xref: /dragonfly/sys/kern/vfs_bio.c (revision 509221ae)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.46 2005/08/08 01:25:31 hmp Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <vm/vm_page2.h>
60 
61 /*
62  * Buffer queues.
63  */
64 #define BUFFER_QUEUES	6
65 enum bufq_type {
66 	BQUEUE_NONE,    	/* not on any queue */
67 	BQUEUE_LOCKED,  	/* locked buffers */
68 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
69 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
70 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
71 	BQUEUE_EMPTY    	/* empty buffer headers */
72 };
73 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
74 
75 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
76 
77 struct	bio_ops bioops;		/* I/O operation notification */
78 
79 struct buf *buf;		/* buffer header pool */
80 struct swqueue bswlist;
81 
82 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
83 		vm_offset_t to);
84 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
85 		vm_offset_t to);
86 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
87 			       int pageno, vm_page_t m);
88 static void vfs_clean_pages(struct buf * bp);
89 static void vfs_setdirty(struct buf *bp);
90 static void vfs_vmio_release(struct buf *bp);
91 #if 0
92 static void vfs_backgroundwritedone(struct buf *bp);
93 #endif
94 static int flushbufqueues(void);
95 
96 static int bd_request;
97 
98 static void buf_daemon (void);
99 /*
100  * bogus page -- for I/O to/from partially complete buffers
101  * this is a temporary solution to the problem, but it is not
102  * really that bad.  it would be better to split the buffer
103  * for input in the case of buffers partially already in memory,
104  * but the code is intricate enough already.
105  */
106 vm_page_t bogus_page;
107 int vmiodirenable = TRUE;
108 int runningbufspace;
109 struct lwkt_token buftimetoken;  /* Interlock on setting prio and timo */
110 
111 static int bufspace, maxbufspace,
112 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
113 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
114 static int needsbuffer;
115 static int lorunningspace, hirunningspace, runningbufreq;
116 static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
117 static int numfreebuffers, lofreebuffers, hifreebuffers;
118 static int getnewbufcalls;
119 static int getnewbufrestarts;
120 
121 /*
122  * Sysctls for operational control of the buffer cache.
123  */
124 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
125 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
126 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
127 	"High water mark used to trigger explicit flushing of dirty buffers");
128 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
129 	"Low watermark for calculating special reserve in low-memory situations");
130 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
131 	"High watermark for calculating special reserve in low-memory situations");
132 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
133 	"Minimum amount of buffer space required for active I/O");
134 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
135 	"Maximum amount of buffer space to usable for active I/O");
136 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
137 	"Use the VM system for performing directory writes");
138 /*
139  * Sysctls determining current state of the buffer cache.
140  */
141 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
142 	"Pending number of dirty buffers");
143 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
144 	"Number of free buffers on the buffer cache free list");
145 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
146 	"Amount of I/O bytes currently in progress due to asynchronous writes");
147 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
148 	"Hard limit on maximum amount of memory usable for buffer space");
149 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
150 	"Soft limit on maximum amount of memory usable for buffer space");
151 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
152 	"Minimum amount of memory to reserve for system buffer space");
153 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
154 	"Amount of memory available for buffers");
155 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
156 	0, "Maximum amount of memory reserved for buffers using malloc-scheme");
157 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
158 	"Amount of memory left for buffers using malloc-scheme");
159 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
160 	"New buffer header acquisition requests");
161 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
162 	0, "New buffer header acquisition restarts");
163 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
164 	"Amount of time buffer acquisition restarted due to fragmented buffer map");
165 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
166 	"Amount of time KVA space was deallocated in an arbitrary buffer");
167 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
168 	"Amount of time buffer re-use operations were successful");
169 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
170 	"sizeof(struct buf)");
171 
172 #if 0
173 /*
174  * Disable background writes for now.  There appear to be races in the
175  * flags tests and locking operations as well as races in the completion
176  * code modifying the original bp (origbp) without holding a lock, assuming
177  * critical section protection when there might not be critical section
178  * protection.
179  *
180  * XXX disable also because the RB tree can't handle multiple blocks with
181  * the same lblkno.
182  */
183 static int dobkgrdwrite = 0;
184 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
185 	"Do background writes (honoring the BV_BKGRDWRITE flag)?");
186 #endif
187 
188 static int bufhashmask;
189 static int bufhashshift;
190 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
191 char *buf_wmesg = BUF_WMESG;
192 
193 extern int vm_swap_size;
194 
195 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
196 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
197 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
198 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
199 
200 /*
201  * Buffer hash table code.  Note that the logical block scans linearly, which
202  * gives us some L1 cache locality.
203  */
204 
205 static __inline
206 struct bufhashhdr *
207 bufhash(struct vnode *vnp, daddr_t bn)
208 {
209 	u_int64_t hashkey64;
210 	int hashkey;
211 
212 	/*
213 	 * A variation on the Fibonacci hash that Knuth credits to
214 	 * R. W. Floyd, see Knuth's _Art of Computer Programming,
215 	 * Volume 3 / Sorting and Searching_
216 	 *
217          * We reduce the argument to 32 bits before doing the hash to
218 	 * avoid the need for a slow 64x64 multiply on 32 bit platforms.
219 	 *
220 	 * sizeof(struct vnode) is 168 on i386, so toss some of the lower
221 	 * bits of the vnode address to reduce the key range, which
222 	 * improves the distribution of keys across buckets.
223 	 *
224 	 * The file system cylinder group blocks are very heavily
225 	 * used.  They are located at invervals of fbg, which is
226 	 * on the order of 89 to 94 * 2^10, depending on other
227 	 * filesystem parameters, for a 16k block size.  Smaller block
228 	 * sizes will reduce fpg approximately proportionally.  This
229 	 * will cause the cylinder group index to be hashed using the
230 	 * lower bits of the hash multiplier, which will not distribute
231 	 * the keys as uniformly in a classic Fibonacci hash where a
232 	 * relatively small number of the upper bits of the result
233 	 * are used.  Using 2^16 as a close-enough approximation to
234 	 * fpg, split the hash multiplier in half, with the upper 16
235 	 * bits being the inverse of the golden ratio, and the lower
236 	 * 16 bits being a fraction between 1/3 and 3/7 (closer to
237 	 * 3/7 in this case), that gives good experimental results.
238 	 */
239 	hashkey64 = ((u_int64_t)(uintptr_t)vnp >> 3) + (u_int64_t)bn;
240 	hashkey = (((u_int32_t)(hashkey64 + (hashkey64 >> 32)) * 0x9E376DB1u) >>
241 	    bufhashshift) & bufhashmask;
242 	return(&bufhashtbl[hashkey]);
243 }
244 
245 /*
246  * numdirtywakeup:
247  *
248  *	If someone is blocked due to there being too many dirty buffers,
249  *	and numdirtybuffers is now reasonable, wake them up.
250  */
251 
252 static __inline void
253 numdirtywakeup(int level)
254 {
255 	if (numdirtybuffers <= level) {
256 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
257 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
258 			wakeup(&needsbuffer);
259 		}
260 	}
261 }
262 
263 /*
264  * bufspacewakeup:
265  *
266  *	Called when buffer space is potentially available for recovery.
267  *	getnewbuf() will block on this flag when it is unable to free
268  *	sufficient buffer space.  Buffer space becomes recoverable when
269  *	bp's get placed back in the queues.
270  */
271 
272 static __inline void
273 bufspacewakeup(void)
274 {
275 	/*
276 	 * If someone is waiting for BUF space, wake them up.  Even
277 	 * though we haven't freed the kva space yet, the waiting
278 	 * process will be able to now.
279 	 */
280 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
281 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
282 		wakeup(&needsbuffer);
283 	}
284 }
285 
286 /*
287  * runningbufwakeup:
288  *
289  *	Accounting for I/O in progress.
290  *
291  */
292 static __inline void
293 runningbufwakeup(struct buf *bp)
294 {
295 	if (bp->b_runningbufspace) {
296 		runningbufspace -= bp->b_runningbufspace;
297 		bp->b_runningbufspace = 0;
298 		if (runningbufreq && runningbufspace <= lorunningspace) {
299 			runningbufreq = 0;
300 			wakeup(&runningbufreq);
301 		}
302 	}
303 }
304 
305 /*
306  * bufcountwakeup:
307  *
308  *	Called when a buffer has been added to one of the free queues to
309  *	account for the buffer and to wakeup anyone waiting for free buffers.
310  *	This typically occurs when large amounts of metadata are being handled
311  *	by the buffer cache ( else buffer space runs out first, usually ).
312  */
313 
314 static __inline void
315 bufcountwakeup(void)
316 {
317 	++numfreebuffers;
318 	if (needsbuffer) {
319 		needsbuffer &= ~VFS_BIO_NEED_ANY;
320 		if (numfreebuffers >= hifreebuffers)
321 			needsbuffer &= ~VFS_BIO_NEED_FREE;
322 		wakeup(&needsbuffer);
323 	}
324 }
325 
326 /*
327  * waitrunningbufspace()
328  *
329  *	runningbufspace is a measure of the amount of I/O currently
330  *	running.  This routine is used in async-write situations to
331  *	prevent creating huge backups of pending writes to a device.
332  *	Only asynchronous writes are governed by this function.
333  *
334  *	Reads will adjust runningbufspace, but will not block based on it.
335  *	The read load has a side effect of reducing the allowed write load.
336  *
337  *	This does NOT turn an async write into a sync write.  It waits
338  *	for earlier writes to complete and generally returns before the
339  *	caller's write has reached the device.
340  */
341 static __inline void
342 waitrunningbufspace(void)
343 {
344 	if (runningbufspace > hirunningspace) {
345 		crit_enter();
346 		while (runningbufspace > hirunningspace) {
347 			++runningbufreq;
348 			tsleep(&runningbufreq, 0, "wdrain", 0);
349 		}
350 		crit_exit();
351 	}
352 }
353 
354 /*
355  * vfs_buf_test_cache:
356  *
357  *	Called when a buffer is extended.  This function clears the B_CACHE
358  *	bit if the newly extended portion of the buffer does not contain
359  *	valid data.
360  */
361 static __inline__
362 void
363 vfs_buf_test_cache(struct buf *bp,
364 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
365 		  vm_page_t m)
366 {
367 	if (bp->b_flags & B_CACHE) {
368 		int base = (foff + off) & PAGE_MASK;
369 		if (vm_page_is_valid(m, base, size) == 0)
370 			bp->b_flags &= ~B_CACHE;
371 	}
372 }
373 
374 /*
375  * bd_wakeup:
376  *
377  *	Wake up the buffer daemon if the number of outstanding dirty buffers
378  *	is above specified threshold 'dirtybuflevel'.
379  *
380  *	The buffer daemon is explicitly woken up when (a) the pending number
381  *	of dirty buffers exceeds the recovery and stall mid-point value,
382  *	(b) during bwillwrite() or (c) buf freelist was exhausted.
383  */
384 static __inline__
385 void
386 bd_wakeup(int dirtybuflevel)
387 {
388 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
389 		bd_request = 1;
390 		wakeup(&bd_request);
391 	}
392 }
393 
394 /*
395  * bd_speedup:
396  *
397  *	Speed up the buffer cache flushing process.
398  */
399 
400 static __inline__
401 void
402 bd_speedup(void)
403 {
404 	bd_wakeup(1);
405 }
406 
407 /*
408  * bufhashinit:
409  *
410  *	Initialize buffer headers and related structures.
411  */
412 
413 caddr_t
414 bufhashinit(caddr_t vaddr)
415 {
416 	/* first, make a null hash table */
417 	bufhashshift = 29;
418 	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
419 		bufhashshift--;
420 	bufhashtbl = (void *)vaddr;
421 	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
422 	--bufhashmask;
423 	return(vaddr);
424 }
425 
426 /*
427  * bufinit:
428  *
429  *	Load time initialisation of the buffer cache, called from machine
430  *	dependant initialization code.
431  */
432 void
433 bufinit(void)
434 {
435 	struct buf *bp;
436 	vm_offset_t bogus_offset;
437 	int i;
438 
439 	TAILQ_INIT(&bswlist);
440 	LIST_INIT(&invalhash);
441 	lwkt_token_init(&buftimetoken);
442 
443 	for (i = 0; i <= bufhashmask; i++)
444 		LIST_INIT(&bufhashtbl[i]);
445 
446 	/* next, make a null set of free lists */
447 	for (i = 0; i < BUFFER_QUEUES; i++)
448 		TAILQ_INIT(&bufqueues[i]);
449 
450 	/* finally, initialize each buffer header and stick on empty q */
451 	for (i = 0; i < nbuf; i++) {
452 		bp = &buf[i];
453 		bzero(bp, sizeof *bp);
454 		bp->b_bio.bio_buf = bp; /* back pointer (temporary) */
455 		bp->b_flags = B_INVAL;	/* we're just an empty header */
456 		bp->b_dev = NODEV;
457 		bp->b_qindex = BQUEUE_EMPTY;
458 		bp->b_xflags = 0;
459 		bp->b_iodone = NULL;
460 		xio_init(&bp->b_xio);
461 		LIST_INIT(&bp->b_dep);
462 		BUF_LOCKINIT(bp);
463 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
464 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
465 	}
466 
467 	/*
468 	 * maxbufspace is the absolute maximum amount of buffer space we are
469 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
470 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
471 	 * used by most other processes.  The differential is required to
472 	 * ensure that buf_daemon is able to run when other processes might
473 	 * be blocked waiting for buffer space.
474 	 *
475 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
476 	 * this may result in KVM fragmentation which is not handled optimally
477 	 * by the system.
478 	 */
479 	maxbufspace = nbuf * BKVASIZE;
480 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
481 	lobufspace = hibufspace - MAXBSIZE;
482 
483 	lorunningspace = 512 * 1024;
484 	hirunningspace = 1024 * 1024;
485 
486 /*
487  * Limit the amount of malloc memory since it is wired permanently into
488  * the kernel space.  Even though this is accounted for in the buffer
489  * allocation, we don't want the malloced region to grow uncontrolled.
490  * The malloc scheme improves memory utilization significantly on average
491  * (small) directories.
492  */
493 	maxbufmallocspace = hibufspace / 20;
494 
495 /*
496  * Reduce the chance of a deadlock occuring by limiting the number
497  * of delayed-write dirty buffers we allow to stack up.
498  */
499 	hidirtybuffers = nbuf / 4 + 20;
500 	numdirtybuffers = 0;
501 /*
502  * To support extreme low-memory systems, make sure hidirtybuffers cannot
503  * eat up all available buffer space.  This occurs when our minimum cannot
504  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
505  * BKVASIZE'd (8K) buffers.
506  */
507 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
508 		hidirtybuffers >>= 1;
509 	}
510 	lodirtybuffers = hidirtybuffers / 2;
511 
512 /*
513  * Try to keep the number of free buffers in the specified range,
514  * and give special processes (e.g. like buf_daemon) access to an
515  * emergency reserve.
516  */
517 	lofreebuffers = nbuf / 18 + 5;
518 	hifreebuffers = 2 * lofreebuffers;
519 	numfreebuffers = nbuf;
520 
521 /*
522  * Maximum number of async ops initiated per buf_daemon loop.  This is
523  * somewhat of a hack at the moment, we really need to limit ourselves
524  * based on the number of bytes of I/O in-transit that were initiated
525  * from buf_daemon.
526  */
527 
528 	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
529 	bogus_page = vm_page_alloc(kernel_object,
530 			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
531 			VM_ALLOC_NORMAL);
532 	vmstats.v_wire_count++;
533 
534 }
535 
536 /*
537  * bfreekva:
538  *
539  *	Free the KVA allocation for buffer 'bp'.
540  *
541  *	Must be called from a critical section as this is the only locking for
542  *	buffer_map.
543  *
544  *	Since this call frees up buffer space, we call bufspacewakeup().
545  */
546 static void
547 bfreekva(struct buf * bp)
548 {
549 	int count;
550 
551 	if (bp->b_kvasize) {
552 		++buffreekvacnt;
553 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
554 		vm_map_lock(buffer_map);
555 		bufspace -= bp->b_kvasize;
556 		vm_map_delete(buffer_map,
557 		    (vm_offset_t) bp->b_kvabase,
558 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
559 		    &count
560 		);
561 		vm_map_unlock(buffer_map);
562 		vm_map_entry_release(count);
563 		bp->b_kvasize = 0;
564 		bufspacewakeup();
565 	}
566 }
567 
568 /*
569  * bremfree:
570  *
571  *	Remove the buffer from the appropriate free list.
572  */
573 void
574 bremfree(struct buf * bp)
575 {
576 	int old_qindex;
577 
578 	crit_enter();
579 	old_qindex = bp->b_qindex;
580 
581 	if (bp->b_qindex != BQUEUE_NONE) {
582 		KASSERT(BUF_REFCNTNB(bp) == 1,
583 				("bremfree: bp %p not locked",bp));
584 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
585 		bp->b_qindex = BQUEUE_NONE;
586 	} else {
587 		if (BUF_REFCNTNB(bp) <= 1)
588 			panic("bremfree: removing a buffer not on a queue");
589 	}
590 
591 	/*
592 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
593 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
594 	 * the buffer was free and we must decrement numfreebuffers.
595 	 */
596 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
597 		switch(old_qindex) {
598 		case BQUEUE_DIRTY:
599 		case BQUEUE_CLEAN:
600 		case BQUEUE_EMPTY:
601 		case BQUEUE_EMPTYKVA:
602 			--numfreebuffers;
603 			break;
604 		default:
605 			break;
606 		}
607 	}
608 	crit_exit();
609 }
610 
611 
612 /*
613  * bread:
614  *
615  *	Get a buffer with the specified data.  Look in the cache first.  We
616  *	must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
617  *	is set, the buffer is valid and we do not have to do anything ( see
618  *	getblk() ).
619  */
620 int
621 bread(struct vnode * vp, daddr_t blkno, int size, struct buf ** bpp)
622 {
623 	struct buf *bp;
624 
625 	bp = getblk(vp, blkno, size, 0, 0);
626 	*bpp = bp;
627 
628 	/* if not found in cache, do some I/O */
629 	if ((bp->b_flags & B_CACHE) == 0) {
630 		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
631 		bp->b_flags |= B_READ;
632 		bp->b_flags &= ~(B_ERROR | B_INVAL);
633 		vfs_busy_pages(bp, 0);
634 		VOP_STRATEGY(vp, bp);
635 		return (biowait(bp));
636 	}
637 	return (0);
638 }
639 
640 /*
641  * breadn:
642  *
643  *	Operates like bread, but also starts asynchronous I/O on
644  *	read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
645  *	to initiating I/O . If B_CACHE is set, the buffer is valid
646  *	and we do not have to do anything.
647  */
648 int
649 breadn(struct vnode * vp, daddr_t blkno, int size, daddr_t * rablkno,
650 	int *rabsize, int cnt, struct buf ** bpp)
651 {
652 	struct buf *bp, *rabp;
653 	int i;
654 	int rv = 0, readwait = 0;
655 
656 	*bpp = bp = getblk(vp, blkno, size, 0, 0);
657 
658 	/* if not found in cache, do some I/O */
659 	if ((bp->b_flags & B_CACHE) == 0) {
660 		bp->b_flags |= B_READ;
661 		bp->b_flags &= ~(B_ERROR | B_INVAL);
662 		vfs_busy_pages(bp, 0);
663 		VOP_STRATEGY(vp, bp);
664 		++readwait;
665 	}
666 
667 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
668 		if (inmem(vp, *rablkno))
669 			continue;
670 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
671 
672 		if ((rabp->b_flags & B_CACHE) == 0) {
673 			rabp->b_flags |= B_READ | B_ASYNC;
674 			rabp->b_flags &= ~(B_ERROR | B_INVAL);
675 			vfs_busy_pages(rabp, 0);
676 			BUF_KERNPROC(rabp);
677 			VOP_STRATEGY(vp, rabp);
678 		} else {
679 			brelse(rabp);
680 		}
681 	}
682 
683 	if (readwait) {
684 		rv = biowait(bp);
685 	}
686 	return (rv);
687 }
688 
689 /*
690  * bwrite:
691  *
692  *	Write, release buffer on completion.  (Done by iodone
693  *	if async).  Do not bother writing anything if the buffer
694  *	is invalid.
695  *
696  *	Note that we set B_CACHE here, indicating that buffer is
697  *	fully valid and thus cacheable.  This is true even of NFS
698  *	now so we set it generally.  This could be set either here
699  *	or in biodone() since the I/O is synchronous.  We put it
700  *	here.
701  */
702 int
703 bwrite(struct buf * bp)
704 {
705 	int oldflags;
706 #if 0
707 	struct buf *newbp;
708 #endif
709 
710 	if (bp->b_flags & B_INVAL) {
711 		brelse(bp);
712 		return (0);
713 	}
714 
715 	oldflags = bp->b_flags;
716 
717 	if (BUF_REFCNTNB(bp) == 0)
718 		panic("bwrite: buffer is not busy???");
719 	crit_enter();
720 	/*
721 	 * If a background write is already in progress, delay
722 	 * writing this block if it is asynchronous. Otherwise
723 	 * wait for the background write to complete.
724 	 */
725 	if (bp->b_xflags & BX_BKGRDINPROG) {
726 		if (bp->b_flags & B_ASYNC) {
727 			crit_exit();
728 			bdwrite(bp);
729 			return (0);
730 		}
731 		bp->b_xflags |= BX_BKGRDWAIT;
732 		tsleep(&bp->b_xflags, 0, "biord", 0);
733 		if (bp->b_xflags & BX_BKGRDINPROG)
734 			panic("bwrite: still writing");
735 	}
736 
737 	/* Mark the buffer clean */
738 	bundirty(bp);
739 
740 #if 0
741 	/*
742 	 * If this buffer is marked for background writing and we
743 	 * do not have to wait for it, make a copy and write the
744 	 * copy so as to leave this buffer ready for further use.
745 	 *
746 	 * This optimization eats a lot of memory.  If we have a page
747 	 * or buffer shortfull we can't do it.
748 	 *
749 	 * XXX DISABLED!  This had to be removed to support the RB_TREE
750 	 * work and, really, this isn't the best place to do this sort
751 	 * of thing anyway.  We really need a device copy-on-write feature.
752 	 */
753 	if (dobkgrdwrite &&
754 	    (bp->b_xflags & BX_BKGRDWRITE) &&
755 	    (bp->b_flags & B_ASYNC) &&
756 	    !vm_page_count_severe() &&
757 	    !buf_dirty_count_severe()) {
758 		if (bp->b_iodone)
759 			panic("bwrite: need chained iodone");
760 
761 		/* get a new block */
762 		newbp = geteblk(bp->b_bufsize);
763 
764 		/* set it to be identical to the old block */
765 		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
766 		newbp->b_lblkno = bp->b_lblkno;
767 		newbp->b_blkno = bp->b_blkno;
768 		newbp->b_offset = bp->b_offset;
769 		newbp->b_iodone = vfs_backgroundwritedone;
770 		newbp->b_flags |= B_ASYNC;
771 		newbp->b_flags &= ~B_INVAL;
772 		bgetvp(bp->b_vp, newbp);
773 
774 		/* move over the dependencies */
775 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
776 			(*bioops.io_movedeps)(bp, newbp);
777 
778 		/*
779 		 * Initiate write on the copy, release the original to
780 		 * the B_LOCKED queue so that it cannot go away until
781 		 * the background write completes. If not locked it could go
782 		 * away and then be reconstituted while it was being written.
783 		 * If the reconstituted buffer were written, we could end up
784 		 * with two background copies being written at the same time.
785 		 */
786 		bp->b_xflags |= BX_BKGRDINPROG;
787 		bp->b_flags |= B_LOCKED;
788 		bqrelse(bp);
789 		bp = newbp;
790 	}
791 #endif
792 
793 	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
794 	bp->b_flags |= B_CACHE;
795 
796 	bp->b_vp->v_numoutput++;
797 	vfs_busy_pages(bp, 1);
798 
799 	/*
800 	 * Normal bwrites pipeline writes
801 	 */
802 	bp->b_runningbufspace = bp->b_bufsize;
803 	runningbufspace += bp->b_runningbufspace;
804 
805 	crit_exit();
806 	if (oldflags & B_ASYNC)
807 		BUF_KERNPROC(bp);
808 	VOP_STRATEGY(bp->b_vp, bp);
809 
810 	if ((oldflags & B_ASYNC) == 0) {
811 		int rtval = biowait(bp);
812 		brelse(bp);
813 		return (rtval);
814 	} else if ((oldflags & B_NOWDRAIN) == 0) {
815 		/*
816 		 * don't allow the async write to saturate the I/O
817 		 * system.  Deadlocks can occur only if a device strategy
818 		 * routine (like in VN) turns around and issues another
819 		 * high-level write, in which case B_NOWDRAIN is expected
820 		 * to be set.   Otherwise we will not deadlock here because
821 		 * we are blocking waiting for I/O that is already in-progress
822 		 * to complete.
823 		 */
824 		waitrunningbufspace();
825 	}
826 
827 	return (0);
828 }
829 
830 #if 0
831 /*
832  * Complete a background write started from bwrite.
833  */
834 static void
835 vfs_backgroundwritedone(struct buf *bp)
836 {
837 	struct buf *origbp;
838 
839 	/*
840 	 * Find the original buffer that we are writing.
841 	 */
842 	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
843 		panic("backgroundwritedone: lost buffer");
844 	/*
845 	 * Process dependencies then return any unfinished ones.
846 	 */
847 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
848 		(*bioops.io_complete)(bp);
849 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
850 		(*bioops.io_movedeps)(bp, origbp);
851 	/*
852 	 * Clear the BX_BKGRDINPROG flag in the original buffer
853 	 * and awaken it if it is waiting for the write to complete.
854 	 * If BX_BKGRDINPROG is not set in the original buffer it must
855 	 * have been released and re-instantiated - which is not legal.
856 	 */
857 	KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2"));
858 	origbp->b_xflags &= ~BX_BKGRDINPROG;
859 	if (origbp->b_xflags & BX_BKGRDWAIT) {
860 		origbp->b_xflags &= ~BX_BKGRDWAIT;
861 		wakeup(&origbp->b_xflags);
862 	}
863 	/*
864 	 * Clear the B_LOCKED flag and remove it from the locked
865 	 * queue if it currently resides there.
866 	 */
867 	origbp->b_flags &= ~B_LOCKED;
868 	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
869 		bremfree(origbp);
870 		bqrelse(origbp);
871 	}
872 	/*
873 	 * This buffer is marked B_NOCACHE, so when it is released
874 	 * by biodone, it will be tossed. We mark it with B_READ
875 	 * to avoid biodone doing a second vwakeup.
876 	 */
877 	bp->b_flags |= B_NOCACHE | B_READ;
878 	bp->b_flags &= ~(B_CACHE | B_DONE);
879 	bp->b_iodone = NULL;
880 	biodone(bp);
881 }
882 #endif
883 
884 /*
885  * bdwrite:
886  *
887  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
888  *	anything if the buffer is marked invalid.
889  *
890  *	Note that since the buffer must be completely valid, we can safely
891  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
892  *	biodone() in order to prevent getblk from writing the buffer
893  *	out synchronously.
894  */
895 void
896 bdwrite(struct buf *bp)
897 {
898 	if (BUF_REFCNTNB(bp) == 0)
899 		panic("bdwrite: buffer is not busy");
900 
901 	if (bp->b_flags & B_INVAL) {
902 		brelse(bp);
903 		return;
904 	}
905 	bdirty(bp);
906 
907 	/*
908 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
909 	 * true even of NFS now.
910 	 */
911 	bp->b_flags |= B_CACHE;
912 
913 	/*
914 	 * This bmap keeps the system from needing to do the bmap later,
915 	 * perhaps when the system is attempting to do a sync.  Since it
916 	 * is likely that the indirect block -- or whatever other datastructure
917 	 * that the filesystem needs is still in memory now, it is a good
918 	 * thing to do this.  Note also, that if the pageout daemon is
919 	 * requesting a sync -- there might not be enough memory to do
920 	 * the bmap then...  So, this is important to do.
921 	 */
922 	if (bp->b_lblkno == bp->b_blkno) {
923 		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
924 	}
925 
926 	/*
927 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
928 	 */
929 	vfs_setdirty(bp);
930 
931 	/*
932 	 * We need to do this here to satisfy the vnode_pager and the
933 	 * pageout daemon, so that it thinks that the pages have been
934 	 * "cleaned".  Note that since the pages are in a delayed write
935 	 * buffer -- the VFS layer "will" see that the pages get written
936 	 * out on the next sync, or perhaps the cluster will be completed.
937 	 */
938 	vfs_clean_pages(bp);
939 	bqrelse(bp);
940 
941 	/*
942 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
943 	 * buffers (midpoint between our recovery point and our stall
944 	 * point).
945 	 */
946 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
947 
948 	/*
949 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
950 	 * due to the softdep code.
951 	 */
952 }
953 
954 /*
955  * bdirty:
956  *
957  *	Turn buffer into delayed write request.  We must clear B_READ and
958  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
959  *	itself to properly update it in the dirty/clean lists.  We mark it
960  *	B_DONE to ensure that any asynchronization of the buffer properly
961  *	clears B_DONE ( else a panic will occur later ).
962  *
963  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
964  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
965  *	should only be called if the buffer is known-good.
966  *
967  *	Since the buffer is not on a queue, we do not update the numfreebuffers
968  *	count.
969  *
970  *	Must be called from a critical section.
971  *	The buffer must be on BQUEUE_NONE.
972  */
973 void
974 bdirty(struct buf *bp)
975 {
976 	KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
977 	bp->b_flags &= ~(B_READ|B_RELBUF);
978 
979 	if ((bp->b_flags & B_DELWRI) == 0) {
980 		bp->b_flags |= B_DONE | B_DELWRI;
981 		reassignbuf(bp, bp->b_vp);
982 		++numdirtybuffers;
983 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
984 	}
985 }
986 
987 /*
988  * bundirty:
989  *
990  *	Clear B_DELWRI for buffer.
991  *
992  *	Since the buffer is not on a queue, we do not update the numfreebuffers
993  *	count.
994  *
995  *	Must be called from a critical section.
996  *
997  *	The buffer is typically on BQUEUE_NONE but there is one case in
998  *	brelse() that calls this function after placing the buffer on
999  *	a different queue.
1000  */
1001 
1002 void
1003 bundirty(struct buf *bp)
1004 {
1005 	if (bp->b_flags & B_DELWRI) {
1006 		bp->b_flags &= ~B_DELWRI;
1007 		reassignbuf(bp, bp->b_vp);
1008 		--numdirtybuffers;
1009 		numdirtywakeup(lodirtybuffers);
1010 	}
1011 	/*
1012 	 * Since it is now being written, we can clear its deferred write flag.
1013 	 */
1014 	bp->b_flags &= ~B_DEFERRED;
1015 }
1016 
1017 /*
1018  * bawrite:
1019  *
1020  *	Asynchronous write.  Start output on a buffer, but do not wait for
1021  *	it to complete.  The buffer is released when the output completes.
1022  *
1023  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1024  *	B_INVAL buffers.  Not us.
1025  */
1026 void
1027 bawrite(struct buf * bp)
1028 {
1029 	bp->b_flags |= B_ASYNC;
1030 	(void) VOP_BWRITE(bp->b_vp, bp);
1031 }
1032 
1033 /*
1034  * bowrite:
1035  *
1036  *	Ordered write.  Start output on a buffer, and flag it so that the
1037  *	device will write it in the order it was queued.  The buffer is
1038  *	released when the output completes.  bwrite() ( or the VOP routine
1039  *	anyway ) is responsible for handling B_INVAL buffers.
1040  */
1041 int
1042 bowrite(struct buf * bp)
1043 {
1044 	bp->b_flags |= B_ORDERED | B_ASYNC;
1045 	return (VOP_BWRITE(bp->b_vp, bp));
1046 }
1047 
1048 /*
1049  * bwillwrite:
1050  *
1051  *	Called prior to the locking of any vnodes when we are expecting to
1052  *	write.  We do not want to starve the buffer cache with too many
1053  *	dirty buffers so we block here.  By blocking prior to the locking
1054  *	of any vnodes we attempt to avoid the situation where a locked vnode
1055  *	prevents the various system daemons from flushing related buffers.
1056  */
1057 
1058 void
1059 bwillwrite(void)
1060 {
1061 	if (numdirtybuffers >= hidirtybuffers) {
1062 		crit_enter();
1063 		while (numdirtybuffers >= hidirtybuffers) {
1064 			bd_wakeup(1);
1065 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1066 			tsleep(&needsbuffer, 0, "flswai", 0);
1067 		}
1068 		crit_exit();
1069 	}
1070 }
1071 
1072 /*
1073  * buf_dirty_count_severe:
1074  *
1075  *	Return true if we have too many dirty buffers.
1076  */
1077 int
1078 buf_dirty_count_severe(void)
1079 {
1080 	return(numdirtybuffers >= hidirtybuffers);
1081 }
1082 
1083 /*
1084  * brelse:
1085  *
1086  *	Release a busy buffer and, if requested, free its resources.  The
1087  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1088  *	to be accessed later as a cache entity or reused for other purposes.
1089  */
1090 void
1091 brelse(struct buf * bp)
1092 {
1093 #ifdef INVARIANTS
1094 	int saved_flags = bp->b_flags;
1095 #endif
1096 
1097 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1098 
1099 	crit_enter();
1100 
1101 	if (bp->b_flags & B_LOCKED)
1102 		bp->b_flags &= ~B_ERROR;
1103 
1104 	if ((bp->b_flags & (B_READ | B_ERROR | B_INVAL)) == B_ERROR) {
1105 		/*
1106 		 * Failed write, redirty.  Must clear B_ERROR to prevent
1107 		 * pages from being scrapped.  If B_INVAL is set then
1108 		 * this case is not run and the next case is run to
1109 		 * destroy the buffer.  B_INVAL can occur if the buffer
1110 		 * is outside the range supported by the underlying device.
1111 		 */
1112 		bp->b_flags &= ~B_ERROR;
1113 		bdirty(bp);
1114 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
1115 	    (bp->b_bufsize <= 0)) {
1116 		/*
1117 		 * Either a failed I/O or we were asked to free or not
1118 		 * cache the buffer.
1119 		 */
1120 		bp->b_flags |= B_INVAL;
1121 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1122 			(*bioops.io_deallocate)(bp);
1123 		if (bp->b_flags & B_DELWRI) {
1124 			--numdirtybuffers;
1125 			numdirtywakeup(lodirtybuffers);
1126 		}
1127 		bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
1128 	}
1129 
1130 	/*
1131 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1132 	 * is called with B_DELWRI set, the underlying pages may wind up
1133 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1134 	 * because pages associated with a B_DELWRI bp are marked clean.
1135 	 *
1136 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1137 	 * if B_DELWRI is set.
1138 	 *
1139 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1140 	 * on pages to return pages to the VM page queues.
1141 	 */
1142 	if (bp->b_flags & B_DELWRI)
1143 		bp->b_flags &= ~B_RELBUF;
1144 	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1145 		bp->b_flags |= B_RELBUF;
1146 
1147 	/*
1148 	 * At this point destroying the buffer is governed by the B_INVAL
1149 	 * or B_RELBUF flags.
1150 	 */
1151 
1152 	/*
1153 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1154 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1155 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1156 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1157 	 *
1158 	 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
1159 	 * invalidated.  B_ERROR cannot be set for a failed write unless the
1160 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1161 	 *
1162 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1163 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1164 	 * the commit state and we cannot afford to lose the buffer. If the
1165 	 * buffer has a background write in progress, we need to keep it
1166 	 * around to prevent it from being reconstituted and starting a second
1167 	 * background write.
1168 	 */
1169 	if ((bp->b_flags & B_VMIO)
1170 	    && !(bp->b_vp->v_tag == VT_NFS &&
1171 		 !vn_isdisk(bp->b_vp, NULL) &&
1172 		 (bp->b_flags & B_DELWRI))
1173 	    ) {
1174 		/*
1175 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1176 		 */
1177 		int i, j, resid;
1178 		vm_page_t m;
1179 		off_t foff;
1180 		vm_pindex_t poff;
1181 		vm_object_t obj;
1182 		struct vnode *vp;
1183 
1184 		vp = bp->b_vp;
1185 
1186 		/*
1187 		 * Get the base offset and length of the buffer.  Note that
1188 		 * in the VMIO case if the buffer block size is not
1189 		 * page-aligned then b_data pointer may not be page-aligned.
1190 		 * But our b_xio.xio_pages array *IS* page aligned.
1191 		 *
1192 		 * block sizes less then DEV_BSIZE (usually 512) are not
1193 		 * supported due to the page granularity bits (m->valid,
1194 		 * m->dirty, etc...).
1195 		 *
1196 		 * See man buf(9) for more information
1197 		 */
1198 
1199 		resid = bp->b_bufsize;
1200 		foff = bp->b_offset;
1201 
1202 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1203 			m = bp->b_xio.xio_pages[i];
1204 			vm_page_flag_clear(m, PG_ZERO);
1205 			/*
1206 			 * If we hit a bogus page, fixup *all* of them
1207 			 * now.  Note that we left these pages wired
1208 			 * when we removed them so they had better exist,
1209 			 * and they cannot be ripped out from under us so
1210 			 * no critical section protection is necessary.
1211 			 */
1212 			if (m == bogus_page) {
1213 				VOP_GETVOBJECT(vp, &obj);
1214 				poff = OFF_TO_IDX(bp->b_offset);
1215 
1216 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1217 					vm_page_t mtmp;
1218 
1219 					mtmp = bp->b_xio.xio_pages[j];
1220 					if (mtmp == bogus_page) {
1221 						mtmp = vm_page_lookup(obj, poff + j);
1222 						if (!mtmp) {
1223 							panic("brelse: page missing");
1224 						}
1225 						bp->b_xio.xio_pages[j] = mtmp;
1226 					}
1227 				}
1228 
1229 				if ((bp->b_flags & B_INVAL) == 0) {
1230 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1231 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1232 				}
1233 				m = bp->b_xio.xio_pages[i];
1234 			}
1235 
1236 			/*
1237 			 * Invalidate the backing store if B_NOCACHE is set
1238 			 * (e.g. used with vinvalbuf()).  If this is NFS
1239 			 * we impose a requirement that the block size be
1240 			 * a multiple of PAGE_SIZE and create a temporary
1241 			 * hack to basically invalidate the whole page.  The
1242 			 * problem is that NFS uses really odd buffer sizes
1243 			 * especially when tracking piecemeal writes and
1244 			 * it also vinvalbuf()'s a lot, which would result
1245 			 * in only partial page validation and invalidation
1246 			 * here.  If the file page is mmap()'d, however,
1247 			 * all the valid bits get set so after we invalidate
1248 			 * here we would end up with weird m->valid values
1249 			 * like 0xfc.  nfs_getpages() can't handle this so
1250 			 * we clear all the valid bits for the NFS case
1251 			 * instead of just some of them.
1252 			 *
1253 			 * The real bug is the VM system having to set m->valid
1254 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1255 			 * itself is an artifact of the whole 512-byte
1256 			 * granular mess that exists to support odd block
1257 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1258 			 * A complete rewrite is required.
1259 			 */
1260 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1261 				int poffset = foff & PAGE_MASK;
1262 				int presid;
1263 
1264 				presid = PAGE_SIZE - poffset;
1265 				if (bp->b_vp->v_tag == VT_NFS &&
1266 				    bp->b_vp->v_type == VREG) {
1267 					; /* entire page */
1268 				} else if (presid > resid) {
1269 					presid = resid;
1270 				}
1271 				KASSERT(presid >= 0, ("brelse: extra page"));
1272 				vm_page_set_invalid(m, poffset, presid);
1273 			}
1274 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1275 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1276 		}
1277 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1278 			vfs_vmio_release(bp);
1279 	} else if (bp->b_flags & B_VMIO) {
1280 		/*
1281 		 * Rundown for VMIO buffers which are dirty NFS buffers.  Such
1282 		 * buffers contain tracking ranges for NFS and cannot normally
1283 		 * be released.  Due to the dirty check above this series of
1284 		 * conditionals, B_RELBUF probably will never be set in this
1285 		 * codepath.
1286 		 */
1287 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1288 			vfs_vmio_release(bp);
1289 	} else {
1290 		/*
1291 		 * Rundown for non-VMIO buffers.
1292 		 */
1293 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1294 #if 0
1295 			if (bp->b_vp)
1296 				printf("brelse bp %p %08x/%08lx: Warning, caught and fixed brelvp bug\n", bp, saved_flags, bp->b_flags);
1297 #endif
1298 			if (bp->b_bufsize)
1299 				allocbuf(bp, 0);
1300 			if (bp->b_vp)
1301 				brelvp(bp);
1302 		}
1303 	}
1304 
1305 	if (bp->b_qindex != BQUEUE_NONE)
1306 		panic("brelse: free buffer onto another queue???");
1307 	if (BUF_REFCNTNB(bp) > 1) {
1308 		/* Temporary panic to verify exclusive locking */
1309 		/* This panic goes away when we allow shared refs */
1310 		panic("brelse: multiple refs");
1311 		/* do not release to free list */
1312 		BUF_UNLOCK(bp);
1313 		crit_exit();
1314 		return;
1315 	}
1316 
1317 	/*
1318 	 * Figure out the correct queue to place the cleaned up buffer on.
1319 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1320 	 * disassociated from their vnode.
1321 	 */
1322 
1323 	if (bp->b_bufsize == 0) {
1324 		/*
1325 		 * Buffers with no memory.  Due to conditionals near the top
1326 		 * of brelse() such buffers should probably already be
1327 		 * marked B_INVAL and disassociated from their vnode.
1328 		 */
1329 		bp->b_flags |= B_INVAL;
1330 		bp->b_xflags &= ~BX_BKGRDWRITE;
1331 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08lx vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1332 		if (bp->b_xflags & BX_BKGRDINPROG)
1333 			panic("losing buffer 1");
1334 		if (bp->b_kvasize) {
1335 			bp->b_qindex = BQUEUE_EMPTYKVA;
1336 		} else {
1337 			bp->b_qindex = BQUEUE_EMPTY;
1338 		}
1339 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1340 		LIST_REMOVE(bp, b_hash);
1341 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1342 		bp->b_dev = NODEV;
1343 	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1344 		/*
1345 		 * Buffers with junk contents.   Again these buffers had better
1346 		 * already be disassociated from their vnode.
1347 		 */
1348 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08lx vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1349 		bp->b_flags |= B_INVAL;
1350 		bp->b_xflags &= ~BX_BKGRDWRITE;
1351 		if (bp->b_xflags & BX_BKGRDINPROG)
1352 			panic("losing buffer 2");
1353 		bp->b_qindex = BQUEUE_CLEAN;
1354 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1355 		LIST_REMOVE(bp, b_hash);
1356 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1357 		bp->b_dev = NODEV;
1358 	} else if (bp->b_flags & B_LOCKED) {
1359 		/*
1360 		 * Buffers that are locked.
1361 		 */
1362 		bp->b_qindex = BQUEUE_LOCKED;
1363 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1364 	} else {
1365 		/*
1366 		 * Remaining buffers.  These buffers are still associated with
1367 		 * their vnode.
1368 		 */
1369 		switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1370 		case B_DELWRI | B_AGE:
1371 		    bp->b_qindex = BQUEUE_DIRTY;
1372 		    TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1373 		    break;
1374 		case B_DELWRI:
1375 		    bp->b_qindex = BQUEUE_DIRTY;
1376 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1377 		    break;
1378 		case B_AGE:
1379 		    bp->b_qindex = BQUEUE_CLEAN;
1380 		    TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1381 		    break;
1382 		default:
1383 		    bp->b_qindex = BQUEUE_CLEAN;
1384 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1385 		    break;
1386 		}
1387 	}
1388 
1389 	/*
1390 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1391 	 * on the correct queue.
1392 	 */
1393 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1394 		bundirty(bp);
1395 
1396 	/*
1397 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1398 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1399 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1400 	 * if B_INVAL is set ).
1401 	 */
1402 	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1403 		bufcountwakeup();
1404 
1405 	/*
1406 	 * Something we can maybe free or reuse
1407 	 */
1408 	if (bp->b_bufsize || bp->b_kvasize)
1409 		bufspacewakeup();
1410 
1411 	/* unlock */
1412 	BUF_UNLOCK(bp);
1413 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1414 			B_DIRECT | B_NOWDRAIN);
1415 	crit_exit();
1416 }
1417 
1418 /*
1419  * bqrelse:
1420  *
1421  *	Release a buffer back to the appropriate queue but do not try to free
1422  *	it.  The buffer is expected to be used again soon.
1423  *
1424  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1425  *	biodone() to requeue an async I/O on completion.  It is also used when
1426  *	known good buffers need to be requeued but we think we may need the data
1427  *	again soon.
1428  *
1429  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1430  */
1431 void
1432 bqrelse(struct buf * bp)
1433 {
1434 	crit_enter();
1435 
1436 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1437 
1438 	if (bp->b_qindex != BQUEUE_NONE)
1439 		panic("bqrelse: free buffer onto another queue???");
1440 	if (BUF_REFCNTNB(bp) > 1) {
1441 		/* do not release to free list */
1442 		panic("bqrelse: multiple refs");
1443 		BUF_UNLOCK(bp);
1444 		crit_exit();
1445 		return;
1446 	}
1447 	if (bp->b_flags & B_LOCKED) {
1448 		bp->b_flags &= ~B_ERROR;
1449 		bp->b_qindex = BQUEUE_LOCKED;
1450 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1451 		/* buffers with stale but valid contents */
1452 	} else if (bp->b_flags & B_DELWRI) {
1453 		bp->b_qindex = BQUEUE_DIRTY;
1454 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1455 	} else if (vm_page_count_severe()) {
1456 		/*
1457 		 * We are too low on memory, we have to try to free the
1458 		 * buffer (most importantly: the wired pages making up its
1459 		 * backing store) *now*.
1460 		 */
1461 		crit_exit();
1462 		brelse(bp);
1463 		return;
1464 	} else {
1465 		bp->b_qindex = BQUEUE_CLEAN;
1466 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1467 	}
1468 
1469 	if ((bp->b_flags & B_LOCKED) == 0 &&
1470 	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1471 		bufcountwakeup();
1472 	}
1473 
1474 	/*
1475 	 * Something we can maybe free or reuse.
1476 	 */
1477 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1478 		bufspacewakeup();
1479 
1480 	/*
1481 	 * Final cleanup and unlock.  Clear bits that are only used while a
1482 	 * buffer is actively locked.
1483 	 */
1484 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1485 	BUF_UNLOCK(bp);
1486 	crit_exit();
1487 }
1488 
1489 /*
1490  * vfs_vmio_release:
1491  *
1492  *	Return backing pages held by the buffer 'bp' back to the VM system
1493  *	if possible.  The pages are freed if they are no longer valid or
1494  *	attempt to free if it was used for direct I/O otherwise they are
1495  *	sent to the page cache.
1496  *
1497  *	Pages that were marked busy are left alone and skipped.
1498  *
1499  *	The KVA mapping (b_data) for the underlying pages is removed by
1500  *	this function.
1501  */
1502 static void
1503 vfs_vmio_release(struct buf *bp)
1504 {
1505 	int i;
1506 	vm_page_t m;
1507 
1508 	crit_enter();
1509 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1510 		m = bp->b_xio.xio_pages[i];
1511 		bp->b_xio.xio_pages[i] = NULL;
1512 		/*
1513 		 * In order to keep page LRU ordering consistent, put
1514 		 * everything on the inactive queue.
1515 		 */
1516 		vm_page_unwire(m, 0);
1517 		/*
1518 		 * We don't mess with busy pages, it is
1519 		 * the responsibility of the process that
1520 		 * busied the pages to deal with them.
1521 		 */
1522 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1523 			continue;
1524 
1525 		if (m->wire_count == 0) {
1526 			vm_page_flag_clear(m, PG_ZERO);
1527 			/*
1528 			 * Might as well free the page if we can and it has
1529 			 * no valid data.  We also free the page if the
1530 			 * buffer was used for direct I/O.
1531 			 */
1532 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1533 					m->hold_count == 0) {
1534 				vm_page_busy(m);
1535 				vm_page_protect(m, VM_PROT_NONE);
1536 				vm_page_free(m);
1537 			} else if (bp->b_flags & B_DIRECT) {
1538 				vm_page_try_to_free(m);
1539 			} else if (vm_page_count_severe()) {
1540 				vm_page_try_to_cache(m);
1541 			}
1542 		}
1543 	}
1544 	crit_exit();
1545 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1546 	if (bp->b_bufsize) {
1547 		bufspacewakeup();
1548 		bp->b_bufsize = 0;
1549 	}
1550 	bp->b_xio.xio_npages = 0;
1551 	bp->b_flags &= ~B_VMIO;
1552 	if (bp->b_vp)
1553 		brelvp(bp);
1554 }
1555 
1556 /*
1557  * gbincore:
1558  *
1559  *	Check to see if a block is currently memory resident.
1560  */
1561 struct buf *
1562 gbincore(struct vnode * vp, daddr_t blkno)
1563 {
1564 	struct buf *bp;
1565 	struct bufhashhdr *bh;
1566 
1567 	bh = bufhash(vp, blkno);
1568 	LIST_FOREACH(bp, bh, b_hash) {
1569 		if (bp->b_vp == vp && bp->b_lblkno == blkno)
1570 			break;
1571 	}
1572 	return (bp);
1573 }
1574 
1575 /*
1576  * vfs_bio_awrite:
1577  *
1578  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1579  *	This is much better then the old way of writing only one buffer at
1580  *	a time.  Note that we may not be presented with the buffers in the
1581  *	correct order, so we search for the cluster in both directions.
1582  */
1583 int
1584 vfs_bio_awrite(struct buf * bp)
1585 {
1586 	int i;
1587 	int j;
1588 	daddr_t lblkno = bp->b_lblkno;
1589 	struct vnode *vp = bp->b_vp;
1590 	int ncl;
1591 	struct buf *bpa;
1592 	int nwritten;
1593 	int size;
1594 	int maxcl;
1595 
1596 	crit_enter();
1597 	/*
1598 	 * right now we support clustered writing only to regular files.  If
1599 	 * we find a clusterable block we could be in the middle of a cluster
1600 	 * rather then at the beginning.
1601 	 */
1602 	if ((vp->v_type == VREG) &&
1603 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1604 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1605 
1606 		size = vp->v_mount->mnt_stat.f_iosize;
1607 		maxcl = MAXPHYS / size;
1608 
1609 		for (i = 1; i < maxcl; i++) {
1610 			if ((bpa = gbincore(vp, lblkno + i)) &&
1611 			    BUF_REFCNT(bpa) == 0 &&
1612 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1613 			    (B_DELWRI | B_CLUSTEROK)) &&
1614 			    (bpa->b_bufsize == size)) {
1615 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1616 				    (bpa->b_blkno !=
1617 				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1618 					break;
1619 			} else {
1620 				break;
1621 			}
1622 		}
1623 		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1624 			if ((bpa = gbincore(vp, lblkno - j)) &&
1625 			    BUF_REFCNT(bpa) == 0 &&
1626 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1627 			    (B_DELWRI | B_CLUSTEROK)) &&
1628 			    (bpa->b_bufsize == size)) {
1629 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1630 				    (bpa->b_blkno !=
1631 				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1632 					break;
1633 			} else {
1634 				break;
1635 			}
1636 		}
1637 		--j;
1638 		ncl = i + j;
1639 		/*
1640 		 * this is a possible cluster write
1641 		 */
1642 		if (ncl != 1) {
1643 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1644 			crit_exit();
1645 			return nwritten;
1646 		}
1647 	}
1648 
1649 	BUF_LOCK(bp, LK_EXCLUSIVE);
1650 	bremfree(bp);
1651 	bp->b_flags |= B_ASYNC;
1652 
1653 	crit_exit();
1654 	/*
1655 	 * default (old) behavior, writing out only one block
1656 	 *
1657 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1658 	 */
1659 	nwritten = bp->b_bufsize;
1660 	(void) VOP_BWRITE(bp->b_vp, bp);
1661 
1662 	return nwritten;
1663 }
1664 
1665 /*
1666  * getnewbuf:
1667  *
1668  *	Find and initialize a new buffer header, freeing up existing buffers
1669  *	in the bufqueues as necessary.  The new buffer is returned locked.
1670  *
1671  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1672  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1673  *
1674  *	We block if:
1675  *		We have insufficient buffer headers
1676  *		We have insufficient buffer space
1677  *		buffer_map is too fragmented ( space reservation fails )
1678  *		If we have to flush dirty buffers ( but we try to avoid this )
1679  *
1680  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1681  *	Instead we ask the buf daemon to do it for us.  We attempt to
1682  *	avoid piecemeal wakeups of the pageout daemon.
1683  */
1684 
1685 static struct buf *
1686 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1687 {
1688 	struct buf *bp;
1689 	struct buf *nbp;
1690 	int defrag = 0;
1691 	int nqindex;
1692 	static int flushingbufs;
1693 
1694 	/*
1695 	 * We can't afford to block since we might be holding a vnode lock,
1696 	 * which may prevent system daemons from running.  We deal with
1697 	 * low-memory situations by proactively returning memory and running
1698 	 * async I/O rather then sync I/O.
1699 	 */
1700 
1701 	++getnewbufcalls;
1702 	--getnewbufrestarts;
1703 restart:
1704 	++getnewbufrestarts;
1705 
1706 	/*
1707 	 * Setup for scan.  If we do not have enough free buffers,
1708 	 * we setup a degenerate case that immediately fails.  Note
1709 	 * that if we are specially marked process, we are allowed to
1710 	 * dip into our reserves.
1711 	 *
1712 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1713 	 *
1714 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1715 	 * However, there are a number of cases (defragging, reusing, ...)
1716 	 * where we cannot backup.
1717 	 */
1718 	nqindex = BQUEUE_EMPTYKVA;
1719 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1720 
1721 	if (nbp == NULL) {
1722 		/*
1723 		 * If no EMPTYKVA buffers and we are either
1724 		 * defragging or reusing, locate a CLEAN buffer
1725 		 * to free or reuse.  If bufspace useage is low
1726 		 * skip this step so we can allocate a new buffer.
1727 		 */
1728 		if (defrag || bufspace >= lobufspace) {
1729 			nqindex = BQUEUE_CLEAN;
1730 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1731 		}
1732 
1733 		/*
1734 		 * If we could not find or were not allowed to reuse a
1735 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1736 		 * buffer.  We can only use an EMPTY buffer if allocating
1737 		 * its KVA would not otherwise run us out of buffer space.
1738 		 */
1739 		if (nbp == NULL && defrag == 0 &&
1740 		    bufspace + maxsize < hibufspace) {
1741 			nqindex = BQUEUE_EMPTY;
1742 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1743 		}
1744 	}
1745 
1746 	/*
1747 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1748 	 * depending.
1749 	 */
1750 
1751 	while ((bp = nbp) != NULL) {
1752 		int qindex = nqindex;
1753 
1754 		/*
1755 		 * Calculate next bp ( we can only use it if we do not block
1756 		 * or do other fancy things ).
1757 		 */
1758 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1759 			switch(qindex) {
1760 			case BQUEUE_EMPTY:
1761 				nqindex = BQUEUE_EMPTYKVA;
1762 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1763 					break;
1764 				/* fall through */
1765 			case BQUEUE_EMPTYKVA:
1766 				nqindex = BQUEUE_CLEAN;
1767 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1768 					break;
1769 				/* fall through */
1770 			case BQUEUE_CLEAN:
1771 				/*
1772 				 * nbp is NULL.
1773 				 */
1774 				break;
1775 			}
1776 		}
1777 
1778 		/*
1779 		 * Sanity Checks
1780 		 */
1781 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1782 
1783 		/*
1784 		 * Note: we no longer distinguish between VMIO and non-VMIO
1785 		 * buffers.
1786 		 */
1787 
1788 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1789 
1790 		/*
1791 		 * If we are defragging then we need a buffer with
1792 		 * b_kvasize != 0.  XXX this situation should no longer
1793 		 * occur, if defrag is non-zero the buffer's b_kvasize
1794 		 * should also be non-zero at this point.  XXX
1795 		 */
1796 		if (defrag && bp->b_kvasize == 0) {
1797 			printf("Warning: defrag empty buffer %p\n", bp);
1798 			continue;
1799 		}
1800 
1801 		/*
1802 		 * Start freeing the bp.  This is somewhat involved.  nbp
1803 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
1804 		 * on the clean list must be disassociated from their
1805 		 * current vnode.  Buffers on the empty[kva] lists have
1806 		 * already been disassociated.
1807 		 */
1808 
1809 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1810 			panic("getnewbuf: locked buf");
1811 		bremfree(bp);
1812 
1813 		if (qindex == BQUEUE_CLEAN) {
1814 			if (bp->b_flags & B_VMIO) {
1815 				bp->b_flags &= ~B_ASYNC;
1816 				vfs_vmio_release(bp);
1817 			}
1818 			if (bp->b_vp)
1819 				brelvp(bp);
1820 		}
1821 
1822 		/*
1823 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1824 		 * the scan from this point on.
1825 		 *
1826 		 * Get the rest of the buffer freed up.  b_kva* is still
1827 		 * valid after this operation.
1828 		 */
1829 
1830 		KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08lx vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
1831 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1832 			(*bioops.io_deallocate)(bp);
1833 		if (bp->b_xflags & BX_BKGRDINPROG)
1834 			panic("losing buffer 3");
1835 		LIST_REMOVE(bp, b_hash);
1836 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1837 
1838 		/*
1839 		 * critical section protection is not required when
1840 		 * scrapping a buffer's contents because it is already
1841 		 * wired.
1842 		 */
1843 		if (bp->b_bufsize)
1844 			allocbuf(bp, 0);
1845 
1846 		bp->b_flags = 0;
1847 		bp->b_xflags = 0;
1848 		bp->b_dev = NODEV;
1849 		bp->b_vp = NULL;
1850 		bp->b_blkno = bp->b_lblkno = 0;
1851 		bp->b_offset = NOOFFSET;
1852 		bp->b_iodone = NULL;
1853 		bp->b_error = 0;
1854 		bp->b_resid = 0;
1855 		bp->b_bcount = 0;
1856 		bp->b_xio.xio_npages = 0;
1857 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1858 
1859 		LIST_INIT(&bp->b_dep);
1860 
1861 		/*
1862 		 * If we are defragging then free the buffer.
1863 		 */
1864 		if (defrag) {
1865 			bp->b_flags |= B_INVAL;
1866 			bfreekva(bp);
1867 			brelse(bp);
1868 			defrag = 0;
1869 			goto restart;
1870 		}
1871 
1872 		/*
1873 		 * If we are overcomitted then recover the buffer and its
1874 		 * KVM space.  This occurs in rare situations when multiple
1875 		 * processes are blocked in getnewbuf() or allocbuf().
1876 		 */
1877 		if (bufspace >= hibufspace)
1878 			flushingbufs = 1;
1879 		if (flushingbufs && bp->b_kvasize != 0) {
1880 			bp->b_flags |= B_INVAL;
1881 			bfreekva(bp);
1882 			brelse(bp);
1883 			goto restart;
1884 		}
1885 		if (bufspace < lobufspace)
1886 			flushingbufs = 0;
1887 		break;
1888 	}
1889 
1890 	/*
1891 	 * If we exhausted our list, sleep as appropriate.  We may have to
1892 	 * wakeup various daemons and write out some dirty buffers.
1893 	 *
1894 	 * Generally we are sleeping due to insufficient buffer space.
1895 	 */
1896 
1897 	if (bp == NULL) {
1898 		int flags;
1899 		char *waitmsg;
1900 
1901 		if (defrag) {
1902 			flags = VFS_BIO_NEED_BUFSPACE;
1903 			waitmsg = "nbufkv";
1904 		} else if (bufspace >= hibufspace) {
1905 			waitmsg = "nbufbs";
1906 			flags = VFS_BIO_NEED_BUFSPACE;
1907 		} else {
1908 			waitmsg = "newbuf";
1909 			flags = VFS_BIO_NEED_ANY;
1910 		}
1911 
1912 		bd_speedup();	/* heeeelp */
1913 
1914 		needsbuffer |= flags;
1915 		while (needsbuffer & flags) {
1916 			if (tsleep(&needsbuffer, slpflag, waitmsg, slptimeo))
1917 				return (NULL);
1918 		}
1919 	} else {
1920 		/*
1921 		 * We finally have a valid bp.  We aren't quite out of the
1922 		 * woods, we still have to reserve kva space.  In order
1923 		 * to keep fragmentation sane we only allocate kva in
1924 		 * BKVASIZE chunks.
1925 		 */
1926 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1927 
1928 		if (maxsize != bp->b_kvasize) {
1929 			vm_offset_t addr = 0;
1930 			int count;
1931 
1932 			bfreekva(bp);
1933 
1934 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1935 			vm_map_lock(buffer_map);
1936 
1937 			if (vm_map_findspace(buffer_map,
1938 				    vm_map_min(buffer_map), maxsize,
1939 				    maxsize, &addr)) {
1940 				/*
1941 				 * Uh oh.  Buffer map is too fragmented.  We
1942 				 * must defragment the map.
1943 				 */
1944 				vm_map_unlock(buffer_map);
1945 				vm_map_entry_release(count);
1946 				++bufdefragcnt;
1947 				defrag = 1;
1948 				bp->b_flags |= B_INVAL;
1949 				brelse(bp);
1950 				goto restart;
1951 			}
1952 			if (addr) {
1953 				vm_map_insert(buffer_map, &count,
1954 					NULL, 0,
1955 					addr, addr + maxsize,
1956 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1957 
1958 				bp->b_kvabase = (caddr_t) addr;
1959 				bp->b_kvasize = maxsize;
1960 				bufspace += bp->b_kvasize;
1961 				++bufreusecnt;
1962 			}
1963 			vm_map_unlock(buffer_map);
1964 			vm_map_entry_release(count);
1965 		}
1966 		bp->b_data = bp->b_kvabase;
1967 	}
1968 	return(bp);
1969 }
1970 
1971 /*
1972  * buf_daemon:
1973  *
1974  *	Buffer flushing daemon.  Buffers are normally flushed by the
1975  *	update daemon but if it cannot keep up this process starts to
1976  *	take the load in an attempt to prevent getnewbuf() from blocking.
1977  */
1978 
1979 static struct thread *bufdaemonthread;
1980 
1981 static struct kproc_desc buf_kp = {
1982 	"bufdaemon",
1983 	buf_daemon,
1984 	&bufdaemonthread
1985 };
1986 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1987 
1988 static void
1989 buf_daemon()
1990 {
1991 	/*
1992 	 * This process needs to be suspended prior to shutdown sync.
1993 	 */
1994 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
1995 	    bufdaemonthread, SHUTDOWN_PRI_LAST);
1996 
1997 	/*
1998 	 * This process is allowed to take the buffer cache to the limit
1999 	 */
2000 	crit_enter();
2001 
2002 	for (;;) {
2003 		kproc_suspend_loop();
2004 
2005 		/*
2006 		 * Do the flush.  Limit the amount of in-transit I/O we
2007 		 * allow to build up, otherwise we would completely saturate
2008 		 * the I/O system.  Wakeup any waiting processes before we
2009 		 * normally would so they can run in parallel with our drain.
2010 		 */
2011 		while (numdirtybuffers > lodirtybuffers) {
2012 			if (flushbufqueues() == 0)
2013 				break;
2014 			waitrunningbufspace();
2015 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2016 		}
2017 
2018 		/*
2019 		 * Only clear bd_request if we have reached our low water
2020 		 * mark.  The buf_daemon normally waits 5 seconds and
2021 		 * then incrementally flushes any dirty buffers that have
2022 		 * built up, within reason.
2023 		 *
2024 		 * If we were unable to hit our low water mark and couldn't
2025 		 * find any flushable buffers, we sleep half a second.
2026 		 * Otherwise we loop immediately.
2027 		 */
2028 		if (numdirtybuffers <= lodirtybuffers) {
2029 			/*
2030 			 * We reached our low water mark, reset the
2031 			 * request and sleep until we are needed again.
2032 			 * The sleep is just so the suspend code works.
2033 			 */
2034 			bd_request = 0;
2035 			tsleep(&bd_request, 0, "psleep", hz);
2036 		} else {
2037 			/*
2038 			 * We couldn't find any flushable dirty buffers but
2039 			 * still have too many dirty buffers, we
2040 			 * have to sleep and try again.  (rare)
2041 			 */
2042 			tsleep(&bd_request, 0, "qsleep", hz / 2);
2043 		}
2044 	}
2045 }
2046 
2047 /*
2048  * flushbufqueues:
2049  *
2050  *	Try to flush a buffer in the dirty queue.  We must be careful to
2051  *	free up B_INVAL buffers instead of write them, which NFS is
2052  *	particularly sensitive to.
2053  */
2054 
2055 static int
2056 flushbufqueues(void)
2057 {
2058 	struct buf *bp;
2059 	int r = 0;
2060 
2061 	bp = TAILQ_FIRST(&bufqueues[BQUEUE_DIRTY]);
2062 
2063 	while (bp) {
2064 		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
2065 		if ((bp->b_flags & B_DELWRI) != 0 &&
2066 		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
2067 			if (bp->b_flags & B_INVAL) {
2068 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2069 					panic("flushbufqueues: locked buf");
2070 				bremfree(bp);
2071 				brelse(bp);
2072 				++r;
2073 				break;
2074 			}
2075 			if (LIST_FIRST(&bp->b_dep) != NULL &&
2076 			    bioops.io_countdeps &&
2077 			    (bp->b_flags & B_DEFERRED) == 0 &&
2078 			    (*bioops.io_countdeps)(bp, 0)) {
2079 				TAILQ_REMOVE(&bufqueues[BQUEUE_DIRTY],
2080 				    bp, b_freelist);
2081 				TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY],
2082 				    bp, b_freelist);
2083 				bp->b_flags |= B_DEFERRED;
2084 				bp = TAILQ_FIRST(&bufqueues[BQUEUE_DIRTY]);
2085 				continue;
2086 			}
2087 			vfs_bio_awrite(bp);
2088 			++r;
2089 			break;
2090 		}
2091 		bp = TAILQ_NEXT(bp, b_freelist);
2092 	}
2093 	return (r);
2094 }
2095 
2096 /*
2097  * incore:
2098  *
2099  *	Check to see if a block is currently resident in memory.
2100  */
2101 struct buf *
2102 incore(struct vnode * vp, daddr_t blkno)
2103 {
2104 	struct buf *bp;
2105 
2106 	crit_enter();
2107 	bp = gbincore(vp, blkno);
2108 	crit_exit();
2109 	return (bp);
2110 }
2111 
2112 /*
2113  * inmem:
2114  *
2115  *	Returns true if no I/O is needed to access the associated VM object.
2116  *	This is like incore except it also hunts around in the VM system for
2117  *	the data.
2118  *
2119  *	Note that we ignore vm_page_free() races from interrupts against our
2120  *	lookup, since if the caller is not protected our return value will not
2121  *	be any more valid then otherwise once we exit the critical section.
2122  */
2123 int
2124 inmem(struct vnode * vp, daddr_t blkno)
2125 {
2126 	vm_object_t obj;
2127 	vm_offset_t toff, tinc, size;
2128 	vm_page_t m;
2129 	vm_ooffset_t off;
2130 
2131 	if (incore(vp, blkno))
2132 		return 1;
2133 	if (vp->v_mount == NULL)
2134 		return 0;
2135 	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
2136  		return 0;
2137 
2138 	size = PAGE_SIZE;
2139 	if (size > vp->v_mount->mnt_stat.f_iosize)
2140 		size = vp->v_mount->mnt_stat.f_iosize;
2141 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2142 
2143 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2144 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2145 		if (!m)
2146 			return 0;
2147 		tinc = size;
2148 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2149 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2150 		if (vm_page_is_valid(m,
2151 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2152 			return 0;
2153 	}
2154 	return 1;
2155 }
2156 
2157 /*
2158  * vfs_setdirty:
2159  *
2160  *	Sets the dirty range for a buffer based on the status of the dirty
2161  *	bits in the pages comprising the buffer.
2162  *
2163  *	The range is limited to the size of the buffer.
2164  *
2165  *	This routine is primarily used by NFS, but is generalized for the
2166  *	B_VMIO case.
2167  */
2168 static void
2169 vfs_setdirty(struct buf *bp)
2170 {
2171 	int i;
2172 	vm_object_t object;
2173 
2174 	/*
2175 	 * Degenerate case - empty buffer
2176 	 */
2177 
2178 	if (bp->b_bufsize == 0)
2179 		return;
2180 
2181 	/*
2182 	 * We qualify the scan for modified pages on whether the
2183 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2184 	 * is not cleared simply by protecting pages off.
2185 	 */
2186 
2187 	if ((bp->b_flags & B_VMIO) == 0)
2188 		return;
2189 
2190 	object = bp->b_xio.xio_pages[0]->object;
2191 
2192 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2193 		printf("Warning: object %p writeable but not mightbedirty\n", object);
2194 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2195 		printf("Warning: object %p mightbedirty but not writeable\n", object);
2196 
2197 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2198 		vm_offset_t boffset;
2199 		vm_offset_t eoffset;
2200 
2201 		/*
2202 		 * test the pages to see if they have been modified directly
2203 		 * by users through the VM system.
2204 		 */
2205 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2206 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
2207 			vm_page_test_dirty(bp->b_xio.xio_pages[i]);
2208 		}
2209 
2210 		/*
2211 		 * Calculate the encompassing dirty range, boffset and eoffset,
2212 		 * (eoffset - boffset) bytes.
2213 		 */
2214 
2215 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2216 			if (bp->b_xio.xio_pages[i]->dirty)
2217 				break;
2218 		}
2219 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2220 
2221 		for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) {
2222 			if (bp->b_xio.xio_pages[i]->dirty) {
2223 				break;
2224 			}
2225 		}
2226 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2227 
2228 		/*
2229 		 * Fit it to the buffer.
2230 		 */
2231 
2232 		if (eoffset > bp->b_bcount)
2233 			eoffset = bp->b_bcount;
2234 
2235 		/*
2236 		 * If we have a good dirty range, merge with the existing
2237 		 * dirty range.
2238 		 */
2239 
2240 		if (boffset < eoffset) {
2241 			if (bp->b_dirtyoff > boffset)
2242 				bp->b_dirtyoff = boffset;
2243 			if (bp->b_dirtyend < eoffset)
2244 				bp->b_dirtyend = eoffset;
2245 		}
2246 	}
2247 }
2248 
2249 /*
2250  * getblk:
2251  *
2252  *	Get a block given a specified block and offset into a file/device.
2253  *	The buffers B_DONE bit will be cleared on return, making it almost
2254  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2255  *	return.  The caller should clear B_INVAL prior to initiating a
2256  *	READ.
2257  *
2258  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2259  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2260  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2261  *	without doing any of those things the system will likely believe
2262  *	the buffer to be valid (especially if it is not B_VMIO), and the
2263  *	next getblk() will return the buffer with B_CACHE set.
2264  *
2265  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2266  *	an existing buffer.
2267  *
2268  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2269  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2270  *	and then cleared based on the backing VM.  If the previous buffer is
2271  *	non-0-sized but invalid, B_CACHE will be cleared.
2272  *
2273  *	If getblk() must create a new buffer, the new buffer is returned with
2274  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2275  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2276  *	backing VM.
2277  *
2278  *	getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
2279  *	B_CACHE bit is clear.
2280  *
2281  *	What this means, basically, is that the caller should use B_CACHE to
2282  *	determine whether the buffer is fully valid or not and should clear
2283  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2284  *	the buffer by loading its data area with something, the caller needs
2285  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2286  *	the caller should set B_CACHE ( as an optimization ), else the caller
2287  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2288  *	a write attempt or if it was a successfull read.  If the caller
2289  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2290  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2291  */
2292 struct buf *
2293 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2294 {
2295 	struct buf *bp;
2296 	struct bufhashhdr *bh;
2297 
2298 	if (size > MAXBSIZE)
2299 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2300 
2301 	crit_enter();
2302 loop:
2303 	/*
2304 	 * Block if we are low on buffers.   Certain processes are allowed
2305 	 * to completely exhaust the buffer cache.
2306          *
2307          * If this check ever becomes a bottleneck it may be better to
2308          * move it into the else, when gbincore() fails.  At the moment
2309          * it isn't a problem.
2310 	 *
2311 	 * XXX remove, we cannot afford to block anywhere if holding a vnode
2312 	 * lock in low-memory situation, so take it to the max.
2313          */
2314 	if (numfreebuffers == 0) {
2315 		if (!curproc)
2316 			return NULL;
2317 		needsbuffer |= VFS_BIO_NEED_ANY;
2318 		tsleep(&needsbuffer, slpflag, "newbuf", slptimeo);
2319 	}
2320 
2321 	if ((bp = gbincore(vp, blkno))) {
2322 		/*
2323 		 * Buffer is in-core.  If the buffer is not busy, it must
2324 		 * be on a queue.
2325 		 */
2326 
2327 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2328 			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2329 			    "getblk", slpflag, slptimeo) == ENOLCK)
2330 				goto loop;
2331 			crit_exit();
2332 			return (struct buf *) NULL;
2333 		}
2334 
2335 		/*
2336 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2337 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2338 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2339 		 * backing VM cache.
2340 		 */
2341 		if (bp->b_flags & B_INVAL)
2342 			bp->b_flags &= ~B_CACHE;
2343 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2344 			bp->b_flags |= B_CACHE;
2345 		bremfree(bp);
2346 
2347 		/*
2348 		 * check for size inconsistancies for non-VMIO case.
2349 		 */
2350 
2351 		if (bp->b_bcount != size) {
2352 			if ((bp->b_flags & B_VMIO) == 0 ||
2353 			    (size > bp->b_kvasize)) {
2354 				if (bp->b_flags & B_DELWRI) {
2355 					bp->b_flags |= B_NOCACHE;
2356 					VOP_BWRITE(bp->b_vp, bp);
2357 				} else {
2358 					if ((bp->b_flags & B_VMIO) &&
2359 					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2360 						bp->b_flags |= B_RELBUF;
2361 						brelse(bp);
2362 					} else {
2363 						bp->b_flags |= B_NOCACHE;
2364 						VOP_BWRITE(bp->b_vp, bp);
2365 					}
2366 				}
2367 				goto loop;
2368 			}
2369 		}
2370 
2371 		/*
2372 		 * If the size is inconsistant in the VMIO case, we can resize
2373 		 * the buffer.  This might lead to B_CACHE getting set or
2374 		 * cleared.  If the size has not changed, B_CACHE remains
2375 		 * unchanged from its previous state.
2376 		 */
2377 
2378 		if (bp->b_bcount != size)
2379 			allocbuf(bp, size);
2380 
2381 		KASSERT(bp->b_offset != NOOFFSET,
2382 		    ("getblk: no buffer offset"));
2383 
2384 		/*
2385 		 * A buffer with B_DELWRI set and B_CACHE clear must
2386 		 * be committed before we can return the buffer in
2387 		 * order to prevent the caller from issuing a read
2388 		 * ( due to B_CACHE not being set ) and overwriting
2389 		 * it.
2390 		 *
2391 		 * Most callers, including NFS and FFS, need this to
2392 		 * operate properly either because they assume they
2393 		 * can issue a read if B_CACHE is not set, or because
2394 		 * ( for example ) an uncached B_DELWRI might loop due
2395 		 * to softupdates re-dirtying the buffer.  In the latter
2396 		 * case, B_CACHE is set after the first write completes,
2397 		 * preventing further loops.
2398 		 *
2399 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2400 		 * above while extending the buffer, we cannot allow the
2401 		 * buffer to remain with B_CACHE set after the write
2402 		 * completes or it will represent a corrupt state.  To
2403 		 * deal with this we set B_NOCACHE to scrap the buffer
2404 		 * after the write.
2405 		 *
2406 		 * We might be able to do something fancy, like setting
2407 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2408 		 * so the below call doesn't set B_CACHE, but that gets real
2409 		 * confusing.  This is much easier.
2410 		 */
2411 
2412 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2413 			bp->b_flags |= B_NOCACHE;
2414 			VOP_BWRITE(bp->b_vp, bp);
2415 			goto loop;
2416 		}
2417 
2418 		crit_exit();
2419 		bp->b_flags &= ~B_DONE;
2420 	} else {
2421 		/*
2422 		 * Buffer is not in-core, create new buffer.  The buffer
2423 		 * returned by getnewbuf() is locked.  Note that the returned
2424 		 * buffer is also considered valid (not marked B_INVAL).
2425 		 *
2426 		 * Calculating the offset for the I/O requires figuring out
2427 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
2428 		 * the mount's f_iosize otherwise.  If the vnode does not
2429 		 * have an associated mount we assume that the passed size is
2430 		 * the block size.
2431 		 *
2432 		 * Note that vn_isdisk() cannot be used here since it may
2433 		 * return a failure for numerous reasons.   Note that the
2434 		 * buffer size may be larger then the block size (the caller
2435 		 * will use block numbers with the proper multiple).  Beware
2436 		 * of using any v_* fields which are part of unions.  In
2437 		 * particular, in DragonFly the mount point overloading
2438 		 * mechanism is such that the underlying directory (with a
2439 		 * non-NULL v_mountedhere) is not a special case.
2440 		 */
2441 		int bsize, maxsize, vmio;
2442 		off_t offset;
2443 
2444 		if (vp->v_type == VBLK || vp->v_type == VCHR)
2445 			bsize = DEV_BSIZE;
2446 		else if (vp->v_mount)
2447 			bsize = vp->v_mount->mnt_stat.f_iosize;
2448 		else
2449 			bsize = size;
2450 
2451 		offset = (off_t)blkno * bsize;
2452 		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2453 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2454 		maxsize = imax(maxsize, bsize);
2455 
2456 		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2457 			if (slpflag || slptimeo) {
2458 				crit_exit();
2459 				return NULL;
2460 			}
2461 			goto loop;
2462 		}
2463 
2464 		/*
2465 		 * This code is used to make sure that a buffer is not
2466 		 * created while the getnewbuf routine is blocked.
2467 		 * This can be a problem whether the vnode is locked or not.
2468 		 * If the buffer is created out from under us, we have to
2469 		 * throw away the one we just created.  There is now window
2470 		 * race because we are safely running in a critical section
2471 		 * from the point of the duplicate buffer creation through
2472 		 * to here, and we've locked the buffer.
2473 		 */
2474 		if (gbincore(vp, blkno)) {
2475 			bp->b_flags |= B_INVAL;
2476 			brelse(bp);
2477 			goto loop;
2478 		}
2479 
2480 		/*
2481 		 * Insert the buffer into the hash, so that it can
2482 		 * be found by incore.  bgetvp() and bufhash()
2483 		 * must be synchronized with each other.
2484 		 */
2485 		bp->b_blkno = bp->b_lblkno = blkno;
2486 		bp->b_offset = offset;
2487 
2488 		bgetvp(vp, bp);
2489 		LIST_REMOVE(bp, b_hash);
2490 		bh = bufhash(vp, blkno);
2491 		LIST_INSERT_HEAD(bh, bp, b_hash);
2492 
2493 		/*
2494 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2495 		 * buffer size starts out as 0, B_CACHE will be set by
2496 		 * allocbuf() for the VMIO case prior to it testing the
2497 		 * backing store for validity.
2498 		 */
2499 
2500 		if (vmio) {
2501 			bp->b_flags |= B_VMIO;
2502 #if defined(VFS_BIO_DEBUG)
2503 			if (vn_canvmio(vp) != TRUE)
2504 				printf("getblk: vmioing file type %d???\n", vp->v_type);
2505 #endif
2506 		} else {
2507 			bp->b_flags &= ~B_VMIO;
2508 		}
2509 
2510 		allocbuf(bp, size);
2511 
2512 		crit_exit();
2513 		bp->b_flags &= ~B_DONE;
2514 	}
2515 	return (bp);
2516 }
2517 
2518 /*
2519  * geteblk:
2520  *
2521  *	Get an empty, disassociated buffer of given size.  The buffer is
2522  *	initially set to B_INVAL.
2523  *
2524  *	critical section protection is not required for the allocbuf()
2525  *	call because races are impossible here.
2526  */
2527 struct buf *
2528 geteblk(int size)
2529 {
2530 	struct buf *bp;
2531 	int maxsize;
2532 
2533 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2534 
2535 	crit_enter();
2536 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2537 		;
2538 	crit_exit();
2539 	allocbuf(bp, size);
2540 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2541 	return (bp);
2542 }
2543 
2544 
2545 /*
2546  * allocbuf:
2547  *
2548  *	This code constitutes the buffer memory from either anonymous system
2549  *	memory (in the case of non-VMIO operations) or from an associated
2550  *	VM object (in the case of VMIO operations).  This code is able to
2551  *	resize a buffer up or down.
2552  *
2553  *	Note that this code is tricky, and has many complications to resolve
2554  *	deadlock or inconsistant data situations.  Tread lightly!!!
2555  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
2556  *	the caller.  Calling this code willy nilly can result in the loss of data.
2557  *
2558  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2559  *	B_CACHE for the non-VMIO case.
2560  *
2561  *	This routine does not need to be called from a critical section but you
2562  *	must own the buffer.
2563  */
2564 int
2565 allocbuf(struct buf *bp, int size)
2566 {
2567 	int newbsize, mbsize;
2568 	int i;
2569 
2570 	if (BUF_REFCNT(bp) == 0)
2571 		panic("allocbuf: buffer not busy");
2572 
2573 	if (bp->b_kvasize < size)
2574 		panic("allocbuf: buffer too small");
2575 
2576 	if ((bp->b_flags & B_VMIO) == 0) {
2577 		caddr_t origbuf;
2578 		int origbufsize;
2579 		/*
2580 		 * Just get anonymous memory from the kernel.  Don't
2581 		 * mess with B_CACHE.
2582 		 */
2583 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2584 #if !defined(NO_B_MALLOC)
2585 		if (bp->b_flags & B_MALLOC)
2586 			newbsize = mbsize;
2587 		else
2588 #endif
2589 			newbsize = round_page(size);
2590 
2591 		if (newbsize < bp->b_bufsize) {
2592 #if !defined(NO_B_MALLOC)
2593 			/*
2594 			 * malloced buffers are not shrunk
2595 			 */
2596 			if (bp->b_flags & B_MALLOC) {
2597 				if (newbsize) {
2598 					bp->b_bcount = size;
2599 				} else {
2600 					free(bp->b_data, M_BIOBUF);
2601 					if (bp->b_bufsize) {
2602 						bufmallocspace -= bp->b_bufsize;
2603 						bufspacewakeup();
2604 						bp->b_bufsize = 0;
2605 					}
2606 					bp->b_data = bp->b_kvabase;
2607 					bp->b_bcount = 0;
2608 					bp->b_flags &= ~B_MALLOC;
2609 				}
2610 				return 1;
2611 			}
2612 #endif
2613 			vm_hold_free_pages(
2614 			    bp,
2615 			    (vm_offset_t) bp->b_data + newbsize,
2616 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2617 		} else if (newbsize > bp->b_bufsize) {
2618 #if !defined(NO_B_MALLOC)
2619 			/*
2620 			 * We only use malloced memory on the first allocation.
2621 			 * and revert to page-allocated memory when the buffer
2622 			 * grows.
2623 			 */
2624 			if ( (bufmallocspace < maxbufmallocspace) &&
2625 				(bp->b_bufsize == 0) &&
2626 				(mbsize <= PAGE_SIZE/2)) {
2627 
2628 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2629 				bp->b_bufsize = mbsize;
2630 				bp->b_bcount = size;
2631 				bp->b_flags |= B_MALLOC;
2632 				bufmallocspace += mbsize;
2633 				return 1;
2634 			}
2635 #endif
2636 			origbuf = NULL;
2637 			origbufsize = 0;
2638 #if !defined(NO_B_MALLOC)
2639 			/*
2640 			 * If the buffer is growing on its other-than-first allocation,
2641 			 * then we revert to the page-allocation scheme.
2642 			 */
2643 			if (bp->b_flags & B_MALLOC) {
2644 				origbuf = bp->b_data;
2645 				origbufsize = bp->b_bufsize;
2646 				bp->b_data = bp->b_kvabase;
2647 				if (bp->b_bufsize) {
2648 					bufmallocspace -= bp->b_bufsize;
2649 					bufspacewakeup();
2650 					bp->b_bufsize = 0;
2651 				}
2652 				bp->b_flags &= ~B_MALLOC;
2653 				newbsize = round_page(newbsize);
2654 			}
2655 #endif
2656 			vm_hold_load_pages(
2657 			    bp,
2658 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2659 			    (vm_offset_t) bp->b_data + newbsize);
2660 #if !defined(NO_B_MALLOC)
2661 			if (origbuf) {
2662 				bcopy(origbuf, bp->b_data, origbufsize);
2663 				free(origbuf, M_BIOBUF);
2664 			}
2665 #endif
2666 		}
2667 	} else {
2668 		vm_page_t m;
2669 		int desiredpages;
2670 
2671 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2672 		desiredpages = (size == 0) ? 0 :
2673 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2674 
2675 #if !defined(NO_B_MALLOC)
2676 		if (bp->b_flags & B_MALLOC)
2677 			panic("allocbuf: VMIO buffer can't be malloced");
2678 #endif
2679 		/*
2680 		 * Set B_CACHE initially if buffer is 0 length or will become
2681 		 * 0-length.
2682 		 */
2683 		if (size == 0 || bp->b_bufsize == 0)
2684 			bp->b_flags |= B_CACHE;
2685 
2686 		if (newbsize < bp->b_bufsize) {
2687 			/*
2688 			 * DEV_BSIZE aligned new buffer size is less then the
2689 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2690 			 * if we have to remove any pages.
2691 			 */
2692 			if (desiredpages < bp->b_xio.xio_npages) {
2693 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
2694 					/*
2695 					 * the page is not freed here -- it
2696 					 * is the responsibility of
2697 					 * vnode_pager_setsize
2698 					 */
2699 					m = bp->b_xio.xio_pages[i];
2700 					KASSERT(m != bogus_page,
2701 					    ("allocbuf: bogus page found"));
2702 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2703 						;
2704 
2705 					bp->b_xio.xio_pages[i] = NULL;
2706 					vm_page_unwire(m, 0);
2707 				}
2708 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2709 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
2710 				bp->b_xio.xio_npages = desiredpages;
2711 			}
2712 		} else if (size > bp->b_bcount) {
2713 			/*
2714 			 * We are growing the buffer, possibly in a
2715 			 * byte-granular fashion.
2716 			 */
2717 			struct vnode *vp;
2718 			vm_object_t obj;
2719 			vm_offset_t toff;
2720 			vm_offset_t tinc;
2721 
2722 			/*
2723 			 * Step 1, bring in the VM pages from the object,
2724 			 * allocating them if necessary.  We must clear
2725 			 * B_CACHE if these pages are not valid for the
2726 			 * range covered by the buffer.
2727 			 *
2728 			 * critical section protection is required to protect
2729 			 * against interrupts unbusying and freeing pages
2730 			 * between our vm_page_lookup() and our
2731 			 * busycheck/wiring call.
2732 			 */
2733 			vp = bp->b_vp;
2734 			VOP_GETVOBJECT(vp, &obj);
2735 
2736 			crit_enter();
2737 			while (bp->b_xio.xio_npages < desiredpages) {
2738 				vm_page_t m;
2739 				vm_pindex_t pi;
2740 
2741 				pi = OFF_TO_IDX(bp->b_offset) + bp->b_xio.xio_npages;
2742 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2743 					/*
2744 					 * note: must allocate system pages
2745 					 * since blocking here could intefere
2746 					 * with paging I/O, no matter which
2747 					 * process we are.
2748 					 */
2749 					m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
2750 					if (m == NULL) {
2751 						vm_wait();
2752 						vm_pageout_deficit += desiredpages -
2753 							bp->b_xio.xio_npages;
2754 					} else {
2755 						vm_page_wire(m);
2756 						vm_page_wakeup(m);
2757 						bp->b_flags &= ~B_CACHE;
2758 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2759 						++bp->b_xio.xio_npages;
2760 					}
2761 					continue;
2762 				}
2763 
2764 				/*
2765 				 * We found a page.  If we have to sleep on it,
2766 				 * retry because it might have gotten freed out
2767 				 * from under us.
2768 				 *
2769 				 * We can only test PG_BUSY here.  Blocking on
2770 				 * m->busy might lead to a deadlock:
2771 				 *
2772 				 *  vm_fault->getpages->cluster_read->allocbuf
2773 				 *
2774 				 */
2775 
2776 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2777 					continue;
2778 
2779 				/*
2780 				 * We have a good page.  Should we wakeup the
2781 				 * page daemon?
2782 				 */
2783 				if ((curthread != pagethread) &&
2784 				    ((m->queue - m->pc) == PQ_CACHE) &&
2785 				    ((vmstats.v_free_count + vmstats.v_cache_count) <
2786 					(vmstats.v_free_min + vmstats.v_cache_min))) {
2787 					pagedaemon_wakeup();
2788 				}
2789 				vm_page_flag_clear(m, PG_ZERO);
2790 				vm_page_wire(m);
2791 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2792 				++bp->b_xio.xio_npages;
2793 			}
2794 			crit_exit();
2795 
2796 			/*
2797 			 * Step 2.  We've loaded the pages into the buffer,
2798 			 * we have to figure out if we can still have B_CACHE
2799 			 * set.  Note that B_CACHE is set according to the
2800 			 * byte-granular range ( bcount and size ), not the
2801 			 * aligned range ( newbsize ).
2802 			 *
2803 			 * The VM test is against m->valid, which is DEV_BSIZE
2804 			 * aligned.  Needless to say, the validity of the data
2805 			 * needs to also be DEV_BSIZE aligned.  Note that this
2806 			 * fails with NFS if the server or some other client
2807 			 * extends the file's EOF.  If our buffer is resized,
2808 			 * B_CACHE may remain set! XXX
2809 			 */
2810 
2811 			toff = bp->b_bcount;
2812 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2813 
2814 			while ((bp->b_flags & B_CACHE) && toff < size) {
2815 				vm_pindex_t pi;
2816 
2817 				if (tinc > (size - toff))
2818 					tinc = size - toff;
2819 
2820 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2821 				    PAGE_SHIFT;
2822 
2823 				vfs_buf_test_cache(
2824 				    bp,
2825 				    bp->b_offset,
2826 				    toff,
2827 				    tinc,
2828 				    bp->b_xio.xio_pages[pi]
2829 				);
2830 				toff += tinc;
2831 				tinc = PAGE_SIZE;
2832 			}
2833 
2834 			/*
2835 			 * Step 3, fixup the KVM pmap.  Remember that
2836 			 * bp->b_data is relative to bp->b_offset, but
2837 			 * bp->b_offset may be offset into the first page.
2838 			 */
2839 
2840 			bp->b_data = (caddr_t)
2841 			    trunc_page((vm_offset_t)bp->b_data);
2842 			pmap_qenter(
2843 			    (vm_offset_t)bp->b_data,
2844 			    bp->b_xio.xio_pages,
2845 			    bp->b_xio.xio_npages
2846 			);
2847 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2848 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2849 		}
2850 	}
2851 	if (newbsize < bp->b_bufsize)
2852 		bufspacewakeup();
2853 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2854 	bp->b_bcount = size;		/* requested buffer size	*/
2855 	return 1;
2856 }
2857 
2858 /*
2859  * biowait:
2860  *
2861  *	Wait for buffer I/O completion, returning error status.  The buffer
2862  *	is left locked and B_DONE on return.  B_EINTR is converted into an
2863  *	EINTR error and cleared.
2864  */
2865 int
2866 biowait(struct buf * bp)
2867 {
2868 	crit_enter();
2869 	while ((bp->b_flags & B_DONE) == 0) {
2870 		if (bp->b_flags & B_READ)
2871 			tsleep(bp, 0, "biord", 0);
2872 		else
2873 			tsleep(bp, 0, "biowr", 0);
2874 	}
2875 	crit_exit();
2876 	if (bp->b_flags & B_EINTR) {
2877 		bp->b_flags &= ~B_EINTR;
2878 		return (EINTR);
2879 	}
2880 	if (bp->b_flags & B_ERROR) {
2881 		return (bp->b_error ? bp->b_error : EIO);
2882 	} else {
2883 		return (0);
2884 	}
2885 }
2886 
2887 /*
2888  * biodone:
2889  *
2890  *	Finish I/O on a buffer, optionally calling a completion function.
2891  *	This is usually called from an interrupt so process blocking is
2892  *	not allowed.
2893  *
2894  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2895  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2896  *	assuming B_INVAL is clear.
2897  *
2898  *	For the VMIO case, we set B_CACHE if the op was a read and no
2899  *	read error occured, or if the op was a write.  B_CACHE is never
2900  *	set if the buffer is invalid or otherwise uncacheable.
2901  *
2902  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2903  *	initiator to leave B_INVAL set to brelse the buffer out of existance
2904  *	in the biodone routine.
2905  *
2906  *	b_dev is required to be reinitialized prior to the top level strategy
2907  *	call in a device stack.  To avoid improper reuse, biodone() sets
2908  *	b_dev to NODEV.
2909  */
2910 void
2911 biodone(struct buf *bp)
2912 {
2913 	int error;
2914 
2915 	crit_enter();
2916 
2917 	KASSERT(BUF_REFCNTNB(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
2918 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2919 	biodone_t *biodone_func;
2920 
2921 	bp->b_flags |= B_DONE;
2922 	bp->b_dev = NODEV;
2923 	runningbufwakeup(bp);
2924 
2925 	if (bp->b_flags & B_FREEBUF) {
2926 		brelse(bp);
2927 		crit_exit();
2928 		return;
2929 	}
2930 
2931 	if ((bp->b_flags & B_READ) == 0) {
2932 		vwakeup(bp);
2933 	}
2934 
2935 	/* call optional completion function if requested */
2936 	if (bp->b_iodone != NULL) {
2937 		biodone_func = bp->b_iodone;
2938 		bp->b_iodone = NULL;
2939 		(*biodone_func) (bp);
2940 		crit_exit();
2941 		return;
2942 	}
2943 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2944 		(*bioops.io_complete)(bp);
2945 
2946 	if (bp->b_flags & B_VMIO) {
2947 		int i;
2948 		vm_ooffset_t foff;
2949 		vm_page_t m;
2950 		vm_object_t obj;
2951 		int iosize;
2952 		struct vnode *vp = bp->b_vp;
2953 
2954 		error = VOP_GETVOBJECT(vp, &obj);
2955 
2956 #if defined(VFS_BIO_DEBUG)
2957 		if (vp->v_holdcnt == 0) {
2958 			panic("biodone: zero vnode hold count");
2959 		}
2960 
2961 		if (error) {
2962 			panic("biodone: missing VM object");
2963 		}
2964 
2965 		if ((vp->v_flag & VOBJBUF) == 0) {
2966 			panic("biodone: vnode is not setup for merged cache");
2967 		}
2968 #endif
2969 
2970 		foff = bp->b_offset;
2971 		KASSERT(bp->b_offset != NOOFFSET,
2972 		    ("biodone: no buffer offset"));
2973 
2974 		if (error) {
2975 			panic("biodone: no object");
2976 		}
2977 #if defined(VFS_BIO_DEBUG)
2978 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
2979 			printf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
2980 			    obj->paging_in_progress, bp->b_xio.xio_npages);
2981 		}
2982 #endif
2983 
2984 		/*
2985 		 * Set B_CACHE if the op was a normal read and no error
2986 		 * occured.  B_CACHE is set for writes in the b*write()
2987 		 * routines.
2988 		 */
2989 		iosize = bp->b_bcount - bp->b_resid;
2990 		if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) {
2991 			bp->b_flags |= B_CACHE;
2992 		}
2993 
2994 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2995 			int bogusflag = 0;
2996 			int resid;
2997 
2998 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2999 			if (resid > iosize)
3000 				resid = iosize;
3001 
3002 			/*
3003 			 * cleanup bogus pages, restoring the originals.  Since
3004 			 * the originals should still be wired, we don't have
3005 			 * to worry about interrupt/freeing races destroying
3006 			 * the VM object association.
3007 			 */
3008 			m = bp->b_xio.xio_pages[i];
3009 			if (m == bogus_page) {
3010 				bogusflag = 1;
3011 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3012 				if (m == NULL)
3013 					panic("biodone: page disappeared");
3014 				bp->b_xio.xio_pages[i] = m;
3015 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3016 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3017 			}
3018 #if defined(VFS_BIO_DEBUG)
3019 			if (OFF_TO_IDX(foff) != m->pindex) {
3020 				printf(
3021 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
3022 				    (unsigned long)foff, m->pindex);
3023 			}
3024 #endif
3025 
3026 			/*
3027 			 * In the write case, the valid and clean bits are
3028 			 * already changed correctly ( see bdwrite() ), so we
3029 			 * only need to do this here in the read case.
3030 			 */
3031 			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
3032 				vfs_page_set_valid(bp, foff, i, m);
3033 			}
3034 			vm_page_flag_clear(m, PG_ZERO);
3035 
3036 			/*
3037 			 * when debugging new filesystems or buffer I/O methods, this
3038 			 * is the most common error that pops up.  if you see this, you
3039 			 * have not set the page busy flag correctly!!!
3040 			 */
3041 			if (m->busy == 0) {
3042 				printf("biodone: page busy < 0, "
3043 				    "pindex: %d, foff: 0x(%x,%x), "
3044 				    "resid: %d, index: %d\n",
3045 				    (int) m->pindex, (int)(foff >> 32),
3046 						(int) foff & 0xffffffff, resid, i);
3047 				if (!vn_isdisk(vp, NULL))
3048 					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
3049 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3050 					    (int) bp->b_lblkno,
3051 					    bp->b_flags, bp->b_xio.xio_npages);
3052 				else
3053 					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
3054 					    (int) bp->b_lblkno,
3055 					    bp->b_flags, bp->b_xio.xio_npages);
3056 				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3057 				    m->valid, m->dirty, m->wire_count);
3058 				panic("biodone: page busy < 0");
3059 			}
3060 			vm_page_io_finish(m);
3061 			vm_object_pip_subtract(obj, 1);
3062 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3063 			iosize -= resid;
3064 		}
3065 		if (obj)
3066 			vm_object_pip_wakeupn(obj, 0);
3067 	}
3068 
3069 	/*
3070 	 * For asynchronous completions, release the buffer now. The brelse
3071 	 * will do a wakeup there if necessary - so no need to do a wakeup
3072 	 * here in the async case. The sync case always needs to do a wakeup.
3073 	 */
3074 
3075 	if (bp->b_flags & B_ASYNC) {
3076 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
3077 			brelse(bp);
3078 		else
3079 			bqrelse(bp);
3080 	} else {
3081 		wakeup(bp);
3082 	}
3083 	crit_exit();
3084 }
3085 
3086 /*
3087  * vfs_unbusy_pages:
3088  *
3089  *	This routine is called in lieu of iodone in the case of
3090  *	incomplete I/O.  This keeps the busy status for pages
3091  *	consistant.
3092  */
3093 void
3094 vfs_unbusy_pages(struct buf *bp)
3095 {
3096 	int i;
3097 
3098 	runningbufwakeup(bp);
3099 	if (bp->b_flags & B_VMIO) {
3100 		struct vnode *vp = bp->b_vp;
3101 		vm_object_t obj;
3102 
3103 		VOP_GETVOBJECT(vp, &obj);
3104 
3105 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3106 			vm_page_t m = bp->b_xio.xio_pages[i];
3107 
3108 			/*
3109 			 * When restoring bogus changes the original pages
3110 			 * should still be wired, so we are in no danger of
3111 			 * losing the object association and do not need
3112 			 * critical section protection particularly.
3113 			 */
3114 			if (m == bogus_page) {
3115 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3116 				if (!m) {
3117 					panic("vfs_unbusy_pages: page missing");
3118 				}
3119 				bp->b_xio.xio_pages[i] = m;
3120 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3121 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3122 			}
3123 			vm_object_pip_subtract(obj, 1);
3124 			vm_page_flag_clear(m, PG_ZERO);
3125 			vm_page_io_finish(m);
3126 		}
3127 		vm_object_pip_wakeupn(obj, 0);
3128 	}
3129 }
3130 
3131 /*
3132  * vfs_page_set_valid:
3133  *
3134  *	Set the valid bits in a page based on the supplied offset.   The
3135  *	range is restricted to the buffer's size.
3136  *
3137  *	This routine is typically called after a read completes.
3138  */
3139 static void
3140 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3141 {
3142 	vm_ooffset_t soff, eoff;
3143 
3144 	/*
3145 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3146 	 * page boundry or cross the end of the buffer.  The end of the
3147 	 * buffer, in this case, is our file EOF, not the allocation size
3148 	 * of the buffer.
3149 	 */
3150 	soff = off;
3151 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3152 	if (eoff > bp->b_offset + bp->b_bcount)
3153 		eoff = bp->b_offset + bp->b_bcount;
3154 
3155 	/*
3156 	 * Set valid range.  This is typically the entire buffer and thus the
3157 	 * entire page.
3158 	 */
3159 	if (eoff > soff) {
3160 		vm_page_set_validclean(
3161 		    m,
3162 		   (vm_offset_t) (soff & PAGE_MASK),
3163 		   (vm_offset_t) (eoff - soff)
3164 		);
3165 	}
3166 }
3167 
3168 /*
3169  * vfs_busy_pages:
3170  *
3171  *	This routine is called before a device strategy routine.
3172  *	It is used to tell the VM system that paging I/O is in
3173  *	progress, and treat the pages associated with the buffer
3174  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
3175  *	flag is handled to make sure that the object doesn't become
3176  *	inconsistant.
3177  *
3178  *	Since I/O has not been initiated yet, certain buffer flags
3179  *	such as B_ERROR or B_INVAL may be in an inconsistant state
3180  *	and should be ignored.
3181  */
3182 void
3183 vfs_busy_pages(struct buf *bp, int clear_modify)
3184 {
3185 	int i, bogus;
3186 
3187 	if (bp->b_flags & B_VMIO) {
3188 		struct vnode *vp = bp->b_vp;
3189 		vm_object_t obj;
3190 		vm_ooffset_t foff;
3191 
3192 		VOP_GETVOBJECT(vp, &obj);
3193 		foff = bp->b_offset;
3194 		KASSERT(bp->b_offset != NOOFFSET,
3195 		    ("vfs_busy_pages: no buffer offset"));
3196 		vfs_setdirty(bp);
3197 
3198 retry:
3199 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3200 			vm_page_t m = bp->b_xio.xio_pages[i];
3201 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3202 				goto retry;
3203 		}
3204 
3205 		bogus = 0;
3206 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3207 			vm_page_t m = bp->b_xio.xio_pages[i];
3208 
3209 			vm_page_flag_clear(m, PG_ZERO);
3210 			if ((bp->b_flags & B_CLUSTER) == 0) {
3211 				vm_object_pip_add(obj, 1);
3212 				vm_page_io_start(m);
3213 			}
3214 
3215 			/*
3216 			 * When readying a buffer for a read ( i.e
3217 			 * clear_modify == 0 ), it is important to do
3218 			 * bogus_page replacement for valid pages in
3219 			 * partially instantiated buffers.  Partially
3220 			 * instantiated buffers can, in turn, occur when
3221 			 * reconstituting a buffer from its VM backing store
3222 			 * base.  We only have to do this if B_CACHE is
3223 			 * clear ( which causes the I/O to occur in the
3224 			 * first place ).  The replacement prevents the read
3225 			 * I/O from overwriting potentially dirty VM-backed
3226 			 * pages.  XXX bogus page replacement is, uh, bogus.
3227 			 * It may not work properly with small-block devices.
3228 			 * We need to find a better way.
3229 			 */
3230 
3231 			vm_page_protect(m, VM_PROT_NONE);
3232 			if (clear_modify)
3233 				vfs_page_set_valid(bp, foff, i, m);
3234 			else if (m->valid == VM_PAGE_BITS_ALL &&
3235 				(bp->b_flags & B_CACHE) == 0) {
3236 				bp->b_xio.xio_pages[i] = bogus_page;
3237 				bogus++;
3238 			}
3239 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3240 		}
3241 		if (bogus)
3242 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3243 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3244 	}
3245 
3246 	/*
3247 	 * This is the easiest place to put the process accounting for the I/O
3248 	 * for now.
3249 	 */
3250 	{
3251 		struct proc *p;
3252 
3253 		if ((p = curthread->td_proc) != NULL) {
3254 			if (bp->b_flags & B_READ)
3255 				p->p_stats->p_ru.ru_inblock++;
3256 			else
3257 				p->p_stats->p_ru.ru_oublock++;
3258 		}
3259 	}
3260 }
3261 
3262 /*
3263  * vfs_clean_pages:
3264  *
3265  *	Tell the VM system that the pages associated with this buffer
3266  *	are clean.  This is used for delayed writes where the data is
3267  *	going to go to disk eventually without additional VM intevention.
3268  *
3269  *	Note that while we only really need to clean through to b_bcount, we
3270  *	just go ahead and clean through to b_bufsize.
3271  */
3272 static void
3273 vfs_clean_pages(struct buf *bp)
3274 {
3275 	int i;
3276 
3277 	if (bp->b_flags & B_VMIO) {
3278 		vm_ooffset_t foff;
3279 
3280 		foff = bp->b_offset;
3281 		KASSERT(bp->b_offset != NOOFFSET,
3282 		    ("vfs_clean_pages: no buffer offset"));
3283 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3284 			vm_page_t m = bp->b_xio.xio_pages[i];
3285 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3286 			vm_ooffset_t eoff = noff;
3287 
3288 			if (eoff > bp->b_offset + bp->b_bufsize)
3289 				eoff = bp->b_offset + bp->b_bufsize;
3290 			vfs_page_set_valid(bp, foff, i, m);
3291 			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3292 			foff = noff;
3293 		}
3294 	}
3295 }
3296 
3297 /*
3298  * vfs_bio_set_validclean:
3299  *
3300  *	Set the range within the buffer to valid and clean.  The range is
3301  *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3302  *	itself may be offset from the beginning of the first page.
3303  */
3304 
3305 void
3306 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3307 {
3308 	if (bp->b_flags & B_VMIO) {
3309 		int i;
3310 		int n;
3311 
3312 		/*
3313 		 * Fixup base to be relative to beginning of first page.
3314 		 * Set initial n to be the maximum number of bytes in the
3315 		 * first page that can be validated.
3316 		 */
3317 
3318 		base += (bp->b_offset & PAGE_MASK);
3319 		n = PAGE_SIZE - (base & PAGE_MASK);
3320 
3321 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) {
3322 			vm_page_t m = bp->b_xio.xio_pages[i];
3323 
3324 			if (n > size)
3325 				n = size;
3326 
3327 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3328 			base += n;
3329 			size -= n;
3330 			n = PAGE_SIZE;
3331 		}
3332 	}
3333 }
3334 
3335 /*
3336  * vfs_bio_clrbuf:
3337  *
3338  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
3339  *	to clear B_ERROR and B_INVAL.
3340  *
3341  *	Note that while we only theoretically need to clear through b_bcount,
3342  *	we go ahead and clear through b_bufsize.
3343  */
3344 
3345 void
3346 vfs_bio_clrbuf(struct buf *bp)
3347 {
3348 	int i, mask = 0;
3349 	caddr_t sa, ea;
3350 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3351 		bp->b_flags &= ~(B_INVAL|B_ERROR);
3352 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3353 		    (bp->b_offset & PAGE_MASK) == 0) {
3354 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3355 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3356 				bp->b_resid = 0;
3357 				return;
3358 			}
3359 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3360 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3361 				bzero(bp->b_data, bp->b_bufsize);
3362 				bp->b_xio.xio_pages[0]->valid |= mask;
3363 				bp->b_resid = 0;
3364 				return;
3365 			}
3366 		}
3367 		ea = sa = bp->b_data;
3368 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3369 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3370 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3371 			ea = (caddr_t)(vm_offset_t)ulmin(
3372 			    (u_long)(vm_offset_t)ea,
3373 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3374 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3375 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3376 				continue;
3377 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3378 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3379 					bzero(sa, ea - sa);
3380 				}
3381 			} else {
3382 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3383 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3384 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3385 						bzero(sa, DEV_BSIZE);
3386 				}
3387 			}
3388 			bp->b_xio.xio_pages[i]->valid |= mask;
3389 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3390 		}
3391 		bp->b_resid = 0;
3392 	} else {
3393 		clrbuf(bp);
3394 	}
3395 }
3396 
3397 /*
3398  * vm_hold_load_pages:
3399  *
3400  *	Load pages into the buffer's address space.  The pages are
3401  *	allocated from the kernel object in order to reduce interference
3402  *	with the any VM paging I/O activity.  The range of loaded
3403  *	pages will be wired.
3404  *
3405  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
3406  *	retrieve the full range (to - from) of pages.
3407  *
3408  */
3409 void
3410 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3411 {
3412 	vm_offset_t pg;
3413 	vm_page_t p;
3414 	int index;
3415 
3416 	to = round_page(to);
3417 	from = round_page(from);
3418 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3419 
3420 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3421 
3422 tryagain:
3423 
3424 		/*
3425 		 * Note: must allocate system pages since blocking here
3426 		 * could intefere with paging I/O, no matter which
3427 		 * process we are.
3428 		 */
3429 		p = vm_page_alloc(kernel_object,
3430 			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3431 			VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
3432 		if (!p) {
3433 			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3434 			vm_wait();
3435 			goto tryagain;
3436 		}
3437 		vm_page_wire(p);
3438 		p->valid = VM_PAGE_BITS_ALL;
3439 		vm_page_flag_clear(p, PG_ZERO);
3440 		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3441 		bp->b_xio.xio_pages[index] = p;
3442 		vm_page_wakeup(p);
3443 	}
3444 	bp->b_xio.xio_npages = index;
3445 }
3446 
3447 /*
3448  * vm_hold_free_pages:
3449  *
3450  *	Return pages associated with the buffer back to the VM system.
3451  *
3452  *	The range of pages underlying the buffer's address space will
3453  *	be unmapped and un-wired.
3454  */
3455 void
3456 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3457 {
3458 	vm_offset_t pg;
3459 	vm_page_t p;
3460 	int index, newnpages;
3461 
3462 	from = round_page(from);
3463 	to = round_page(to);
3464 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3465 
3466 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3467 		p = bp->b_xio.xio_pages[index];
3468 		if (p && (index < bp->b_xio.xio_npages)) {
3469 			if (p->busy) {
3470 				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3471 					bp->b_blkno, bp->b_lblkno);
3472 			}
3473 			bp->b_xio.xio_pages[index] = NULL;
3474 			pmap_kremove(pg);
3475 			vm_page_busy(p);
3476 			vm_page_unwire(p, 0);
3477 			vm_page_free(p);
3478 		}
3479 	}
3480 	bp->b_xio.xio_npages = newnpages;
3481 }
3482 
3483 /*
3484  * vmapbuf:
3485  *
3486  *	Map an IO request into kernel virtual address space.
3487  *
3488  *	All requests are (re)mapped into kernel VA space.
3489  *	Notice that we use b_bufsize for the size of the buffer
3490  *	to be mapped.  b_bcount might be modified by the driver.
3491  */
3492 int
3493 vmapbuf(struct buf *bp)
3494 {
3495 	caddr_t addr, v, kva;
3496 	vm_paddr_t pa;
3497 	int pidx;
3498 	int i;
3499 	struct vm_page *m;
3500 
3501 	if ((bp->b_flags & B_PHYS) == 0)
3502 		panic("vmapbuf");
3503 	if (bp->b_bufsize < 0)
3504 		return (-1);
3505 	for (v = bp->b_saveaddr,
3506 		     addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data),
3507 		     pidx = 0;
3508 	     addr < bp->b_data + bp->b_bufsize;
3509 	     addr += PAGE_SIZE, v += PAGE_SIZE, pidx++) {
3510 		/*
3511 		 * Do the vm_fault if needed; do the copy-on-write thing
3512 		 * when reading stuff off device into memory.
3513 		 */
3514 retry:
3515 		i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data,
3516 			(bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
3517 		if (i < 0) {
3518 			for (i = 0; i < pidx; ++i) {
3519 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
3520 			    bp->b_xio.xio_pages[i] = NULL;
3521 			}
3522 			return(-1);
3523 		}
3524 
3525 		/*
3526 		 * WARNING!  If sparc support is MFCd in the future this will
3527 		 * have to be changed from pmap_kextract() to pmap_extract()
3528 		 * ala -current.
3529 		 */
3530 #ifdef __sparc64__
3531 #error "If MFCing sparc support use pmap_extract"
3532 #endif
3533 		pa = pmap_kextract((vm_offset_t)addr);
3534 		if (pa == 0) {
3535 			printf("vmapbuf: warning, race against user address during I/O");
3536 			goto retry;
3537 		}
3538 		m = PHYS_TO_VM_PAGE(pa);
3539 		vm_page_hold(m);
3540 		bp->b_xio.xio_pages[pidx] = m;
3541 	}
3542 	if (pidx > btoc(MAXPHYS))
3543 		panic("vmapbuf: mapped more than MAXPHYS");
3544 	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_xio.xio_pages, pidx);
3545 
3546 	kva = bp->b_saveaddr;
3547 	bp->b_xio.xio_npages = pidx;
3548 	bp->b_saveaddr = bp->b_data;
3549 	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3550 	return(0);
3551 }
3552 
3553 /*
3554  * vunmapbuf:
3555  *
3556  *	Free the io map PTEs associated with this IO operation.
3557  *	We also invalidate the TLB entries and restore the original b_addr.
3558  */
3559 void
3560 vunmapbuf(struct buf *bp)
3561 {
3562 	int pidx;
3563 	int npages;
3564 	vm_page_t *m;
3565 
3566 	if ((bp->b_flags & B_PHYS) == 0)
3567 		panic("vunmapbuf");
3568 
3569 	npages = bp->b_xio.xio_npages;
3570 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
3571 		     npages);
3572 	m = bp->b_xio.xio_pages;
3573 	for (pidx = 0; pidx < npages; pidx++)
3574 		vm_page_unhold(*m++);
3575 
3576 	bp->b_data = bp->b_saveaddr;
3577 }
3578 
3579 /*
3580  * print out statistics from the current status of the buffer pool
3581  * this can be toggeled by the system control option debug.syncprt
3582  */
3583 #ifdef DEBUG
3584 void
3585 vfs_bufstats(void)
3586 {
3587         int i, j, count;
3588         struct buf *bp;
3589         struct bqueues *dp;
3590         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
3591         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
3592 
3593         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
3594                 count = 0;
3595                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3596                         counts[j] = 0;
3597 		crit_enter();
3598                 TAILQ_FOREACH(bp, dp, b_freelist) {
3599                         counts[bp->b_bufsize/PAGE_SIZE]++;
3600                         count++;
3601                 }
3602 		crit_exit();
3603                 printf("%s: total-%d", bname[i], count);
3604                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3605                         if (counts[j] != 0)
3606                                 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
3607                 printf("\n");
3608         }
3609 }
3610 #endif
3611 
3612 #include "opt_ddb.h"
3613 #ifdef DDB
3614 #include <ddb/ddb.h>
3615 
3616 DB_SHOW_COMMAND(buffer, db_show_buffer)
3617 {
3618 	/* get args */
3619 	struct buf *bp = (struct buf *)addr;
3620 
3621 	if (!have_addr) {
3622 		db_printf("usage: show buffer <addr>\n");
3623 		return;
3624 	}
3625 
3626 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3627 	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3628 		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3629 		  "b_blkno = %d, b_pblkno = %d\n",
3630 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3631 		  major(bp->b_dev), minor(bp->b_dev),
3632 		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3633 	if (bp->b_xio.xio_npages) {
3634 		int i;
3635 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
3636 			bp->b_xio.xio_npages);
3637 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3638 			vm_page_t m;
3639 			m = bp->b_xio.xio_pages[i];
3640 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3641 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3642 			if ((i + 1) < bp->b_xio.xio_npages)
3643 				db_printf(",");
3644 		}
3645 		db_printf("\n");
3646 	}
3647 }
3648 #endif /* DDB */
3649