xref: /dragonfly/sys/kern/vfs_bio.c (revision 375d1659)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.58 2006/03/05 18:38:34 dillon Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <vm/vm_page2.h>
60 
61 /*
62  * Buffer queues.
63  */
64 #define BUFFER_QUEUES	6
65 enum bufq_type {
66 	BQUEUE_NONE,    	/* not on any queue */
67 	BQUEUE_LOCKED,  	/* locked buffers */
68 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
69 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
70 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
71 	BQUEUE_EMPTY    	/* empty buffer headers */
72 };
73 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
74 
75 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
76 
77 struct	bio_ops bioops;		/* I/O operation notification */
78 
79 struct buf *buf;		/* buffer header pool */
80 
81 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
82 		vm_offset_t to);
83 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
84 		vm_offset_t to);
85 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
86 			       int pageno, vm_page_t m);
87 static void vfs_clean_pages(struct buf * bp);
88 static void vfs_setdirty(struct buf *bp);
89 static void vfs_vmio_release(struct buf *bp);
90 static int flushbufqueues(void);
91 
92 static int bd_request;
93 
94 static void buf_daemon (void);
95 /*
96  * bogus page -- for I/O to/from partially complete buffers
97  * this is a temporary solution to the problem, but it is not
98  * really that bad.  it would be better to split the buffer
99  * for input in the case of buffers partially already in memory,
100  * but the code is intricate enough already.
101  */
102 vm_page_t bogus_page;
103 int vmiodirenable = TRUE;
104 int runningbufspace;
105 
106 static int bufspace, maxbufspace,
107 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
108 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
109 static int needsbuffer;
110 static int lorunningspace, hirunningspace, runningbufreq;
111 static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
112 static int numfreebuffers, lofreebuffers, hifreebuffers;
113 static int getnewbufcalls;
114 static int getnewbufrestarts;
115 
116 /*
117  * Sysctls for operational control of the buffer cache.
118  */
119 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
120 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
121 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
122 	"High watermark used to trigger explicit flushing of dirty buffers");
123 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
124 	"Low watermark for special reserve in low-memory situations");
125 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
126 	"High watermark for special reserve in low-memory situations");
127 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
128 	"Minimum amount of buffer space required for active I/O");
129 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
130 	"Maximum amount of buffer space to usable for active I/O");
131 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
132 	"Use the VM system for performing directory writes");
133 /*
134  * Sysctls determining current state of the buffer cache.
135  */
136 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
137 	"Pending number of dirty buffers");
138 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
139 	"Number of free buffers on the buffer cache free list");
140 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
141 	"I/O bytes currently in progress due to asynchronous writes");
142 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
143 	"Hard limit on maximum amount of memory usable for buffer space");
144 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
145 	"Soft limit on maximum amount of memory usable for buffer space");
146 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
147 	"Minimum amount of memory to reserve for system buffer space");
148 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
149 	"Amount of memory available for buffers");
150 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
151 	0, "Maximum amount of memory reserved for buffers using malloc");
152 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
153 	"Amount of memory left for buffers using malloc-scheme");
154 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
155 	"New buffer header acquisition requests");
156 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
157 	0, "New buffer header acquisition restarts");
158 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
159 	"Buffer acquisition restarts due to fragmented buffer map");
160 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
161 	"Amount of time KVA space was deallocated in an arbitrary buffer");
162 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
163 	"Amount of time buffer re-use operations were successful");
164 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
165 	"sizeof(struct buf)");
166 
167 char *buf_wmesg = BUF_WMESG;
168 
169 extern int vm_swap_size;
170 
171 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
172 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
173 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
174 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
175 
176 /*
177  * numdirtywakeup:
178  *
179  *	If someone is blocked due to there being too many dirty buffers,
180  *	and numdirtybuffers is now reasonable, wake them up.
181  */
182 
183 static __inline void
184 numdirtywakeup(int level)
185 {
186 	if (numdirtybuffers <= level) {
187 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
188 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
189 			wakeup(&needsbuffer);
190 		}
191 	}
192 }
193 
194 /*
195  * bufspacewakeup:
196  *
197  *	Called when buffer space is potentially available for recovery.
198  *	getnewbuf() will block on this flag when it is unable to free
199  *	sufficient buffer space.  Buffer space becomes recoverable when
200  *	bp's get placed back in the queues.
201  */
202 
203 static __inline void
204 bufspacewakeup(void)
205 {
206 	/*
207 	 * If someone is waiting for BUF space, wake them up.  Even
208 	 * though we haven't freed the kva space yet, the waiting
209 	 * process will be able to now.
210 	 */
211 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
212 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
213 		wakeup(&needsbuffer);
214 	}
215 }
216 
217 /*
218  * runningbufwakeup:
219  *
220  *	Accounting for I/O in progress.
221  *
222  */
223 static __inline void
224 runningbufwakeup(struct buf *bp)
225 {
226 	if (bp->b_runningbufspace) {
227 		runningbufspace -= bp->b_runningbufspace;
228 		bp->b_runningbufspace = 0;
229 		if (runningbufreq && runningbufspace <= lorunningspace) {
230 			runningbufreq = 0;
231 			wakeup(&runningbufreq);
232 		}
233 	}
234 }
235 
236 /*
237  * bufcountwakeup:
238  *
239  *	Called when a buffer has been added to one of the free queues to
240  *	account for the buffer and to wakeup anyone waiting for free buffers.
241  *	This typically occurs when large amounts of metadata are being handled
242  *	by the buffer cache ( else buffer space runs out first, usually ).
243  */
244 
245 static __inline void
246 bufcountwakeup(void)
247 {
248 	++numfreebuffers;
249 	if (needsbuffer) {
250 		needsbuffer &= ~VFS_BIO_NEED_ANY;
251 		if (numfreebuffers >= hifreebuffers)
252 			needsbuffer &= ~VFS_BIO_NEED_FREE;
253 		wakeup(&needsbuffer);
254 	}
255 }
256 
257 /*
258  * waitrunningbufspace()
259  *
260  *	runningbufspace is a measure of the amount of I/O currently
261  *	running.  This routine is used in async-write situations to
262  *	prevent creating huge backups of pending writes to a device.
263  *	Only asynchronous writes are governed by this function.
264  *
265  *	Reads will adjust runningbufspace, but will not block based on it.
266  *	The read load has a side effect of reducing the allowed write load.
267  *
268  *	This does NOT turn an async write into a sync write.  It waits
269  *	for earlier writes to complete and generally returns before the
270  *	caller's write has reached the device.
271  */
272 static __inline void
273 waitrunningbufspace(void)
274 {
275 	if (runningbufspace > hirunningspace) {
276 		crit_enter();
277 		while (runningbufspace > hirunningspace) {
278 			++runningbufreq;
279 			tsleep(&runningbufreq, 0, "wdrain", 0);
280 		}
281 		crit_exit();
282 	}
283 }
284 
285 /*
286  * vfs_buf_test_cache:
287  *
288  *	Called when a buffer is extended.  This function clears the B_CACHE
289  *	bit if the newly extended portion of the buffer does not contain
290  *	valid data.
291  */
292 static __inline__
293 void
294 vfs_buf_test_cache(struct buf *bp,
295 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
296 		  vm_page_t m)
297 {
298 	if (bp->b_flags & B_CACHE) {
299 		int base = (foff + off) & PAGE_MASK;
300 		if (vm_page_is_valid(m, base, size) == 0)
301 			bp->b_flags &= ~B_CACHE;
302 	}
303 }
304 
305 /*
306  * bd_wakeup:
307  *
308  *	Wake up the buffer daemon if the number of outstanding dirty buffers
309  *	is above specified threshold 'dirtybuflevel'.
310  *
311  *	The buffer daemon is explicitly woken up when (a) the pending number
312  *	of dirty buffers exceeds the recovery and stall mid-point value,
313  *	(b) during bwillwrite() or (c) buf freelist was exhausted.
314  */
315 static __inline__
316 void
317 bd_wakeup(int dirtybuflevel)
318 {
319 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
320 		bd_request = 1;
321 		wakeup(&bd_request);
322 	}
323 }
324 
325 /*
326  * bd_speedup:
327  *
328  *	Speed up the buffer cache flushing process.
329  */
330 
331 static __inline__
332 void
333 bd_speedup(void)
334 {
335 	bd_wakeup(1);
336 }
337 
338 /*
339  * bufinit:
340  *
341  *	Load time initialisation of the buffer cache, called from machine
342  *	dependant initialization code.
343  */
344 void
345 bufinit(void)
346 {
347 	struct buf *bp;
348 	vm_offset_t bogus_offset;
349 	int i;
350 
351 	/* next, make a null set of free lists */
352 	for (i = 0; i < BUFFER_QUEUES; i++)
353 		TAILQ_INIT(&bufqueues[i]);
354 
355 	/* finally, initialize each buffer header and stick on empty q */
356 	for (i = 0; i < nbuf; i++) {
357 		bp = &buf[i];
358 		bzero(bp, sizeof *bp);
359 		bp->b_flags = B_INVAL;	/* we're just an empty header */
360 		bp->b_qindex = BQUEUE_EMPTY;
361 		initbufbio(bp);
362 		xio_init(&bp->b_xio);
363 		LIST_INIT(&bp->b_dep);
364 		BUF_LOCKINIT(bp);
365 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
366 	}
367 
368 	/*
369 	 * maxbufspace is the absolute maximum amount of buffer space we are
370 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
371 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
372 	 * used by most other processes.  The differential is required to
373 	 * ensure that buf_daemon is able to run when other processes might
374 	 * be blocked waiting for buffer space.
375 	 *
376 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
377 	 * this may result in KVM fragmentation which is not handled optimally
378 	 * by the system.
379 	 */
380 	maxbufspace = nbuf * BKVASIZE;
381 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
382 	lobufspace = hibufspace - MAXBSIZE;
383 
384 	lorunningspace = 512 * 1024;
385 	hirunningspace = 1024 * 1024;
386 
387 /*
388  * Limit the amount of malloc memory since it is wired permanently into
389  * the kernel space.  Even though this is accounted for in the buffer
390  * allocation, we don't want the malloced region to grow uncontrolled.
391  * The malloc scheme improves memory utilization significantly on average
392  * (small) directories.
393  */
394 	maxbufmallocspace = hibufspace / 20;
395 
396 /*
397  * Reduce the chance of a deadlock occuring by limiting the number
398  * of delayed-write dirty buffers we allow to stack up.
399  */
400 	hidirtybuffers = nbuf / 4 + 20;
401 	numdirtybuffers = 0;
402 /*
403  * To support extreme low-memory systems, make sure hidirtybuffers cannot
404  * eat up all available buffer space.  This occurs when our minimum cannot
405  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
406  * BKVASIZE'd (8K) buffers.
407  */
408 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
409 		hidirtybuffers >>= 1;
410 	}
411 	lodirtybuffers = hidirtybuffers / 2;
412 
413 /*
414  * Try to keep the number of free buffers in the specified range,
415  * and give special processes (e.g. like buf_daemon) access to an
416  * emergency reserve.
417  */
418 	lofreebuffers = nbuf / 18 + 5;
419 	hifreebuffers = 2 * lofreebuffers;
420 	numfreebuffers = nbuf;
421 
422 /*
423  * Maximum number of async ops initiated per buf_daemon loop.  This is
424  * somewhat of a hack at the moment, we really need to limit ourselves
425  * based on the number of bytes of I/O in-transit that were initiated
426  * from buf_daemon.
427  */
428 
429 	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
430 	bogus_page = vm_page_alloc(kernel_object,
431 			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
432 			VM_ALLOC_NORMAL);
433 	vmstats.v_wire_count++;
434 
435 }
436 
437 /*
438  * Initialize the embedded bio structures
439  */
440 void
441 initbufbio(struct buf *bp)
442 {
443 	bp->b_bio1.bio_buf = bp;
444 	bp->b_bio1.bio_prev = NULL;
445 	bp->b_bio1.bio_blkno = (daddr_t)-1;
446 	bp->b_bio1.bio_offset = NOOFFSET;
447 	bp->b_bio1.bio_next = &bp->b_bio2;
448 	bp->b_bio1.bio_done = NULL;
449 
450 	bp->b_bio2.bio_buf = bp;
451 	bp->b_bio2.bio_prev = &bp->b_bio1;
452 	bp->b_bio2.bio_blkno = (daddr_t)-1;
453 	bp->b_bio2.bio_offset = NOOFFSET;
454 	bp->b_bio2.bio_next = NULL;
455 	bp->b_bio2.bio_done = NULL;
456 }
457 
458 /*
459  * Reinitialize the embedded bio structures as well as any additional
460  * translation cache layers.
461  */
462 void
463 reinitbufbio(struct buf *bp)
464 {
465 	struct bio *bio;
466 
467 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
468 		bio->bio_done = NULL;
469 		bio->bio_blkno = (daddr_t)-1;
470 		bio->bio_offset = NOOFFSET;
471 	}
472 }
473 
474 /*
475  * Push another BIO layer onto an existing BIO and return it.  The new
476  * BIO layer may already exist, holding cached translation data.
477  */
478 struct bio *
479 push_bio(struct bio *bio)
480 {
481 	struct bio *nbio;
482 
483 	if ((nbio = bio->bio_next) == NULL) {
484 		int index = bio - &bio->bio_buf->b_bio_array[0];
485 		if (index >= NBUF_BIO) {
486 			panic("push_bio: too many layers bp %p\n",
487 				bio->bio_buf);
488 		}
489 		nbio = &bio->bio_buf->b_bio_array[index + 1];
490 		bio->bio_next = nbio;
491 		nbio->bio_prev = bio;
492 		nbio->bio_buf = bio->bio_buf;
493 		nbio->bio_blkno = (daddr_t)-1;
494 		nbio->bio_offset = NOOFFSET;
495 		nbio->bio_done = NULL;
496 		nbio->bio_next = NULL;
497 	}
498 	KKASSERT(nbio->bio_done == NULL);
499 	return(nbio);
500 }
501 
502 void
503 pop_bio(struct bio *bio)
504 {
505 	/* NOP */
506 }
507 
508 void
509 clearbiocache(struct bio *bio)
510 {
511 	while (bio) {
512 		bio->bio_blkno = (daddr_t)-1;
513 		bio->bio_offset = NOOFFSET;
514 		bio = bio->bio_next;
515 	}
516 }
517 
518 /*
519  * bfreekva:
520  *
521  *	Free the KVA allocation for buffer 'bp'.
522  *
523  *	Must be called from a critical section as this is the only locking for
524  *	buffer_map.
525  *
526  *	Since this call frees up buffer space, we call bufspacewakeup().
527  */
528 static void
529 bfreekva(struct buf * bp)
530 {
531 	int count;
532 
533 	if (bp->b_kvasize) {
534 		++buffreekvacnt;
535 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
536 		vm_map_lock(buffer_map);
537 		bufspace -= bp->b_kvasize;
538 		vm_map_delete(buffer_map,
539 		    (vm_offset_t) bp->b_kvabase,
540 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
541 		    &count
542 		);
543 		vm_map_unlock(buffer_map);
544 		vm_map_entry_release(count);
545 		bp->b_kvasize = 0;
546 		bufspacewakeup();
547 	}
548 }
549 
550 /*
551  * bremfree:
552  *
553  *	Remove the buffer from the appropriate free list.
554  */
555 void
556 bremfree(struct buf * bp)
557 {
558 	int old_qindex;
559 
560 	crit_enter();
561 	old_qindex = bp->b_qindex;
562 
563 	if (bp->b_qindex != BQUEUE_NONE) {
564 		KASSERT(BUF_REFCNTNB(bp) == 1,
565 				("bremfree: bp %p not locked",bp));
566 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
567 		bp->b_qindex = BQUEUE_NONE;
568 	} else {
569 		if (BUF_REFCNTNB(bp) <= 1)
570 			panic("bremfree: removing a buffer not on a queue");
571 	}
572 
573 	/*
574 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
575 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
576 	 * the buffer was free and we must decrement numfreebuffers.
577 	 */
578 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
579 		switch(old_qindex) {
580 		case BQUEUE_DIRTY:
581 		case BQUEUE_CLEAN:
582 		case BQUEUE_EMPTY:
583 		case BQUEUE_EMPTYKVA:
584 			--numfreebuffers;
585 			break;
586 		default:
587 			break;
588 		}
589 	}
590 	crit_exit();
591 }
592 
593 
594 /*
595  * bread:
596  *
597  *	Get a buffer with the specified data.  Look in the cache first.  We
598  *	must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
599  *	is set, the buffer is valid and we do not have to do anything ( see
600  *	getblk() ).
601  */
602 int
603 bread(struct vnode * vp, daddr_t blkno, int size, struct buf ** bpp)
604 {
605 	struct buf *bp;
606 
607 	bp = getblk(vp, blkno, size, 0, 0);
608 	*bpp = bp;
609 
610 	/* if not found in cache, do some I/O */
611 	if ((bp->b_flags & B_CACHE) == 0) {
612 		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
613 		bp->b_flags |= B_READ;
614 		bp->b_flags &= ~(B_ERROR | B_INVAL);
615 		vfs_busy_pages(bp, 0);
616 		vn_strategy(vp, &bp->b_bio1);
617 		return (biowait(bp));
618 	}
619 	return (0);
620 }
621 
622 /*
623  * breadn:
624  *
625  *	Operates like bread, but also starts asynchronous I/O on
626  *	read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
627  *	to initiating I/O . If B_CACHE is set, the buffer is valid
628  *	and we do not have to do anything.
629  */
630 int
631 breadn(struct vnode * vp, daddr_t blkno, int size, daddr_t * rablkno,
632 	int *rabsize, int cnt, struct buf ** bpp)
633 {
634 	struct buf *bp, *rabp;
635 	int i;
636 	int rv = 0, readwait = 0;
637 
638 	*bpp = bp = getblk(vp, blkno, size, 0, 0);
639 
640 	/* if not found in cache, do some I/O */
641 	if ((bp->b_flags & B_CACHE) == 0) {
642 		bp->b_flags |= B_READ;
643 		bp->b_flags &= ~(B_ERROR | B_INVAL);
644 		vfs_busy_pages(bp, 0);
645 		vn_strategy(vp, &bp->b_bio1);
646 		++readwait;
647 	}
648 
649 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
650 		if (inmem(vp, *rablkno))
651 			continue;
652 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
653 
654 		if ((rabp->b_flags & B_CACHE) == 0) {
655 			rabp->b_flags |= B_READ | B_ASYNC;
656 			rabp->b_flags &= ~(B_ERROR | B_INVAL);
657 			vfs_busy_pages(rabp, 0);
658 			BUF_KERNPROC(rabp);
659 			vn_strategy(vp, &rabp->b_bio1);
660 		} else {
661 			brelse(rabp);
662 		}
663 	}
664 
665 	if (readwait) {
666 		rv = biowait(bp);
667 	}
668 	return (rv);
669 }
670 
671 /*
672  * bwrite:
673  *
674  *	Write, release buffer on completion.  (Done by iodone
675  *	if async).  Do not bother writing anything if the buffer
676  *	is invalid.
677  *
678  *	Note that we set B_CACHE here, indicating that buffer is
679  *	fully valid and thus cacheable.  This is true even of NFS
680  *	now so we set it generally.  This could be set either here
681  *	or in biodone() since the I/O is synchronous.  We put it
682  *	here.
683  */
684 int
685 bwrite(struct buf * bp)
686 {
687 	int oldflags;
688 
689 	if (bp->b_flags & B_INVAL) {
690 		brelse(bp);
691 		return (0);
692 	}
693 
694 	oldflags = bp->b_flags;
695 
696 	if (BUF_REFCNTNB(bp) == 0)
697 		panic("bwrite: buffer is not busy???");
698 	crit_enter();
699 	/*
700 	 * If a background write is already in progress, delay
701 	 * writing this block if it is asynchronous. Otherwise
702 	 * wait for the background write to complete.
703 	 */
704 	if (bp->b_xflags & BX_BKGRDINPROG) {
705 		if (bp->b_flags & B_ASYNC) {
706 			crit_exit();
707 			bdwrite(bp);
708 			return (0);
709 		}
710 		bp->b_xflags |= BX_BKGRDWAIT;
711 		tsleep(&bp->b_xflags, 0, "biord", 0);
712 		if (bp->b_xflags & BX_BKGRDINPROG)
713 			panic("bwrite: still writing");
714 	}
715 
716 	/* Mark the buffer clean */
717 	bundirty(bp);
718 
719 	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
720 	bp->b_flags |= B_CACHE;
721 
722 	vfs_busy_pages(bp, 1);
723 
724 	/*
725 	 * Normal bwrites pipeline writes
726 	 */
727 	bp->b_runningbufspace = bp->b_bufsize;
728 	runningbufspace += bp->b_runningbufspace;
729 
730 	crit_exit();
731 	if (oldflags & B_ASYNC)
732 		BUF_KERNPROC(bp);
733 	vn_strategy(bp->b_vp, &bp->b_bio1);
734 
735 	if ((oldflags & B_ASYNC) == 0) {
736 		int rtval = biowait(bp);
737 		brelse(bp);
738 		return (rtval);
739 	} else if ((oldflags & B_NOWDRAIN) == 0) {
740 		/*
741 		 * don't allow the async write to saturate the I/O
742 		 * system.  Deadlocks can occur only if a device strategy
743 		 * routine (like in VN) turns around and issues another
744 		 * high-level write, in which case B_NOWDRAIN is expected
745 		 * to be set.   Otherwise we will not deadlock here because
746 		 * we are blocking waiting for I/O that is already in-progress
747 		 * to complete.
748 		 */
749 		waitrunningbufspace();
750 	}
751 
752 	return (0);
753 }
754 
755 /*
756  * bdwrite:
757  *
758  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
759  *	anything if the buffer is marked invalid.
760  *
761  *	Note that since the buffer must be completely valid, we can safely
762  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
763  *	biodone() in order to prevent getblk from writing the buffer
764  *	out synchronously.
765  */
766 void
767 bdwrite(struct buf *bp)
768 {
769 	if (BUF_REFCNTNB(bp) == 0)
770 		panic("bdwrite: buffer is not busy");
771 
772 	if (bp->b_flags & B_INVAL) {
773 		brelse(bp);
774 		return;
775 	}
776 	bdirty(bp);
777 
778 	/*
779 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
780 	 * true even of NFS now.
781 	 */
782 	bp->b_flags |= B_CACHE;
783 
784 	/*
785 	 * This bmap keeps the system from needing to do the bmap later,
786 	 * perhaps when the system is attempting to do a sync.  Since it
787 	 * is likely that the indirect block -- or whatever other datastructure
788 	 * that the filesystem needs is still in memory now, it is a good
789 	 * thing to do this.  Note also, that if the pageout daemon is
790 	 * requesting a sync -- there might not be enough memory to do
791 	 * the bmap then...  So, this is important to do.
792 	 */
793 	if (bp->b_bio2.bio_blkno == (daddr_t)-1) {
794 		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_bio2.bio_blkno,
795 			 NULL, NULL);
796 	}
797 
798 	/*
799 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
800 	 */
801 	vfs_setdirty(bp);
802 
803 	/*
804 	 * We need to do this here to satisfy the vnode_pager and the
805 	 * pageout daemon, so that it thinks that the pages have been
806 	 * "cleaned".  Note that since the pages are in a delayed write
807 	 * buffer -- the VFS layer "will" see that the pages get written
808 	 * out on the next sync, or perhaps the cluster will be completed.
809 	 */
810 	vfs_clean_pages(bp);
811 	bqrelse(bp);
812 
813 	/*
814 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
815 	 * buffers (midpoint between our recovery point and our stall
816 	 * point).
817 	 */
818 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
819 
820 	/*
821 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
822 	 * due to the softdep code.
823 	 */
824 }
825 
826 /*
827  * bdirty:
828  *
829  *	Turn buffer into delayed write request.  We must clear B_READ and
830  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
831  *	itself to properly update it in the dirty/clean lists.  We mark it
832  *	B_DONE to ensure that any asynchronization of the buffer properly
833  *	clears B_DONE ( else a panic will occur later ).
834  *
835  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
836  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
837  *	should only be called if the buffer is known-good.
838  *
839  *	Since the buffer is not on a queue, we do not update the numfreebuffers
840  *	count.
841  *
842  *	Must be called from a critical section.
843  *	The buffer must be on BQUEUE_NONE.
844  */
845 void
846 bdirty(struct buf *bp)
847 {
848 	KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
849 	bp->b_flags &= ~(B_READ|B_RELBUF);
850 
851 	if ((bp->b_flags & B_DELWRI) == 0) {
852 		bp->b_flags |= B_DONE | B_DELWRI;
853 		reassignbuf(bp);
854 		++numdirtybuffers;
855 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
856 	}
857 }
858 
859 /*
860  * bundirty:
861  *
862  *	Clear B_DELWRI for buffer.
863  *
864  *	Since the buffer is not on a queue, we do not update the numfreebuffers
865  *	count.
866  *
867  *	Must be called from a critical section.
868  *
869  *	The buffer is typically on BQUEUE_NONE but there is one case in
870  *	brelse() that calls this function after placing the buffer on
871  *	a different queue.
872  */
873 
874 void
875 bundirty(struct buf *bp)
876 {
877 	if (bp->b_flags & B_DELWRI) {
878 		bp->b_flags &= ~B_DELWRI;
879 		reassignbuf(bp);
880 		--numdirtybuffers;
881 		numdirtywakeup(lodirtybuffers);
882 	}
883 	/*
884 	 * Since it is now being written, we can clear its deferred write flag.
885 	 */
886 	bp->b_flags &= ~B_DEFERRED;
887 }
888 
889 /*
890  * bawrite:
891  *
892  *	Asynchronous write.  Start output on a buffer, but do not wait for
893  *	it to complete.  The buffer is released when the output completes.
894  *
895  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
896  *	B_INVAL buffers.  Not us.
897  */
898 void
899 bawrite(struct buf * bp)
900 {
901 	bp->b_flags |= B_ASYNC;
902 	(void) VOP_BWRITE(bp->b_vp, bp);
903 }
904 
905 /*
906  * bowrite:
907  *
908  *	Ordered write.  Start output on a buffer, and flag it so that the
909  *	device will write it in the order it was queued.  The buffer is
910  *	released when the output completes.  bwrite() ( or the VOP routine
911  *	anyway ) is responsible for handling B_INVAL buffers.
912  */
913 int
914 bowrite(struct buf * bp)
915 {
916 	bp->b_flags |= B_ORDERED | B_ASYNC;
917 	return (VOP_BWRITE(bp->b_vp, bp));
918 }
919 
920 /*
921  * bwillwrite:
922  *
923  *	Called prior to the locking of any vnodes when we are expecting to
924  *	write.  We do not want to starve the buffer cache with too many
925  *	dirty buffers so we block here.  By blocking prior to the locking
926  *	of any vnodes we attempt to avoid the situation where a locked vnode
927  *	prevents the various system daemons from flushing related buffers.
928  */
929 
930 void
931 bwillwrite(void)
932 {
933 	if (numdirtybuffers >= hidirtybuffers) {
934 		crit_enter();
935 		while (numdirtybuffers >= hidirtybuffers) {
936 			bd_wakeup(1);
937 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
938 			tsleep(&needsbuffer, 0, "flswai", 0);
939 		}
940 		crit_exit();
941 	}
942 }
943 
944 /*
945  * buf_dirty_count_severe:
946  *
947  *	Return true if we have too many dirty buffers.
948  */
949 int
950 buf_dirty_count_severe(void)
951 {
952 	return(numdirtybuffers >= hidirtybuffers);
953 }
954 
955 /*
956  * brelse:
957  *
958  *	Release a busy buffer and, if requested, free its resources.  The
959  *	buffer will be stashed in the appropriate bufqueue[] allowing it
960  *	to be accessed later as a cache entity or reused for other purposes.
961  */
962 void
963 brelse(struct buf * bp)
964 {
965 #ifdef INVARIANTS
966 	int saved_flags = bp->b_flags;
967 #endif
968 
969 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
970 
971 	crit_enter();
972 
973 	if (bp->b_flags & B_LOCKED)
974 		bp->b_flags &= ~B_ERROR;
975 
976 	if ((bp->b_flags & (B_READ | B_ERROR | B_INVAL)) == B_ERROR) {
977 		/*
978 		 * Failed write, redirty.  Must clear B_ERROR to prevent
979 		 * pages from being scrapped.  If B_INVAL is set then
980 		 * this case is not run and the next case is run to
981 		 * destroy the buffer.  B_INVAL can occur if the buffer
982 		 * is outside the range supported by the underlying device.
983 		 */
984 		bp->b_flags &= ~B_ERROR;
985 		bdirty(bp);
986 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
987 	    (bp->b_bufsize <= 0)) {
988 		/*
989 		 * Either a failed I/O or we were asked to free or not
990 		 * cache the buffer.
991 		 */
992 		bp->b_flags |= B_INVAL;
993 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
994 			(*bioops.io_deallocate)(bp);
995 		if (bp->b_flags & B_DELWRI) {
996 			--numdirtybuffers;
997 			numdirtywakeup(lodirtybuffers);
998 		}
999 		bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
1000 	}
1001 
1002 	/*
1003 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1004 	 * is called with B_DELWRI set, the underlying pages may wind up
1005 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1006 	 * because pages associated with a B_DELWRI bp are marked clean.
1007 	 *
1008 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1009 	 * if B_DELWRI is set.
1010 	 *
1011 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1012 	 * on pages to return pages to the VM page queues.
1013 	 */
1014 	if (bp->b_flags & B_DELWRI)
1015 		bp->b_flags &= ~B_RELBUF;
1016 	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1017 		bp->b_flags |= B_RELBUF;
1018 
1019 	/*
1020 	 * At this point destroying the buffer is governed by the B_INVAL
1021 	 * or B_RELBUF flags.
1022 	 */
1023 
1024 	/*
1025 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1026 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1027 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1028 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1029 	 *
1030 	 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
1031 	 * invalidated.  B_ERROR cannot be set for a failed write unless the
1032 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1033 	 *
1034 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1035 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1036 	 * the commit state and we cannot afford to lose the buffer. If the
1037 	 * buffer has a background write in progress, we need to keep it
1038 	 * around to prevent it from being reconstituted and starting a second
1039 	 * background write.
1040 	 */
1041 	if ((bp->b_flags & B_VMIO)
1042 	    && !(bp->b_vp->v_tag == VT_NFS &&
1043 		 !vn_isdisk(bp->b_vp, NULL) &&
1044 		 (bp->b_flags & B_DELWRI))
1045 	    ) {
1046 		/*
1047 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1048 		 */
1049 		int i, j, resid;
1050 		vm_page_t m;
1051 		off_t foff;
1052 		vm_pindex_t poff;
1053 		vm_object_t obj;
1054 		struct vnode *vp;
1055 
1056 		vp = bp->b_vp;
1057 
1058 		/*
1059 		 * Get the base offset and length of the buffer.  Note that
1060 		 * in the VMIO case if the buffer block size is not
1061 		 * page-aligned then b_data pointer may not be page-aligned.
1062 		 * But our b_xio.xio_pages array *IS* page aligned.
1063 		 *
1064 		 * block sizes less then DEV_BSIZE (usually 512) are not
1065 		 * supported due to the page granularity bits (m->valid,
1066 		 * m->dirty, etc...).
1067 		 *
1068 		 * See man buf(9) for more information
1069 		 */
1070 
1071 		resid = bp->b_bufsize;
1072 		foff = bp->b_loffset;
1073 
1074 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1075 			m = bp->b_xio.xio_pages[i];
1076 			vm_page_flag_clear(m, PG_ZERO);
1077 			/*
1078 			 * If we hit a bogus page, fixup *all* of them
1079 			 * now.  Note that we left these pages wired
1080 			 * when we removed them so they had better exist,
1081 			 * and they cannot be ripped out from under us so
1082 			 * no critical section protection is necessary.
1083 			 */
1084 			if (m == bogus_page) {
1085 				VOP_GETVOBJECT(vp, &obj);
1086 				poff = OFF_TO_IDX(bp->b_loffset);
1087 
1088 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1089 					vm_page_t mtmp;
1090 
1091 					mtmp = bp->b_xio.xio_pages[j];
1092 					if (mtmp == bogus_page) {
1093 						mtmp = vm_page_lookup(obj, poff + j);
1094 						if (!mtmp) {
1095 							panic("brelse: page missing");
1096 						}
1097 						bp->b_xio.xio_pages[j] = mtmp;
1098 					}
1099 				}
1100 
1101 				if ((bp->b_flags & B_INVAL) == 0) {
1102 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1103 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1104 				}
1105 				m = bp->b_xio.xio_pages[i];
1106 			}
1107 
1108 			/*
1109 			 * Invalidate the backing store if B_NOCACHE is set
1110 			 * (e.g. used with vinvalbuf()).  If this is NFS
1111 			 * we impose a requirement that the block size be
1112 			 * a multiple of PAGE_SIZE and create a temporary
1113 			 * hack to basically invalidate the whole page.  The
1114 			 * problem is that NFS uses really odd buffer sizes
1115 			 * especially when tracking piecemeal writes and
1116 			 * it also vinvalbuf()'s a lot, which would result
1117 			 * in only partial page validation and invalidation
1118 			 * here.  If the file page is mmap()'d, however,
1119 			 * all the valid bits get set so after we invalidate
1120 			 * here we would end up with weird m->valid values
1121 			 * like 0xfc.  nfs_getpages() can't handle this so
1122 			 * we clear all the valid bits for the NFS case
1123 			 * instead of just some of them.
1124 			 *
1125 			 * The real bug is the VM system having to set m->valid
1126 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1127 			 * itself is an artifact of the whole 512-byte
1128 			 * granular mess that exists to support odd block
1129 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1130 			 * A complete rewrite is required.
1131 			 */
1132 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1133 				int poffset = foff & PAGE_MASK;
1134 				int presid;
1135 
1136 				presid = PAGE_SIZE - poffset;
1137 				if (bp->b_vp->v_tag == VT_NFS &&
1138 				    bp->b_vp->v_type == VREG) {
1139 					; /* entire page */
1140 				} else if (presid > resid) {
1141 					presid = resid;
1142 				}
1143 				KASSERT(presid >= 0, ("brelse: extra page"));
1144 				vm_page_set_invalid(m, poffset, presid);
1145 			}
1146 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1147 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1148 		}
1149 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1150 			vfs_vmio_release(bp);
1151 	} else if (bp->b_flags & B_VMIO) {
1152 		/*
1153 		 * Rundown for VMIO buffers which are dirty NFS buffers.  Such
1154 		 * buffers contain tracking ranges for NFS and cannot normally
1155 		 * be released.  Due to the dirty check above this series of
1156 		 * conditionals, B_RELBUF probably will never be set in this
1157 		 * codepath.
1158 		 */
1159 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1160 			vfs_vmio_release(bp);
1161 	} else {
1162 		/*
1163 		 * Rundown for non-VMIO buffers.
1164 		 */
1165 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1166 #if 0
1167 			if (bp->b_vp)
1168 				printf("brelse bp %p %08x/%08lx: Warning, caught and fixed brelvp bug\n", bp, saved_flags, bp->b_flags);
1169 #endif
1170 			if (bp->b_bufsize)
1171 				allocbuf(bp, 0);
1172 			if (bp->b_vp)
1173 				brelvp(bp);
1174 		}
1175 	}
1176 
1177 	if (bp->b_qindex != BQUEUE_NONE)
1178 		panic("brelse: free buffer onto another queue???");
1179 	if (BUF_REFCNTNB(bp) > 1) {
1180 		/* Temporary panic to verify exclusive locking */
1181 		/* This panic goes away when we allow shared refs */
1182 		panic("brelse: multiple refs");
1183 		/* do not release to free list */
1184 		BUF_UNLOCK(bp);
1185 		crit_exit();
1186 		return;
1187 	}
1188 
1189 	/*
1190 	 * Figure out the correct queue to place the cleaned up buffer on.
1191 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1192 	 * disassociated from their vnode.
1193 	 */
1194 
1195 	if (bp->b_bufsize == 0) {
1196 		/*
1197 		 * Buffers with no memory.  Due to conditionals near the top
1198 		 * of brelse() such buffers should probably already be
1199 		 * marked B_INVAL and disassociated from their vnode.
1200 		 */
1201 		bp->b_flags |= B_INVAL;
1202 		bp->b_xflags &= ~BX_BKGRDWRITE;
1203 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08lx vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1204 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1205 		if (bp->b_xflags & BX_BKGRDINPROG)
1206 			panic("losing buffer 1");
1207 		if (bp->b_kvasize) {
1208 			bp->b_qindex = BQUEUE_EMPTYKVA;
1209 		} else {
1210 			bp->b_qindex = BQUEUE_EMPTY;
1211 		}
1212 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1213 	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1214 		/*
1215 		 * Buffers with junk contents.   Again these buffers had better
1216 		 * already be disassociated from their vnode.
1217 		 */
1218 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08lx vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1219 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1220 		bp->b_flags |= B_INVAL;
1221 		bp->b_xflags &= ~BX_BKGRDWRITE;
1222 		if (bp->b_xflags & BX_BKGRDINPROG)
1223 			panic("losing buffer 2");
1224 		bp->b_qindex = BQUEUE_CLEAN;
1225 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1226 	} else if (bp->b_flags & B_LOCKED) {
1227 		/*
1228 		 * Buffers that are locked.
1229 		 */
1230 		bp->b_qindex = BQUEUE_LOCKED;
1231 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1232 	} else {
1233 		/*
1234 		 * Remaining buffers.  These buffers are still associated with
1235 		 * their vnode.
1236 		 */
1237 		switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1238 		case B_DELWRI | B_AGE:
1239 		    bp->b_qindex = BQUEUE_DIRTY;
1240 		    TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1241 		    break;
1242 		case B_DELWRI:
1243 		    bp->b_qindex = BQUEUE_DIRTY;
1244 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1245 		    break;
1246 		case B_AGE:
1247 		    bp->b_qindex = BQUEUE_CLEAN;
1248 		    TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1249 		    break;
1250 		default:
1251 		    bp->b_qindex = BQUEUE_CLEAN;
1252 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1253 		    break;
1254 		}
1255 	}
1256 
1257 	/*
1258 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1259 	 * on the correct queue.
1260 	 */
1261 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1262 		bundirty(bp);
1263 
1264 	/*
1265 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1266 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1267 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1268 	 * if B_INVAL is set ).
1269 	 */
1270 	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1271 		bufcountwakeup();
1272 
1273 	/*
1274 	 * Something we can maybe free or reuse
1275 	 */
1276 	if (bp->b_bufsize || bp->b_kvasize)
1277 		bufspacewakeup();
1278 
1279 	/* unlock */
1280 	BUF_UNLOCK(bp);
1281 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1282 			B_DIRECT | B_NOWDRAIN);
1283 	crit_exit();
1284 }
1285 
1286 /*
1287  * bqrelse:
1288  *
1289  *	Release a buffer back to the appropriate queue but do not try to free
1290  *	it.  The buffer is expected to be used again soon.
1291  *
1292  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1293  *	biodone() to requeue an async I/O on completion.  It is also used when
1294  *	known good buffers need to be requeued but we think we may need the data
1295  *	again soon.
1296  *
1297  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1298  */
1299 void
1300 bqrelse(struct buf * bp)
1301 {
1302 	crit_enter();
1303 
1304 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1305 
1306 	if (bp->b_qindex != BQUEUE_NONE)
1307 		panic("bqrelse: free buffer onto another queue???");
1308 	if (BUF_REFCNTNB(bp) > 1) {
1309 		/* do not release to free list */
1310 		panic("bqrelse: multiple refs");
1311 		BUF_UNLOCK(bp);
1312 		crit_exit();
1313 		return;
1314 	}
1315 	if (bp->b_flags & B_LOCKED) {
1316 		bp->b_flags &= ~B_ERROR;
1317 		bp->b_qindex = BQUEUE_LOCKED;
1318 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1319 		/* buffers with stale but valid contents */
1320 	} else if (bp->b_flags & B_DELWRI) {
1321 		bp->b_qindex = BQUEUE_DIRTY;
1322 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1323 	} else if (vm_page_count_severe()) {
1324 		/*
1325 		 * We are too low on memory, we have to try to free the
1326 		 * buffer (most importantly: the wired pages making up its
1327 		 * backing store) *now*.
1328 		 */
1329 		crit_exit();
1330 		brelse(bp);
1331 		return;
1332 	} else {
1333 		bp->b_qindex = BQUEUE_CLEAN;
1334 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1335 	}
1336 
1337 	if ((bp->b_flags & B_LOCKED) == 0 &&
1338 	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1339 		bufcountwakeup();
1340 	}
1341 
1342 	/*
1343 	 * Something we can maybe free or reuse.
1344 	 */
1345 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1346 		bufspacewakeup();
1347 
1348 	/*
1349 	 * Final cleanup and unlock.  Clear bits that are only used while a
1350 	 * buffer is actively locked.
1351 	 */
1352 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1353 	BUF_UNLOCK(bp);
1354 	crit_exit();
1355 }
1356 
1357 /*
1358  * vfs_vmio_release:
1359  *
1360  *	Return backing pages held by the buffer 'bp' back to the VM system
1361  *	if possible.  The pages are freed if they are no longer valid or
1362  *	attempt to free if it was used for direct I/O otherwise they are
1363  *	sent to the page cache.
1364  *
1365  *	Pages that were marked busy are left alone and skipped.
1366  *
1367  *	The KVA mapping (b_data) for the underlying pages is removed by
1368  *	this function.
1369  */
1370 static void
1371 vfs_vmio_release(struct buf *bp)
1372 {
1373 	int i;
1374 	vm_page_t m;
1375 
1376 	crit_enter();
1377 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1378 		m = bp->b_xio.xio_pages[i];
1379 		bp->b_xio.xio_pages[i] = NULL;
1380 		/*
1381 		 * In order to keep page LRU ordering consistent, put
1382 		 * everything on the inactive queue.
1383 		 */
1384 		vm_page_unwire(m, 0);
1385 		/*
1386 		 * We don't mess with busy pages, it is
1387 		 * the responsibility of the process that
1388 		 * busied the pages to deal with them.
1389 		 */
1390 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1391 			continue;
1392 
1393 		if (m->wire_count == 0) {
1394 			vm_page_flag_clear(m, PG_ZERO);
1395 			/*
1396 			 * Might as well free the page if we can and it has
1397 			 * no valid data.  We also free the page if the
1398 			 * buffer was used for direct I/O.
1399 			 */
1400 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1401 					m->hold_count == 0) {
1402 				vm_page_busy(m);
1403 				vm_page_protect(m, VM_PROT_NONE);
1404 				vm_page_free(m);
1405 			} else if (bp->b_flags & B_DIRECT) {
1406 				vm_page_try_to_free(m);
1407 			} else if (vm_page_count_severe()) {
1408 				vm_page_try_to_cache(m);
1409 			}
1410 		}
1411 	}
1412 	crit_exit();
1413 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1414 	if (bp->b_bufsize) {
1415 		bufspacewakeup();
1416 		bp->b_bufsize = 0;
1417 	}
1418 	bp->b_xio.xio_npages = 0;
1419 	bp->b_flags &= ~B_VMIO;
1420 	if (bp->b_vp)
1421 		brelvp(bp);
1422 }
1423 
1424 /*
1425  * vfs_bio_awrite:
1426  *
1427  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1428  *	This is much better then the old way of writing only one buffer at
1429  *	a time.  Note that we may not be presented with the buffers in the
1430  *	correct order, so we search for the cluster in both directions.
1431  *
1432  *	The buffer is locked on call.
1433  */
1434 int
1435 vfs_bio_awrite(struct buf *bp)
1436 {
1437 	int i;
1438 	int j;
1439 	daddr_t lblkno = bp->b_lblkno;
1440 	struct vnode *vp = bp->b_vp;
1441 	int ncl;
1442 	struct buf *bpa;
1443 	int nwritten;
1444 	int size;
1445 	int maxcl;
1446 
1447 	crit_enter();
1448 	/*
1449 	 * right now we support clustered writing only to regular files.  If
1450 	 * we find a clusterable block we could be in the middle of a cluster
1451 	 * rather then at the beginning.
1452 	 *
1453 	 * NOTE: b_bio1 contains the logical loffset/lblkno and is aliased
1454 	 * to b_lblkno and b_loffset.  b_bio2 contains the translated block
1455 	 * number.
1456 	 */
1457 	if ((vp->v_type == VREG) &&
1458 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1459 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1460 
1461 		size = vp->v_mount->mnt_stat.f_iosize;
1462 		maxcl = MAXPHYS / size;
1463 
1464 		for (i = 1; i < maxcl; i++) {
1465 			if ((bpa = findblk(vp, lblkno + i)) &&
1466 			    BUF_REFCNT(bpa) == 0 &&
1467 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1468 			    (B_DELWRI | B_CLUSTEROK)) &&
1469 			    (bpa->b_bufsize == size)) {
1470 				if ((bpa->b_bio2.bio_blkno == (daddr_t)-1) ||
1471 				    (bpa->b_bio2.bio_blkno !=
1472 				     bp->b_bio2.bio_blkno + ((i * size) >> DEV_BSHIFT)))
1473 					break;
1474 			} else {
1475 				break;
1476 			}
1477 		}
1478 		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1479 			if ((bpa = findblk(vp, lblkno - j)) &&
1480 			    BUF_REFCNT(bpa) == 0 &&
1481 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1482 			    (B_DELWRI | B_CLUSTEROK)) &&
1483 			    (bpa->b_bufsize == size)) {
1484 				if ((bpa->b_bio2.bio_blkno == (daddr_t)-1) ||
1485 				    (bpa->b_bio2.bio_blkno !=
1486 				     bp->b_bio2.bio_blkno - ((j * size) >> DEV_BSHIFT)))
1487 					break;
1488 			} else {
1489 				break;
1490 			}
1491 		}
1492 		--j;
1493 		ncl = i + j;
1494 		/*
1495 		 * this is a possible cluster write
1496 		 */
1497 		if (ncl != 1) {
1498 			BUF_UNLOCK(bp);
1499 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1500 			crit_exit();
1501 			return nwritten;
1502 		}
1503 	}
1504 
1505 	bremfree(bp);
1506 	bp->b_flags |= B_ASYNC;
1507 
1508 	crit_exit();
1509 	/*
1510 	 * default (old) behavior, writing out only one block
1511 	 *
1512 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1513 	 */
1514 	nwritten = bp->b_bufsize;
1515 	(void) VOP_BWRITE(bp->b_vp, bp);
1516 
1517 	return nwritten;
1518 }
1519 
1520 /*
1521  * getnewbuf:
1522  *
1523  *	Find and initialize a new buffer header, freeing up existing buffers
1524  *	in the bufqueues as necessary.  The new buffer is returned locked.
1525  *
1526  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1527  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1528  *
1529  *	We block if:
1530  *		We have insufficient buffer headers
1531  *		We have insufficient buffer space
1532  *		buffer_map is too fragmented ( space reservation fails )
1533  *		If we have to flush dirty buffers ( but we try to avoid this )
1534  *
1535  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1536  *	Instead we ask the buf daemon to do it for us.  We attempt to
1537  *	avoid piecemeal wakeups of the pageout daemon.
1538  */
1539 
1540 static struct buf *
1541 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1542 {
1543 	struct buf *bp;
1544 	struct buf *nbp;
1545 	int defrag = 0;
1546 	int nqindex;
1547 	static int flushingbufs;
1548 
1549 	/*
1550 	 * We can't afford to block since we might be holding a vnode lock,
1551 	 * which may prevent system daemons from running.  We deal with
1552 	 * low-memory situations by proactively returning memory and running
1553 	 * async I/O rather then sync I/O.
1554 	 */
1555 
1556 	++getnewbufcalls;
1557 	--getnewbufrestarts;
1558 restart:
1559 	++getnewbufrestarts;
1560 
1561 	/*
1562 	 * Setup for scan.  If we do not have enough free buffers,
1563 	 * we setup a degenerate case that immediately fails.  Note
1564 	 * that if we are specially marked process, we are allowed to
1565 	 * dip into our reserves.
1566 	 *
1567 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1568 	 *
1569 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1570 	 * However, there are a number of cases (defragging, reusing, ...)
1571 	 * where we cannot backup.
1572 	 */
1573 	nqindex = BQUEUE_EMPTYKVA;
1574 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1575 
1576 	if (nbp == NULL) {
1577 		/*
1578 		 * If no EMPTYKVA buffers and we are either
1579 		 * defragging or reusing, locate a CLEAN buffer
1580 		 * to free or reuse.  If bufspace useage is low
1581 		 * skip this step so we can allocate a new buffer.
1582 		 */
1583 		if (defrag || bufspace >= lobufspace) {
1584 			nqindex = BQUEUE_CLEAN;
1585 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1586 		}
1587 
1588 		/*
1589 		 * If we could not find or were not allowed to reuse a
1590 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1591 		 * buffer.  We can only use an EMPTY buffer if allocating
1592 		 * its KVA would not otherwise run us out of buffer space.
1593 		 */
1594 		if (nbp == NULL && defrag == 0 &&
1595 		    bufspace + maxsize < hibufspace) {
1596 			nqindex = BQUEUE_EMPTY;
1597 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1598 		}
1599 	}
1600 
1601 	/*
1602 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1603 	 * depending.
1604 	 */
1605 
1606 	while ((bp = nbp) != NULL) {
1607 		int qindex = nqindex;
1608 
1609 		/*
1610 		 * Calculate next bp ( we can only use it if we do not block
1611 		 * or do other fancy things ).
1612 		 */
1613 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1614 			switch(qindex) {
1615 			case BQUEUE_EMPTY:
1616 				nqindex = BQUEUE_EMPTYKVA;
1617 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1618 					break;
1619 				/* fall through */
1620 			case BQUEUE_EMPTYKVA:
1621 				nqindex = BQUEUE_CLEAN;
1622 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1623 					break;
1624 				/* fall through */
1625 			case BQUEUE_CLEAN:
1626 				/*
1627 				 * nbp is NULL.
1628 				 */
1629 				break;
1630 			}
1631 		}
1632 
1633 		/*
1634 		 * Sanity Checks
1635 		 */
1636 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1637 
1638 		/*
1639 		 * Note: we no longer distinguish between VMIO and non-VMIO
1640 		 * buffers.
1641 		 */
1642 
1643 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1644 
1645 		/*
1646 		 * If we are defragging then we need a buffer with
1647 		 * b_kvasize != 0.  XXX this situation should no longer
1648 		 * occur, if defrag is non-zero the buffer's b_kvasize
1649 		 * should also be non-zero at this point.  XXX
1650 		 */
1651 		if (defrag && bp->b_kvasize == 0) {
1652 			printf("Warning: defrag empty buffer %p\n", bp);
1653 			continue;
1654 		}
1655 
1656 		/*
1657 		 * Start freeing the bp.  This is somewhat involved.  nbp
1658 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
1659 		 * on the clean list must be disassociated from their
1660 		 * current vnode.  Buffers on the empty[kva] lists have
1661 		 * already been disassociated.
1662 		 */
1663 
1664 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1665 			printf("getnewbuf: warning, locked buf %p, race corrected\n", bp);
1666 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
1667 			goto restart;
1668 		}
1669 		if (bp->b_qindex != qindex) {
1670 			printf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
1671 			BUF_UNLOCK(bp);
1672 			goto restart;
1673 		}
1674 		bremfree(bp);
1675 
1676 		if (qindex == BQUEUE_CLEAN) {
1677 			if (bp->b_flags & B_VMIO) {
1678 				bp->b_flags &= ~B_ASYNC;
1679 				vfs_vmio_release(bp);
1680 			}
1681 			if (bp->b_vp)
1682 				brelvp(bp);
1683 		}
1684 
1685 		/*
1686 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1687 		 * the scan from this point on.
1688 		 *
1689 		 * Get the rest of the buffer freed up.  b_kva* is still
1690 		 * valid after this operation.
1691 		 */
1692 
1693 		KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08lx vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
1694 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1695 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1696 			(*bioops.io_deallocate)(bp);
1697 		if (bp->b_xflags & BX_BKGRDINPROG)
1698 			panic("losing buffer 3");
1699 
1700 		/*
1701 		 * critical section protection is not required when
1702 		 * scrapping a buffer's contents because it is already
1703 		 * wired.
1704 		 */
1705 		if (bp->b_bufsize)
1706 			allocbuf(bp, 0);
1707 
1708 		bp->b_flags = 0;
1709 		bp->b_xflags = 0;
1710 		bp->b_vp = NULL;
1711 		bp->b_error = 0;
1712 		bp->b_resid = 0;
1713 		bp->b_bcount = 0;
1714 		bp->b_xio.xio_npages = 0;
1715 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1716 		reinitbufbio(bp);
1717 
1718 		LIST_INIT(&bp->b_dep);
1719 
1720 		/*
1721 		 * If we are defragging then free the buffer.
1722 		 */
1723 		if (defrag) {
1724 			bp->b_flags |= B_INVAL;
1725 			bfreekva(bp);
1726 			brelse(bp);
1727 			defrag = 0;
1728 			goto restart;
1729 		}
1730 
1731 		/*
1732 		 * If we are overcomitted then recover the buffer and its
1733 		 * KVM space.  This occurs in rare situations when multiple
1734 		 * processes are blocked in getnewbuf() or allocbuf().
1735 		 */
1736 		if (bufspace >= hibufspace)
1737 			flushingbufs = 1;
1738 		if (flushingbufs && bp->b_kvasize != 0) {
1739 			bp->b_flags |= B_INVAL;
1740 			bfreekva(bp);
1741 			brelse(bp);
1742 			goto restart;
1743 		}
1744 		if (bufspace < lobufspace)
1745 			flushingbufs = 0;
1746 		break;
1747 	}
1748 
1749 	/*
1750 	 * If we exhausted our list, sleep as appropriate.  We may have to
1751 	 * wakeup various daemons and write out some dirty buffers.
1752 	 *
1753 	 * Generally we are sleeping due to insufficient buffer space.
1754 	 */
1755 
1756 	if (bp == NULL) {
1757 		int flags;
1758 		char *waitmsg;
1759 
1760 		if (defrag) {
1761 			flags = VFS_BIO_NEED_BUFSPACE;
1762 			waitmsg = "nbufkv";
1763 		} else if (bufspace >= hibufspace) {
1764 			waitmsg = "nbufbs";
1765 			flags = VFS_BIO_NEED_BUFSPACE;
1766 		} else {
1767 			waitmsg = "newbuf";
1768 			flags = VFS_BIO_NEED_ANY;
1769 		}
1770 
1771 		bd_speedup();	/* heeeelp */
1772 
1773 		needsbuffer |= flags;
1774 		while (needsbuffer & flags) {
1775 			if (tsleep(&needsbuffer, slpflag, waitmsg, slptimeo))
1776 				return (NULL);
1777 		}
1778 	} else {
1779 		/*
1780 		 * We finally have a valid bp.  We aren't quite out of the
1781 		 * woods, we still have to reserve kva space.  In order
1782 		 * to keep fragmentation sane we only allocate kva in
1783 		 * BKVASIZE chunks.
1784 		 */
1785 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1786 
1787 		if (maxsize != bp->b_kvasize) {
1788 			vm_offset_t addr = 0;
1789 			int count;
1790 
1791 			bfreekva(bp);
1792 
1793 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1794 			vm_map_lock(buffer_map);
1795 
1796 			if (vm_map_findspace(buffer_map,
1797 				    vm_map_min(buffer_map), maxsize,
1798 				    maxsize, &addr)) {
1799 				/*
1800 				 * Uh oh.  Buffer map is too fragmented.  We
1801 				 * must defragment the map.
1802 				 */
1803 				vm_map_unlock(buffer_map);
1804 				vm_map_entry_release(count);
1805 				++bufdefragcnt;
1806 				defrag = 1;
1807 				bp->b_flags |= B_INVAL;
1808 				brelse(bp);
1809 				goto restart;
1810 			}
1811 			if (addr) {
1812 				vm_map_insert(buffer_map, &count,
1813 					NULL, 0,
1814 					addr, addr + maxsize,
1815 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1816 
1817 				bp->b_kvabase = (caddr_t) addr;
1818 				bp->b_kvasize = maxsize;
1819 				bufspace += bp->b_kvasize;
1820 				++bufreusecnt;
1821 			}
1822 			vm_map_unlock(buffer_map);
1823 			vm_map_entry_release(count);
1824 		}
1825 		bp->b_data = bp->b_kvabase;
1826 	}
1827 	return(bp);
1828 }
1829 
1830 /*
1831  * buf_daemon:
1832  *
1833  *	Buffer flushing daemon.  Buffers are normally flushed by the
1834  *	update daemon but if it cannot keep up this process starts to
1835  *	take the load in an attempt to prevent getnewbuf() from blocking.
1836  */
1837 
1838 static struct thread *bufdaemonthread;
1839 
1840 static struct kproc_desc buf_kp = {
1841 	"bufdaemon",
1842 	buf_daemon,
1843 	&bufdaemonthread
1844 };
1845 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1846 
1847 static void
1848 buf_daemon()
1849 {
1850 	/*
1851 	 * This process needs to be suspended prior to shutdown sync.
1852 	 */
1853 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
1854 	    bufdaemonthread, SHUTDOWN_PRI_LAST);
1855 
1856 	/*
1857 	 * This process is allowed to take the buffer cache to the limit
1858 	 */
1859 	crit_enter();
1860 
1861 	for (;;) {
1862 		kproc_suspend_loop();
1863 
1864 		/*
1865 		 * Do the flush.  Limit the amount of in-transit I/O we
1866 		 * allow to build up, otherwise we would completely saturate
1867 		 * the I/O system.  Wakeup any waiting processes before we
1868 		 * normally would so they can run in parallel with our drain.
1869 		 */
1870 		while (numdirtybuffers > lodirtybuffers) {
1871 			if (flushbufqueues() == 0)
1872 				break;
1873 			waitrunningbufspace();
1874 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1875 		}
1876 
1877 		/*
1878 		 * Only clear bd_request if we have reached our low water
1879 		 * mark.  The buf_daemon normally waits 5 seconds and
1880 		 * then incrementally flushes any dirty buffers that have
1881 		 * built up, within reason.
1882 		 *
1883 		 * If we were unable to hit our low water mark and couldn't
1884 		 * find any flushable buffers, we sleep half a second.
1885 		 * Otherwise we loop immediately.
1886 		 */
1887 		if (numdirtybuffers <= lodirtybuffers) {
1888 			/*
1889 			 * We reached our low water mark, reset the
1890 			 * request and sleep until we are needed again.
1891 			 * The sleep is just so the suspend code works.
1892 			 */
1893 			bd_request = 0;
1894 			tsleep(&bd_request, 0, "psleep", hz);
1895 		} else {
1896 			/*
1897 			 * We couldn't find any flushable dirty buffers but
1898 			 * still have too many dirty buffers, we
1899 			 * have to sleep and try again.  (rare)
1900 			 */
1901 			tsleep(&bd_request, 0, "qsleep", hz / 2);
1902 		}
1903 	}
1904 }
1905 
1906 /*
1907  * flushbufqueues:
1908  *
1909  *	Try to flush a buffer in the dirty queue.  We must be careful to
1910  *	free up B_INVAL buffers instead of write them, which NFS is
1911  *	particularly sensitive to.
1912  */
1913 
1914 static int
1915 flushbufqueues(void)
1916 {
1917 	struct buf *bp;
1918 	int r = 0;
1919 
1920 	bp = TAILQ_FIRST(&bufqueues[BQUEUE_DIRTY]);
1921 
1922 	while (bp) {
1923 		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1924 		if ((bp->b_flags & B_DELWRI) != 0 &&
1925 		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
1926 			if (bp->b_flags & B_INVAL) {
1927 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1928 					panic("flushbufqueues: locked buf");
1929 				bremfree(bp);
1930 				brelse(bp);
1931 				++r;
1932 				break;
1933 			}
1934 			if (LIST_FIRST(&bp->b_dep) != NULL &&
1935 			    bioops.io_countdeps &&
1936 			    (bp->b_flags & B_DEFERRED) == 0 &&
1937 			    (*bioops.io_countdeps)(bp, 0)) {
1938 				TAILQ_REMOVE(&bufqueues[BQUEUE_DIRTY],
1939 					     bp, b_freelist);
1940 				TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY],
1941 						  bp, b_freelist);
1942 				bp->b_flags |= B_DEFERRED;
1943 				bp = TAILQ_FIRST(&bufqueues[BQUEUE_DIRTY]);
1944 				continue;
1945 			}
1946 
1947 			/*
1948 			 * Only write it out if we can successfully lock
1949 			 * it.
1950 			 */
1951 			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
1952 				vfs_bio_awrite(bp);
1953 				++r;
1954 				break;
1955 			}
1956 		}
1957 		bp = TAILQ_NEXT(bp, b_freelist);
1958 	}
1959 	return (r);
1960 }
1961 
1962 /*
1963  * inmem:
1964  *
1965  *	Returns true if no I/O is needed to access the associated VM object.
1966  *	This is like findblk except it also hunts around in the VM system for
1967  *	the data.
1968  *
1969  *	Note that we ignore vm_page_free() races from interrupts against our
1970  *	lookup, since if the caller is not protected our return value will not
1971  *	be any more valid then otherwise once we exit the critical section.
1972  */
1973 int
1974 inmem(struct vnode * vp, daddr_t blkno)
1975 {
1976 	vm_object_t obj;
1977 	vm_offset_t toff, tinc, size;
1978 	vm_page_t m;
1979 	vm_ooffset_t off;
1980 
1981 	if (findblk(vp, blkno))
1982 		return 1;
1983 	if (vp->v_mount == NULL)
1984 		return 0;
1985 	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
1986  		return 0;
1987 
1988 	size = PAGE_SIZE;
1989 	if (size > vp->v_mount->mnt_stat.f_iosize)
1990 		size = vp->v_mount->mnt_stat.f_iosize;
1991 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1992 
1993 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1994 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1995 		if (!m)
1996 			return 0;
1997 		tinc = size;
1998 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1999 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2000 		if (vm_page_is_valid(m,
2001 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2002 			return 0;
2003 	}
2004 	return 1;
2005 }
2006 
2007 /*
2008  * vfs_setdirty:
2009  *
2010  *	Sets the dirty range for a buffer based on the status of the dirty
2011  *	bits in the pages comprising the buffer.
2012  *
2013  *	The range is limited to the size of the buffer.
2014  *
2015  *	This routine is primarily used by NFS, but is generalized for the
2016  *	B_VMIO case.
2017  */
2018 static void
2019 vfs_setdirty(struct buf *bp)
2020 {
2021 	int i;
2022 	vm_object_t object;
2023 
2024 	/*
2025 	 * Degenerate case - empty buffer
2026 	 */
2027 
2028 	if (bp->b_bufsize == 0)
2029 		return;
2030 
2031 	/*
2032 	 * We qualify the scan for modified pages on whether the
2033 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2034 	 * is not cleared simply by protecting pages off.
2035 	 */
2036 
2037 	if ((bp->b_flags & B_VMIO) == 0)
2038 		return;
2039 
2040 	object = bp->b_xio.xio_pages[0]->object;
2041 
2042 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2043 		printf("Warning: object %p writeable but not mightbedirty\n", object);
2044 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2045 		printf("Warning: object %p mightbedirty but not writeable\n", object);
2046 
2047 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2048 		vm_offset_t boffset;
2049 		vm_offset_t eoffset;
2050 
2051 		/*
2052 		 * test the pages to see if they have been modified directly
2053 		 * by users through the VM system.
2054 		 */
2055 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2056 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
2057 			vm_page_test_dirty(bp->b_xio.xio_pages[i]);
2058 		}
2059 
2060 		/*
2061 		 * Calculate the encompassing dirty range, boffset and eoffset,
2062 		 * (eoffset - boffset) bytes.
2063 		 */
2064 
2065 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2066 			if (bp->b_xio.xio_pages[i]->dirty)
2067 				break;
2068 		}
2069 		boffset = (i << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2070 
2071 		for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) {
2072 			if (bp->b_xio.xio_pages[i]->dirty) {
2073 				break;
2074 			}
2075 		}
2076 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2077 
2078 		/*
2079 		 * Fit it to the buffer.
2080 		 */
2081 
2082 		if (eoffset > bp->b_bcount)
2083 			eoffset = bp->b_bcount;
2084 
2085 		/*
2086 		 * If we have a good dirty range, merge with the existing
2087 		 * dirty range.
2088 		 */
2089 
2090 		if (boffset < eoffset) {
2091 			if (bp->b_dirtyoff > boffset)
2092 				bp->b_dirtyoff = boffset;
2093 			if (bp->b_dirtyend < eoffset)
2094 				bp->b_dirtyend = eoffset;
2095 		}
2096 	}
2097 }
2098 
2099 /*
2100  * findblk:
2101  *
2102  *	Locate and return the specified buffer, or NULL if the buffer does
2103  *	not exist.  Do not attempt to lock the buffer or manipulate it in
2104  *	any way.  The caller must validate that the correct buffer has been
2105  *	obtain after locking it.
2106  */
2107 struct buf *
2108 findblk(struct vnode *vp, daddr_t blkno)
2109 {
2110 	struct buf *bp;
2111 
2112 	crit_enter();
2113 	bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, blkno);
2114 	crit_exit();
2115 	return(bp);
2116 }
2117 
2118 /*
2119  * getblk:
2120  *
2121  *	Get a block given a specified block and offset into a file/device.
2122  *	The buffers B_DONE bit will be cleared on return, making it almost
2123  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2124  *	return.  The caller should clear B_INVAL prior to initiating a
2125  *	READ.
2126  *
2127  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2128  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2129  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2130  *	without doing any of those things the system will likely believe
2131  *	the buffer to be valid (especially if it is not B_VMIO), and the
2132  *	next getblk() will return the buffer with B_CACHE set.
2133  *
2134  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2135  *	an existing buffer.
2136  *
2137  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2138  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2139  *	and then cleared based on the backing VM.  If the previous buffer is
2140  *	non-0-sized but invalid, B_CACHE will be cleared.
2141  *
2142  *	If getblk() must create a new buffer, the new buffer is returned with
2143  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2144  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2145  *	backing VM.
2146  *
2147  *	getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
2148  *	B_CACHE bit is clear.
2149  *
2150  *	What this means, basically, is that the caller should use B_CACHE to
2151  *	determine whether the buffer is fully valid or not and should clear
2152  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2153  *	the buffer by loading its data area with something, the caller needs
2154  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2155  *	the caller should set B_CACHE ( as an optimization ), else the caller
2156  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2157  *	a write attempt or if it was a successfull read.  If the caller
2158  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2159  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2160  */
2161 struct buf *
2162 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2163 {
2164 	struct buf *bp;
2165 
2166 	if (size > MAXBSIZE)
2167 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2168 
2169 	crit_enter();
2170 loop:
2171 	/*
2172 	 * Block if we are low on buffers.   Certain processes are allowed
2173 	 * to completely exhaust the buffer cache.
2174          *
2175          * If this check ever becomes a bottleneck it may be better to
2176          * move it into the else, when findblk() fails.  At the moment
2177          * it isn't a problem.
2178 	 *
2179 	 * XXX remove, we cannot afford to block anywhere if holding a vnode
2180 	 * lock in low-memory situation, so take it to the max.
2181          */
2182 	if (numfreebuffers == 0) {
2183 		if (!curproc)
2184 			return NULL;
2185 		needsbuffer |= VFS_BIO_NEED_ANY;
2186 		tsleep(&needsbuffer, slpflag, "newbuf", slptimeo);
2187 	}
2188 
2189 	if ((bp = findblk(vp, blkno))) {
2190 		/*
2191 		 * The buffer was found in the cache, but we need to lock it.
2192 		 * Even with LK_NOWAIT the lockmgr may break our critical
2193 		 * section, so double-check the validity of the buffer
2194 		 * once the lock has been obtained.
2195 		 */
2196 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2197 			int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2198 			if (slpflag & PCATCH)
2199 				lkflags |= LK_PCATCH;
2200 			if (BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo) ==
2201 			    ENOLCK) {
2202 				goto loop;
2203 			}
2204 			crit_exit();
2205 			return (NULL);
2206 		}
2207 
2208 		/*
2209 		 * Once the buffer has been locked, make sure we didn't race
2210 		 * a buffer recyclement.  Buffers that are no longer hashed
2211 		 * will have b_vp == NULL, so this takes care of that check
2212 		 * as well.
2213 		 */
2214 		if (bp->b_vp != vp || bp->b_lblkno != blkno) {
2215 			printf("Warning buffer %p (vp %p lblkno %d) was recycled\n", bp, vp, (int)blkno);
2216 			BUF_UNLOCK(bp);
2217 			goto loop;
2218 		}
2219 
2220 		/*
2221 		 * Make sure that B_INVAL buffers do not have a cached
2222 		 * block number translation.
2223 		 */
2224 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_blkno != (daddr_t)-1)) {
2225 			printf("Warning invalid buffer %p (vp %p lblkno %d) did not have cleared bio_blkno cache\n", bp, vp, (int)blkno);
2226 			clearbiocache(&bp->b_bio2);
2227 		}
2228 
2229 		/*
2230 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2231 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2232 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2233 		 * backing VM cache.
2234 		 */
2235 		if (bp->b_flags & B_INVAL)
2236 			bp->b_flags &= ~B_CACHE;
2237 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2238 			bp->b_flags |= B_CACHE;
2239 		bremfree(bp);
2240 
2241 		/*
2242 		 * check for size inconsistancies for non-VMIO case.
2243 		 */
2244 
2245 		if (bp->b_bcount != size) {
2246 			if ((bp->b_flags & B_VMIO) == 0 ||
2247 			    (size > bp->b_kvasize)) {
2248 				if (bp->b_flags & B_DELWRI) {
2249 					bp->b_flags |= B_NOCACHE;
2250 					VOP_BWRITE(bp->b_vp, bp);
2251 				} else {
2252 					if ((bp->b_flags & B_VMIO) &&
2253 					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2254 						bp->b_flags |= B_RELBUF;
2255 						brelse(bp);
2256 					} else {
2257 						bp->b_flags |= B_NOCACHE;
2258 						VOP_BWRITE(bp->b_vp, bp);
2259 					}
2260 				}
2261 				goto loop;
2262 			}
2263 		}
2264 
2265 		/*
2266 		 * If the size is inconsistant in the VMIO case, we can resize
2267 		 * the buffer.  This might lead to B_CACHE getting set or
2268 		 * cleared.  If the size has not changed, B_CACHE remains
2269 		 * unchanged from its previous state.
2270 		 */
2271 
2272 		if (bp->b_bcount != size)
2273 			allocbuf(bp, size);
2274 
2275 		KASSERT(bp->b_loffset != NOOFFSET,
2276 			("getblk: no buffer offset"));
2277 
2278 		/*
2279 		 * A buffer with B_DELWRI set and B_CACHE clear must
2280 		 * be committed before we can return the buffer in
2281 		 * order to prevent the caller from issuing a read
2282 		 * ( due to B_CACHE not being set ) and overwriting
2283 		 * it.
2284 		 *
2285 		 * Most callers, including NFS and FFS, need this to
2286 		 * operate properly either because they assume they
2287 		 * can issue a read if B_CACHE is not set, or because
2288 		 * ( for example ) an uncached B_DELWRI might loop due
2289 		 * to softupdates re-dirtying the buffer.  In the latter
2290 		 * case, B_CACHE is set after the first write completes,
2291 		 * preventing further loops.
2292 		 *
2293 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2294 		 * above while extending the buffer, we cannot allow the
2295 		 * buffer to remain with B_CACHE set after the write
2296 		 * completes or it will represent a corrupt state.  To
2297 		 * deal with this we set B_NOCACHE to scrap the buffer
2298 		 * after the write.
2299 		 *
2300 		 * We might be able to do something fancy, like setting
2301 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2302 		 * so the below call doesn't set B_CACHE, but that gets real
2303 		 * confusing.  This is much easier.
2304 		 */
2305 
2306 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2307 			bp->b_flags |= B_NOCACHE;
2308 			VOP_BWRITE(bp->b_vp, bp);
2309 			goto loop;
2310 		}
2311 
2312 		crit_exit();
2313 		bp->b_flags &= ~B_DONE;
2314 	} else {
2315 		/*
2316 		 * Buffer is not in-core, create new buffer.  The buffer
2317 		 * returned by getnewbuf() is locked.  Note that the returned
2318 		 * buffer is also considered valid (not marked B_INVAL).
2319 		 *
2320 		 * Calculating the offset for the I/O requires figuring out
2321 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
2322 		 * the mount's f_iosize otherwise.  If the vnode does not
2323 		 * have an associated mount we assume that the passed size is
2324 		 * the block size.
2325 		 *
2326 		 * Note that vn_isdisk() cannot be used here since it may
2327 		 * return a failure for numerous reasons.   Note that the
2328 		 * buffer size may be larger then the block size (the caller
2329 		 * will use block numbers with the proper multiple).  Beware
2330 		 * of using any v_* fields which are part of unions.  In
2331 		 * particular, in DragonFly the mount point overloading
2332 		 * mechanism is such that the underlying directory (with a
2333 		 * non-NULL v_mountedhere) is not a special case.
2334 		 */
2335 		int bsize, maxsize, vmio;
2336 		off_t offset;
2337 
2338 		if (vp->v_type == VBLK || vp->v_type == VCHR)
2339 			bsize = DEV_BSIZE;
2340 		else if (vp->v_mount)
2341 			bsize = vp->v_mount->mnt_stat.f_iosize;
2342 		else
2343 			bsize = size;
2344 
2345 		offset = (off_t)blkno * bsize;
2346 		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2347 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2348 		maxsize = imax(maxsize, bsize);
2349 
2350 		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2351 			if (slpflag || slptimeo) {
2352 				crit_exit();
2353 				return NULL;
2354 			}
2355 			goto loop;
2356 		}
2357 
2358 		/*
2359 		 * This code is used to make sure that a buffer is not
2360 		 * created while the getnewbuf routine is blocked.
2361 		 * This can be a problem whether the vnode is locked or not.
2362 		 * If the buffer is created out from under us, we have to
2363 		 * throw away the one we just created.  There is now window
2364 		 * race because we are safely running in a critical section
2365 		 * from the point of the duplicate buffer creation through
2366 		 * to here, and we've locked the buffer.
2367 		 */
2368 		if (findblk(vp, blkno)) {
2369 			bp->b_flags |= B_INVAL;
2370 			brelse(bp);
2371 			goto loop;
2372 		}
2373 
2374 		/*
2375 		 * Insert the buffer into the hash, so that it can
2376 		 * be found by findblk().
2377 		 *
2378 		 * Make sure the translation layer has been cleared.
2379 		 */
2380 		bp->b_lblkno = blkno;
2381 		bp->b_loffset = offset;
2382 		bp->b_bio2.bio_blkno = (daddr_t)-1;
2383 		/* bp->b_bio2.bio_next = NULL; */
2384 
2385 		bgetvp(vp, bp);
2386 
2387 		/*
2388 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2389 		 * buffer size starts out as 0, B_CACHE will be set by
2390 		 * allocbuf() for the VMIO case prior to it testing the
2391 		 * backing store for validity.
2392 		 */
2393 
2394 		if (vmio) {
2395 			bp->b_flags |= B_VMIO;
2396 #if defined(VFS_BIO_DEBUG)
2397 			if (vn_canvmio(vp) != TRUE)
2398 				printf("getblk: vmioing file type %d???\n", vp->v_type);
2399 #endif
2400 		} else {
2401 			bp->b_flags &= ~B_VMIO;
2402 		}
2403 
2404 		allocbuf(bp, size);
2405 
2406 		crit_exit();
2407 		bp->b_flags &= ~B_DONE;
2408 	}
2409 	return (bp);
2410 }
2411 
2412 /*
2413  * geteblk:
2414  *
2415  *	Get an empty, disassociated buffer of given size.  The buffer is
2416  *	initially set to B_INVAL.
2417  *
2418  *	critical section protection is not required for the allocbuf()
2419  *	call because races are impossible here.
2420  */
2421 struct buf *
2422 geteblk(int size)
2423 {
2424 	struct buf *bp;
2425 	int maxsize;
2426 
2427 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2428 
2429 	crit_enter();
2430 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2431 		;
2432 	crit_exit();
2433 	allocbuf(bp, size);
2434 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2435 	return (bp);
2436 }
2437 
2438 
2439 /*
2440  * allocbuf:
2441  *
2442  *	This code constitutes the buffer memory from either anonymous system
2443  *	memory (in the case of non-VMIO operations) or from an associated
2444  *	VM object (in the case of VMIO operations).  This code is able to
2445  *	resize a buffer up or down.
2446  *
2447  *	Note that this code is tricky, and has many complications to resolve
2448  *	deadlock or inconsistant data situations.  Tread lightly!!!
2449  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
2450  *	the caller.  Calling this code willy nilly can result in the loss of data.
2451  *
2452  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2453  *	B_CACHE for the non-VMIO case.
2454  *
2455  *	This routine does not need to be called from a critical section but you
2456  *	must own the buffer.
2457  */
2458 int
2459 allocbuf(struct buf *bp, int size)
2460 {
2461 	int newbsize, mbsize;
2462 	int i;
2463 
2464 	if (BUF_REFCNT(bp) == 0)
2465 		panic("allocbuf: buffer not busy");
2466 
2467 	if (bp->b_kvasize < size)
2468 		panic("allocbuf: buffer too small");
2469 
2470 	if ((bp->b_flags & B_VMIO) == 0) {
2471 		caddr_t origbuf;
2472 		int origbufsize;
2473 		/*
2474 		 * Just get anonymous memory from the kernel.  Don't
2475 		 * mess with B_CACHE.
2476 		 */
2477 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2478 		if (bp->b_flags & B_MALLOC)
2479 			newbsize = mbsize;
2480 		else
2481 			newbsize = round_page(size);
2482 
2483 		if (newbsize < bp->b_bufsize) {
2484 			/*
2485 			 * malloced buffers are not shrunk
2486 			 */
2487 			if (bp->b_flags & B_MALLOC) {
2488 				if (newbsize) {
2489 					bp->b_bcount = size;
2490 				} else {
2491 					free(bp->b_data, M_BIOBUF);
2492 					if (bp->b_bufsize) {
2493 						bufmallocspace -= bp->b_bufsize;
2494 						bufspacewakeup();
2495 						bp->b_bufsize = 0;
2496 					}
2497 					bp->b_data = bp->b_kvabase;
2498 					bp->b_bcount = 0;
2499 					bp->b_flags &= ~B_MALLOC;
2500 				}
2501 				return 1;
2502 			}
2503 			vm_hold_free_pages(
2504 			    bp,
2505 			    (vm_offset_t) bp->b_data + newbsize,
2506 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2507 		} else if (newbsize > bp->b_bufsize) {
2508 			/*
2509 			 * We only use malloced memory on the first allocation.
2510 			 * and revert to page-allocated memory when the buffer
2511 			 * grows.
2512 			 */
2513 			if ( (bufmallocspace < maxbufmallocspace) &&
2514 				(bp->b_bufsize == 0) &&
2515 				(mbsize <= PAGE_SIZE/2)) {
2516 
2517 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2518 				bp->b_bufsize = mbsize;
2519 				bp->b_bcount = size;
2520 				bp->b_flags |= B_MALLOC;
2521 				bufmallocspace += mbsize;
2522 				return 1;
2523 			}
2524 			origbuf = NULL;
2525 			origbufsize = 0;
2526 			/*
2527 			 * If the buffer is growing on its other-than-first allocation,
2528 			 * then we revert to the page-allocation scheme.
2529 			 */
2530 			if (bp->b_flags & B_MALLOC) {
2531 				origbuf = bp->b_data;
2532 				origbufsize = bp->b_bufsize;
2533 				bp->b_data = bp->b_kvabase;
2534 				if (bp->b_bufsize) {
2535 					bufmallocspace -= bp->b_bufsize;
2536 					bufspacewakeup();
2537 					bp->b_bufsize = 0;
2538 				}
2539 				bp->b_flags &= ~B_MALLOC;
2540 				newbsize = round_page(newbsize);
2541 			}
2542 			vm_hold_load_pages(
2543 			    bp,
2544 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2545 			    (vm_offset_t) bp->b_data + newbsize);
2546 			if (origbuf) {
2547 				bcopy(origbuf, bp->b_data, origbufsize);
2548 				free(origbuf, M_BIOBUF);
2549 			}
2550 		}
2551 	} else {
2552 		vm_page_t m;
2553 		int desiredpages;
2554 
2555 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2556 		desiredpages = (size == 0) ? 0 :
2557 			num_pages((bp->b_loffset & PAGE_MASK) + newbsize);
2558 
2559 		if (bp->b_flags & B_MALLOC)
2560 			panic("allocbuf: VMIO buffer can't be malloced");
2561 		/*
2562 		 * Set B_CACHE initially if buffer is 0 length or will become
2563 		 * 0-length.
2564 		 */
2565 		if (size == 0 || bp->b_bufsize == 0)
2566 			bp->b_flags |= B_CACHE;
2567 
2568 		if (newbsize < bp->b_bufsize) {
2569 			/*
2570 			 * DEV_BSIZE aligned new buffer size is less then the
2571 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2572 			 * if we have to remove any pages.
2573 			 */
2574 			if (desiredpages < bp->b_xio.xio_npages) {
2575 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
2576 					/*
2577 					 * the page is not freed here -- it
2578 					 * is the responsibility of
2579 					 * vnode_pager_setsize
2580 					 */
2581 					m = bp->b_xio.xio_pages[i];
2582 					KASSERT(m != bogus_page,
2583 					    ("allocbuf: bogus page found"));
2584 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2585 						;
2586 
2587 					bp->b_xio.xio_pages[i] = NULL;
2588 					vm_page_unwire(m, 0);
2589 				}
2590 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2591 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
2592 				bp->b_xio.xio_npages = desiredpages;
2593 			}
2594 		} else if (size > bp->b_bcount) {
2595 			/*
2596 			 * We are growing the buffer, possibly in a
2597 			 * byte-granular fashion.
2598 			 */
2599 			struct vnode *vp;
2600 			vm_object_t obj;
2601 			vm_offset_t toff;
2602 			vm_offset_t tinc;
2603 
2604 			/*
2605 			 * Step 1, bring in the VM pages from the object,
2606 			 * allocating them if necessary.  We must clear
2607 			 * B_CACHE if these pages are not valid for the
2608 			 * range covered by the buffer.
2609 			 *
2610 			 * critical section protection is required to protect
2611 			 * against interrupts unbusying and freeing pages
2612 			 * between our vm_page_lookup() and our
2613 			 * busycheck/wiring call.
2614 			 */
2615 			vp = bp->b_vp;
2616 			VOP_GETVOBJECT(vp, &obj);
2617 
2618 			crit_enter();
2619 			while (bp->b_xio.xio_npages < desiredpages) {
2620 				vm_page_t m;
2621 				vm_pindex_t pi;
2622 
2623 				pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
2624 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2625 					/*
2626 					 * note: must allocate system pages
2627 					 * since blocking here could intefere
2628 					 * with paging I/O, no matter which
2629 					 * process we are.
2630 					 */
2631 					m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
2632 					if (m == NULL) {
2633 						vm_wait();
2634 						vm_pageout_deficit += desiredpages -
2635 							bp->b_xio.xio_npages;
2636 					} else {
2637 						vm_page_wire(m);
2638 						vm_page_wakeup(m);
2639 						bp->b_flags &= ~B_CACHE;
2640 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2641 						++bp->b_xio.xio_npages;
2642 					}
2643 					continue;
2644 				}
2645 
2646 				/*
2647 				 * We found a page.  If we have to sleep on it,
2648 				 * retry because it might have gotten freed out
2649 				 * from under us.
2650 				 *
2651 				 * We can only test PG_BUSY here.  Blocking on
2652 				 * m->busy might lead to a deadlock:
2653 				 *
2654 				 *  vm_fault->getpages->cluster_read->allocbuf
2655 				 *
2656 				 */
2657 
2658 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2659 					continue;
2660 
2661 				/*
2662 				 * We have a good page.  Should we wakeup the
2663 				 * page daemon?
2664 				 */
2665 				if ((curthread != pagethread) &&
2666 				    ((m->queue - m->pc) == PQ_CACHE) &&
2667 				    ((vmstats.v_free_count + vmstats.v_cache_count) <
2668 					(vmstats.v_free_min + vmstats.v_cache_min))) {
2669 					pagedaemon_wakeup();
2670 				}
2671 				vm_page_flag_clear(m, PG_ZERO);
2672 				vm_page_wire(m);
2673 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2674 				++bp->b_xio.xio_npages;
2675 			}
2676 			crit_exit();
2677 
2678 			/*
2679 			 * Step 2.  We've loaded the pages into the buffer,
2680 			 * we have to figure out if we can still have B_CACHE
2681 			 * set.  Note that B_CACHE is set according to the
2682 			 * byte-granular range ( bcount and size ), not the
2683 			 * aligned range ( newbsize ).
2684 			 *
2685 			 * The VM test is against m->valid, which is DEV_BSIZE
2686 			 * aligned.  Needless to say, the validity of the data
2687 			 * needs to also be DEV_BSIZE aligned.  Note that this
2688 			 * fails with NFS if the server or some other client
2689 			 * extends the file's EOF.  If our buffer is resized,
2690 			 * B_CACHE may remain set! XXX
2691 			 */
2692 
2693 			toff = bp->b_bcount;
2694 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
2695 
2696 			while ((bp->b_flags & B_CACHE) && toff < size) {
2697 				vm_pindex_t pi;
2698 
2699 				if (tinc > (size - toff))
2700 					tinc = size - toff;
2701 
2702 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
2703 				    PAGE_SHIFT;
2704 
2705 				vfs_buf_test_cache(
2706 				    bp,
2707 				    bp->b_loffset,
2708 				    toff,
2709 				    tinc,
2710 				    bp->b_xio.xio_pages[pi]
2711 				);
2712 				toff += tinc;
2713 				tinc = PAGE_SIZE;
2714 			}
2715 
2716 			/*
2717 			 * Step 3, fixup the KVM pmap.  Remember that
2718 			 * bp->b_data is relative to bp->b_loffset, but
2719 			 * bp->b_loffset may be offset into the first page.
2720 			 */
2721 
2722 			bp->b_data = (caddr_t)
2723 			    trunc_page((vm_offset_t)bp->b_data);
2724 			pmap_qenter(
2725 			    (vm_offset_t)bp->b_data,
2726 			    bp->b_xio.xio_pages,
2727 			    bp->b_xio.xio_npages
2728 			);
2729 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2730 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
2731 		}
2732 	}
2733 	if (newbsize < bp->b_bufsize)
2734 		bufspacewakeup();
2735 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2736 	bp->b_bcount = size;		/* requested buffer size	*/
2737 	return 1;
2738 }
2739 
2740 /*
2741  * biowait:
2742  *
2743  *	Wait for buffer I/O completion, returning error status.  The buffer
2744  *	is left locked and B_DONE on return.  B_EINTR is converted into an
2745  *	EINTR error and cleared.
2746  */
2747 int
2748 biowait(struct buf * bp)
2749 {
2750 	crit_enter();
2751 	while ((bp->b_flags & B_DONE) == 0) {
2752 		if (bp->b_flags & B_READ)
2753 			tsleep(bp, 0, "biord", 0);
2754 		else
2755 			tsleep(bp, 0, "biowr", 0);
2756 	}
2757 	crit_exit();
2758 	if (bp->b_flags & B_EINTR) {
2759 		bp->b_flags &= ~B_EINTR;
2760 		return (EINTR);
2761 	}
2762 	if (bp->b_flags & B_ERROR) {
2763 		return (bp->b_error ? bp->b_error : EIO);
2764 	} else {
2765 		return (0);
2766 	}
2767 }
2768 
2769 /*
2770  * This associates a tracking count with an I/O.  vn_strategy() and
2771  * dev_dstrategy() do this automatically but there are a few cases
2772  * where a vnode or device layer is bypassed when a block translation
2773  * is cached.  In such cases bio_start_transaction() may be called on
2774  * the bypassed layers so the system gets an I/O in progress indication
2775  * for those higher layers.
2776  */
2777 void
2778 bio_start_transaction(struct bio *bio, struct bio_track *track)
2779 {
2780 	bio->bio_track = track;
2781 	atomic_add_int(&track->bk_active, 1);
2782 }
2783 
2784 /*
2785  * Initiate I/O on a vnode.
2786  */
2787 void
2788 vn_strategy(struct vnode *vp, struct bio *bio)
2789 {
2790 	struct bio_track *track;
2791 
2792         if (bio->bio_buf->b_flags & B_READ)
2793                 track = &vp->v_track_read;
2794         else
2795                 track = &vp->v_track_write;
2796 	bio->bio_track = track;
2797 	atomic_add_int(&track->bk_active, 1);
2798         vop_strategy(*vp->v_ops, vp, bio);
2799 }
2800 
2801 
2802 /*
2803  * biodone:
2804  *
2805  *	Finish I/O on a buffer, optionally calling a completion function.
2806  *	This is usually called from an interrupt so process blocking is
2807  *	not allowed.
2808  *
2809  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2810  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2811  *	assuming B_INVAL is clear.
2812  *
2813  *	For the VMIO case, we set B_CACHE if the op was a read and no
2814  *	read error occured, or if the op was a write.  B_CACHE is never
2815  *	set if the buffer is invalid or otherwise uncacheable.
2816  *
2817  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2818  *	initiator to leave B_INVAL set to brelse the buffer out of existance
2819  *	in the biodone routine.
2820  */
2821 void
2822 biodone(struct bio *bio)
2823 {
2824 	struct buf *bp = bio->bio_buf;
2825 	int error;
2826 
2827 	crit_enter();
2828 
2829 	KASSERT(BUF_REFCNTNB(bp) > 0,
2830 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
2831 	KASSERT(!(bp->b_flags & B_DONE),
2832 		("biodone: bp %p already done", bp));
2833 
2834 	bp->b_flags |= B_DONE;
2835 	runningbufwakeup(bp);
2836 
2837 	/*
2838 	 * Run up the chain of BIO's.
2839 	 */
2840 	while (bio) {
2841 		biodone_t *done_func;
2842 		struct bio_track *track;
2843 
2844 		/*
2845 		 * BIO tracking.  Most but not all BIOs are tracked.
2846 		 */
2847 		if ((track = bio->bio_track) != NULL) {
2848 			atomic_subtract_int(&track->bk_active, 1);
2849 			if (track->bk_active < 0) {
2850 				panic("biodone: bad active count bio %p\n",
2851 				      bio);
2852 			}
2853 			if (track->bk_waitflag) {
2854 				track->bk_waitflag = 0;
2855 				wakeup(track);
2856 			}
2857 			bio->bio_track = NULL;
2858 		}
2859 
2860 		/*
2861 		 * A bio_done function terminates the loop.  The function
2862 		 * will be responsible for any further chaining and/or
2863 		 * buffer management.
2864 		 */
2865 		if ((done_func = bio->bio_done) != NULL) {
2866 			bio->bio_done = NULL;
2867 			done_func(bio);
2868 			crit_exit();
2869 			return;
2870 		}
2871 		bio = bio->bio_prev;
2872 	}
2873 
2874 	/*
2875 	 * Special case (XXX) - not a read or write.
2876 	 */
2877 	if (bp->b_flags & B_FREEBUF) {
2878 		brelse(bp);
2879 		crit_exit();
2880 		return;
2881 	}
2882 
2883 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2884 		(*bioops.io_complete)(bp);
2885 
2886 	if (bp->b_flags & B_VMIO) {
2887 		int i;
2888 		vm_ooffset_t foff;
2889 		vm_page_t m;
2890 		vm_object_t obj;
2891 		int iosize;
2892 		struct vnode *vp = bp->b_vp;
2893 
2894 		error = VOP_GETVOBJECT(vp, &obj);
2895 
2896 #if defined(VFS_BIO_DEBUG)
2897 		if (vp->v_holdcnt == 0) {
2898 			panic("biodone: zero vnode hold count");
2899 		}
2900 
2901 		if (error) {
2902 			panic("biodone: missing VM object");
2903 		}
2904 
2905 		if ((vp->v_flag & VOBJBUF) == 0) {
2906 			panic("biodone: vnode is not setup for merged cache");
2907 		}
2908 #endif
2909 
2910 		foff = bp->b_loffset;
2911 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
2912 
2913 		if (error) {
2914 			panic("biodone: no object");
2915 		}
2916 #if defined(VFS_BIO_DEBUG)
2917 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
2918 			printf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
2919 			    obj->paging_in_progress, bp->b_xio.xio_npages);
2920 		}
2921 #endif
2922 
2923 		/*
2924 		 * Set B_CACHE if the op was a normal read and no error
2925 		 * occured.  B_CACHE is set for writes in the b*write()
2926 		 * routines.
2927 		 */
2928 		iosize = bp->b_bcount - bp->b_resid;
2929 		if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) {
2930 			bp->b_flags |= B_CACHE;
2931 		}
2932 
2933 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2934 			int bogusflag = 0;
2935 			int resid;
2936 
2937 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2938 			if (resid > iosize)
2939 				resid = iosize;
2940 
2941 			/*
2942 			 * cleanup bogus pages, restoring the originals.  Since
2943 			 * the originals should still be wired, we don't have
2944 			 * to worry about interrupt/freeing races destroying
2945 			 * the VM object association.
2946 			 */
2947 			m = bp->b_xio.xio_pages[i];
2948 			if (m == bogus_page) {
2949 				bogusflag = 1;
2950 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2951 				if (m == NULL)
2952 					panic("biodone: page disappeared");
2953 				bp->b_xio.xio_pages[i] = m;
2954 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2955 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
2956 			}
2957 #if defined(VFS_BIO_DEBUG)
2958 			if (OFF_TO_IDX(foff) != m->pindex) {
2959 				printf(
2960 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2961 				    (unsigned long)foff, m->pindex);
2962 			}
2963 #endif
2964 
2965 			/*
2966 			 * In the write case, the valid and clean bits are
2967 			 * already changed correctly ( see bdwrite() ), so we
2968 			 * only need to do this here in the read case.
2969 			 */
2970 			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
2971 				vfs_page_set_valid(bp, foff, i, m);
2972 			}
2973 			vm_page_flag_clear(m, PG_ZERO);
2974 
2975 			/*
2976 			 * when debugging new filesystems or buffer I/O methods, this
2977 			 * is the most common error that pops up.  if you see this, you
2978 			 * have not set the page busy flag correctly!!!
2979 			 */
2980 			if (m->busy == 0) {
2981 				printf("biodone: page busy < 0, "
2982 				    "pindex: %d, foff: 0x(%x,%x), "
2983 				    "resid: %d, index: %d\n",
2984 				    (int) m->pindex, (int)(foff >> 32),
2985 						(int) foff & 0xffffffff, resid, i);
2986 				if (!vn_isdisk(vp, NULL))
2987 					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2988 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2989 					    (int) bp->b_lblkno,
2990 					    bp->b_flags, bp->b_xio.xio_npages);
2991 				else
2992 					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2993 					    (int) bp->b_lblkno,
2994 					    bp->b_flags, bp->b_xio.xio_npages);
2995 				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2996 				    m->valid, m->dirty, m->wire_count);
2997 				panic("biodone: page busy < 0");
2998 			}
2999 			vm_page_io_finish(m);
3000 			vm_object_pip_subtract(obj, 1);
3001 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3002 			iosize -= resid;
3003 		}
3004 		if (obj)
3005 			vm_object_pip_wakeupn(obj, 0);
3006 	}
3007 
3008 	/*
3009 	 * For asynchronous completions, release the buffer now. The brelse
3010 	 * will do a wakeup there if necessary - so no need to do a wakeup
3011 	 * here in the async case. The sync case always needs to do a wakeup.
3012 	 */
3013 
3014 	if (bp->b_flags & B_ASYNC) {
3015 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
3016 			brelse(bp);
3017 		else
3018 			bqrelse(bp);
3019 	} else {
3020 		wakeup(bp);
3021 	}
3022 	crit_exit();
3023 }
3024 
3025 /*
3026  * vfs_unbusy_pages:
3027  *
3028  *	This routine is called in lieu of iodone in the case of
3029  *	incomplete I/O.  This keeps the busy status for pages
3030  *	consistant.
3031  */
3032 void
3033 vfs_unbusy_pages(struct buf *bp)
3034 {
3035 	int i;
3036 
3037 	runningbufwakeup(bp);
3038 	if (bp->b_flags & B_VMIO) {
3039 		struct vnode *vp = bp->b_vp;
3040 		vm_object_t obj;
3041 
3042 		VOP_GETVOBJECT(vp, &obj);
3043 
3044 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3045 			vm_page_t m = bp->b_xio.xio_pages[i];
3046 
3047 			/*
3048 			 * When restoring bogus changes the original pages
3049 			 * should still be wired, so we are in no danger of
3050 			 * losing the object association and do not need
3051 			 * critical section protection particularly.
3052 			 */
3053 			if (m == bogus_page) {
3054 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3055 				if (!m) {
3056 					panic("vfs_unbusy_pages: page missing");
3057 				}
3058 				bp->b_xio.xio_pages[i] = m;
3059 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3060 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3061 			}
3062 			vm_object_pip_subtract(obj, 1);
3063 			vm_page_flag_clear(m, PG_ZERO);
3064 			vm_page_io_finish(m);
3065 		}
3066 		vm_object_pip_wakeupn(obj, 0);
3067 	}
3068 }
3069 
3070 /*
3071  * vfs_page_set_valid:
3072  *
3073  *	Set the valid bits in a page based on the supplied offset.   The
3074  *	range is restricted to the buffer's size.
3075  *
3076  *	This routine is typically called after a read completes.
3077  */
3078 static void
3079 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3080 {
3081 	vm_ooffset_t soff, eoff;
3082 
3083 	/*
3084 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3085 	 * page boundry or cross the end of the buffer.  The end of the
3086 	 * buffer, in this case, is our file EOF, not the allocation size
3087 	 * of the buffer.
3088 	 */
3089 	soff = off;
3090 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3091 	if (eoff > bp->b_loffset + bp->b_bcount)
3092 		eoff = bp->b_loffset + bp->b_bcount;
3093 
3094 	/*
3095 	 * Set valid range.  This is typically the entire buffer and thus the
3096 	 * entire page.
3097 	 */
3098 	if (eoff > soff) {
3099 		vm_page_set_validclean(
3100 		    m,
3101 		   (vm_offset_t) (soff & PAGE_MASK),
3102 		   (vm_offset_t) (eoff - soff)
3103 		);
3104 	}
3105 }
3106 
3107 /*
3108  * vfs_busy_pages:
3109  *
3110  *	This routine is called before a device strategy routine.
3111  *	It is used to tell the VM system that paging I/O is in
3112  *	progress, and treat the pages associated with the buffer
3113  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
3114  *	flag is handled to make sure that the object doesn't become
3115  *	inconsistant.
3116  *
3117  *	Since I/O has not been initiated yet, certain buffer flags
3118  *	such as B_ERROR or B_INVAL may be in an inconsistant state
3119  *	and should be ignored.
3120  */
3121 void
3122 vfs_busy_pages(struct buf *bp, int clear_modify)
3123 {
3124 	int i, bogus;
3125 	struct proc *p = curthread->td_proc;
3126 
3127 	if (bp->b_flags & B_VMIO) {
3128 		struct vnode *vp = bp->b_vp;
3129 		vm_object_t obj;
3130 		vm_ooffset_t foff;
3131 
3132 		VOP_GETVOBJECT(vp, &obj);
3133 		foff = bp->b_loffset;
3134 		KASSERT(bp->b_loffset != NOOFFSET,
3135 			("vfs_busy_pages: no buffer offset"));
3136 		vfs_setdirty(bp);
3137 
3138 retry:
3139 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3140 			vm_page_t m = bp->b_xio.xio_pages[i];
3141 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3142 				goto retry;
3143 		}
3144 
3145 		bogus = 0;
3146 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3147 			vm_page_t m = bp->b_xio.xio_pages[i];
3148 
3149 			vm_page_flag_clear(m, PG_ZERO);
3150 			if ((bp->b_flags & B_CLUSTER) == 0) {
3151 				vm_object_pip_add(obj, 1);
3152 				vm_page_io_start(m);
3153 			}
3154 
3155 			/*
3156 			 * When readying a buffer for a read ( i.e
3157 			 * clear_modify == 0 ), it is important to do
3158 			 * bogus_page replacement for valid pages in
3159 			 * partially instantiated buffers.  Partially
3160 			 * instantiated buffers can, in turn, occur when
3161 			 * reconstituting a buffer from its VM backing store
3162 			 * base.  We only have to do this if B_CACHE is
3163 			 * clear ( which causes the I/O to occur in the
3164 			 * first place ).  The replacement prevents the read
3165 			 * I/O from overwriting potentially dirty VM-backed
3166 			 * pages.  XXX bogus page replacement is, uh, bogus.
3167 			 * It may not work properly with small-block devices.
3168 			 * We need to find a better way.
3169 			 */
3170 
3171 			vm_page_protect(m, VM_PROT_NONE);
3172 			if (clear_modify)
3173 				vfs_page_set_valid(bp, foff, i, m);
3174 			else if (m->valid == VM_PAGE_BITS_ALL &&
3175 				(bp->b_flags & B_CACHE) == 0) {
3176 				bp->b_xio.xio_pages[i] = bogus_page;
3177 				bogus++;
3178 			}
3179 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3180 		}
3181 		if (bogus)
3182 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3183 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3184 	}
3185 
3186 	/*
3187 	 * This is the easiest place to put the process accounting for the I/O
3188 	 * for now.
3189 	 */
3190 	if (p != NULL) {
3191 		if (bp->b_flags & B_READ)
3192 			p->p_stats->p_ru.ru_inblock++;
3193 		else
3194 			p->p_stats->p_ru.ru_oublock++;
3195 	}
3196 }
3197 
3198 /*
3199  * vfs_clean_pages:
3200  *
3201  *	Tell the VM system that the pages associated with this buffer
3202  *	are clean.  This is used for delayed writes where the data is
3203  *	going to go to disk eventually without additional VM intevention.
3204  *
3205  *	Note that while we only really need to clean through to b_bcount, we
3206  *	just go ahead and clean through to b_bufsize.
3207  */
3208 static void
3209 vfs_clean_pages(struct buf *bp)
3210 {
3211 	int i;
3212 
3213 	if (bp->b_flags & B_VMIO) {
3214 		vm_ooffset_t foff;
3215 
3216 		foff = bp->b_loffset;
3217 		KASSERT(foff != NOOFFSET, ("vfs_clean_pages: no buffer offset"));
3218 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3219 			vm_page_t m = bp->b_xio.xio_pages[i];
3220 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3221 			vm_ooffset_t eoff = noff;
3222 
3223 			if (eoff > bp->b_loffset + bp->b_bufsize)
3224 				eoff = bp->b_loffset + bp->b_bufsize;
3225 			vfs_page_set_valid(bp, foff, i, m);
3226 			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3227 			foff = noff;
3228 		}
3229 	}
3230 }
3231 
3232 /*
3233  * vfs_bio_set_validclean:
3234  *
3235  *	Set the range within the buffer to valid and clean.  The range is
3236  *	relative to the beginning of the buffer, b_loffset.  Note that
3237  *	b_loffset itself may be offset from the beginning of the first page.
3238  */
3239 
3240 void
3241 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3242 {
3243 	if (bp->b_flags & B_VMIO) {
3244 		int i;
3245 		int n;
3246 
3247 		/*
3248 		 * Fixup base to be relative to beginning of first page.
3249 		 * Set initial n to be the maximum number of bytes in the
3250 		 * first page that can be validated.
3251 		 */
3252 
3253 		base += (bp->b_loffset & PAGE_MASK);
3254 		n = PAGE_SIZE - (base & PAGE_MASK);
3255 
3256 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) {
3257 			vm_page_t m = bp->b_xio.xio_pages[i];
3258 
3259 			if (n > size)
3260 				n = size;
3261 
3262 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3263 			base += n;
3264 			size -= n;
3265 			n = PAGE_SIZE;
3266 		}
3267 	}
3268 }
3269 
3270 /*
3271  * vfs_bio_clrbuf:
3272  *
3273  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
3274  *	to clear B_ERROR and B_INVAL.
3275  *
3276  *	Note that while we only theoretically need to clear through b_bcount,
3277  *	we go ahead and clear through b_bufsize.
3278  */
3279 
3280 void
3281 vfs_bio_clrbuf(struct buf *bp)
3282 {
3283 	int i, mask = 0;
3284 	caddr_t sa, ea;
3285 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3286 		bp->b_flags &= ~(B_INVAL|B_ERROR);
3287 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3288 		    (bp->b_loffset & PAGE_MASK) == 0) {
3289 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3290 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3291 				bp->b_resid = 0;
3292 				return;
3293 			}
3294 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3295 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3296 				bzero(bp->b_data, bp->b_bufsize);
3297 				bp->b_xio.xio_pages[0]->valid |= mask;
3298 				bp->b_resid = 0;
3299 				return;
3300 			}
3301 		}
3302 		ea = sa = bp->b_data;
3303 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3304 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3305 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3306 			ea = (caddr_t)(vm_offset_t)ulmin(
3307 			    (u_long)(vm_offset_t)ea,
3308 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3309 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3310 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3311 				continue;
3312 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3313 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3314 					bzero(sa, ea - sa);
3315 				}
3316 			} else {
3317 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3318 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3319 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3320 						bzero(sa, DEV_BSIZE);
3321 				}
3322 			}
3323 			bp->b_xio.xio_pages[i]->valid |= mask;
3324 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3325 		}
3326 		bp->b_resid = 0;
3327 	} else {
3328 		clrbuf(bp);
3329 	}
3330 }
3331 
3332 /*
3333  * vm_hold_load_pages:
3334  *
3335  *	Load pages into the buffer's address space.  The pages are
3336  *	allocated from the kernel object in order to reduce interference
3337  *	with the any VM paging I/O activity.  The range of loaded
3338  *	pages will be wired.
3339  *
3340  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
3341  *	retrieve the full range (to - from) of pages.
3342  *
3343  */
3344 void
3345 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3346 {
3347 	vm_offset_t pg;
3348 	vm_page_t p;
3349 	int index;
3350 
3351 	to = round_page(to);
3352 	from = round_page(from);
3353 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3354 
3355 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3356 
3357 tryagain:
3358 
3359 		/*
3360 		 * Note: must allocate system pages since blocking here
3361 		 * could intefere with paging I/O, no matter which
3362 		 * process we are.
3363 		 */
3364 		p = vm_page_alloc(kernel_object,
3365 			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3366 			VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
3367 		if (!p) {
3368 			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3369 			vm_wait();
3370 			goto tryagain;
3371 		}
3372 		vm_page_wire(p);
3373 		p->valid = VM_PAGE_BITS_ALL;
3374 		vm_page_flag_clear(p, PG_ZERO);
3375 		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3376 		bp->b_xio.xio_pages[index] = p;
3377 		vm_page_wakeup(p);
3378 	}
3379 	bp->b_xio.xio_npages = index;
3380 }
3381 
3382 /*
3383  * vm_hold_free_pages:
3384  *
3385  *	Return pages associated with the buffer back to the VM system.
3386  *
3387  *	The range of pages underlying the buffer's address space will
3388  *	be unmapped and un-wired.
3389  */
3390 void
3391 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3392 {
3393 	vm_offset_t pg;
3394 	vm_page_t p;
3395 	int index, newnpages;
3396 
3397 	from = round_page(from);
3398 	to = round_page(to);
3399 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3400 
3401 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3402 		p = bp->b_xio.xio_pages[index];
3403 		if (p && (index < bp->b_xio.xio_npages)) {
3404 			if (p->busy) {
3405 				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3406 					bp->b_bio2.bio_blkno, bp->b_lblkno);
3407 			}
3408 			bp->b_xio.xio_pages[index] = NULL;
3409 			pmap_kremove(pg);
3410 			vm_page_busy(p);
3411 			vm_page_unwire(p, 0);
3412 			vm_page_free(p);
3413 		}
3414 	}
3415 	bp->b_xio.xio_npages = newnpages;
3416 }
3417 
3418 /*
3419  * vmapbuf:
3420  *
3421  *	Map an IO request into kernel virtual address space.
3422  *
3423  *	All requests are (re)mapped into kernel VA space.
3424  *	Notice that we use b_bufsize for the size of the buffer
3425  *	to be mapped.  b_bcount might be modified by the driver.
3426  */
3427 int
3428 vmapbuf(struct buf *bp)
3429 {
3430 	caddr_t addr, v, kva;
3431 	vm_paddr_t pa;
3432 	int pidx;
3433 	int i;
3434 	struct vm_page *m;
3435 
3436 	if ((bp->b_flags & B_PHYS) == 0)
3437 		panic("vmapbuf");
3438 	if (bp->b_bufsize < 0)
3439 		return (-1);
3440 	for (v = bp->b_saveaddr,
3441 		     addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data),
3442 		     pidx = 0;
3443 	     addr < bp->b_data + bp->b_bufsize;
3444 	     addr += PAGE_SIZE, v += PAGE_SIZE, pidx++) {
3445 		/*
3446 		 * Do the vm_fault if needed; do the copy-on-write thing
3447 		 * when reading stuff off device into memory.
3448 		 */
3449 retry:
3450 		i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data,
3451 			(bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
3452 		if (i < 0) {
3453 			for (i = 0; i < pidx; ++i) {
3454 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
3455 			    bp->b_xio.xio_pages[i] = NULL;
3456 			}
3457 			return(-1);
3458 		}
3459 
3460 		/*
3461 		 * WARNING!  If sparc support is MFCd in the future this will
3462 		 * have to be changed from pmap_kextract() to pmap_extract()
3463 		 * ala -current.
3464 		 */
3465 #ifdef __sparc64__
3466 #error "If MFCing sparc support use pmap_extract"
3467 #endif
3468 		pa = pmap_kextract((vm_offset_t)addr);
3469 		if (pa == 0) {
3470 			printf("vmapbuf: warning, race against user address during I/O");
3471 			goto retry;
3472 		}
3473 		m = PHYS_TO_VM_PAGE(pa);
3474 		vm_page_hold(m);
3475 		bp->b_xio.xio_pages[pidx] = m;
3476 	}
3477 	if (pidx > btoc(MAXPHYS))
3478 		panic("vmapbuf: mapped more than MAXPHYS");
3479 	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_xio.xio_pages, pidx);
3480 
3481 	kva = bp->b_saveaddr;
3482 	bp->b_xio.xio_npages = pidx;
3483 	bp->b_saveaddr = bp->b_data;
3484 	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3485 	return(0);
3486 }
3487 
3488 /*
3489  * vunmapbuf:
3490  *
3491  *	Free the io map PTEs associated with this IO operation.
3492  *	We also invalidate the TLB entries and restore the original b_addr.
3493  */
3494 void
3495 vunmapbuf(struct buf *bp)
3496 {
3497 	int pidx;
3498 	int npages;
3499 	vm_page_t *m;
3500 
3501 	if ((bp->b_flags & B_PHYS) == 0)
3502 		panic("vunmapbuf");
3503 
3504 	npages = bp->b_xio.xio_npages;
3505 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
3506 		     npages);
3507 	m = bp->b_xio.xio_pages;
3508 	for (pidx = 0; pidx < npages; pidx++)
3509 		vm_page_unhold(*m++);
3510 
3511 	bp->b_data = bp->b_saveaddr;
3512 }
3513 
3514 /*
3515  * print out statistics from the current status of the buffer pool
3516  * this can be toggeled by the system control option debug.syncprt
3517  */
3518 #ifdef DEBUG
3519 void
3520 vfs_bufstats(void)
3521 {
3522         int i, j, count;
3523         struct buf *bp;
3524         struct bqueues *dp;
3525         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
3526         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
3527 
3528         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
3529                 count = 0;
3530                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3531                         counts[j] = 0;
3532 		crit_enter();
3533                 TAILQ_FOREACH(bp, dp, b_freelist) {
3534                         counts[bp->b_bufsize/PAGE_SIZE]++;
3535                         count++;
3536                 }
3537 		crit_exit();
3538                 printf("%s: total-%d", bname[i], count);
3539                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3540                         if (counts[j] != 0)
3541                                 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
3542                 printf("\n");
3543         }
3544 }
3545 #endif
3546 
3547 #include "opt_ddb.h"
3548 #ifdef DDB
3549 #include <ddb/ddb.h>
3550 
3551 DB_SHOW_COMMAND(buffer, db_show_buffer)
3552 {
3553 	/* get args */
3554 	struct buf *bp = (struct buf *)addr;
3555 
3556 	if (!have_addr) {
3557 		db_printf("usage: show buffer <addr>\n");
3558 		return;
3559 	}
3560 
3561 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3562 	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3563 		  "b_resid = %ld\n, b_data = %p, "
3564 		  "bio_blkno(disk) = %d, bio_blkno(phys) = %d\n",
3565 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3566 		  bp->b_data, bp->b_bio2.bio_blkno, (bp->b_bio2.bio_next ? bp->b_bio2.bio_next->bio_blkno : (daddr_t)-1));
3567 	if (bp->b_xio.xio_npages) {
3568 		int i;
3569 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
3570 			bp->b_xio.xio_npages);
3571 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3572 			vm_page_t m;
3573 			m = bp->b_xio.xio_pages[i];
3574 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3575 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3576 			if ((i + 1) < bp->b_xio.xio_npages)
3577 				db_printf(",");
3578 		}
3579 		db_printf("\n");
3580 	}
3581 }
3582 #endif /* DDB */
3583