xref: /dragonfly/sys/kern/vfs_bio.c (revision 62dc643e)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  */
16 
17 /*
18  * this file contains a new buffer I/O scheme implementing a coherent
19  * VM object and buffer cache scheme.  Pains have been taken to make
20  * sure that the performance degradation associated with schemes such
21  * as this is not realized.
22  *
23  * Author:  John S. Dyson
24  * Significant help during the development and debugging phases
25  * had been provided by David Greenman, also of the FreeBSD core team.
26  *
27  * see man buf(9) for more info.  Note that man buf(9) doesn't reflect
28  * the actual buf/bio implementation in DragonFly.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/devicestat.h>
36 #include <sys/eventhandler.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mount.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/proc.h>
43 #include <sys/reboot.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 #include <sys/dsched.h>
49 #include <vm/vm.h>
50 #include <vm/vm_param.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_pageout.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_map.h>
57 #include <vm/vm_pager.h>
58 #include <vm/swap_pager.h>
59 
60 #include <sys/buf2.h>
61 #include <sys/thread2.h>
62 #include <sys/spinlock2.h>
63 #include <vm/vm_page2.h>
64 
65 #include "opt_ddb.h"
66 #ifdef DDB
67 #include <ddb/ddb.h>
68 #endif
69 
70 /*
71  * Buffer queues.
72  */
73 enum bufq_type {
74 	BQUEUE_NONE,    	/* not on any queue */
75 	BQUEUE_LOCKED,  	/* locked buffers */
76 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
77 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
78 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
79 	BQUEUE_EMPTY,    	/* empty buffer headers */
80 
81 	BUFFER_QUEUES		/* number of buffer queues */
82 };
83 
84 typedef enum bufq_type bufq_type_t;
85 
86 #define BD_WAKE_SIZE	16384
87 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
88 
89 TAILQ_HEAD(bqueues, buf);
90 
91 struct bufpcpu {
92 	struct spinlock spin;
93 	struct bqueues bufqueues[BUFFER_QUEUES];
94 } __cachealign;
95 
96 struct bufpcpu bufpcpu[MAXCPU];
97 
98 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
99 
100 struct buf *buf;		/* buffer header pool */
101 
102 static void vfs_clean_pages(struct buf *bp);
103 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
104 #if 0
105 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
106 #endif
107 static void vfs_vmio_release(struct buf *bp);
108 static int flushbufqueues(struct buf *marker, bufq_type_t q);
109 static void repurposebuf(struct buf *bp, int size);
110 static vm_page_t bio_page_alloc(struct buf *bp, vm_object_t obj,
111 				vm_pindex_t pg, int deficit);
112 
113 static void bd_signal(long totalspace);
114 static void buf_daemon(void);
115 static void buf_daemon_hw(void);
116 
117 /*
118  * bogus page -- for I/O to/from partially complete buffers
119  * this is a temporary solution to the problem, but it is not
120  * really that bad.  it would be better to split the buffer
121  * for input in the case of buffers partially already in memory,
122  * but the code is intricate enough already.
123  */
124 vm_page_t bogus_page;
125 
126 /*
127  * These are all static, but make the ones we export globals so we do
128  * not need to use compiler magic.
129  */
130 long bufspace;			/* atomic ops */
131 long maxbufspace;
132 static long bufmallocspace;	/* atomic ops */
133 long maxbufmallocspace, lobufspace, hibufspace;
134 static long lorunningspace;
135 static long hirunningspace;
136 static long dirtykvaspace;		/* atomic */
137 long dirtybufspace;			/* atomic (global for systat) */
138 static long dirtybufcount;		/* atomic */
139 static long dirtybufspacehw;		/* atomic */
140 static long dirtybufcounthw;		/* atomic */
141 static long runningbufspace;		/* atomic */
142 static long runningbufcount;		/* atomic */
143 static long repurposedspace;
144 long lodirtybufspace;
145 long hidirtybufspace;
146 static int getnewbufcalls;
147 static int recoverbufcalls;
148 static int needsbuffer;			/* atomic */
149 static int runningbufreq;		/* atomic */
150 static int bd_request;			/* atomic */
151 static int bd_request_hw;		/* atomic */
152 static u_int bd_wake_ary[BD_WAKE_SIZE];
153 static u_int bd_wake_index;
154 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
155 static int debug_commit;
156 static int debug_bufbio;
157 static long bufcache_bw = 200 * 1024 * 1024;
158 static long bufcache_bw_accum;
159 static int bufcache_bw_ticks;
160 
161 static struct thread *bufdaemon_td;
162 static struct thread *bufdaemonhw_td;
163 static u_int lowmempgallocs;
164 static u_int lowmempgfails;
165 static u_int flushperqueue = 1024;
166 static int repurpose_enable;
167 
168 /*
169  * Sysctls for operational control of the buffer cache.
170  */
171 SYSCTL_UINT(_vfs, OID_AUTO, flushperqueue, CTLFLAG_RW, &flushperqueue, 0,
172 	"Number of buffers to flush from each per-cpu queue");
173 SYSCTL_LONG(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
174 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
175 SYSCTL_LONG(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
176 	"High watermark used to trigger explicit flushing of dirty buffers");
177 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
178 	"Minimum amount of buffer space required for active I/O");
179 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
180 	"Maximum amount of buffer space to usable for active I/O");
181 SYSCTL_LONG(_vfs, OID_AUTO, bufcache_bw, CTLFLAG_RW, &bufcache_bw, 0,
182 	"Buffer-cache -> VM page cache transfer bandwidth");
183 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
184 	"Page allocations done during periods of very low free memory");
185 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0,
186 	"Page allocations which failed during periods of very low free memory");
187 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
188 	"Recycle pages to active or inactive queue transition pt 0-64");
189 SYSCTL_UINT(_vfs, OID_AUTO, repurpose_enable, CTLFLAG_RW, &repurpose_enable, 0,
190 	"Enable buffer cache VM repurposing for high-I/O");
191 /*
192  * Sysctls determining current state of the buffer cache.
193  */
194 SYSCTL_LONG(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
195 	"Total number of buffers in buffer cache");
196 SYSCTL_LONG(_vfs, OID_AUTO, dirtykvaspace, CTLFLAG_RD, &dirtykvaspace, 0,
197 	"KVA reserved by dirty buffers (all)");
198 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
199 	"Pending bytes of dirty buffers (all)");
200 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
201 	"Pending bytes of dirty buffers (heavy weight)");
202 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
203 	"Pending number of dirty buffers");
204 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
205 	"Pending number of dirty buffers (heavy weight)");
206 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
207 	"I/O bytes currently in progress due to asynchronous writes");
208 SYSCTL_LONG(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
209 	"I/O buffers currently in progress due to asynchronous writes");
210 SYSCTL_LONG(_vfs, OID_AUTO, repurposedspace, CTLFLAG_RD, &repurposedspace, 0,
211 	"Buffer-cache memory repurposed in-place");
212 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
213 	"Hard limit on maximum amount of memory usable for buffer space");
214 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
215 	"Soft limit on maximum amount of memory usable for buffer space");
216 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
217 	"Minimum amount of memory to reserve for system buffer space");
218 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
219 	"Amount of memory available for buffers");
220 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
221 	0, "Maximum amount of memory reserved for buffers using malloc");
222 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
223 	"Amount of memory left for buffers using malloc-scheme");
224 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
225 	"New buffer header acquisition requests");
226 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
227 	"Recover VM space in an emergency");
228 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
229 SYSCTL_INT(_vfs, OID_AUTO, debug_bufbio, CTLFLAG_RW, &debug_bufbio, 0, "");
230 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
231 	"sizeof(struct buf)");
232 
233 char *buf_wmesg = BUF_WMESG;
234 
235 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
236 #define VFS_BIO_NEED_UNUSED02	0x02
237 #define VFS_BIO_NEED_UNUSED04	0x04
238 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
239 
240 /*
241  * Called when buffer space is potentially available for recovery.
242  * getnewbuf() will block on this flag when it is unable to free
243  * sufficient buffer space.  Buffer space becomes recoverable when
244  * bp's get placed back in the queues.
245  */
246 static __inline void
247 bufspacewakeup(void)
248 {
249 	/*
250 	 * If someone is waiting for BUF space, wake them up.  Even
251 	 * though we haven't freed the kva space yet, the waiting
252 	 * process will be able to now.
253 	 */
254 	for (;;) {
255 		int flags = needsbuffer;
256 		cpu_ccfence();
257 		if ((flags & VFS_BIO_NEED_BUFSPACE) == 0)
258 			break;
259 		if (atomic_cmpset_int(&needsbuffer, flags,
260 				      flags & ~VFS_BIO_NEED_BUFSPACE)) {
261 			wakeup(&needsbuffer);
262 			break;
263 		}
264 		/* retry */
265 	}
266 }
267 
268 /*
269  * runningbufwakeup:
270  *
271  *	Accounting for I/O in progress.
272  *
273  */
274 static __inline void
275 runningbufwakeup(struct buf *bp)
276 {
277 	long totalspace;
278 	long flags;
279 
280 	if ((totalspace = bp->b_runningbufspace) != 0) {
281 		atomic_add_long(&runningbufspace, -totalspace);
282 		atomic_add_long(&runningbufcount, -1);
283 		bp->b_runningbufspace = 0;
284 
285 		/*
286 		 * see waitrunningbufspace() for limit test.
287 		 */
288 		for (;;) {
289 			flags = runningbufreq;
290 			cpu_ccfence();
291 			if (flags == 0)
292 				break;
293 			if (atomic_cmpset_int(&runningbufreq, flags, 0)) {
294 				wakeup(&runningbufreq);
295 				break;
296 			}
297 			/* retry */
298 		}
299 		bd_signal(totalspace);
300 	}
301 }
302 
303 /*
304  * bufcountwakeup:
305  *
306  *	Called when a buffer has been added to one of the free queues to
307  *	account for the buffer and to wakeup anyone waiting for free buffers.
308  *	This typically occurs when large amounts of metadata are being handled
309  *	by the buffer cache ( else buffer space runs out first, usually ).
310  */
311 static __inline void
312 bufcountwakeup(void)
313 {
314 	long flags;
315 
316 	for (;;) {
317 		flags = needsbuffer;
318 		if (flags == 0)
319 			break;
320 		if (atomic_cmpset_int(&needsbuffer, flags,
321 				      (flags & ~VFS_BIO_NEED_ANY))) {
322 			wakeup(&needsbuffer);
323 			break;
324 		}
325 		/* retry */
326 	}
327 }
328 
329 /*
330  * waitrunningbufspace()
331  *
332  * If runningbufspace exceeds 4/6 hirunningspace we block until
333  * runningbufspace drops to 3/6 hirunningspace.  We also block if another
334  * thread blocked here in order to be fair, even if runningbufspace
335  * is now lower than the limit.
336  *
337  * The caller may be using this function to block in a tight loop, we
338  * must block while runningbufspace is greater than at least
339  * hirunningspace * 3 / 6.
340  */
341 void
342 waitrunningbufspace(void)
343 {
344 	long limit = hirunningspace * 4 / 6;
345 	long flags;
346 
347 	while (runningbufspace > limit || runningbufreq) {
348 		tsleep_interlock(&runningbufreq, 0);
349 		flags = atomic_fetchadd_int(&runningbufreq, 1);
350 		if (runningbufspace > limit || flags)
351 			tsleep(&runningbufreq, PINTERLOCKED, "wdrn1", hz);
352 	}
353 }
354 
355 /*
356  * buf_dirty_count_severe:
357  *
358  *	Return true if we have too many dirty buffers.
359  */
360 int
361 buf_dirty_count_severe(void)
362 {
363 	return (runningbufspace + dirtykvaspace >= hidirtybufspace ||
364 	        dirtybufcount >= nbuf / 2);
365 }
366 
367 /*
368  * Return true if the amount of running I/O is severe and BIOQ should
369  * start bursting.
370  */
371 int
372 buf_runningbufspace_severe(void)
373 {
374 	return (runningbufspace >= hirunningspace * 4 / 6);
375 }
376 
377 /*
378  * vfs_buf_test_cache:
379  *
380  * Called when a buffer is extended.  This function clears the B_CACHE
381  * bit if the newly extended portion of the buffer does not contain
382  * valid data.
383  *
384  * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
385  * cache buffers.  The VM pages remain dirty, as someone had mmap()'d
386  * them while a clean buffer was present.
387  */
388 static __inline__
389 void
390 vfs_buf_test_cache(struct buf *bp,
391 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
392 		  vm_page_t m)
393 {
394 	if (bp->b_flags & B_CACHE) {
395 		int base = (foff + off) & PAGE_MASK;
396 		if (vm_page_is_valid(m, base, size) == 0)
397 			bp->b_flags &= ~B_CACHE;
398 	}
399 }
400 
401 /*
402  * bd_speedup()
403  *
404  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
405  * low water mark.
406  */
407 static __inline__
408 void
409 bd_speedup(void)
410 {
411 	if (dirtykvaspace < lodirtybufspace && dirtybufcount < nbuf / 2)
412 		return;
413 
414 	if (bd_request == 0 &&
415 	    (dirtykvaspace > lodirtybufspace / 2 ||
416 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
417 		if (atomic_fetchadd_int(&bd_request, 1) == 0)
418 			wakeup(&bd_request);
419 	}
420 	if (bd_request_hw == 0 &&
421 	    (dirtykvaspace > lodirtybufspace / 2 ||
422 	     dirtybufcounthw >= nbuf / 2)) {
423 		if (atomic_fetchadd_int(&bd_request_hw, 1) == 0)
424 			wakeup(&bd_request_hw);
425 	}
426 }
427 
428 /*
429  * bd_heatup()
430  *
431  *	Get the buf_daemon heated up when the number of running and dirty
432  *	buffers exceeds the mid-point.
433  *
434  *	Return the total number of dirty bytes past the second mid point
435  *	as a measure of how much excess dirty data there is in the system.
436  */
437 long
438 bd_heatup(void)
439 {
440 	long mid1;
441 	long mid2;
442 	long totalspace;
443 
444 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
445 
446 	totalspace = runningbufspace + dirtykvaspace;
447 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
448 		bd_speedup();
449 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
450 		if (totalspace >= mid2)
451 			return(totalspace - mid2);
452 	}
453 	return(0);
454 }
455 
456 /*
457  * bd_wait()
458  *
459  *	Wait for the buffer cache to flush (totalspace) bytes worth of
460  *	buffers, then return.
461  *
462  *	Regardless this function blocks while the number of dirty buffers
463  *	exceeds hidirtybufspace.
464  */
465 void
466 bd_wait(long totalspace)
467 {
468 	u_int i;
469 	u_int j;
470 	u_int mi;
471 	int count;
472 
473 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
474 		return;
475 
476 	while (totalspace > 0) {
477 		bd_heatup();
478 
479 		/*
480 		 * Order is important.  Suppliers adjust bd_wake_index after
481 		 * updating runningbufspace/dirtykvaspace.  We want to fetch
482 		 * bd_wake_index before accessing.  Any error should thus
483 		 * be in our favor.
484 		 */
485 		i = atomic_fetchadd_int(&bd_wake_index, 0);
486 		if (totalspace > runningbufspace + dirtykvaspace)
487 			totalspace = runningbufspace + dirtykvaspace;
488 		count = totalspace / MAXBSIZE;
489 		if (count >= BD_WAKE_SIZE / 2)
490 			count = BD_WAKE_SIZE / 2;
491 		i = i + count;
492 		mi = i & BD_WAKE_MASK;
493 
494 		/*
495 		 * This is not a strict interlock, so we play a bit loose
496 		 * with locking access to dirtybufspace*.  We have to re-check
497 		 * bd_wake_index to ensure that it hasn't passed us.
498 		 */
499 		tsleep_interlock(&bd_wake_ary[mi], 0);
500 		atomic_add_int(&bd_wake_ary[mi], 1);
501 		j = atomic_fetchadd_int(&bd_wake_index, 0);
502 		if ((int)(i - j) >= 0)
503 			tsleep(&bd_wake_ary[mi], PINTERLOCKED, "flstik", hz);
504 
505 		totalspace = runningbufspace + dirtykvaspace - hidirtybufspace;
506 	}
507 }
508 
509 /*
510  * bd_signal()
511  *
512  *	This function is called whenever runningbufspace or dirtykvaspace
513  *	is reduced.  Track threads waiting for run+dirty buffer I/O
514  *	complete.
515  */
516 static void
517 bd_signal(long totalspace)
518 {
519 	u_int i;
520 
521 	if (totalspace > 0) {
522 		if (totalspace > MAXBSIZE * BD_WAKE_SIZE)
523 			totalspace = MAXBSIZE * BD_WAKE_SIZE;
524 		while (totalspace > 0) {
525 			i = atomic_fetchadd_int(&bd_wake_index, 1);
526 			i &= BD_WAKE_MASK;
527 			if (atomic_readandclear_int(&bd_wake_ary[i]))
528 				wakeup(&bd_wake_ary[i]);
529 			totalspace -= MAXBSIZE;
530 		}
531 	}
532 }
533 
534 /*
535  * BIO tracking support routines.
536  *
537  * Release a ref on a bio_track.  Wakeup requests are atomically released
538  * along with the last reference so bk_active will never wind up set to
539  * only 0x80000000.
540  */
541 static
542 void
543 bio_track_rel(struct bio_track *track)
544 {
545 	int	active;
546 	int	desired;
547 
548 	/*
549 	 * Shortcut
550 	 */
551 	active = track->bk_active;
552 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
553 		return;
554 
555 	/*
556 	 * Full-on.  Note that the wait flag is only atomically released on
557 	 * the 1->0 count transition.
558 	 *
559 	 * We check for a negative count transition using bit 30 since bit 31
560 	 * has a different meaning.
561 	 */
562 	for (;;) {
563 		desired = (active & 0x7FFFFFFF) - 1;
564 		if (desired)
565 			desired |= active & 0x80000000;
566 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
567 			if (desired & 0x40000000)
568 				panic("bio_track_rel: bad count: %p", track);
569 			if (active & 0x80000000)
570 				wakeup(track);
571 			break;
572 		}
573 		active = track->bk_active;
574 	}
575 }
576 
577 /*
578  * Wait for the tracking count to reach 0.
579  *
580  * Use atomic ops such that the wait flag is only set atomically when
581  * bk_active is non-zero.
582  */
583 int
584 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
585 {
586 	int	active;
587 	int	desired;
588 	int	error;
589 
590 	/*
591 	 * Shortcut
592 	 */
593 	if (track->bk_active == 0)
594 		return(0);
595 
596 	/*
597 	 * Full-on.  Note that the wait flag may only be atomically set if
598 	 * the active count is non-zero.
599 	 *
600 	 * NOTE: We cannot optimize active == desired since a wakeup could
601 	 *	 clear active prior to our tsleep_interlock().
602 	 */
603 	error = 0;
604 	while ((active = track->bk_active) != 0) {
605 		cpu_ccfence();
606 		desired = active | 0x80000000;
607 		tsleep_interlock(track, slp_flags);
608 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
609 			error = tsleep(track, slp_flags | PINTERLOCKED,
610 				       "trwait", slp_timo);
611 			if (error)
612 				break;
613 		}
614 	}
615 	return (error);
616 }
617 
618 /*
619  * bufinit:
620  *
621  *	Load time initialisation of the buffer cache, called from machine
622  *	dependant initialization code.
623  */
624 static
625 void
626 bufinit(void *dummy __unused)
627 {
628 	struct bufpcpu *pcpu;
629 	struct buf *bp;
630 	vm_offset_t bogus_offset;
631 	int i;
632 	int j;
633 	long n;
634 
635 	/* next, make a null set of free lists */
636 	for (i = 0; i < ncpus; ++i) {
637 		pcpu = &bufpcpu[i];
638 		spin_init(&pcpu->spin, "bufinit");
639 		for (j = 0; j < BUFFER_QUEUES; j++)
640 			TAILQ_INIT(&pcpu->bufqueues[j]);
641 	}
642 
643 	/*
644 	 * Finally, initialize each buffer header and stick on empty q.
645 	 * Each buffer gets its own KVA reservation.
646 	 */
647 	i = 0;
648 	pcpu = &bufpcpu[i];
649 
650 	for (n = 0; n < nbuf; n++) {
651 		bp = &buf[n];
652 		bzero(bp, sizeof *bp);
653 		bp->b_flags = B_INVAL;	/* we're just an empty header */
654 		bp->b_cmd = BUF_CMD_DONE;
655 		bp->b_qindex = BQUEUE_EMPTY;
656 		bp->b_qcpu = i;
657 		bp->b_kvabase = (void *)(vm_map_min(&buffer_map) +
658 					 MAXBSIZE * n);
659 		bp->b_kvasize = MAXBSIZE;
660 		initbufbio(bp);
661 		xio_init(&bp->b_xio);
662 		buf_dep_init(bp);
663 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
664 				  bp, b_freelist);
665 
666 		i = (i + 1) % ncpus;
667 		pcpu = &bufpcpu[i];
668 	}
669 
670 	/*
671 	 * maxbufspace is the absolute maximum amount of buffer space we are
672 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
673 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
674 	 * used by most other processes.  The differential is required to
675 	 * ensure that buf_daemon is able to run when other processes might
676 	 * be blocked waiting for buffer space.
677 	 *
678 	 * Calculate hysteresis (lobufspace, hibufspace).  Don't make it
679 	 * too large or we might lockup a cpu for too long a period of
680 	 * time in our tight loop.
681 	 */
682 	maxbufspace = nbuf * NBUFCALCSIZE;
683 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
684 	lobufspace = hibufspace * 7 / 8;
685 	if (hibufspace - lobufspace > 64 * 1024 * 1024)
686 		lobufspace = hibufspace - 64 * 1024 * 1024;
687 	if (lobufspace > hibufspace - MAXBSIZE)
688 		lobufspace = hibufspace - MAXBSIZE;
689 
690 	lorunningspace = 512 * 1024;
691 	/* hirunningspace -- see below */
692 
693 	/*
694 	 * Limit the amount of malloc memory since it is wired permanently
695 	 * into the kernel space.  Even though this is accounted for in
696 	 * the buffer allocation, we don't want the malloced region to grow
697 	 * uncontrolled.  The malloc scheme improves memory utilization
698 	 * significantly on average (small) directories.
699 	 */
700 	maxbufmallocspace = hibufspace / 20;
701 
702 	/*
703 	 * Reduce the chance of a deadlock occuring by limiting the number
704 	 * of delayed-write dirty buffers we allow to stack up.
705 	 *
706 	 * We don't want too much actually queued to the device at once
707 	 * (XXX this needs to be per-mount!), because the buffers will
708 	 * wind up locked for a very long period of time while the I/O
709 	 * drains.
710 	 */
711 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
712 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
713 	if (hirunningspace < 1024 * 1024)
714 		hirunningspace = 1024 * 1024;
715 
716 	dirtykvaspace = 0;
717 	dirtybufspace = 0;
718 	dirtybufspacehw = 0;
719 
720 	lodirtybufspace = hidirtybufspace / 2;
721 
722 	/*
723 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
724 	 * somewhat of a hack at the moment, we really need to limit ourselves
725 	 * based on the number of bytes of I/O in-transit that were initiated
726 	 * from buf_daemon.
727 	 */
728 
729 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE,
730 					   VM_SUBSYS_BOGUS);
731 	vm_object_hold(&kernel_object);
732 	bogus_page = vm_page_alloc(&kernel_object,
733 				   (bogus_offset >> PAGE_SHIFT),
734 				   VM_ALLOC_NORMAL);
735 	vm_object_drop(&kernel_object);
736 	vmstats.v_wire_count++;
737 
738 }
739 
740 SYSINIT(do_bufinit, SI_BOOT2_MACHDEP, SI_ORDER_FIRST, bufinit, NULL);
741 
742 /*
743  * Initialize the embedded bio structures, typically used by
744  * deprecated code which tries to allocate its own struct bufs.
745  */
746 void
747 initbufbio(struct buf *bp)
748 {
749 	bp->b_bio1.bio_buf = bp;
750 	bp->b_bio1.bio_prev = NULL;
751 	bp->b_bio1.bio_offset = NOOFFSET;
752 	bp->b_bio1.bio_next = &bp->b_bio2;
753 	bp->b_bio1.bio_done = NULL;
754 	bp->b_bio1.bio_flags = 0;
755 
756 	bp->b_bio2.bio_buf = bp;
757 	bp->b_bio2.bio_prev = &bp->b_bio1;
758 	bp->b_bio2.bio_offset = NOOFFSET;
759 	bp->b_bio2.bio_next = NULL;
760 	bp->b_bio2.bio_done = NULL;
761 	bp->b_bio2.bio_flags = 0;
762 
763 	BUF_LOCKINIT(bp);
764 }
765 
766 /*
767  * Reinitialize the embedded bio structures as well as any additional
768  * translation cache layers.
769  */
770 void
771 reinitbufbio(struct buf *bp)
772 {
773 	struct bio *bio;
774 
775 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
776 		bio->bio_done = NULL;
777 		bio->bio_offset = NOOFFSET;
778 	}
779 }
780 
781 /*
782  * Undo the effects of an initbufbio().
783  */
784 void
785 uninitbufbio(struct buf *bp)
786 {
787 	dsched_buf_exit(bp);
788 	BUF_LOCKFREE(bp);
789 }
790 
791 /*
792  * Push another BIO layer onto an existing BIO and return it.  The new
793  * BIO layer may already exist, holding cached translation data.
794  */
795 struct bio *
796 push_bio(struct bio *bio)
797 {
798 	struct bio *nbio;
799 
800 	if ((nbio = bio->bio_next) == NULL) {
801 		int index = bio - &bio->bio_buf->b_bio_array[0];
802 		if (index >= NBUF_BIO - 1) {
803 			panic("push_bio: too many layers %d for bp %p",
804 				index, bio->bio_buf);
805 		}
806 		nbio = &bio->bio_buf->b_bio_array[index + 1];
807 		bio->bio_next = nbio;
808 		nbio->bio_prev = bio;
809 		nbio->bio_buf = bio->bio_buf;
810 		nbio->bio_offset = NOOFFSET;
811 		nbio->bio_done = NULL;
812 		nbio->bio_next = NULL;
813 	}
814 	KKASSERT(nbio->bio_done == NULL);
815 	return(nbio);
816 }
817 
818 /*
819  * Pop a BIO translation layer, returning the previous layer.  The
820  * must have been previously pushed.
821  */
822 struct bio *
823 pop_bio(struct bio *bio)
824 {
825 	return(bio->bio_prev);
826 }
827 
828 void
829 clearbiocache(struct bio *bio)
830 {
831 	while (bio) {
832 		bio->bio_offset = NOOFFSET;
833 		bio = bio->bio_next;
834 	}
835 }
836 
837 /*
838  * Remove the buffer from the appropriate free list.
839  * (caller must be locked)
840  */
841 static __inline void
842 _bremfree(struct buf *bp)
843 {
844 	struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
845 
846 	if (bp->b_qindex != BQUEUE_NONE) {
847 		KASSERT(BUF_REFCNTNB(bp) == 1,
848 			("bremfree: bp %p not locked",bp));
849 		TAILQ_REMOVE(&pcpu->bufqueues[bp->b_qindex], bp, b_freelist);
850 		bp->b_qindex = BQUEUE_NONE;
851 	} else {
852 		if (BUF_REFCNTNB(bp) <= 1)
853 			panic("bremfree: removing a buffer not on a queue");
854 	}
855 }
856 
857 /*
858  * bremfree() - must be called with a locked buffer
859  */
860 void
861 bremfree(struct buf *bp)
862 {
863 	struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
864 
865 	spin_lock(&pcpu->spin);
866 	_bremfree(bp);
867 	spin_unlock(&pcpu->spin);
868 }
869 
870 /*
871  * bremfree_locked - must be called with pcpu->spin locked
872  */
873 static void
874 bremfree_locked(struct buf *bp)
875 {
876 	_bremfree(bp);
877 }
878 
879 /*
880  * This version of bread issues any required I/O asyncnronously and
881  * makes a callback on completion.
882  *
883  * The callback must check whether BIO_DONE is set in the bio and issue
884  * the bpdone(bp, 0) if it isn't.  The callback is responsible for clearing
885  * BIO_DONE and disposing of the I/O (bqrelse()ing it).
886  */
887 void
888 breadcb(struct vnode *vp, off_t loffset, int size,
889 	void (*func)(struct bio *), void *arg)
890 {
891 	struct buf *bp;
892 
893 	bp = getblk(vp, loffset, size, 0, 0);
894 
895 	/* if not found in cache, do some I/O */
896 	if ((bp->b_flags & B_CACHE) == 0) {
897 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
898 		bp->b_cmd = BUF_CMD_READ;
899 		bp->b_bio1.bio_done = func;
900 		bp->b_bio1.bio_caller_info1.ptr = arg;
901 		vfs_busy_pages(vp, bp);
902 		BUF_KERNPROC(bp);
903 		vn_strategy(vp, &bp->b_bio1);
904 	} else if (func) {
905 		/*
906 		 * Since we are issuing the callback synchronously it cannot
907 		 * race the BIO_DONE, so no need for atomic ops here.
908 		 */
909 		/*bp->b_bio1.bio_done = func;*/
910 		bp->b_bio1.bio_caller_info1.ptr = arg;
911 		bp->b_bio1.bio_flags |= BIO_DONE;
912 		func(&bp->b_bio1);
913 	} else {
914 		bqrelse(bp);
915 	}
916 }
917 
918 /*
919  * breadnx() - Terminal function for bread() and breadn().
920  *
921  * This function will start asynchronous I/O on read-ahead blocks as well
922  * as satisfy the primary request.
923  *
924  * We must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE is
925  * set, the buffer is valid and we do not have to do anything.
926  */
927 int
928 breadnx(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
929 	int *rabsize, int cnt, struct buf **bpp)
930 {
931 	struct buf *bp, *rabp;
932 	int i;
933 	int rv = 0, readwait = 0;
934 
935 	if (*bpp)
936 		bp = *bpp;
937 	else
938 		*bpp = bp = getblk(vp, loffset, size, 0, 0);
939 
940 	/* if not found in cache, do some I/O */
941 	if ((bp->b_flags & B_CACHE) == 0) {
942 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
943 		bp->b_cmd = BUF_CMD_READ;
944 		bp->b_bio1.bio_done = biodone_sync;
945 		bp->b_bio1.bio_flags |= BIO_SYNC;
946 		vfs_busy_pages(vp, bp);
947 		vn_strategy(vp, &bp->b_bio1);
948 		++readwait;
949 	}
950 
951 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
952 		if (inmem(vp, *raoffset))
953 			continue;
954 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
955 
956 		if ((rabp->b_flags & B_CACHE) == 0) {
957 			rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
958 			rabp->b_cmd = BUF_CMD_READ;
959 			vfs_busy_pages(vp, rabp);
960 			BUF_KERNPROC(rabp);
961 			vn_strategy(vp, &rabp->b_bio1);
962 		} else {
963 			brelse(rabp);
964 		}
965 	}
966 	if (readwait)
967 		rv = biowait(&bp->b_bio1, "biord");
968 	return (rv);
969 }
970 
971 /*
972  * bwrite:
973  *
974  *	Synchronous write, waits for completion.
975  *
976  *	Write, release buffer on completion.  (Done by iodone
977  *	if async).  Do not bother writing anything if the buffer
978  *	is invalid.
979  *
980  *	Note that we set B_CACHE here, indicating that buffer is
981  *	fully valid and thus cacheable.  This is true even of NFS
982  *	now so we set it generally.  This could be set either here
983  *	or in biodone() since the I/O is synchronous.  We put it
984  *	here.
985  */
986 int
987 bwrite(struct buf *bp)
988 {
989 	int error;
990 
991 	if (bp->b_flags & B_INVAL) {
992 		brelse(bp);
993 		return (0);
994 	}
995 	if (BUF_REFCNTNB(bp) == 0)
996 		panic("bwrite: buffer is not busy???");
997 
998 	/*
999 	 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
1000 	 *	 call because it will remove the buffer from the vnode's
1001 	 *	 dirty buffer list prematurely and possibly cause filesystem
1002 	 *	 checks to race buffer flushes.  This is now handled in
1003 	 *	 bpdone().
1004 	 *
1005 	 *	 bundirty(bp); REMOVED
1006 	 */
1007 
1008 	bp->b_flags &= ~(B_ERROR | B_EINTR);
1009 	bp->b_flags |= B_CACHE;
1010 	bp->b_cmd = BUF_CMD_WRITE;
1011 	bp->b_bio1.bio_done = biodone_sync;
1012 	bp->b_bio1.bio_flags |= BIO_SYNC;
1013 	vfs_busy_pages(bp->b_vp, bp);
1014 
1015 	/*
1016 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1017 	 * valid for vnode-backed buffers.
1018 	 */
1019 	bsetrunningbufspace(bp, bp->b_bufsize);
1020 	vn_strategy(bp->b_vp, &bp->b_bio1);
1021 	error = biowait(&bp->b_bio1, "biows");
1022 	brelse(bp);
1023 
1024 	return (error);
1025 }
1026 
1027 /*
1028  * bawrite:
1029  *
1030  *	Asynchronous write.  Start output on a buffer, but do not wait for
1031  *	it to complete.  The buffer is released when the output completes.
1032  *
1033  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1034  *	B_INVAL buffers.  Not us.
1035  */
1036 void
1037 bawrite(struct buf *bp)
1038 {
1039 	if (bp->b_flags & B_INVAL) {
1040 		brelse(bp);
1041 		return;
1042 	}
1043 	if (BUF_REFCNTNB(bp) == 0)
1044 		panic("bawrite: buffer is not busy???");
1045 
1046 	/*
1047 	 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
1048 	 *	 call because it will remove the buffer from the vnode's
1049 	 *	 dirty buffer list prematurely and possibly cause filesystem
1050 	 *	 checks to race buffer flushes.  This is now handled in
1051 	 *	 bpdone().
1052 	 *
1053 	 *	 bundirty(bp); REMOVED
1054 	 */
1055 	bp->b_flags &= ~(B_ERROR | B_EINTR);
1056 	bp->b_flags |= B_CACHE;
1057 	bp->b_cmd = BUF_CMD_WRITE;
1058 	KKASSERT(bp->b_bio1.bio_done == NULL);
1059 	vfs_busy_pages(bp->b_vp, bp);
1060 
1061 	/*
1062 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1063 	 * valid for vnode-backed buffers.
1064 	 */
1065 	bsetrunningbufspace(bp, bp->b_bufsize);
1066 	BUF_KERNPROC(bp);
1067 	vn_strategy(bp->b_vp, &bp->b_bio1);
1068 }
1069 
1070 /*
1071  * bdwrite:
1072  *
1073  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1074  *	anything if the buffer is marked invalid.
1075  *
1076  *	Note that since the buffer must be completely valid, we can safely
1077  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1078  *	biodone() in order to prevent getblk from writing the buffer
1079  *	out synchronously.
1080  */
1081 void
1082 bdwrite(struct buf *bp)
1083 {
1084 	if (BUF_REFCNTNB(bp) == 0)
1085 		panic("bdwrite: buffer is not busy");
1086 
1087 	if (bp->b_flags & B_INVAL) {
1088 		brelse(bp);
1089 		return;
1090 	}
1091 	bdirty(bp);
1092 
1093 	dsched_buf_enter(bp);	/* might stack */
1094 
1095 	/*
1096 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1097 	 * true even of NFS now.
1098 	 */
1099 	bp->b_flags |= B_CACHE;
1100 
1101 	/*
1102 	 * This bmap keeps the system from needing to do the bmap later,
1103 	 * perhaps when the system is attempting to do a sync.  Since it
1104 	 * is likely that the indirect block -- or whatever other datastructure
1105 	 * that the filesystem needs is still in memory now, it is a good
1106 	 * thing to do this.  Note also, that if the pageout daemon is
1107 	 * requesting a sync -- there might not be enough memory to do
1108 	 * the bmap then...  So, this is important to do.
1109 	 */
1110 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1111 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1112 			 NULL, NULL, BUF_CMD_WRITE);
1113 	}
1114 
1115 	/*
1116 	 * Because the underlying pages may still be mapped and
1117 	 * writable trying to set the dirty buffer (b_dirtyoff/end)
1118 	 * range here will be inaccurate.
1119 	 *
1120 	 * However, we must still clean the pages to satisfy the
1121 	 * vnode_pager and pageout daemon, so they think the pages
1122 	 * have been "cleaned".  What has really occured is that
1123 	 * they've been earmarked for later writing by the buffer
1124 	 * cache.
1125 	 *
1126 	 * So we get the b_dirtyoff/end update but will not actually
1127 	 * depend on it (NFS that is) until the pages are busied for
1128 	 * writing later on.
1129 	 */
1130 	vfs_clean_pages(bp);
1131 	bqrelse(bp);
1132 
1133 	/*
1134 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1135 	 * due to the softdep code.
1136 	 */
1137 }
1138 
1139 /*
1140  * Fake write - return pages to VM system as dirty, leave the buffer clean.
1141  * This is used by tmpfs.
1142  *
1143  * It is important for any VFS using this routine to NOT use it for
1144  * IO_SYNC or IO_ASYNC operations which occur when the system really
1145  * wants to flush VM pages to backing store.
1146  */
1147 void
1148 buwrite(struct buf *bp)
1149 {
1150 	vm_page_t m;
1151 	int i;
1152 
1153 	/*
1154 	 * Only works for VMIO buffers.  If the buffer is already
1155 	 * marked for delayed-write we can't avoid the bdwrite().
1156 	 */
1157 	if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1158 		bdwrite(bp);
1159 		return;
1160 	}
1161 
1162 	/*
1163 	 * Mark as needing a commit.
1164 	 */
1165 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1166 		m = bp->b_xio.xio_pages[i];
1167 		vm_page_need_commit(m);
1168 	}
1169 	bqrelse(bp);
1170 }
1171 
1172 /*
1173  * bdirty:
1174  *
1175  *	Turn buffer into delayed write request by marking it B_DELWRI.
1176  *	B_RELBUF and B_NOCACHE must be cleared.
1177  *
1178  *	We reassign the buffer to itself to properly update it in the
1179  *	dirty/clean lists.
1180  *
1181  *	Must be called from a critical section.
1182  *	The buffer must be on BQUEUE_NONE.
1183  */
1184 void
1185 bdirty(struct buf *bp)
1186 {
1187 	KASSERT(bp->b_qindex == BQUEUE_NONE,
1188 		("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1189 	if (bp->b_flags & B_NOCACHE) {
1190 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1191 		bp->b_flags &= ~B_NOCACHE;
1192 	}
1193 	if (bp->b_flags & B_INVAL) {
1194 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1195 	}
1196 	bp->b_flags &= ~B_RELBUF;
1197 
1198 	if ((bp->b_flags & B_DELWRI) == 0) {
1199 		lwkt_gettoken(&bp->b_vp->v_token);
1200 		bp->b_flags |= B_DELWRI;
1201 		reassignbuf(bp);
1202 		lwkt_reltoken(&bp->b_vp->v_token);
1203 
1204 		atomic_add_long(&dirtybufcount, 1);
1205 		atomic_add_long(&dirtykvaspace, bp->b_kvasize);
1206 		atomic_add_long(&dirtybufspace, bp->b_bufsize);
1207 		if (bp->b_flags & B_HEAVY) {
1208 			atomic_add_long(&dirtybufcounthw, 1);
1209 			atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1210 		}
1211 		bd_heatup();
1212 	}
1213 }
1214 
1215 /*
1216  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1217  * needs to be flushed with a different buf_daemon thread to avoid
1218  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1219  */
1220 void
1221 bheavy(struct buf *bp)
1222 {
1223 	if ((bp->b_flags & B_HEAVY) == 0) {
1224 		bp->b_flags |= B_HEAVY;
1225 		if (bp->b_flags & B_DELWRI) {
1226 			atomic_add_long(&dirtybufcounthw, 1);
1227 			atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1228 		}
1229 	}
1230 }
1231 
1232 /*
1233  * bundirty:
1234  *
1235  *	Clear B_DELWRI for buffer.
1236  *
1237  *	Must be called from a critical section.
1238  *
1239  *	The buffer is typically on BQUEUE_NONE but there is one case in
1240  *	brelse() that calls this function after placing the buffer on
1241  *	a different queue.
1242  */
1243 void
1244 bundirty(struct buf *bp)
1245 {
1246 	if (bp->b_flags & B_DELWRI) {
1247 		lwkt_gettoken(&bp->b_vp->v_token);
1248 		bp->b_flags &= ~B_DELWRI;
1249 		reassignbuf(bp);
1250 		lwkt_reltoken(&bp->b_vp->v_token);
1251 
1252 		atomic_add_long(&dirtybufcount, -1);
1253 		atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1254 		atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1255 		if (bp->b_flags & B_HEAVY) {
1256 			atomic_add_long(&dirtybufcounthw, -1);
1257 			atomic_add_long(&dirtybufspacehw, -bp->b_bufsize);
1258 		}
1259 		bd_signal(bp->b_bufsize);
1260 	}
1261 	/*
1262 	 * Since it is now being written, we can clear its deferred write flag.
1263 	 */
1264 	bp->b_flags &= ~B_DEFERRED;
1265 }
1266 
1267 /*
1268  * Set the b_runningbufspace field, used to track how much I/O is
1269  * in progress at any given moment.
1270  */
1271 void
1272 bsetrunningbufspace(struct buf *bp, int bytes)
1273 {
1274 	bp->b_runningbufspace = bytes;
1275 	if (bytes) {
1276 		atomic_add_long(&runningbufspace, bytes);
1277 		atomic_add_long(&runningbufcount, 1);
1278 	}
1279 }
1280 
1281 /*
1282  * brelse:
1283  *
1284  *	Release a busy buffer and, if requested, free its resources.  The
1285  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1286  *	to be accessed later as a cache entity or reused for other purposes.
1287  */
1288 void
1289 brelse(struct buf *bp)
1290 {
1291 	struct bufpcpu *pcpu;
1292 #ifdef INVARIANTS
1293 	int saved_flags = bp->b_flags;
1294 #endif
1295 
1296 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1297 		("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1298 
1299 	/*
1300 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1301 	 * its backing store.  Clear B_DELWRI.
1302 	 *
1303 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1304 	 * to destroy the buffer and backing store and (2) when the caller
1305 	 * wants to destroy the buffer and backing store after a write
1306 	 * completes.
1307 	 */
1308 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1309 		bundirty(bp);
1310 	}
1311 
1312 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1313 		/*
1314 		 * A re-dirtied buffer is only subject to destruction
1315 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1316 		 */
1317 		/* leave buffer intact */
1318 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1319 		   (bp->b_bufsize <= 0)) {
1320 		/*
1321 		 * Either a failed read or we were asked to free or not
1322 		 * cache the buffer.  This path is reached with B_DELWRI
1323 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1324 		 * backing store destruction.
1325 		 *
1326 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1327 		 * buffer cannot be immediately freed.
1328 		 */
1329 		bp->b_flags |= B_INVAL;
1330 		if (LIST_FIRST(&bp->b_dep) != NULL)
1331 			buf_deallocate(bp);
1332 		if (bp->b_flags & B_DELWRI) {
1333 			atomic_add_long(&dirtybufcount, -1);
1334 			atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1335 			atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1336 			if (bp->b_flags & B_HEAVY) {
1337 				atomic_add_long(&dirtybufcounthw, -1);
1338 				atomic_add_long(&dirtybufspacehw,
1339 						-bp->b_bufsize);
1340 			}
1341 			bd_signal(bp->b_bufsize);
1342 		}
1343 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1344 	}
1345 
1346 	/*
1347 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1348 	 * or if b_refs is non-zero.
1349 	 *
1350 	 * If vfs_vmio_release() is called with either bit set, the
1351 	 * underlying pages may wind up getting freed causing a previous
1352 	 * write (bdwrite()) to get 'lost' because pages associated with
1353 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1354 	 * B_LOCKED buffer may be mapped by the filesystem.
1355 	 *
1356 	 * If we want to release the buffer ourselves (rather then the
1357 	 * originator asking us to release it), give the originator a
1358 	 * chance to countermand the release by setting B_LOCKED.
1359 	 *
1360 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1361 	 * if B_DELWRI is set.
1362 	 *
1363 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1364 	 * on pages to return pages to the VM page queues.
1365 	 */
1366 	if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) {
1367 		bp->b_flags &= ~B_RELBUF;
1368 	} else if (vm_page_count_min(0)) {
1369 		if (LIST_FIRST(&bp->b_dep) != NULL)
1370 			buf_deallocate(bp);		/* can set B_LOCKED */
1371 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1372 			bp->b_flags &= ~B_RELBUF;
1373 		else
1374 			bp->b_flags |= B_RELBUF;
1375 	}
1376 
1377 	/*
1378 	 * Make sure b_cmd is clear.  It may have already been cleared by
1379 	 * biodone().
1380 	 *
1381 	 * At this point destroying the buffer is governed by the B_INVAL
1382 	 * or B_RELBUF flags.
1383 	 */
1384 	bp->b_cmd = BUF_CMD_DONE;
1385 	dsched_buf_exit(bp);
1386 
1387 	/*
1388 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1389 	 * after an I/O may have replaces some of the pages with bogus pages
1390 	 * in order to not destroy dirty pages in a fill-in read.
1391 	 *
1392 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1393 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1394 	 * B_INVAL may still be set, however.
1395 	 *
1396 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1397 	 * but not the backing store.   B_NOCACHE will destroy the backing
1398 	 * store.
1399 	 *
1400 	 * Note that dirty NFS buffers contain byte-granular write ranges
1401 	 * and should not be destroyed w/ B_INVAL even if the backing store
1402 	 * is left intact.
1403 	 */
1404 	if (bp->b_flags & B_VMIO) {
1405 		/*
1406 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1407 		 */
1408 		int i, j, resid;
1409 		vm_page_t m;
1410 		off_t foff;
1411 		vm_pindex_t poff;
1412 		vm_object_t obj;
1413 		struct vnode *vp;
1414 
1415 		vp = bp->b_vp;
1416 
1417 		/*
1418 		 * Get the base offset and length of the buffer.  Note that
1419 		 * in the VMIO case if the buffer block size is not
1420 		 * page-aligned then b_data pointer may not be page-aligned.
1421 		 * But our b_xio.xio_pages array *IS* page aligned.
1422 		 *
1423 		 * block sizes less then DEV_BSIZE (usually 512) are not
1424 		 * supported due to the page granularity bits (m->valid,
1425 		 * m->dirty, etc...).
1426 		 *
1427 		 * See man buf(9) for more information
1428 		 */
1429 
1430 		resid = bp->b_bufsize;
1431 		foff = bp->b_loffset;
1432 
1433 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1434 			m = bp->b_xio.xio_pages[i];
1435 
1436 			/*
1437 			 * If we hit a bogus page, fixup *all* of them
1438 			 * now.  Note that we left these pages wired
1439 			 * when we removed them so they had better exist,
1440 			 * and they cannot be ripped out from under us so
1441 			 * no critical section protection is necessary.
1442 			 */
1443 			if (m == bogus_page) {
1444 				obj = vp->v_object;
1445 				poff = OFF_TO_IDX(bp->b_loffset);
1446 
1447 				vm_object_hold(obj);
1448 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1449 					vm_page_t mtmp;
1450 
1451 					mtmp = bp->b_xio.xio_pages[j];
1452 					if (mtmp == bogus_page) {
1453 						if ((bp->b_flags & B_HASBOGUS) == 0)
1454 							panic("brelse: bp %p corrupt bogus", bp);
1455 						mtmp = vm_page_lookup(obj, poff + j);
1456 						if (!mtmp)
1457 							panic("brelse: bp %p page %d missing", bp, j);
1458 						bp->b_xio.xio_pages[j] = mtmp;
1459 					}
1460 				}
1461 				vm_object_drop(obj);
1462 
1463 				if ((bp->b_flags & B_HASBOGUS) || (bp->b_flags & B_INVAL) == 0) {
1464 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1465 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1466 					bp->b_flags &= ~B_HASBOGUS;
1467 				}
1468 				m = bp->b_xio.xio_pages[i];
1469 			}
1470 
1471 			/*
1472 			 * Invalidate the backing store if B_NOCACHE is set
1473 			 * (e.g. used with vinvalbuf()).  If this is NFS
1474 			 * we impose a requirement that the block size be
1475 			 * a multiple of PAGE_SIZE and create a temporary
1476 			 * hack to basically invalidate the whole page.  The
1477 			 * problem is that NFS uses really odd buffer sizes
1478 			 * especially when tracking piecemeal writes and
1479 			 * it also vinvalbuf()'s a lot, which would result
1480 			 * in only partial page validation and invalidation
1481 			 * here.  If the file page is mmap()'d, however,
1482 			 * all the valid bits get set so after we invalidate
1483 			 * here we would end up with weird m->valid values
1484 			 * like 0xfc.  nfs_getpages() can't handle this so
1485 			 * we clear all the valid bits for the NFS case
1486 			 * instead of just some of them.
1487 			 *
1488 			 * The real bug is the VM system having to set m->valid
1489 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1490 			 * itself is an artifact of the whole 512-byte
1491 			 * granular mess that exists to support odd block
1492 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1493 			 * A complete rewrite is required.
1494 			 *
1495 			 * XXX
1496 			 */
1497 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1498 				int poffset = foff & PAGE_MASK;
1499 				int presid;
1500 
1501 				presid = PAGE_SIZE - poffset;
1502 				if (bp->b_vp->v_tag == VT_NFS &&
1503 				    bp->b_vp->v_type == VREG) {
1504 					; /* entire page */
1505 				} else if (presid > resid) {
1506 					presid = resid;
1507 				}
1508 				KASSERT(presid >= 0, ("brelse: extra page"));
1509 				vm_page_set_invalid(m, poffset, presid);
1510 
1511 				/*
1512 				 * Also make sure any swap cache is removed
1513 				 * as it is now stale (HAMMER in particular
1514 				 * uses B_NOCACHE to deal with buffer
1515 				 * aliasing).
1516 				 */
1517 				swap_pager_unswapped(m);
1518 			}
1519 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1520 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1521 		}
1522 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1523 			vfs_vmio_release(bp);
1524 	} else {
1525 		/*
1526 		 * Rundown for non-VMIO buffers.
1527 		 */
1528 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1529 			if (bp->b_bufsize)
1530 				allocbuf(bp, 0);
1531 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1532 			if (bp->b_vp)
1533 				brelvp(bp);
1534 		}
1535 	}
1536 
1537 	if (bp->b_qindex != BQUEUE_NONE)
1538 		panic("brelse: free buffer onto another queue???");
1539 	if (BUF_REFCNTNB(bp) > 1) {
1540 		/* Temporary panic to verify exclusive locking */
1541 		/* This panic goes away when we allow shared refs */
1542 		panic("brelse: multiple refs");
1543 		/* NOT REACHED */
1544 		return;
1545 	}
1546 
1547 	/*
1548 	 * Figure out the correct queue to place the cleaned up buffer on.
1549 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1550 	 * disassociated from their vnode.
1551 	 *
1552 	 * Return the buffer to its original pcpu area
1553 	 */
1554 	pcpu = &bufpcpu[bp->b_qcpu];
1555 	spin_lock(&pcpu->spin);
1556 
1557 	if (bp->b_flags & B_LOCKED) {
1558 		/*
1559 		 * Buffers that are locked are placed in the locked queue
1560 		 * immediately, regardless of their state.
1561 		 */
1562 		bp->b_qindex = BQUEUE_LOCKED;
1563 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1564 				  bp, b_freelist);
1565 	} else if (bp->b_bufsize == 0) {
1566 		/*
1567 		 * Buffers with no memory.  Due to conditionals near the top
1568 		 * of brelse() such buffers should probably already be
1569 		 * marked B_INVAL and disassociated from their vnode.
1570 		 */
1571 		bp->b_flags |= B_INVAL;
1572 		KASSERT(bp->b_vp == NULL,
1573 			("bp1 %p flags %08x/%08x vnode %p "
1574 			 "unexpectededly still associated!",
1575 			bp, saved_flags, bp->b_flags, bp->b_vp));
1576 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1577 		bp->b_qindex = BQUEUE_EMPTY;
1578 		TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1579 				  bp, b_freelist);
1580 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1581 		/*
1582 		 * Buffers with junk contents.   Again these buffers had better
1583 		 * already be disassociated from their vnode.
1584 		 */
1585 		KASSERT(bp->b_vp == NULL,
1586 			("bp2 %p flags %08x/%08x vnode %p unexpectededly "
1587 			 "still associated!",
1588 			bp, saved_flags, bp->b_flags, bp->b_vp));
1589 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1590 		bp->b_flags |= B_INVAL;
1591 		bp->b_qindex = BQUEUE_CLEAN;
1592 		TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1593 				  bp, b_freelist);
1594 	} else {
1595 		/*
1596 		 * Remaining buffers.  These buffers are still associated with
1597 		 * their vnode.
1598 		 */
1599 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1600 		case B_DELWRI:
1601 			bp->b_qindex = BQUEUE_DIRTY;
1602 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1603 					  bp, b_freelist);
1604 			break;
1605 		case B_DELWRI | B_HEAVY:
1606 			bp->b_qindex = BQUEUE_DIRTY_HW;
1607 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1608 					  bp, b_freelist);
1609 			break;
1610 		default:
1611 			/*
1612 			 * NOTE: Buffers are always placed at the end of the
1613 			 * queue.  If B_AGE is not set the buffer will cycle
1614 			 * through the queue twice.
1615 			 */
1616 			bp->b_qindex = BQUEUE_CLEAN;
1617 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1618 					  bp, b_freelist);
1619 			break;
1620 		}
1621 	}
1622 	spin_unlock(&pcpu->spin);
1623 
1624 	/*
1625 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1626 	 * on the correct queue but we have not yet unlocked it.
1627 	 */
1628 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1629 		bundirty(bp);
1630 
1631 	/*
1632 	 * The bp is on an appropriate queue unless locked.  If it is not
1633 	 * locked or dirty we can wakeup threads waiting for buffer space.
1634 	 *
1635 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1636 	 * if B_INVAL is set ).
1637 	 */
1638 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1639 		bufcountwakeup();
1640 
1641 	/*
1642 	 * Something we can maybe free or reuse
1643 	 */
1644 	if (bp->b_bufsize || bp->b_kvasize)
1645 		bufspacewakeup();
1646 
1647 	/*
1648 	 * Clean up temporary flags and unlock the buffer.
1649 	 */
1650 	bp->b_flags &= ~(B_NOCACHE | B_RELBUF | B_DIRECT);
1651 	BUF_UNLOCK(bp);
1652 }
1653 
1654 /*
1655  * bqrelse:
1656  *
1657  *	Release a buffer back to the appropriate queue but do not try to free
1658  *	it.  The buffer is expected to be used again soon.
1659  *
1660  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1661  *	biodone() to requeue an async I/O on completion.  It is also used when
1662  *	known good buffers need to be requeued but we think we may need the data
1663  *	again soon.
1664  *
1665  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1666  */
1667 void
1668 bqrelse(struct buf *bp)
1669 {
1670 	struct bufpcpu *pcpu;
1671 
1672 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1673 		("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1674 
1675 	if (bp->b_qindex != BQUEUE_NONE)
1676 		panic("bqrelse: free buffer onto another queue???");
1677 	if (BUF_REFCNTNB(bp) > 1) {
1678 		/* do not release to free list */
1679 		panic("bqrelse: multiple refs");
1680 		return;
1681 	}
1682 
1683 	buf_act_advance(bp);
1684 
1685 	pcpu = &bufpcpu[bp->b_qcpu];
1686 	spin_lock(&pcpu->spin);
1687 
1688 	if (bp->b_flags & B_LOCKED) {
1689 		/*
1690 		 * Locked buffers are released to the locked queue.  However,
1691 		 * if the buffer is dirty it will first go into the dirty
1692 		 * queue and later on after the I/O completes successfully it
1693 		 * will be released to the locked queue.
1694 		 */
1695 		bp->b_qindex = BQUEUE_LOCKED;
1696 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1697 				  bp, b_freelist);
1698 	} else if (bp->b_flags & B_DELWRI) {
1699 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1700 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1701 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1702 				  bp, b_freelist);
1703 	} else if (vm_page_count_min(0)) {
1704 		/*
1705 		 * We are too low on memory, we have to try to free the
1706 		 * buffer (most importantly: the wired pages making up its
1707 		 * backing store) *now*.
1708 		 */
1709 		spin_unlock(&pcpu->spin);
1710 		brelse(bp);
1711 		return;
1712 	} else {
1713 		bp->b_qindex = BQUEUE_CLEAN;
1714 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1715 				  bp, b_freelist);
1716 	}
1717 	spin_unlock(&pcpu->spin);
1718 
1719 	/*
1720 	 * We have now placed the buffer on the proper queue, but have yet
1721 	 * to unlock it.
1722 	 */
1723 	if ((bp->b_flags & B_LOCKED) == 0 &&
1724 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1725 		bufcountwakeup();
1726 	}
1727 
1728 	/*
1729 	 * Something we can maybe free or reuse.
1730 	 */
1731 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1732 		bufspacewakeup();
1733 
1734 	/*
1735 	 * Final cleanup and unlock.  Clear bits that are only used while a
1736 	 * buffer is actively locked.
1737 	 */
1738 	bp->b_flags &= ~(B_NOCACHE | B_RELBUF);
1739 	dsched_buf_exit(bp);
1740 	BUF_UNLOCK(bp);
1741 }
1742 
1743 /*
1744  * Hold a buffer, preventing it from being reused.  This will prevent
1745  * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1746  * operations.  If a B_INVAL operation occurs the buffer will remain held
1747  * but the underlying pages may get ripped out.
1748  *
1749  * These functions are typically used in VOP_READ/VOP_WRITE functions
1750  * to hold a buffer during a copyin or copyout, preventing deadlocks
1751  * or recursive lock panics when read()/write() is used over mmap()'d
1752  * space.
1753  *
1754  * NOTE: bqhold() requires that the buffer be locked at the time of the
1755  *	 hold.  bqdrop() has no requirements other than the buffer having
1756  *	 previously been held.
1757  */
1758 void
1759 bqhold(struct buf *bp)
1760 {
1761 	atomic_add_int(&bp->b_refs, 1);
1762 }
1763 
1764 void
1765 bqdrop(struct buf *bp)
1766 {
1767 	KKASSERT(bp->b_refs > 0);
1768 	atomic_add_int(&bp->b_refs, -1);
1769 }
1770 
1771 /*
1772  * Return backing pages held by the buffer 'bp' back to the VM system.
1773  * This routine is called when the bp is invalidated, released, or
1774  * reused.
1775  *
1776  * The KVA mapping (b_data) for the underlying pages is removed by
1777  * this function.
1778  *
1779  * WARNING! This routine is integral to the low memory critical path
1780  *          when a buffer is B_RELBUF'd.  If the system has a severe page
1781  *          deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE
1782  *          queues so they can be reused in the current pageout daemon
1783  *          pass.
1784  */
1785 static void
1786 vfs_vmio_release(struct buf *bp)
1787 {
1788 	int i;
1789 	vm_page_t m;
1790 
1791 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1792 		m = bp->b_xio.xio_pages[i];
1793 		bp->b_xio.xio_pages[i] = NULL;
1794 
1795 		/*
1796 		 * We need to own the page in order to safely unwire it.
1797 		 */
1798 		vm_page_busy_wait(m, FALSE, "vmiopg");
1799 
1800 		/*
1801 		 * The VFS is telling us this is not a meta-data buffer
1802 		 * even if it is backed by a block device.
1803 		 */
1804 		if (bp->b_flags & B_NOTMETA)
1805 			vm_page_flag_set(m, PG_NOTMETA);
1806 
1807 		/*
1808 		 * This is a very important bit of code.  We try to track
1809 		 * VM page use whether the pages are wired into the buffer
1810 		 * cache or not.  While wired into the buffer cache the
1811 		 * bp tracks the act_count.
1812 		 *
1813 		 * We can choose to place unwired pages on the inactive
1814 		 * queue (0) or active queue (1).  If we place too many
1815 		 * on the active queue the queue will cycle the act_count
1816 		 * on pages we'd like to keep, just from single-use pages
1817 		 * (such as when doing a tar-up or file scan).
1818 		 */
1819 		if (bp->b_act_count < vm_cycle_point)
1820 			vm_page_unwire(m, 0);
1821 		else
1822 			vm_page_unwire(m, 1);
1823 
1824 		/*
1825 		 * If the wire_count has dropped to 0 we may need to take
1826 		 * further action before unbusying the page.
1827 		 *
1828 		 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us.
1829 		 */
1830 		if (m->wire_count == 0) {
1831 			if (bp->b_flags & B_DIRECT) {
1832 				/*
1833 				 * Attempt to free the page if B_DIRECT is
1834 				 * set, the caller does not desire the page
1835 				 * to be cached.
1836 				 */
1837 				vm_page_wakeup(m);
1838 				vm_page_try_to_free(m);
1839 			} else if ((bp->b_flags & B_NOTMETA) ||
1840 				   vm_page_count_min(0)) {
1841 				/*
1842 				 * Attempt to move the page to PQ_CACHE
1843 				 * if B_NOTMETA is set.  This flag is set
1844 				 * by HAMMER to remove one of the two pages
1845 				 * present when double buffering is enabled.
1846 				 *
1847 				 * Attempt to move the page to PQ_CACHE
1848 				 * If we have a severe page deficit.  This
1849 				 * will cause buffer cache operations related
1850 				 * to pageouts to recycle the related pages
1851 				 * in order to avoid a low memory deadlock.
1852 				 */
1853 				m->act_count = bp->b_act_count;
1854 				vm_page_try_to_cache(m);
1855 			} else {
1856 				/*
1857 				 * Nominal case, leave the page on the
1858 				 * queue the original unwiring placed it on
1859 				 * (active or inactive).
1860 				 */
1861 				m->act_count = bp->b_act_count;
1862 				vm_page_wakeup(m);
1863 			}
1864 		} else {
1865 			vm_page_wakeup(m);
1866 		}
1867 	}
1868 
1869 	/*
1870 	 * Zero out the pmap pte's for the mapping, but don't bother
1871 	 * invalidating the TLB.  The range will be properly invalidating
1872 	 * when new pages are entered into the mapping.
1873 	 *
1874 	 * This in particular reduces tmpfs tear-down overhead and reduces
1875 	 * buffer cache re-use overhead (one invalidation sequence instead
1876 	 * of two per re-use).
1877 	 */
1878 	pmap_qremove_noinval(trunc_page((vm_offset_t) bp->b_data),
1879 			     bp->b_xio.xio_npages);
1880 	if (bp->b_bufsize) {
1881 		atomic_add_long(&bufspace, -bp->b_bufsize);
1882 		bp->b_bufsize = 0;
1883 		bufspacewakeup();
1884 	}
1885 	bp->b_xio.xio_npages = 0;
1886 	bp->b_flags &= ~B_VMIO;
1887 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1888 	if (bp->b_vp)
1889 		brelvp(bp);
1890 }
1891 
1892 /*
1893  * Find and initialize a new buffer header, freeing up existing buffers
1894  * in the bufqueues as necessary.  The new buffer is returned locked.
1895  *
1896  * If repurpose is non-NULL getnewbuf() is allowed to re-purpose an existing
1897  * buffer.  The buffer will be disassociated, its page and page mappings
1898  * left intact, and returned with *repurpose set to 1.  Else *repurpose is set
1899  * to 0.  If 1, the caller must repurpose the underlying VM pages.
1900  *
1901  * If repurpose is NULL getnewbuf() is not allowed to re-purpose an
1902  * existing buffer.  That is, it must completely initialize the returned
1903  * buffer.
1904  *
1905  * Important:  B_INVAL is not set.  If the caller wishes to throw the
1906  * buffer away, the caller must set B_INVAL prior to calling brelse().
1907  *
1908  * We block if:
1909  *	We have insufficient buffer headers
1910  *	We have insufficient buffer space
1911  *
1912  * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1913  * Instead we ask the buf daemon to do it for us.  We attempt to
1914  * avoid piecemeal wakeups of the pageout daemon.
1915  */
1916 struct buf *
1917 getnewbuf(int blkflags, int slptimeo, int size, int maxsize,
1918 	  struct vm_object **repurposep)
1919 {
1920 	struct bufpcpu *pcpu;
1921 	struct buf *bp;
1922 	struct buf *nbp;
1923 	int nqindex;
1924 	int nqcpu;
1925 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1926 	int maxloops = 200000;
1927 	int restart_reason = 0;
1928 	struct buf *restart_bp = NULL;
1929 	static char flushingbufs[MAXCPU];
1930 	char *flushingp;
1931 
1932 	/*
1933 	 * We can't afford to block since we might be holding a vnode lock,
1934 	 * which may prevent system daemons from running.  We deal with
1935 	 * low-memory situations by proactively returning memory and running
1936 	 * async I/O rather then sync I/O.
1937 	 */
1938 
1939 	++getnewbufcalls;
1940 	nqcpu = mycpu->gd_cpuid;
1941 	flushingp = &flushingbufs[nqcpu];
1942 restart:
1943 	if (bufspace < lobufspace)
1944 		*flushingp = 0;
1945 
1946 	if (debug_bufbio && --maxloops == 0)
1947 		panic("getnewbuf, excessive loops on cpu %d restart %d (%p)",
1948 			mycpu->gd_cpuid, restart_reason, restart_bp);
1949 
1950 	/*
1951 	 * Setup for scan.  If we do not have enough free buffers,
1952 	 * we setup a degenerate case that immediately fails.  Note
1953 	 * that if we are specially marked process, we are allowed to
1954 	 * dip into our reserves.
1955 	 *
1956 	 * The scanning sequence is nominally:  EMPTY->CLEAN
1957 	 */
1958 	pcpu = &bufpcpu[nqcpu];
1959 	spin_lock(&pcpu->spin);
1960 
1961 	/*
1962 	 * Determine if repurposing should be disallowed.  Generally speaking
1963 	 * do not repurpose buffers if the buffer cache hasn't capped.  Also
1964 	 * control repurposing based on buffer-cache -> main-memory bandwidth.
1965 	 * That is, we want to recycle buffers normally up until the buffer
1966 	 * cache bandwidth (new-buffer bw) exceeds bufcache_bw.
1967 	 *
1968 	 * (This is heuristical, SMP collisions are ok)
1969 	 */
1970 	if (repurposep) {
1971 		int delta = ticks - bufcache_bw_ticks;
1972 		if (delta < 0 || delta >= hz) {
1973 			atomic_swap_long(&bufcache_bw_accum, 0);
1974 			atomic_swap_int(&bufcache_bw_ticks, ticks);
1975 		}
1976 		atomic_add_long(&bufcache_bw_accum, size);
1977 		if (bufspace < lobufspace) {
1978 			repurposep = NULL;
1979 		} else if (bufcache_bw_accum < bufcache_bw) {
1980 			repurposep = NULL;
1981 		}
1982 	}
1983 
1984 	/*
1985 	 * Prime the scan for this cpu.  Locate the first buffer to
1986 	 * check.  If we are flushing buffers we must skip the
1987 	 * EMPTY queue.
1988 	 */
1989 	nqindex = BQUEUE_EMPTY;
1990 	nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_EMPTY]);
1991 	if (nbp == NULL || *flushingp || repurposep) {
1992 		nqindex = BQUEUE_CLEAN;
1993 		nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN]);
1994 	}
1995 
1996 	/*
1997 	 * Run scan, possibly freeing data and/or kva mappings on the fly,
1998 	 * depending.
1999 	 *
2000 	 * WARNING! spin is held!
2001 	 */
2002 	while ((bp = nbp) != NULL) {
2003 		int qindex = nqindex;
2004 
2005 		nbp = TAILQ_NEXT(bp, b_freelist);
2006 
2007 		/*
2008 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2009 		 * cycles through the queue twice before being selected.
2010 		 */
2011 		if (qindex == BQUEUE_CLEAN &&
2012 		    (bp->b_flags & B_AGE) == 0 && nbp) {
2013 			bp->b_flags |= B_AGE;
2014 			TAILQ_REMOVE(&pcpu->bufqueues[qindex],
2015 				     bp, b_freelist);
2016 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[qindex],
2017 					  bp, b_freelist);
2018 			continue;
2019 		}
2020 
2021 		/*
2022 		 * Calculate next bp ( we can only use it if we do not block
2023 		 * or do other fancy things ).
2024 		 */
2025 		if (nbp == NULL) {
2026 			switch(qindex) {
2027 			case BQUEUE_EMPTY:
2028 				nqindex = BQUEUE_CLEAN;
2029 				if ((nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN])))
2030 					break;
2031 				/* fall through */
2032 			case BQUEUE_CLEAN:
2033 				/*
2034 				 * nbp is NULL.
2035 				 */
2036 				break;
2037 			}
2038 		}
2039 
2040 		/*
2041 		 * Sanity Checks
2042 		 */
2043 		KASSERT(bp->b_qindex == qindex,
2044 			("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2045 
2046 		/*
2047 		 * Note: we no longer distinguish between VMIO and non-VMIO
2048 		 * buffers.
2049 		 */
2050 		KASSERT((bp->b_flags & B_DELWRI) == 0,
2051 			("delwri buffer %p found in queue %d", bp, qindex));
2052 
2053 		/*
2054 		 * Do not try to reuse a buffer with a non-zero b_refs.
2055 		 * This is an unsynchronized test.  A synchronized test
2056 		 * is also performed after we lock the buffer.
2057 		 */
2058 		if (bp->b_refs)
2059 			continue;
2060 
2061 		/*
2062 		 * Start freeing the bp.  This is somewhat involved.  nbp
2063 		 * remains valid only for BQUEUE_EMPTY bp's.  Buffers
2064 		 * on the clean list must be disassociated from their
2065 		 * current vnode.  Buffers on the empty lists have
2066 		 * already been disassociated.
2067 		 *
2068 		 * b_refs is checked after locking along with queue changes.
2069 		 * We must check here to deal with zero->nonzero transitions
2070 		 * made by the owner of the buffer lock, which is used by
2071 		 * VFS's to hold the buffer while issuing an unlocked
2072 		 * uiomove()s.  We cannot invalidate the buffer's pages
2073 		 * for this case.  Once we successfully lock a buffer the
2074 		 * only 0->1 transitions of b_refs will occur via findblk().
2075 		 *
2076 		 * We must also check for queue changes after successful
2077 		 * locking as the current lock holder may dispose of the
2078 		 * buffer and change its queue.
2079 		 */
2080 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2081 			spin_unlock(&pcpu->spin);
2082 			tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100);
2083 			restart_reason = 1;
2084 			restart_bp = bp;
2085 			goto restart;
2086 		}
2087 		if (bp->b_qindex != qindex || bp->b_refs) {
2088 			spin_unlock(&pcpu->spin);
2089 			BUF_UNLOCK(bp);
2090 			restart_reason = 2;
2091 			restart_bp = bp;
2092 			goto restart;
2093 		}
2094 		bremfree_locked(bp);
2095 		spin_unlock(&pcpu->spin);
2096 
2097 		/*
2098 		 * Dependancies must be handled before we disassociate the
2099 		 * vnode.
2100 		 *
2101 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2102 		 * be immediately disassociated.  HAMMER then becomes
2103 		 * responsible for releasing the buffer.
2104 		 *
2105 		 * NOTE: spin is UNLOCKED now.
2106 		 */
2107 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2108 			buf_deallocate(bp);
2109 			if (bp->b_flags & B_LOCKED) {
2110 				bqrelse(bp);
2111 				restart_reason = 3;
2112 				restart_bp = bp;
2113 				goto restart;
2114 			}
2115 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2116 		}
2117 
2118 		/*
2119 		 * CLEAN buffers have content or associations that must be
2120 		 * cleaned out if not repurposing.
2121 		 */
2122 		if (qindex == BQUEUE_CLEAN) {
2123 			if (bp->b_flags & B_VMIO) {
2124 				if (repurpose_enable &&
2125 				    repurposep && bp->b_bufsize &&
2126 				    (bp->b_flags & (B_DELWRI | B_MALLOC)) == 0) {
2127 					*repurposep = bp->b_vp->v_object;
2128 					vm_object_hold(*repurposep);
2129 				} else {
2130 					vfs_vmio_release(bp);
2131 				}
2132 			}
2133 			if (bp->b_vp)
2134 				brelvp(bp);
2135 		}
2136 
2137 		/*
2138 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2139 		 * the scan from this point on.
2140 		 *
2141 		 * Get the rest of the buffer freed up.  b_kva* is still
2142 		 * valid after this operation.
2143 		 */
2144 		KASSERT(bp->b_vp == NULL,
2145 			("bp3 %p flags %08x vnode %p qindex %d "
2146 			 "unexpectededly still associated!",
2147 			 bp, bp->b_flags, bp->b_vp, qindex));
2148 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2149 
2150 		if (repurposep == NULL || *repurposep == NULL) {
2151 			if (bp->b_bufsize)
2152 				allocbuf(bp, 0);
2153 		}
2154 
2155                 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN | B_HASHED)) {
2156 			kprintf("getnewbuf: caught bug vp queue "
2157 				"%p/%08x qidx %d\n",
2158 				bp, bp->b_flags, qindex);
2159 			brelvp(bp);
2160 		}
2161 		bp->b_flags = B_BNOCLIP;
2162 		bp->b_cmd = BUF_CMD_DONE;
2163 		bp->b_vp = NULL;
2164 		bp->b_error = 0;
2165 		bp->b_resid = 0;
2166 		bp->b_bcount = 0;
2167 		if (repurposep == NULL || *repurposep == NULL)
2168 			bp->b_xio.xio_npages = 0;
2169 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2170 		bp->b_act_count = ACT_INIT;
2171 		reinitbufbio(bp);
2172 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2173 		buf_dep_init(bp);
2174 		if (blkflags & GETBLK_BHEAVY)
2175 			bp->b_flags |= B_HEAVY;
2176 
2177 		if (bufspace >= hibufspace)
2178 			*flushingp = 1;
2179 		if (bufspace < lobufspace)
2180 			*flushingp = 0;
2181 		if (*flushingp) {
2182 			if (repurposep && *repurposep != NULL) {
2183 				bp->b_flags |= B_VMIO;
2184 				vfs_vmio_release(bp);
2185 				if (bp->b_bufsize)
2186 					allocbuf(bp, 0);
2187 				vm_object_drop(*repurposep);
2188 				*repurposep = NULL;
2189 			}
2190 			bp->b_flags |= B_INVAL;
2191 			brelse(bp);
2192 			restart_reason = 5;
2193 			restart_bp = bp;
2194 			goto restart;
2195 		}
2196 
2197 		/*
2198 		 * b_refs can transition to a non-zero value while we hold
2199 		 * the buffer locked due to a findblk().  Our brelvp() above
2200 		 * interlocked any future possible transitions due to
2201 		 * findblk()s.
2202 		 *
2203 		 * If we find b_refs to be non-zero we can destroy the
2204 		 * buffer's contents but we cannot yet reuse the buffer.
2205 		 */
2206 		if (bp->b_refs) {
2207 			if (repurposep && *repurposep != NULL) {
2208 				bp->b_flags |= B_VMIO;
2209 				vfs_vmio_release(bp);
2210 				if (bp->b_bufsize)
2211 					allocbuf(bp, 0);
2212 				vm_object_drop(*repurposep);
2213 				*repurposep = NULL;
2214 			}
2215 			bp->b_flags |= B_INVAL;
2216 			brelse(bp);
2217 			restart_reason = 6;
2218 			restart_bp = bp;
2219 
2220 			goto restart;
2221 		}
2222 
2223 		/*
2224 		 * We found our buffer!
2225 		 */
2226 		break;
2227 	}
2228 
2229 	/*
2230 	 * If we exhausted our list, iterate other cpus.  If that fails,
2231 	 * sleep as appropriate.  We may have to wakeup various daemons
2232 	 * and write out some dirty buffers.
2233 	 *
2234 	 * Generally we are sleeping due to insufficient buffer space.
2235 	 *
2236 	 * NOTE: spin is held if bp is NULL, else it is not held.
2237 	 */
2238 	if (bp == NULL) {
2239 		int flags;
2240 		char *waitmsg;
2241 
2242 		spin_unlock(&pcpu->spin);
2243 
2244 		nqcpu = (nqcpu + 1) % ncpus;
2245 		if (nqcpu != mycpu->gd_cpuid) {
2246 			restart_reason = 7;
2247 			restart_bp = bp;
2248 			goto restart;
2249 		}
2250 
2251 		if (bufspace >= hibufspace) {
2252 			waitmsg = "bufspc";
2253 			flags = VFS_BIO_NEED_BUFSPACE;
2254 		} else {
2255 			waitmsg = "newbuf";
2256 			flags = VFS_BIO_NEED_ANY;
2257 		}
2258 
2259 		bd_speedup();	/* heeeelp */
2260 		atomic_set_int(&needsbuffer, flags);
2261 		while (needsbuffer & flags) {
2262 			int value;
2263 
2264 			tsleep_interlock(&needsbuffer, 0);
2265 			value = atomic_fetchadd_int(&needsbuffer, 0);
2266 			if (value & flags) {
2267 				if (tsleep(&needsbuffer, PINTERLOCKED|slpflags,
2268 					   waitmsg, slptimeo)) {
2269 					return (NULL);
2270 				}
2271 			}
2272 		}
2273 	} else {
2274 		/*
2275 		 * We finally have a valid bp.  Reset b_data.
2276 		 *
2277 		 * (spin is not held)
2278 		 */
2279 		bp->b_data = bp->b_kvabase;
2280 	}
2281 	return(bp);
2282 }
2283 
2284 /*
2285  * buf_daemon:
2286  *
2287  *	Buffer flushing daemon.  Buffers are normally flushed by the
2288  *	update daemon but if it cannot keep up this process starts to
2289  *	take the load in an attempt to prevent getnewbuf() from blocking.
2290  *
2291  *	Once a flush is initiated it does not stop until the number
2292  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2293  *	waiting at the mid-point.
2294  */
2295 static struct kproc_desc buf_kp = {
2296 	"bufdaemon",
2297 	buf_daemon,
2298 	&bufdaemon_td
2299 };
2300 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2301 	kproc_start, &buf_kp);
2302 
2303 static struct kproc_desc bufhw_kp = {
2304 	"bufdaemon_hw",
2305 	buf_daemon_hw,
2306 	&bufdaemonhw_td
2307 };
2308 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2309 	kproc_start, &bufhw_kp);
2310 
2311 static void
2312 buf_daemon1(struct thread *td, int queue, int (*buf_limit_fn)(long),
2313 	    int *bd_req)
2314 {
2315 	long limit;
2316 	struct buf *marker;
2317 
2318 	marker = kmalloc(sizeof(*marker), M_BIOBUF, M_WAITOK | M_ZERO);
2319 	marker->b_flags |= B_MARKER;
2320 	marker->b_qindex = BQUEUE_NONE;
2321 	marker->b_qcpu = 0;
2322 
2323 	/*
2324 	 * This process needs to be suspended prior to shutdown sync.
2325 	 */
2326 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2327 			      td, SHUTDOWN_PRI_LAST);
2328 	curthread->td_flags |= TDF_SYSTHREAD;
2329 
2330 	/*
2331 	 * This process is allowed to take the buffer cache to the limit
2332 	 */
2333 	for (;;) {
2334 		kproc_suspend_loop();
2335 
2336 		/*
2337 		 * Do the flush as long as the number of dirty buffers
2338 		 * (including those running) exceeds lodirtybufspace.
2339 		 *
2340 		 * When flushing limit running I/O to hirunningspace
2341 		 * Do the flush.  Limit the amount of in-transit I/O we
2342 		 * allow to build up, otherwise we would completely saturate
2343 		 * the I/O system.  Wakeup any waiting processes before we
2344 		 * normally would so they can run in parallel with our drain.
2345 		 *
2346 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2347 		 * but because we split the operation into two threads we
2348 		 * have to cut it in half for each thread.
2349 		 */
2350 		waitrunningbufspace();
2351 		limit = lodirtybufspace / 2;
2352 		while (buf_limit_fn(limit)) {
2353 			if (flushbufqueues(marker, queue) == 0)
2354 				break;
2355 			if (runningbufspace < hirunningspace)
2356 				continue;
2357 			waitrunningbufspace();
2358 		}
2359 
2360 		/*
2361 		 * We reached our low water mark, reset the
2362 		 * request and sleep until we are needed again.
2363 		 * The sleep is just so the suspend code works.
2364 		 */
2365 		tsleep_interlock(bd_req, 0);
2366 		if (atomic_swap_int(bd_req, 0) == 0)
2367 			tsleep(bd_req, PINTERLOCKED, "psleep", hz);
2368 	}
2369 	/* NOT REACHED */
2370 	/*kfree(marker, M_BIOBUF);*/
2371 }
2372 
2373 static int
2374 buf_daemon_limit(long limit)
2375 {
2376 	return (runningbufspace + dirtykvaspace > limit ||
2377 		dirtybufcount - dirtybufcounthw >= nbuf / 2);
2378 }
2379 
2380 static int
2381 buf_daemon_hw_limit(long limit)
2382 {
2383 	return (runningbufspace + dirtykvaspace > limit ||
2384 		dirtybufcounthw >= nbuf / 2);
2385 }
2386 
2387 static void
2388 buf_daemon(void)
2389 {
2390 	buf_daemon1(bufdaemon_td, BQUEUE_DIRTY, buf_daemon_limit,
2391 		    &bd_request);
2392 }
2393 
2394 static void
2395 buf_daemon_hw(void)
2396 {
2397 	buf_daemon1(bufdaemonhw_td, BQUEUE_DIRTY_HW, buf_daemon_hw_limit,
2398 		    &bd_request_hw);
2399 }
2400 
2401 /*
2402  * Flush up to (flushperqueue) buffers in the dirty queue.  Each cpu has a
2403  * localized version of the queue.  Each call made to this function iterates
2404  * to another cpu.  It is desireable to flush several buffers from the same
2405  * cpu's queue at once, as these are likely going to be linear.
2406  *
2407  * We must be careful to free up B_INVAL buffers instead of write them, which
2408  * NFS is particularly sensitive to.
2409  *
2410  * B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate that we
2411  * really want to try to get the buffer out and reuse it due to the write
2412  * load on the machine.
2413  *
2414  * We must lock the buffer in order to check its validity before we can mess
2415  * with its contents.  spin isn't enough.
2416  */
2417 static int
2418 flushbufqueues(struct buf *marker, bufq_type_t q)
2419 {
2420 	struct bufpcpu *pcpu;
2421 	struct buf *bp;
2422 	int r = 0;
2423 	u_int loops = flushperqueue;
2424 	int lcpu = marker->b_qcpu;
2425 
2426 	KKASSERT(marker->b_qindex == BQUEUE_NONE);
2427 	KKASSERT(marker->b_flags & B_MARKER);
2428 
2429 again:
2430 	/*
2431 	 * Spinlock needed to perform operations on the queue and may be
2432 	 * held through a non-blocking BUF_LOCK(), but cannot be held when
2433 	 * BUF_UNLOCK()ing or through any other major operation.
2434 	 */
2435 	pcpu = &bufpcpu[marker->b_qcpu];
2436 	spin_lock(&pcpu->spin);
2437 	marker->b_qindex = q;
2438 	TAILQ_INSERT_HEAD(&pcpu->bufqueues[q], marker, b_freelist);
2439 	bp = marker;
2440 
2441 	while ((bp = TAILQ_NEXT(bp, b_freelist)) != NULL) {
2442 		/*
2443 		 * NOTE: spinlock is always held at the top of the loop
2444 		 */
2445 		if (bp->b_flags & B_MARKER)
2446 			continue;
2447 		if ((bp->b_flags & B_DELWRI) == 0) {
2448 			kprintf("Unexpected clean buffer %p\n", bp);
2449 			continue;
2450 		}
2451 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
2452 			continue;
2453 		KKASSERT(bp->b_qcpu == marker->b_qcpu && bp->b_qindex == q);
2454 
2455 		/*
2456 		 * Once the buffer is locked we will have no choice but to
2457 		 * unlock the spinlock around a later BUF_UNLOCK and re-set
2458 		 * bp = marker when looping.  Move the marker now to make
2459 		 * things easier.
2460 		 */
2461 		TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2462 		TAILQ_INSERT_AFTER(&pcpu->bufqueues[q], bp, marker, b_freelist);
2463 
2464 		/*
2465 		 * Must recheck B_DELWRI after successfully locking
2466 		 * the buffer.
2467 		 */
2468 		if ((bp->b_flags & B_DELWRI) == 0) {
2469 			spin_unlock(&pcpu->spin);
2470 			BUF_UNLOCK(bp);
2471 			spin_lock(&pcpu->spin);
2472 			bp = marker;
2473 			continue;
2474 		}
2475 
2476 		/*
2477 		 * Remove the buffer from its queue.  We still own the
2478 		 * spinlock here.
2479 		 */
2480 		_bremfree(bp);
2481 
2482 		/*
2483 		 * Disposing of an invalid buffer counts as a flush op
2484 		 */
2485 		if (bp->b_flags & B_INVAL) {
2486 			spin_unlock(&pcpu->spin);
2487 			brelse(bp);
2488 			goto doloop;
2489 		}
2490 
2491 		/*
2492 		 * Release the spinlock for the more complex ops we
2493 		 * are now going to do.
2494 		 */
2495 		spin_unlock(&pcpu->spin);
2496 		lwkt_yield();
2497 
2498 		/*
2499 		 * This is a bit messy
2500 		 */
2501 		if (LIST_FIRST(&bp->b_dep) != NULL &&
2502 		    (bp->b_flags & B_DEFERRED) == 0 &&
2503 		    buf_countdeps(bp, 0)) {
2504 			spin_lock(&pcpu->spin);
2505 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[q], bp, b_freelist);
2506 			bp->b_qindex = q;
2507 			bp->b_flags |= B_DEFERRED;
2508 			spin_unlock(&pcpu->spin);
2509 			BUF_UNLOCK(bp);
2510 			spin_lock(&pcpu->spin);
2511 			bp = marker;
2512 			continue;
2513 		}
2514 
2515 		/*
2516 		 * spinlock not held here.
2517 		 *
2518 		 * If the buffer has a dependancy, buf_checkwrite() must
2519 		 * also return 0 for us to be able to initate the write.
2520 		 *
2521 		 * If the buffer is flagged B_ERROR it may be requeued
2522 		 * over and over again, we try to avoid a live lock.
2523 		 */
2524 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2525 			brelse(bp);
2526 		} else if (bp->b_flags & B_ERROR) {
2527 			tsleep(bp, 0, "bioer", 1);
2528 			bp->b_flags &= ~B_AGE;
2529 			cluster_awrite(bp);
2530 		} else {
2531 			bp->b_flags |= B_AGE;
2532 			cluster_awrite(bp);
2533 		}
2534 		/* bp invalid but needs to be NULL-tested if we break out */
2535 doloop:
2536 		spin_lock(&pcpu->spin);
2537 		++r;
2538 		if (--loops == 0)
2539 			break;
2540 		bp = marker;
2541 	}
2542 	/* bp is invalid here but can be NULL-tested to advance */
2543 
2544 	TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2545 	marker->b_qindex = BQUEUE_NONE;
2546 	spin_unlock(&pcpu->spin);
2547 
2548 	/*
2549 	 * Advance the marker to be fair.
2550 	 */
2551 	marker->b_qcpu = (marker->b_qcpu + 1) % ncpus;
2552 	if (bp == NULL) {
2553 		if (marker->b_qcpu != lcpu)
2554 			goto again;
2555 	}
2556 
2557 	return (r);
2558 }
2559 
2560 /*
2561  * inmem:
2562  *
2563  *	Returns true if no I/O is needed to access the associated VM object.
2564  *	This is like findblk except it also hunts around in the VM system for
2565  *	the data.
2566  *
2567  *	Note that we ignore vm_page_free() races from interrupts against our
2568  *	lookup, since if the caller is not protected our return value will not
2569  *	be any more valid then otherwise once we exit the critical section.
2570  */
2571 int
2572 inmem(struct vnode *vp, off_t loffset)
2573 {
2574 	vm_object_t obj;
2575 	vm_offset_t toff, tinc, size;
2576 	vm_page_t m;
2577 	int res = 1;
2578 
2579 	if (findblk(vp, loffset, FINDBLK_TEST))
2580 		return 1;
2581 	if (vp->v_mount == NULL)
2582 		return 0;
2583 	if ((obj = vp->v_object) == NULL)
2584 		return 0;
2585 
2586 	size = PAGE_SIZE;
2587 	if (size > vp->v_mount->mnt_stat.f_iosize)
2588 		size = vp->v_mount->mnt_stat.f_iosize;
2589 
2590 	vm_object_hold(obj);
2591 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2592 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2593 		if (m == NULL) {
2594 			res = 0;
2595 			break;
2596 		}
2597 		tinc = size;
2598 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2599 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2600 		if (vm_page_is_valid(m,
2601 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) {
2602 			res = 0;
2603 			break;
2604 		}
2605 	}
2606 	vm_object_drop(obj);
2607 	return (res);
2608 }
2609 
2610 /*
2611  * findblk:
2612  *
2613  *	Locate and return the specified buffer.  Unless flagged otherwise,
2614  *	a locked buffer will be returned if it exists or NULL if it does not.
2615  *
2616  *	findblk()'d buffers are still on the bufqueues and if you intend
2617  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2618  *	and possibly do other stuff to it.
2619  *
2620  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2621  *			  for locking the buffer and ensuring that it remains
2622  *			  the desired buffer after locking.
2623  *
2624  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2625  *			  to acquire the lock we return NULL, even if the
2626  *			  buffer exists.
2627  *
2628  *	FINDBLK_REF	- Returns the buffer ref'd, which prevents normal
2629  *			  reuse by getnewbuf() but does not prevent
2630  *			  disassociation (B_INVAL).  Used to avoid deadlocks
2631  *			  against random (vp,loffset)s due to reassignment.
2632  *
2633  *	(0)		- Lock the buffer blocking.
2634  */
2635 struct buf *
2636 findblk(struct vnode *vp, off_t loffset, int flags)
2637 {
2638 	struct buf *bp;
2639 	int lkflags;
2640 
2641 	lkflags = LK_EXCLUSIVE;
2642 	if (flags & FINDBLK_NBLOCK)
2643 		lkflags |= LK_NOWAIT;
2644 
2645 	for (;;) {
2646 		/*
2647 		 * Lookup.  Ref the buf while holding v_token to prevent
2648 		 * reuse (but does not prevent diassociation).
2649 		 */
2650 		lwkt_gettoken_shared(&vp->v_token);
2651 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2652 		if (bp == NULL) {
2653 			lwkt_reltoken(&vp->v_token);
2654 			return(NULL);
2655 		}
2656 		bqhold(bp);
2657 		lwkt_reltoken(&vp->v_token);
2658 
2659 		/*
2660 		 * If testing only break and return bp, do not lock.
2661 		 */
2662 		if (flags & FINDBLK_TEST)
2663 			break;
2664 
2665 		/*
2666 		 * Lock the buffer, return an error if the lock fails.
2667 		 * (only FINDBLK_NBLOCK can cause the lock to fail).
2668 		 */
2669 		if (BUF_LOCK(bp, lkflags)) {
2670 			atomic_subtract_int(&bp->b_refs, 1);
2671 			/* bp = NULL; not needed */
2672 			return(NULL);
2673 		}
2674 
2675 		/*
2676 		 * Revalidate the locked buf before allowing it to be
2677 		 * returned.
2678 		 */
2679 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2680 			break;
2681 		atomic_subtract_int(&bp->b_refs, 1);
2682 		BUF_UNLOCK(bp);
2683 	}
2684 
2685 	/*
2686 	 * Success
2687 	 */
2688 	if ((flags & FINDBLK_REF) == 0)
2689 		atomic_subtract_int(&bp->b_refs, 1);
2690 	return(bp);
2691 }
2692 
2693 /*
2694  * getcacheblk:
2695  *
2696  *	Similar to getblk() except only returns the buffer if it is
2697  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2698  *	is returned.  NULL is also returned if GETBLK_NOWAIT is set
2699  *	and the getblk() would block.
2700  *
2701  *	If B_RAM is set the buffer might be just fine, but we return
2702  *	NULL anyway because we want the code to fall through to the
2703  *	cluster read to issue more read-aheads.  Otherwise read-ahead breaks.
2704  *
2705  *	If blksize is 0 the buffer cache buffer must already be fully
2706  *	cached.
2707  *
2708  *	If blksize is non-zero getblk() will be used, allowing a buffer
2709  *	to be reinstantiated from its VM backing store.  The buffer must
2710  *	still be fully cached after reinstantiation to be returned.
2711  */
2712 struct buf *
2713 getcacheblk(struct vnode *vp, off_t loffset, int blksize, int blkflags)
2714 {
2715 	struct buf *bp;
2716 	int fndflags = (blkflags & GETBLK_NOWAIT) ? FINDBLK_NBLOCK : 0;
2717 
2718 	if (blksize) {
2719 		bp = getblk(vp, loffset, blksize, blkflags, 0);
2720 		if (bp) {
2721 			if ((bp->b_flags & (B_INVAL | B_CACHE)) == B_CACHE) {
2722 				bp->b_flags &= ~B_AGE;
2723 				if (bp->b_flags & B_RAM) {
2724 					bqrelse(bp);
2725 					bp = NULL;
2726 				}
2727 			} else {
2728 				brelse(bp);
2729 				bp = NULL;
2730 			}
2731 		}
2732 	} else {
2733 		bp = findblk(vp, loffset, fndflags);
2734 		if (bp) {
2735 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2736 			    B_CACHE) {
2737 				bp->b_flags &= ~B_AGE;
2738 				bremfree(bp);
2739 			} else {
2740 				BUF_UNLOCK(bp);
2741 				bp = NULL;
2742 			}
2743 		}
2744 	}
2745 	return (bp);
2746 }
2747 
2748 /*
2749  * getblk:
2750  *
2751  *	Get a block given a specified block and offset into a file/device.
2752  * 	B_INVAL may or may not be set on return.  The caller should clear
2753  *	B_INVAL prior to initiating a READ.
2754  *
2755  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2756  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2757  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2758  *	without doing any of those things the system will likely believe
2759  *	the buffer to be valid (especially if it is not B_VMIO), and the
2760  *	next getblk() will return the buffer with B_CACHE set.
2761  *
2762  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2763  *	an existing buffer.
2764  *
2765  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2766  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2767  *	and then cleared based on the backing VM.  If the previous buffer is
2768  *	non-0-sized but invalid, B_CACHE will be cleared.
2769  *
2770  *	If getblk() must create a new buffer, the new buffer is returned with
2771  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2772  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2773  *	backing VM.
2774  *
2775  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2776  *	B_CACHE bit is clear.
2777  *
2778  *	What this means, basically, is that the caller should use B_CACHE to
2779  *	determine whether the buffer is fully valid or not and should clear
2780  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2781  *	the buffer by loading its data area with something, the caller needs
2782  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2783  *	the caller should set B_CACHE ( as an optimization ), else the caller
2784  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2785  *	a write attempt or if it was a successfull read.  If the caller
2786  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2787  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2788  *
2789  *	getblk flags:
2790  *
2791  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2792  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2793  */
2794 struct buf *
2795 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2796 {
2797 	struct buf *bp;
2798 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2799 	int error;
2800 	int lkflags;
2801 
2802 	if (size > MAXBSIZE)
2803 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2804 	if (vp->v_object == NULL)
2805 		panic("getblk: vnode %p has no object!", vp);
2806 
2807 loop:
2808 	if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2809 		/*
2810 		 * The buffer was found in the cache, but we need to lock it.
2811 		 * We must acquire a ref on the bp to prevent reuse, but
2812 		 * this will not prevent disassociation (brelvp()) so we
2813 		 * must recheck (vp,loffset) after acquiring the lock.
2814 		 *
2815 		 * Without the ref the buffer could potentially be reused
2816 		 * before we acquire the lock and create a deadlock
2817 		 * situation between the thread trying to reuse the buffer
2818 		 * and us due to the fact that we would wind up blocking
2819 		 * on a random (vp,loffset).
2820 		 */
2821 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2822 			if (blkflags & GETBLK_NOWAIT) {
2823 				bqdrop(bp);
2824 				return(NULL);
2825 			}
2826 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2827 			if (blkflags & GETBLK_PCATCH)
2828 				lkflags |= LK_PCATCH;
2829 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2830 			if (error) {
2831 				bqdrop(bp);
2832 				if (error == ENOLCK)
2833 					goto loop;
2834 				return (NULL);
2835 			}
2836 			/* buffer may have changed on us */
2837 		}
2838 		bqdrop(bp);
2839 
2840 		/*
2841 		 * Once the buffer has been locked, make sure we didn't race
2842 		 * a buffer recyclement.  Buffers that are no longer hashed
2843 		 * will have b_vp == NULL, so this takes care of that check
2844 		 * as well.
2845 		 */
2846 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2847 #if 0
2848 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2849 				"was recycled\n",
2850 				bp, vp, (long long)loffset);
2851 #endif
2852 			BUF_UNLOCK(bp);
2853 			goto loop;
2854 		}
2855 
2856 		/*
2857 		 * If SZMATCH any pre-existing buffer must be of the requested
2858 		 * size or NULL is returned.  The caller absolutely does not
2859 		 * want getblk() to bwrite() the buffer on a size mismatch.
2860 		 */
2861 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2862 			BUF_UNLOCK(bp);
2863 			return(NULL);
2864 		}
2865 
2866 		/*
2867 		 * All vnode-based buffers must be backed by a VM object.
2868 		 */
2869 		KKASSERT(bp->b_flags & B_VMIO);
2870 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2871 		bp->b_flags &= ~B_AGE;
2872 
2873 		/*
2874 		 * Make sure that B_INVAL buffers do not have a cached
2875 		 * block number translation.
2876 		 */
2877 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2878 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2879 				" did not have cleared bio_offset cache\n",
2880 				bp, vp, (long long)loffset);
2881 			clearbiocache(&bp->b_bio2);
2882 		}
2883 
2884 		/*
2885 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2886 		 * invalid.
2887 		 */
2888 		if (bp->b_flags & B_INVAL)
2889 			bp->b_flags &= ~B_CACHE;
2890 		bremfree(bp);
2891 
2892 		/*
2893 		 * Any size inconsistancy with a dirty buffer or a buffer
2894 		 * with a softupdates dependancy must be resolved.  Resizing
2895 		 * the buffer in such circumstances can lead to problems.
2896 		 *
2897 		 * Dirty or dependant buffers are written synchronously.
2898 		 * Other types of buffers are simply released and
2899 		 * reconstituted as they may be backed by valid, dirty VM
2900 		 * pages (but not marked B_DELWRI).
2901 		 *
2902 		 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2903 		 * and may be left over from a prior truncation (and thus
2904 		 * no longer represent the actual EOF point), so we
2905 		 * definitely do not want to B_NOCACHE the backing store.
2906 		 */
2907 		if (size != bp->b_bcount) {
2908 			if (bp->b_flags & B_DELWRI) {
2909 				bp->b_flags |= B_RELBUF;
2910 				bwrite(bp);
2911 			} else if (LIST_FIRST(&bp->b_dep)) {
2912 				bp->b_flags |= B_RELBUF;
2913 				bwrite(bp);
2914 			} else {
2915 				bp->b_flags |= B_RELBUF;
2916 				brelse(bp);
2917 			}
2918 			goto loop;
2919 		}
2920 		KKASSERT(size <= bp->b_kvasize);
2921 		KASSERT(bp->b_loffset != NOOFFSET,
2922 			("getblk: no buffer offset"));
2923 
2924 		/*
2925 		 * A buffer with B_DELWRI set and B_CACHE clear must
2926 		 * be committed before we can return the buffer in
2927 		 * order to prevent the caller from issuing a read
2928 		 * ( due to B_CACHE not being set ) and overwriting
2929 		 * it.
2930 		 *
2931 		 * Most callers, including NFS and FFS, need this to
2932 		 * operate properly either because they assume they
2933 		 * can issue a read if B_CACHE is not set, or because
2934 		 * ( for example ) an uncached B_DELWRI might loop due
2935 		 * to softupdates re-dirtying the buffer.  In the latter
2936 		 * case, B_CACHE is set after the first write completes,
2937 		 * preventing further loops.
2938 		 *
2939 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2940 		 * above while extending the buffer, we cannot allow the
2941 		 * buffer to remain with B_CACHE set after the write
2942 		 * completes or it will represent a corrupt state.  To
2943 		 * deal with this we set B_NOCACHE to scrap the buffer
2944 		 * after the write.
2945 		 *
2946 		 * XXX Should this be B_RELBUF instead of B_NOCACHE?
2947 		 *     I'm not even sure this state is still possible
2948 		 *     now that getblk() writes out any dirty buffers
2949 		 *     on size changes.
2950 		 *
2951 		 * We might be able to do something fancy, like setting
2952 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2953 		 * so the below call doesn't set B_CACHE, but that gets real
2954 		 * confusing.  This is much easier.
2955 		 */
2956 
2957 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2958 			kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
2959 				"and CACHE clear, b_flags %08x\n",
2960 				bp, (uintmax_t)bp->b_loffset, bp->b_flags);
2961 			bp->b_flags |= B_NOCACHE;
2962 			bwrite(bp);
2963 			goto loop;
2964 		}
2965 	} else {
2966 		/*
2967 		 * Buffer is not in-core, create new buffer.  The buffer
2968 		 * returned by getnewbuf() is locked.  Note that the returned
2969 		 * buffer is also considered valid (not marked B_INVAL).
2970 		 *
2971 		 * Calculating the offset for the I/O requires figuring out
2972 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
2973 		 * the mount's f_iosize otherwise.  If the vnode does not
2974 		 * have an associated mount we assume that the passed size is
2975 		 * the block size.
2976 		 *
2977 		 * Note that vn_isdisk() cannot be used here since it may
2978 		 * return a failure for numerous reasons.   Note that the
2979 		 * buffer size may be larger then the block size (the caller
2980 		 * will use block numbers with the proper multiple).  Beware
2981 		 * of using any v_* fields which are part of unions.  In
2982 		 * particular, in DragonFly the mount point overloading
2983 		 * mechanism uses the namecache only and the underlying
2984 		 * directory vnode is not a special case.
2985 		 */
2986 		int bsize, maxsize;
2987 		vm_object_t repurpose;
2988 
2989 		if (vp->v_type == VBLK || vp->v_type == VCHR)
2990 			bsize = DEV_BSIZE;
2991 		else if (vp->v_mount)
2992 			bsize = vp->v_mount->mnt_stat.f_iosize;
2993 		else
2994 			bsize = size;
2995 
2996 		maxsize = size + (loffset & PAGE_MASK);
2997 		maxsize = imax(maxsize, bsize);
2998 		repurpose = NULL;
2999 
3000 		/*
3001 		 * Allow repurposing.  The returned buffer may contain VM
3002 		 * pages associated with its previous incarnation.  These
3003 		 * pages must be repurposed for the new buffer (hopefully
3004 		 * without disturbing the KVM mapping).
3005 		 *
3006 		 * WARNING!  If repurpose != NULL on return, the buffer will
3007 		 *	     still contain some data from its prior
3008 		 *	     incarnation.  We MUST properly dispose of this
3009 		 *	     data.
3010 		 */
3011 		bp = getnewbuf(blkflags, slptimeo, size, maxsize, &repurpose);
3012 		if (bp == NULL) {
3013 			if (slpflags || slptimeo)
3014 				return NULL;
3015 			goto loop;
3016 		}
3017 
3018 		/*
3019 		 * Atomically insert the buffer into the hash, so that it can
3020 		 * be found by findblk().
3021 		 *
3022 		 * If bgetvp() returns non-zero a collision occured, and the
3023 		 * bp will not be associated with the vnode.
3024 		 *
3025 		 * Make sure the translation layer has been cleared.
3026 		 */
3027 		bp->b_loffset = loffset;
3028 		bp->b_bio2.bio_offset = NOOFFSET;
3029 		/* bp->b_bio2.bio_next = NULL; */
3030 
3031 		if (bgetvp(vp, bp, size)) {
3032 			if (repurpose) {
3033 				bp->b_flags |= B_VMIO;
3034 				repurposebuf(bp, 0);
3035 				vm_object_drop(repurpose);
3036 			}
3037 			bp->b_flags |= B_INVAL;
3038 			brelse(bp);
3039 			goto loop;
3040 		}
3041 
3042 		/*
3043 		 * All vnode-based buffers must be backed by a VM object.
3044 		 */
3045 		KKASSERT(vp->v_object != NULL);
3046 		bp->b_flags |= B_VMIO;
3047 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3048 
3049 		/*
3050 		 * If we allowed repurposing of the buffer it will contain
3051 		 * free-but-held vm_page's, already kmapped, that can be
3052 		 * repurposed.  The repurposebuf() code handles reassigning
3053 		 * those pages to the new (object, offsets) and dealing with
3054 		 * the case where the pages already exist.
3055 		 */
3056 		if (repurpose) {
3057 			repurposebuf(bp, size);
3058 			vm_object_drop(repurpose);
3059 		} else {
3060 			allocbuf(bp, size);
3061 		}
3062 	}
3063 	return (bp);
3064 }
3065 
3066 /*
3067  * regetblk(bp)
3068  *
3069  * Reacquire a buffer that was previously released to the locked queue,
3070  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3071  * set B_LOCKED (which handles the acquisition race).
3072  *
3073  * To this end, either B_LOCKED must be set or the dependancy list must be
3074  * non-empty.
3075  */
3076 void
3077 regetblk(struct buf *bp)
3078 {
3079 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3080 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3081 	bremfree(bp);
3082 }
3083 
3084 /*
3085  * geteblk:
3086  *
3087  *	Get an empty, disassociated buffer of given size.  The buffer is
3088  *	initially set to B_INVAL.
3089  *
3090  *	critical section protection is not required for the allocbuf()
3091  *	call because races are impossible here.
3092  */
3093 struct buf *
3094 geteblk(int size)
3095 {
3096 	struct buf *bp;
3097 
3098 	while ((bp = getnewbuf(0, 0, size, MAXBSIZE, NULL)) == NULL)
3099 		;
3100 	allocbuf(bp, size);
3101 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3102 
3103 	return (bp);
3104 }
3105 
3106 /*
3107  * allocbuf:
3108  *
3109  *	This code constitutes the buffer memory from either anonymous system
3110  *	memory (in the case of non-VMIO operations) or from an associated
3111  *	VM object (in the case of VMIO operations).  This code is able to
3112  *	resize a buffer up or down.
3113  *
3114  *	Note that this code is tricky, and has many complications to resolve
3115  *	deadlock or inconsistant data situations.  Tread lightly!!!
3116  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
3117  *	the caller.  Calling this code willy nilly can result in the loss of
3118  *	data.
3119  *
3120  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3121  *	B_CACHE for the non-VMIO case.
3122  *
3123  *	This routine does not need to be called from a critical section but you
3124  *	must own the buffer.
3125  */
3126 void
3127 allocbuf(struct buf *bp, int size)
3128 {
3129 	int newbsize, mbsize;
3130 	int i;
3131 
3132 	if (BUF_REFCNT(bp) == 0)
3133 		panic("allocbuf: buffer not busy");
3134 
3135 	if (bp->b_kvasize < size)
3136 		panic("allocbuf: buffer too small");
3137 
3138 	if ((bp->b_flags & B_VMIO) == 0) {
3139 		caddr_t origbuf;
3140 		int origbufsize;
3141 		/*
3142 		 * Just get anonymous memory from the kernel.  Don't
3143 		 * mess with B_CACHE.
3144 		 */
3145 		mbsize = roundup2(size, DEV_BSIZE);
3146 		if (bp->b_flags & B_MALLOC)
3147 			newbsize = mbsize;
3148 		else
3149 			newbsize = round_page(size);
3150 
3151 		if (newbsize < bp->b_bufsize) {
3152 			/*
3153 			 * Malloced buffers are not shrunk
3154 			 */
3155 			if (bp->b_flags & B_MALLOC) {
3156 				if (newbsize) {
3157 					bp->b_bcount = size;
3158 				} else {
3159 					kfree(bp->b_data, M_BIOBUF);
3160 					if (bp->b_bufsize) {
3161 						atomic_subtract_long(&bufmallocspace, bp->b_bufsize);
3162 						bp->b_bufsize = 0;
3163 						bufspacewakeup();
3164 					}
3165 					bp->b_data = bp->b_kvabase;
3166 					bp->b_bcount = 0;
3167 					bp->b_flags &= ~B_MALLOC;
3168 				}
3169 				return;
3170 			}
3171 			vm_hold_free_pages(
3172 			    bp,
3173 			    (vm_offset_t) bp->b_data + newbsize,
3174 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3175 		} else if (newbsize > bp->b_bufsize) {
3176 			/*
3177 			 * We only use malloced memory on the first allocation.
3178 			 * and revert to page-allocated memory when the buffer
3179 			 * grows.
3180 			 */
3181 			if ((bufmallocspace < maxbufmallocspace) &&
3182 				(bp->b_bufsize == 0) &&
3183 				(mbsize <= PAGE_SIZE/2)) {
3184 
3185 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3186 				bp->b_bufsize = mbsize;
3187 				bp->b_bcount = size;
3188 				bp->b_flags |= B_MALLOC;
3189 				atomic_add_long(&bufmallocspace, mbsize);
3190 				return;
3191 			}
3192 			origbuf = NULL;
3193 			origbufsize = 0;
3194 			/*
3195 			 * If the buffer is growing on its other-than-first
3196 			 * allocation, then we revert to the page-allocation
3197 			 * scheme.
3198 			 */
3199 			if (bp->b_flags & B_MALLOC) {
3200 				origbuf = bp->b_data;
3201 				origbufsize = bp->b_bufsize;
3202 				bp->b_data = bp->b_kvabase;
3203 				if (bp->b_bufsize) {
3204 					atomic_subtract_long(&bufmallocspace,
3205 							     bp->b_bufsize);
3206 					bp->b_bufsize = 0;
3207 					bufspacewakeup();
3208 				}
3209 				bp->b_flags &= ~B_MALLOC;
3210 				newbsize = round_page(newbsize);
3211 			}
3212 			vm_hold_load_pages(
3213 			    bp,
3214 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3215 			    (vm_offset_t) bp->b_data + newbsize);
3216 			if (origbuf) {
3217 				bcopy(origbuf, bp->b_data, origbufsize);
3218 				kfree(origbuf, M_BIOBUF);
3219 			}
3220 		}
3221 	} else {
3222 		vm_page_t m;
3223 		int desiredpages;
3224 
3225 		newbsize = roundup2(size, DEV_BSIZE);
3226 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3227 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3228 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3229 
3230 		if (bp->b_flags & B_MALLOC)
3231 			panic("allocbuf: VMIO buffer can't be malloced");
3232 		/*
3233 		 * Set B_CACHE initially if buffer is 0 length or will become
3234 		 * 0-length.
3235 		 */
3236 		if (size == 0 || bp->b_bufsize == 0)
3237 			bp->b_flags |= B_CACHE;
3238 
3239 		if (newbsize < bp->b_bufsize) {
3240 			/*
3241 			 * DEV_BSIZE aligned new buffer size is less then the
3242 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3243 			 * if we have to remove any pages.
3244 			 */
3245 			if (desiredpages < bp->b_xio.xio_npages) {
3246 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3247 					/*
3248 					 * the page is not freed here -- it
3249 					 * is the responsibility of
3250 					 * vnode_pager_setsize
3251 					 */
3252 					m = bp->b_xio.xio_pages[i];
3253 					KASSERT(m != bogus_page,
3254 					    ("allocbuf: bogus page found"));
3255 					vm_page_busy_wait(m, TRUE, "biodep");
3256 					bp->b_xio.xio_pages[i] = NULL;
3257 					vm_page_unwire(m, 0);
3258 					vm_page_wakeup(m);
3259 				}
3260 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3261 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3262 				bp->b_xio.xio_npages = desiredpages;
3263 			}
3264 		} else if (size > bp->b_bcount) {
3265 			/*
3266 			 * We are growing the buffer, possibly in a
3267 			 * byte-granular fashion.
3268 			 */
3269 			struct vnode *vp;
3270 			vm_object_t obj;
3271 			vm_offset_t toff;
3272 			vm_offset_t tinc;
3273 
3274 			/*
3275 			 * Step 1, bring in the VM pages from the object,
3276 			 * allocating them if necessary.  We must clear
3277 			 * B_CACHE if these pages are not valid for the
3278 			 * range covered by the buffer.
3279 			 */
3280 			vp = bp->b_vp;
3281 			obj = vp->v_object;
3282 
3283 			vm_object_hold(obj);
3284 			while (bp->b_xio.xio_npages < desiredpages) {
3285 				vm_page_t m;
3286 				vm_pindex_t pi;
3287 				int error;
3288 
3289 				pi = OFF_TO_IDX(bp->b_loffset) +
3290 				     bp->b_xio.xio_npages;
3291 
3292 				/*
3293 				 * Blocking on m->busy might lead to a
3294 				 * deadlock:
3295 				 *
3296 				 *  vm_fault->getpages->cluster_read->allocbuf
3297 				 */
3298 				m = vm_page_lookup_busy_try(obj, pi, FALSE,
3299 							    &error);
3300 				if (error) {
3301 					vm_page_sleep_busy(m, FALSE, "pgtblk");
3302 					continue;
3303 				}
3304 				if (m == NULL) {
3305 					/*
3306 					 * note: must allocate system pages
3307 					 * since blocking here could intefere
3308 					 * with paging I/O, no matter which
3309 					 * process we are.
3310 					 */
3311 					m = bio_page_alloc(bp, obj, pi, desiredpages - bp->b_xio.xio_npages);
3312 					if (m) {
3313 						vm_page_wire(m);
3314 						vm_page_wakeup(m);
3315 						bp->b_flags &= ~B_CACHE;
3316 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3317 						++bp->b_xio.xio_npages;
3318 					}
3319 					continue;
3320 				}
3321 
3322 				/*
3323 				 * We found a page and were able to busy it.
3324 				 */
3325 				vm_page_wire(m);
3326 				vm_page_wakeup(m);
3327 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3328 				++bp->b_xio.xio_npages;
3329 				if (bp->b_act_count < m->act_count)
3330 					bp->b_act_count = m->act_count;
3331 			}
3332 			vm_object_drop(obj);
3333 
3334 			/*
3335 			 * Step 2.  We've loaded the pages into the buffer,
3336 			 * we have to figure out if we can still have B_CACHE
3337 			 * set.  Note that B_CACHE is set according to the
3338 			 * byte-granular range ( bcount and size ), not the
3339 			 * aligned range ( newbsize ).
3340 			 *
3341 			 * The VM test is against m->valid, which is DEV_BSIZE
3342 			 * aligned.  Needless to say, the validity of the data
3343 			 * needs to also be DEV_BSIZE aligned.  Note that this
3344 			 * fails with NFS if the server or some other client
3345 			 * extends the file's EOF.  If our buffer is resized,
3346 			 * B_CACHE may remain set! XXX
3347 			 */
3348 
3349 			toff = bp->b_bcount;
3350 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3351 
3352 			while ((bp->b_flags & B_CACHE) && toff < size) {
3353 				vm_pindex_t pi;
3354 
3355 				if (tinc > (size - toff))
3356 					tinc = size - toff;
3357 
3358 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3359 				    PAGE_SHIFT;
3360 
3361 				vfs_buf_test_cache(
3362 				    bp,
3363 				    bp->b_loffset,
3364 				    toff,
3365 				    tinc,
3366 				    bp->b_xio.xio_pages[pi]
3367 				);
3368 				toff += tinc;
3369 				tinc = PAGE_SIZE;
3370 			}
3371 
3372 			/*
3373 			 * Step 3, fixup the KVM pmap.  Remember that
3374 			 * bp->b_data is relative to bp->b_loffset, but
3375 			 * bp->b_loffset may be offset into the first page.
3376 			 */
3377 			bp->b_data = (caddr_t)
3378 					trunc_page((vm_offset_t)bp->b_data);
3379 			pmap_qenter((vm_offset_t)bp->b_data,
3380 				    bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3381 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3382 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3383 		}
3384 		atomic_add_long(&bufspace, newbsize - bp->b_bufsize);
3385 	}
3386 
3387 	/* adjust space use on already-dirty buffer */
3388 	if (bp->b_flags & B_DELWRI) {
3389 		/* dirtykvaspace unchanged */
3390 		atomic_add_long(&dirtybufspace, newbsize - bp->b_bufsize);
3391 		if (bp->b_flags & B_HEAVY) {
3392 			atomic_add_long(&dirtybufspacehw,
3393 					newbsize - bp->b_bufsize);
3394 		}
3395 	}
3396 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3397 	bp->b_bcount = size;		/* requested buffer size	*/
3398 	bufspacewakeup();
3399 }
3400 
3401 /*
3402  * repurposebuf() (VMIO only)
3403  *
3404  * This performs a function similar to allocbuf() but the passed-in buffer
3405  * may contain some detrius from its previous incarnation in the form of
3406  * the page array.  We try to repurpose the underlying pages.
3407  *
3408  * This code is nominally called to recycle buffer cache buffers AND (if
3409  * they are clean) to also recycle their underlying pages.  We currently
3410  * can only recycle unmapped, clean pages.  The code is called when buffer
3411  * cache 'newbuf' bandwidth exceeds (bufrate_cache) bytes per second.
3412  */
3413 static
3414 void
3415 repurposebuf(struct buf *bp, int size)
3416 {
3417 	int newbsize;
3418 	int desiredpages;
3419 	vm_offset_t toff;
3420 	vm_offset_t tinc;
3421 	vm_object_t obj;
3422 	vm_page_t m;
3423 	int i;
3424 	int must_reenter = 0;
3425 	long deaccumulate = 0;
3426 
3427 
3428 	KKASSERT((bp->b_flags & (B_VMIO | B_DELWRI | B_MALLOC)) == B_VMIO);
3429 	if (BUF_REFCNT(bp) == 0)
3430 		panic("repurposebuf: buffer not busy");
3431 
3432 	if (bp->b_kvasize < size)
3433 		panic("repurposebuf: buffer too small");
3434 
3435 	newbsize = roundup2(size, DEV_BSIZE);
3436 	desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3437 			newbsize + PAGE_MASK) >> PAGE_SHIFT;
3438 	KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3439 
3440 	/*
3441 	 * Buffer starts out 0-length with B_CACHE set.  We will clear
3442 	 * As we check the backing store we will clear B_CACHE if necessary.
3443 	 */
3444 	atomic_add_long(&bufspace, newbsize - bp->b_bufsize);
3445 	bp->b_bufsize = 0;
3446 	bp->b_bcount = 0;
3447 	bp->b_flags |= B_CACHE;
3448 
3449 	if (desiredpages) {
3450 		obj = bp->b_vp->v_object;
3451 		vm_object_hold(obj);
3452 	} else {
3453 		obj = NULL;
3454 	}
3455 
3456 	/*
3457 	 * Step 1, bring in the VM pages from the object, repurposing or
3458 	 * allocating them if necessary.  We must clear B_CACHE if these
3459 	 * pages are not valid for the range covered by the buffer.
3460 	 *
3461 	 * We are growing the buffer, possibly in a byte-granular fashion.
3462 	 */
3463 	for (i = 0; i < desiredpages; ++i) {
3464 		vm_pindex_t pi;
3465 		int error;
3466 		int iswired;
3467 
3468 		pi = OFF_TO_IDX(bp->b_loffset) + i;
3469 
3470 		/*
3471 		 * Blocking on m->busy might lead to a
3472 		 * deadlock:
3473 		 *
3474 		 * vm_fault->getpages->cluster_read->allocbuf
3475 		 */
3476 		m = (i < bp->b_xio.xio_npages) ? bp->b_xio.xio_pages[i] : NULL;
3477 		bp->b_xio.xio_pages[i] = NULL;
3478 		KASSERT(m != bogus_page, ("repurposebuf: bogus page found"));
3479 		m = vm_page_repurpose(obj, pi, FALSE, &error, m,
3480 				      &must_reenter, &iswired);
3481 
3482 		if (error) {
3483 			vm_page_sleep_busy(m, FALSE, "pgtblk");
3484 			--i;		/* retry */
3485 			continue;
3486 		}
3487 		if (m == NULL) {
3488 			/*
3489 			 * note: must allocate system pages
3490 			 * since blocking here could intefere
3491 			 * with paging I/O, no matter which
3492 			 * process we are.
3493 			 */
3494 			must_reenter = 1;
3495 			m = bio_page_alloc(bp, obj, pi, desiredpages - i);
3496 			if (m) {
3497 				vm_page_wire(m);
3498 				vm_page_wakeup(m);
3499 				bp->b_flags &= ~B_CACHE;
3500 				bp->b_xio.xio_pages[i] = m;
3501 				if (m->valid)
3502 					deaccumulate += PAGE_SIZE;
3503 			} else {
3504 				--i;	/* retry */
3505 			}
3506 			continue;
3507 		}
3508 		if (m->valid)
3509 			deaccumulate += PAGE_SIZE;
3510 
3511 		/*
3512 		 * We found a page and were able to busy it.
3513 		 */
3514 		if (!iswired)
3515 			vm_page_wire(m);
3516 		vm_page_wakeup(m);
3517 		bp->b_xio.xio_pages[i] = m;
3518 		if (bp->b_act_count < m->act_count)
3519 			bp->b_act_count = m->act_count;
3520 	}
3521 	if (desiredpages)
3522 		vm_object_drop(obj);
3523 
3524 	/*
3525 	 * Even though its a new buffer, any pages already in the VM
3526 	 * page cache should not count towards I/O bandwidth.
3527 	 */
3528 	if (deaccumulate)
3529 		atomic_add_long(&bufcache_bw_accum, -deaccumulate);
3530 
3531 	/*
3532 	 * Clean-up any loose pages.
3533 	 */
3534 	while (i < bp->b_xio.xio_npages) {
3535 		m = bp->b_xio.xio_pages[i];
3536 		KASSERT(m != bogus_page, ("repurposebuf: bogus page found"));
3537 		vm_page_busy_wait(m, TRUE, "biodep");
3538 		bp->b_xio.xio_pages[i] = NULL;
3539 		vm_page_unwire(m, 0);
3540 		vm_page_wakeup(m);
3541 		++i;
3542 	}
3543 	if (desiredpages < bp->b_xio.xio_npages) {
3544 		pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
3545 			     (desiredpages << PAGE_SHIFT),
3546 			     (bp->b_xio.xio_npages - desiredpages));
3547 	}
3548 	bp->b_xio.xio_npages = desiredpages;
3549 
3550 	/*
3551 	 * Step 2.  We've loaded the pages into the buffer,
3552 	 * we have to figure out if we can still have B_CACHE
3553 	 * set.  Note that B_CACHE is set according to the
3554 	 * byte-granular range ( bcount and size ), not the
3555 	 * aligned range ( newbsize ).
3556 	 *
3557 	 * The VM test is against m->valid, which is DEV_BSIZE
3558 	 * aligned.  Needless to say, the validity of the data
3559 	 * needs to also be DEV_BSIZE aligned.  Note that this
3560 	 * fails with NFS if the server or some other client
3561 	 * extends the file's EOF.  If our buffer is resized,
3562 	 * B_CACHE may remain set! XXX
3563 	 */
3564 	toff = bp->b_bcount;
3565 	tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3566 
3567 	while ((bp->b_flags & B_CACHE) && toff < size) {
3568 		vm_pindex_t pi;
3569 
3570 		if (tinc > (size - toff))
3571 			tinc = size - toff;
3572 
3573 		pi = ((bp->b_loffset & PAGE_MASK) + toff) >> PAGE_SHIFT;
3574 
3575 		vfs_buf_test_cache(bp, bp->b_loffset, toff,
3576 				   tinc, bp->b_xio.xio_pages[pi]);
3577 		toff += tinc;
3578 		tinc = PAGE_SIZE;
3579 	}
3580 
3581 	/*
3582 	 * Step 3, fixup the KVM pmap.  Remember that
3583 	 * bp->b_data is relative to bp->b_loffset, but
3584 	 * bp->b_loffset may be offset into the first page.
3585 	 */
3586 	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
3587 	if (must_reenter) {
3588 		pmap_qenter((vm_offset_t)bp->b_data,
3589 			    bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3590 	} else {
3591 		atomic_add_long(&repurposedspace, newbsize);
3592 	}
3593 	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3594 		     (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3595 
3596 	if (newbsize < bp->b_bufsize)
3597 		bufspacewakeup();
3598 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3599 	bp->b_bcount = size;		/* requested buffer size	*/
3600 }
3601 
3602 /*
3603  * biowait:
3604  *
3605  *	Wait for buffer I/O completion, returning error status. B_EINTR
3606  *	is converted into an EINTR error but not cleared (since a chain
3607  *	of biowait() calls may occur).
3608  *
3609  *	On return bpdone() will have been called but the buffer will remain
3610  *	locked and will not have been brelse()'d.
3611  *
3612  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3613  *	likely still in progress on return.
3614  *
3615  *	NOTE!  This operation is on a BIO, not a BUF.
3616  *
3617  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3618  */
3619 static __inline int
3620 _biowait(struct bio *bio, const char *wmesg, int to)
3621 {
3622 	struct buf *bp = bio->bio_buf;
3623 	u_int32_t flags;
3624 	u_int32_t nflags;
3625 	int error;
3626 
3627 	KKASSERT(bio == &bp->b_bio1);
3628 	for (;;) {
3629 		flags = bio->bio_flags;
3630 		if (flags & BIO_DONE)
3631 			break;
3632 		nflags = flags | BIO_WANT;
3633 		tsleep_interlock(bio, 0);
3634 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3635 			if (wmesg)
3636 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3637 			else if (bp->b_cmd == BUF_CMD_READ)
3638 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3639 			else
3640 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3641 			if (error) {
3642 				kprintf("tsleep error biowait %d\n", error);
3643 				return (error);
3644 			}
3645 		}
3646 	}
3647 
3648 	/*
3649 	 * Finish up.
3650 	 */
3651 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3652 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3653 	if (bp->b_flags & B_EINTR)
3654 		return (EINTR);
3655 	if (bp->b_flags & B_ERROR)
3656 		return (bp->b_error ? bp->b_error : EIO);
3657 	return (0);
3658 }
3659 
3660 int
3661 biowait(struct bio *bio, const char *wmesg)
3662 {
3663 	return(_biowait(bio, wmesg, 0));
3664 }
3665 
3666 int
3667 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3668 {
3669 	return(_biowait(bio, wmesg, to));
3670 }
3671 
3672 /*
3673  * This associates a tracking count with an I/O.  vn_strategy() and
3674  * dev_dstrategy() do this automatically but there are a few cases
3675  * where a vnode or device layer is bypassed when a block translation
3676  * is cached.  In such cases bio_start_transaction() may be called on
3677  * the bypassed layers so the system gets an I/O in progress indication
3678  * for those higher layers.
3679  */
3680 void
3681 bio_start_transaction(struct bio *bio, struct bio_track *track)
3682 {
3683 	bio->bio_track = track;
3684 	bio_track_ref(track);
3685 	dsched_buf_enter(bio->bio_buf);	/* might stack */
3686 }
3687 
3688 /*
3689  * Initiate I/O on a vnode.
3690  *
3691  * SWAPCACHE OPERATION:
3692  *
3693  *	Real buffer cache buffers have a non-NULL bp->b_vp.  Unfortunately
3694  *	devfs also uses b_vp for fake buffers so we also have to check
3695  *	that B_PAGING is 0.  In this case the passed 'vp' is probably the
3696  *	underlying block device.  The swap assignments are related to the
3697  *	buffer cache buffer's b_vp, not the passed vp.
3698  *
3699  *	The passed vp == bp->b_vp only in the case where the strategy call
3700  *	is made on the vp itself for its own buffers (a regular file or
3701  *	block device vp).  The filesystem usually then re-calls vn_strategy()
3702  *	after translating the request to an underlying device.
3703  *
3704  *	Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3705  *	underlying buffer cache buffers.
3706  *
3707  *	We can only deal with page-aligned buffers at the moment, because
3708  *	we can't tell what the real dirty state for pages straddling a buffer
3709  *	are.
3710  *
3711  *	In order to call swap_pager_strategy() we must provide the VM object
3712  *	and base offset for the underlying buffer cache pages so it can find
3713  *	the swap blocks.
3714  */
3715 void
3716 vn_strategy(struct vnode *vp, struct bio *bio)
3717 {
3718 	struct bio_track *track;
3719 	struct buf *bp = bio->bio_buf;
3720 
3721 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3722 
3723 	/*
3724 	 * Set when an I/O is issued on the bp.  Cleared by consumers
3725 	 * (aka HAMMER), allowing the consumer to determine if I/O had
3726 	 * actually occurred.
3727 	 */
3728 	bp->b_flags |= B_IOISSUED;
3729 
3730 	/*
3731 	 * Handle the swap cache intercept.
3732 	 */
3733 	if (vn_cache_strategy(vp, bio))
3734 		return;
3735 
3736 	/*
3737 	 * Otherwise do the operation through the filesystem
3738 	 */
3739         if (bp->b_cmd == BUF_CMD_READ)
3740                 track = &vp->v_track_read;
3741         else
3742                 track = &vp->v_track_write;
3743 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3744 	bio->bio_track = track;
3745 	bio_track_ref(track);
3746 	dsched_buf_enter(bp);	/* might stack */
3747         vop_strategy(*vp->v_ops, vp, bio);
3748 }
3749 
3750 static void vn_cache_strategy_callback(struct bio *bio);
3751 
3752 int
3753 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3754 {
3755 	struct buf *bp = bio->bio_buf;
3756 	struct bio *nbio;
3757 	vm_object_t object;
3758 	vm_page_t m;
3759 	int i;
3760 
3761 	/*
3762 	 * Stop using swapcache if paniced, dumping, or dumped
3763 	 */
3764 	if (panicstr || dumping)
3765 		return(0);
3766 
3767 	/*
3768 	 * Is this buffer cache buffer suitable for reading from
3769 	 * the swap cache?
3770 	 */
3771 	if (vm_swapcache_read_enable == 0 ||
3772 	    bp->b_cmd != BUF_CMD_READ ||
3773 	    ((bp->b_flags & B_CLUSTER) == 0 &&
3774 	     (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3775 	    ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3776 	    (bp->b_bcount & PAGE_MASK) != 0) {
3777 		return(0);
3778 	}
3779 
3780 	/*
3781 	 * Figure out the original VM object (it will match the underlying
3782 	 * VM pages).  Note that swap cached data uses page indices relative
3783 	 * to that object, not relative to bio->bio_offset.
3784 	 */
3785 	if (bp->b_flags & B_CLUSTER)
3786 		object = vp->v_object;
3787 	else
3788 		object = bp->b_vp->v_object;
3789 
3790 	/*
3791 	 * In order to be able to use the swap cache all underlying VM
3792 	 * pages must be marked as such, and we can't have any bogus pages.
3793 	 */
3794 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3795 		m = bp->b_xio.xio_pages[i];
3796 		if ((m->flags & PG_SWAPPED) == 0)
3797 			break;
3798 		if (m == bogus_page)
3799 			break;
3800 	}
3801 
3802 	/*
3803 	 * If we are good then issue the I/O using swap_pager_strategy().
3804 	 *
3805 	 * We can only do this if the buffer actually supports object-backed
3806 	 * I/O.  If it doesn't npages will be 0.
3807 	 */
3808 	if (i && i == bp->b_xio.xio_npages) {
3809 		m = bp->b_xio.xio_pages[0];
3810 		nbio = push_bio(bio);
3811 		nbio->bio_done = vn_cache_strategy_callback;
3812 		nbio->bio_offset = ptoa(m->pindex);
3813 		KKASSERT(m->object == object);
3814 		swap_pager_strategy(object, nbio);
3815 		return(1);
3816 	}
3817 	return(0);
3818 }
3819 
3820 /*
3821  * This is a bit of a hack but since the vn_cache_strategy() function can
3822  * override a VFS's strategy function we must make sure that the bio, which
3823  * is probably bio2, doesn't leak an unexpected offset value back to the
3824  * filesystem.  The filesystem (e.g. UFS) might otherwise assume that the
3825  * bio went through its own file strategy function and the the bio2 offset
3826  * is a cached disk offset when, in fact, it isn't.
3827  */
3828 static void
3829 vn_cache_strategy_callback(struct bio *bio)
3830 {
3831 	bio->bio_offset = NOOFFSET;
3832 	biodone(pop_bio(bio));
3833 }
3834 
3835 /*
3836  * bpdone:
3837  *
3838  *	Finish I/O on a buffer after all BIOs have been processed.
3839  *	Called when the bio chain is exhausted or by biowait.  If called
3840  *	by biowait, elseit is typically 0.
3841  *
3842  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3843  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3844  *	assuming B_INVAL is clear.
3845  *
3846  *	For the VMIO case, we set B_CACHE if the op was a read and no
3847  *	read error occured, or if the op was a write.  B_CACHE is never
3848  *	set if the buffer is invalid or otherwise uncacheable.
3849  *
3850  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3851  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3852  *	in the biodone routine.
3853  *
3854  *	bpdone is responsible for calling bundirty() on the buffer after a
3855  *	successful write.  We previously did this prior to initiating the
3856  *	write under the assumption that the buffer might be dirtied again
3857  *	while the write was in progress, however doing it before-hand creates
3858  *	a race condition prior to the call to vn_strategy() where the
3859  *	filesystem may not be aware that a dirty buffer is present.
3860  *	It should not be possible for the buffer or its underlying pages to
3861  *	be redirtied prior to bpdone()'s unbusying of the underlying VM
3862  *	pages.
3863  */
3864 void
3865 bpdone(struct buf *bp, int elseit)
3866 {
3867 	buf_cmd_t cmd;
3868 
3869 	KASSERT(BUF_REFCNTNB(bp) > 0,
3870 		("bpdone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3871 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3872 		("bpdone: bp %p already done!", bp));
3873 
3874 	/*
3875 	 * No more BIOs are left.  All completion functions have been dealt
3876 	 * with, now we clean up the buffer.
3877 	 */
3878 	cmd = bp->b_cmd;
3879 	bp->b_cmd = BUF_CMD_DONE;
3880 
3881 	/*
3882 	 * Only reads and writes are processed past this point.
3883 	 */
3884 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3885 		if (cmd == BUF_CMD_FREEBLKS)
3886 			bp->b_flags |= B_NOCACHE;
3887 		if (elseit)
3888 			brelse(bp);
3889 		return;
3890 	}
3891 
3892 	/*
3893 	 * A failed write must re-dirty the buffer unless B_INVAL
3894 	 * was set.
3895 	 *
3896 	 * A successful write must clear the dirty flag.  This is done after
3897 	 * the write to ensure that the buffer remains on the vnode's dirty
3898 	 * list for filesystem interlocks / checks until the write is actually
3899 	 * complete.  HAMMER2 is sensitive to this issue.
3900 	 *
3901 	 * Only applicable to normal buffers (with VPs).  vinum buffers may
3902 	 * not have a vp.
3903 	 *
3904 	 * Must be done prior to calling buf_complete() as the callback might
3905 	 * re-dirty the buffer.
3906 	 */
3907 	if (cmd == BUF_CMD_WRITE) {
3908 		if ((bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3909 			bp->b_flags &= ~B_NOCACHE;
3910 			if (bp->b_vp)
3911 				bdirty(bp);
3912 		} else {
3913 			if (bp->b_vp)
3914 				bundirty(bp);
3915 		}
3916 	}
3917 
3918 	/*
3919 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3920 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3921 	 */
3922 	if (LIST_FIRST(&bp->b_dep) != NULL)
3923 		buf_complete(bp);
3924 
3925 	if (bp->b_flags & B_VMIO) {
3926 		int i;
3927 		vm_ooffset_t foff;
3928 		vm_page_t m;
3929 		vm_object_t obj;
3930 		int iosize;
3931 		struct vnode *vp = bp->b_vp;
3932 
3933 		obj = vp->v_object;
3934 
3935 #if defined(VFS_BIO_DEBUG)
3936 		if (vp->v_auxrefs == 0)
3937 			panic("bpdone: zero vnode hold count");
3938 		if ((vp->v_flag & VOBJBUF) == 0)
3939 			panic("bpdone: vnode is not setup for merged cache");
3940 #endif
3941 
3942 		foff = bp->b_loffset;
3943 		KASSERT(foff != NOOFFSET, ("bpdone: no buffer offset"));
3944 		KASSERT(obj != NULL, ("bpdone: missing VM object"));
3945 
3946 #if defined(VFS_BIO_DEBUG)
3947 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3948 			kprintf("bpdone: paging in progress(%d) < "
3949 				"bp->b_xio.xio_npages(%d)\n",
3950 				obj->paging_in_progress,
3951 				bp->b_xio.xio_npages);
3952 		}
3953 #endif
3954 
3955 		/*
3956 		 * Set B_CACHE if the op was a normal read and no error
3957 		 * occured.  B_CACHE is set for writes in the b*write()
3958 		 * routines.
3959 		 */
3960 		iosize = bp->b_bcount - bp->b_resid;
3961 		if (cmd == BUF_CMD_READ &&
3962 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3963 			bp->b_flags |= B_CACHE;
3964 		}
3965 
3966 		vm_object_hold(obj);
3967 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3968 			int resid;
3969 			int isbogus;
3970 
3971 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3972 			if (resid > iosize)
3973 				resid = iosize;
3974 
3975 			/*
3976 			 * cleanup bogus pages, restoring the originals.  Since
3977 			 * the originals should still be wired, we don't have
3978 			 * to worry about interrupt/freeing races destroying
3979 			 * the VM object association.
3980 			 */
3981 			m = bp->b_xio.xio_pages[i];
3982 			if (m == bogus_page) {
3983 				if ((bp->b_flags & B_HASBOGUS) == 0)
3984 					panic("bpdone: bp %p corrupt bogus", bp);
3985 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3986 				if (m == NULL)
3987 					panic("bpdone: page disappeared");
3988 				bp->b_xio.xio_pages[i] = m;
3989 				isbogus = 1;
3990 			} else {
3991 				isbogus = 0;
3992 			}
3993 #if defined(VFS_BIO_DEBUG)
3994 			if (OFF_TO_IDX(foff) != m->pindex) {
3995 				kprintf("bpdone: foff(%lu)/m->pindex(%ld) "
3996 					"mismatch\n",
3997 					(unsigned long)foff, (long)m->pindex);
3998 			}
3999 #endif
4000 
4001 			/*
4002 			 * In the write case, the valid and clean bits are
4003 			 * already changed correctly (see bdwrite()), so we
4004 			 * only need to do this here in the read case.
4005 			 */
4006 			vm_page_busy_wait(m, FALSE, "bpdpgw");
4007 			if (cmd == BUF_CMD_READ && isbogus == 0 && resid > 0)
4008 				vfs_clean_one_page(bp, i, m);
4009 
4010 			/*
4011 			 * when debugging new filesystems or buffer I/O
4012 			 * methods, this is the most common error that pops
4013 			 * up.  if you see this, you have not set the page
4014 			 * busy flag correctly!!!
4015 			 */
4016 			if (m->busy == 0) {
4017 				kprintf("bpdone: page busy < 0, "
4018 				    "pindex: %d, foff: 0x(%x,%x), "
4019 				    "resid: %d, index: %d\n",
4020 				    (int) m->pindex, (int)(foff >> 32),
4021 						(int) foff & 0xffffffff, resid, i);
4022 				if (!vn_isdisk(vp, NULL))
4023 					kprintf(" iosize: %ld, loffset: %lld, "
4024 						"flags: 0x%08x, npages: %d\n",
4025 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
4026 					    (long long)bp->b_loffset,
4027 					    bp->b_flags, bp->b_xio.xio_npages);
4028 				else
4029 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
4030 					    (long long)bp->b_loffset,
4031 					    bp->b_flags, bp->b_xio.xio_npages);
4032 				kprintf(" valid: 0x%x, dirty: 0x%x, "
4033 					"wired: %d\n",
4034 					m->valid, m->dirty,
4035 					m->wire_count);
4036 				panic("bpdone: page busy < 0");
4037 			}
4038 			vm_page_io_finish(m);
4039 			vm_page_wakeup(m);
4040 			vm_object_pip_wakeup(obj);
4041 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4042 			iosize -= resid;
4043 		}
4044 		if (bp->b_flags & B_HASBOGUS) {
4045 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4046 				    bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4047 			bp->b_flags &= ~B_HASBOGUS;
4048 		}
4049 		vm_object_drop(obj);
4050 	}
4051 
4052 	/*
4053 	 * Finish up by releasing the buffer.  There are no more synchronous
4054 	 * or asynchronous completions, those were handled by bio_done
4055 	 * callbacks.
4056 	 */
4057 	if (elseit) {
4058 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
4059 			brelse(bp);
4060 		else
4061 			bqrelse(bp);
4062 	}
4063 }
4064 
4065 /*
4066  * Normal biodone.
4067  */
4068 void
4069 biodone(struct bio *bio)
4070 {
4071 	struct buf *bp = bio->bio_buf;
4072 
4073 	runningbufwakeup(bp);
4074 
4075 	/*
4076 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
4077 	 */
4078 	while (bio) {
4079 		biodone_t *done_func;
4080 		struct bio_track *track;
4081 
4082 		/*
4083 		 * BIO tracking.  Most but not all BIOs are tracked.
4084 		 */
4085 		if ((track = bio->bio_track) != NULL) {
4086 			bio_track_rel(track);
4087 			bio->bio_track = NULL;
4088 		}
4089 
4090 		/*
4091 		 * A bio_done function terminates the loop.  The function
4092 		 * will be responsible for any further chaining and/or
4093 		 * buffer management.
4094 		 *
4095 		 * WARNING!  The done function can deallocate the buffer!
4096 		 */
4097 		if ((done_func = bio->bio_done) != NULL) {
4098 			bio->bio_done = NULL;
4099 			done_func(bio);
4100 			return;
4101 		}
4102 		bio = bio->bio_prev;
4103 	}
4104 
4105 	/*
4106 	 * If we've run out of bio's do normal [a]synchronous completion.
4107 	 */
4108 	bpdone(bp, 1);
4109 }
4110 
4111 /*
4112  * Synchronous biodone - this terminates a synchronous BIO.
4113  *
4114  * bpdone() is called with elseit=FALSE, leaving the buffer completed
4115  * but still locked.  The caller must brelse() the buffer after waiting
4116  * for completion.
4117  */
4118 void
4119 biodone_sync(struct bio *bio)
4120 {
4121 	struct buf *bp = bio->bio_buf;
4122 	int flags;
4123 	int nflags;
4124 
4125 	KKASSERT(bio == &bp->b_bio1);
4126 	bpdone(bp, 0);
4127 
4128 	for (;;) {
4129 		flags = bio->bio_flags;
4130 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
4131 
4132 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
4133 			if (flags & BIO_WANT)
4134 				wakeup(bio);
4135 			break;
4136 		}
4137 	}
4138 }
4139 
4140 /*
4141  * vfs_unbusy_pages:
4142  *
4143  *	This routine is called in lieu of iodone in the case of
4144  *	incomplete I/O.  This keeps the busy status for pages
4145  *	consistant.
4146  */
4147 void
4148 vfs_unbusy_pages(struct buf *bp)
4149 {
4150 	int i;
4151 
4152 	runningbufwakeup(bp);
4153 
4154 	if (bp->b_flags & B_VMIO) {
4155 		struct vnode *vp = bp->b_vp;
4156 		vm_object_t obj;
4157 
4158 		obj = vp->v_object;
4159 		vm_object_hold(obj);
4160 
4161 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4162 			vm_page_t m = bp->b_xio.xio_pages[i];
4163 
4164 			/*
4165 			 * When restoring bogus changes the original pages
4166 			 * should still be wired, so we are in no danger of
4167 			 * losing the object association and do not need
4168 			 * critical section protection particularly.
4169 			 */
4170 			if (m == bogus_page) {
4171 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
4172 				if (!m) {
4173 					panic("vfs_unbusy_pages: page missing");
4174 				}
4175 				bp->b_xio.xio_pages[i] = m;
4176 			}
4177 			vm_page_busy_wait(m, FALSE, "bpdpgw");
4178 			vm_page_io_finish(m);
4179 			vm_page_wakeup(m);
4180 			vm_object_pip_wakeup(obj);
4181 		}
4182 		if (bp->b_flags & B_HASBOGUS) {
4183 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4184 				    bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4185 			bp->b_flags &= ~B_HASBOGUS;
4186 		}
4187 		vm_object_drop(obj);
4188 	}
4189 }
4190 
4191 /*
4192  * vfs_busy_pages:
4193  *
4194  *	This routine is called before a device strategy routine.
4195  *	It is used to tell the VM system that paging I/O is in
4196  *	progress, and treat the pages associated with the buffer
4197  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
4198  *	flag is handled to make sure that the object doesn't become
4199  *	inconsistant.
4200  *
4201  *	Since I/O has not been initiated yet, certain buffer flags
4202  *	such as B_ERROR or B_INVAL may be in an inconsistant state
4203  *	and should be ignored.
4204  */
4205 void
4206 vfs_busy_pages(struct vnode *vp, struct buf *bp)
4207 {
4208 	int i, bogus;
4209 	struct lwp *lp = curthread->td_lwp;
4210 
4211 	/*
4212 	 * The buffer's I/O command must already be set.  If reading,
4213 	 * B_CACHE must be 0 (double check against callers only doing
4214 	 * I/O when B_CACHE is 0).
4215 	 */
4216 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4217 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
4218 
4219 	if (bp->b_flags & B_VMIO) {
4220 		vm_object_t obj;
4221 
4222 		obj = vp->v_object;
4223 		KASSERT(bp->b_loffset != NOOFFSET,
4224 			("vfs_busy_pages: no buffer offset"));
4225 
4226 		/*
4227 		 * Busy all the pages.  We have to busy them all at once
4228 		 * to avoid deadlocks.
4229 		 */
4230 retry:
4231 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4232 			vm_page_t m = bp->b_xio.xio_pages[i];
4233 
4234 			if (vm_page_busy_try(m, FALSE)) {
4235 				vm_page_sleep_busy(m, FALSE, "vbpage");
4236 				while (--i >= 0)
4237 					vm_page_wakeup(bp->b_xio.xio_pages[i]);
4238 				goto retry;
4239 			}
4240 		}
4241 
4242 		/*
4243 		 * Setup for I/O, soft-busy the page right now because
4244 		 * the next loop may block.
4245 		 */
4246 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4247 			vm_page_t m = bp->b_xio.xio_pages[i];
4248 
4249 			if ((bp->b_flags & B_CLUSTER) == 0) {
4250 				vm_object_pip_add(obj, 1);
4251 				vm_page_io_start(m);
4252 			}
4253 		}
4254 
4255 		/*
4256 		 * Adjust protections for I/O and do bogus-page mapping.
4257 		 * Assume that vm_page_protect() can block (it can block
4258 		 * if VM_PROT_NONE, don't take any chances regardless).
4259 		 *
4260 		 * In particular note that for writes we must incorporate
4261 		 * page dirtyness from the VM system into the buffer's
4262 		 * dirty range.
4263 		 *
4264 		 * For reads we theoretically must incorporate page dirtyness
4265 		 * from the VM system to determine if the page needs bogus
4266 		 * replacement, but we shortcut the test by simply checking
4267 		 * that all m->valid bits are set, indicating that the page
4268 		 * is fully valid and does not need to be re-read.  For any
4269 		 * VM system dirtyness the page will also be fully valid
4270 		 * since it was mapped at one point.
4271 		 */
4272 		bogus = 0;
4273 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4274 			vm_page_t m = bp->b_xio.xio_pages[i];
4275 
4276 			if (bp->b_cmd == BUF_CMD_WRITE) {
4277 				/*
4278 				 * When readying a vnode-backed buffer for
4279 				 * a write we must zero-fill any invalid
4280 				 * portions of the backing VM pages, mark
4281 				 * it valid and clear related dirty bits.
4282 				 *
4283 				 * vfs_clean_one_page() incorporates any
4284 				 * VM dirtyness and updates the b_dirtyoff
4285 				 * range (after we've made the page RO).
4286 				 *
4287 				 * It is also expected that the pmap modified
4288 				 * bit has already been cleared by the
4289 				 * vm_page_protect().  We may not be able
4290 				 * to clear all dirty bits for a page if it
4291 				 * was also memory mapped (NFS).
4292 				 *
4293 				 * Finally be sure to unassign any swap-cache
4294 				 * backing store as it is now stale.
4295 				 */
4296 				vm_page_protect(m, VM_PROT_READ);
4297 				vfs_clean_one_page(bp, i, m);
4298 				swap_pager_unswapped(m);
4299 			} else if (m->valid == VM_PAGE_BITS_ALL) {
4300 				/*
4301 				 * When readying a vnode-backed buffer for
4302 				 * read we must replace any dirty pages with
4303 				 * a bogus page so dirty data is not destroyed
4304 				 * when filling gaps.
4305 				 *
4306 				 * To avoid testing whether the page is
4307 				 * dirty we instead test that the page was
4308 				 * at some point mapped (m->valid fully
4309 				 * valid) with the understanding that
4310 				 * this also covers the dirty case.
4311 				 */
4312 				bp->b_xio.xio_pages[i] = bogus_page;
4313 				bp->b_flags |= B_HASBOGUS;
4314 				bogus++;
4315 			} else if (m->valid & m->dirty) {
4316 				/*
4317 				 * This case should not occur as partial
4318 				 * dirtyment can only happen if the buffer
4319 				 * is B_CACHE, and this code is not entered
4320 				 * if the buffer is B_CACHE.
4321 				 */
4322 				kprintf("Warning: vfs_busy_pages - page not "
4323 					"fully valid! loff=%jx bpf=%08x "
4324 					"idx=%d val=%02x dir=%02x\n",
4325 					(uintmax_t)bp->b_loffset, bp->b_flags,
4326 					i, m->valid, m->dirty);
4327 				vm_page_protect(m, VM_PROT_NONE);
4328 			} else {
4329 				/*
4330 				 * The page is not valid and can be made
4331 				 * part of the read.
4332 				 */
4333 				vm_page_protect(m, VM_PROT_NONE);
4334 			}
4335 			vm_page_wakeup(m);
4336 		}
4337 		if (bogus) {
4338 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4339 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4340 		}
4341 	}
4342 
4343 	/*
4344 	 * This is the easiest place to put the process accounting for the I/O
4345 	 * for now.
4346 	 */
4347 	if (lp != NULL) {
4348 		if (bp->b_cmd == BUF_CMD_READ)
4349 			lp->lwp_ru.ru_inblock++;
4350 		else
4351 			lp->lwp_ru.ru_oublock++;
4352 	}
4353 }
4354 
4355 /*
4356  * Tell the VM system that the pages associated with this buffer
4357  * are clean.  This is used for delayed writes where the data is
4358  * going to go to disk eventually without additional VM intevention.
4359  *
4360  * NOTE: While we only really need to clean through to b_bcount, we
4361  *	 just go ahead and clean through to b_bufsize.
4362  */
4363 static void
4364 vfs_clean_pages(struct buf *bp)
4365 {
4366 	vm_page_t m;
4367 	int i;
4368 
4369 	if ((bp->b_flags & B_VMIO) == 0)
4370 		return;
4371 
4372 	KASSERT(bp->b_loffset != NOOFFSET,
4373 		("vfs_clean_pages: no buffer offset"));
4374 
4375 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
4376 		m = bp->b_xio.xio_pages[i];
4377 		vfs_clean_one_page(bp, i, m);
4378 	}
4379 }
4380 
4381 /*
4382  * vfs_clean_one_page:
4383  *
4384  *	Set the valid bits and clear the dirty bits in a page within a
4385  *	buffer.  The range is restricted to the buffer's size and the
4386  *	buffer's logical offset might index into the first page.
4387  *
4388  *	The caller has busied or soft-busied the page and it is not mapped,
4389  *	test and incorporate the dirty bits into b_dirtyoff/end before
4390  *	clearing them.  Note that we need to clear the pmap modified bits
4391  *	after determining the the page was dirty, vm_page_set_validclean()
4392  *	does not do it for us.
4393  *
4394  *	This routine is typically called after a read completes (dirty should
4395  *	be zero in that case as we are not called on bogus-replace pages),
4396  *	or before a write is initiated.
4397  */
4398 static void
4399 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4400 {
4401 	int bcount;
4402 	int xoff;
4403 	int soff;
4404 	int eoff;
4405 
4406 	/*
4407 	 * Calculate offset range within the page but relative to buffer's
4408 	 * loffset.  loffset might be offset into the first page.
4409 	 */
4410 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4411 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4412 
4413 	if (pageno == 0) {
4414 		soff = xoff;
4415 		eoff = PAGE_SIZE;
4416 	} else {
4417 		soff = (pageno << PAGE_SHIFT);
4418 		eoff = soff + PAGE_SIZE;
4419 	}
4420 	if (eoff > bcount)
4421 		eoff = bcount;
4422 	if (soff >= eoff)
4423 		return;
4424 
4425 	/*
4426 	 * Test dirty bits and adjust b_dirtyoff/end.
4427 	 *
4428 	 * If dirty pages are incorporated into the bp any prior
4429 	 * B_NEEDCOMMIT state (NFS) must be cleared because the
4430 	 * caller has not taken into account the new dirty data.
4431 	 *
4432 	 * If the page was memory mapped the dirty bits might go beyond the
4433 	 * end of the buffer, but we can't really make the assumption that
4434 	 * a file EOF straddles the buffer (even though this is the case for
4435 	 * NFS if B_NEEDCOMMIT is also set).  So for the purposes of clearing
4436 	 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4437 	 * This also saves some console spam.
4438 	 *
4439 	 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4440 	 * NFS can handle huge commits but not huge writes.
4441 	 */
4442 	vm_page_test_dirty(m);
4443 	if (m->dirty) {
4444 		if ((bp->b_flags & B_NEEDCOMMIT) &&
4445 		    (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4446 			if (debug_commit)
4447 				kprintf("Warning: vfs_clean_one_page: bp %p "
4448 				    "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4449 				    " cmd %d vd %02x/%02x x/s/e %d %d %d "
4450 				    "doff/end %d %d\n",
4451 				    bp, (uintmax_t)bp->b_loffset, bp->b_bcount,
4452 				    bp->b_flags, bp->b_cmd,
4453 				    m->valid, m->dirty, xoff, soff, eoff,
4454 				    bp->b_dirtyoff, bp->b_dirtyend);
4455 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4456 			if (debug_commit)
4457 				print_backtrace(-1);
4458 		}
4459 		/*
4460 		 * Only clear the pmap modified bits if ALL the dirty bits
4461 		 * are set, otherwise the system might mis-clear portions
4462 		 * of a page.
4463 		 */
4464 		if (m->dirty == VM_PAGE_BITS_ALL &&
4465 		    (bp->b_flags & B_NEEDCOMMIT) == 0) {
4466 			pmap_clear_modify(m);
4467 		}
4468 		if (bp->b_dirtyoff > soff - xoff)
4469 			bp->b_dirtyoff = soff - xoff;
4470 		if (bp->b_dirtyend < eoff - xoff)
4471 			bp->b_dirtyend = eoff - xoff;
4472 	}
4473 
4474 	/*
4475 	 * Set related valid bits, clear related dirty bits.
4476 	 * Does not mess with the pmap modified bit.
4477 	 *
4478 	 * WARNING!  We cannot just clear all of m->dirty here as the
4479 	 *	     buffer cache buffers may use a DEV_BSIZE'd aligned
4480 	 *	     block size, or have an odd size (e.g. NFS at file EOF).
4481 	 *	     The putpages code can clear m->dirty to 0.
4482 	 *
4483 	 *	     If a VOP_WRITE generates a buffer cache buffer which
4484 	 *	     covers the same space as mapped writable pages the
4485 	 *	     buffer flush might not be able to clear all the dirty
4486 	 *	     bits and still require a putpages from the VM system
4487 	 *	     to finish it off.
4488 	 *
4489 	 * WARNING!  vm_page_set_validclean() currently assumes vm_token
4490 	 *	     is held.  The page might not be busied (bdwrite() case).
4491 	 *	     XXX remove this comment once we've validated that this
4492 	 *	     is no longer an issue.
4493 	 */
4494 	vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4495 }
4496 
4497 #if 0
4498 /*
4499  * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4500  * The page data is assumed to be valid (there is no zeroing here).
4501  */
4502 static void
4503 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4504 {
4505 	int bcount;
4506 	int xoff;
4507 	int soff;
4508 	int eoff;
4509 
4510 	/*
4511 	 * Calculate offset range within the page but relative to buffer's
4512 	 * loffset.  loffset might be offset into the first page.
4513 	 */
4514 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4515 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4516 
4517 	if (pageno == 0) {
4518 		soff = xoff;
4519 		eoff = PAGE_SIZE;
4520 	} else {
4521 		soff = (pageno << PAGE_SHIFT);
4522 		eoff = soff + PAGE_SIZE;
4523 	}
4524 	if (eoff > bcount)
4525 		eoff = bcount;
4526 	if (soff >= eoff)
4527 		return;
4528 	vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4529 }
4530 #endif
4531 
4532 /*
4533  * vfs_bio_clrbuf:
4534  *
4535  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
4536  *	to clear B_ERROR and B_INVAL.
4537  *
4538  *	Note that while we only theoretically need to clear through b_bcount,
4539  *	we go ahead and clear through b_bufsize.
4540  */
4541 
4542 void
4543 vfs_bio_clrbuf(struct buf *bp)
4544 {
4545 	int i, mask = 0;
4546 	caddr_t sa, ea;
4547 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4548 		bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4549 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4550 		    (bp->b_loffset & PAGE_MASK) == 0) {
4551 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4552 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4553 				bp->b_resid = 0;
4554 				return;
4555 			}
4556 			if ((bp->b_xio.xio_pages[0]->valid & mask) == 0) {
4557 				bzero(bp->b_data, bp->b_bufsize);
4558 				bp->b_xio.xio_pages[0]->valid |= mask;
4559 				bp->b_resid = 0;
4560 				return;
4561 			}
4562 		}
4563 		sa = bp->b_data;
4564 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4565 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4566 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4567 			ea = (caddr_t)(vm_offset_t)ulmin(
4568 			    (u_long)(vm_offset_t)ea,
4569 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4570 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4571 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4572 				continue;
4573 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4574 				bzero(sa, ea - sa);
4575 			} else {
4576 				for (; sa < ea; sa += DEV_BSIZE, j++) {
4577 					if ((bp->b_xio.xio_pages[i]->valid &
4578 					    (1<<j)) == 0) {
4579 						bzero(sa, DEV_BSIZE);
4580 					}
4581 				}
4582 			}
4583 			bp->b_xio.xio_pages[i]->valid |= mask;
4584 		}
4585 		bp->b_resid = 0;
4586 	} else {
4587 		clrbuf(bp);
4588 	}
4589 }
4590 
4591 /*
4592  * vm_hold_load_pages:
4593  *
4594  *	Load pages into the buffer's address space.  The pages are
4595  *	allocated from the kernel object in order to reduce interference
4596  *	with the any VM paging I/O activity.  The range of loaded
4597  *	pages will be wired.
4598  *
4599  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
4600  *	retrieve the full range (to - from) of pages.
4601  */
4602 void
4603 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4604 {
4605 	vm_offset_t pg;
4606 	vm_page_t p;
4607 	int index;
4608 
4609 	to = round_page(to);
4610 	from = round_page(from);
4611 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4612 
4613 	pg = from;
4614 	while (pg < to) {
4615 		/*
4616 		 * Note: must allocate system pages since blocking here
4617 		 * could intefere with paging I/O, no matter which
4618 		 * process we are.
4619 		 */
4620 		vm_object_hold(&kernel_object);
4621 		p = bio_page_alloc(bp, &kernel_object, pg >> PAGE_SHIFT,
4622 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4623 		vm_object_drop(&kernel_object);
4624 		if (p) {
4625 			vm_page_wire(p);
4626 			p->valid = VM_PAGE_BITS_ALL;
4627 			pmap_kenter_noinval(pg, VM_PAGE_TO_PHYS(p));
4628 			bp->b_xio.xio_pages[index] = p;
4629 			vm_page_wakeup(p);
4630 
4631 			pg += PAGE_SIZE;
4632 			++index;
4633 		}
4634 	}
4635 	pmap_invalidate_range(&kernel_pmap, from, to);
4636 	bp->b_xio.xio_npages = index;
4637 }
4638 
4639 /*
4640  * Allocate a page for a buffer cache buffer.
4641  *
4642  * If NULL is returned the caller is expected to retry (typically check if
4643  * the page already exists on retry before trying to allocate one).
4644  *
4645  * NOTE! Low-memory handling is dealt with in b[q]relse(), not here.  This
4646  *	 function will use the system reserve with the hope that the page
4647  *	 allocations can be returned to PQ_CACHE/PQ_FREE when the caller
4648  *	 is done with the buffer.
4649  *
4650  * NOTE! However, TMPFS is a special case because flushing a dirty buffer
4651  *	 to TMPFS doesn't clean the page.  For TMPFS, only the pagedaemon
4652  *	 is capable of retiring pages (to swap).  For TMPFS we don't dig
4653  *	 into the system reserve because doing so could stall out pretty
4654  *	 much every process running on the system.
4655  */
4656 static
4657 vm_page_t
4658 bio_page_alloc(struct buf *bp, vm_object_t obj, vm_pindex_t pg, int deficit)
4659 {
4660 	int vmflags = VM_ALLOC_NORMAL | VM_ALLOC_NULL_OK;
4661 	vm_page_t p;
4662 
4663 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj));
4664 
4665 	/*
4666 	 * Try a normal allocation first.
4667 	 */
4668 	p = vm_page_alloc(obj, pg, vmflags);
4669 	if (p)
4670 		return(p);
4671 	if (vm_page_lookup(obj, pg))
4672 		return(NULL);
4673 	vm_pageout_deficit += deficit;
4674 
4675 	/*
4676 	 * Try again, digging into the system reserve.
4677 	 *
4678 	 * Trying to recover pages from the buffer cache here can deadlock
4679 	 * against other threads trying to busy underlying pages so we
4680 	 * depend on the code in brelse() and bqrelse() to free/cache the
4681 	 * underlying buffer cache pages when memory is low.
4682 	 */
4683 	if (curthread->td_flags & TDF_SYSTHREAD)
4684 		vmflags |= VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT;
4685 	else if (bp->b_vp && bp->b_vp->v_tag == VT_TMPFS)
4686 		vmflags |= 0;
4687 	else
4688 		vmflags |= VM_ALLOC_SYSTEM;
4689 
4690 	/*recoverbufpages();*/
4691 	p = vm_page_alloc(obj, pg, vmflags);
4692 	if (p)
4693 		return(p);
4694 	if (vm_page_lookup(obj, pg))
4695 		return(NULL);
4696 
4697 	/*
4698 	 * Wait for memory to free up and try again
4699 	 */
4700 	if (vm_page_count_severe())
4701 		++lowmempgallocs;
4702 	vm_wait(hz / 20 + 1);
4703 
4704 	p = vm_page_alloc(obj, pg, vmflags);
4705 	if (p)
4706 		return(p);
4707 	if (vm_page_lookup(obj, pg))
4708 		return(NULL);
4709 
4710 	/*
4711 	 * Ok, now we are really in trouble.
4712 	 */
4713 	if (bootverbose) {
4714 		static struct krate biokrate = { .freq = 1 };
4715 		krateprintf(&biokrate,
4716 			    "Warning: bio_page_alloc: memory exhausted "
4717 			    "during buffer cache page allocation from %s\n",
4718 			    curthread->td_comm);
4719 	}
4720 	if (curthread->td_flags & TDF_SYSTHREAD)
4721 		vm_wait(hz / 20 + 1);
4722 	else
4723 		vm_wait(hz / 2 + 1);
4724 	return (NULL);
4725 }
4726 
4727 /*
4728  * vm_hold_free_pages:
4729  *
4730  *	Return pages associated with the buffer back to the VM system.
4731  *
4732  *	The range of pages underlying the buffer's address space will
4733  *	be unmapped and un-wired.
4734  */
4735 void
4736 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4737 {
4738 	vm_offset_t pg;
4739 	vm_page_t p;
4740 	int index, newnpages;
4741 
4742 	from = round_page(from);
4743 	to = round_page(to);
4744 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4745 	newnpages = index;
4746 
4747 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4748 		p = bp->b_xio.xio_pages[index];
4749 		if (p && (index < bp->b_xio.xio_npages)) {
4750 			if (p->busy) {
4751 				kprintf("vm_hold_free_pages: doffset: %lld, "
4752 					"loffset: %lld\n",
4753 					(long long)bp->b_bio2.bio_offset,
4754 					(long long)bp->b_loffset);
4755 			}
4756 			bp->b_xio.xio_pages[index] = NULL;
4757 			pmap_kremove_noinval(pg);
4758 			vm_page_busy_wait(p, FALSE, "vmhldpg");
4759 			vm_page_unwire(p, 0);
4760 			vm_page_free(p);
4761 		}
4762 	}
4763 	pmap_invalidate_range(&kernel_pmap, from, to);
4764 	bp->b_xio.xio_npages = newnpages;
4765 }
4766 
4767 /*
4768  * Scan all buffers in the system and issue the callback.
4769  */
4770 int
4771 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4772 {
4773 	int count = 0;
4774 	int error;
4775 	long n;
4776 
4777 	for (n = 0; n < nbuf; ++n) {
4778 		if ((error = callback(&buf[n], info)) < 0) {
4779 			count = error;
4780 			break;
4781 		}
4782 		count += error;
4783 	}
4784 	return (count);
4785 }
4786 
4787 /*
4788  * nestiobuf_iodone: biodone callback for nested buffers and propagate
4789  * completion to the master buffer.
4790  */
4791 static void
4792 nestiobuf_iodone(struct bio *bio)
4793 {
4794 	struct bio *mbio;
4795 	struct buf *mbp, *bp;
4796 	struct devstat *stats;
4797 	int error;
4798 	int donebytes;
4799 
4800 	bp = bio->bio_buf;
4801 	mbio = bio->bio_caller_info1.ptr;
4802 	stats = bio->bio_caller_info2.ptr;
4803 	mbp = mbio->bio_buf;
4804 
4805 	KKASSERT(bp->b_bcount <= bp->b_bufsize);
4806 	KKASSERT(mbp != bp);
4807 
4808 	error = bp->b_error;
4809 	if (bp->b_error == 0 &&
4810 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4811 		/*
4812 		 * Not all got transfered, raise an error. We have no way to
4813 		 * propagate these conditions to mbp.
4814 		 */
4815 		error = EIO;
4816 	}
4817 
4818 	donebytes = bp->b_bufsize;
4819 
4820 	relpbuf(bp, NULL);
4821 
4822 	nestiobuf_done(mbio, donebytes, error, stats);
4823 }
4824 
4825 void
4826 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats)
4827 {
4828 	struct buf *mbp;
4829 
4830 	mbp = mbio->bio_buf;
4831 
4832 	KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4833 
4834 	/*
4835 	 * If an error occured, propagate it to the master buffer.
4836 	 *
4837 	 * Several biodone()s may wind up running concurrently so
4838 	 * use an atomic op to adjust b_flags.
4839 	 */
4840 	if (error) {
4841 		mbp->b_error = error;
4842 		atomic_set_int(&mbp->b_flags, B_ERROR);
4843 	}
4844 
4845 	/*
4846 	 * Decrement the operations in progress counter and terminate the
4847 	 * I/O if this was the last bit.
4848 	 */
4849 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4850 		mbp->b_resid = 0;
4851 		if (stats)
4852 			devstat_end_transaction_buf(stats, mbp);
4853 		biodone(mbio);
4854 	}
4855 }
4856 
4857 /*
4858  * Initialize a nestiobuf for use.  Set an initial count of 1 to prevent
4859  * the mbio from being biodone()'d while we are still adding sub-bios to
4860  * it.
4861  */
4862 void
4863 nestiobuf_init(struct bio *bio)
4864 {
4865 	bio->bio_driver_info = (void *)1;
4866 }
4867 
4868 /*
4869  * The BIOs added to the nestedio have already been started, remove the
4870  * count that placeheld our mbio and biodone() it if the count would
4871  * transition to 0.
4872  */
4873 void
4874 nestiobuf_start(struct bio *mbio)
4875 {
4876 	struct buf *mbp = mbio->bio_buf;
4877 
4878 	/*
4879 	 * Decrement the operations in progress counter and terminate the
4880 	 * I/O if this was the last bit.
4881 	 */
4882 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4883 		if (mbp->b_flags & B_ERROR)
4884 			mbp->b_resid = mbp->b_bcount;
4885 		else
4886 			mbp->b_resid = 0;
4887 		biodone(mbio);
4888 	}
4889 }
4890 
4891 /*
4892  * Set an intermediate error prior to calling nestiobuf_start()
4893  */
4894 void
4895 nestiobuf_error(struct bio *mbio, int error)
4896 {
4897 	struct buf *mbp = mbio->bio_buf;
4898 
4899 	if (error) {
4900 		mbp->b_error = error;
4901 		atomic_set_int(&mbp->b_flags, B_ERROR);
4902 	}
4903 }
4904 
4905 /*
4906  * nestiobuf_add: setup a "nested" buffer.
4907  *
4908  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4909  * => 'bp' should be a buffer allocated by getiobuf.
4910  * => 'offset' is a byte offset in the master buffer.
4911  * => 'size' is a size in bytes of this nested buffer.
4912  */
4913 void
4914 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats)
4915 {
4916 	struct buf *mbp = mbio->bio_buf;
4917 	struct vnode *vp = mbp->b_vp;
4918 
4919 	KKASSERT(mbp->b_bcount >= offset + size);
4920 
4921 	atomic_add_int((int *)&mbio->bio_driver_info, 1);
4922 
4923 	/* kernel needs to own the lock for it to be released in biodone */
4924 	BUF_KERNPROC(bp);
4925 	bp->b_vp = vp;
4926 	bp->b_cmd = mbp->b_cmd;
4927 	bp->b_bio1.bio_done = nestiobuf_iodone;
4928 	bp->b_data = (char *)mbp->b_data + offset;
4929 	bp->b_resid = bp->b_bcount = size;
4930 	bp->b_bufsize = bp->b_bcount;
4931 
4932 	bp->b_bio1.bio_track = NULL;
4933 	bp->b_bio1.bio_caller_info1.ptr = mbio;
4934 	bp->b_bio1.bio_caller_info2.ptr = stats;
4935 }
4936 
4937 #ifdef DDB
4938 
4939 DB_SHOW_COMMAND(buffer, db_show_buffer)
4940 {
4941 	/* get args */
4942 	struct buf *bp = (struct buf *)addr;
4943 
4944 	if (!have_addr) {
4945 		db_printf("usage: show buffer <addr>\n");
4946 		return;
4947 	}
4948 
4949 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4950 	db_printf("b_cmd = %d\n", bp->b_cmd);
4951 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4952 		  "b_resid = %d\n, b_data = %p, "
4953 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4954 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4955 		  bp->b_data,
4956 		  (long long)bp->b_bio2.bio_offset,
4957 		  (long long)(bp->b_bio2.bio_next ?
4958 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4959 	if (bp->b_xio.xio_npages) {
4960 		int i;
4961 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4962 			bp->b_xio.xio_npages);
4963 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4964 			vm_page_t m;
4965 			m = bp->b_xio.xio_pages[i];
4966 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4967 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4968 			if ((i + 1) < bp->b_xio.xio_npages)
4969 				db_printf(",");
4970 		}
4971 		db_printf("\n");
4972 	}
4973 }
4974 #endif /* DDB */
4975