to free list */
1719 		panic("bqrelse: multiple refs");
1720 		return;
1721 	}
1722 
1723 	buf_act_advance(bp);
1724 
1725 	pcpu = &bufpcpu[bp->b_qcpu];
1726 	spin_lock(&pcpu->spin);
1727 
1728 	if (bp->b_flags & B_LOCKED) {
1729 		/*
1730 		 * Locked buffers are released to the locked queue.  However,
1731 		 * if the buffer is dirty it will first go into the dirty
1732 		 * queue and later on after the I/O completes successfully it
1733 		 * will be released to the locked queue.
1734 		 */
1735 		bp->b_qindex = BQUEUE_LOCKED;
1736 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1737 				  bp, b_freelist);
1738 	} else if (bp->b_flags & B_DELWRI) {
1739 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1740 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1741 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1742 				  bp, b_freelist);
1743 	} else if (vm_page_count_min(0)) {
1744 		/*
1745 		 * We are too low on memory, we have to try to free the
1746 		 * buffer (most importantly: the wired pages making up its
1747 		 * backing store) *now*.
1748 		 */
1749 		spin_unlock(&pcpu->spin);
1750 		brelse(bp);
1751 		return;
1752 	} else {
1753 		bp->b_qindex = BQUEUE_CLEAN;
1754 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1755 				  bp, b_freelist);
1756 	}
1757 	spin_unlock(&pcpu->spin);
1758 
1759 	/*
1760 	 * We have now placed the buffer on the proper queue, but have yet
1761 	 * to unlock it.
1762 	 */
1763 	if ((bp->b_flags & B_LOCKED) == 0 &&
1764 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1765 		bufcountwakeup();
1766 	}
1767 
1768 	/*
1769 	 * Something we can maybe free or reuse.
1770 	 */
1771 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1772 		bufspacewakeup();
1773 
1774 	/*
1775 	 * Final cleanup and unlock.  Clear bits that are only used while a
1776 	 * buffer is actively locked.
1777 	 */
1778 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1779 	dsched_exit_buf(bp);
1780 	BUF_UNLOCK(bp);
1781 }
1782 
1783 /*
1784  * Hold a buffer, preventing it from being reused.  This will prevent
1785  * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1786  * operations.  If a B_INVAL operation occurs the buffer will remain held
1787  * but the underlying pages may get ripped out.
1788  *
1789  * These functions are typically used in VOP_READ/VOP_WRITE functions
1790  * to hold a buffer during a copyin or copyout, preventing deadlocks
1791  * or recursive lock panics when read()/write() is used over mmap()'d
1792  * space.
1793  *
1794  * NOTE: bqhold() requires that the buffer be locked at the time of the
1795  *	 hold.  bqdrop() has no requirements other than the buffer having
1796  *	 previously been held.
1797  */
1798 void
1799 bqhold(struct buf *bp)
1800 {
1801 	atomic_add_int(&bp->b_refs, 1);
1802 }
1803 
1804 void
1805 bqdrop(struct buf *bp)
1806 {
1807 	KKASSERT(bp->b_refs > 0);
1808 	atomic_add_int(&bp->b_refs, -1);
1809 }
1810 
1811 /*
1812  * Return backing pages held by the buffer 'bp' back to the VM system.
1813  * This routine is called when the bp is invalidated, released, or
1814  * reused.
1815  *
1816  * The KVA mapping (b_data) for the underlying pages is removed by
1817  * this function.
1818  *
1819  * WARNING! This routine is integral to the low memory critical path
1820  *          when a buffer is B_RELBUF'd.  If the system has a severe page
1821  *          deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE
1822  *          queues so they can be reused in the current pageout daemon
1823  *          pass.
1824  */
1825 static void
1826 vfs_vmio_release(struct buf *bp)
1827 {
1828 	int i;
1829 	vm_page_t m;
1830 
1831 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1832 		m = bp->b_xio.xio_pages[i];
1833 		bp->b_xio.xio_pages[i] = NULL;
1834 
1835 		/*
1836 		 * We need to own the page in order to safely unwire it.
1837 		 */
1838 		vm_page_busy_wait(m, FALSE, "vmiopg");
1839 
1840 		/*
1841 		 * The VFS is telling us this is not a meta-data buffer
1842 		 * even if it is backed by a block device.
1843 		 */
1844 		if (bp->b_flags & B_NOTMETA)
1845 			vm_page_flag_set(m, PG_NOTMETA);
1846 
1847 		/*
1848 		 * This is a very important bit of code.  We try to track
1849 		 * VM page use whether the pages are wired into the buffer
1850 		 * cache or not.  While wired into the buffer cache the
1851 		 * bp tracks the act_count.
1852 		 *
1853 		 * We can choose to place unwired pages on the inactive
1854 		 * queue (0) or active queue (1).  If we place too many
1855 		 * on the active queue the queue will cycle the act_count
1856 		 * on pages we'd like to keep, just from single-use pages
1857 		 * (such as when doing a tar-up or file scan).
1858 		 */
1859 		if (bp->b_act_count < vm_cycle_point)
1860 			vm_page_unwire(m, 0);
1861 		else
1862 			vm_page_unwire(m, 1);
1863 
1864 		/*
1865 		 * If the wire_count has dropped to 0 we may need to take
1866 		 * further action before unbusying the page.
1867 		 *
1868 		 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us.
1869 		 */
1870 		if (m->wire_count == 0) {
1871 			vm_page_flag_clear(m, PG_ZERO);
1872 
1873 			if (bp->b_flags & B_DIRECT) {
1874 				/*
1875 				 * Attempt to free the page if B_DIRECT is
1876 				 * set, the caller does not desire the page
1877 				 * to be cached.
1878 				 */
1879 				vm_page_wakeup(m);
1880 				vm_page_try_to_free(m);
1881 			} else if ((bp->b_flags & B_NOTMETA) ||
1882 				   vm_page_count_min(0)) {
1883 				/*
1884 				 * Attempt to move the page to PQ_CACHE
1885 				 * if B_NOTMETA is set.  This flag is set
1886 				 * by HAMMER to remove one of the two pages
1887 				 * present when double buffering is enabled.
1888 				 *
1889 				 * Attempt to move the page to PQ_CACHE
1890 				 * If we have a severe page deficit.  This
1891 				 * will cause buffer cache operations related
1892 				 * to pageouts to recycle the related pages
1893 				 * in order to avoid a low memory deadlock.
1894 				 */
1895 				m->act_count = bp->b_act_count;
1896 				vm_page_wakeup(m);
1897 				vm_page_try_to_cache(m);
1898 			} else {
1899 				/*
1900 				 * Nominal case, leave the page on the
1901 				 * queue the original unwiring placed it on
1902 				 * (active or inactive).
1903 				 */
1904 				m->act_count = bp->b_act_count;
1905 				vm_page_wakeup(m);
1906 			}
1907 		} else {
1908 			vm_page_wakeup(m);
1909 		}
1910 	}
1911 
1912 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data),
1913 		     bp->b_xio.xio_npages);
1914 	if (bp->b_bufsize) {
1915 		bufspacewakeup();
1916 		bp->b_bufsize = 0;
1917 	}
1918 	bp->b_xio.xio_npages = 0;
1919 	bp->b_flags &= ~B_VMIO;
1920 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1921 	if (bp->b_vp)
1922 		brelvp(bp);
1923 }
1924 
1925 /*
1926  * Find and initialize a new buffer header, freeing up existing buffers
1927  * in the bufqueues as necessary.  The new buffer is returned locked.
1928  *
1929  * Important:  B_INVAL is not set.  If the caller wishes to throw the
1930  * buffer away, the caller must set B_INVAL prior to calling brelse().
1931  *
1932  * We block if:
1933  *	We have insufficient buffer headers
1934  *	We have insufficient buffer space
1935  *	buffer_map is too fragmented ( space reservation fails )
1936  *	If we have to flush dirty buffers ( but we try to avoid this )
1937  *
1938  * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1939  * Instead we ask the buf daemon to do it for us.  We attempt to
1940  * avoid piecemeal wakeups of the pageout daemon.
1941  */
1942 struct buf *
1943 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1944 {
1945 	struct bufpcpu *pcpu;
1946 	struct buf *bp;
1947 	struct buf *nbp;
1948 	int defrag = 0;
1949 	int nqindex;
1950 	int nqcpu;
1951 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1952 	int maxloops = 200000;
1953 	int restart_reason = 0;
1954 	struct buf *restart_bp = NULL;
1955 	static int flushingbufs;
1956 
1957 	/*
1958 	 * We can't afford to block since we might be holding a vnode lock,
1959 	 * which may prevent system daemons from running.  We deal with
1960 	 * low-memory situations by proactively returning memory and running
1961 	 * async I/O rather then sync I/O.
1962 	 */
1963 
1964 	++getnewbufcalls;
1965 	--getnewbufrestarts;
1966 	nqcpu = mycpu->gd_cpuid;
1967 restart:
1968 	++getnewbufrestarts;
1969 
1970 	if (debug_bufbio && --maxloops == 0)
1971 		panic("getnewbuf, excessive loops on cpu %d restart %d (%p)",
1972 			mycpu->gd_cpuid, restart_reason, restart_bp);
1973 
1974 	/*
1975 	 * Setup for scan.  If we do not have enough free buffers,
1976 	 * we setup a degenerate case that immediately fails.  Note
1977 	 * that if we are specially marked process, we are allowed to
1978 	 * dip into our reserves.
1979 	 *
1980 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1981 	 *
1982 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1983 	 * However, there are a number of cases (defragging, reusing, ...)
1984 	 * where we cannot backup.
1985 	 */
1986 	pcpu = &bufpcpu[nqcpu];
1987 	nqindex = BQUEUE_EMPTYKVA;
1988 	spin_lock(&pcpu->spin);
1989 
1990 	nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_EMPTYKVA]);
1991 
1992 	if (nbp == NULL) {
1993 		/*
1994 		 * If no EMPTYKVA buffers and we are either
1995 		 * defragging or reusing, locate a CLEAN buffer
1996 		 * to free or reuse.  If bufspace useage is low
1997 		 * skip this step so we can allocate a new buffer.
1998 		 */
1999 		if (defrag || bufspace >= lobufspace) {
2000 			nqindex = BQUEUE_CLEAN;
2001 			nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN]);
2002 		}
2003 
2004 		/*
2005 		 * If we could not find or were not allowed to reuse a
2006 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
2007 		 * buffer.  We can only use an EMPTY buffer if allocating
2008 		 * its KVA would not otherwise run us out of buffer space.
2009 		 */
2010 		if (nbp == NULL && defrag == 0 &&
2011 		    bufspace + maxsize < hibufspace) {
2012 			nqindex = BQUEUE_EMPTY;
2013 			nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_EMPTY]);
2014 		}
2015 	}
2016 
2017 	/*
2018 	 * Run scan, possibly freeing data and/or kva mappings on the fly
2019 	 * depending.
2020 	 *
2021 	 * WARNING! spin is held!
2022 	 */
2023 	while ((bp = nbp) != NULL) {
2024 		int qindex = nqindex;
2025 
2026 		nbp = TAILQ_NEXT(bp, b_freelist);
2027 
2028 		/*
2029 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2030 		 * cycles through the queue twice before being selected.
2031 		 */
2032 		if (qindex == BQUEUE_CLEAN &&
2033 		    (bp->b_flags & B_AGE) == 0 && nbp) {
2034 			bp->b_flags |= B_AGE;
2035 			TAILQ_REMOVE(&pcpu->bufqueues[qindex],
2036 				     bp, b_freelist);
2037 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[qindex],
2038 					  bp, b_freelist);
2039 			continue;
2040 		}
2041 
2042 		/*
2043 		 * Calculate next bp ( we can only use it if we do not block
2044 		 * or do other fancy things ).
2045 		 */
2046 		if (nbp == NULL) {
2047 			switch(qindex) {
2048 			case BQUEUE_EMPTY:
2049 				nqindex = BQUEUE_EMPTYKVA;
2050 				if ((nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_EMPTYKVA])))
2051 					break;
2052 				/* fall through */
2053 			case BQUEUE_EMPTYKVA:
2054 				nqindex = BQUEUE_CLEAN;
2055 				if ((nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN])))
2056 					break;
2057 				/* fall through */
2058 			case BQUEUE_CLEAN:
2059 				/*
2060 				 * nbp is NULL.
2061 				 */
2062 				break;
2063 			}
2064 		}
2065 
2066 		/*
2067 		 * Sanity Checks
2068 		 */
2069 		KASSERT(bp->b_qindex == qindex,
2070 			("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2071 
2072 		/*
2073 		 * Note: we no longer distinguish between VMIO and non-VMIO
2074 		 * buffers.
2075 		 */
2076 		KASSERT((bp->b_flags & B_DELWRI) == 0,
2077 			("delwri buffer %p found in queue %d", bp, qindex));
2078 
2079 		/*
2080 		 * Do not try to reuse a buffer with a non-zero b_refs.
2081 		 * This is an unsynchronized test.  A synchronized test
2082 		 * is also performed after we lock the buffer.
2083 		 */
2084 		if (bp->b_refs)
2085 			continue;
2086 
2087 		/*
2088 		 * If we are defragging then we need a buffer with
2089 		 * b_kvasize != 0.  XXX this situation should no longer
2090 		 * occur, if defrag is non-zero the buffer's b_kvasize
2091 		 * should also be non-zero at this point.  XXX
2092 		 */
2093 		if (defrag && bp->b_kvasize == 0) {
2094 			kprintf("Warning: defrag empty buffer %p\n", bp);
2095 			continue;
2096 		}
2097 
2098 		/*
2099 		 * Start freeing the bp.  This is somewhat involved.  nbp
2100 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
2101 		 * on the clean list must be disassociated from their
2102 		 * current vnode.  Buffers on the empty[kva] lists have
2103 		 * already been disassociated.
2104 		 *
2105 		 * b_refs is checked after locking along with queue changes.
2106 		 * We must check here to deal with zero->nonzero transitions
2107 		 * made by the owner of the buffer lock, which is used by
2108 		 * VFS's to hold the buffer while issuing an unlocked
2109 		 * uiomove()s.  We cannot invalidate the buffer's pages
2110 		 * for this case.  Once we successfully lock a buffer the
2111 		 * only 0->1 transitions of b_refs will occur via findblk().
2112 		 *
2113 		 * We must also check for queue changes after successful
2114 		 * locking as the current lock holder may dispose of the
2115 		 * buffer and change its queue.
2116 		 */
2117 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2118 			spin_unlock(&pcpu->spin);
2119 			tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100);
2120 			restart_reason = 1;
2121 			restart_bp = bp;
2122 			goto restart;
2123 		}
2124 		if (bp->b_qindex != qindex || bp->b_refs) {
2125 			spin_unlock(&pcpu->spin);
2126 			BUF_UNLOCK(bp);
2127 			restart_reason = 2;
2128 			restart_bp = bp;
2129 			goto restart;
2130 		}
2131 		bremfree_locked(bp);
2132 		spin_unlock(&pcpu->spin);
2133 
2134 		/*
2135 		 * Dependancies must be handled before we disassociate the
2136 		 * vnode.
2137 		 *
2138 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2139 		 * be immediately disassociated.  HAMMER then becomes
2140 		 * responsible for releasing the buffer.
2141 		 *
2142 		 * NOTE: spin is UNLOCKED now.
2143 		 */
2144 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2145 			buf_deallocate(bp);
2146 			if (bp->b_flags & B_LOCKED) {
2147 				bqrelse(bp);
2148 				restart_reason = 3;
2149 				restart_bp = bp;
2150 				goto restart;
2151 			}
2152 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2153 		}
2154 
2155 		if (qindex == BQUEUE_CLEAN) {
2156 			if (bp->b_flags & B_VMIO)
2157 				vfs_vmio_release(bp);
2158 			if (bp->b_vp)
2159 				brelvp(bp);
2160 		}
2161 
2162 		/*
2163 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2164 		 * the scan from this point on.
2165 		 *
2166 		 * Get the rest of the buffer freed up.  b_kva* is still
2167 		 * valid after this operation.
2168 		 */
2169 		KASSERT(bp->b_vp == NULL,
2170 			("bp3 %p flags %08x vnode %p qindex %d "
2171 			 "unexpectededly still associated!",
2172 			 bp, bp->b_flags, bp->b_vp, qindex));
2173 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2174 
2175 		/*
2176 		 * critical section protection is not required when
2177 		 * scrapping a buffer's contents because it is already
2178 		 * wired.
2179 		 */
2180 		if (bp->b_bufsize)
2181 			allocbuf(bp, 0);
2182 
2183                 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN | B_HASHED)) {
2184 			kprintf("getnewbuf: caught bug vp queue "
2185 				"%p/%08x qidx %d\n",
2186 				bp, bp->b_flags, qindex);
2187 			brelvp(bp);
2188 		}
2189 		bp->b_flags = B_BNOCLIP;
2190 		bp->b_cmd = BUF_CMD_DONE;
2191 		bp->b_vp = NULL;
2192 		bp->b_error = 0;
2193 		bp->b_resid = 0;
2194 		bp->b_bcount = 0;
2195 		bp->b_xio.xio_npages = 0;
2196 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2197 		bp->b_act_count = ACT_INIT;
2198 		reinitbufbio(bp);
2199 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2200 		buf_dep_init(bp);
2201 		if (blkflags & GETBLK_BHEAVY)
2202 			bp->b_flags |= B_HEAVY;
2203 
2204 		/*
2205 		 * If we are defragging then free the buffer.
2206 		 */
2207 		if (defrag) {
2208 			bp->b_flags |= B_INVAL;
2209 			bfreekva(bp);
2210 			brelse(bp);
2211 			defrag = 0;
2212 			restart_reason = 4;
2213 			restart_bp = bp;
2214 			goto restart;
2215 		}
2216 
2217 		/*
2218 		 * If we are overcomitted then recover the buffer and its
2219 		 * KVM space.  This occurs in rare situations when multiple
2220 		 * processes are blocked in getnewbuf() or allocbuf().
2221 		 *
2222 		 * On 64-bit systems BKVASIZE == MAXBSIZE and overcommit
2223 		 * should not be possible.
2224 		 */
2225 		if (bufspace >= hibufspace)
2226 			flushingbufs = 1;
2227 		if (BKVASIZE != MAXBSIZE) {
2228 			if (flushingbufs && bp->b_kvasize != 0) {
2229 				bp->b_flags |= B_INVAL;
2230 				bfreekva(bp);
2231 				brelse(bp);
2232 				restart_reason = 5;
2233 				restart_bp = bp;
2234 				goto restart;
2235 			}
2236 		}
2237 		if (bufspace < lobufspace)
2238 			flushingbufs = 0;
2239 
2240 		/*
2241 		 * b_refs can transition to a non-zero value while we hold
2242 		 * the buffer locked due to a findblk().  Our brelvp() above
2243 		 * interlocked any future possible transitions due to
2244 		 * findblk()s.
2245 		 *
2246 		 * If we find b_refs to be non-zero we can destroy the
2247 		 * buffer's contents but we cannot yet reuse the buffer.
2248 		 */
2249 		if (bp->b_refs) {
2250 			bp->b_flags |= B_INVAL;
2251 			if (BKVASIZE != MAXBSIZE)
2252 				bfreekva(bp);
2253 			brelse(bp);
2254 			restart_reason = 6;
2255 			restart_bp = bp;
2256 			goto restart;
2257 		}
2258 		break;
2259 		/* NOT REACHED, spin not held */
2260 	}
2261 
2262 	/*
2263 	 * If we exhausted our list, iterate other cpus.  If that fails,
2264 	 * sleep as appropriate.  We may have to wakeup various daemons
2265 	 * and write out some dirty buffers.
2266 	 *
2267 	 * Generally we are sleeping due to insufficient buffer space.
2268 	 *
2269 	 * NOTE: spin is held if bp is NULL, else it is not held.
2270 	 */
2271 	if (bp == NULL) {
2272 		int flags;
2273 		char *waitmsg;
2274 
2275 		spin_unlock(&pcpu->spin);
2276 
2277 		nqcpu = (nqcpu + 1) % ncpus;
2278 		if (nqcpu != mycpu->gd_cpuid) {
2279 			restart_reason = 7;
2280 			restart_bp = bp;
2281 			goto restart;
2282 		}
2283 
2284 		if (defrag) {
2285 			flags = VFS_BIO_NEED_BUFSPACE;
2286 			waitmsg = "nbufkv";
2287 		} else if (bufspace >= hibufspace) {
2288 			waitmsg = "nbufbs";
2289 			flags = VFS_BIO_NEED_BUFSPACE;
2290 		} else {
2291 			waitmsg = "newbuf";
2292 			flags = VFS_BIO_NEED_ANY;
2293 		}
2294 
2295 		bd_speedup();	/* heeeelp */
2296 		atomic_set_int(&needsbuffer, flags);
2297 		while (needsbuffer & flags) {
2298 			int value;
2299 
2300 			tsleep_interlock(&needsbuffer, 0);
2301 			value = atomic_fetchadd_int(&needsbuffer, 0);
2302 			if (value & flags) {
2303 				if (tsleep(&needsbuffer, PINTERLOCKED|slpflags,
2304 					   waitmsg, slptimeo)) {
2305 					return (NULL);
2306 				}
2307 			}
2308 		}
2309 	} else {
2310 		/*
2311 		 * We finally have a valid bp.  We aren't quite out of the
2312 		 * woods, we still have to reserve kva space.  In order
2313 		 * to keep fragmentation sane we only allocate kva in
2314 		 * BKVASIZE chunks.
2315 		 *
2316 		 * (spin is not held)
2317 		 */
2318 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2319 
2320 		if (maxsize != bp->b_kvasize) {
2321 			vm_offset_t addr = 0;
2322 			int count;
2323 
2324 			bfreekva(bp);
2325 
2326 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2327 			vm_map_lock(&buffer_map);
2328 
2329 			if (vm_map_findspace(&buffer_map,
2330 				    vm_map_min(&buffer_map), maxsize,
2331 				    maxsize, 0, &addr)) {
2332 				/*
2333 				 * Uh oh.  Buffer map is too fragmented.  We
2334 				 * must defragment the map.
2335 				 */
2336 				vm_map_unlock(&buffer_map);
2337 				vm_map_entry_release(count);
2338 				++bufdefragcnt;
2339 				defrag = 1;
2340 				bp->b_flags |= B_INVAL;
2341 				brelse(bp);
2342 				restart_reason = 8;
2343 				restart_bp = bp;
2344 				goto restart;
2345 			}
2346 			if (addr) {
2347 				vm_map_insert(&buffer_map, &count,
2348 					NULL, NULL,
2349 					0, addr, addr + maxsize,
2350 					VM_MAPTYPE_NORMAL,
2351 					VM_PROT_ALL, VM_PROT_ALL,
2352 					MAP_NOFAULT);
2353 
2354 				bp->b_kvabase = (caddr_t) addr;
2355 				bp->b_kvasize = maxsize;
2356 				bufspace += bp->b_kvasize;
2357 				++bufreusecnt;
2358 			}
2359 			vm_map_unlock(&buffer_map);
2360 			vm_map_entry_release(count);
2361 		}
2362 		bp->b_data = bp->b_kvabase;
2363 	}
2364 	return(bp);
2365 }
2366 
2367 /*
2368  * buf_daemon:
2369  *
2370  *	Buffer flushing daemon.  Buffers are normally flushed by the
2371  *	update daemon but if it cannot keep up this process starts to
2372  *	take the load in an attempt to prevent getnewbuf() from blocking.
2373  *
2374  *	Once a flush is initiated it does not stop until the number
2375  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2376  *	waiting at the mid-point.
2377  */
2378 static struct kproc_desc buf_kp = {
2379 	"bufdaemon",
2380 	buf_daemon,
2381 	&bufdaemon_td
2382 };
2383 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2384 	kproc_start, &buf_kp);
2385 
2386 static struct kproc_desc bufhw_kp = {
2387 	"bufdaemon_hw",
2388 	buf_daemon_hw,
2389 	&bufdaemonhw_td
2390 };
2391 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2392 	kproc_start, &bufhw_kp);
2393 
2394 static void
2395 buf_daemon1(struct thread *td, int queue, int (*buf_limit_fn)(long),
2396 	    int *bd_req)
2397 {
2398 	long limit;
2399 	struct buf *marker;
2400 
2401 	marker = kmalloc(sizeof(*marker), M_BIOBUF, M_WAITOK | M_ZERO);
2402 	marker->b_flags |= B_MARKER;
2403 	marker->b_qindex = BQUEUE_NONE;
2404 	marker->b_qcpu = 0;
2405 
2406 	/*
2407 	 * This process needs to be suspended prior to shutdown sync.
2408 	 */
2409 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2410 			      td, SHUTDOWN_PRI_LAST);
2411 	curthread->td_flags |= TDF_SYSTHREAD;
2412 
2413 	/*
2414 	 * This process is allowed to take the buffer cache to the limit
2415 	 */
2416 	for (;;) {
2417 		kproc_suspend_loop();
2418 
2419 		/*
2420 		 * Do the flush as long as the number of dirty buffers
2421 		 * (including those running) exceeds lodirtybufspace.
2422 		 *
2423 		 * When flushing limit running I/O to hirunningspace
2424 		 * Do the flush.  Limit the amount of in-transit I/O we
2425 		 * allow to build up, otherwise we would completely saturate
2426 		 * the I/O system.  Wakeup any waiting processes before we
2427 		 * normally would so they can run in parallel with our drain.
2428 		 *
2429 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2430 		 * but because we split the operation into two threads we
2431 		 * have to cut it in half for each thread.
2432 		 */
2433 		waitrunningbufspace();
2434 		limit = lodirtybufspace / 2;
2435 		while (buf_limit_fn(limit)) {
2436 			if (flushbufqueues(marker, queue) == 0)
2437 				break;
2438 			if (runningbufspace < hirunningspace)
2439 				continue;
2440 			waitrunningbufspace();
2441 		}
2442 
2443 		/*
2444 		 * We reached our low water mark, reset the
2445 		 * request and sleep until we are needed again.
2446 		 * The sleep is just so the suspend code works.
2447 		 */
2448 		tsleep_interlock(bd_req, 0);
2449 		if (atomic_swap_int(bd_req, 0) == 0)
2450 			tsleep(bd_req, PINTERLOCKED, "psleep", hz);
2451 	}
2452 	/* NOT REACHED */
2453 	/*kfree(marker, M_BIOBUF);*/
2454 }
2455 
2456 static int
2457 buf_daemon_limit(long limit)
2458 {
2459 	return (runningbufspace + dirtykvaspace > limit ||
2460 		dirtybufcount - dirtybufcounthw >= nbuf / 2);
2461 }
2462 
2463 static int
2464 buf_daemon_hw_limit(long limit)
2465 {
2466 	return (runningbufspace + dirtykvaspace > limit ||
2467 		dirtybufcounthw >= nbuf / 2);
2468 }
2469 
2470 static void
2471 buf_daemon(void)
2472 {
2473 	buf_daemon1(bufdaemon_td, BQUEUE_DIRTY, buf_daemon_limit,
2474 		    &bd_request);
2475 }
2476 
2477 static void
2478 buf_daemon_hw(void)
2479 {
2480 	buf_daemon1(bufdaemonhw_td, BQUEUE_DIRTY_HW, buf_daemon_hw_limit,
2481 		    &bd_request_hw);
2482 }
2483 
2484 /*
2485  * flushbufqueues:
2486  *
2487  *	Try to flush a buffer in the dirty queue.  We must be careful to
2488  *	free up B_INVAL buffers instead of write them, which NFS is
2489  *	particularly sensitive to.
2490  *
2491  *	B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate
2492  *	that we really want to try to get the buffer out and reuse it
2493  *	due to the write load on the machine.
2494  *
2495  *	We must lock the buffer in order to check its validity before we
2496  *	can mess with its contents.  spin isn't enough.
2497  */
2498 static int
2499 flushbufqueues(struct buf *marker, bufq_type_t q)
2500 {
2501 	struct bufpcpu *pcpu;
2502 	struct buf *bp;
2503 	int r = 0;
2504 	int lcpu = marker->b_qcpu;
2505 
2506 	KKASSERT(marker->b_qindex == BQUEUE_NONE);
2507 	KKASSERT(marker->b_flags & B_MARKER);
2508 
2509 again:
2510 	/*
2511 	 * Spinlock needed to perform operations on the queue and may be
2512 	 * held through a non-blocking BUF_LOCK(), but cannot be held when
2513 	 * BUF_UNLOCK()ing or through any other major operation.
2514 	 */
2515 	pcpu = &bufpcpu[marker->b_qcpu];
2516 	spin_lock(&pcpu->spin);
2517 	marker->b_qindex = q;
2518 	TAILQ_INSERT_HEAD(&pcpu->bufqueues[q], marker, b_freelist);
2519 	bp = marker;
2520 
2521 	while ((bp = TAILQ_NEXT(bp, b_freelist)) != NULL) {
2522 		/*
2523 		 * NOTE: spinlock is always held at the top of the loop
2524 		 */
2525 		if (bp->b_flags & B_MARKER)
2526 			continue;
2527 		if ((bp->b_flags & B_DELWRI) == 0) {
2528 			kprintf("Unexpected clean buffer %p\n", bp);
2529 			continue;
2530 		}
2531 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
2532 			continue;
2533 		KKASSERT(bp->b_qcpu == marker->b_qcpu && bp->b_qindex == q);
2534 
2535 		/*
2536 		 * Once the buffer is locked we will have no choice but to
2537 		 * unlock the spinlock around a later BUF_UNLOCK and re-set
2538 		 * bp = marker when looping.  Move the marker now to make
2539 		 * things easier.
2540 		 */
2541 		TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2542 		TAILQ_INSERT_AFTER(&pcpu->bufqueues[q], bp, marker, b_freelist);
2543 
2544 		/*
2545 		 * Must recheck B_DELWRI after successfully locking
2546 		 * the buffer.
2547 		 */
2548 		if ((bp->b_flags & B_DELWRI) == 0) {
2549 			spin_unlock(&pcpu->spin);
2550 			BUF_UNLOCK(bp);
2551 			spin_lock(&pcpu->spin);
2552 			bp = marker;
2553 			continue;
2554 		}
2555 
2556 		/*
2557 		 * Remove the buffer from its queue.  We still own the
2558 		 * spinlock here.
2559 		 */
2560 		_bremfree(bp);
2561 
2562 		/*
2563 		 * Disposing of an invalid buffer counts as a flush op
2564 		 */
2565 		if (bp->b_flags & B_INVAL) {
2566 			spin_unlock(&pcpu->spin);
2567 			brelse(bp);
2568 			spin_lock(&pcpu->spin);
2569 			++r;
2570 			break;
2571 		}
2572 
2573 		/*
2574 		 * Release the spinlock for the more complex ops we
2575 		 * are now going to do.
2576 		 */
2577 		spin_unlock(&pcpu->spin);
2578 		lwkt_yield();
2579 
2580 		/*
2581 		 * This is a bit messy
2582 		 */
2583 		if (LIST_FIRST(&bp->b_dep) != NULL &&
2584 		    (bp->b_flags & B_DEFERRED) == 0 &&
2585 		    buf_countdeps(bp, 0)) {
2586 			spin_lock(&pcpu->spin);
2587 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[q], bp, b_freelist);
2588 			bp->b_qindex = q;
2589 			bp->b_flags |= B_DEFERRED;
2590 			spin_unlock(&pcpu->spin);
2591 			BUF_UNLOCK(bp);
2592 			spin_lock(&pcpu->spin);
2593 			bp = marker;
2594 			continue;
2595 		}
2596 
2597 		/*
2598 		 * spinlock not held here.
2599 		 *
2600 		 * If the buffer has a dependancy, buf_checkwrite() must
2601 		 * also return 0 for us to be able to initate the write.
2602 		 *
2603 		 * If the buffer is flagged B_ERROR it may be requeued
2604 		 * over and over again, we try to avoid a live lock.
2605 		 */
2606 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2607 			brelse(bp);
2608 		} else if (bp->b_flags & B_ERROR) {
2609 			tsleep(bp, 0, "bioer", 1);
2610 			bp->b_flags &= ~B_AGE;
2611 			cluster_awrite(bp);
2612 		} else {
2613 			bp->b_flags |= B_AGE;
2614 			cluster_awrite(bp);
2615 		}
2616 		spin_lock(&pcpu->spin);
2617 		++r;
2618 		break;
2619 	}
2620 
2621 	TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2622 	marker->b_qindex = BQUEUE_NONE;
2623 	spin_unlock(&pcpu->spin);
2624 
2625 	/*
2626 	 * Advance the marker to be fair.
2627 	 */
2628 	marker->b_qcpu = (marker->b_qcpu + 1) % ncpus;
2629 	if (bp == NULL) {
2630 		if (marker->b_qcpu != lcpu)
2631 			goto again;
2632 	}
2633 
2634 	return (r);
2635 }
2636 
2637 /*
2638  * inmem:
2639  *
2640  *	Returns true if no I/O is needed to access the associated VM object.
2641  *	This is like findblk except it also hunts around in the VM system for
2642  *	the data.
2643  *
2644  *	Note that we ignore vm_page_free() races from interrupts against our
2645  *	lookup, since if the caller is not protected our return value will not
2646  *	be any more valid then otherwise once we exit the critical section.
2647  */
2648 int
2649 inmem(struct vnode *vp, off_t loffset)
2650 {
2651 	vm_object_t obj;
2652 	vm_offset_t toff, tinc, size;
2653 	vm_page_t m;
2654 	int res = 1;
2655 
2656 	if (findblk(vp, loffset, FINDBLK_TEST))
2657 		return 1;
2658 	if (vp->v_mount == NULL)
2659 		return 0;
2660 	if ((obj = vp->v_object) == NULL)
2661 		return 0;
2662 
2663 	size = PAGE_SIZE;
2664 	if (size > vp->v_mount->mnt_stat.f_iosize)
2665 		size = vp->v_mount->mnt_stat.f_iosize;
2666 
2667 	vm_object_hold(obj);
2668 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2669 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2670 		if (m == NULL) {
2671 			res = 0;
2672 			break;
2673 		}
2674 		tinc = size;
2675 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2676 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2677 		if (vm_page_is_valid(m,
2678 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) {
2679 			res = 0;
2680 			break;
2681 		}
2682 	}
2683 	vm_object_drop(obj);
2684 	return (res);
2685 }
2686 
2687 /*
2688  * findblk:
2689  *
2690  *	Locate and return the specified buffer.  Unless flagged otherwise,
2691  *	a locked buffer will be returned if it exists or NULL if it does not.
2692  *
2693  *	findblk()'d buffers are still on the bufqueues and if you intend
2694  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2695  *	and possibly do other stuff to it.
2696  *
2697  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2698  *			  for locking the buffer and ensuring that it remains
2699  *			  the desired buffer after locking.
2700  *
2701  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2702  *			  to acquire the lock we return NULL, even if the
2703  *			  buffer exists.
2704  *
2705  *	FINDBLK_REF	- Returns the buffer ref'd, which prevents normal
2706  *			  reuse by getnewbuf() but does not prevent
2707  *			  disassociation (B_INVAL).  Used to avoid deadlocks
2708  *			  against random (vp,loffset)s due to reassignment.
2709  *
2710  *	(0)		- Lock the buffer blocking.
2711  */
2712 struct buf *
2713 findblk(struct vnode *vp, off_t loffset, int flags)
2714 {
2715 	struct buf *bp;
2716 	int lkflags;
2717 
2718 	lkflags = LK_EXCLUSIVE;
2719 	if (flags & FINDBLK_NBLOCK)
2720 		lkflags |= LK_NOWAIT;
2721 
2722 	for (;;) {
2723 		/*
2724 		 * Lookup.  Ref the buf while holding v_token to prevent
2725 		 * reuse (but does not prevent diassociation).
2726 		 */
2727 		lwkt_gettoken_shared(&vp->v_token);
2728 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2729 		if (bp == NULL) {
2730 			lwkt_reltoken(&vp->v_token);
2731 			return(NULL);
2732 		}
2733 		bqhold(bp);
2734 		lwkt_reltoken(&vp->v_token);
2735 
2736 		/*
2737 		 * If testing only break and return bp, do not lock.
2738 		 */
2739 		if (flags & FINDBLK_TEST)
2740 			break;
2741 
2742 		/*
2743 		 * Lock the buffer, return an error if the lock fails.
2744 		 * (only FINDBLK_NBLOCK can cause the lock to fail).
2745 		 */
2746 		if (BUF_LOCK(bp, lkflags)) {
2747 			atomic_subtract_int(&bp->b_refs, 1);
2748 			/* bp = NULL; not needed */
2749 			return(NULL);
2750 		}
2751 
2752 		/*
2753 		 * Revalidate the locked buf before allowing it to be
2754 		 * returned.
2755 		 */
2756 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2757 			break;
2758 		atomic_subtract_int(&bp->b_refs, 1);
2759 		BUF_UNLOCK(bp);
2760 	}
2761 
2762 	/*
2763 	 * Success
2764 	 */
2765 	if ((flags & FINDBLK_REF) == 0)
2766 		atomic_subtract_int(&bp->b_refs, 1);
2767 	return(bp);
2768 }
2769 
2770 /*
2771  * getcacheblk:
2772  *
2773  *	Similar to getblk() except only returns the buffer if it is
2774  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2775  *	is returned.  NULL is also returned if GETBLK_NOWAIT is set
2776  *	and the getblk() would block.
2777  *
2778  *	If B_RAM is set the buffer might be just fine, but we return
2779  *	NULL anyway because we want the code to fall through to the
2780  *	cluster read.  Otherwise read-ahead breaks.
2781  *
2782  *	If blksize is 0 the buffer cache buffer must already be fully
2783  *	cached.
2784  *
2785  *	If blksize is non-zero getblk() will be used, allowing a buffer
2786  *	to be reinstantiated from its VM backing store.  The buffer must
2787  *	still be fully cached after reinstantiation to be returned.
2788  */
2789 struct buf *
2790 getcacheblk(struct vnode *vp, off_t loffset, int blksize, int blkflags)
2791 {
2792 	struct buf *bp;
2793 	int fndflags = (blkflags & GETBLK_NOWAIT) ? FINDBLK_NBLOCK : 0;
2794 
2795 	if (blksize) {
2796 		bp = getblk(vp, loffset, blksize, blkflags, 0);
2797 		if (bp) {
2798 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2799 			    B_CACHE) {
2800 				bp->b_flags &= ~B_AGE;
2801 			} else {
2802 				brelse(bp);
2803 				bp = NULL;
2804 			}
2805 		}
2806 	} else {
2807 		bp = findblk(vp, loffset, fndflags);
2808 		if (bp) {
2809 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2810 			    B_CACHE) {
2811 				bp->b_flags &= ~B_AGE;
2812 				bremfree(bp);
2813 			} else {
2814 				BUF_UNLOCK(bp);
2815 				bp = NULL;
2816 			}
2817 		}
2818 	}
2819 	return (bp);
2820 }
2821 
2822 /*
2823  * getblk:
2824  *
2825  *	Get a block given a specified block and offset into a file/device.
2826  * 	B_INVAL may or may not be set on return.  The caller should clear
2827  *	B_INVAL prior to initiating a READ.
2828  *
2829  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2830  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2831  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2832  *	without doing any of those things the system will likely believe
2833  *	the buffer to be valid (especially if it is not B_VMIO), and the
2834  *	next getblk() will return the buffer with B_CACHE set.
2835  *
2836  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2837  *	an existing buffer.
2838  *
2839  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2840  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2841  *	and then cleared based on the backing VM.  If the previous buffer is
2842  *	non-0-sized but invalid, B_CACHE will be cleared.
2843  *
2844  *	If getblk() must create a new buffer, the new buffer is returned with
2845  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2846  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2847  *	backing VM.
2848  *
2849  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2850  *	B_CACHE bit is clear.
2851  *
2852  *	What this means, basically, is that the caller should use B_CACHE to
2853  *	determine whether the buffer is fully valid or not and should clear
2854  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2855  *	the buffer by loading its data area with something, the caller needs
2856  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2857  *	the caller should set B_CACHE ( as an optimization ), else the caller
2858  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2859  *	a write attempt or if it was a successfull read.  If the caller
2860  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2861  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2862  *
2863  *	getblk flags:
2864  *
2865  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2866  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2867  */
2868 struct buf *
2869 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2870 {
2871 	struct buf *bp;
2872 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2873 	int error;
2874 	int lkflags;
2875 
2876 	if (size > MAXBSIZE)
2877 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2878 	if (vp->v_object == NULL)
2879 		panic("getblk: vnode %p has no object!", vp);
2880 
2881 loop:
2882 	if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2883 		/*
2884 		 * The buffer was found in the cache, but we need to lock it.
2885 		 * We must acquire a ref on the bp to prevent reuse, but
2886 		 * this will not prevent disassociation (brelvp()) so we
2887 		 * must recheck (vp,loffset) after acquiring the lock.
2888 		 *
2889 		 * Without the ref the buffer could potentially be reused
2890 		 * before we acquire the lock and create a deadlock
2891 		 * situation between the thread trying to reuse the buffer
2892 		 * and us due to the fact that we would wind up blocking
2893 		 * on a random (vp,loffset).
2894 		 */
2895 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2896 			if (blkflags & GETBLK_NOWAIT) {
2897 				bqdrop(bp);
2898 				return(NULL);
2899 			}
2900 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2901 			if (blkflags & GETBLK_PCATCH)
2902 				lkflags |= LK_PCATCH;
2903 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2904 			if (error) {
2905 				bqdrop(bp);
2906 				if (error == ENOLCK)
2907 					goto loop;
2908 				return (NULL);
2909 			}
2910 			/* buffer may have changed on us */
2911 		}
2912 		bqdrop(bp);
2913 
2914 		/*
2915 		 * Once the buffer has been locked, make sure we didn't race
2916 		 * a buffer recyclement.  Buffers that are no longer hashed
2917 		 * will have b_vp == NULL, so this takes care of that check
2918 		 * as well.
2919 		 */
2920 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2921 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2922 				"was recycled\n",
2923 				bp, vp, (long long)loffset);
2924 			BUF_UNLOCK(bp);
2925 			goto loop;
2926 		}
2927 
2928 		/*
2929 		 * If SZMATCH any pre-existing buffer must be of the requested
2930 		 * size or NULL is returned.  The caller absolutely does not
2931 		 * want getblk() to bwrite() the buffer on a size mismatch.
2932 		 */
2933 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2934 			BUF_UNLOCK(bp);
2935 			return(NULL);
2936 		}
2937 
2938 		/*
2939 		 * All vnode-based buffers must be backed by a VM object.
2940 		 */
2941 		KKASSERT(bp->b_flags & B_VMIO);
2942 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2943 		bp->b_flags &= ~B_AGE;
2944 
2945 		/*
2946 		 * Make sure that B_INVAL buffers do not have a cached
2947 		 * block number translation.
2948 		 */
2949 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2950 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2951 				" did not have cleared bio_offset cache\n",
2952 				bp, vp, (long long)loffset);
2953 			clearbiocache(&bp->b_bio2);
2954 		}
2955 
2956 		/*
2957 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2958 		 * invalid.
2959 		 */
2960 		if (bp->b_flags & B_INVAL)
2961 			bp->b_flags &= ~B_CACHE;
2962 		bremfree(bp);
2963 
2964 		/*
2965 		 * Any size inconsistancy with a dirty buffer or a buffer
2966 		 * with a softupdates dependancy must be resolved.  Resizing
2967 		 * the buffer in such circumstances can lead to problems.
2968 		 *
2969 		 * Dirty or dependant buffers are written synchronously.
2970 		 * Other types of buffers are simply released and
2971 		 * reconstituted as they may be backed by valid, dirty VM
2972 		 * pages (but not marked B_DELWRI).
2973 		 *
2974 		 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2975 		 * and may be left over from a prior truncation (and thus
2976 		 * no longer represent the actual EOF point), so we
2977 		 * definitely do not want to B_NOCACHE the backing store.
2978 		 */
2979 		if (size != bp->b_bcount) {
2980 			if (bp->b_flags & B_DELWRI) {
2981 				bp->b_flags |= B_RELBUF;
2982 				bwrite(bp);
2983 			} else if (LIST_FIRST(&bp->b_dep)) {
2984 				bp->b_flags |= B_RELBUF;
2985 				bwrite(bp);
2986 			} else {
2987 				bp->b_flags |= B_RELBUF;
2988 				brelse(bp);
2989 			}
2990 			goto loop;
2991 		}
2992 		KKASSERT(size <= bp->b_kvasize);
2993 		KASSERT(bp->b_loffset != NOOFFSET,
2994 			("getblk: no buffer offset"));
2995 
2996 		/*
2997 		 * A buffer with B_DELWRI set and B_CACHE clear must
2998 		 * be committed before we can return the buffer in
2999 		 * order to prevent the caller from issuing a read
3000 		 * ( due to B_CACHE not being set ) and overwriting
3001 		 * it.
3002 		 *
3003 		 * Most callers, including NFS and FFS, need this to
3004 		 * operate properly either because they assume they
3005 		 * can issue a read if B_CACHE is not set, or because
3006 		 * ( for example ) an uncached B_DELWRI might loop due
3007 		 * to softupdates re-dirtying the buffer.  In the latter
3008 		 * case, B_CACHE is set after the first write completes,
3009 		 * preventing further loops.
3010 		 *
3011 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3012 		 * above while extending the buffer, we cannot allow the
3013 		 * buffer to remain with B_CACHE set after the write
3014 		 * completes or it will represent a corrupt state.  To
3015 		 * deal with this we set B_NOCACHE to scrap the buffer
3016 		 * after the write.
3017 		 *
3018 		 * XXX Should this be B_RELBUF instead of B_NOCACHE?
3019 		 *     I'm not even sure this state is still possible
3020 		 *     now that getblk() writes out any dirty buffers
3021 		 *     on size changes.
3022 		 *
3023 		 * We might be able to do something fancy, like setting
3024 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3025 		 * so the below call doesn't set B_CACHE, but that gets real
3026 		 * confusing.  This is much easier.
3027 		 */
3028 
3029 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3030 			kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
3031 				"and CACHE clear, b_flags %08x\n",
3032 				bp, (uintmax_t)bp->b_loffset, bp->b_flags);
3033 			bp->b_flags |= B_NOCACHE;
3034 			bwrite(bp);
3035 			goto loop;
3036 		}
3037 	} else {
3038 		/*
3039 		 * Buffer is not in-core, create new buffer.  The buffer
3040 		 * returned by getnewbuf() is locked.  Note that the returned
3041 		 * buffer is also considered valid (not marked B_INVAL).
3042 		 *
3043 		 * Calculating the offset for the I/O requires figuring out
3044 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
3045 		 * the mount's f_iosize otherwise.  If the vnode does not
3046 		 * have an associated mount we assume that the passed size is
3047 		 * the block size.
3048 		 *
3049 		 * Note that vn_isdisk() cannot be used here since it may
3050 		 * return a failure for numerous reasons.   Note that the
3051 		 * buffer size may be larger then the block size (the caller
3052 		 * will use block numbers with the proper multiple).  Beware
3053 		 * of using any v_* fields which are part of unions.  In
3054 		 * particular, in DragonFly the mount point overloading
3055 		 * mechanism uses the namecache only and the underlying
3056 		 * directory vnode is not a special case.
3057 		 */
3058 		int bsize, maxsize;
3059 
3060 		if (vp->v_type == VBLK || vp->v_type == VCHR)
3061 			bsize = DEV_BSIZE;
3062 		else if (vp->v_mount)
3063 			bsize = vp->v_mount->mnt_stat.f_iosize;
3064 		else
3065 			bsize = size;
3066 
3067 		maxsize = size + (loffset & PAGE_MASK);
3068 		maxsize = imax(maxsize, bsize);
3069 
3070 		bp = getnewbuf(blkflags, slptimeo, size, maxsize);
3071 		if (bp == NULL) {
3072 			if (slpflags || slptimeo)
3073 				return NULL;
3074 			goto loop;
3075 		}
3076 
3077 		/*
3078 		 * Atomically insert the buffer into the hash, so that it can
3079 		 * be found by findblk().
3080 		 *
3081 		 * If bgetvp() returns non-zero a collision occured, and the
3082 		 * bp will not be associated with the vnode.
3083 		 *
3084 		 * Make sure the translation layer has been cleared.
3085 		 */
3086 		bp->b_loffset = loffset;
3087 		bp->b_bio2.bio_offset = NOOFFSET;
3088 		/* bp->b_bio2.bio_next = NULL; */
3089 
3090 		if (bgetvp(vp, bp, size)) {
3091 			bp->b_flags |= B_INVAL;
3092 			brelse(bp);
3093 			goto loop;
3094 		}
3095 
3096 		/*
3097 		 * All vnode-based buffers must be backed by a VM object.
3098 		 */
3099 		KKASSERT(vp->v_object != NULL);
3100 		bp->b_flags |= B_VMIO;
3101 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3102 
3103 		allocbuf(bp, size);
3104 	}
3105 	KKASSERT(dsched_is_clear_buf_priv(bp));
3106 	return (bp);
3107 }
3108 
3109 /*
3110  * regetblk(bp)
3111  *
3112  * Reacquire a buffer that was previously released to the locked queue,
3113  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3114  * set B_LOCKED (which handles the acquisition race).
3115  *
3116  * To this end, either B_LOCKED must be set or the dependancy list must be
3117  * non-empty.
3118  */
3119 void
3120 regetblk(struct buf *bp)
3121 {
3122 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3123 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3124 	bremfree(bp);
3125 }
3126 
3127 /*
3128  * geteblk:
3129  *
3130  *	Get an empty, disassociated buffer of given size.  The buffer is
3131  *	initially set to B_INVAL.
3132  *
3133  *	critical section protection is not required for the allocbuf()
3134  *	call because races are impossible here.
3135  */
3136 struct buf *
3137 geteblk(int size)
3138 {
3139 	struct buf *bp;
3140 	int maxsize;
3141 
3142 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3143 
3144 	while ((bp = getnewbuf(0, 0, size, maxsize)) == NULL)
3145 		;
3146 	allocbuf(bp, size);
3147 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3148 	KKASSERT(dsched_is_clear_buf_priv(bp));
3149 	return (bp);
3150 }
3151 
3152 
3153 /*
3154  * allocbuf:
3155  *
3156  *	This code constitutes the buffer memory from either anonymous system
3157  *	memory (in the case of non-VMIO operations) or from an associated
3158  *	VM object (in the case of VMIO operations).  This code is able to
3159  *	resize a buffer up or down.
3160  *
3161  *	Note that this code is tricky, and has many complications to resolve
3162  *	deadlock or inconsistant data situations.  Tread lightly!!!
3163  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
3164  *	the caller.  Calling this code willy nilly can result in the loss of
3165  *	data.
3166  *
3167  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3168  *	B_CACHE for the non-VMIO case.
3169  *
3170  *	This routine does not need to be called from a critical section but you
3171  *	must own the buffer.
3172  */
3173 int
3174 allocbuf(struct buf *bp, int size)
3175 {
3176 	int newbsize, mbsize;
3177 	int i;
3178 
3179 	if (BUF_REFCNT(bp) == 0)
3180 		panic("allocbuf: buffer not busy");
3181 
3182 	if (bp->b_kvasize < size)
3183 		panic("allocbuf: buffer too small");
3184 
3185 	if ((bp->b_flags & B_VMIO) == 0) {
3186 		caddr_t origbuf;
3187 		int origbufsize;
3188 		/*
3189 		 * Just get anonymous memory from the kernel.  Don't
3190 		 * mess with B_CACHE.
3191 		 */
3192 		mbsize = roundup2(size, DEV_BSIZE);
3193 		if (bp->b_flags & B_MALLOC)
3194 			newbsize = mbsize;
3195 		else
3196 			newbsize = round_page(size);
3197 
3198 		if (newbsize < bp->b_bufsize) {
3199 			/*
3200 			 * Malloced buffers are not shrunk
3201 			 */
3202 			if (bp->b_flags & B_MALLOC) {
3203 				if (newbsize) {
3204 					bp->b_bcount = size;
3205 				} else {
3206 					kfree(bp->b_data, M_BIOBUF);
3207 					if (bp->b_bufsize) {
3208 						atomic_subtract_long(&bufmallocspace, bp->b_bufsize);
3209 						bufspacewakeup();
3210 						bp->b_bufsize = 0;
3211 					}
3212 					bp->b_data = bp->b_kvabase;
3213 					bp->b_bcount = 0;
3214 					bp->b_flags &= ~B_MALLOC;
3215 				}
3216 				return 1;
3217 			}
3218 			vm_hold_free_pages(
3219 			    bp,
3220 			    (vm_offset_t) bp->b_data + newbsize,
3221 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3222 		} else if (newbsize > bp->b_bufsize) {
3223 			/*
3224 			 * We only use malloced memory on the first allocation.
3225 			 * and revert to page-allocated memory when the buffer
3226 			 * grows.
3227 			 */
3228 			if ((bufmallocspace < maxbufmallocspace) &&
3229 				(bp->b_bufsize == 0) &&
3230 				(mbsize <= PAGE_SIZE/2)) {
3231 
3232 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3233 				bp->b_bufsize = mbsize;
3234 				bp->b_bcount = size;
3235 				bp->b_flags |= B_MALLOC;
3236 				atomic_add_long(&bufmallocspace, mbsize);
3237 				return 1;
3238 			}
3239 			origbuf = NULL;
3240 			origbufsize = 0;
3241 			/*
3242 			 * If the buffer is growing on its other-than-first
3243 			 * allocation, then we revert to the page-allocation
3244 			 * scheme.
3245 			 */
3246 			if (bp->b_flags & B_MALLOC) {
3247 				origbuf = bp->b_data;
3248 				origbufsize = bp->b_bufsize;
3249 				bp->b_data = bp->b_kvabase;
3250 				if (bp->b_bufsize) {
3251 					atomic_subtract_long(&bufmallocspace,
3252 							     bp->b_bufsize);
3253 					bufspacewakeup();
3254 					bp->b_bufsize = 0;
3255 				}
3256 				bp->b_flags &= ~B_MALLOC;
3257 				newbsize = round_page(newbsize);
3258 			}
3259 			vm_hold_load_pages(
3260 			    bp,
3261 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3262 			    (vm_offset_t) bp->b_data + newbsize);
3263 			if (origbuf) {
3264 				bcopy(origbuf, bp->b_data, origbufsize);
3265 				kfree(origbuf, M_BIOBUF);
3266 			}
3267 		}
3268 	} else {
3269 		vm_page_t m;
3270 		int desiredpages;
3271 
3272 		newbsize = roundup2(size, DEV_BSIZE);
3273 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3274 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3275 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3276 
3277 		if (bp->b_flags & B_MALLOC)
3278 			panic("allocbuf: VMIO buffer can't be malloced");
3279 		/*
3280 		 * Set B_CACHE initially if buffer is 0 length or will become
3281 		 * 0-length.
3282 		 */
3283 		if (size == 0 || bp->b_bufsize == 0)
3284 			bp->b_flags |= B_CACHE;
3285 
3286 		if (newbsize < bp->b_bufsize) {
3287 			/*
3288 			 * DEV_BSIZE aligned new buffer size is less then the
3289 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3290 			 * if we have to remove any pages.
3291 			 */
3292 			if (desiredpages < bp->b_xio.xio_npages) {
3293 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3294 					/*
3295 					 * the page is not freed here -- it
3296 					 * is the responsibility of
3297 					 * vnode_pager_setsize
3298 					 */
3299 					m = bp->b_xio.xio_pages[i];
3300 					KASSERT(m != bogus_page,
3301 					    ("allocbuf: bogus page found"));
3302 					vm_page_busy_wait(m, TRUE, "biodep");
3303 					bp->b_xio.xio_pages[i] = NULL;
3304 					vm_page_unwire(m, 0);
3305 					vm_page_wakeup(m);
3306 				}
3307 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3308 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3309 				bp->b_xio.xio_npages = desiredpages;
3310 			}
3311 		} else if (size > bp->b_bcount) {
3312 			/*
3313 			 * We are growing the buffer, possibly in a
3314 			 * byte-granular fashion.
3315 			 */
3316 			struct vnode *vp;
3317 			vm_object_t obj;
3318 			vm_offset_t toff;
3319 			vm_offset_t tinc;
3320 
3321 			/*
3322 			 * Step 1, bring in the VM pages from the object,
3323 			 * allocating them if necessary.  We must clear
3324 			 * B_CACHE if these pages are not valid for the
3325 			 * range covered by the buffer.
3326 			 *
3327 			 * critical section protection is required to protect
3328 			 * against interrupts unbusying and freeing pages
3329 			 * between our vm_page_lookup() and our
3330 			 * busycheck/wiring call.
3331 			 */
3332 			vp = bp->b_vp;
3333 			obj = vp->v_object;
3334 
3335 			vm_object_hold(obj);
3336 			while (bp->b_xio.xio_npages < desiredpages) {
3337 				vm_page_t m;
3338 				vm_pindex_t pi;
3339 				int error;
3340 
3341 				pi = OFF_TO_IDX(bp->b_loffset) +
3342 				     bp->b_xio.xio_npages;
3343 
3344 				/*
3345 				 * Blocking on m->busy might lead to a
3346 				 * deadlock:
3347 				 *
3348 				 *  vm_fault->getpages->cluster_read->allocbuf
3349 				 */
3350 				m = vm_page_lookup_busy_try(obj, pi, FALSE,
3351 							    &error);
3352 				if (error) {
3353 					vm_page_sleep_busy(m, FALSE, "pgtblk");
3354 					continue;
3355 				}
3356 				if (m == NULL) {
3357 					/*
3358 					 * note: must allocate system pages
3359 					 * since blocking here could intefere
3360 					 * with paging I/O, no matter which
3361 					 * process we are.
3362 					 */
3363 					m = bio_page_alloc(bp, obj, pi, desiredpages - bp->b_xio.xio_npages);
3364 					if (m) {
3365 						vm_page_wire(m);
3366 						vm_page_flag_clear(m, PG_ZERO);
3367 						vm_page_wakeup(m);
3368 						bp->b_flags &= ~B_CACHE;
3369 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3370 						++bp->b_xio.xio_npages;
3371 					}
3372 					continue;
3373 				}
3374 
3375 				/*
3376 				 * We found a page and were able to busy it.
3377 				 */
3378 				vm_page_flag_clear(m, PG_ZERO);
3379 				vm_page_wire(m);
3380 				vm_page_wakeup(m);
3381 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3382 				++bp->b_xio.xio_npages;
3383 				if (bp->b_act_count < m->act_count)
3384 					bp->b_act_count = m->act_count;
3385 			}
3386 			vm_object_drop(obj);
3387 
3388 			/*
3389 			 * Step 2.  We've loaded the pages into the buffer,
3390 			 * we have to figure out if we can still have B_CACHE
3391 			 * set.  Note that B_CACHE is set according to the
3392 			 * byte-granular range ( bcount and size ), not the
3393 			 * aligned range ( newbsize ).
3394 			 *
3395 			 * The VM test is against m->valid, which is DEV_BSIZE
3396 			 * aligned.  Needless to say, the validity of the data
3397 			 * needs to also be DEV_BSIZE aligned.  Note that this
3398 			 * fails with NFS if the server or some other client
3399 			 * extends the file's EOF.  If our buffer is resized,
3400 			 * B_CACHE may remain set! XXX
3401 			 */
3402 
3403 			toff = bp->b_bcount;
3404 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3405 
3406 			while ((bp->b_flags & B_CACHE) && toff < size) {
3407 				vm_pindex_t pi;
3408 
3409 				if (tinc > (size - toff))
3410 					tinc = size - toff;
3411 
3412 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3413 				    PAGE_SHIFT;
3414 
3415 				vfs_buf_test_cache(
3416 				    bp,
3417 				    bp->b_loffset,
3418 				    toff,
3419 				    tinc,
3420 				    bp->b_xio.xio_pages[pi]
3421 				);
3422 				toff += tinc;
3423 				tinc = PAGE_SIZE;
3424 			}
3425 
3426 			/*
3427 			 * Step 3, fixup the KVM pmap.  Remember that
3428 			 * bp->b_data is relative to bp->b_loffset, but
3429 			 * bp->b_loffset may be offset into the first page.
3430 			 */
3431 
3432 			bp->b_data = (caddr_t)
3433 			    trunc_page((vm_offset_t)bp->b_data);
3434 			pmap_qenter(
3435 			    (vm_offset_t)bp->b_data,
3436 			    bp->b_xio.xio_pages,
3437 			    bp->b_xio.xio_npages
3438 			);
3439 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3440 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3441 		}
3442 	}
3443 
3444 	/* adjust space use on already-dirty buffer */
3445 	if (bp->b_flags & B_DELWRI) {
3446 		/* dirtykvaspace unchanged */
3447 		atomic_add_long(&dirtybufspace, newbsize - bp->b_bufsize);
3448 		if (bp->b_flags & B_HEAVY) {
3449 			atomic_add_long(&dirtybufspacehw,
3450 					newbsize - bp->b_bufsize);
3451 		}
3452 	}
3453 	if (newbsize < bp->b_bufsize)
3454 		bufspacewakeup();
3455 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3456 	bp->b_bcount = size;		/* requested buffer size	*/
3457 	return 1;
3458 }
3459 
3460 /*
3461  * biowait:
3462  *
3463  *	Wait for buffer I/O completion, returning error status. B_EINTR
3464  *	is converted into an EINTR error but not cleared (since a chain
3465  *	of biowait() calls may occur).
3466  *
3467  *	On return bpdone() will have been called but the buffer will remain
3468  *	locked and will not have been brelse()'d.
3469  *
3470  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3471  *	likely still in progress on return.
3472  *
3473  *	NOTE!  This operation is on a BIO, not a BUF.
3474  *
3475  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3476  */
3477 static __inline int
3478 _biowait(struct bio *bio, const char *wmesg, int to)
3479 {
3480 	struct buf *bp = bio->bio_buf;
3481 	u_int32_t flags;
3482 	u_int32_t nflags;
3483 	int error;
3484 
3485 	KKASSERT(bio == &bp->b_bio1);
3486 	for (;;) {
3487 		flags = bio->bio_flags;
3488 		if (flags & BIO_DONE)
3489 			break;
3490 		nflags = flags | BIO_WANT;
3491 		tsleep_interlock(bio, 0);
3492 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3493 			if (wmesg)
3494 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3495 			else if (bp->b_cmd == BUF_CMD_READ)
3496 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3497 			else
3498 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3499 			if (error) {
3500 				kprintf("tsleep error biowait %d\n", error);
3501 				return (error);
3502 			}
3503 		}
3504 	}
3505 
3506 	/*
3507 	 * Finish up.
3508 	 */
3509 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3510 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3511 	if (bp->b_flags & B_EINTR)
3512 		return (EINTR);
3513 	if (bp->b_flags & B_ERROR)
3514 		return (bp->b_error ? bp->b_error : EIO);
3515 	return (0);
3516 }
3517 
3518 int
3519 biowait(struct bio *bio, const char *wmesg)
3520 {
3521 	return(_biowait(bio, wmesg, 0));
3522 }
3523 
3524 int
3525 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3526 {
3527 	return(_biowait(bio, wmesg, to));
3528 }
3529 
3530 /*
3531  * This associates a tracking count with an I/O.  vn_strategy() and
3532  * dev_dstrategy() do this automatically but there are a few cases
3533  * where a vnode or device layer is bypassed when a block translation
3534  * is cached.  In such cases bio_start_transaction() may be called on
3535  * the bypassed layers so the system gets an I/O in progress indication
3536  * for those higher layers.
3537  */
3538 void
3539 bio_start_transaction(struct bio *bio, struct bio_track *track)
3540 {
3541 	bio->bio_track = track;
3542 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3543 		dsched_new_buf(bio->bio_buf);
3544 	bio_track_ref(track);
3545 }
3546 
3547 /*
3548  * Initiate I/O on a vnode.
3549  *
3550  * SWAPCACHE OPERATION:
3551  *
3552  *	Real buffer cache buffers have a non-NULL bp->b_vp.  Unfortunately
3553  *	devfs also uses b_vp for fake buffers so we also have to check
3554  *	that B_PAGING is 0.  In this case the passed 'vp' is probably the
3555  *	underlying block device.  The swap assignments are related to the
3556  *	buffer cache buffer's b_vp, not the passed vp.
3557  *
3558  *	The passed vp == bp->b_vp only in the case where the strategy call
3559  *	is made on the vp itself for its own buffers (a regular file or
3560  *	block device vp).  The filesystem usually then re-calls vn_strategy()
3561  *	after translating the request to an underlying device.
3562  *
3563  *	Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3564  *	underlying buffer cache buffers.
3565  *
3566  *	We can only deal with page-aligned buffers at the moment, because
3567  *	we can't tell what the real dirty state for pages straddling a buffer
3568  *	are.
3569  *
3570  *	In order to call swap_pager_strategy() we must provide the VM object
3571  *	and base offset for the underlying buffer cache pages so it can find
3572  *	the swap blocks.
3573  */
3574 void
3575 vn_strategy(struct vnode *vp, struct bio *bio)
3576 {
3577 	struct bio_track *track;
3578 	struct buf *bp = bio->bio_buf;
3579 
3580 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3581 
3582 	/*
3583 	 * Set when an I/O is issued on the bp.  Cleared by consumers
3584 	 * (aka HAMMER), allowing the consumer to determine if I/O had
3585 	 * actually occurred.
3586 	 */
3587 	bp->b_flags |= B_IODEBUG;
3588 
3589 	/*
3590 	 * Handle the swap cache intercept.
3591 	 */
3592 	if (vn_cache_strategy(vp, bio))
3593 		return;
3594 
3595 	/*
3596 	 * Otherwise do the operation through the filesystem
3597 	 */
3598         if (bp->b_cmd == BUF_CMD_READ)
3599                 track = &vp->v_track_read;
3600         else
3601                 track = &vp->v_track_write;
3602 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3603 	bio->bio_track = track;
3604 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3605 		dsched_new_buf(bio->bio_buf);
3606 	bio_track_ref(track);
3607         vop_strategy(*vp->v_ops, vp, bio);
3608 }
3609 
3610 static void vn_cache_strategy_callback(struct bio *bio);
3611 
3612 int
3613 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3614 {
3615 	struct buf *bp = bio->bio_buf;
3616 	struct bio *nbio;
3617 	vm_object_t object;
3618 	vm_page_t m;
3619 	int i;
3620 
3621 	/*
3622 	 * Stop using swapcache if paniced, dumping, or dumped
3623 	 */
3624 	if (panicstr || dumping)
3625 		return(0);
3626 
3627 	/*
3628 	 * Is this buffer cache buffer suitable for reading from
3629 	 * the swap cache?
3630 	 */
3631 	if (vm_swapcache_read_enable == 0 ||
3632 	    bp->b_cmd != BUF_CMD_READ ||
3633 	    ((bp->b_flags & B_CLUSTER) == 0 &&
3634 	     (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3635 	    ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3636 	    (bp->b_bcount & PAGE_MASK) != 0) {
3637 		return(0);
3638 	}
3639 
3640 	/*
3641 	 * Figure out the original VM object (it will match the underlying
3642 	 * VM pages).  Note that swap cached data uses page indices relative
3643 	 * to that object, not relative to bio->bio_offset.
3644 	 */
3645 	if (bp->b_flags & B_CLUSTER)
3646 		object = vp->v_object;
3647 	else
3648 		object = bp->b_vp->v_object;
3649 
3650 	/*
3651 	 * In order to be able to use the swap cache all underlying VM
3652 	 * pages must be marked as such, and we can't have any bogus pages.
3653 	 */
3654 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3655 		m = bp->b_xio.xio_pages[i];
3656 		if ((m->flags & PG_SWAPPED) == 0)
3657 			break;
3658 		if (m == bogus_page)
3659 			break;
3660 	}
3661 
3662 	/*
3663 	 * If we are good then issue the I/O using swap_pager_strategy().
3664 	 *
3665 	 * We can only do this if the buffer actually supports object-backed
3666 	 * I/O.  If it doesn't npages will be 0.
3667 	 */
3668 	if (i && i == bp->b_xio.xio_npages) {
3669 		m = bp->b_xio.xio_pages[0];
3670 		nbio = push_bio(bio);
3671 		nbio->bio_done = vn_cache_strategy_callback;
3672 		nbio->bio_offset = ptoa(m->pindex);
3673 		KKASSERT(m->object == object);
3674 		swap_pager_strategy(object, nbio);
3675 		return(1);
3676 	}
3677 	return(0);
3678 }
3679 
3680 /*
3681  * This is a bit of a hack but since the vn_cache_strategy() function can
3682  * override a VFS's strategy function we must make sure that the bio, which
3683  * is probably bio2, doesn't leak an unexpected offset value back to the
3684  * filesystem.  The filesystem (e.g. UFS) might otherwise assume that the
3685  * bio went through its own file strategy function and the the bio2 offset
3686  * is a cached disk offset when, in fact, it isn't.
3687  */
3688 static void
3689 vn_cache_strategy_callback(struct bio *bio)
3690 {
3691 	bio->bio_offset = NOOFFSET;
3692 	biodone(pop_bio(bio));
3693 }
3694 
3695 /*
3696  * bpdone:
3697  *
3698  *	Finish I/O on a buffer after all BIOs have been processed.
3699  *	Called when the bio chain is exhausted or by biowait.  If called
3700  *	by biowait, elseit is typically 0.
3701  *
3702  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3703  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3704  *	assuming B_INVAL is clear.
3705  *
3706  *	For the VMIO case, we set B_CACHE if the op was a read and no
3707  *	read error occured, or if the op was a write.  B_CACHE is never
3708  *	set if the buffer is invalid or otherwise uncacheable.
3709  *
3710  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3711  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3712  *	in the biodone routine.
3713  *
3714  *	bpdone is responsible for calling bundirty() on the buffer after a
3715  *	successful write.  We previously did this prior to initiating the
3716  *	write under the assumption that the buffer might be dirtied again
3717  *	while the write was in progress, however doing it before-hand creates
3718  *	a race condition prior to the call to vn_strategy() where the
3719  *	filesystem may not be aware that a dirty buffer is present.
3720  *	It should not be possible for the buffer or its underlying pages to
3721  *	be redirtied prior to bpdone()'s unbusying of the underlying VM
3722  *	pages.
3723  */
3724 void
3725 bpdone(struct buf *bp, int elseit)
3726 {
3727 	buf_cmd_t cmd;
3728 
3729 	KASSERT(BUF_REFCNTNB(bp) > 0,
3730 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3731 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3732 		("biodone: bp %p already done!", bp));
3733 
3734 	/*
3735 	 * No more BIOs are left.  All completion functions have been dealt
3736 	 * with, now we clean up the buffer.
3737 	 */
3738 	cmd = bp->b_cmd;
3739 	bp->b_cmd = BUF_CMD_DONE;
3740 
3741 	/*
3742 	 * Only reads and writes are processed past this point.
3743 	 */
3744 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3745 		if (cmd == BUF_CMD_FREEBLKS)
3746 			bp->b_flags |= B_NOCACHE;
3747 		if (elseit)
3748 			brelse(bp);
3749 		return;
3750 	}
3751 
3752 	/*
3753 	 * A failed write must re-dirty the buffer unless B_INVAL
3754 	 * was set.
3755 	 *
3756 	 * A successful write must clear the dirty flag.  This is done after
3757 	 * the write to ensure that the buffer remains on the vnode's dirty
3758 	 * list for filesystem interlocks / checks until the write is actually
3759 	 * complete.  HAMMER2 is sensitive to this issue.
3760 	 *
3761 	 * Only applicable to normal buffers (with VPs).  vinum buffers may
3762 	 * not have a vp.
3763 	 *
3764 	 * Must be done prior to calling buf_complete() as the callback might
3765 	 * re-dirty the buffer.
3766 	 */
3767 	if (cmd == BUF_CMD_WRITE) {
3768 		if ((bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3769 			bp->b_flags &= ~B_NOCACHE;
3770 			if (bp->b_vp)
3771 				bdirty(bp);
3772 		} else {
3773 			if (bp->b_vp)
3774 				bundirty(bp);
3775 		}
3776 	}
3777 
3778 	/*
3779 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3780 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3781 	 */
3782 	if (LIST_FIRST(&bp->b_dep) != NULL)
3783 		buf_complete(bp);
3784 
3785 	if (bp->b_flags & B_VMIO) {
3786 		int i;
3787 		vm_ooffset_t foff;
3788 		vm_page_t m;
3789 		vm_object_t obj;
3790 		int iosize;
3791 		struct vnode *vp = bp->b_vp;
3792 
3793 		obj = vp->v_object;
3794 
3795 #if defined(VFS_BIO_DEBUG)
3796 		if (vp->v_auxrefs == 0)
3797 			panic("biodone: zero vnode hold count");
3798 		if ((vp->v_flag & VOBJBUF) == 0)
3799 			panic("biodone: vnode is not setup for merged cache");
3800 #endif
3801 
3802 		foff = bp->b_loffset;
3803 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3804 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3805 
3806 #if defined(VFS_BIO_DEBUG)
3807 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3808 			kprintf("biodone: paging in progress(%d) < "
3809 				"bp->b_xio.xio_npages(%d)\n",
3810 				obj->paging_in_progress,
3811 				bp->b_xio.xio_npages);
3812 		}
3813 #endif
3814 
3815 		/*
3816 		 * Set B_CACHE if the op was a normal read and no error
3817 		 * occured.  B_CACHE is set for writes in the b*write()
3818 		 * routines.
3819 		 */
3820 		iosize = bp->b_bcount - bp->b_resid;
3821 		if (cmd == BUF_CMD_READ &&
3822 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3823 			bp->b_flags |= B_CACHE;
3824 		}
3825 
3826 		vm_object_hold(obj);
3827 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3828 			int bogusflag = 0;
3829 			int resid;
3830 
3831 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3832 			if (resid > iosize)
3833 				resid = iosize;
3834 
3835 			/*
3836 			 * cleanup bogus pages, restoring the originals.  Since
3837 			 * the originals should still be wired, we don't have
3838 			 * to worry about interrupt/freeing races destroying
3839 			 * the VM object association.
3840 			 */
3841 			m = bp->b_xio.xio_pages[i];
3842 			if (m == bogus_page) {
3843 				bogusflag = 1;
3844 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3845 				if (m == NULL)
3846 					panic("biodone: page disappeared");
3847 				bp->b_xio.xio_pages[i] = m;
3848 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3849 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3850 			}
3851 #if defined(VFS_BIO_DEBUG)
3852 			if (OFF_TO_IDX(foff) != m->pindex) {
3853 				kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3854 					"mismatch\n",
3855 					(unsigned long)foff, (long)m->pindex);
3856 			}
3857 #endif
3858 
3859 			/*
3860 			 * In the write case, the valid and clean bits are
3861 			 * already changed correctly (see bdwrite()), so we
3862 			 * only need to do this here in the read case.
3863 			 */
3864 			vm_page_busy_wait(m, FALSE, "bpdpgw");
3865 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3866 				vfs_clean_one_page(bp, i, m);
3867 			}
3868 			vm_page_flag_clear(m, PG_ZERO);
3869 
3870 			/*
3871 			 * when debugging new filesystems or buffer I/O
3872 			 * methods, this is the most common error that pops
3873 			 * up.  if you see this, you have not set the page
3874 			 * busy flag correctly!!!
3875 			 */
3876 			if (m->busy == 0) {
3877 				kprintf("biodone: page busy < 0, "
3878 				    "pindex: %d, foff: 0x(%x,%x), "
3879 				    "resid: %d, index: %d\n",
3880 				    (int) m->pindex, (int)(foff >> 32),
3881 						(int) foff & 0xffffffff, resid, i);
3882 				if (!vn_isdisk(vp, NULL))
3883 					kprintf(" iosize: %ld, loffset: %lld, "
3884 						"flags: 0x%08x, npages: %d\n",
3885 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3886 					    (long long)bp->b_loffset,
3887 					    bp->b_flags, bp->b_xio.xio_npages);
3888 				else
3889 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3890 					    (long long)bp->b_loffset,
3891 					    bp->b_flags, bp->b_xio.xio_npages);
3892 				kprintf(" valid: 0x%x, dirty: 0x%x, "
3893 					"wired: %d\n",
3894 					m->valid, m->dirty,
3895 					m->wire_count);
3896 				panic("biodone: page busy < 0");
3897 			}
3898 			vm_page_io_finish(m);
3899 			vm_page_wakeup(m);
3900 			vm_object_pip_wakeup(obj);
3901 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3902 			iosize -= resid;
3903 		}
3904 		bp->b_flags &= ~B_HASBOGUS;
3905 		vm_object_drop(obj);
3906 	}
3907 
3908 	/*
3909 	 * Finish up by releasing the buffer.  There are no more synchronous
3910 	 * or asynchronous completions, those were handled by bio_done
3911 	 * callbacks.
3912 	 */
3913 	if (elseit) {
3914 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3915 			brelse(bp);
3916 		else
3917 			bqrelse(bp);
3918 	}
3919 }
3920 
3921 /*
3922  * Normal biodone.
3923  */
3924 void
3925 biodone(struct bio *bio)
3926 {
3927 	struct buf *bp = bio->bio_buf;
3928 
3929 	runningbufwakeup(bp);
3930 
3931 	/*
3932 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3933 	 */
3934 	while (bio) {
3935 		biodone_t *done_func;
3936 		struct bio_track *track;
3937 
3938 		/*
3939 		 * BIO tracking.  Most but not all BIOs are tracked.
3940 		 */
3941 		if ((track = bio->bio_track) != NULL) {
3942 			bio_track_rel(track);
3943 			bio->bio_track = NULL;
3944 		}
3945 
3946 		/*
3947 		 * A bio_done function terminates the loop.  The function
3948 		 * will be responsible for any further chaining and/or
3949 		 * buffer management.
3950 		 *
3951 		 * WARNING!  The done function can deallocate the buffer!
3952 		 */
3953 		if ((done_func = bio->bio_done) != NULL) {
3954 			bio->bio_done = NULL;
3955 			done_func(bio);
3956 			return;
3957 		}
3958 		bio = bio->bio_prev;
3959 	}
3960 
3961 	/*
3962 	 * If we've run out of bio's do normal [a]synchronous completion.
3963 	 */
3964 	bpdone(bp, 1);
3965 }
3966 
3967 /*
3968  * Synchronous biodone - this terminates a synchronous BIO.
3969  *
3970  * bpdone() is called with elseit=FALSE, leaving the buffer completed
3971  * but still locked.  The caller must brelse() the buffer after waiting
3972  * for completion.
3973  */
3974 void
3975 biodone_sync(struct bio *bio)
3976 {
3977 	struct buf *bp = bio->bio_buf;
3978 	int flags;
3979 	int nflags;
3980 
3981 	KKASSERT(bio == &bp->b_bio1);
3982 	bpdone(bp, 0);
3983 
3984 	for (;;) {
3985 		flags = bio->bio_flags;
3986 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
3987 
3988 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3989 			if (flags & BIO_WANT)
3990 				wakeup(bio);
3991 			break;
3992 		}
3993 	}
3994 }
3995 
3996 /*
3997  * vfs_unbusy_pages:
3998  *
3999  *	This routine is called in lieu of iodone in the case of
4000  *	incomplete I/O.  This keeps the busy status for pages
4001  *	consistant.
4002  */
4003 void
4004 vfs_unbusy_pages(struct buf *bp)
4005 {
4006 	int i;
4007 
4008 	runningbufwakeup(bp);
4009 
4010 	if (bp->b_flags & B_VMIO) {
4011 		struct vnode *vp = bp->b_vp;
4012 		vm_object_t obj;
4013 
4014 		obj = vp->v_object;
4015 		vm_object_hold(obj);
4016 
4017 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4018 			vm_page_t m = bp->b_xio.xio_pages[i];
4019 
4020 			/*
4021 			 * When restoring bogus changes the original pages
4022 			 * should still be wired, so we are in no danger of
4023 			 * losing the object association and do not need
4024 			 * critical section protection particularly.
4025 			 */
4026 			if (m == bogus_page) {
4027 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
4028 				if (!m) {
4029 					panic("vfs_unbusy_pages: page missing");
4030 				}
4031 				bp->b_xio.xio_pages[i] = m;
4032 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4033 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4034 			}
4035 			vm_page_busy_wait(m, FALSE, "bpdpgw");
4036 			vm_page_flag_clear(m, PG_ZERO);
4037 			vm_page_io_finish(m);
4038 			vm_page_wakeup(m);
4039 			vm_object_pip_wakeup(obj);
4040 		}
4041 		bp->b_flags &= ~B_HASBOGUS;
4042 		vm_object_drop(obj);
4043 	}
4044 }
4045 
4046 /*
4047  * vfs_busy_pages:
4048  *
4049  *	This routine is called before a device strategy routine.
4050  *	It is used to tell the VM system that paging I/O is in
4051  *	progress, and treat the pages associated with the buffer
4052  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
4053  *	flag is handled to make sure that the object doesn't become
4054  *	inconsistant.
4055  *
4056  *	Since I/O has not been initiated yet, certain buffer flags
4057  *	such as B_ERROR or B_INVAL may be in an inconsistant state
4058  *	and should be ignored.
4059  */
4060 void
4061 vfs_busy_pages(struct vnode *vp, struct buf *bp)
4062 {
4063 	int i, bogus;
4064 	struct lwp *lp = curthread->td_lwp;
4065 
4066 	/*
4067 	 * The buffer's I/O command must already be set.  If reading,
4068 	 * B_CACHE must be 0 (double check against callers only doing
4069 	 * I/O when B_CACHE is 0).
4070 	 */
4071 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4072 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
4073 
4074 	if (bp->b_flags & B_VMIO) {
4075 		vm_object_t obj;
4076 
4077 		obj = vp->v_object;
4078 		KASSERT(bp->b_loffset != NOOFFSET,
4079 			("vfs_busy_pages: no buffer offset"));
4080 
4081 		/*
4082 		 * Busy all the pages.  We have to busy them all at once
4083 		 * to avoid deadlocks.
4084 		 */
4085 retry:
4086 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4087 			vm_page_t m = bp->b_xio.xio_pages[i];
4088 
4089 			if (vm_page_busy_try(m, FALSE)) {
4090 				vm_page_sleep_busy(m, FALSE, "vbpage");
4091 				while (--i >= 0)
4092 					vm_page_wakeup(bp->b_xio.xio_pages[i]);
4093 				goto retry;
4094 			}
4095 		}
4096 
4097 		/*
4098 		 * Setup for I/O, soft-busy the page right now because
4099 		 * the next loop may block.
4100 		 */
4101 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4102 			vm_page_t m = bp->b_xio.xio_pages[i];
4103 
4104 			vm_page_flag_clear(m, PG_ZERO);
4105 			if ((bp->b_flags & B_CLUSTER) == 0) {
4106 				vm_object_pip_add(obj, 1);
4107 				vm_page_io_start(m);
4108 			}
4109 		}
4110 
4111 		/*
4112 		 * Adjust protections for I/O and do bogus-page mapping.
4113 		 * Assume that vm_page_protect() can block (it can block
4114 		 * if VM_PROT_NONE, don't take any chances regardless).
4115 		 *
4116 		 * In particular note that for writes we must incorporate
4117 		 * page dirtyness from the VM system into the buffer's
4118 		 * dirty range.
4119 		 *
4120 		 * For reads we theoretically must incorporate page dirtyness
4121 		 * from the VM system to determine if the page needs bogus
4122 		 * replacement, but we shortcut the test by simply checking
4123 		 * that all m->valid bits are set, indicating that the page
4124 		 * is fully valid and does not need to be re-read.  For any
4125 		 * VM system dirtyness the page will also be fully valid
4126 		 * since it was mapped at one point.
4127 		 */
4128 		bogus = 0;
4129 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4130 			vm_page_t m = bp->b_xio.xio_pages[i];
4131 
4132 			vm_page_flag_clear(m, PG_ZERO);	/* XXX */
4133 			if (bp->b_cmd == BUF_CMD_WRITE) {
4134 				/*
4135 				 * When readying a vnode-backed buffer for
4136 				 * a write we must zero-fill any invalid
4137 				 * portions of the backing VM pages, mark
4138 				 * it valid and clear related dirty bits.
4139 				 *
4140 				 * vfs_clean_one_page() incorporates any
4141 				 * VM dirtyness and updates the b_dirtyoff
4142 				 * range (after we've made the page RO).
4143 				 *
4144 				 * It is also expected that the pmap modified
4145 				 * bit has already been cleared by the
4146 				 * vm_page_protect().  We may not be able
4147 				 * to clear all dirty bits for a page if it
4148 				 * was also memory mapped (NFS).
4149 				 *
4150 				 * Finally be sure to unassign any swap-cache
4151 				 * backing store as it is now stale.
4152 				 */
4153 				vm_page_protect(m, VM_PROT_READ);
4154 				vfs_clean_one_page(bp, i, m);
4155 				swap_pager_unswapped(m);
4156 			} else if (m->valid == VM_PAGE_BITS_ALL) {
4157 				/*
4158 				 * When readying a vnode-backed buffer for
4159 				 * read we must replace any dirty pages with
4160 				 * a bogus page so dirty data is not destroyed
4161 				 * when filling gaps.
4162 				 *
4163 				 * To avoid testing whether the page is
4164 				 * dirty we instead test that the page was
4165 				 * at some point mapped (m->valid fully
4166 				 * valid) with the understanding that
4167 				 * this also covers the dirty case.
4168 				 */
4169 				bp->b_xio.xio_pages[i] = bogus_page;
4170 				bp->b_flags |= B_HASBOGUS;
4171 				bogus++;
4172 			} else if (m->valid & m->dirty) {
4173 				/*
4174 				 * This case should not occur as partial
4175 				 * dirtyment can only happen if the buffer
4176 				 * is B_CACHE, and this code is not entered
4177 				 * if the buffer is B_CACHE.
4178 				 */
4179 				kprintf("Warning: vfs_busy_pages - page not "
4180 					"fully valid! loff=%jx bpf=%08x "
4181 					"idx=%d val=%02x dir=%02x\n",
4182 					(uintmax_t)bp->b_loffset, bp->b_flags,
4183 					i, m->valid, m->dirty);
4184 				vm_page_protect(m, VM_PROT_NONE);
4185 			} else {
4186 				/*
4187 				 * The page is not valid and can be made
4188 				 * part of the read.
4189 				 */
4190 				vm_page_protect(m, VM_PROT_NONE);
4191 			}
4192 			vm_page_wakeup(m);
4193 		}
4194 		if (bogus) {
4195 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4196 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4197 		}
4198 	}
4199 
4200 	/*
4201 	 * This is the easiest place to put the process accounting for the I/O
4202 	 * for now.
4203 	 */
4204 	if (lp != NULL) {
4205 		if (bp->b_cmd == BUF_CMD_READ)
4206 			lp->lwp_ru.ru_inblock++;
4207 		else
4208 			lp->lwp_ru.ru_oublock++;
4209 	}
4210 }
4211 
4212 /*
4213  * Tell the VM system that the pages associated with this buffer
4214  * are clean.  This is used for delayed writes where the data is
4215  * going to go to disk eventually without additional VM intevention.
4216  *
4217  * NOTE: While we only really need to clean through to b_bcount, we
4218  *	 just go ahead and clean through to b_bufsize.
4219  */
4220 static void
4221 vfs_clean_pages(struct buf *bp)
4222 {
4223 	vm_page_t m;
4224 	int i;
4225 
4226 	if ((bp->b_flags & B_VMIO) == 0)
4227 		return;
4228 
4229 	KASSERT(bp->b_loffset != NOOFFSET,
4230 		("vfs_clean_pages: no buffer offset"));
4231 
4232 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
4233 		m = bp->b_xio.xio_pages[i];
4234 		vfs_clean_one_page(bp, i, m);
4235 	}
4236 }
4237 
4238 /*
4239  * vfs_clean_one_page:
4240  *
4241  *	Set the valid bits and clear the dirty bits in a page within a
4242  *	buffer.  The range is restricted to the buffer's size and the
4243  *	buffer's logical offset might index into the first page.
4244  *
4245  *	The caller has busied or soft-busied the page and it is not mapped,
4246  *	test and incorporate the dirty bits into b_dirtyoff/end before
4247  *	clearing them.  Note that we need to clear the pmap modified bits
4248  *	after determining the the page was dirty, vm_page_set_validclean()
4249  *	does not do it for us.
4250  *
4251  *	This routine is typically called after a read completes (dirty should
4252  *	be zero in that case as we are not called on bogus-replace pages),
4253  *	or before a write is initiated.
4254  */
4255 static void
4256 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4257 {
4258 	int bcount;
4259 	int xoff;
4260 	int soff;
4261 	int eoff;
4262 
4263 	/*
4264 	 * Calculate offset range within the page but relative to buffer's
4265 	 * loffset.  loffset might be offset into the first page.
4266 	 */
4267 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4268 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4269 
4270 	if (pageno == 0) {
4271 		soff = xoff;
4272 		eoff = PAGE_SIZE;
4273 	} else {
4274 		soff = (pageno << PAGE_SHIFT);
4275 		eoff = soff + PAGE_SIZE;
4276 	}
4277 	if (eoff > bcount)
4278 		eoff = bcount;
4279 	if (soff >= eoff)
4280 		return;
4281 
4282 	/*
4283 	 * Test dirty bits and adjust b_dirtyoff/end.
4284 	 *
4285 	 * If dirty pages are incorporated into the bp any prior
4286 	 * B_NEEDCOMMIT state (NFS) must be cleared because the
4287 	 * caller has not taken into account the new dirty data.
4288 	 *
4289 	 * If the page was memory mapped the dirty bits might go beyond the
4290 	 * end of the buffer, but we can't really make the assumption that
4291 	 * a file EOF straddles the buffer (even though this is the case for
4292 	 * NFS if B_NEEDCOMMIT is also set).  So for the purposes of clearing
4293 	 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4294 	 * This also saves some console spam.
4295 	 *
4296 	 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4297 	 * NFS can handle huge commits but not huge writes.
4298 	 */
4299 	vm_page_test_dirty(m);
4300 	if (m->dirty) {
4301 		if ((bp->b_flags & B_NEEDCOMMIT) &&
4302 		    (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4303 			if (debug_commit)
4304 				kprintf("Warning: vfs_clean_one_page: bp %p "
4305 				    "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4306 				    " cmd %d vd %02x/%02x x/s/e %d %d %d "
4307 				    "doff/end %d %d\n",
4308 				    bp, (uintmax_t)bp->b_loffset, bp->b_bcount,
4309 				    bp->b_flags, bp->b_cmd,
4310 				    m->valid, m->dirty, xoff, soff, eoff,
4311 				    bp->b_dirtyoff, bp->b_dirtyend);
4312 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4313 			if (debug_commit)
4314 				print_backtrace(-1);
4315 		}
4316 		/*
4317 		 * Only clear the pmap modified bits if ALL the dirty bits
4318 		 * are set, otherwise the system might mis-clear portions
4319 		 * of a page.
4320 		 */
4321 		if (m->dirty == VM_PAGE_BITS_ALL &&
4322 		    (bp->b_flags & B_NEEDCOMMIT) == 0) {
4323 			pmap_clear_modify(m);
4324 		}
4325 		if (bp->b_dirtyoff > soff - xoff)
4326 			bp->b_dirtyoff = soff - xoff;
4327 		if (bp->b_dirtyend < eoff - xoff)
4328 			bp->b_dirtyend = eoff - xoff;
4329 	}
4330 
4331 	/*
4332 	 * Set related valid bits, clear related dirty bits.
4333 	 * Does not mess with the pmap modified bit.
4334 	 *
4335 	 * WARNING!  We cannot just clear all of m->dirty here as the
4336 	 *	     buffer cache buffers may use a DEV_BSIZE'd aligned
4337 	 *	     block size, or have an odd size (e.g. NFS at file EOF).
4338 	 *	     The putpages code can clear m->dirty to 0.
4339 	 *
4340 	 *	     If a VOP_WRITE generates a buffer cache buffer which
4341 	 *	     covers the same space as mapped writable pages the
4342 	 *	     buffer flush might not be able to clear all the dirty
4343 	 *	     bits and still require a putpages from the VM system
4344 	 *	     to finish it off.
4345 	 *
4346 	 * WARNING!  vm_page_set_validclean() currently assumes vm_token
4347 	 *	     is held.  The page might not be busied (bdwrite() case).
4348 	 *	     XXX remove this comment once we've validated that this
4349 	 *	     is no longer an issue.
4350 	 */
4351 	vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4352 }
4353 
4354 #if 0
4355 /*
4356  * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4357  * The page data is assumed to be valid (there is no zeroing here).
4358  */
4359 static void
4360 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4361 {
4362 	int bcount;
4363 	int xoff;
4364 	int soff;
4365 	int eoff;
4366 
4367 	/*
4368 	 * Calculate offset range within the page but relative to buffer's
4369 	 * loffset.  loffset might be offset into the first page.
4370 	 */
4371 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4372 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4373 
4374 	if (pageno == 0) {
4375 		soff = xoff;
4376 		eoff = PAGE_SIZE;
4377 	} else {
4378 		soff = (pageno << PAGE_SHIFT);
4379 		eoff = soff + PAGE_SIZE;
4380 	}
4381 	if (eoff > bcount)
4382 		eoff = bcount;
4383 	if (soff >= eoff)
4384 		return;
4385 	vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4386 }
4387 #endif
4388 
4389 /*
4390  * vfs_bio_clrbuf:
4391  *
4392  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
4393  *	to clear B_ERROR and B_INVAL.
4394  *
4395  *	Note that while we only theoretically need to clear through b_bcount,
4396  *	we go ahead and clear through b_bufsize.
4397  */
4398 
4399 void
4400 vfs_bio_clrbuf(struct buf *bp)
4401 {
4402 	int i, mask = 0;
4403 	caddr_t sa, ea;
4404 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4405 		bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4406 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4407 		    (bp->b_loffset & PAGE_MASK) == 0) {
4408 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4409 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4410 				bp->b_resid = 0;
4411 				return;
4412 			}
4413 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
4414 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
4415 				bzero(bp->b_data, bp->b_bufsize);
4416 				bp->b_xio.xio_pages[0]->valid |= mask;
4417 				bp->b_resid = 0;
4418 				return;
4419 			}
4420 		}
4421 		sa = bp->b_data;
4422 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4423 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4424 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4425 			ea = (caddr_t)(vm_offset_t)ulmin(
4426 			    (u_long)(vm_offset_t)ea,
4427 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4428 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4429 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4430 				continue;
4431 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4432 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
4433 					bzero(sa, ea - sa);
4434 				}
4435 			} else {
4436 				for (; sa < ea; sa += DEV_BSIZE, j++) {
4437 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
4438 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
4439 						bzero(sa, DEV_BSIZE);
4440 				}
4441 			}
4442 			bp->b_xio.xio_pages[i]->valid |= mask;
4443 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4444 		}
4445 		bp->b_resid = 0;
4446 	} else {
4447 		clrbuf(bp);
4448 	}
4449 }
4450 
4451 /*
4452  * vm_hold_load_pages:
4453  *
4454  *	Load pages into the buffer's address space.  The pages are
4455  *	allocated from the kernel object in order to reduce interference
4456  *	with the any VM paging I/O activity.  The range of loaded
4457  *	pages will be wired.
4458  *
4459  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
4460  *	retrieve the full range (to - from) of pages.
4461  */
4462 void
4463 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4464 {
4465 	vm_offset_t pg;
4466 	vm_page_t p;
4467 	int index;
4468 
4469 	to = round_page(to);
4470 	from = round_page(from);
4471 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4472 
4473 	pg = from;
4474 	while (pg < to) {
4475 		/*
4476 		 * Note: must allocate system pages since blocking here
4477 		 * could intefere with paging I/O, no matter which
4478 		 * process we are.
4479 		 */
4480 		vm_object_hold(&kernel_object);
4481 		p = bio_page_alloc(bp, &kernel_object, pg >> PAGE_SHIFT,
4482 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4483 		vm_object_drop(&kernel_object);
4484 		if (p) {
4485 			vm_page_wire(p);
4486 			p->valid = VM_PAGE_BITS_ALL;
4487 			vm_page_flag_clear(p, PG_ZERO);
4488 			pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4489 			bp->b_xio.xio_pages[index] = p;
4490 			vm_page_wakeup(p);
4491 
4492 			pg += PAGE_SIZE;
4493 			++index;
4494 		}
4495 	}
4496 	bp->b_xio.xio_npages = index;
4497 }
4498 
4499 /*
4500  * Allocate a page for a buffer cache buffer.
4501  *
4502  * If NULL is returned the caller is expected to retry (typically check if
4503  * the page already exists on retry before trying to allocate one).
4504  *
4505  * NOTE! Low-memory handling is dealt with in b[q]relse(), not here.  This
4506  *	 function will use the system reserve with the hope that the page
4507  *	 allocations can be returned to PQ_CACHE/PQ_FREE when the caller
4508  *	 is done with the buffer.
4509  *
4510  * NOTE! However, TMPFS is a special case because flushing a dirty buffer
4511  *	 to TMPFS doesn't clean the page.  For TMPFS, only the pagedaemon
4512  *	 is capable of retiring pages (to swap).  For TMPFS we don't dig
4513  *	 into the system reserve because doing so could stall out pretty
4514  *	 much every process running on the system.
4515  */
4516 static
4517 vm_page_t
4518 bio_page_alloc(struct buf *bp, vm_object_t obj, vm_pindex_t pg, int deficit)
4519 {
4520 	int vmflags = VM_ALLOC_NORMAL | VM_ALLOC_NULL_OK;
4521 	vm_page_t p;
4522 
4523 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj));
4524 
4525 	/*
4526 	 * Try a normal allocation first.
4527 	 */
4528 	p = vm_page_alloc(obj, pg, vmflags);
4529 	if (p)
4530 		return(p);
4531 	if (vm_page_lookup(obj, pg))
4532 		return(NULL);
4533 	vm_pageout_deficit += deficit;
4534 
4535 	/*
4536 	 * Try again, digging into the system reserve.
4537 	 *
4538 	 * Trying to recover pages from the buffer cache here can deadlock
4539 	 * against other threads trying to busy underlying pages so we
4540 	 * depend on the code in brelse() and bqrelse() to free/cache the
4541 	 * underlying buffer cache pages when memory is low.
4542 	 */
4543 	if (curthread->td_flags & TDF_SYSTHREAD)
4544 		vmflags |= VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT;
4545 	else if (bp->b_vp && bp->b_vp->v_tag == VT_TMPFS)
4546 		vmflags |= 0;
4547 	else
4548 		vmflags |= VM_ALLOC_SYSTEM;
4549 
4550 	/*recoverbufpages();*/
4551 	p = vm_page_alloc(obj, pg, vmflags);
4552 	if (p)
4553 		return(p);
4554 	if (vm_page_lookup(obj, pg))
4555 		return(NULL);
4556 
4557 	/*
4558 	 * Wait for memory to free up and try again
4559 	 */
4560 	if (vm_page_count_severe())
4561 		++lowmempgallocs;
4562 	vm_wait(hz / 20 + 1);
4563 
4564 	p = vm_page_alloc(obj, pg, vmflags);
4565 	if (p)
4566 		return(p);
4567 	if (vm_page_lookup(obj, pg))
4568 		return(NULL);
4569 
4570 	/*
4571 	 * Ok, now we are really in trouble.
4572 	 */
4573 	{
4574 		static struct krate biokrate = { .freq = 1 };
4575 		krateprintf(&biokrate,
4576 			    "Warning: bio_page_alloc: memory exhausted "
4577 			    "during bufcache page allocation from %s\n",
4578 			    curthread->td_comm);
4579 	}
4580 	if (curthread->td_flags & TDF_SYSTHREAD)
4581 		vm_wait(hz / 20 + 1);
4582 	else
4583 		vm_wait(hz / 2 + 1);
4584 	return (NULL);
4585 }
4586 
4587 /*
4588  * vm_hold_free_pages:
4589  *
4590  *	Return pages associated with the buffer back to the VM system.
4591  *
4592  *	The range of pages underlying the buffer's address space will
4593  *	be unmapped and un-wired.
4594  */
4595 void
4596 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4597 {
4598 	vm_offset_t pg;
4599 	vm_page_t p;
4600 	int index, newnpages;
4601 
4602 	from = round_page(from);
4603 	to = round_page(to);
4604 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4605 	newnpages = index;
4606 
4607 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4608 		p = bp->b_xio.xio_pages[index];
4609 		if (p && (index < bp->b_xio.xio_npages)) {
4610 			if (p->busy) {
4611 				kprintf("vm_hold_free_pages: doffset: %lld, "
4612 					"loffset: %lld\n",
4613 					(long long)bp->b_bio2.bio_offset,
4614 					(long long)bp->b_loffset);
4615 			}
4616 			bp->b_xio.xio_pages[index] = NULL;
4617 			pmap_kremove(pg);
4618 			vm_page_busy_wait(p, FALSE, "vmhldpg");
4619 			vm_page_unwire(p, 0);
4620 			vm_page_free(p);
4621 		}
4622 	}
4623 	bp->b_xio.xio_npages = newnpages;
4624 }
4625 
4626 /*
4627  * vmapbuf:
4628  *
4629  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
4630  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4631  *	initialized.
4632  */
4633 int
4634 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4635 {
4636 	caddr_t addr;
4637 	vm_offset_t va;
4638 	vm_page_t m;
4639 	int vmprot;
4640 	int error;
4641 	int pidx;
4642 	int i;
4643 
4644 	/*
4645 	 * bp had better have a command and it better be a pbuf.
4646 	 */
4647 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4648 	KKASSERT(bp->b_flags & B_PAGING);
4649 	KKASSERT(bp->b_kvabase);
4650 
4651 	if (bytes < 0)
4652 		return (-1);
4653 
4654 	/*
4655 	 * Map the user data into KVM.  Mappings have to be page-aligned.
4656 	 */
4657 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
4658 	pidx = 0;
4659 
4660 	vmprot = VM_PROT_READ;
4661 	if (bp->b_cmd == BUF_CMD_READ)
4662 		vmprot |= VM_PROT_WRITE;
4663 
4664 	while (addr < udata + bytes) {
4665 		/*
4666 		 * Do the vm_fault if needed; do the copy-on-write thing
4667 		 * when reading stuff off device into memory.
4668 		 *
4669 		 * vm_fault_page*() returns a held VM page.
4670 		 */
4671 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4672 		va = trunc_page(va);
4673 
4674 		m = vm_fault_page_quick(va, vmprot, &error);
4675 		if (m == NULL) {
4676 			for (i = 0; i < pidx; ++i) {
4677 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
4678 			    bp->b_xio.xio_pages[i] = NULL;
4679 			}
4680 			return(-1);
4681 		}
4682 		bp->b_xio.xio_pages[pidx] = m;
4683 		addr += PAGE_SIZE;
4684 		++pidx;
4685 	}
4686 
4687 	/*
4688 	 * Map the page array and set the buffer fields to point to
4689 	 * the mapped data buffer.
4690 	 */
4691 	if (pidx > btoc(MAXPHYS))
4692 		panic("vmapbuf: mapped more than MAXPHYS");
4693 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4694 
4695 	bp->b_xio.xio_npages = pidx;
4696 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4697 	bp->b_bcount = bytes;
4698 	bp->b_bufsize = bytes;
4699 	return(0);
4700 }
4701 
4702 /*
4703  * vunmapbuf:
4704  *
4705  *	Free the io map PTEs associated with this IO operation.
4706  *	We also invalidate the TLB entries and restore the original b_addr.
4707  */
4708 void
4709 vunmapbuf(struct buf *bp)
4710 {
4711 	int pidx;
4712 	int npages;
4713 
4714 	KKASSERT(bp->b_flags & B_PAGING);
4715 
4716 	npages = bp->b_xio.xio_npages;
4717 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4718 	for (pidx = 0; pidx < npages; ++pidx) {
4719 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4720 		bp->b_xio.xio_pages[pidx] = NULL;
4721 	}
4722 	bp->b_xio.xio_npages = 0;
4723 	bp->b_data = bp->b_kvabase;
4724 }
4725 
4726 /*
4727  * Scan all buffers in the system and issue the callback.
4728  */
4729 int
4730 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4731 {
4732 	int count = 0;
4733 	int error;
4734 	long n;
4735 
4736 	for (n = 0; n < nbuf; ++n) {
4737 		if ((error = callback(&buf[n], info)) < 0) {
4738 			count = error;
4739 			break;
4740 		}
4741 		count += error;
4742 	}
4743 	return (count);
4744 }
4745 
4746 /*
4747  * nestiobuf_iodone: biodone callback for nested buffers and propagate
4748  * completion to the master buffer.
4749  */
4750 static void
4751 nestiobuf_iodone(struct bio *bio)
4752 {
4753 	struct bio *mbio;
4754 	struct buf *mbp, *bp;
4755 	struct devstat *stats;
4756 	int error;
4757 	int donebytes;
4758 
4759 	bp = bio->bio_buf;
4760 	mbio = bio->bio_caller_info1.ptr;
4761 	stats = bio->bio_caller_info2.ptr;
4762 	mbp = mbio->bio_buf;
4763 
4764 	KKASSERT(bp->b_bcount <= bp->b_bufsize);
4765 	KKASSERT(mbp != bp);
4766 
4767 	error = bp->b_error;
4768 	if (bp->b_error == 0 &&
4769 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4770 		/*
4771 		 * Not all got transfered, raise an error. We have no way to
4772 		 * propagate these conditions to mbp.
4773 		 */
4774 		error = EIO;
4775 	}
4776 
4777 	donebytes = bp->b_bufsize;
4778 
4779 	relpbuf(bp, NULL);
4780 
4781 	nestiobuf_done(mbio, donebytes, error, stats);
4782 }
4783 
4784 void
4785 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats)
4786 {
4787 	struct buf *mbp;
4788 
4789 	mbp = mbio->bio_buf;
4790 
4791 	KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4792 
4793 	/*
4794 	 * If an error occured, propagate it to the master buffer.
4795 	 *
4796 	 * Several biodone()s may wind up running concurrently so
4797 	 * use an atomic op to adjust b_flags.
4798 	 */
4799 	if (error) {
4800 		mbp->b_error = error;
4801 		atomic_set_int(&mbp->b_flags, B_ERROR);
4802 	}
4803 
4804 	/*
4805 	 * Decrement the operations in progress counter and terminate the
4806 	 * I/O if this was the last bit.
4807 	 */
4808 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4809 		mbp->b_resid = 0;
4810 		if (stats)
4811 			devstat_end_transaction_buf(stats, mbp);
4812 		biodone(mbio);
4813 	}
4814 }
4815 
4816 /*
4817  * Initialize a nestiobuf for use.  Set an initial count of 1 to prevent
4818  * the mbio from being biodone()'d while we are still adding sub-bios to
4819  * it.
4820  */
4821 void
4822 nestiobuf_init(struct bio *bio)
4823 {
4824 	bio->bio_driver_info = (void *)1;
4825 }
4826 
4827 /*
4828  * The BIOs added to the nestedio have already been started, remove the
4829  * count that placeheld our mbio and biodone() it if the count would
4830  * transition to 0.
4831  */
4832 void
4833 nestiobuf_start(struct bio *mbio)
4834 {
4835 	struct buf *mbp = mbio->bio_buf;
4836 
4837 	/*
4838 	 * Decrement the operations in progress counter and terminate the
4839 	 * I/O if this was the last bit.
4840 	 */
4841 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4842 		if (mbp->b_flags & B_ERROR)
4843 			mbp->b_resid = mbp->b_bcount;
4844 		else
4845 			mbp->b_resid = 0;
4846 		biodone(mbio);
4847 	}
4848 }
4849 
4850 /*
4851  * Set an intermediate error prior to calling nestiobuf_start()
4852  */
4853 void
4854 nestiobuf_error(struct bio *mbio, int error)
4855 {
4856 	struct buf *mbp = mbio->bio_buf;
4857 
4858 	if (error) {
4859 		mbp->b_error = error;
4860 		atomic_set_int(&mbp->b_flags, B_ERROR);
4861 	}
4862 }
4863 
4864 /*
4865  * nestiobuf_add: setup a "nested" buffer.
4866  *
4867  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4868  * => 'bp' should be a buffer allocated by getiobuf.
4869  * => 'offset' is a byte offset in the master buffer.
4870  * => 'size' is a size in bytes of this nested buffer.
4871  */
4872 void
4873 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats)
4874 {
4875 	struct buf *mbp = mbio->bio_buf;
4876 	struct vnode *vp = mbp->b_vp;
4877 
4878 	KKASSERT(mbp->b_bcount >= offset + size);
4879 
4880 	atomic_add_int((int *)&mbio->bio_driver_info, 1);
4881 
4882 	/* kernel needs to own the lock for it to be released in biodone */
4883 	BUF_KERNPROC(bp);
4884 	bp->b_vp = vp;
4885 	bp->b_cmd = mbp->b_cmd;
4886 	bp->b_bio1.bio_done = nestiobuf_iodone;
4887 	bp->b_data = (char *)mbp->b_data + offset;
4888 	bp->b_resid = bp->b_bcount = size;
4889 	bp->b_bufsize = bp->b_bcount;
4890 
4891 	bp->b_bio1.bio_track = NULL;
4892 	bp->b_bio1.bio_caller_info1.ptr = mbio;
4893 	bp->b_bio1.bio_caller_info2.ptr = stats;
4894 }
4895 
4896 #ifdef DDB
4897 
4898 DB_SHOW_COMMAND(buffer, db_show_buffer)
4899 {
4900 	/* get args */
4901 	struct buf *bp = (struct buf *)addr;
4902 
4903 	if (!have_addr) {
4904 		db_printf("usage: show buffer <addr>\n");
4905 		return;
4906 	}
4907 
4908 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4909 	db_printf("b_cmd = %d\n", bp->b_cmd);
4910 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4911 		  "b_resid = %d\n, b_data = %p, "
4912 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4913 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4914 		  bp->b_data,
4915 		  (long long)bp->b_bio2.bio_offset,
4916 		  (long long)(bp->b_bio2.bio_next ?
4917 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4918 	if (bp->b_xio.xio_npages) {
4919 		int i;
4920 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4921 			bp->b_xio.xio_npages);
4922 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4923 			vm_page_t m;
4924 			m = bp->b_xio.xio_pages[i];
4925 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4926 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4927 			if ((i + 1) < bp->b_xio.xio_npages)
4928 				db_printf(",");
4929 		}
4930 		db_printf("\n");
4931 	}
4932 }
4933 #endif /* DDB */
4934