xref: /dragonfly/sys/kern/vfs_bio.c (revision 52f9f0d9)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  */
16 
17 /*
18  * this file contains a new buffer I/O scheme implementing a coherent
19  * VM object and buffer cache scheme.  Pains have been taken to make
20  * sure that the performance degradation associated with schemes such
21  * as this is not realized.
22  *
23  * Author:  John S. Dyson
24  * Significant help during the development and debugging phases
25  * had been provided by David Greenman, also of the FreeBSD core team.
26  *
27  * see man buf(9) for more info.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/conf.h>
34 #include <sys/devicestat.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/dsched.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 #include <vm/vm_pager.h>
57 #include <vm/swap_pager.h>
58 
59 #include <sys/buf2.h>
60 #include <sys/thread2.h>
61 #include <sys/spinlock2.h>
62 #include <sys/mplock2.h>
63 #include <vm/vm_page2.h>
64 
65 #include "opt_ddb.h"
66 #ifdef DDB
67 #include <ddb/ddb.h>
68 #endif
69 
70 /*
71  * Buffer queues.
72  */
73 enum bufq_type {
74 	BQUEUE_NONE,    	/* not on any queue */
75 	BQUEUE_LOCKED,  	/* locked buffers */
76 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
77 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
78 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
79 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
80 	BQUEUE_EMPTY,    	/* empty buffer headers */
81 
82 	BUFFER_QUEUES		/* number of buffer queues */
83 };
84 
85 typedef enum bufq_type bufq_type_t;
86 
87 #define BD_WAKE_SIZE	16384
88 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
89 
90 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
91 static struct spinlock bufqspin = SPINLOCK_INITIALIZER(&bufqspin);
92 static struct spinlock bufcspin = SPINLOCK_INITIALIZER(&bufcspin);
93 
94 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
95 
96 struct buf *buf;		/* buffer header pool */
97 
98 static void vfs_clean_pages(struct buf *bp);
99 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
100 #if 0
101 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
102 #endif
103 static void vfs_vmio_release(struct buf *bp);
104 static int flushbufqueues(struct buf *marker, bufq_type_t q);
105 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
106 
107 static void bd_signal(long totalspace);
108 static void buf_daemon(void);
109 static void buf_daemon_hw(void);
110 
111 /*
112  * bogus page -- for I/O to/from partially complete buffers
113  * this is a temporary solution to the problem, but it is not
114  * really that bad.  it would be better to split the buffer
115  * for input in the case of buffers partially already in memory,
116  * but the code is intricate enough already.
117  */
118 vm_page_t bogus_page;
119 
120 /*
121  * These are all static, but make the ones we export globals so we do
122  * not need to use compiler magic.
123  */
124 long bufspace;			/* locked by buffer_map */
125 long maxbufspace;
126 static long bufmallocspace;	/* atomic ops */
127 long maxbufmallocspace, lobufspace, hibufspace;
128 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
129 static long lorunningspace;
130 static long hirunningspace;
131 static int runningbufreq;		/* locked by bufcspin */
132 static long dirtykvaspace;		/* locked by bufcspin */
133 static long dirtybufspace;		/* locked by bufcspin */
134 static int dirtybufcount;		/* locked by bufcspin */
135 static long dirtybufspacehw;		/* locked by bufcspin */
136 static int dirtybufcounthw;		/* locked by bufcspin */
137 static long runningbufspace;		/* locked by bufcspin */
138 static int runningbufcount;		/* locked by bufcspin */
139 long lodirtybufspace;
140 long hidirtybufspace;
141 static int getnewbufcalls;
142 static int getnewbufrestarts;
143 static int recoverbufcalls;
144 static int needsbuffer;		/* locked by bufcspin */
145 static int bd_request;		/* locked by bufcspin */
146 static int bd_request_hw;	/* locked by bufcspin */
147 static u_int bd_wake_ary[BD_WAKE_SIZE];
148 static u_int bd_wake_index;
149 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
150 static int debug_commit;
151 
152 static struct thread *bufdaemon_td;
153 static struct thread *bufdaemonhw_td;
154 static u_int lowmempgallocs;
155 static u_int lowmempgfails;
156 
157 /*
158  * Sysctls for operational control of the buffer cache.
159  */
160 SYSCTL_LONG(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
161 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
162 SYSCTL_LONG(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
163 	"High watermark used to trigger explicit flushing of dirty buffers");
164 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
165 	"Minimum amount of buffer space required for active I/O");
166 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
167 	"Maximum amount of buffer space to usable for active I/O");
168 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
169 	"Page allocations done during periods of very low free memory");
170 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0,
171 	"Page allocations which failed during periods of very low free memory");
172 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
173 	"Recycle pages to active or inactive queue transition pt 0-64");
174 /*
175  * Sysctls determining current state of the buffer cache.
176  */
177 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
178 	"Total number of buffers in buffer cache");
179 SYSCTL_LONG(_vfs, OID_AUTO, dirtykvaspace, CTLFLAG_RD, &dirtykvaspace, 0,
180 	"KVA reserved by dirty buffers (all)");
181 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
182 	"Pending bytes of dirty buffers (all)");
183 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
184 	"Pending bytes of dirty buffers (heavy weight)");
185 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
186 	"Pending number of dirty buffers");
187 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
188 	"Pending number of dirty buffers (heavy weight)");
189 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
190 	"I/O bytes currently in progress due to asynchronous writes");
191 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
192 	"I/O buffers currently in progress due to asynchronous writes");
193 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
194 	"Hard limit on maximum amount of memory usable for buffer space");
195 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
196 	"Soft limit on maximum amount of memory usable for buffer space");
197 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
198 	"Minimum amount of memory to reserve for system buffer space");
199 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
200 	"Amount of memory available for buffers");
201 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
202 	0, "Maximum amount of memory reserved for buffers using malloc");
203 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
204 	"Amount of memory left for buffers using malloc-scheme");
205 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
206 	"New buffer header acquisition requests");
207 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
208 	0, "New buffer header acquisition restarts");
209 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
210 	"Recover VM space in an emergency");
211 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
212 	"Buffer acquisition restarts due to fragmented buffer map");
213 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
214 	"Amount of time KVA space was deallocated in an arbitrary buffer");
215 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
216 	"Amount of time buffer re-use operations were successful");
217 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
218 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
219 	"sizeof(struct buf)");
220 
221 char *buf_wmesg = BUF_WMESG;
222 
223 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
224 #define VFS_BIO_NEED_UNUSED02	0x02
225 #define VFS_BIO_NEED_UNUSED04	0x04
226 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
227 
228 /*
229  * bufspacewakeup:
230  *
231  *	Called when buffer space is potentially available for recovery.
232  *	getnewbuf() will block on this flag when it is unable to free
233  *	sufficient buffer space.  Buffer space becomes recoverable when
234  *	bp's get placed back in the queues.
235  */
236 static __inline void
237 bufspacewakeup(void)
238 {
239 	/*
240 	 * If someone is waiting for BUF space, wake them up.  Even
241 	 * though we haven't freed the kva space yet, the waiting
242 	 * process will be able to now.
243 	 */
244 	spin_lock(&bufcspin);
245 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
246 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
247 		spin_unlock(&bufcspin);
248 		wakeup(&needsbuffer);
249 	} else {
250 		spin_unlock(&bufcspin);
251 	}
252 }
253 
254 /*
255  * runningbufwakeup:
256  *
257  *	Accounting for I/O in progress.
258  *
259  */
260 static __inline void
261 runningbufwakeup(struct buf *bp)
262 {
263 	long totalspace;
264 	long limit;
265 
266 	if ((totalspace = bp->b_runningbufspace) != 0) {
267 		spin_lock(&bufcspin);
268 		runningbufspace -= totalspace;
269 		--runningbufcount;
270 		bp->b_runningbufspace = 0;
271 
272 		/*
273 		 * see waitrunningbufspace() for limit test.
274 		 */
275 		limit = hirunningspace * 3 / 6;
276 		if (runningbufreq && runningbufspace <= limit) {
277 			runningbufreq = 0;
278 			spin_unlock(&bufcspin);
279 			wakeup(&runningbufreq);
280 		} else {
281 			spin_unlock(&bufcspin);
282 		}
283 		bd_signal(totalspace);
284 	}
285 }
286 
287 /*
288  * bufcountwakeup:
289  *
290  *	Called when a buffer has been added to one of the free queues to
291  *	account for the buffer and to wakeup anyone waiting for free buffers.
292  *	This typically occurs when large amounts of metadata are being handled
293  *	by the buffer cache ( else buffer space runs out first, usually ).
294  *
295  * MPSAFE
296  */
297 static __inline void
298 bufcountwakeup(void)
299 {
300 	spin_lock(&bufcspin);
301 	if (needsbuffer) {
302 		needsbuffer &= ~VFS_BIO_NEED_ANY;
303 		spin_unlock(&bufcspin);
304 		wakeup(&needsbuffer);
305 	} else {
306 		spin_unlock(&bufcspin);
307 	}
308 }
309 
310 /*
311  * waitrunningbufspace()
312  *
313  * If runningbufspace exceeds 4/6 hirunningspace we block until
314  * runningbufspace drops to 3/6 hirunningspace.  We also block if another
315  * thread blocked here in order to be fair, even if runningbufspace
316  * is now lower than the limit.
317  *
318  * The caller may be using this function to block in a tight loop, we
319  * must block while runningbufspace is greater than at least
320  * hirunningspace * 3 / 6.
321  */
322 void
323 waitrunningbufspace(void)
324 {
325 	long limit = hirunningspace * 4 / 6;
326 
327 	if (runningbufspace > limit || runningbufreq) {
328 		spin_lock(&bufcspin);
329 		while (runningbufspace > limit || runningbufreq) {
330 			runningbufreq = 1;
331 			ssleep(&runningbufreq, &bufcspin, 0, "wdrn1", 0);
332 		}
333 		spin_unlock(&bufcspin);
334 	}
335 }
336 
337 /*
338  * buf_dirty_count_severe:
339  *
340  *	Return true if we have too many dirty buffers.
341  */
342 int
343 buf_dirty_count_severe(void)
344 {
345 	return (runningbufspace + dirtykvaspace >= hidirtybufspace ||
346 	        dirtybufcount >= nbuf / 2);
347 }
348 
349 /*
350  * Return true if the amount of running I/O is severe and BIOQ should
351  * start bursting.
352  */
353 int
354 buf_runningbufspace_severe(void)
355 {
356 	return (runningbufspace >= hirunningspace * 4 / 6);
357 }
358 
359 /*
360  * vfs_buf_test_cache:
361  *
362  * Called when a buffer is extended.  This function clears the B_CACHE
363  * bit if the newly extended portion of the buffer does not contain
364  * valid data.
365  *
366  * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
367  * cache buffers.  The VM pages remain dirty, as someone had mmap()'d
368  * them while a clean buffer was present.
369  */
370 static __inline__
371 void
372 vfs_buf_test_cache(struct buf *bp,
373 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
374 		  vm_page_t m)
375 {
376 	if (bp->b_flags & B_CACHE) {
377 		int base = (foff + off) & PAGE_MASK;
378 		if (vm_page_is_valid(m, base, size) == 0)
379 			bp->b_flags &= ~B_CACHE;
380 	}
381 }
382 
383 /*
384  * bd_speedup()
385  *
386  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
387  * low water mark.
388  *
389  * MPSAFE
390  */
391 static __inline__
392 void
393 bd_speedup(void)
394 {
395 	if (dirtykvaspace < lodirtybufspace && dirtybufcount < nbuf / 2)
396 		return;
397 
398 	if (bd_request == 0 &&
399 	    (dirtykvaspace > lodirtybufspace / 2 ||
400 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
401 		spin_lock(&bufcspin);
402 		bd_request = 1;
403 		spin_unlock(&bufcspin);
404 		wakeup(&bd_request);
405 	}
406 	if (bd_request_hw == 0 &&
407 	    (dirtykvaspace > lodirtybufspace / 2 ||
408 	     dirtybufcounthw >= nbuf / 2)) {
409 		spin_lock(&bufcspin);
410 		bd_request_hw = 1;
411 		spin_unlock(&bufcspin);
412 		wakeup(&bd_request_hw);
413 	}
414 }
415 
416 /*
417  * bd_heatup()
418  *
419  *	Get the buf_daemon heated up when the number of running and dirty
420  *	buffers exceeds the mid-point.
421  *
422  *	Return the total number of dirty bytes past the second mid point
423  *	as a measure of how much excess dirty data there is in the system.
424  *
425  * MPSAFE
426  */
427 long
428 bd_heatup(void)
429 {
430 	long mid1;
431 	long mid2;
432 	long totalspace;
433 
434 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
435 
436 	totalspace = runningbufspace + dirtykvaspace;
437 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
438 		bd_speedup();
439 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
440 		if (totalspace >= mid2)
441 			return(totalspace - mid2);
442 	}
443 	return(0);
444 }
445 
446 /*
447  * bd_wait()
448  *
449  *	Wait for the buffer cache to flush (totalspace) bytes worth of
450  *	buffers, then return.
451  *
452  *	Regardless this function blocks while the number of dirty buffers
453  *	exceeds hidirtybufspace.
454  *
455  * MPSAFE
456  */
457 void
458 bd_wait(long totalspace)
459 {
460 	u_int i;
461 	int count;
462 
463 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
464 		return;
465 
466 	while (totalspace > 0) {
467 		bd_heatup();
468 		if (totalspace > runningbufspace + dirtykvaspace)
469 			totalspace = runningbufspace + dirtykvaspace;
470 		count = totalspace / BKVASIZE;
471 		if (count >= BD_WAKE_SIZE)
472 			count = BD_WAKE_SIZE - 1;
473 
474 		spin_lock(&bufcspin);
475 		i = (bd_wake_index + count) & BD_WAKE_MASK;
476 		++bd_wake_ary[i];
477 
478 		/*
479 		 * This is not a strict interlock, so we play a bit loose
480 		 * with locking access to dirtybufspace*
481 		 */
482 		tsleep_interlock(&bd_wake_ary[i], 0);
483 		spin_unlock(&bufcspin);
484 		tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz);
485 
486 		totalspace = runningbufspace + dirtykvaspace - hidirtybufspace;
487 	}
488 }
489 
490 /*
491  * bd_signal()
492  *
493  *	This function is called whenever runningbufspace or dirtykvaspace
494  *	is reduced.  Track threads waiting for run+dirty buffer I/O
495  *	complete.
496  *
497  * MPSAFE
498  */
499 static void
500 bd_signal(long totalspace)
501 {
502 	u_int i;
503 
504 	if (totalspace > 0) {
505 		if (totalspace > BKVASIZE * BD_WAKE_SIZE)
506 			totalspace = BKVASIZE * BD_WAKE_SIZE;
507 		spin_lock(&bufcspin);
508 		while (totalspace > 0) {
509 			i = bd_wake_index++;
510 			i &= BD_WAKE_MASK;
511 			if (bd_wake_ary[i]) {
512 				bd_wake_ary[i] = 0;
513 				spin_unlock(&bufcspin);
514 				wakeup(&bd_wake_ary[i]);
515 				spin_lock(&bufcspin);
516 			}
517 			totalspace -= BKVASIZE;
518 		}
519 		spin_unlock(&bufcspin);
520 	}
521 }
522 
523 /*
524  * BIO tracking support routines.
525  *
526  * Release a ref on a bio_track.  Wakeup requests are atomically released
527  * along with the last reference so bk_active will never wind up set to
528  * only 0x80000000.
529  *
530  * MPSAFE
531  */
532 static
533 void
534 bio_track_rel(struct bio_track *track)
535 {
536 	int	active;
537 	int	desired;
538 
539 	/*
540 	 * Shortcut
541 	 */
542 	active = track->bk_active;
543 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
544 		return;
545 
546 	/*
547 	 * Full-on.  Note that the wait flag is only atomically released on
548 	 * the 1->0 count transition.
549 	 *
550 	 * We check for a negative count transition using bit 30 since bit 31
551 	 * has a different meaning.
552 	 */
553 	for (;;) {
554 		desired = (active & 0x7FFFFFFF) - 1;
555 		if (desired)
556 			desired |= active & 0x80000000;
557 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
558 			if (desired & 0x40000000)
559 				panic("bio_track_rel: bad count: %p", track);
560 			if (active & 0x80000000)
561 				wakeup(track);
562 			break;
563 		}
564 		active = track->bk_active;
565 	}
566 }
567 
568 /*
569  * Wait for the tracking count to reach 0.
570  *
571  * Use atomic ops such that the wait flag is only set atomically when
572  * bk_active is non-zero.
573  *
574  * MPSAFE
575  */
576 int
577 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
578 {
579 	int	active;
580 	int	desired;
581 	int	error;
582 
583 	/*
584 	 * Shortcut
585 	 */
586 	if (track->bk_active == 0)
587 		return(0);
588 
589 	/*
590 	 * Full-on.  Note that the wait flag may only be atomically set if
591 	 * the active count is non-zero.
592 	 *
593 	 * NOTE: We cannot optimize active == desired since a wakeup could
594 	 *	 clear active prior to our tsleep_interlock().
595 	 */
596 	error = 0;
597 	while ((active = track->bk_active) != 0) {
598 		cpu_ccfence();
599 		desired = active | 0x80000000;
600 		tsleep_interlock(track, slp_flags);
601 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
602 			error = tsleep(track, slp_flags | PINTERLOCKED,
603 				       "trwait", slp_timo);
604 			if (error)
605 				break;
606 		}
607 	}
608 	return (error);
609 }
610 
611 /*
612  * bufinit:
613  *
614  *	Load time initialisation of the buffer cache, called from machine
615  *	dependant initialization code.
616  */
617 void
618 bufinit(void)
619 {
620 	struct buf *bp;
621 	vm_offset_t bogus_offset;
622 	int i;
623 
624 	/* next, make a null set of free lists */
625 	for (i = 0; i < BUFFER_QUEUES; i++)
626 		TAILQ_INIT(&bufqueues[i]);
627 
628 	/* finally, initialize each buffer header and stick on empty q */
629 	for (i = 0; i < nbuf; i++) {
630 		bp = &buf[i];
631 		bzero(bp, sizeof *bp);
632 		bp->b_flags = B_INVAL;	/* we're just an empty header */
633 		bp->b_cmd = BUF_CMD_DONE;
634 		bp->b_qindex = BQUEUE_EMPTY;
635 		initbufbio(bp);
636 		xio_init(&bp->b_xio);
637 		buf_dep_init(bp);
638 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
639 	}
640 
641 	/*
642 	 * maxbufspace is the absolute maximum amount of buffer space we are
643 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
644 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
645 	 * used by most other processes.  The differential is required to
646 	 * ensure that buf_daemon is able to run when other processes might
647 	 * be blocked waiting for buffer space.
648 	 *
649 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
650 	 * this may result in KVM fragmentation which is not handled optimally
651 	 * by the system.
652 	 */
653 	maxbufspace = (long)nbuf * BKVASIZE;
654 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
655 	lobufspace = hibufspace - MAXBSIZE;
656 
657 	lorunningspace = 512 * 1024;
658 	/* hirunningspace -- see below */
659 
660 	/*
661 	 * Limit the amount of malloc memory since it is wired permanently
662 	 * into the kernel space.  Even though this is accounted for in
663 	 * the buffer allocation, we don't want the malloced region to grow
664 	 * uncontrolled.  The malloc scheme improves memory utilization
665 	 * significantly on average (small) directories.
666 	 */
667 	maxbufmallocspace = hibufspace / 20;
668 
669 	/*
670 	 * Reduce the chance of a deadlock occuring by limiting the number
671 	 * of delayed-write dirty buffers we allow to stack up.
672 	 *
673 	 * We don't want too much actually queued to the device at once
674 	 * (XXX this needs to be per-mount!), because the buffers will
675 	 * wind up locked for a very long period of time while the I/O
676 	 * drains.
677 	 */
678 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
679 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
680 	if (hirunningspace < 1024 * 1024)
681 		hirunningspace = 1024 * 1024;
682 
683 	dirtykvaspace = 0;
684 	dirtybufspace = 0;
685 	dirtybufspacehw = 0;
686 
687 	lodirtybufspace = hidirtybufspace / 2;
688 
689 	/*
690 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
691 	 * somewhat of a hack at the moment, we really need to limit ourselves
692 	 * based on the number of bytes of I/O in-transit that were initiated
693 	 * from buf_daemon.
694 	 */
695 
696 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
697 	vm_object_hold(&kernel_object);
698 	bogus_page = vm_page_alloc(&kernel_object,
699 				   (bogus_offset >> PAGE_SHIFT),
700 				   VM_ALLOC_NORMAL);
701 	vm_object_drop(&kernel_object);
702 	vmstats.v_wire_count++;
703 
704 }
705 
706 /*
707  * Initialize the embedded bio structures, typically used by
708  * deprecated code which tries to allocate its own struct bufs.
709  */
710 void
711 initbufbio(struct buf *bp)
712 {
713 	bp->b_bio1.bio_buf = bp;
714 	bp->b_bio1.bio_prev = NULL;
715 	bp->b_bio1.bio_offset = NOOFFSET;
716 	bp->b_bio1.bio_next = &bp->b_bio2;
717 	bp->b_bio1.bio_done = NULL;
718 	bp->b_bio1.bio_flags = 0;
719 
720 	bp->b_bio2.bio_buf = bp;
721 	bp->b_bio2.bio_prev = &bp->b_bio1;
722 	bp->b_bio2.bio_offset = NOOFFSET;
723 	bp->b_bio2.bio_next = NULL;
724 	bp->b_bio2.bio_done = NULL;
725 	bp->b_bio2.bio_flags = 0;
726 
727 	BUF_LOCKINIT(bp);
728 }
729 
730 /*
731  * Reinitialize the embedded bio structures as well as any additional
732  * translation cache layers.
733  */
734 void
735 reinitbufbio(struct buf *bp)
736 {
737 	struct bio *bio;
738 
739 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
740 		bio->bio_done = NULL;
741 		bio->bio_offset = NOOFFSET;
742 	}
743 }
744 
745 /*
746  * Undo the effects of an initbufbio().
747  */
748 void
749 uninitbufbio(struct buf *bp)
750 {
751 	dsched_exit_buf(bp);
752 	BUF_LOCKFREE(bp);
753 }
754 
755 /*
756  * Push another BIO layer onto an existing BIO and return it.  The new
757  * BIO layer may already exist, holding cached translation data.
758  */
759 struct bio *
760 push_bio(struct bio *bio)
761 {
762 	struct bio *nbio;
763 
764 	if ((nbio = bio->bio_next) == NULL) {
765 		int index = bio - &bio->bio_buf->b_bio_array[0];
766 		if (index >= NBUF_BIO - 1) {
767 			panic("push_bio: too many layers bp %p",
768 				bio->bio_buf);
769 		}
770 		nbio = &bio->bio_buf->b_bio_array[index + 1];
771 		bio->bio_next = nbio;
772 		nbio->bio_prev = bio;
773 		nbio->bio_buf = bio->bio_buf;
774 		nbio->bio_offset = NOOFFSET;
775 		nbio->bio_done = NULL;
776 		nbio->bio_next = NULL;
777 	}
778 	KKASSERT(nbio->bio_done == NULL);
779 	return(nbio);
780 }
781 
782 /*
783  * Pop a BIO translation layer, returning the previous layer.  The
784  * must have been previously pushed.
785  */
786 struct bio *
787 pop_bio(struct bio *bio)
788 {
789 	return(bio->bio_prev);
790 }
791 
792 void
793 clearbiocache(struct bio *bio)
794 {
795 	while (bio) {
796 		bio->bio_offset = NOOFFSET;
797 		bio = bio->bio_next;
798 	}
799 }
800 
801 /*
802  * bfreekva:
803  *
804  *	Free the KVA allocation for buffer 'bp'.
805  *
806  *	Must be called from a critical section as this is the only locking for
807  *	buffer_map.
808  *
809  *	Since this call frees up buffer space, we call bufspacewakeup().
810  *
811  * MPALMOSTSAFE
812  */
813 static void
814 bfreekva(struct buf *bp)
815 {
816 	int count;
817 
818 	if (bp->b_kvasize) {
819 		++buffreekvacnt;
820 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
821 		vm_map_lock(&buffer_map);
822 		bufspace -= bp->b_kvasize;
823 		vm_map_delete(&buffer_map,
824 		    (vm_offset_t) bp->b_kvabase,
825 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
826 		    &count
827 		);
828 		vm_map_unlock(&buffer_map);
829 		vm_map_entry_release(count);
830 		bp->b_kvasize = 0;
831 		bp->b_kvabase = NULL;
832 		bufspacewakeup();
833 	}
834 }
835 
836 /*
837  * bremfree:
838  *
839  *	Remove the buffer from the appropriate free list.
840  */
841 static __inline void
842 _bremfree(struct buf *bp)
843 {
844 	if (bp->b_qindex != BQUEUE_NONE) {
845 		KASSERT(BUF_REFCNTNB(bp) == 1,
846 				("bremfree: bp %p not locked",bp));
847 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
848 		bp->b_qindex = BQUEUE_NONE;
849 	} else {
850 		if (BUF_REFCNTNB(bp) <= 1)
851 			panic("bremfree: removing a buffer not on a queue");
852 	}
853 }
854 
855 void
856 bremfree(struct buf *bp)
857 {
858 	spin_lock(&bufqspin);
859 	_bremfree(bp);
860 	spin_unlock(&bufqspin);
861 }
862 
863 static void
864 bremfree_locked(struct buf *bp)
865 {
866 	_bremfree(bp);
867 }
868 
869 /*
870  * This version of bread issues any required I/O asyncnronously and
871  * makes a callback on completion.
872  *
873  * The callback must check whether BIO_DONE is set in the bio and issue
874  * the bpdone(bp, 0) if it isn't.  The callback is responsible for clearing
875  * BIO_DONE and disposing of the I/O (bqrelse()ing it).
876  */
877 void
878 breadcb(struct vnode *vp, off_t loffset, int size,
879 	void (*func)(struct bio *), void *arg)
880 {
881 	struct buf *bp;
882 
883 	bp = getblk(vp, loffset, size, 0, 0);
884 
885 	/* if not found in cache, do some I/O */
886 	if ((bp->b_flags & B_CACHE) == 0) {
887 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
888 		bp->b_cmd = BUF_CMD_READ;
889 		bp->b_bio1.bio_done = func;
890 		bp->b_bio1.bio_caller_info1.ptr = arg;
891 		vfs_busy_pages(vp, bp);
892 		BUF_KERNPROC(bp);
893 		vn_strategy(vp, &bp->b_bio1);
894 	} else if (func) {
895 		/*
896 		 * Since we are issuing the callback synchronously it cannot
897 		 * race the BIO_DONE, so no need for atomic ops here.
898 		 */
899 		/*bp->b_bio1.bio_done = func;*/
900 		bp->b_bio1.bio_caller_info1.ptr = arg;
901 		bp->b_bio1.bio_flags |= BIO_DONE;
902 		func(&bp->b_bio1);
903 	} else {
904 		bqrelse(bp);
905 	}
906 }
907 
908 /*
909  * breadnx() - Terminal function for bread() and breadn().
910  *
911  * This function will start asynchronous I/O on read-ahead blocks as well
912  * as satisfy the primary request.
913  *
914  * We must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE is
915  * set, the buffer is valid and we do not have to do anything.
916  */
917 int
918 breadnx(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
919 	int *rabsize, int cnt, struct buf **bpp)
920 {
921 	struct buf *bp, *rabp;
922 	int i;
923 	int rv = 0, readwait = 0;
924 
925 	if (*bpp)
926 		bp = *bpp;
927 	else
928 		*bpp = bp = getblk(vp, loffset, size, 0, 0);
929 
930 	/* if not found in cache, do some I/O */
931 	if ((bp->b_flags & B_CACHE) == 0) {
932 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
933 		bp->b_cmd = BUF_CMD_READ;
934 		bp->b_bio1.bio_done = biodone_sync;
935 		bp->b_bio1.bio_flags |= BIO_SYNC;
936 		vfs_busy_pages(vp, bp);
937 		vn_strategy(vp, &bp->b_bio1);
938 		++readwait;
939 	}
940 
941 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
942 		if (inmem(vp, *raoffset))
943 			continue;
944 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
945 
946 		if ((rabp->b_flags & B_CACHE) == 0) {
947 			rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
948 			rabp->b_cmd = BUF_CMD_READ;
949 			vfs_busy_pages(vp, rabp);
950 			BUF_KERNPROC(rabp);
951 			vn_strategy(vp, &rabp->b_bio1);
952 		} else {
953 			brelse(rabp);
954 		}
955 	}
956 	if (readwait)
957 		rv = biowait(&bp->b_bio1, "biord");
958 	return (rv);
959 }
960 
961 /*
962  * bwrite:
963  *
964  *	Synchronous write, waits for completion.
965  *
966  *	Write, release buffer on completion.  (Done by iodone
967  *	if async).  Do not bother writing anything if the buffer
968  *	is invalid.
969  *
970  *	Note that we set B_CACHE here, indicating that buffer is
971  *	fully valid and thus cacheable.  This is true even of NFS
972  *	now so we set it generally.  This could be set either here
973  *	or in biodone() since the I/O is synchronous.  We put it
974  *	here.
975  */
976 int
977 bwrite(struct buf *bp)
978 {
979 	int error;
980 
981 	if (bp->b_flags & B_INVAL) {
982 		brelse(bp);
983 		return (0);
984 	}
985 	if (BUF_REFCNTNB(bp) == 0)
986 		panic("bwrite: buffer is not busy???");
987 
988 	/* Mark the buffer clean */
989 	bundirty(bp);
990 
991 	bp->b_flags &= ~(B_ERROR | B_EINTR);
992 	bp->b_flags |= B_CACHE;
993 	bp->b_cmd = BUF_CMD_WRITE;
994 	bp->b_bio1.bio_done = biodone_sync;
995 	bp->b_bio1.bio_flags |= BIO_SYNC;
996 	vfs_busy_pages(bp->b_vp, bp);
997 
998 	/*
999 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1000 	 * valid for vnode-backed buffers.
1001 	 */
1002 	bsetrunningbufspace(bp, bp->b_bufsize);
1003 	vn_strategy(bp->b_vp, &bp->b_bio1);
1004 	error = biowait(&bp->b_bio1, "biows");
1005 	brelse(bp);
1006 
1007 	return (error);
1008 }
1009 
1010 /*
1011  * bawrite:
1012  *
1013  *	Asynchronous write.  Start output on a buffer, but do not wait for
1014  *	it to complete.  The buffer is released when the output completes.
1015  *
1016  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1017  *	B_INVAL buffers.  Not us.
1018  */
1019 void
1020 bawrite(struct buf *bp)
1021 {
1022 	if (bp->b_flags & B_INVAL) {
1023 		brelse(bp);
1024 		return;
1025 	}
1026 	if (BUF_REFCNTNB(bp) == 0)
1027 		panic("bwrite: buffer is not busy???");
1028 
1029 	/* Mark the buffer clean */
1030 	bundirty(bp);
1031 
1032 	bp->b_flags &= ~(B_ERROR | B_EINTR);
1033 	bp->b_flags |= B_CACHE;
1034 	bp->b_cmd = BUF_CMD_WRITE;
1035 	KKASSERT(bp->b_bio1.bio_done == NULL);
1036 	vfs_busy_pages(bp->b_vp, bp);
1037 
1038 	/*
1039 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1040 	 * valid for vnode-backed buffers.
1041 	 */
1042 	bsetrunningbufspace(bp, bp->b_bufsize);
1043 	BUF_KERNPROC(bp);
1044 	vn_strategy(bp->b_vp, &bp->b_bio1);
1045 }
1046 
1047 /*
1048  * bowrite:
1049  *
1050  *	Ordered write.  Start output on a buffer, and flag it so that the
1051  *	device will write it in the order it was queued.  The buffer is
1052  *	released when the output completes.  bwrite() ( or the VOP routine
1053  *	anyway ) is responsible for handling B_INVAL buffers.
1054  */
1055 int
1056 bowrite(struct buf *bp)
1057 {
1058 	bp->b_flags |= B_ORDERED;
1059 	bawrite(bp);
1060 	return (0);
1061 }
1062 
1063 /*
1064  * bdwrite:
1065  *
1066  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1067  *	anything if the buffer is marked invalid.
1068  *
1069  *	Note that since the buffer must be completely valid, we can safely
1070  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1071  *	biodone() in order to prevent getblk from writing the buffer
1072  *	out synchronously.
1073  */
1074 void
1075 bdwrite(struct buf *bp)
1076 {
1077 	if (BUF_REFCNTNB(bp) == 0)
1078 		panic("bdwrite: buffer is not busy");
1079 
1080 	if (bp->b_flags & B_INVAL) {
1081 		brelse(bp);
1082 		return;
1083 	}
1084 	bdirty(bp);
1085 
1086 	if (dsched_is_clear_buf_priv(bp))
1087 		dsched_new_buf(bp);
1088 
1089 	/*
1090 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1091 	 * true even of NFS now.
1092 	 */
1093 	bp->b_flags |= B_CACHE;
1094 
1095 	/*
1096 	 * This bmap keeps the system from needing to do the bmap later,
1097 	 * perhaps when the system is attempting to do a sync.  Since it
1098 	 * is likely that the indirect block -- or whatever other datastructure
1099 	 * that the filesystem needs is still in memory now, it is a good
1100 	 * thing to do this.  Note also, that if the pageout daemon is
1101 	 * requesting a sync -- there might not be enough memory to do
1102 	 * the bmap then...  So, this is important to do.
1103 	 */
1104 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1105 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1106 			 NULL, NULL, BUF_CMD_WRITE);
1107 	}
1108 
1109 	/*
1110 	 * Because the underlying pages may still be mapped and
1111 	 * writable trying to set the dirty buffer (b_dirtyoff/end)
1112 	 * range here will be inaccurate.
1113 	 *
1114 	 * However, we must still clean the pages to satisfy the
1115 	 * vnode_pager and pageout daemon, so theythink the pages
1116 	 * have been "cleaned".  What has really occured is that
1117 	 * they've been earmarked for later writing by the buffer
1118 	 * cache.
1119 	 *
1120 	 * So we get the b_dirtyoff/end update but will not actually
1121 	 * depend on it (NFS that is) until the pages are busied for
1122 	 * writing later on.
1123 	 */
1124 	vfs_clean_pages(bp);
1125 	bqrelse(bp);
1126 
1127 	/*
1128 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1129 	 * due to the softdep code.
1130 	 */
1131 }
1132 
1133 /*
1134  * Fake write - return pages to VM system as dirty, leave the buffer clean.
1135  * This is used by tmpfs.
1136  *
1137  * It is important for any VFS using this routine to NOT use it for
1138  * IO_SYNC or IO_ASYNC operations which occur when the system really
1139  * wants to flush VM pages to backing store.
1140  */
1141 void
1142 buwrite(struct buf *bp)
1143 {
1144 	vm_page_t m;
1145 	int i;
1146 
1147 	/*
1148 	 * Only works for VMIO buffers.  If the buffer is already
1149 	 * marked for delayed-write we can't avoid the bdwrite().
1150 	 */
1151 	if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1152 		bdwrite(bp);
1153 		return;
1154 	}
1155 
1156 	/*
1157 	 * Mark as needing a commit.
1158 	 */
1159 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1160 		m = bp->b_xio.xio_pages[i];
1161 		vm_page_need_commit(m);
1162 	}
1163 	bqrelse(bp);
1164 }
1165 
1166 /*
1167  * bdirty:
1168  *
1169  *	Turn buffer into delayed write request by marking it B_DELWRI.
1170  *	B_RELBUF and B_NOCACHE must be cleared.
1171  *
1172  *	We reassign the buffer to itself to properly update it in the
1173  *	dirty/clean lists.
1174  *
1175  *	Must be called from a critical section.
1176  *	The buffer must be on BQUEUE_NONE.
1177  */
1178 void
1179 bdirty(struct buf *bp)
1180 {
1181 	KASSERT(bp->b_qindex == BQUEUE_NONE,
1182 		("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1183 	if (bp->b_flags & B_NOCACHE) {
1184 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1185 		bp->b_flags &= ~B_NOCACHE;
1186 	}
1187 	if (bp->b_flags & B_INVAL) {
1188 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1189 	}
1190 	bp->b_flags &= ~B_RELBUF;
1191 
1192 	if ((bp->b_flags & B_DELWRI) == 0) {
1193 		lwkt_gettoken(&bp->b_vp->v_token);
1194 		bp->b_flags |= B_DELWRI;
1195 		reassignbuf(bp);
1196 		lwkt_reltoken(&bp->b_vp->v_token);
1197 
1198 		spin_lock(&bufcspin);
1199 		++dirtybufcount;
1200 		dirtykvaspace += bp->b_kvasize;
1201 		dirtybufspace += bp->b_bufsize;
1202 		if (bp->b_flags & B_HEAVY) {
1203 			++dirtybufcounthw;
1204 			dirtybufspacehw += bp->b_bufsize;
1205 		}
1206 		spin_unlock(&bufcspin);
1207 
1208 		bd_heatup();
1209 	}
1210 }
1211 
1212 /*
1213  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1214  * needs to be flushed with a different buf_daemon thread to avoid
1215  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1216  */
1217 void
1218 bheavy(struct buf *bp)
1219 {
1220 	if ((bp->b_flags & B_HEAVY) == 0) {
1221 		bp->b_flags |= B_HEAVY;
1222 		if (bp->b_flags & B_DELWRI) {
1223 			spin_lock(&bufcspin);
1224 			++dirtybufcounthw;
1225 			dirtybufspacehw += bp->b_bufsize;
1226 			spin_unlock(&bufcspin);
1227 		}
1228 	}
1229 }
1230 
1231 /*
1232  * bundirty:
1233  *
1234  *	Clear B_DELWRI for buffer.
1235  *
1236  *	Must be called from a critical section.
1237  *
1238  *	The buffer is typically on BQUEUE_NONE but there is one case in
1239  *	brelse() that calls this function after placing the buffer on
1240  *	a different queue.
1241  *
1242  * MPSAFE
1243  */
1244 void
1245 bundirty(struct buf *bp)
1246 {
1247 	if (bp->b_flags & B_DELWRI) {
1248 		lwkt_gettoken(&bp->b_vp->v_token);
1249 		bp->b_flags &= ~B_DELWRI;
1250 		reassignbuf(bp);
1251 		lwkt_reltoken(&bp->b_vp->v_token);
1252 
1253 		spin_lock(&bufcspin);
1254 		--dirtybufcount;
1255 		dirtykvaspace -= bp->b_kvasize;
1256 		dirtybufspace -= bp->b_bufsize;
1257 		if (bp->b_flags & B_HEAVY) {
1258 			--dirtybufcounthw;
1259 			dirtybufspacehw -= bp->b_bufsize;
1260 		}
1261 		spin_unlock(&bufcspin);
1262 
1263 		bd_signal(bp->b_bufsize);
1264 	}
1265 	/*
1266 	 * Since it is now being written, we can clear its deferred write flag.
1267 	 */
1268 	bp->b_flags &= ~B_DEFERRED;
1269 }
1270 
1271 /*
1272  * Set the b_runningbufspace field, used to track how much I/O is
1273  * in progress at any given moment.
1274  */
1275 void
1276 bsetrunningbufspace(struct buf *bp, int bytes)
1277 {
1278 	bp->b_runningbufspace = bytes;
1279 	if (bytes) {
1280 		spin_lock(&bufcspin);
1281 		runningbufspace += bytes;
1282 		++runningbufcount;
1283 		spin_unlock(&bufcspin);
1284 	}
1285 }
1286 
1287 /*
1288  * brelse:
1289  *
1290  *	Release a busy buffer and, if requested, free its resources.  The
1291  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1292  *	to be accessed later as a cache entity or reused for other purposes.
1293  *
1294  * MPALMOSTSAFE
1295  */
1296 void
1297 brelse(struct buf *bp)
1298 {
1299 #ifdef INVARIANTS
1300 	int saved_flags = bp->b_flags;
1301 #endif
1302 
1303 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1304 
1305 	/*
1306 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1307 	 * its backing store.  Clear B_DELWRI.
1308 	 *
1309 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1310 	 * to destroy the buffer and backing store and (2) when the caller
1311 	 * wants to destroy the buffer and backing store after a write
1312 	 * completes.
1313 	 */
1314 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1315 		bundirty(bp);
1316 	}
1317 
1318 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1319 		/*
1320 		 * A re-dirtied buffer is only subject to destruction
1321 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1322 		 */
1323 		/* leave buffer intact */
1324 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1325 		   (bp->b_bufsize <= 0)) {
1326 		/*
1327 		 * Either a failed read or we were asked to free or not
1328 		 * cache the buffer.  This path is reached with B_DELWRI
1329 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1330 		 * backing store destruction.
1331 		 *
1332 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1333 		 * buffer cannot be immediately freed.
1334 		 */
1335 		bp->b_flags |= B_INVAL;
1336 		if (LIST_FIRST(&bp->b_dep) != NULL)
1337 			buf_deallocate(bp);
1338 		if (bp->b_flags & B_DELWRI) {
1339 			spin_lock(&bufcspin);
1340 			--dirtybufcount;
1341 			dirtykvaspace -= bp->b_kvasize;
1342 			dirtybufspace -= bp->b_bufsize;
1343 			if (bp->b_flags & B_HEAVY) {
1344 				--dirtybufcounthw;
1345 				dirtybufspacehw -= bp->b_bufsize;
1346 			}
1347 			spin_unlock(&bufcspin);
1348 
1349 			bd_signal(bp->b_bufsize);
1350 		}
1351 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1352 	}
1353 
1354 	/*
1355 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1356 	 * or if b_refs is non-zero.
1357 	 *
1358 	 * If vfs_vmio_release() is called with either bit set, the
1359 	 * underlying pages may wind up getting freed causing a previous
1360 	 * write (bdwrite()) to get 'lost' because pages associated with
1361 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1362 	 * B_LOCKED buffer may be mapped by the filesystem.
1363 	 *
1364 	 * If we want to release the buffer ourselves (rather then the
1365 	 * originator asking us to release it), give the originator a
1366 	 * chance to countermand the release by setting B_LOCKED.
1367 	 *
1368 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1369 	 * if B_DELWRI is set.
1370 	 *
1371 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1372 	 * on pages to return pages to the VM page queues.
1373 	 */
1374 	if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) {
1375 		bp->b_flags &= ~B_RELBUF;
1376 	} else if (vm_page_count_min(0)) {
1377 		if (LIST_FIRST(&bp->b_dep) != NULL)
1378 			buf_deallocate(bp);		/* can set B_LOCKED */
1379 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1380 			bp->b_flags &= ~B_RELBUF;
1381 		else
1382 			bp->b_flags |= B_RELBUF;
1383 	}
1384 
1385 	/*
1386 	 * Make sure b_cmd is clear.  It may have already been cleared by
1387 	 * biodone().
1388 	 *
1389 	 * At this point destroying the buffer is governed by the B_INVAL
1390 	 * or B_RELBUF flags.
1391 	 */
1392 	bp->b_cmd = BUF_CMD_DONE;
1393 	dsched_exit_buf(bp);
1394 
1395 	/*
1396 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1397 	 * after an I/O may have replaces some of the pages with bogus pages
1398 	 * in order to not destroy dirty pages in a fill-in read.
1399 	 *
1400 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1401 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1402 	 * B_INVAL may still be set, however.
1403 	 *
1404 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1405 	 * but not the backing store.   B_NOCACHE will destroy the backing
1406 	 * store.
1407 	 *
1408 	 * Note that dirty NFS buffers contain byte-granular write ranges
1409 	 * and should not be destroyed w/ B_INVAL even if the backing store
1410 	 * is left intact.
1411 	 */
1412 	if (bp->b_flags & B_VMIO) {
1413 		/*
1414 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1415 		 */
1416 		int i, j, resid;
1417 		vm_page_t m;
1418 		off_t foff;
1419 		vm_pindex_t poff;
1420 		vm_object_t obj;
1421 		struct vnode *vp;
1422 
1423 		vp = bp->b_vp;
1424 
1425 		/*
1426 		 * Get the base offset and length of the buffer.  Note that
1427 		 * in the VMIO case if the buffer block size is not
1428 		 * page-aligned then b_data pointer may not be page-aligned.
1429 		 * But our b_xio.xio_pages array *IS* page aligned.
1430 		 *
1431 		 * block sizes less then DEV_BSIZE (usually 512) are not
1432 		 * supported due to the page granularity bits (m->valid,
1433 		 * m->dirty, etc...).
1434 		 *
1435 		 * See man buf(9) for more information
1436 		 */
1437 
1438 		resid = bp->b_bufsize;
1439 		foff = bp->b_loffset;
1440 
1441 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1442 			m = bp->b_xio.xio_pages[i];
1443 			vm_page_flag_clear(m, PG_ZERO);
1444 			/*
1445 			 * If we hit a bogus page, fixup *all* of them
1446 			 * now.  Note that we left these pages wired
1447 			 * when we removed them so they had better exist,
1448 			 * and they cannot be ripped out from under us so
1449 			 * no critical section protection is necessary.
1450 			 */
1451 			if (m == bogus_page) {
1452 				obj = vp->v_object;
1453 				poff = OFF_TO_IDX(bp->b_loffset);
1454 
1455 				vm_object_hold(obj);
1456 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1457 					vm_page_t mtmp;
1458 
1459 					mtmp = bp->b_xio.xio_pages[j];
1460 					if (mtmp == bogus_page) {
1461 						mtmp = vm_page_lookup(obj, poff + j);
1462 						if (!mtmp) {
1463 							panic("brelse: page missing");
1464 						}
1465 						bp->b_xio.xio_pages[j] = mtmp;
1466 					}
1467 				}
1468 				bp->b_flags &= ~B_HASBOGUS;
1469 				vm_object_drop(obj);
1470 
1471 				if ((bp->b_flags & B_INVAL) == 0) {
1472 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1473 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1474 				}
1475 				m = bp->b_xio.xio_pages[i];
1476 			}
1477 
1478 			/*
1479 			 * Invalidate the backing store if B_NOCACHE is set
1480 			 * (e.g. used with vinvalbuf()).  If this is NFS
1481 			 * we impose a requirement that the block size be
1482 			 * a multiple of PAGE_SIZE and create a temporary
1483 			 * hack to basically invalidate the whole page.  The
1484 			 * problem is that NFS uses really odd buffer sizes
1485 			 * especially when tracking piecemeal writes and
1486 			 * it also vinvalbuf()'s a lot, which would result
1487 			 * in only partial page validation and invalidation
1488 			 * here.  If the file page is mmap()'d, however,
1489 			 * all the valid bits get set so after we invalidate
1490 			 * here we would end up with weird m->valid values
1491 			 * like 0xfc.  nfs_getpages() can't handle this so
1492 			 * we clear all the valid bits for the NFS case
1493 			 * instead of just some of them.
1494 			 *
1495 			 * The real bug is the VM system having to set m->valid
1496 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1497 			 * itself is an artifact of the whole 512-byte
1498 			 * granular mess that exists to support odd block
1499 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1500 			 * A complete rewrite is required.
1501 			 *
1502 			 * XXX
1503 			 */
1504 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1505 				int poffset = foff & PAGE_MASK;
1506 				int presid;
1507 
1508 				presid = PAGE_SIZE - poffset;
1509 				if (bp->b_vp->v_tag == VT_NFS &&
1510 				    bp->b_vp->v_type == VREG) {
1511 					; /* entire page */
1512 				} else if (presid > resid) {
1513 					presid = resid;
1514 				}
1515 				KASSERT(presid >= 0, ("brelse: extra page"));
1516 				vm_page_set_invalid(m, poffset, presid);
1517 
1518 				/*
1519 				 * Also make sure any swap cache is removed
1520 				 * as it is now stale (HAMMER in particular
1521 				 * uses B_NOCACHE to deal with buffer
1522 				 * aliasing).
1523 				 */
1524 				swap_pager_unswapped(m);
1525 			}
1526 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1527 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1528 		}
1529 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1530 			vfs_vmio_release(bp);
1531 	} else {
1532 		/*
1533 		 * Rundown for non-VMIO buffers.
1534 		 */
1535 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1536 			if (bp->b_bufsize)
1537 				allocbuf(bp, 0);
1538 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1539 			if (bp->b_vp)
1540 				brelvp(bp);
1541 		}
1542 	}
1543 
1544 	if (bp->b_qindex != BQUEUE_NONE)
1545 		panic("brelse: free buffer onto another queue???");
1546 	if (BUF_REFCNTNB(bp) > 1) {
1547 		/* Temporary panic to verify exclusive locking */
1548 		/* This panic goes away when we allow shared refs */
1549 		panic("brelse: multiple refs");
1550 		/* NOT REACHED */
1551 		return;
1552 	}
1553 
1554 	/*
1555 	 * Figure out the correct queue to place the cleaned up buffer on.
1556 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1557 	 * disassociated from their vnode.
1558 	 */
1559 	spin_lock(&bufqspin);
1560 	if (bp->b_flags & B_LOCKED) {
1561 		/*
1562 		 * Buffers that are locked are placed in the locked queue
1563 		 * immediately, regardless of their state.
1564 		 */
1565 		bp->b_qindex = BQUEUE_LOCKED;
1566 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1567 	} else if (bp->b_bufsize == 0) {
1568 		/*
1569 		 * Buffers with no memory.  Due to conditionals near the top
1570 		 * of brelse() such buffers should probably already be
1571 		 * marked B_INVAL and disassociated from their vnode.
1572 		 */
1573 		bp->b_flags |= B_INVAL;
1574 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1575 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1576 		if (bp->b_kvasize) {
1577 			bp->b_qindex = BQUEUE_EMPTYKVA;
1578 		} else {
1579 			bp->b_qindex = BQUEUE_EMPTY;
1580 		}
1581 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1582 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1583 		/*
1584 		 * Buffers with junk contents.   Again these buffers had better
1585 		 * already be disassociated from their vnode.
1586 		 */
1587 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1588 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1589 		bp->b_flags |= B_INVAL;
1590 		bp->b_qindex = BQUEUE_CLEAN;
1591 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1592 	} else {
1593 		/*
1594 		 * Remaining buffers.  These buffers are still associated with
1595 		 * their vnode.
1596 		 */
1597 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1598 		case B_DELWRI:
1599 		    bp->b_qindex = BQUEUE_DIRTY;
1600 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1601 		    break;
1602 		case B_DELWRI | B_HEAVY:
1603 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1604 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1605 				      b_freelist);
1606 		    break;
1607 		default:
1608 		    /*
1609 		     * NOTE: Buffers are always placed at the end of the
1610 		     * queue.  If B_AGE is not set the buffer will cycle
1611 		     * through the queue twice.
1612 		     */
1613 		    bp->b_qindex = BQUEUE_CLEAN;
1614 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1615 		    break;
1616 		}
1617 	}
1618 	spin_unlock(&bufqspin);
1619 
1620 	/*
1621 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1622 	 * on the correct queue.
1623 	 */
1624 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1625 		bundirty(bp);
1626 
1627 	/*
1628 	 * The bp is on an appropriate queue unless locked.  If it is not
1629 	 * locked or dirty we can wakeup threads waiting for buffer space.
1630 	 *
1631 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1632 	 * if B_INVAL is set ).
1633 	 */
1634 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1635 		bufcountwakeup();
1636 
1637 	/*
1638 	 * Something we can maybe free or reuse
1639 	 */
1640 	if (bp->b_bufsize || bp->b_kvasize)
1641 		bufspacewakeup();
1642 
1643 	/*
1644 	 * Clean up temporary flags and unlock the buffer.
1645 	 */
1646 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1647 	BUF_UNLOCK(bp);
1648 }
1649 
1650 /*
1651  * bqrelse:
1652  *
1653  *	Release a buffer back to the appropriate queue but do not try to free
1654  *	it.  The buffer is expected to be used again soon.
1655  *
1656  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1657  *	biodone() to requeue an async I/O on completion.  It is also used when
1658  *	known good buffers need to be requeued but we think we may need the data
1659  *	again soon.
1660  *
1661  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1662  *
1663  * MPSAFE
1664  */
1665 void
1666 bqrelse(struct buf *bp)
1667 {
1668 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1669 
1670 	if (bp->b_qindex != BQUEUE_NONE)
1671 		panic("bqrelse: free buffer onto another queue???");
1672 	if (BUF_REFCNTNB(bp) > 1) {
1673 		/* do not release to free list */
1674 		panic("bqrelse: multiple refs");
1675 		return;
1676 	}
1677 
1678 	buf_act_advance(bp);
1679 
1680 	spin_lock(&bufqspin);
1681 	if (bp->b_flags & B_LOCKED) {
1682 		/*
1683 		 * Locked buffers are released to the locked queue.  However,
1684 		 * if the buffer is dirty it will first go into the dirty
1685 		 * queue and later on after the I/O completes successfully it
1686 		 * will be released to the locked queue.
1687 		 */
1688 		bp->b_qindex = BQUEUE_LOCKED;
1689 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1690 	} else if (bp->b_flags & B_DELWRI) {
1691 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1692 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1693 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1694 	} else if (vm_page_count_min(0)) {
1695 		/*
1696 		 * We are too low on memory, we have to try to free the
1697 		 * buffer (most importantly: the wired pages making up its
1698 		 * backing store) *now*.
1699 		 */
1700 		spin_unlock(&bufqspin);
1701 		brelse(bp);
1702 		return;
1703 	} else {
1704 		bp->b_qindex = BQUEUE_CLEAN;
1705 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1706 	}
1707 	spin_unlock(&bufqspin);
1708 
1709 	if ((bp->b_flags & B_LOCKED) == 0 &&
1710 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1711 		bufcountwakeup();
1712 	}
1713 
1714 	/*
1715 	 * Something we can maybe free or reuse.
1716 	 */
1717 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1718 		bufspacewakeup();
1719 
1720 	/*
1721 	 * Final cleanup and unlock.  Clear bits that are only used while a
1722 	 * buffer is actively locked.
1723 	 */
1724 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1725 	dsched_exit_buf(bp);
1726 	BUF_UNLOCK(bp);
1727 }
1728 
1729 /*
1730  * Hold a buffer, preventing it from being reused.  This will prevent
1731  * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1732  * operations.  If a B_INVAL operation occurs the buffer will remain held
1733  * but the underlying pages may get ripped out.
1734  *
1735  * These functions are typically used in VOP_READ/VOP_WRITE functions
1736  * to hold a buffer during a copyin or copyout, preventing deadlocks
1737  * or recursive lock panics when read()/write() is used over mmap()'d
1738  * space.
1739  *
1740  * NOTE: bqhold() requires that the buffer be locked at the time of the
1741  *	 hold.  bqdrop() has no requirements other than the buffer having
1742  *	 previously been held.
1743  */
1744 void
1745 bqhold(struct buf *bp)
1746 {
1747 	atomic_add_int(&bp->b_refs, 1);
1748 }
1749 
1750 void
1751 bqdrop(struct buf *bp)
1752 {
1753 	KKASSERT(bp->b_refs > 0);
1754 	atomic_add_int(&bp->b_refs, -1);
1755 }
1756 
1757 /*
1758  * Return backing pages held by the buffer 'bp' back to the VM system.
1759  * This routine is called when the bp is invalidated, released, or
1760  * reused.
1761  *
1762  * The KVA mapping (b_data) for the underlying pages is removed by
1763  * this function.
1764  *
1765  * WARNING! This routine is integral to the low memory critical path
1766  *          when a buffer is B_RELBUF'd.  If the system has a severe page
1767  *          deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE
1768  *          queues so they can be reused in the current pageout daemon
1769  *          pass.
1770  */
1771 static void
1772 vfs_vmio_release(struct buf *bp)
1773 {
1774 	int i;
1775 	vm_page_t m;
1776 
1777 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1778 		m = bp->b_xio.xio_pages[i];
1779 		bp->b_xio.xio_pages[i] = NULL;
1780 
1781 		/*
1782 		 * We need to own the page in order to safely unwire it.
1783 		 */
1784 		vm_page_busy_wait(m, FALSE, "vmiopg");
1785 
1786 		/*
1787 		 * The VFS is telling us this is not a meta-data buffer
1788 		 * even if it is backed by a block device.
1789 		 */
1790 		if (bp->b_flags & B_NOTMETA)
1791 			vm_page_flag_set(m, PG_NOTMETA);
1792 
1793 		/*
1794 		 * This is a very important bit of code.  We try to track
1795 		 * VM page use whether the pages are wired into the buffer
1796 		 * cache or not.  While wired into the buffer cache the
1797 		 * bp tracks the act_count.
1798 		 *
1799 		 * We can choose to place unwired pages on the inactive
1800 		 * queue (0) or active queue (1).  If we place too many
1801 		 * on the active queue the queue will cycle the act_count
1802 		 * on pages we'd like to keep, just from single-use pages
1803 		 * (such as when doing a tar-up or file scan).
1804 		 */
1805 		if (bp->b_act_count < vm_cycle_point)
1806 			vm_page_unwire(m, 0);
1807 		else
1808 			vm_page_unwire(m, 1);
1809 
1810 		/*
1811 		 * If the wire_count has dropped to 0 we may need to take
1812 		 * further action before unbusying the page.
1813 		 *
1814 		 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us.
1815 		 */
1816 		if (m->wire_count == 0) {
1817 			vm_page_flag_clear(m, PG_ZERO);
1818 
1819 			if (bp->b_flags & B_DIRECT) {
1820 				/*
1821 				 * Attempt to free the page if B_DIRECT is
1822 				 * set, the caller does not desire the page
1823 				 * to be cached.
1824 				 */
1825 				vm_page_wakeup(m);
1826 				vm_page_try_to_free(m);
1827 			} else if ((bp->b_flags & B_NOTMETA) ||
1828 				   vm_page_count_min(0)) {
1829 				/*
1830 				 * Attempt to move the page to PQ_CACHE
1831 				 * if B_NOTMETA is set.  This flag is set
1832 				 * by HAMMER to remove one of the two pages
1833 				 * present when double buffering is enabled.
1834 				 *
1835 				 * Attempt to move the page to PQ_CACHE
1836 				 * If we have a severe page deficit.  This
1837 				 * will cause buffer cache operations related
1838 				 * to pageouts to recycle the related pages
1839 				 * in order to avoid a low memory deadlock.
1840 				 */
1841 				m->act_count = bp->b_act_count;
1842 				vm_page_wakeup(m);
1843 				vm_page_try_to_cache(m);
1844 			} else {
1845 				/*
1846 				 * Nominal case, leave the page on the
1847 				 * queue the original unwiring placed it on
1848 				 * (active or inactive).
1849 				 */
1850 				m->act_count = bp->b_act_count;
1851 				vm_page_wakeup(m);
1852 			}
1853 		} else {
1854 			vm_page_wakeup(m);
1855 		}
1856 	}
1857 
1858 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data),
1859 		     bp->b_xio.xio_npages);
1860 	if (bp->b_bufsize) {
1861 		bufspacewakeup();
1862 		bp->b_bufsize = 0;
1863 	}
1864 	bp->b_xio.xio_npages = 0;
1865 	bp->b_flags &= ~B_VMIO;
1866 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1867 	if (bp->b_vp)
1868 		brelvp(bp);
1869 }
1870 
1871 /*
1872  * getnewbuf:
1873  *
1874  *	Find and initialize a new buffer header, freeing up existing buffers
1875  *	in the bufqueues as necessary.  The new buffer is returned locked.
1876  *
1877  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1878  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1879  *
1880  *	We block if:
1881  *		We have insufficient buffer headers
1882  *		We have insufficient buffer space
1883  *		buffer_map is too fragmented ( space reservation fails )
1884  *		If we have to flush dirty buffers ( but we try to avoid this )
1885  *
1886  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1887  *	Instead we ask the buf daemon to do it for us.  We attempt to
1888  *	avoid piecemeal wakeups of the pageout daemon.
1889  *
1890  * MPALMOSTSAFE
1891  */
1892 struct buf *
1893 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1894 {
1895 	struct buf *bp;
1896 	struct buf *nbp;
1897 	int defrag = 0;
1898 	int nqindex;
1899 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1900 	static int flushingbufs;
1901 
1902 	/*
1903 	 * We can't afford to block since we might be holding a vnode lock,
1904 	 * which may prevent system daemons from running.  We deal with
1905 	 * low-memory situations by proactively returning memory and running
1906 	 * async I/O rather then sync I/O.
1907 	 */
1908 
1909 	++getnewbufcalls;
1910 	--getnewbufrestarts;
1911 restart:
1912 	++getnewbufrestarts;
1913 
1914 	/*
1915 	 * Setup for scan.  If we do not have enough free buffers,
1916 	 * we setup a degenerate case that immediately fails.  Note
1917 	 * that if we are specially marked process, we are allowed to
1918 	 * dip into our reserves.
1919 	 *
1920 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1921 	 *
1922 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1923 	 * However, there are a number of cases (defragging, reusing, ...)
1924 	 * where we cannot backup.
1925 	 */
1926 	nqindex = BQUEUE_EMPTYKVA;
1927 	spin_lock(&bufqspin);
1928 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1929 
1930 	if (nbp == NULL) {
1931 		/*
1932 		 * If no EMPTYKVA buffers and we are either
1933 		 * defragging or reusing, locate a CLEAN buffer
1934 		 * to free or reuse.  If bufspace useage is low
1935 		 * skip this step so we can allocate a new buffer.
1936 		 */
1937 		if (defrag || bufspace >= lobufspace) {
1938 			nqindex = BQUEUE_CLEAN;
1939 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1940 		}
1941 
1942 		/*
1943 		 * If we could not find or were not allowed to reuse a
1944 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1945 		 * buffer.  We can only use an EMPTY buffer if allocating
1946 		 * its KVA would not otherwise run us out of buffer space.
1947 		 */
1948 		if (nbp == NULL && defrag == 0 &&
1949 		    bufspace + maxsize < hibufspace) {
1950 			nqindex = BQUEUE_EMPTY;
1951 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1952 		}
1953 	}
1954 
1955 	/*
1956 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1957 	 * depending.
1958 	 *
1959 	 * WARNING!  bufqspin is held!
1960 	 */
1961 	while ((bp = nbp) != NULL) {
1962 		int qindex = nqindex;
1963 
1964 		nbp = TAILQ_NEXT(bp, b_freelist);
1965 
1966 		/*
1967 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
1968 		 * cycles through the queue twice before being selected.
1969 		 */
1970 		if (qindex == BQUEUE_CLEAN &&
1971 		    (bp->b_flags & B_AGE) == 0 && nbp) {
1972 			bp->b_flags |= B_AGE;
1973 			TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
1974 			TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
1975 			continue;
1976 		}
1977 
1978 		/*
1979 		 * Calculate next bp ( we can only use it if we do not block
1980 		 * or do other fancy things ).
1981 		 */
1982 		if (nbp == NULL) {
1983 			switch(qindex) {
1984 			case BQUEUE_EMPTY:
1985 				nqindex = BQUEUE_EMPTYKVA;
1986 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1987 					break;
1988 				/* fall through */
1989 			case BQUEUE_EMPTYKVA:
1990 				nqindex = BQUEUE_CLEAN;
1991 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1992 					break;
1993 				/* fall through */
1994 			case BQUEUE_CLEAN:
1995 				/*
1996 				 * nbp is NULL.
1997 				 */
1998 				break;
1999 			}
2000 		}
2001 
2002 		/*
2003 		 * Sanity Checks
2004 		 */
2005 		KASSERT(bp->b_qindex == qindex,
2006 			("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2007 
2008 		/*
2009 		 * Note: we no longer distinguish between VMIO and non-VMIO
2010 		 * buffers.
2011 		 */
2012 		KASSERT((bp->b_flags & B_DELWRI) == 0,
2013 			("delwri buffer %p found in queue %d", bp, qindex));
2014 
2015 		/*
2016 		 * Do not try to reuse a buffer with a non-zero b_refs.
2017 		 * This is an unsynchronized test.  A synchronized test
2018 		 * is also performed after we lock the buffer.
2019 		 */
2020 		if (bp->b_refs)
2021 			continue;
2022 
2023 		/*
2024 		 * If we are defragging then we need a buffer with
2025 		 * b_kvasize != 0.  XXX this situation should no longer
2026 		 * occur, if defrag is non-zero the buffer's b_kvasize
2027 		 * should also be non-zero at this point.  XXX
2028 		 */
2029 		if (defrag && bp->b_kvasize == 0) {
2030 			kprintf("Warning: defrag empty buffer %p\n", bp);
2031 			continue;
2032 		}
2033 
2034 		/*
2035 		 * Start freeing the bp.  This is somewhat involved.  nbp
2036 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
2037 		 * on the clean list must be disassociated from their
2038 		 * current vnode.  Buffers on the empty[kva] lists have
2039 		 * already been disassociated.
2040 		 *
2041 		 * b_refs is checked after locking along with queue changes.
2042 		 * We must check here to deal with zero->nonzero transitions
2043 		 * made by the owner of the buffer lock, which is used by
2044 		 * VFS's to hold the buffer while issuing an unlocked
2045 		 * uiomove()s.  We cannot invalidate the buffer's pages
2046 		 * for this case.  Once we successfully lock a buffer the
2047 		 * only 0->1 transitions of b_refs will occur via findblk().
2048 		 *
2049 		 * We must also check for queue changes after successful
2050 		 * locking as the current lock holder may dispose of the
2051 		 * buffer and change its queue.
2052 		 */
2053 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2054 			spin_unlock(&bufqspin);
2055 			tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100);
2056 			goto restart;
2057 		}
2058 		if (bp->b_qindex != qindex || bp->b_refs) {
2059 			spin_unlock(&bufqspin);
2060 			BUF_UNLOCK(bp);
2061 			goto restart;
2062 		}
2063 		bremfree_locked(bp);
2064 		spin_unlock(&bufqspin);
2065 
2066 		/*
2067 		 * Dependancies must be handled before we disassociate the
2068 		 * vnode.
2069 		 *
2070 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2071 		 * be immediately disassociated.  HAMMER then becomes
2072 		 * responsible for releasing the buffer.
2073 		 *
2074 		 * NOTE: bufqspin is UNLOCKED now.
2075 		 */
2076 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2077 			buf_deallocate(bp);
2078 			if (bp->b_flags & B_LOCKED) {
2079 				bqrelse(bp);
2080 				goto restart;
2081 			}
2082 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2083 		}
2084 
2085 		if (qindex == BQUEUE_CLEAN) {
2086 			if (bp->b_flags & B_VMIO)
2087 				vfs_vmio_release(bp);
2088 			if (bp->b_vp)
2089 				brelvp(bp);
2090 		}
2091 
2092 		/*
2093 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2094 		 * the scan from this point on.
2095 		 *
2096 		 * Get the rest of the buffer freed up.  b_kva* is still
2097 		 * valid after this operation.
2098 		 */
2099 		KASSERT(bp->b_vp == NULL,
2100 			("bp3 %p flags %08x vnode %p qindex %d "
2101 			 "unexpectededly still associated!",
2102 			 bp, bp->b_flags, bp->b_vp, qindex));
2103 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2104 
2105 		/*
2106 		 * critical section protection is not required when
2107 		 * scrapping a buffer's contents because it is already
2108 		 * wired.
2109 		 */
2110 		if (bp->b_bufsize)
2111 			allocbuf(bp, 0);
2112 
2113 		bp->b_flags = B_BNOCLIP;
2114 		bp->b_cmd = BUF_CMD_DONE;
2115 		bp->b_vp = NULL;
2116 		bp->b_error = 0;
2117 		bp->b_resid = 0;
2118 		bp->b_bcount = 0;
2119 		bp->b_xio.xio_npages = 0;
2120 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2121 		bp->b_act_count = ACT_INIT;
2122 		reinitbufbio(bp);
2123 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2124 		buf_dep_init(bp);
2125 		if (blkflags & GETBLK_BHEAVY)
2126 			bp->b_flags |= B_HEAVY;
2127 
2128 		/*
2129 		 * If we are defragging then free the buffer.
2130 		 */
2131 		if (defrag) {
2132 			bp->b_flags |= B_INVAL;
2133 			bfreekva(bp);
2134 			brelse(bp);
2135 			defrag = 0;
2136 			goto restart;
2137 		}
2138 
2139 		/*
2140 		 * If we are overcomitted then recover the buffer and its
2141 		 * KVM space.  This occurs in rare situations when multiple
2142 		 * processes are blocked in getnewbuf() or allocbuf().
2143 		 */
2144 		if (bufspace >= hibufspace)
2145 			flushingbufs = 1;
2146 		if (flushingbufs && bp->b_kvasize != 0) {
2147 			bp->b_flags |= B_INVAL;
2148 			bfreekva(bp);
2149 			brelse(bp);
2150 			goto restart;
2151 		}
2152 		if (bufspace < lobufspace)
2153 			flushingbufs = 0;
2154 
2155 		/*
2156 		 * b_refs can transition to a non-zero value while we hold
2157 		 * the buffer locked due to a findblk().  Our brelvp() above
2158 		 * interlocked any future possible transitions due to
2159 		 * findblk()s.
2160 		 *
2161 		 * If we find b_refs to be non-zero we can destroy the
2162 		 * buffer's contents but we cannot yet reuse the buffer.
2163 		 */
2164 		if (bp->b_refs) {
2165 			bp->b_flags |= B_INVAL;
2166 			bfreekva(bp);
2167 			brelse(bp);
2168 			goto restart;
2169 		}
2170 		break;
2171 		/* NOT REACHED, bufqspin not held */
2172 	}
2173 
2174 	/*
2175 	 * If we exhausted our list, sleep as appropriate.  We may have to
2176 	 * wakeup various daemons and write out some dirty buffers.
2177 	 *
2178 	 * Generally we are sleeping due to insufficient buffer space.
2179 	 *
2180 	 * NOTE: bufqspin is held if bp is NULL, else it is not held.
2181 	 */
2182 	if (bp == NULL) {
2183 		int flags;
2184 		char *waitmsg;
2185 
2186 		spin_unlock(&bufqspin);
2187 		if (defrag) {
2188 			flags = VFS_BIO_NEED_BUFSPACE;
2189 			waitmsg = "nbufkv";
2190 		} else if (bufspace >= hibufspace) {
2191 			waitmsg = "nbufbs";
2192 			flags = VFS_BIO_NEED_BUFSPACE;
2193 		} else {
2194 			waitmsg = "newbuf";
2195 			flags = VFS_BIO_NEED_ANY;
2196 		}
2197 
2198 		bd_speedup();	/* heeeelp */
2199 		spin_lock(&bufcspin);
2200 		needsbuffer |= flags;
2201 		while (needsbuffer & flags) {
2202 			if (ssleep(&needsbuffer, &bufcspin,
2203 				   slpflags, waitmsg, slptimeo)) {
2204 				spin_unlock(&bufcspin);
2205 				return (NULL);
2206 			}
2207 		}
2208 		spin_unlock(&bufcspin);
2209 	} else {
2210 		/*
2211 		 * We finally have a valid bp.  We aren't quite out of the
2212 		 * woods, we still have to reserve kva space.  In order
2213 		 * to keep fragmentation sane we only allocate kva in
2214 		 * BKVASIZE chunks.
2215 		 *
2216 		 * (bufqspin is not held)
2217 		 */
2218 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2219 
2220 		if (maxsize != bp->b_kvasize) {
2221 			vm_offset_t addr = 0;
2222 			int count;
2223 
2224 			bfreekva(bp);
2225 
2226 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2227 			vm_map_lock(&buffer_map);
2228 
2229 			if (vm_map_findspace(&buffer_map,
2230 				    vm_map_min(&buffer_map), maxsize,
2231 				    maxsize, 0, &addr)) {
2232 				/*
2233 				 * Uh oh.  Buffer map is too fragmented.  We
2234 				 * must defragment the map.
2235 				 */
2236 				vm_map_unlock(&buffer_map);
2237 				vm_map_entry_release(count);
2238 				++bufdefragcnt;
2239 				defrag = 1;
2240 				bp->b_flags |= B_INVAL;
2241 				brelse(bp);
2242 				goto restart;
2243 			}
2244 			if (addr) {
2245 				vm_map_insert(&buffer_map, &count,
2246 					NULL, 0,
2247 					addr, addr + maxsize,
2248 					VM_MAPTYPE_NORMAL,
2249 					VM_PROT_ALL, VM_PROT_ALL,
2250 					MAP_NOFAULT);
2251 
2252 				bp->b_kvabase = (caddr_t) addr;
2253 				bp->b_kvasize = maxsize;
2254 				bufspace += bp->b_kvasize;
2255 				++bufreusecnt;
2256 			}
2257 			vm_map_unlock(&buffer_map);
2258 			vm_map_entry_release(count);
2259 		}
2260 		bp->b_data = bp->b_kvabase;
2261 	}
2262 	return(bp);
2263 }
2264 
2265 #if 0
2266 /*
2267  * This routine is called in an emergency to recover VM pages from the
2268  * buffer cache by cashing in clean buffers.  The idea is to recover
2269  * enough pages to be able to satisfy a stuck bio_page_alloc().
2270  *
2271  * XXX Currently not implemented.  This function can wind up deadlocking
2272  * against another thread holding one or more of the backing pages busy.
2273  */
2274 static int
2275 recoverbufpages(void)
2276 {
2277 	struct buf *bp;
2278 	int bytes = 0;
2279 
2280 	++recoverbufcalls;
2281 
2282 	spin_lock(&bufqspin);
2283 	while (bytes < MAXBSIZE) {
2284 		bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2285 		if (bp == NULL)
2286 			break;
2287 
2288 		/*
2289 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2290 		 * cycles through the queue twice before being selected.
2291 		 */
2292 		if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2293 			bp->b_flags |= B_AGE;
2294 			TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2295 			TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2296 					  bp, b_freelist);
2297 			continue;
2298 		}
2299 
2300 		/*
2301 		 * Sanity Checks
2302 		 */
2303 		KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2304 		KKASSERT((bp->b_flags & B_DELWRI) == 0);
2305 
2306 		/*
2307 		 * Start freeing the bp.  This is somewhat involved.
2308 		 *
2309 		 * Buffers on the clean list must be disassociated from
2310 		 * their current vnode
2311 		 */
2312 
2313 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2314 			kprintf("recoverbufpages: warning, locked buf %p, "
2315 				"race corrected\n",
2316 				bp);
2317 			ssleep(&bd_request, &bufqspin, 0, "gnbxxx", hz / 100);
2318 			continue;
2319 		}
2320 		if (bp->b_qindex != BQUEUE_CLEAN) {
2321 			kprintf("recoverbufpages: warning, BUF_LOCK blocked "
2322 				"unexpectedly on buf %p index %d, race "
2323 				"corrected\n",
2324 				bp, bp->b_qindex);
2325 			BUF_UNLOCK(bp);
2326 			continue;
2327 		}
2328 		bremfree_locked(bp);
2329 		spin_unlock(&bufqspin);
2330 
2331 		/*
2332 		 * Sanity check.  Only BQUEUE_DIRTY[_HW] employs markers.
2333 		 */
2334 		KKASSERT((bp->b_flags & B_MARKER) == 0);
2335 
2336 		/*
2337 		 * Dependancies must be handled before we disassociate the
2338 		 * vnode.
2339 		 *
2340 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2341 		 * be immediately disassociated.  HAMMER then becomes
2342 		 * responsible for releasing the buffer.
2343 		 */
2344 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2345 			buf_deallocate(bp);
2346 			if (bp->b_flags & B_LOCKED) {
2347 				bqrelse(bp);
2348 				spin_lock(&bufqspin);
2349 				continue;
2350 			}
2351 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2352 		}
2353 
2354 		bytes += bp->b_bufsize;
2355 
2356 		if (bp->b_flags & B_VMIO) {
2357 			bp->b_flags |= B_DIRECT;    /* try to free pages */
2358 			vfs_vmio_release(bp);
2359 		}
2360 		if (bp->b_vp)
2361 			brelvp(bp);
2362 
2363 		KKASSERT(bp->b_vp == NULL);
2364 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2365 
2366 		/*
2367 		 * critical section protection is not required when
2368 		 * scrapping a buffer's contents because it is already
2369 		 * wired.
2370 		 */
2371 		if (bp->b_bufsize)
2372 			allocbuf(bp, 0);
2373 
2374 		bp->b_flags = B_BNOCLIP;
2375 		bp->b_cmd = BUF_CMD_DONE;
2376 		bp->b_vp = NULL;
2377 		bp->b_error = 0;
2378 		bp->b_resid = 0;
2379 		bp->b_bcount = 0;
2380 		bp->b_xio.xio_npages = 0;
2381 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2382 		reinitbufbio(bp);
2383 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2384 		buf_dep_init(bp);
2385 		bp->b_flags |= B_INVAL;
2386 		/* bfreekva(bp); */
2387 		brelse(bp);
2388 		spin_lock(&bufqspin);
2389 	}
2390 	spin_unlock(&bufqspin);
2391 	return(bytes);
2392 }
2393 #endif
2394 
2395 /*
2396  * buf_daemon:
2397  *
2398  *	Buffer flushing daemon.  Buffers are normally flushed by the
2399  *	update daemon but if it cannot keep up this process starts to
2400  *	take the load in an attempt to prevent getnewbuf() from blocking.
2401  *
2402  *	Once a flush is initiated it does not stop until the number
2403  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2404  *	waiting at the mid-point.
2405  */
2406 static struct kproc_desc buf_kp = {
2407 	"bufdaemon",
2408 	buf_daemon,
2409 	&bufdaemon_td
2410 };
2411 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2412 	kproc_start, &buf_kp)
2413 
2414 static struct kproc_desc bufhw_kp = {
2415 	"bufdaemon_hw",
2416 	buf_daemon_hw,
2417 	&bufdaemonhw_td
2418 };
2419 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2420 	kproc_start, &bufhw_kp)
2421 
2422 /*
2423  * MPSAFE thread
2424  */
2425 static void
2426 buf_daemon1(struct thread *td, int queue, int (*buf_limit_fn)(long),
2427 	    int *bd_req)
2428 {
2429 	long limit;
2430 	struct buf *marker;
2431 
2432 	marker = kmalloc(sizeof(*marker), M_BIOBUF, M_WAITOK | M_ZERO);
2433 	marker->b_flags |= B_MARKER;
2434 	marker->b_qindex = BQUEUE_NONE;
2435 
2436 	/*
2437 	 * This process needs to be suspended prior to shutdown sync.
2438 	 */
2439 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2440 			      td, SHUTDOWN_PRI_LAST);
2441 	curthread->td_flags |= TDF_SYSTHREAD;
2442 
2443 	/*
2444 	 * This process is allowed to take the buffer cache to the limit
2445 	 */
2446 	for (;;) {
2447 		kproc_suspend_loop();
2448 
2449 		/*
2450 		 * Do the flush as long as the number of dirty buffers
2451 		 * (including those running) exceeds lodirtybufspace.
2452 		 *
2453 		 * When flushing limit running I/O to hirunningspace
2454 		 * Do the flush.  Limit the amount of in-transit I/O we
2455 		 * allow to build up, otherwise we would completely saturate
2456 		 * the I/O system.  Wakeup any waiting processes before we
2457 		 * normally would so they can run in parallel with our drain.
2458 		 *
2459 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2460 		 * but because we split the operation into two threads we
2461 		 * have to cut it in half for each thread.
2462 		 */
2463 		waitrunningbufspace();
2464 		limit = lodirtybufspace / 2;
2465 		while (buf_limit_fn(limit)) {
2466 			if (flushbufqueues(marker, queue) == 0)
2467 				break;
2468 			if (runningbufspace < hirunningspace)
2469 				continue;
2470 			waitrunningbufspace();
2471 		}
2472 
2473 		/*
2474 		 * We reached our low water mark, reset the
2475 		 * request and sleep until we are needed again.
2476 		 * The sleep is just so the suspend code works.
2477 		 */
2478 		spin_lock(&bufcspin);
2479 		if (*bd_req == 0)
2480 			ssleep(bd_req, &bufcspin, 0, "psleep", hz);
2481 		*bd_req = 0;
2482 		spin_unlock(&bufcspin);
2483 	}
2484 	/* NOT REACHED */
2485 	/*kfree(marker, M_BIOBUF);*/
2486 }
2487 
2488 static int
2489 buf_daemon_limit(long limit)
2490 {
2491 	return (runningbufspace + dirtykvaspace > limit ||
2492 		dirtybufcount - dirtybufcounthw >= nbuf / 2);
2493 }
2494 
2495 static int
2496 buf_daemon_hw_limit(long limit)
2497 {
2498 	return (runningbufspace + dirtykvaspace > limit ||
2499 		dirtybufcounthw >= nbuf / 2);
2500 }
2501 
2502 static void
2503 buf_daemon(void)
2504 {
2505 	buf_daemon1(bufdaemon_td, BQUEUE_DIRTY, buf_daemon_limit,
2506 		    &bd_request);
2507 }
2508 
2509 static void
2510 buf_daemon_hw(void)
2511 {
2512 	buf_daemon1(bufdaemonhw_td, BQUEUE_DIRTY_HW, buf_daemon_hw_limit,
2513 		    &bd_request_hw);
2514 }
2515 
2516 /*
2517  * flushbufqueues:
2518  *
2519  *	Try to flush a buffer in the dirty queue.  We must be careful to
2520  *	free up B_INVAL buffers instead of write them, which NFS is
2521  *	particularly sensitive to.
2522  *
2523  *	B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate
2524  *	that we really want to try to get the buffer out and reuse it
2525  *	due to the write load on the machine.
2526  *
2527  *	We must lock the buffer in order to check its validity before we
2528  *	can mess with its contents.  bufqspin isn't enough.
2529  */
2530 static int
2531 flushbufqueues(struct buf *marker, bufq_type_t q)
2532 {
2533 	struct buf *bp;
2534 	int r = 0;
2535 
2536 	KKASSERT(marker->b_qindex == BQUEUE_NONE);
2537 	KKASSERT(marker->b_flags & B_MARKER);
2538 
2539 	/*
2540 	 * Spinlock needed to perform operations on the queue and may be
2541 	 * held through a non-blocking BUF_LOCK(), but cannot be held when
2542 	 * BUF_UNLOCK()ing or through any other major operation.
2543 	 */
2544 	spin_lock(&bufqspin);
2545 	marker->b_qindex = q;
2546 	TAILQ_INSERT_HEAD(&bufqueues[q], marker, b_freelist);
2547 	bp = marker;
2548 
2549 	while ((bp = TAILQ_NEXT(bp, b_freelist)) != NULL) {
2550 		/*
2551 		 * NOTE: spinlock is always held at the top of the loop
2552 		 */
2553 		if (bp->b_flags & B_MARKER)
2554 			continue;
2555 		if ((bp->b_flags & B_DELWRI) == 0) {
2556 			kprintf("Unexpected clean buffer %p\n", bp);
2557 			continue;
2558 		}
2559 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
2560 			continue;
2561 		KKASSERT(bp->b_qindex == q);
2562 
2563 		/*
2564 		 * Once the buffer is locked we will have no choice but to
2565 		 * unlock the spinlock around a later BUF_UNLOCK and re-set
2566 		 * bp = marker when looping.  Move the marker now to make
2567 		 * things easier.
2568 		 */
2569 		TAILQ_REMOVE(&bufqueues[q], marker, b_freelist);
2570 		TAILQ_INSERT_AFTER(&bufqueues[q], bp, marker, b_freelist);
2571 
2572 		/*
2573 		 * Must recheck B_DELWRI after successfully locking
2574 		 * the buffer.
2575 		 */
2576 		if ((bp->b_flags & B_DELWRI) == 0) {
2577 			spin_unlock(&bufqspin);
2578 			BUF_UNLOCK(bp);
2579 			spin_lock(&bufqspin);
2580 			bp = marker;
2581 			continue;
2582 		}
2583 
2584 		/*
2585 		 * Remove the buffer from its queue.  We still own the
2586 		 * spinlock here.
2587 		 */
2588 		_bremfree(bp);
2589 
2590 		/*
2591 		 * Disposing of an invalid buffer counts as a flush op
2592 		 */
2593 		if (bp->b_flags & B_INVAL) {
2594 			spin_unlock(&bufqspin);
2595 			brelse(bp);
2596 			spin_lock(&bufqspin);
2597 			++r;
2598 			break;
2599 		}
2600 
2601 		/*
2602 		 * Release the spinlock for the more complex ops we
2603 		 * are now going to do.
2604 		 */
2605 		spin_unlock(&bufqspin);
2606 		lwkt_yield();
2607 
2608 		/*
2609 		 * This is a bit messy
2610 		 */
2611 		if (LIST_FIRST(&bp->b_dep) != NULL &&
2612 		    (bp->b_flags & B_DEFERRED) == 0 &&
2613 		    buf_countdeps(bp, 0)) {
2614 			spin_lock(&bufqspin);
2615 			TAILQ_INSERT_TAIL(&bufqueues[q], bp, b_freelist);
2616 			bp->b_qindex = q;
2617 			bp->b_flags |= B_DEFERRED;
2618 			spin_unlock(&bufqspin);
2619 			BUF_UNLOCK(bp);
2620 			spin_lock(&bufqspin);
2621 			bp = marker;
2622 			continue;
2623 		}
2624 
2625 		/*
2626 		 * spinlock not held here.
2627 		 *
2628 		 * If the buffer has a dependancy, buf_checkwrite() must
2629 		 * also return 0 for us to be able to initate the write.
2630 		 *
2631 		 * If the buffer is flagged B_ERROR it may be requeued
2632 		 * over and over again, we try to avoid a live lock.
2633 		 *
2634 		 * NOTE: buf_checkwrite is MPSAFE.
2635 		 */
2636 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2637 			brelse(bp);
2638 		} else if (bp->b_flags & B_ERROR) {
2639 			tsleep(bp, 0, "bioer", 1);
2640 			bp->b_flags &= ~B_AGE;
2641 			cluster_awrite(bp);
2642 		} else {
2643 			bp->b_flags |= B_AGE;
2644 			cluster_awrite(bp);
2645 		}
2646 		spin_lock(&bufqspin);
2647 		++r;
2648 		break;
2649 	}
2650 	TAILQ_REMOVE(&bufqueues[q], marker, b_freelist);
2651 	marker->b_qindex = BQUEUE_NONE;
2652 	spin_unlock(&bufqspin);
2653 
2654 	return (r);
2655 }
2656 
2657 /*
2658  * inmem:
2659  *
2660  *	Returns true if no I/O is needed to access the associated VM object.
2661  *	This is like findblk except it also hunts around in the VM system for
2662  *	the data.
2663  *
2664  *	Note that we ignore vm_page_free() races from interrupts against our
2665  *	lookup, since if the caller is not protected our return value will not
2666  *	be any more valid then otherwise once we exit the critical section.
2667  */
2668 int
2669 inmem(struct vnode *vp, off_t loffset)
2670 {
2671 	vm_object_t obj;
2672 	vm_offset_t toff, tinc, size;
2673 	vm_page_t m;
2674 	int res = 1;
2675 
2676 	if (findblk(vp, loffset, FINDBLK_TEST))
2677 		return 1;
2678 	if (vp->v_mount == NULL)
2679 		return 0;
2680 	if ((obj = vp->v_object) == NULL)
2681 		return 0;
2682 
2683 	size = PAGE_SIZE;
2684 	if (size > vp->v_mount->mnt_stat.f_iosize)
2685 		size = vp->v_mount->mnt_stat.f_iosize;
2686 
2687 	vm_object_hold(obj);
2688 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2689 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2690 		if (m == NULL) {
2691 			res = 0;
2692 			break;
2693 		}
2694 		tinc = size;
2695 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2696 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2697 		if (vm_page_is_valid(m,
2698 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) {
2699 			res = 0;
2700 			break;
2701 		}
2702 	}
2703 	vm_object_drop(obj);
2704 	return (res);
2705 }
2706 
2707 /*
2708  * findblk:
2709  *
2710  *	Locate and return the specified buffer.  Unless flagged otherwise,
2711  *	a locked buffer will be returned if it exists or NULL if it does not.
2712  *
2713  *	findblk()'d buffers are still on the bufqueues and if you intend
2714  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2715  *	and possibly do other stuff to it.
2716  *
2717  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2718  *			  for locking the buffer and ensuring that it remains
2719  *			  the desired buffer after locking.
2720  *
2721  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2722  *			  to acquire the lock we return NULL, even if the
2723  *			  buffer exists.
2724  *
2725  *	FINDBLK_REF	- Returns the buffer ref'd, which prevents normal
2726  *			  reuse by getnewbuf() but does not prevent
2727  *			  disassociation (B_INVAL).  Used to avoid deadlocks
2728  *			  against random (vp,loffset)s due to reassignment.
2729  *
2730  *	(0)		- Lock the buffer blocking.
2731  *
2732  * MPSAFE
2733  */
2734 struct buf *
2735 findblk(struct vnode *vp, off_t loffset, int flags)
2736 {
2737 	struct buf *bp;
2738 	int lkflags;
2739 
2740 	lkflags = LK_EXCLUSIVE;
2741 	if (flags & FINDBLK_NBLOCK)
2742 		lkflags |= LK_NOWAIT;
2743 
2744 	for (;;) {
2745 		/*
2746 		 * Lookup.  Ref the buf while holding v_token to prevent
2747 		 * reuse (but does not prevent diassociation).
2748 		 */
2749 		lwkt_gettoken_shared(&vp->v_token);
2750 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2751 		if (bp == NULL) {
2752 			lwkt_reltoken(&vp->v_token);
2753 			return(NULL);
2754 		}
2755 		bqhold(bp);
2756 		lwkt_reltoken(&vp->v_token);
2757 
2758 		/*
2759 		 * If testing only break and return bp, do not lock.
2760 		 */
2761 		if (flags & FINDBLK_TEST)
2762 			break;
2763 
2764 		/*
2765 		 * Lock the buffer, return an error if the lock fails.
2766 		 * (only FINDBLK_NBLOCK can cause the lock to fail).
2767 		 */
2768 		if (BUF_LOCK(bp, lkflags)) {
2769 			atomic_subtract_int(&bp->b_refs, 1);
2770 			/* bp = NULL; not needed */
2771 			return(NULL);
2772 		}
2773 
2774 		/*
2775 		 * Revalidate the locked buf before allowing it to be
2776 		 * returned.
2777 		 */
2778 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2779 			break;
2780 		atomic_subtract_int(&bp->b_refs, 1);
2781 		BUF_UNLOCK(bp);
2782 	}
2783 
2784 	/*
2785 	 * Success
2786 	 */
2787 	if ((flags & FINDBLK_REF) == 0)
2788 		atomic_subtract_int(&bp->b_refs, 1);
2789 	return(bp);
2790 }
2791 
2792 /*
2793  * getcacheblk:
2794  *
2795  *	Similar to getblk() except only returns the buffer if it is
2796  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2797  *	is returned.
2798  *
2799  *	If B_RAM is set the buffer might be just fine, but we return
2800  *	NULL anyway because we want the code to fall through to the
2801  *	cluster read.  Otherwise read-ahead breaks.
2802  *
2803  *	If blksize is 0 the buffer cache buffer must already be fully
2804  *	cached.
2805  *
2806  *	If blksize is non-zero getblk() will be used, allowing a buffer
2807  *	to be reinstantiated from its VM backing store.  The buffer must
2808  *	still be fully cached after reinstantiation to be returned.
2809  */
2810 struct buf *
2811 getcacheblk(struct vnode *vp, off_t loffset, int blksize, int blkflags)
2812 {
2813 	struct buf *bp;
2814 	int fndflags = (blkflags & GETBLK_NOWAIT) ? FINDBLK_NBLOCK : 0;
2815 
2816 	if (blksize) {
2817 		bp = getblk(vp, loffset, blksize, blkflags, 0);
2818 		if (bp) {
2819 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2820 			    B_CACHE) {
2821 				bp->b_flags &= ~B_AGE;
2822 			} else {
2823 				brelse(bp);
2824 				bp = NULL;
2825 			}
2826 		}
2827 	} else {
2828 		bp = findblk(vp, loffset, fndflags);
2829 		if (bp) {
2830 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2831 			    B_CACHE) {
2832 				bp->b_flags &= ~B_AGE;
2833 				bremfree(bp);
2834 			} else {
2835 				BUF_UNLOCK(bp);
2836 				bp = NULL;
2837 			}
2838 		}
2839 	}
2840 	return (bp);
2841 }
2842 
2843 /*
2844  * getblk:
2845  *
2846  *	Get a block given a specified block and offset into a file/device.
2847  * 	B_INVAL may or may not be set on return.  The caller should clear
2848  *	B_INVAL prior to initiating a READ.
2849  *
2850  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2851  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2852  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2853  *	without doing any of those things the system will likely believe
2854  *	the buffer to be valid (especially if it is not B_VMIO), and the
2855  *	next getblk() will return the buffer with B_CACHE set.
2856  *
2857  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2858  *	an existing buffer.
2859  *
2860  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2861  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2862  *	and then cleared based on the backing VM.  If the previous buffer is
2863  *	non-0-sized but invalid, B_CACHE will be cleared.
2864  *
2865  *	If getblk() must create a new buffer, the new buffer is returned with
2866  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2867  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2868  *	backing VM.
2869  *
2870  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2871  *	B_CACHE bit is clear.
2872  *
2873  *	What this means, basically, is that the caller should use B_CACHE to
2874  *	determine whether the buffer is fully valid or not and should clear
2875  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2876  *	the buffer by loading its data area with something, the caller needs
2877  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2878  *	the caller should set B_CACHE ( as an optimization ), else the caller
2879  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2880  *	a write attempt or if it was a successfull read.  If the caller
2881  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2882  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2883  *
2884  *	getblk flags:
2885  *
2886  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2887  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2888  *
2889  * MPALMOSTSAFE
2890  */
2891 struct buf *
2892 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2893 {
2894 	struct buf *bp;
2895 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2896 	int error;
2897 	int lkflags;
2898 
2899 	if (size > MAXBSIZE)
2900 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2901 	if (vp->v_object == NULL)
2902 		panic("getblk: vnode %p has no object!", vp);
2903 
2904 loop:
2905 	if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2906 		/*
2907 		 * The buffer was found in the cache, but we need to lock it.
2908 		 * We must acquire a ref on the bp to prevent reuse, but
2909 		 * this will not prevent disassociation (brelvp()) so we
2910 		 * must recheck (vp,loffset) after acquiring the lock.
2911 		 *
2912 		 * Without the ref the buffer could potentially be reused
2913 		 * before we acquire the lock and create a deadlock
2914 		 * situation between the thread trying to reuse the buffer
2915 		 * and us due to the fact that we would wind up blocking
2916 		 * on a random (vp,loffset).
2917 		 */
2918 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2919 			if (blkflags & GETBLK_NOWAIT) {
2920 				bqdrop(bp);
2921 				return(NULL);
2922 			}
2923 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2924 			if (blkflags & GETBLK_PCATCH)
2925 				lkflags |= LK_PCATCH;
2926 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2927 			if (error) {
2928 				bqdrop(bp);
2929 				if (error == ENOLCK)
2930 					goto loop;
2931 				return (NULL);
2932 			}
2933 			/* buffer may have changed on us */
2934 		}
2935 		bqdrop(bp);
2936 
2937 		/*
2938 		 * Once the buffer has been locked, make sure we didn't race
2939 		 * a buffer recyclement.  Buffers that are no longer hashed
2940 		 * will have b_vp == NULL, so this takes care of that check
2941 		 * as well.
2942 		 */
2943 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2944 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2945 				"was recycled\n",
2946 				bp, vp, (long long)loffset);
2947 			BUF_UNLOCK(bp);
2948 			goto loop;
2949 		}
2950 
2951 		/*
2952 		 * If SZMATCH any pre-existing buffer must be of the requested
2953 		 * size or NULL is returned.  The caller absolutely does not
2954 		 * want getblk() to bwrite() the buffer on a size mismatch.
2955 		 */
2956 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2957 			BUF_UNLOCK(bp);
2958 			return(NULL);
2959 		}
2960 
2961 		/*
2962 		 * All vnode-based buffers must be backed by a VM object.
2963 		 */
2964 		KKASSERT(bp->b_flags & B_VMIO);
2965 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2966 		bp->b_flags &= ~B_AGE;
2967 
2968 		/*
2969 		 * Make sure that B_INVAL buffers do not have a cached
2970 		 * block number translation.
2971 		 */
2972 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2973 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2974 				" did not have cleared bio_offset cache\n",
2975 				bp, vp, (long long)loffset);
2976 			clearbiocache(&bp->b_bio2);
2977 		}
2978 
2979 		/*
2980 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2981 		 * invalid.
2982 		 */
2983 		if (bp->b_flags & B_INVAL)
2984 			bp->b_flags &= ~B_CACHE;
2985 		bremfree(bp);
2986 
2987 		/*
2988 		 * Any size inconsistancy with a dirty buffer or a buffer
2989 		 * with a softupdates dependancy must be resolved.  Resizing
2990 		 * the buffer in such circumstances can lead to problems.
2991 		 *
2992 		 * Dirty or dependant buffers are written synchronously.
2993 		 * Other types of buffers are simply released and
2994 		 * reconstituted as they may be backed by valid, dirty VM
2995 		 * pages (but not marked B_DELWRI).
2996 		 *
2997 		 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2998 		 * and may be left over from a prior truncation (and thus
2999 		 * no longer represent the actual EOF point), so we
3000 		 * definitely do not want to B_NOCACHE the backing store.
3001 		 */
3002 		if (size != bp->b_bcount) {
3003 			if (bp->b_flags & B_DELWRI) {
3004 				bp->b_flags |= B_RELBUF;
3005 				bwrite(bp);
3006 			} else if (LIST_FIRST(&bp->b_dep)) {
3007 				bp->b_flags |= B_RELBUF;
3008 				bwrite(bp);
3009 			} else {
3010 				bp->b_flags |= B_RELBUF;
3011 				brelse(bp);
3012 			}
3013 			goto loop;
3014 		}
3015 		KKASSERT(size <= bp->b_kvasize);
3016 		KASSERT(bp->b_loffset != NOOFFSET,
3017 			("getblk: no buffer offset"));
3018 
3019 		/*
3020 		 * A buffer with B_DELWRI set and B_CACHE clear must
3021 		 * be committed before we can return the buffer in
3022 		 * order to prevent the caller from issuing a read
3023 		 * ( due to B_CACHE not being set ) and overwriting
3024 		 * it.
3025 		 *
3026 		 * Most callers, including NFS and FFS, need this to
3027 		 * operate properly either because they assume they
3028 		 * can issue a read if B_CACHE is not set, or because
3029 		 * ( for example ) an uncached B_DELWRI might loop due
3030 		 * to softupdates re-dirtying the buffer.  In the latter
3031 		 * case, B_CACHE is set after the first write completes,
3032 		 * preventing further loops.
3033 		 *
3034 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3035 		 * above while extending the buffer, we cannot allow the
3036 		 * buffer to remain with B_CACHE set after the write
3037 		 * completes or it will represent a corrupt state.  To
3038 		 * deal with this we set B_NOCACHE to scrap the buffer
3039 		 * after the write.
3040 		 *
3041 		 * XXX Should this be B_RELBUF instead of B_NOCACHE?
3042 		 *     I'm not even sure this state is still possible
3043 		 *     now that getblk() writes out any dirty buffers
3044 		 *     on size changes.
3045 		 *
3046 		 * We might be able to do something fancy, like setting
3047 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3048 		 * so the below call doesn't set B_CACHE, but that gets real
3049 		 * confusing.  This is much easier.
3050 		 */
3051 
3052 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3053 			kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
3054 				"and CACHE clear, b_flags %08x\n",
3055 				bp, (uintmax_t)bp->b_loffset, bp->b_flags);
3056 			bp->b_flags |= B_NOCACHE;
3057 			bwrite(bp);
3058 			goto loop;
3059 		}
3060 	} else {
3061 		/*
3062 		 * Buffer is not in-core, create new buffer.  The buffer
3063 		 * returned by getnewbuf() is locked.  Note that the returned
3064 		 * buffer is also considered valid (not marked B_INVAL).
3065 		 *
3066 		 * Calculating the offset for the I/O requires figuring out
3067 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
3068 		 * the mount's f_iosize otherwise.  If the vnode does not
3069 		 * have an associated mount we assume that the passed size is
3070 		 * the block size.
3071 		 *
3072 		 * Note that vn_isdisk() cannot be used here since it may
3073 		 * return a failure for numerous reasons.   Note that the
3074 		 * buffer size may be larger then the block size (the caller
3075 		 * will use block numbers with the proper multiple).  Beware
3076 		 * of using any v_* fields which are part of unions.  In
3077 		 * particular, in DragonFly the mount point overloading
3078 		 * mechanism uses the namecache only and the underlying
3079 		 * directory vnode is not a special case.
3080 		 */
3081 		int bsize, maxsize;
3082 
3083 		if (vp->v_type == VBLK || vp->v_type == VCHR)
3084 			bsize = DEV_BSIZE;
3085 		else if (vp->v_mount)
3086 			bsize = vp->v_mount->mnt_stat.f_iosize;
3087 		else
3088 			bsize = size;
3089 
3090 		maxsize = size + (loffset & PAGE_MASK);
3091 		maxsize = imax(maxsize, bsize);
3092 
3093 		bp = getnewbuf(blkflags, slptimeo, size, maxsize);
3094 		if (bp == NULL) {
3095 			if (slpflags || slptimeo)
3096 				return NULL;
3097 			goto loop;
3098 		}
3099 
3100 		/*
3101 		 * Atomically insert the buffer into the hash, so that it can
3102 		 * be found by findblk().
3103 		 *
3104 		 * If bgetvp() returns non-zero a collision occured, and the
3105 		 * bp will not be associated with the vnode.
3106 		 *
3107 		 * Make sure the translation layer has been cleared.
3108 		 */
3109 		bp->b_loffset = loffset;
3110 		bp->b_bio2.bio_offset = NOOFFSET;
3111 		/* bp->b_bio2.bio_next = NULL; */
3112 
3113 		if (bgetvp(vp, bp, size)) {
3114 			bp->b_flags |= B_INVAL;
3115 			brelse(bp);
3116 			goto loop;
3117 		}
3118 
3119 		/*
3120 		 * All vnode-based buffers must be backed by a VM object.
3121 		 */
3122 		KKASSERT(vp->v_object != NULL);
3123 		bp->b_flags |= B_VMIO;
3124 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3125 
3126 		allocbuf(bp, size);
3127 	}
3128 	KKASSERT(dsched_is_clear_buf_priv(bp));
3129 	return (bp);
3130 }
3131 
3132 /*
3133  * regetblk(bp)
3134  *
3135  * Reacquire a buffer that was previously released to the locked queue,
3136  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3137  * set B_LOCKED (which handles the acquisition race).
3138  *
3139  * To this end, either B_LOCKED must be set or the dependancy list must be
3140  * non-empty.
3141  *
3142  * MPSAFE
3143  */
3144 void
3145 regetblk(struct buf *bp)
3146 {
3147 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3148 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3149 	bremfree(bp);
3150 }
3151 
3152 /*
3153  * geteblk:
3154  *
3155  *	Get an empty, disassociated buffer of given size.  The buffer is
3156  *	initially set to B_INVAL.
3157  *
3158  *	critical section protection is not required for the allocbuf()
3159  *	call because races are impossible here.
3160  *
3161  * MPALMOSTSAFE
3162  */
3163 struct buf *
3164 geteblk(int size)
3165 {
3166 	struct buf *bp;
3167 	int maxsize;
3168 
3169 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3170 
3171 	while ((bp = getnewbuf(0, 0, size, maxsize)) == NULL)
3172 		;
3173 	allocbuf(bp, size);
3174 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3175 	KKASSERT(dsched_is_clear_buf_priv(bp));
3176 	return (bp);
3177 }
3178 
3179 
3180 /*
3181  * allocbuf:
3182  *
3183  *	This code constitutes the buffer memory from either anonymous system
3184  *	memory (in the case of non-VMIO operations) or from an associated
3185  *	VM object (in the case of VMIO operations).  This code is able to
3186  *	resize a buffer up or down.
3187  *
3188  *	Note that this code is tricky, and has many complications to resolve
3189  *	deadlock or inconsistant data situations.  Tread lightly!!!
3190  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
3191  *	the caller.  Calling this code willy nilly can result in the loss of
3192  *	data.
3193  *
3194  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3195  *	B_CACHE for the non-VMIO case.
3196  *
3197  *	This routine does not need to be called from a critical section but you
3198  *	must own the buffer.
3199  *
3200  * MPSAFE
3201  */
3202 int
3203 allocbuf(struct buf *bp, int size)
3204 {
3205 	int newbsize, mbsize;
3206 	int i;
3207 
3208 	if (BUF_REFCNT(bp) == 0)
3209 		panic("allocbuf: buffer not busy");
3210 
3211 	if (bp->b_kvasize < size)
3212 		panic("allocbuf: buffer too small");
3213 
3214 	if ((bp->b_flags & B_VMIO) == 0) {
3215 		caddr_t origbuf;
3216 		int origbufsize;
3217 		/*
3218 		 * Just get anonymous memory from the kernel.  Don't
3219 		 * mess with B_CACHE.
3220 		 */
3221 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3222 		if (bp->b_flags & B_MALLOC)
3223 			newbsize = mbsize;
3224 		else
3225 			newbsize = round_page(size);
3226 
3227 		if (newbsize < bp->b_bufsize) {
3228 			/*
3229 			 * Malloced buffers are not shrunk
3230 			 */
3231 			if (bp->b_flags & B_MALLOC) {
3232 				if (newbsize) {
3233 					bp->b_bcount = size;
3234 				} else {
3235 					kfree(bp->b_data, M_BIOBUF);
3236 					if (bp->b_bufsize) {
3237 						atomic_subtract_long(&bufmallocspace, bp->b_bufsize);
3238 						bufspacewakeup();
3239 						bp->b_bufsize = 0;
3240 					}
3241 					bp->b_data = bp->b_kvabase;
3242 					bp->b_bcount = 0;
3243 					bp->b_flags &= ~B_MALLOC;
3244 				}
3245 				return 1;
3246 			}
3247 			vm_hold_free_pages(
3248 			    bp,
3249 			    (vm_offset_t) bp->b_data + newbsize,
3250 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3251 		} else if (newbsize > bp->b_bufsize) {
3252 			/*
3253 			 * We only use malloced memory on the first allocation.
3254 			 * and revert to page-allocated memory when the buffer
3255 			 * grows.
3256 			 */
3257 			if ((bufmallocspace < maxbufmallocspace) &&
3258 				(bp->b_bufsize == 0) &&
3259 				(mbsize <= PAGE_SIZE/2)) {
3260 
3261 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3262 				bp->b_bufsize = mbsize;
3263 				bp->b_bcount = size;
3264 				bp->b_flags |= B_MALLOC;
3265 				atomic_add_long(&bufmallocspace, mbsize);
3266 				return 1;
3267 			}
3268 			origbuf = NULL;
3269 			origbufsize = 0;
3270 			/*
3271 			 * If the buffer is growing on its other-than-first
3272 			 * allocation, then we revert to the page-allocation
3273 			 * scheme.
3274 			 */
3275 			if (bp->b_flags & B_MALLOC) {
3276 				origbuf = bp->b_data;
3277 				origbufsize = bp->b_bufsize;
3278 				bp->b_data = bp->b_kvabase;
3279 				if (bp->b_bufsize) {
3280 					atomic_subtract_long(&bufmallocspace,
3281 							     bp->b_bufsize);
3282 					bufspacewakeup();
3283 					bp->b_bufsize = 0;
3284 				}
3285 				bp->b_flags &= ~B_MALLOC;
3286 				newbsize = round_page(newbsize);
3287 			}
3288 			vm_hold_load_pages(
3289 			    bp,
3290 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3291 			    (vm_offset_t) bp->b_data + newbsize);
3292 			if (origbuf) {
3293 				bcopy(origbuf, bp->b_data, origbufsize);
3294 				kfree(origbuf, M_BIOBUF);
3295 			}
3296 		}
3297 	} else {
3298 		vm_page_t m;
3299 		int desiredpages;
3300 
3301 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3302 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3303 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3304 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3305 
3306 		if (bp->b_flags & B_MALLOC)
3307 			panic("allocbuf: VMIO buffer can't be malloced");
3308 		/*
3309 		 * Set B_CACHE initially if buffer is 0 length or will become
3310 		 * 0-length.
3311 		 */
3312 		if (size == 0 || bp->b_bufsize == 0)
3313 			bp->b_flags |= B_CACHE;
3314 
3315 		if (newbsize < bp->b_bufsize) {
3316 			/*
3317 			 * DEV_BSIZE aligned new buffer size is less then the
3318 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3319 			 * if we have to remove any pages.
3320 			 */
3321 			if (desiredpages < bp->b_xio.xio_npages) {
3322 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3323 					/*
3324 					 * the page is not freed here -- it
3325 					 * is the responsibility of
3326 					 * vnode_pager_setsize
3327 					 */
3328 					m = bp->b_xio.xio_pages[i];
3329 					KASSERT(m != bogus_page,
3330 					    ("allocbuf: bogus page found"));
3331 					vm_page_busy_wait(m, TRUE, "biodep");
3332 					bp->b_xio.xio_pages[i] = NULL;
3333 					vm_page_unwire(m, 0);
3334 					vm_page_wakeup(m);
3335 				}
3336 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3337 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3338 				bp->b_xio.xio_npages = desiredpages;
3339 			}
3340 		} else if (size > bp->b_bcount) {
3341 			/*
3342 			 * We are growing the buffer, possibly in a
3343 			 * byte-granular fashion.
3344 			 */
3345 			struct vnode *vp;
3346 			vm_object_t obj;
3347 			vm_offset_t toff;
3348 			vm_offset_t tinc;
3349 
3350 			/*
3351 			 * Step 1, bring in the VM pages from the object,
3352 			 * allocating them if necessary.  We must clear
3353 			 * B_CACHE if these pages are not valid for the
3354 			 * range covered by the buffer.
3355 			 *
3356 			 * critical section protection is required to protect
3357 			 * against interrupts unbusying and freeing pages
3358 			 * between our vm_page_lookup() and our
3359 			 * busycheck/wiring call.
3360 			 */
3361 			vp = bp->b_vp;
3362 			obj = vp->v_object;
3363 
3364 			vm_object_hold(obj);
3365 			while (bp->b_xio.xio_npages < desiredpages) {
3366 				vm_page_t m;
3367 				vm_pindex_t pi;
3368 				int error;
3369 
3370 				pi = OFF_TO_IDX(bp->b_loffset) +
3371 				     bp->b_xio.xio_npages;
3372 
3373 				/*
3374 				 * Blocking on m->busy might lead to a
3375 				 * deadlock:
3376 				 *
3377 				 *  vm_fault->getpages->cluster_read->allocbuf
3378 				 */
3379 				m = vm_page_lookup_busy_try(obj, pi, FALSE,
3380 							    &error);
3381 				if (error) {
3382 					vm_page_sleep_busy(m, FALSE, "pgtblk");
3383 					continue;
3384 				}
3385 				if (m == NULL) {
3386 					/*
3387 					 * note: must allocate system pages
3388 					 * since blocking here could intefere
3389 					 * with paging I/O, no matter which
3390 					 * process we are.
3391 					 */
3392 					m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
3393 					if (m) {
3394 						vm_page_wire(m);
3395 						vm_page_flag_clear(m, PG_ZERO);
3396 						vm_page_wakeup(m);
3397 						bp->b_flags &= ~B_CACHE;
3398 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3399 						++bp->b_xio.xio_npages;
3400 					}
3401 					continue;
3402 				}
3403 
3404 				/*
3405 				 * We found a page and were able to busy it.
3406 				 */
3407 				vm_page_flag_clear(m, PG_ZERO);
3408 				vm_page_wire(m);
3409 				vm_page_wakeup(m);
3410 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3411 				++bp->b_xio.xio_npages;
3412 				if (bp->b_act_count < m->act_count)
3413 					bp->b_act_count = m->act_count;
3414 			}
3415 			vm_object_drop(obj);
3416 
3417 			/*
3418 			 * Step 2.  We've loaded the pages into the buffer,
3419 			 * we have to figure out if we can still have B_CACHE
3420 			 * set.  Note that B_CACHE is set according to the
3421 			 * byte-granular range ( bcount and size ), not the
3422 			 * aligned range ( newbsize ).
3423 			 *
3424 			 * The VM test is against m->valid, which is DEV_BSIZE
3425 			 * aligned.  Needless to say, the validity of the data
3426 			 * needs to also be DEV_BSIZE aligned.  Note that this
3427 			 * fails with NFS if the server or some other client
3428 			 * extends the file's EOF.  If our buffer is resized,
3429 			 * B_CACHE may remain set! XXX
3430 			 */
3431 
3432 			toff = bp->b_bcount;
3433 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3434 
3435 			while ((bp->b_flags & B_CACHE) && toff < size) {
3436 				vm_pindex_t pi;
3437 
3438 				if (tinc > (size - toff))
3439 					tinc = size - toff;
3440 
3441 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3442 				    PAGE_SHIFT;
3443 
3444 				vfs_buf_test_cache(
3445 				    bp,
3446 				    bp->b_loffset,
3447 				    toff,
3448 				    tinc,
3449 				    bp->b_xio.xio_pages[pi]
3450 				);
3451 				toff += tinc;
3452 				tinc = PAGE_SIZE;
3453 			}
3454 
3455 			/*
3456 			 * Step 3, fixup the KVM pmap.  Remember that
3457 			 * bp->b_data is relative to bp->b_loffset, but
3458 			 * bp->b_loffset may be offset into the first page.
3459 			 */
3460 
3461 			bp->b_data = (caddr_t)
3462 			    trunc_page((vm_offset_t)bp->b_data);
3463 			pmap_qenter(
3464 			    (vm_offset_t)bp->b_data,
3465 			    bp->b_xio.xio_pages,
3466 			    bp->b_xio.xio_npages
3467 			);
3468 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3469 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3470 		}
3471 	}
3472 
3473 	/* adjust space use on already-dirty buffer */
3474 	if (bp->b_flags & B_DELWRI) {
3475 		spin_lock(&bufcspin);
3476 		/* dirtykvaspace unchanged */
3477 		dirtybufspace += newbsize - bp->b_bufsize;
3478 		if (bp->b_flags & B_HEAVY)
3479 			dirtybufspacehw += newbsize - bp->b_bufsize;
3480 		spin_unlock(&bufcspin);
3481 	}
3482 	if (newbsize < bp->b_bufsize)
3483 		bufspacewakeup();
3484 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3485 	bp->b_bcount = size;		/* requested buffer size	*/
3486 	return 1;
3487 }
3488 
3489 /*
3490  * biowait:
3491  *
3492  *	Wait for buffer I/O completion, returning error status. B_EINTR
3493  *	is converted into an EINTR error but not cleared (since a chain
3494  *	of biowait() calls may occur).
3495  *
3496  *	On return bpdone() will have been called but the buffer will remain
3497  *	locked and will not have been brelse()'d.
3498  *
3499  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3500  *	likely still in progress on return.
3501  *
3502  *	NOTE!  This operation is on a BIO, not a BUF.
3503  *
3504  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3505  *
3506  * MPSAFE
3507  */
3508 static __inline int
3509 _biowait(struct bio *bio, const char *wmesg, int to)
3510 {
3511 	struct buf *bp = bio->bio_buf;
3512 	u_int32_t flags;
3513 	u_int32_t nflags;
3514 	int error;
3515 
3516 	KKASSERT(bio == &bp->b_bio1);
3517 	for (;;) {
3518 		flags = bio->bio_flags;
3519 		if (flags & BIO_DONE)
3520 			break;
3521 		nflags = flags | BIO_WANT;
3522 		tsleep_interlock(bio, 0);
3523 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3524 			if (wmesg)
3525 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3526 			else if (bp->b_cmd == BUF_CMD_READ)
3527 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3528 			else
3529 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3530 			if (error) {
3531 				kprintf("tsleep error biowait %d\n", error);
3532 				return (error);
3533 			}
3534 		}
3535 	}
3536 
3537 	/*
3538 	 * Finish up.
3539 	 */
3540 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3541 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3542 	if (bp->b_flags & B_EINTR)
3543 		return (EINTR);
3544 	if (bp->b_flags & B_ERROR)
3545 		return (bp->b_error ? bp->b_error : EIO);
3546 	return (0);
3547 }
3548 
3549 int
3550 biowait(struct bio *bio, const char *wmesg)
3551 {
3552 	return(_biowait(bio, wmesg, 0));
3553 }
3554 
3555 int
3556 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3557 {
3558 	return(_biowait(bio, wmesg, to));
3559 }
3560 
3561 /*
3562  * This associates a tracking count with an I/O.  vn_strategy() and
3563  * dev_dstrategy() do this automatically but there are a few cases
3564  * where a vnode or device layer is bypassed when a block translation
3565  * is cached.  In such cases bio_start_transaction() may be called on
3566  * the bypassed layers so the system gets an I/O in progress indication
3567  * for those higher layers.
3568  */
3569 void
3570 bio_start_transaction(struct bio *bio, struct bio_track *track)
3571 {
3572 	bio->bio_track = track;
3573 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3574 		dsched_new_buf(bio->bio_buf);
3575 	bio_track_ref(track);
3576 }
3577 
3578 /*
3579  * Initiate I/O on a vnode.
3580  *
3581  * SWAPCACHE OPERATION:
3582  *
3583  *	Real buffer cache buffers have a non-NULL bp->b_vp.  Unfortunately
3584  *	devfs also uses b_vp for fake buffers so we also have to check
3585  *	that B_PAGING is 0.  In this case the passed 'vp' is probably the
3586  *	underlying block device.  The swap assignments are related to the
3587  *	buffer cache buffer's b_vp, not the passed vp.
3588  *
3589  *	The passed vp == bp->b_vp only in the case where the strategy call
3590  *	is made on the vp itself for its own buffers (a regular file or
3591  *	block device vp).  The filesystem usually then re-calls vn_strategy()
3592  *	after translating the request to an underlying device.
3593  *
3594  *	Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3595  *	underlying buffer cache buffers.
3596  *
3597  *	We can only deal with page-aligned buffers at the moment, because
3598  *	we can't tell what the real dirty state for pages straddling a buffer
3599  *	are.
3600  *
3601  *	In order to call swap_pager_strategy() we must provide the VM object
3602  *	and base offset for the underlying buffer cache pages so it can find
3603  *	the swap blocks.
3604  */
3605 void
3606 vn_strategy(struct vnode *vp, struct bio *bio)
3607 {
3608 	struct bio_track *track;
3609 	struct buf *bp = bio->bio_buf;
3610 
3611 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3612 
3613 	/*
3614 	 * Set when an I/O is issued on the bp.  Cleared by consumers
3615 	 * (aka HAMMER), allowing the consumer to determine if I/O had
3616 	 * actually occurred.
3617 	 */
3618 	bp->b_flags |= B_IODEBUG;
3619 
3620 	/*
3621 	 * Handle the swap cache intercept.
3622 	 */
3623 	if (vn_cache_strategy(vp, bio))
3624 		return;
3625 
3626 	/*
3627 	 * Otherwise do the operation through the filesystem
3628 	 */
3629         if (bp->b_cmd == BUF_CMD_READ)
3630                 track = &vp->v_track_read;
3631         else
3632                 track = &vp->v_track_write;
3633 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3634 	bio->bio_track = track;
3635 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3636 		dsched_new_buf(bio->bio_buf);
3637 	bio_track_ref(track);
3638         vop_strategy(*vp->v_ops, vp, bio);
3639 }
3640 
3641 static void vn_cache_strategy_callback(struct bio *bio);
3642 
3643 int
3644 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3645 {
3646 	struct buf *bp = bio->bio_buf;
3647 	struct bio *nbio;
3648 	vm_object_t object;
3649 	vm_page_t m;
3650 	int i;
3651 
3652 	/*
3653 	 * Is this buffer cache buffer suitable for reading from
3654 	 * the swap cache?
3655 	 */
3656 	if (vm_swapcache_read_enable == 0 ||
3657 	    bp->b_cmd != BUF_CMD_READ ||
3658 	    ((bp->b_flags & B_CLUSTER) == 0 &&
3659 	     (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3660 	    ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3661 	    (bp->b_bcount & PAGE_MASK) != 0) {
3662 		return(0);
3663 	}
3664 
3665 	/*
3666 	 * Figure out the original VM object (it will match the underlying
3667 	 * VM pages).  Note that swap cached data uses page indices relative
3668 	 * to that object, not relative to bio->bio_offset.
3669 	 */
3670 	if (bp->b_flags & B_CLUSTER)
3671 		object = vp->v_object;
3672 	else
3673 		object = bp->b_vp->v_object;
3674 
3675 	/*
3676 	 * In order to be able to use the swap cache all underlying VM
3677 	 * pages must be marked as such, and we can't have any bogus pages.
3678 	 */
3679 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3680 		m = bp->b_xio.xio_pages[i];
3681 		if ((m->flags & PG_SWAPPED) == 0)
3682 			break;
3683 		if (m == bogus_page)
3684 			break;
3685 	}
3686 
3687 	/*
3688 	 * If we are good then issue the I/O using swap_pager_strategy().
3689 	 *
3690 	 * We can only do this if the buffer actually supports object-backed
3691 	 * I/O.  If it doesn't npages will be 0.
3692 	 */
3693 	if (i && i == bp->b_xio.xio_npages) {
3694 		m = bp->b_xio.xio_pages[0];
3695 		nbio = push_bio(bio);
3696 		nbio->bio_done = vn_cache_strategy_callback;
3697 		nbio->bio_offset = ptoa(m->pindex);
3698 		KKASSERT(m->object == object);
3699 		swap_pager_strategy(object, nbio);
3700 		return(1);
3701 	}
3702 	return(0);
3703 }
3704 
3705 /*
3706  * This is a bit of a hack but since the vn_cache_strategy() function can
3707  * override a VFS's strategy function we must make sure that the bio, which
3708  * is probably bio2, doesn't leak an unexpected offset value back to the
3709  * filesystem.  The filesystem (e.g. UFS) might otherwise assume that the
3710  * bio went through its own file strategy function and the the bio2 offset
3711  * is a cached disk offset when, in fact, it isn't.
3712  */
3713 static void
3714 vn_cache_strategy_callback(struct bio *bio)
3715 {
3716 	bio->bio_offset = NOOFFSET;
3717 	biodone(pop_bio(bio));
3718 }
3719 
3720 /*
3721  * bpdone:
3722  *
3723  *	Finish I/O on a buffer after all BIOs have been processed.
3724  *	Called when the bio chain is exhausted or by biowait.  If called
3725  *	by biowait, elseit is typically 0.
3726  *
3727  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3728  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3729  *	assuming B_INVAL is clear.
3730  *
3731  *	For the VMIO case, we set B_CACHE if the op was a read and no
3732  *	read error occured, or if the op was a write.  B_CACHE is never
3733  *	set if the buffer is invalid or otherwise uncacheable.
3734  *
3735  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3736  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3737  *	in the biodone routine.
3738  */
3739 void
3740 bpdone(struct buf *bp, int elseit)
3741 {
3742 	buf_cmd_t cmd;
3743 
3744 	KASSERT(BUF_REFCNTNB(bp) > 0,
3745 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3746 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3747 		("biodone: bp %p already done!", bp));
3748 
3749 	/*
3750 	 * No more BIOs are left.  All completion functions have been dealt
3751 	 * with, now we clean up the buffer.
3752 	 */
3753 	cmd = bp->b_cmd;
3754 	bp->b_cmd = BUF_CMD_DONE;
3755 
3756 	/*
3757 	 * Only reads and writes are processed past this point.
3758 	 */
3759 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3760 		if (cmd == BUF_CMD_FREEBLKS)
3761 			bp->b_flags |= B_NOCACHE;
3762 		if (elseit)
3763 			brelse(bp);
3764 		return;
3765 	}
3766 
3767 	/*
3768 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3769 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3770 	 */
3771 	if (LIST_FIRST(&bp->b_dep) != NULL)
3772 		buf_complete(bp);	/* MPSAFE */
3773 
3774 	/*
3775 	 * A failed write must re-dirty the buffer unless B_INVAL
3776 	 * was set.  Only applicable to normal buffers (with VPs).
3777 	 * vinum buffers may not have a vp.
3778 	 */
3779 	if (cmd == BUF_CMD_WRITE &&
3780 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3781 		bp->b_flags &= ~B_NOCACHE;
3782 		if (bp->b_vp)
3783 			bdirty(bp);
3784 	}
3785 
3786 	if (bp->b_flags & B_VMIO) {
3787 		int i;
3788 		vm_ooffset_t foff;
3789 		vm_page_t m;
3790 		vm_object_t obj;
3791 		int iosize;
3792 		struct vnode *vp = bp->b_vp;
3793 
3794 		obj = vp->v_object;
3795 
3796 #if defined(VFS_BIO_DEBUG)
3797 		if (vp->v_auxrefs == 0)
3798 			panic("biodone: zero vnode hold count");
3799 		if ((vp->v_flag & VOBJBUF) == 0)
3800 			panic("biodone: vnode is not setup for merged cache");
3801 #endif
3802 
3803 		foff = bp->b_loffset;
3804 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3805 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3806 
3807 #if defined(VFS_BIO_DEBUG)
3808 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3809 			kprintf("biodone: paging in progress(%d) < "
3810 				"bp->b_xio.xio_npages(%d)\n",
3811 				obj->paging_in_progress,
3812 				bp->b_xio.xio_npages);
3813 		}
3814 #endif
3815 
3816 		/*
3817 		 * Set B_CACHE if the op was a normal read and no error
3818 		 * occured.  B_CACHE is set for writes in the b*write()
3819 		 * routines.
3820 		 */
3821 		iosize = bp->b_bcount - bp->b_resid;
3822 		if (cmd == BUF_CMD_READ &&
3823 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3824 			bp->b_flags |= B_CACHE;
3825 		}
3826 
3827 		vm_object_hold(obj);
3828 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3829 			int bogusflag = 0;
3830 			int resid;
3831 
3832 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3833 			if (resid > iosize)
3834 				resid = iosize;
3835 
3836 			/*
3837 			 * cleanup bogus pages, restoring the originals.  Since
3838 			 * the originals should still be wired, we don't have
3839 			 * to worry about interrupt/freeing races destroying
3840 			 * the VM object association.
3841 			 */
3842 			m = bp->b_xio.xio_pages[i];
3843 			if (m == bogus_page) {
3844 				bogusflag = 1;
3845 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3846 				if (m == NULL)
3847 					panic("biodone: page disappeared");
3848 				bp->b_xio.xio_pages[i] = m;
3849 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3850 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3851 			}
3852 #if defined(VFS_BIO_DEBUG)
3853 			if (OFF_TO_IDX(foff) != m->pindex) {
3854 				kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3855 					"mismatch\n",
3856 					(unsigned long)foff, (long)m->pindex);
3857 			}
3858 #endif
3859 
3860 			/*
3861 			 * In the write case, the valid and clean bits are
3862 			 * already changed correctly (see bdwrite()), so we
3863 			 * only need to do this here in the read case.
3864 			 */
3865 			vm_page_busy_wait(m, FALSE, "bpdpgw");
3866 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3867 				vfs_clean_one_page(bp, i, m);
3868 			}
3869 			vm_page_flag_clear(m, PG_ZERO);
3870 
3871 			/*
3872 			 * when debugging new filesystems or buffer I/O
3873 			 * methods, this is the most common error that pops
3874 			 * up.  if you see this, you have not set the page
3875 			 * busy flag correctly!!!
3876 			 */
3877 			if (m->busy == 0) {
3878 				kprintf("biodone: page busy < 0, "
3879 				    "pindex: %d, foff: 0x(%x,%x), "
3880 				    "resid: %d, index: %d\n",
3881 				    (int) m->pindex, (int)(foff >> 32),
3882 						(int) foff & 0xffffffff, resid, i);
3883 				if (!vn_isdisk(vp, NULL))
3884 					kprintf(" iosize: %ld, loffset: %lld, "
3885 						"flags: 0x%08x, npages: %d\n",
3886 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3887 					    (long long)bp->b_loffset,
3888 					    bp->b_flags, bp->b_xio.xio_npages);
3889 				else
3890 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3891 					    (long long)bp->b_loffset,
3892 					    bp->b_flags, bp->b_xio.xio_npages);
3893 				kprintf(" valid: 0x%x, dirty: 0x%x, "
3894 					"wired: %d\n",
3895 					m->valid, m->dirty,
3896 					m->wire_count);
3897 				panic("biodone: page busy < 0");
3898 			}
3899 			vm_page_io_finish(m);
3900 			vm_page_wakeup(m);
3901 			vm_object_pip_wakeup(obj);
3902 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3903 			iosize -= resid;
3904 		}
3905 		bp->b_flags &= ~B_HASBOGUS;
3906 		vm_object_drop(obj);
3907 	}
3908 
3909 	/*
3910 	 * Finish up by releasing the buffer.  There are no more synchronous
3911 	 * or asynchronous completions, those were handled by bio_done
3912 	 * callbacks.
3913 	 */
3914 	if (elseit) {
3915 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3916 			brelse(bp);
3917 		else
3918 			bqrelse(bp);
3919 	}
3920 }
3921 
3922 /*
3923  * Normal biodone.
3924  */
3925 void
3926 biodone(struct bio *bio)
3927 {
3928 	struct buf *bp = bio->bio_buf;
3929 
3930 	runningbufwakeup(bp);
3931 
3932 	/*
3933 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3934 	 */
3935 	while (bio) {
3936 		biodone_t *done_func;
3937 		struct bio_track *track;
3938 
3939 		/*
3940 		 * BIO tracking.  Most but not all BIOs are tracked.
3941 		 */
3942 		if ((track = bio->bio_track) != NULL) {
3943 			bio_track_rel(track);
3944 			bio->bio_track = NULL;
3945 		}
3946 
3947 		/*
3948 		 * A bio_done function terminates the loop.  The function
3949 		 * will be responsible for any further chaining and/or
3950 		 * buffer management.
3951 		 *
3952 		 * WARNING!  The done function can deallocate the buffer!
3953 		 */
3954 		if ((done_func = bio->bio_done) != NULL) {
3955 			bio->bio_done = NULL;
3956 			done_func(bio);
3957 			return;
3958 		}
3959 		bio = bio->bio_prev;
3960 	}
3961 
3962 	/*
3963 	 * If we've run out of bio's do normal [a]synchronous completion.
3964 	 */
3965 	bpdone(bp, 1);
3966 }
3967 
3968 /*
3969  * Synchronous biodone - this terminates a synchronous BIO.
3970  *
3971  * bpdone() is called with elseit=FALSE, leaving the buffer completed
3972  * but still locked.  The caller must brelse() the buffer after waiting
3973  * for completion.
3974  */
3975 void
3976 biodone_sync(struct bio *bio)
3977 {
3978 	struct buf *bp = bio->bio_buf;
3979 	int flags;
3980 	int nflags;
3981 
3982 	KKASSERT(bio == &bp->b_bio1);
3983 	bpdone(bp, 0);
3984 
3985 	for (;;) {
3986 		flags = bio->bio_flags;
3987 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
3988 
3989 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3990 			if (flags & BIO_WANT)
3991 				wakeup(bio);
3992 			break;
3993 		}
3994 	}
3995 }
3996 
3997 /*
3998  * vfs_unbusy_pages:
3999  *
4000  *	This routine is called in lieu of iodone in the case of
4001  *	incomplete I/O.  This keeps the busy status for pages
4002  *	consistant.
4003  */
4004 void
4005 vfs_unbusy_pages(struct buf *bp)
4006 {
4007 	int i;
4008 
4009 	runningbufwakeup(bp);
4010 
4011 	if (bp->b_flags & B_VMIO) {
4012 		struct vnode *vp = bp->b_vp;
4013 		vm_object_t obj;
4014 
4015 		obj = vp->v_object;
4016 		vm_object_hold(obj);
4017 
4018 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4019 			vm_page_t m = bp->b_xio.xio_pages[i];
4020 
4021 			/*
4022 			 * When restoring bogus changes the original pages
4023 			 * should still be wired, so we are in no danger of
4024 			 * losing the object association and do not need
4025 			 * critical section protection particularly.
4026 			 */
4027 			if (m == bogus_page) {
4028 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
4029 				if (!m) {
4030 					panic("vfs_unbusy_pages: page missing");
4031 				}
4032 				bp->b_xio.xio_pages[i] = m;
4033 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4034 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4035 			}
4036 			vm_page_busy_wait(m, FALSE, "bpdpgw");
4037 			vm_page_flag_clear(m, PG_ZERO);
4038 			vm_page_io_finish(m);
4039 			vm_page_wakeup(m);
4040 			vm_object_pip_wakeup(obj);
4041 		}
4042 		bp->b_flags &= ~B_HASBOGUS;
4043 		vm_object_drop(obj);
4044 	}
4045 }
4046 
4047 /*
4048  * vfs_busy_pages:
4049  *
4050  *	This routine is called before a device strategy routine.
4051  *	It is used to tell the VM system that paging I/O is in
4052  *	progress, and treat the pages associated with the buffer
4053  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
4054  *	flag is handled to make sure that the object doesn't become
4055  *	inconsistant.
4056  *
4057  *	Since I/O has not been initiated yet, certain buffer flags
4058  *	such as B_ERROR or B_INVAL may be in an inconsistant state
4059  *	and should be ignored.
4060  *
4061  * MPSAFE
4062  */
4063 void
4064 vfs_busy_pages(struct vnode *vp, struct buf *bp)
4065 {
4066 	int i, bogus;
4067 	struct lwp *lp = curthread->td_lwp;
4068 
4069 	/*
4070 	 * The buffer's I/O command must already be set.  If reading,
4071 	 * B_CACHE must be 0 (double check against callers only doing
4072 	 * I/O when B_CACHE is 0).
4073 	 */
4074 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4075 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
4076 
4077 	if (bp->b_flags & B_VMIO) {
4078 		vm_object_t obj;
4079 
4080 		obj = vp->v_object;
4081 		KASSERT(bp->b_loffset != NOOFFSET,
4082 			("vfs_busy_pages: no buffer offset"));
4083 
4084 		/*
4085 		 * Busy all the pages.  We have to busy them all at once
4086 		 * to avoid deadlocks.
4087 		 */
4088 retry:
4089 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4090 			vm_page_t m = bp->b_xio.xio_pages[i];
4091 
4092 			if (vm_page_busy_try(m, FALSE)) {
4093 				vm_page_sleep_busy(m, FALSE, "vbpage");
4094 				while (--i >= 0)
4095 					vm_page_wakeup(bp->b_xio.xio_pages[i]);
4096 				goto retry;
4097 			}
4098 		}
4099 
4100 		/*
4101 		 * Setup for I/O, soft-busy the page right now because
4102 		 * the next loop may block.
4103 		 */
4104 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4105 			vm_page_t m = bp->b_xio.xio_pages[i];
4106 
4107 			vm_page_flag_clear(m, PG_ZERO);
4108 			if ((bp->b_flags & B_CLUSTER) == 0) {
4109 				vm_object_pip_add(obj, 1);
4110 				vm_page_io_start(m);
4111 			}
4112 		}
4113 
4114 		/*
4115 		 * Adjust protections for I/O and do bogus-page mapping.
4116 		 * Assume that vm_page_protect() can block (it can block
4117 		 * if VM_PROT_NONE, don't take any chances regardless).
4118 		 *
4119 		 * In particular note that for writes we must incorporate
4120 		 * page dirtyness from the VM system into the buffer's
4121 		 * dirty range.
4122 		 *
4123 		 * For reads we theoretically must incorporate page dirtyness
4124 		 * from the VM system to determine if the page needs bogus
4125 		 * replacement, but we shortcut the test by simply checking
4126 		 * that all m->valid bits are set, indicating that the page
4127 		 * is fully valid and does not need to be re-read.  For any
4128 		 * VM system dirtyness the page will also be fully valid
4129 		 * since it was mapped at one point.
4130 		 */
4131 		bogus = 0;
4132 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4133 			vm_page_t m = bp->b_xio.xio_pages[i];
4134 
4135 			vm_page_flag_clear(m, PG_ZERO);	/* XXX */
4136 			if (bp->b_cmd == BUF_CMD_WRITE) {
4137 				/*
4138 				 * When readying a vnode-backed buffer for
4139 				 * a write we must zero-fill any invalid
4140 				 * portions of the backing VM pages, mark
4141 				 * it valid and clear related dirty bits.
4142 				 *
4143 				 * vfs_clean_one_page() incorporates any
4144 				 * VM dirtyness and updates the b_dirtyoff
4145 				 * range (after we've made the page RO).
4146 				 *
4147 				 * It is also expected that the pmap modified
4148 				 * bit has already been cleared by the
4149 				 * vm_page_protect().  We may not be able
4150 				 * to clear all dirty bits for a page if it
4151 				 * was also memory mapped (NFS).
4152 				 *
4153 				 * Finally be sure to unassign any swap-cache
4154 				 * backing store as it is now stale.
4155 				 */
4156 				vm_page_protect(m, VM_PROT_READ);
4157 				vfs_clean_one_page(bp, i, m);
4158 				swap_pager_unswapped(m);
4159 			} else if (m->valid == VM_PAGE_BITS_ALL) {
4160 				/*
4161 				 * When readying a vnode-backed buffer for
4162 				 * read we must replace any dirty pages with
4163 				 * a bogus page so dirty data is not destroyed
4164 				 * when filling gaps.
4165 				 *
4166 				 * To avoid testing whether the page is
4167 				 * dirty we instead test that the page was
4168 				 * at some point mapped (m->valid fully
4169 				 * valid) with the understanding that
4170 				 * this also covers the dirty case.
4171 				 */
4172 				bp->b_xio.xio_pages[i] = bogus_page;
4173 				bp->b_flags |= B_HASBOGUS;
4174 				bogus++;
4175 			} else if (m->valid & m->dirty) {
4176 				/*
4177 				 * This case should not occur as partial
4178 				 * dirtyment can only happen if the buffer
4179 				 * is B_CACHE, and this code is not entered
4180 				 * if the buffer is B_CACHE.
4181 				 */
4182 				kprintf("Warning: vfs_busy_pages - page not "
4183 					"fully valid! loff=%jx bpf=%08x "
4184 					"idx=%d val=%02x dir=%02x\n",
4185 					(uintmax_t)bp->b_loffset, bp->b_flags,
4186 					i, m->valid, m->dirty);
4187 				vm_page_protect(m, VM_PROT_NONE);
4188 			} else {
4189 				/*
4190 				 * The page is not valid and can be made
4191 				 * part of the read.
4192 				 */
4193 				vm_page_protect(m, VM_PROT_NONE);
4194 			}
4195 			vm_page_wakeup(m);
4196 		}
4197 		if (bogus) {
4198 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4199 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4200 		}
4201 	}
4202 
4203 	/*
4204 	 * This is the easiest place to put the process accounting for the I/O
4205 	 * for now.
4206 	 */
4207 	if (lp != NULL) {
4208 		if (bp->b_cmd == BUF_CMD_READ)
4209 			lp->lwp_ru.ru_inblock++;
4210 		else
4211 			lp->lwp_ru.ru_oublock++;
4212 	}
4213 }
4214 
4215 /*
4216  * Tell the VM system that the pages associated with this buffer
4217  * are clean.  This is used for delayed writes where the data is
4218  * going to go to disk eventually without additional VM intevention.
4219  *
4220  * NOTE: While we only really need to clean through to b_bcount, we
4221  *	 just go ahead and clean through to b_bufsize.
4222  */
4223 static void
4224 vfs_clean_pages(struct buf *bp)
4225 {
4226 	vm_page_t m;
4227 	int i;
4228 
4229 	if ((bp->b_flags & B_VMIO) == 0)
4230 		return;
4231 
4232 	KASSERT(bp->b_loffset != NOOFFSET,
4233 		("vfs_clean_pages: no buffer offset"));
4234 
4235 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
4236 		m = bp->b_xio.xio_pages[i];
4237 		vfs_clean_one_page(bp, i, m);
4238 	}
4239 }
4240 
4241 /*
4242  * vfs_clean_one_page:
4243  *
4244  *	Set the valid bits and clear the dirty bits in a page within a
4245  *	buffer.  The range is restricted to the buffer's size and the
4246  *	buffer's logical offset might index into the first page.
4247  *
4248  *	The caller has busied or soft-busied the page and it is not mapped,
4249  *	test and incorporate the dirty bits into b_dirtyoff/end before
4250  *	clearing them.  Note that we need to clear the pmap modified bits
4251  *	after determining the the page was dirty, vm_page_set_validclean()
4252  *	does not do it for us.
4253  *
4254  *	This routine is typically called after a read completes (dirty should
4255  *	be zero in that case as we are not called on bogus-replace pages),
4256  *	or before a write is initiated.
4257  */
4258 static void
4259 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4260 {
4261 	int bcount;
4262 	int xoff;
4263 	int soff;
4264 	int eoff;
4265 
4266 	/*
4267 	 * Calculate offset range within the page but relative to buffer's
4268 	 * loffset.  loffset might be offset into the first page.
4269 	 */
4270 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4271 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4272 
4273 	if (pageno == 0) {
4274 		soff = xoff;
4275 		eoff = PAGE_SIZE;
4276 	} else {
4277 		soff = (pageno << PAGE_SHIFT);
4278 		eoff = soff + PAGE_SIZE;
4279 	}
4280 	if (eoff > bcount)
4281 		eoff = bcount;
4282 	if (soff >= eoff)
4283 		return;
4284 
4285 	/*
4286 	 * Test dirty bits and adjust b_dirtyoff/end.
4287 	 *
4288 	 * If dirty pages are incorporated into the bp any prior
4289 	 * B_NEEDCOMMIT state (NFS) must be cleared because the
4290 	 * caller has not taken into account the new dirty data.
4291 	 *
4292 	 * If the page was memory mapped the dirty bits might go beyond the
4293 	 * end of the buffer, but we can't really make the assumption that
4294 	 * a file EOF straddles the buffer (even though this is the case for
4295 	 * NFS if B_NEEDCOMMIT is also set).  So for the purposes of clearing
4296 	 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4297 	 * This also saves some console spam.
4298 	 *
4299 	 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4300 	 * NFS can handle huge commits but not huge writes.
4301 	 */
4302 	vm_page_test_dirty(m);
4303 	if (m->dirty) {
4304 		if ((bp->b_flags & B_NEEDCOMMIT) &&
4305 		    (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4306 			if (debug_commit)
4307 				kprintf("Warning: vfs_clean_one_page: bp %p "
4308 				    "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4309 				    " cmd %d vd %02x/%02x x/s/e %d %d %d "
4310 				    "doff/end %d %d\n",
4311 				    bp, (uintmax_t)bp->b_loffset, bp->b_bcount,
4312 				    bp->b_flags, bp->b_cmd,
4313 				    m->valid, m->dirty, xoff, soff, eoff,
4314 				    bp->b_dirtyoff, bp->b_dirtyend);
4315 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4316 			if (debug_commit)
4317 				print_backtrace(-1);
4318 		}
4319 		/*
4320 		 * Only clear the pmap modified bits if ALL the dirty bits
4321 		 * are set, otherwise the system might mis-clear portions
4322 		 * of a page.
4323 		 */
4324 		if (m->dirty == VM_PAGE_BITS_ALL &&
4325 		    (bp->b_flags & B_NEEDCOMMIT) == 0) {
4326 			pmap_clear_modify(m);
4327 		}
4328 		if (bp->b_dirtyoff > soff - xoff)
4329 			bp->b_dirtyoff = soff - xoff;
4330 		if (bp->b_dirtyend < eoff - xoff)
4331 			bp->b_dirtyend = eoff - xoff;
4332 	}
4333 
4334 	/*
4335 	 * Set related valid bits, clear related dirty bits.
4336 	 * Does not mess with the pmap modified bit.
4337 	 *
4338 	 * WARNING!  We cannot just clear all of m->dirty here as the
4339 	 *	     buffer cache buffers may use a DEV_BSIZE'd aligned
4340 	 *	     block size, or have an odd size (e.g. NFS at file EOF).
4341 	 *	     The putpages code can clear m->dirty to 0.
4342 	 *
4343 	 *	     If a VOP_WRITE generates a buffer cache buffer which
4344 	 *	     covers the same space as mapped writable pages the
4345 	 *	     buffer flush might not be able to clear all the dirty
4346 	 *	     bits and still require a putpages from the VM system
4347 	 *	     to finish it off.
4348 	 *
4349 	 * WARNING!  vm_page_set_validclean() currently assumes vm_token
4350 	 *	     is held.  The page might not be busied (bdwrite() case).
4351 	 *	     XXX remove this comment once we've validated that this
4352 	 *	     is no longer an issue.
4353 	 */
4354 	vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4355 }
4356 
4357 #if 0
4358 /*
4359  * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4360  * The page data is assumed to be valid (there is no zeroing here).
4361  */
4362 static void
4363 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4364 {
4365 	int bcount;
4366 	int xoff;
4367 	int soff;
4368 	int eoff;
4369 
4370 	/*
4371 	 * Calculate offset range within the page but relative to buffer's
4372 	 * loffset.  loffset might be offset into the first page.
4373 	 */
4374 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4375 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4376 
4377 	if (pageno == 0) {
4378 		soff = xoff;
4379 		eoff = PAGE_SIZE;
4380 	} else {
4381 		soff = (pageno << PAGE_SHIFT);
4382 		eoff = soff + PAGE_SIZE;
4383 	}
4384 	if (eoff > bcount)
4385 		eoff = bcount;
4386 	if (soff >= eoff)
4387 		return;
4388 	vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4389 }
4390 #endif
4391 
4392 /*
4393  * vfs_bio_clrbuf:
4394  *
4395  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
4396  *	to clear B_ERROR and B_INVAL.
4397  *
4398  *	Note that while we only theoretically need to clear through b_bcount,
4399  *	we go ahead and clear through b_bufsize.
4400  */
4401 
4402 void
4403 vfs_bio_clrbuf(struct buf *bp)
4404 {
4405 	int i, mask = 0;
4406 	caddr_t sa, ea;
4407 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4408 		bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4409 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4410 		    (bp->b_loffset & PAGE_MASK) == 0) {
4411 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4412 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4413 				bp->b_resid = 0;
4414 				return;
4415 			}
4416 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
4417 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
4418 				bzero(bp->b_data, bp->b_bufsize);
4419 				bp->b_xio.xio_pages[0]->valid |= mask;
4420 				bp->b_resid = 0;
4421 				return;
4422 			}
4423 		}
4424 		sa = bp->b_data;
4425 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4426 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4427 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4428 			ea = (caddr_t)(vm_offset_t)ulmin(
4429 			    (u_long)(vm_offset_t)ea,
4430 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4431 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4432 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4433 				continue;
4434 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4435 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
4436 					bzero(sa, ea - sa);
4437 				}
4438 			} else {
4439 				for (; sa < ea; sa += DEV_BSIZE, j++) {
4440 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
4441 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
4442 						bzero(sa, DEV_BSIZE);
4443 				}
4444 			}
4445 			bp->b_xio.xio_pages[i]->valid |= mask;
4446 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4447 		}
4448 		bp->b_resid = 0;
4449 	} else {
4450 		clrbuf(bp);
4451 	}
4452 }
4453 
4454 /*
4455  * vm_hold_load_pages:
4456  *
4457  *	Load pages into the buffer's address space.  The pages are
4458  *	allocated from the kernel object in order to reduce interference
4459  *	with the any VM paging I/O activity.  The range of loaded
4460  *	pages will be wired.
4461  *
4462  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
4463  *	retrieve the full range (to - from) of pages.
4464  *
4465  * MPSAFE
4466  */
4467 void
4468 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4469 {
4470 	vm_offset_t pg;
4471 	vm_page_t p;
4472 	int index;
4473 
4474 	to = round_page(to);
4475 	from = round_page(from);
4476 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4477 
4478 	pg = from;
4479 	while (pg < to) {
4480 		/*
4481 		 * Note: must allocate system pages since blocking here
4482 		 * could intefere with paging I/O, no matter which
4483 		 * process we are.
4484 		 */
4485 		vm_object_hold(&kernel_object);
4486 		p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
4487 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4488 		vm_object_drop(&kernel_object);
4489 		if (p) {
4490 			vm_page_wire(p);
4491 			p->valid = VM_PAGE_BITS_ALL;
4492 			vm_page_flag_clear(p, PG_ZERO);
4493 			pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4494 			bp->b_xio.xio_pages[index] = p;
4495 			vm_page_wakeup(p);
4496 
4497 			pg += PAGE_SIZE;
4498 			++index;
4499 		}
4500 	}
4501 	bp->b_xio.xio_npages = index;
4502 }
4503 
4504 /*
4505  * Allocate a page for a buffer cache buffer.
4506  *
4507  * If NULL is returned the caller is expected to retry (typically check if
4508  * the page already exists on retry before trying to allocate one).
4509  *
4510  * NOTE! Low-memory handling is dealt with in b[q]relse(), not here.  This
4511  *	 function will use the system reserve with the hope that the page
4512  *	 allocations can be returned to PQ_CACHE/PQ_FREE when the caller
4513  *	 is done with the buffer.
4514  */
4515 static
4516 vm_page_t
4517 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
4518 {
4519 	int vmflags = VM_ALLOC_NORMAL | VM_ALLOC_NULL_OK;
4520 	vm_page_t p;
4521 
4522 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj));
4523 
4524 	/*
4525 	 * Try a normal allocation first.
4526 	 */
4527 	p = vm_page_alloc(obj, pg, vmflags);
4528 	if (p)
4529 		return(p);
4530 	if (vm_page_lookup(obj, pg))
4531 		return(NULL);
4532 	vm_pageout_deficit += deficit;
4533 
4534 	/*
4535 	 * Try again, digging into the system reserve.
4536 	 *
4537 	 * Trying to recover pages from the buffer cache here can deadlock
4538 	 * against other threads trying to busy underlying pages so we
4539 	 * depend on the code in brelse() and bqrelse() to free/cache the
4540 	 * underlying buffer cache pages when memory is low.
4541 	 */
4542 	if (curthread->td_flags & TDF_SYSTHREAD)
4543 		vmflags |= VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT;
4544 	else
4545 		vmflags |= VM_ALLOC_SYSTEM;
4546 
4547 	/*recoverbufpages();*/
4548 	p = vm_page_alloc(obj, pg, vmflags);
4549 	if (p)
4550 		return(p);
4551 	if (vm_page_lookup(obj, pg))
4552 		return(NULL);
4553 
4554 	/*
4555 	 * Wait for memory to free up and try again
4556 	 */
4557 	if (vm_page_count_severe())
4558 		++lowmempgallocs;
4559 	vm_wait(hz / 20 + 1);
4560 
4561 	p = vm_page_alloc(obj, pg, vmflags);
4562 	if (p)
4563 		return(p);
4564 	if (vm_page_lookup(obj, pg))
4565 		return(NULL);
4566 
4567 	/*
4568 	 * Ok, now we are really in trouble.
4569 	 */
4570 	{
4571 		static struct krate biokrate = { .freq = 1 };
4572 		krateprintf(&biokrate,
4573 			    "Warning: bio_page_alloc: memory exhausted "
4574 			    "during bufcache page allocation from %s\n",
4575 			    curthread->td_comm);
4576 	}
4577 	if (curthread->td_flags & TDF_SYSTHREAD)
4578 		vm_wait(hz / 20 + 1);
4579 	else
4580 		vm_wait(hz / 2 + 1);
4581 	return (NULL);
4582 }
4583 
4584 /*
4585  * vm_hold_free_pages:
4586  *
4587  *	Return pages associated with the buffer back to the VM system.
4588  *
4589  *	The range of pages underlying the buffer's address space will
4590  *	be unmapped and un-wired.
4591  *
4592  * MPSAFE
4593  */
4594 void
4595 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4596 {
4597 	vm_offset_t pg;
4598 	vm_page_t p;
4599 	int index, newnpages;
4600 
4601 	from = round_page(from);
4602 	to = round_page(to);
4603 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4604 	newnpages = index;
4605 
4606 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4607 		p = bp->b_xio.xio_pages[index];
4608 		if (p && (index < bp->b_xio.xio_npages)) {
4609 			if (p->busy) {
4610 				kprintf("vm_hold_free_pages: doffset: %lld, "
4611 					"loffset: %lld\n",
4612 					(long long)bp->b_bio2.bio_offset,
4613 					(long long)bp->b_loffset);
4614 			}
4615 			bp->b_xio.xio_pages[index] = NULL;
4616 			pmap_kremove(pg);
4617 			vm_page_busy_wait(p, FALSE, "vmhldpg");
4618 			vm_page_unwire(p, 0);
4619 			vm_page_free(p);
4620 		}
4621 	}
4622 	bp->b_xio.xio_npages = newnpages;
4623 }
4624 
4625 /*
4626  * vmapbuf:
4627  *
4628  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
4629  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4630  *	initialized.
4631  */
4632 int
4633 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4634 {
4635 	caddr_t addr;
4636 	vm_offset_t va;
4637 	vm_page_t m;
4638 	int vmprot;
4639 	int error;
4640 	int pidx;
4641 	int i;
4642 
4643 	/*
4644 	 * bp had better have a command and it better be a pbuf.
4645 	 */
4646 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4647 	KKASSERT(bp->b_flags & B_PAGING);
4648 	KKASSERT(bp->b_kvabase);
4649 
4650 	if (bytes < 0)
4651 		return (-1);
4652 
4653 	/*
4654 	 * Map the user data into KVM.  Mappings have to be page-aligned.
4655 	 */
4656 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
4657 	pidx = 0;
4658 
4659 	vmprot = VM_PROT_READ;
4660 	if (bp->b_cmd == BUF_CMD_READ)
4661 		vmprot |= VM_PROT_WRITE;
4662 
4663 	while (addr < udata + bytes) {
4664 		/*
4665 		 * Do the vm_fault if needed; do the copy-on-write thing
4666 		 * when reading stuff off device into memory.
4667 		 *
4668 		 * vm_fault_page*() returns a held VM page.
4669 		 */
4670 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4671 		va = trunc_page(va);
4672 
4673 		m = vm_fault_page_quick(va, vmprot, &error);
4674 		if (m == NULL) {
4675 			for (i = 0; i < pidx; ++i) {
4676 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
4677 			    bp->b_xio.xio_pages[i] = NULL;
4678 			}
4679 			return(-1);
4680 		}
4681 		bp->b_xio.xio_pages[pidx] = m;
4682 		addr += PAGE_SIZE;
4683 		++pidx;
4684 	}
4685 
4686 	/*
4687 	 * Map the page array and set the buffer fields to point to
4688 	 * the mapped data buffer.
4689 	 */
4690 	if (pidx > btoc(MAXPHYS))
4691 		panic("vmapbuf: mapped more than MAXPHYS");
4692 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4693 
4694 	bp->b_xio.xio_npages = pidx;
4695 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4696 	bp->b_bcount = bytes;
4697 	bp->b_bufsize = bytes;
4698 	return(0);
4699 }
4700 
4701 /*
4702  * vunmapbuf:
4703  *
4704  *	Free the io map PTEs associated with this IO operation.
4705  *	We also invalidate the TLB entries and restore the original b_addr.
4706  */
4707 void
4708 vunmapbuf(struct buf *bp)
4709 {
4710 	int pidx;
4711 	int npages;
4712 
4713 	KKASSERT(bp->b_flags & B_PAGING);
4714 
4715 	npages = bp->b_xio.xio_npages;
4716 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4717 	for (pidx = 0; pidx < npages; ++pidx) {
4718 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4719 		bp->b_xio.xio_pages[pidx] = NULL;
4720 	}
4721 	bp->b_xio.xio_npages = 0;
4722 	bp->b_data = bp->b_kvabase;
4723 }
4724 
4725 /*
4726  * Scan all buffers in the system and issue the callback.
4727  */
4728 int
4729 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4730 {
4731 	int count = 0;
4732 	int error;
4733 	int n;
4734 
4735 	for (n = 0; n < nbuf; ++n) {
4736 		if ((error = callback(&buf[n], info)) < 0) {
4737 			count = error;
4738 			break;
4739 		}
4740 		count += error;
4741 	}
4742 	return (count);
4743 }
4744 
4745 /*
4746  * nestiobuf_iodone: biodone callback for nested buffers and propagate
4747  * completion to the master buffer.
4748  */
4749 static void
4750 nestiobuf_iodone(struct bio *bio)
4751 {
4752 	struct bio *mbio;
4753 	struct buf *mbp, *bp;
4754 	struct devstat *stats;
4755 	int error;
4756 	int donebytes;
4757 
4758 	bp = bio->bio_buf;
4759 	mbio = bio->bio_caller_info1.ptr;
4760 	stats = bio->bio_caller_info2.ptr;
4761 	mbp = mbio->bio_buf;
4762 
4763 	KKASSERT(bp->b_bcount <= bp->b_bufsize);
4764 	KKASSERT(mbp != bp);
4765 
4766 	error = bp->b_error;
4767 	if (bp->b_error == 0 &&
4768 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4769 		/*
4770 		 * Not all got transfered, raise an error. We have no way to
4771 		 * propagate these conditions to mbp.
4772 		 */
4773 		error = EIO;
4774 	}
4775 
4776 	donebytes = bp->b_bufsize;
4777 
4778 	relpbuf(bp, NULL);
4779 
4780 	nestiobuf_done(mbio, donebytes, error, stats);
4781 }
4782 
4783 void
4784 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats)
4785 {
4786 	struct buf *mbp;
4787 
4788 	mbp = mbio->bio_buf;
4789 
4790 	KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4791 
4792 	/*
4793 	 * If an error occured, propagate it to the master buffer.
4794 	 *
4795 	 * Several biodone()s may wind up running concurrently so
4796 	 * use an atomic op to adjust b_flags.
4797 	 */
4798 	if (error) {
4799 		mbp->b_error = error;
4800 		atomic_set_int(&mbp->b_flags, B_ERROR);
4801 	}
4802 
4803 	/*
4804 	 * Decrement the operations in progress counter and terminate the
4805 	 * I/O if this was the last bit.
4806 	 */
4807 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4808 		mbp->b_resid = 0;
4809 		if (stats)
4810 			devstat_end_transaction_buf(stats, mbp);
4811 		biodone(mbio);
4812 	}
4813 }
4814 
4815 /*
4816  * Initialize a nestiobuf for use.  Set an initial count of 1 to prevent
4817  * the mbio from being biodone()'d while we are still adding sub-bios to
4818  * it.
4819  */
4820 void
4821 nestiobuf_init(struct bio *bio)
4822 {
4823 	bio->bio_driver_info = (void *)1;
4824 }
4825 
4826 /*
4827  * The BIOs added to the nestedio have already been started, remove the
4828  * count that placeheld our mbio and biodone() it if the count would
4829  * transition to 0.
4830  */
4831 void
4832 nestiobuf_start(struct bio *mbio)
4833 {
4834 	struct buf *mbp = mbio->bio_buf;
4835 
4836 	/*
4837 	 * Decrement the operations in progress counter and terminate the
4838 	 * I/O if this was the last bit.
4839 	 */
4840 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4841 		if (mbp->b_flags & B_ERROR)
4842 			mbp->b_resid = mbp->b_bcount;
4843 		else
4844 			mbp->b_resid = 0;
4845 		biodone(mbio);
4846 	}
4847 }
4848 
4849 /*
4850  * Set an intermediate error prior to calling nestiobuf_start()
4851  */
4852 void
4853 nestiobuf_error(struct bio *mbio, int error)
4854 {
4855 	struct buf *mbp = mbio->bio_buf;
4856 
4857 	if (error) {
4858 		mbp->b_error = error;
4859 		atomic_set_int(&mbp->b_flags, B_ERROR);
4860 	}
4861 }
4862 
4863 /*
4864  * nestiobuf_add: setup a "nested" buffer.
4865  *
4866  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4867  * => 'bp' should be a buffer allocated by getiobuf.
4868  * => 'offset' is a byte offset in the master buffer.
4869  * => 'size' is a size in bytes of this nested buffer.
4870  */
4871 void
4872 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats)
4873 {
4874 	struct buf *mbp = mbio->bio_buf;
4875 	struct vnode *vp = mbp->b_vp;
4876 
4877 	KKASSERT(mbp->b_bcount >= offset + size);
4878 
4879 	atomic_add_int((int *)&mbio->bio_driver_info, 1);
4880 
4881 	/* kernel needs to own the lock for it to be released in biodone */
4882 	BUF_KERNPROC(bp);
4883 	bp->b_vp = vp;
4884 	bp->b_cmd = mbp->b_cmd;
4885 	bp->b_bio1.bio_done = nestiobuf_iodone;
4886 	bp->b_data = (char *)mbp->b_data + offset;
4887 	bp->b_resid = bp->b_bcount = size;
4888 	bp->b_bufsize = bp->b_bcount;
4889 
4890 	bp->b_bio1.bio_track = NULL;
4891 	bp->b_bio1.bio_caller_info1.ptr = mbio;
4892 	bp->b_bio1.bio_caller_info2.ptr = stats;
4893 }
4894 
4895 /*
4896  * print out statistics from the current status of the buffer pool
4897  * this can be toggeled by the system control option debug.syncprt
4898  */
4899 #ifdef DEBUG
4900 void
4901 vfs_bufstats(void)
4902 {
4903         int i, j, count;
4904         struct buf *bp;
4905         struct bqueues *dp;
4906         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4907         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4908 
4909         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4910                 count = 0;
4911                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4912                         counts[j] = 0;
4913 
4914 		spin_lock(&bufqspin);
4915                 TAILQ_FOREACH(bp, dp, b_freelist) {
4916 			if (bp->b_flags & B_MARKER)
4917 				continue;
4918                         counts[bp->b_bufsize/PAGE_SIZE]++;
4919                         count++;
4920                 }
4921 		spin_unlock(&bufqspin);
4922 
4923                 kprintf("%s: total-%d", bname[i], count);
4924                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4925                         if (counts[j] != 0)
4926                                 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4927                 kprintf("\n");
4928         }
4929 }
4930 #endif
4931 
4932 #ifdef DDB
4933 
4934 DB_SHOW_COMMAND(buffer, db_show_buffer)
4935 {
4936 	/* get args */
4937 	struct buf *bp = (struct buf *)addr;
4938 
4939 	if (!have_addr) {
4940 		db_printf("usage: show buffer <addr>\n");
4941 		return;
4942 	}
4943 
4944 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4945 	db_printf("b_cmd = %d\n", bp->b_cmd);
4946 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4947 		  "b_resid = %d\n, b_data = %p, "
4948 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4949 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4950 		  bp->b_data,
4951 		  (long long)bp->b_bio2.bio_offset,
4952 		  (long long)(bp->b_bio2.bio_next ?
4953 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4954 	if (bp->b_xio.xio_npages) {
4955 		int i;
4956 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4957 			bp->b_xio.xio_npages);
4958 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4959 			vm_page_t m;
4960 			m = bp->b_xio.xio_pages[i];
4961 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4962 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4963 			if ((i + 1) < bp->b_xio.xio_npages)
4964 				db_printf(",");
4965 		}
4966 		db_printf("\n");
4967 	}
4968 }
4969 #endif /* DDB */
4970