xref: /dragonfly/sys/kern/vfs_bio.c (revision 62f7f702)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.102 2008/05/09 07:24:45 dillon Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <vm/vm_page2.h>
61 
62 #include "opt_ddb.h"
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 /*
68  * Buffer queues.
69  */
70 enum bufq_type {
71 	BQUEUE_NONE,    	/* not on any queue */
72 	BQUEUE_LOCKED,  	/* locked buffers */
73 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
74 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
75 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
76 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
77 	BQUEUE_EMPTY,    	/* empty buffer headers */
78 
79 	BUFFER_QUEUES		/* number of buffer queues */
80 };
81 
82 typedef enum bufq_type bufq_type_t;
83 
84 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
85 
86 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
87 
88 struct buf *buf;		/* buffer header pool */
89 
90 static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
91 		vm_offset_t to);
92 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
93 		vm_offset_t to);
94 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
95 			       int pageno, vm_page_t m);
96 static void vfs_clean_pages(struct buf *bp);
97 static void vfs_setdirty(struct buf *bp);
98 static void vfs_vmio_release(struct buf *bp);
99 static int flushbufqueues(bufq_type_t q);
100 
101 static void buf_daemon(void);
102 static void buf_daemon_hw(void);
103 /*
104  * bogus page -- for I/O to/from partially complete buffers
105  * this is a temporary solution to the problem, but it is not
106  * really that bad.  it would be better to split the buffer
107  * for input in the case of buffers partially already in memory,
108  * but the code is intricate enough already.
109  */
110 vm_page_t bogus_page;
111 
112 /*
113  * These are all static, but make the ones we export globals so we do
114  * not need to use compiler magic.
115  */
116 int bufspace, maxbufspace,
117 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
118 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
119 static int lorunningspace, hirunningspace, runningbufreq;
120 int numdirtybuffers, numdirtybuffershw, lodirtybuffers, hidirtybuffers;
121 int runningbufspace, runningbufcount;
122 static int numfreebuffers, lofreebuffers, hifreebuffers;
123 static int getnewbufcalls;
124 static int getnewbufrestarts;
125 
126 static int needsbuffer;		/* locked by needsbuffer_spin */
127 static int bd_request;		/* locked by needsbuffer_spin */
128 static int bd_request_hw;	/* locked by needsbuffer_spin */
129 static struct spinlock needsbuffer_spin;
130 
131 /*
132  * Sysctls for operational control of the buffer cache.
133  */
134 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
135 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
136 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
137 	"High watermark used to trigger explicit flushing of dirty buffers");
138 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
139 	"Low watermark for special reserve in low-memory situations");
140 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
141 	"High watermark for special reserve in low-memory situations");
142 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
143 	"Minimum amount of buffer space required for active I/O");
144 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
145 	"Maximum amount of buffer space to usable for active I/O");
146 /*
147  * Sysctls determining current state of the buffer cache.
148  */
149 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
150 	"Total number of buffers in buffer cache");
151 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
152 	"Pending number of dirty buffers (all)");
153 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffershw, CTLFLAG_RD, &numdirtybuffershw, 0,
154 	"Pending number of dirty buffers (heavy weight)");
155 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
156 	"Number of free buffers on the buffer cache free list");
157 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
158 	"I/O bytes currently in progress due to asynchronous writes");
159 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
160 	"I/O buffers currently in progress due to asynchronous writes");
161 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
162 	"Hard limit on maximum amount of memory usable for buffer space");
163 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
164 	"Soft limit on maximum amount of memory usable for buffer space");
165 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
166 	"Minimum amount of memory to reserve for system buffer space");
167 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
168 	"Amount of memory available for buffers");
169 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
170 	0, "Maximum amount of memory reserved for buffers using malloc");
171 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
172 	"Amount of memory left for buffers using malloc-scheme");
173 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
174 	"New buffer header acquisition requests");
175 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
176 	0, "New buffer header acquisition restarts");
177 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
178 	"Buffer acquisition restarts due to fragmented buffer map");
179 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
180 	"Amount of time KVA space was deallocated in an arbitrary buffer");
181 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
182 	"Amount of time buffer re-use operations were successful");
183 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
184 	"sizeof(struct buf)");
185 
186 char *buf_wmesg = BUF_WMESG;
187 
188 extern int vm_swap_size;
189 
190 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
191 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
192 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
193 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
194 
195 /*
196  * numdirtywakeup:
197  *
198  *	If someone is blocked due to there being too many dirty buffers,
199  *	and numdirtybuffers is now reasonable, wake them up.
200  */
201 static __inline void
202 numdirtywakeup(void)
203 {
204 	if (runningbufcount + numdirtybuffers <=
205 	    (lodirtybuffers + hidirtybuffers) / 2) {
206 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
207 			spin_lock_wr(&needsbuffer_spin);
208 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
209 			spin_unlock_wr(&needsbuffer_spin);
210 			wakeup(&needsbuffer);
211 		}
212 	}
213 }
214 
215 /*
216  * bufspacewakeup:
217  *
218  *	Called when buffer space is potentially available for recovery.
219  *	getnewbuf() will block on this flag when it is unable to free
220  *	sufficient buffer space.  Buffer space becomes recoverable when
221  *	bp's get placed back in the queues.
222  */
223 
224 static __inline void
225 bufspacewakeup(void)
226 {
227 	/*
228 	 * If someone is waiting for BUF space, wake them up.  Even
229 	 * though we haven't freed the kva space yet, the waiting
230 	 * process will be able to now.
231 	 */
232 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
233 		spin_lock_wr(&needsbuffer_spin);
234 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
235 		spin_unlock_wr(&needsbuffer_spin);
236 		wakeup(&needsbuffer);
237 	}
238 }
239 
240 /*
241  * runningbufwakeup:
242  *
243  *	Accounting for I/O in progress.
244  *
245  */
246 static __inline void
247 runningbufwakeup(struct buf *bp)
248 {
249 	if (bp->b_runningbufspace) {
250 		runningbufspace -= bp->b_runningbufspace;
251 		--runningbufcount;
252 		bp->b_runningbufspace = 0;
253 		if (runningbufreq && runningbufspace <= lorunningspace) {
254 			runningbufreq = 0;
255 			wakeup(&runningbufreq);
256 		}
257 		numdirtywakeup();
258 	}
259 }
260 
261 /*
262  * bufcountwakeup:
263  *
264  *	Called when a buffer has been added to one of the free queues to
265  *	account for the buffer and to wakeup anyone waiting for free buffers.
266  *	This typically occurs when large amounts of metadata are being handled
267  *	by the buffer cache ( else buffer space runs out first, usually ).
268  */
269 
270 static __inline void
271 bufcountwakeup(void)
272 {
273 	++numfreebuffers;
274 	if (needsbuffer) {
275 		spin_lock_wr(&needsbuffer_spin);
276 		needsbuffer &= ~VFS_BIO_NEED_ANY;
277 		if (numfreebuffers >= hifreebuffers)
278 			needsbuffer &= ~VFS_BIO_NEED_FREE;
279 		spin_unlock_wr(&needsbuffer_spin);
280 		wakeup(&needsbuffer);
281 	}
282 }
283 
284 /*
285  * waitrunningbufspace()
286  *
287  *	runningbufspace is a measure of the amount of I/O currently
288  *	running.  This routine is used in async-write situations to
289  *	prevent creating huge backups of pending writes to a device.
290  *	Only asynchronous writes are governed by this function.
291  *
292  *	Reads will adjust runningbufspace, but will not block based on it.
293  *	The read load has a side effect of reducing the allowed write load.
294  *
295  *	This does NOT turn an async write into a sync write.  It waits
296  *	for earlier writes to complete and generally returns before the
297  *	caller's write has reached the device.
298  */
299 static __inline void
300 waitrunningbufspace(void)
301 {
302 	if (runningbufspace > hirunningspace) {
303 		crit_enter();
304 		while (runningbufspace > hirunningspace) {
305 			++runningbufreq;
306 			tsleep(&runningbufreq, 0, "wdrain", 0);
307 		}
308 		crit_exit();
309 	}
310 }
311 
312 /*
313  * vfs_buf_test_cache:
314  *
315  *	Called when a buffer is extended.  This function clears the B_CACHE
316  *	bit if the newly extended portion of the buffer does not contain
317  *	valid data.
318  */
319 static __inline__
320 void
321 vfs_buf_test_cache(struct buf *bp,
322 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
323 		  vm_page_t m)
324 {
325 	if (bp->b_flags & B_CACHE) {
326 		int base = (foff + off) & PAGE_MASK;
327 		if (vm_page_is_valid(m, base, size) == 0)
328 			bp->b_flags &= ~B_CACHE;
329 	}
330 }
331 
332 /*
333  * bd_wakeup:
334  *
335  *	Wake up the buffer daemon if the number of outstanding dirty buffers
336  *	is above specified threshold 'dirtybuflevel'.
337  *
338  *	The buffer daemons are explicitly woken up when (a) the pending number
339  *	of dirty buffers exceeds the recovery and stall mid-point value,
340  *	(b) during bwillwrite() or (c) buf freelist was exhausted.
341  *
342  *	The buffer daemons will generally not stop flushing until the dirty
343  *	buffer count goes below lodirtybuffers.
344  */
345 static __inline__
346 void
347 bd_wakeup(int dirtybuflevel)
348 {
349 	if (bd_request == 0 && numdirtybuffers &&
350 	    runningbufcount + numdirtybuffers >= dirtybuflevel) {
351 		spin_lock_wr(&needsbuffer_spin);
352 		bd_request = 1;
353 		spin_unlock_wr(&needsbuffer_spin);
354 		wakeup(&bd_request);
355 	}
356 	if (bd_request_hw == 0 && numdirtybuffershw &&
357 	    numdirtybuffershw >= dirtybuflevel) {
358 		spin_lock_wr(&needsbuffer_spin);
359 		bd_request_hw = 1;
360 		spin_unlock_wr(&needsbuffer_spin);
361 		wakeup(&bd_request_hw);
362 	}
363 }
364 
365 /*
366  * bd_speedup:
367  *
368  *	Speed up the buffer cache flushing process.
369  */
370 
371 static __inline__
372 void
373 bd_speedup(void)
374 {
375 	bd_wakeup(1);
376 }
377 
378 /*
379  * bufinit:
380  *
381  *	Load time initialisation of the buffer cache, called from machine
382  *	dependant initialization code.
383  */
384 void
385 bufinit(void)
386 {
387 	struct buf *bp;
388 	vm_offset_t bogus_offset;
389 	int i;
390 
391 	spin_init(&needsbuffer_spin);
392 
393 	/* next, make a null set of free lists */
394 	for (i = 0; i < BUFFER_QUEUES; i++)
395 		TAILQ_INIT(&bufqueues[i]);
396 
397 	/* finally, initialize each buffer header and stick on empty q */
398 	for (i = 0; i < nbuf; i++) {
399 		bp = &buf[i];
400 		bzero(bp, sizeof *bp);
401 		bp->b_flags = B_INVAL;	/* we're just an empty header */
402 		bp->b_cmd = BUF_CMD_DONE;
403 		bp->b_qindex = BQUEUE_EMPTY;
404 		initbufbio(bp);
405 		xio_init(&bp->b_xio);
406 		buf_dep_init(bp);
407 		BUF_LOCKINIT(bp);
408 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
409 	}
410 
411 	/*
412 	 * maxbufspace is the absolute maximum amount of buffer space we are
413 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
414 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
415 	 * used by most other processes.  The differential is required to
416 	 * ensure that buf_daemon is able to run when other processes might
417 	 * be blocked waiting for buffer space.
418 	 *
419 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
420 	 * this may result in KVM fragmentation which is not handled optimally
421 	 * by the system.
422 	 */
423 	maxbufspace = nbuf * BKVASIZE;
424 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
425 	lobufspace = hibufspace - MAXBSIZE;
426 
427 	lorunningspace = 512 * 1024;
428 	hirunningspace = 1024 * 1024;
429 
430 /*
431  * Limit the amount of malloc memory since it is wired permanently into
432  * the kernel space.  Even though this is accounted for in the buffer
433  * allocation, we don't want the malloced region to grow uncontrolled.
434  * The malloc scheme improves memory utilization significantly on average
435  * (small) directories.
436  */
437 	maxbufmallocspace = hibufspace / 20;
438 
439 /*
440  * Reduce the chance of a deadlock occuring by limiting the number
441  * of delayed-write dirty buffers we allow to stack up.
442  */
443 	hidirtybuffers = nbuf / 4 + 20;
444 	numdirtybuffers = 0;
445 	numdirtybuffershw = 0;
446 /*
447  * To support extreme low-memory systems, make sure hidirtybuffers cannot
448  * eat up all available buffer space.  This occurs when our minimum cannot
449  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
450  * BKVASIZE'd (8K) buffers.
451  */
452 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
453 		hidirtybuffers >>= 1;
454 	}
455 	lodirtybuffers = hidirtybuffers / 2;
456 
457 /*
458  * Try to keep the number of free buffers in the specified range,
459  * and give special processes (e.g. like buf_daemon) access to an
460  * emergency reserve.
461  */
462 	lofreebuffers = nbuf / 18 + 5;
463 	hifreebuffers = 2 * lofreebuffers;
464 	numfreebuffers = nbuf;
465 
466 /*
467  * Maximum number of async ops initiated per buf_daemon loop.  This is
468  * somewhat of a hack at the moment, we really need to limit ourselves
469  * based on the number of bytes of I/O in-transit that were initiated
470  * from buf_daemon.
471  */
472 
473 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
474 	bogus_page = vm_page_alloc(&kernel_object,
475 				   (bogus_offset >> PAGE_SHIFT),
476 				   VM_ALLOC_NORMAL);
477 	vmstats.v_wire_count++;
478 
479 }
480 
481 /*
482  * Initialize the embedded bio structures
483  */
484 void
485 initbufbio(struct buf *bp)
486 {
487 	bp->b_bio1.bio_buf = bp;
488 	bp->b_bio1.bio_prev = NULL;
489 	bp->b_bio1.bio_offset = NOOFFSET;
490 	bp->b_bio1.bio_next = &bp->b_bio2;
491 	bp->b_bio1.bio_done = NULL;
492 
493 	bp->b_bio2.bio_buf = bp;
494 	bp->b_bio2.bio_prev = &bp->b_bio1;
495 	bp->b_bio2.bio_offset = NOOFFSET;
496 	bp->b_bio2.bio_next = NULL;
497 	bp->b_bio2.bio_done = NULL;
498 }
499 
500 /*
501  * Reinitialize the embedded bio structures as well as any additional
502  * translation cache layers.
503  */
504 void
505 reinitbufbio(struct buf *bp)
506 {
507 	struct bio *bio;
508 
509 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
510 		bio->bio_done = NULL;
511 		bio->bio_offset = NOOFFSET;
512 	}
513 }
514 
515 /*
516  * Push another BIO layer onto an existing BIO and return it.  The new
517  * BIO layer may already exist, holding cached translation data.
518  */
519 struct bio *
520 push_bio(struct bio *bio)
521 {
522 	struct bio *nbio;
523 
524 	if ((nbio = bio->bio_next) == NULL) {
525 		int index = bio - &bio->bio_buf->b_bio_array[0];
526 		if (index >= NBUF_BIO - 1) {
527 			panic("push_bio: too many layers bp %p\n",
528 				bio->bio_buf);
529 		}
530 		nbio = &bio->bio_buf->b_bio_array[index + 1];
531 		bio->bio_next = nbio;
532 		nbio->bio_prev = bio;
533 		nbio->bio_buf = bio->bio_buf;
534 		nbio->bio_offset = NOOFFSET;
535 		nbio->bio_done = NULL;
536 		nbio->bio_next = NULL;
537 	}
538 	KKASSERT(nbio->bio_done == NULL);
539 	return(nbio);
540 }
541 
542 void
543 pop_bio(struct bio *bio)
544 {
545 	/* NOP */
546 }
547 
548 void
549 clearbiocache(struct bio *bio)
550 {
551 	while (bio) {
552 		bio->bio_offset = NOOFFSET;
553 		bio = bio->bio_next;
554 	}
555 }
556 
557 /*
558  * bfreekva:
559  *
560  *	Free the KVA allocation for buffer 'bp'.
561  *
562  *	Must be called from a critical section as this is the only locking for
563  *	buffer_map.
564  *
565  *	Since this call frees up buffer space, we call bufspacewakeup().
566  */
567 static void
568 bfreekva(struct buf *bp)
569 {
570 	int count;
571 
572 	if (bp->b_kvasize) {
573 		++buffreekvacnt;
574 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
575 		vm_map_lock(&buffer_map);
576 		bufspace -= bp->b_kvasize;
577 		vm_map_delete(&buffer_map,
578 		    (vm_offset_t) bp->b_kvabase,
579 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
580 		    &count
581 		);
582 		vm_map_unlock(&buffer_map);
583 		vm_map_entry_release(count);
584 		bp->b_kvasize = 0;
585 		bufspacewakeup();
586 	}
587 }
588 
589 /*
590  * bremfree:
591  *
592  *	Remove the buffer from the appropriate free list.
593  */
594 void
595 bremfree(struct buf *bp)
596 {
597 	int old_qindex;
598 
599 	crit_enter();
600 	old_qindex = bp->b_qindex;
601 
602 	if (bp->b_qindex != BQUEUE_NONE) {
603 		KASSERT(BUF_REFCNTNB(bp) == 1,
604 				("bremfree: bp %p not locked",bp));
605 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
606 		bp->b_qindex = BQUEUE_NONE;
607 	} else {
608 		if (BUF_REFCNTNB(bp) <= 1)
609 			panic("bremfree: removing a buffer not on a queue");
610 	}
611 
612 	/*
613 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
614 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
615 	 * the buffer was free and we must decrement numfreebuffers.
616 	 */
617 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
618 		switch(old_qindex) {
619 		case BQUEUE_DIRTY:
620 		case BQUEUE_DIRTY_HW:
621 		case BQUEUE_CLEAN:
622 		case BQUEUE_EMPTY:
623 		case BQUEUE_EMPTYKVA:
624 			--numfreebuffers;
625 			break;
626 		default:
627 			break;
628 		}
629 	}
630 	crit_exit();
631 }
632 
633 
634 /*
635  * bread:
636  *
637  *	Get a buffer with the specified data.  Look in the cache first.  We
638  *	must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
639  *	is set, the buffer is valid and we do not have to do anything ( see
640  *	getblk() ).
641  */
642 int
643 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
644 {
645 	struct buf *bp;
646 
647 	bp = getblk(vp, loffset, size, 0, 0);
648 	*bpp = bp;
649 
650 	/* if not found in cache, do some I/O */
651 	if ((bp->b_flags & B_CACHE) == 0) {
652 		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
653 		bp->b_flags &= ~(B_ERROR | B_INVAL);
654 		bp->b_cmd = BUF_CMD_READ;
655 		vfs_busy_pages(vp, bp);
656 		vn_strategy(vp, &bp->b_bio1);
657 		return (biowait(bp));
658 	}
659 	return (0);
660 }
661 
662 /*
663  * breadn:
664  *
665  *	Operates like bread, but also starts asynchronous I/O on
666  *	read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
667  *	to initiating I/O . If B_CACHE is set, the buffer is valid
668  *	and we do not have to do anything.
669  */
670 int
671 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
672 	int *rabsize, int cnt, struct buf **bpp)
673 {
674 	struct buf *bp, *rabp;
675 	int i;
676 	int rv = 0, readwait = 0;
677 
678 	*bpp = bp = getblk(vp, loffset, size, 0, 0);
679 
680 	/* if not found in cache, do some I/O */
681 	if ((bp->b_flags & B_CACHE) == 0) {
682 		bp->b_flags &= ~(B_ERROR | B_INVAL);
683 		bp->b_cmd = BUF_CMD_READ;
684 		vfs_busy_pages(vp, bp);
685 		vn_strategy(vp, &bp->b_bio1);
686 		++readwait;
687 	}
688 
689 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
690 		if (inmem(vp, *raoffset))
691 			continue;
692 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
693 
694 		if ((rabp->b_flags & B_CACHE) == 0) {
695 			rabp->b_flags |= B_ASYNC;
696 			rabp->b_flags &= ~(B_ERROR | B_INVAL);
697 			rabp->b_cmd = BUF_CMD_READ;
698 			vfs_busy_pages(vp, rabp);
699 			BUF_KERNPROC(rabp);
700 			vn_strategy(vp, &rabp->b_bio1);
701 		} else {
702 			brelse(rabp);
703 		}
704 	}
705 
706 	if (readwait) {
707 		rv = biowait(bp);
708 	}
709 	return (rv);
710 }
711 
712 /*
713  * bwrite:
714  *
715  *	Write, release buffer on completion.  (Done by iodone
716  *	if async).  Do not bother writing anything if the buffer
717  *	is invalid.
718  *
719  *	Note that we set B_CACHE here, indicating that buffer is
720  *	fully valid and thus cacheable.  This is true even of NFS
721  *	now so we set it generally.  This could be set either here
722  *	or in biodone() since the I/O is synchronous.  We put it
723  *	here.
724  */
725 int
726 bwrite(struct buf *bp)
727 {
728 	int oldflags;
729 
730 	if (bp->b_flags & B_INVAL) {
731 		brelse(bp);
732 		return (0);
733 	}
734 
735 	oldflags = bp->b_flags;
736 
737 	if (BUF_REFCNTNB(bp) == 0)
738 		panic("bwrite: buffer is not busy???");
739 	crit_enter();
740 
741 	/* Mark the buffer clean */
742 	bundirty(bp);
743 
744 	bp->b_flags &= ~B_ERROR;
745 	bp->b_flags |= B_CACHE;
746 	bp->b_cmd = BUF_CMD_WRITE;
747 	vfs_busy_pages(bp->b_vp, bp);
748 
749 	/*
750 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
751 	 * valid for vnode-backed buffers.
752 	 */
753 	bp->b_runningbufspace = bp->b_bufsize;
754 	if (bp->b_runningbufspace) {
755 		runningbufspace += bp->b_runningbufspace;
756 		++runningbufcount;
757 	}
758 
759 	crit_exit();
760 	if (oldflags & B_ASYNC)
761 		BUF_KERNPROC(bp);
762 	vn_strategy(bp->b_vp, &bp->b_bio1);
763 
764 	if ((oldflags & B_ASYNC) == 0) {
765 		int rtval = biowait(bp);
766 		brelse(bp);
767 		return (rtval);
768 	}
769 	return (0);
770 }
771 
772 /*
773  * bdwrite:
774  *
775  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
776  *	anything if the buffer is marked invalid.
777  *
778  *	Note that since the buffer must be completely valid, we can safely
779  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
780  *	biodone() in order to prevent getblk from writing the buffer
781  *	out synchronously.
782  */
783 void
784 bdwrite(struct buf *bp)
785 {
786 	if (BUF_REFCNTNB(bp) == 0)
787 		panic("bdwrite: buffer is not busy");
788 
789 	if (bp->b_flags & B_INVAL) {
790 		brelse(bp);
791 		return;
792 	}
793 	bdirty(bp);
794 
795 	/*
796 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
797 	 * true even of NFS now.
798 	 */
799 	bp->b_flags |= B_CACHE;
800 
801 	/*
802 	 * This bmap keeps the system from needing to do the bmap later,
803 	 * perhaps when the system is attempting to do a sync.  Since it
804 	 * is likely that the indirect block -- or whatever other datastructure
805 	 * that the filesystem needs is still in memory now, it is a good
806 	 * thing to do this.  Note also, that if the pageout daemon is
807 	 * requesting a sync -- there might not be enough memory to do
808 	 * the bmap then...  So, this is important to do.
809 	 */
810 	if (bp->b_bio2.bio_offset == NOOFFSET) {
811 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
812 			 NULL, NULL);
813 	}
814 
815 	/*
816 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
817 	 */
818 	vfs_setdirty(bp);
819 
820 	/*
821 	 * We need to do this here to satisfy the vnode_pager and the
822 	 * pageout daemon, so that it thinks that the pages have been
823 	 * "cleaned".  Note that since the pages are in a delayed write
824 	 * buffer -- the VFS layer "will" see that the pages get written
825 	 * out on the next sync, or perhaps the cluster will be completed.
826 	 */
827 	vfs_clean_pages(bp);
828 	bqrelse(bp);
829 
830 	/*
831 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
832 	 * buffers (midpoint between our recovery point and our stall
833 	 * point).
834 	 */
835 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
836 
837 	/*
838 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
839 	 * due to the softdep code.
840 	 */
841 }
842 
843 /*
844  * bdirty:
845  *
846  *	Turn buffer into delayed write request by marking it B_DELWRI.
847  *	B_RELBUF and B_NOCACHE must be cleared.
848  *
849  *	We reassign the buffer to itself to properly update it in the
850  *	dirty/clean lists.
851  *
852  *	Since the buffer is not on a queue, we do not update the
853  *	numfreebuffers count.
854  *
855  *	Must be called from a critical section.
856  *	The buffer must be on BQUEUE_NONE.
857  */
858 void
859 bdirty(struct buf *bp)
860 {
861 	KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
862 	if (bp->b_flags & B_NOCACHE) {
863 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
864 		bp->b_flags &= ~B_NOCACHE;
865 	}
866 	if (bp->b_flags & B_INVAL) {
867 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
868 	}
869 	bp->b_flags &= ~B_RELBUF;
870 
871 	if ((bp->b_flags & B_DELWRI) == 0) {
872 		bp->b_flags |= B_DELWRI;
873 		reassignbuf(bp);
874 		++numdirtybuffers;
875 		if (bp->b_flags & B_HEAVY)
876 			++numdirtybuffershw;
877 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
878 	}
879 }
880 
881 /*
882  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
883  * needs to be flushed with a different buf_daemon thread to avoid
884  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
885  */
886 void
887 bheavy(struct buf *bp)
888 {
889 	if ((bp->b_flags & B_HEAVY) == 0) {
890 		bp->b_flags |= B_HEAVY;
891 		if (bp->b_flags & B_DELWRI)
892 			++numdirtybuffershw;
893 	}
894 }
895 
896 /*
897  * bundirty:
898  *
899  *	Clear B_DELWRI for buffer.
900  *
901  *	Since the buffer is not on a queue, we do not update the numfreebuffers
902  *	count.
903  *
904  *	Must be called from a critical section.
905  *
906  *	The buffer is typically on BQUEUE_NONE but there is one case in
907  *	brelse() that calls this function after placing the buffer on
908  *	a different queue.
909  */
910 
911 void
912 bundirty(struct buf *bp)
913 {
914 	if (bp->b_flags & B_DELWRI) {
915 		bp->b_flags &= ~B_DELWRI;
916 		reassignbuf(bp);
917 		--numdirtybuffers;
918 		if (bp->b_flags & B_HEAVY)
919 			--numdirtybuffershw;
920 		numdirtywakeup();
921 	}
922 	/*
923 	 * Since it is now being written, we can clear its deferred write flag.
924 	 */
925 	bp->b_flags &= ~B_DEFERRED;
926 }
927 
928 /*
929  * bawrite:
930  *
931  *	Asynchronous write.  Start output on a buffer, but do not wait for
932  *	it to complete.  The buffer is released when the output completes.
933  *
934  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
935  *	B_INVAL buffers.  Not us.
936  */
937 void
938 bawrite(struct buf *bp)
939 {
940 	bp->b_flags |= B_ASYNC;
941 	bwrite(bp);
942 }
943 
944 /*
945  * bowrite:
946  *
947  *	Ordered write.  Start output on a buffer, and flag it so that the
948  *	device will write it in the order it was queued.  The buffer is
949  *	released when the output completes.  bwrite() ( or the VOP routine
950  *	anyway ) is responsible for handling B_INVAL buffers.
951  */
952 int
953 bowrite(struct buf *bp)
954 {
955 	bp->b_flags |= B_ORDERED | B_ASYNC;
956 	return (bwrite(bp));
957 }
958 
959 /*
960  * bwillwrite:
961  *
962  *	Called prior to the locking of any vnodes when we are expecting to
963  *	write.  We do not want to starve the buffer cache with too many
964  *	dirty buffers so we block here.  By blocking prior to the locking
965  *	of any vnodes we attempt to avoid the situation where a locked vnode
966  *	prevents the various system daemons from flushing related buffers.
967  */
968 void
969 bwillwrite(void)
970 {
971 	if (runningbufcount + numdirtybuffers >= hidirtybuffers / 2) {
972 		bd_wakeup(1);
973 		while (runningbufcount + numdirtybuffers >= hidirtybuffers) {
974 			bd_wakeup(1);
975 			spin_lock_wr(&needsbuffer_spin);
976 			if (runningbufcount + numdirtybuffers >=
977 			    hidirtybuffers) {
978 				needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
979 				msleep(&needsbuffer, &needsbuffer_spin, 0,
980 				       "flswai", 0);
981 			}
982 			spin_unlock_wr(&needsbuffer_spin);
983 		}
984 	}
985 #if 0
986 	/* FUTURE - maybe */
987 	else if (runningbufcount + numdirtybuffershw > hidirtybuffers / 2) {
988 		bd_wakeup(1);
989 
990 		while (runningbufcount + numdirtybuffershw > hidirtybuffers) {
991 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
992 			tsleep(&needsbuffer, slpflags, "newbuf",
993 			       slptimeo);
994 		}
995 	}
996 #endif
997 }
998 
999 /*
1000  * buf_dirty_count_severe:
1001  *
1002  *	Return true if we have too many dirty buffers.
1003  */
1004 int
1005 buf_dirty_count_severe(void)
1006 {
1007 	return(runningbufcount + numdirtybuffers >= hidirtybuffers);
1008 }
1009 
1010 /*
1011  * brelse:
1012  *
1013  *	Release a busy buffer and, if requested, free its resources.  The
1014  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1015  *	to be accessed later as a cache entity or reused for other purposes.
1016  */
1017 void
1018 brelse(struct buf *bp)
1019 {
1020 #ifdef INVARIANTS
1021 	int saved_flags = bp->b_flags;
1022 #endif
1023 
1024 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1025 
1026 	crit_enter();
1027 
1028 	/*
1029 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1030 	 * its backing store.  Clear B_DELWRI.
1031 	 *
1032 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1033 	 * to destroy the buffer and backing store and (2) when the caller
1034 	 * wants to destroy the buffer and backing store after a write
1035 	 * completes.
1036 	 */
1037 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1038 		bundirty(bp);
1039 	}
1040 
1041 	if (bp->b_flags & B_LOCKED)
1042 		bp->b_flags &= ~B_ERROR;
1043 
1044 	/*
1045 	 * If a write error occurs and the caller does not want to throw
1046 	 * away the buffer, redirty the buffer.  This will also clear
1047 	 * B_NOCACHE.
1048 	 */
1049 	if (bp->b_cmd == BUF_CMD_WRITE &&
1050 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
1051 		/*
1052 		 * Failed write, redirty.  Must clear B_ERROR to prevent
1053 		 * pages from being scrapped.  If B_INVAL is set then
1054 		 * this case is not run and the next case is run to
1055 		 * destroy the buffer.  B_INVAL can occur if the buffer
1056 		 * is outside the range supported by the underlying device.
1057 		 */
1058 		bp->b_flags &= ~B_ERROR;
1059 		bdirty(bp);
1060 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1061 		   (bp->b_bufsize <= 0) || bp->b_cmd == BUF_CMD_FREEBLKS) {
1062 		/*
1063 		 * Either a failed I/O or we were asked to free or not
1064 		 * cache the buffer.
1065 		 *
1066 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1067 		 * buffer cannot be immediately freed.
1068 		 */
1069 		bp->b_flags |= B_INVAL;
1070 		if (LIST_FIRST(&bp->b_dep) != NULL)
1071 			buf_deallocate(bp);
1072 		if (bp->b_flags & B_DELWRI) {
1073 			--numdirtybuffers;
1074 			if (bp->b_flags & B_HEAVY)
1075 				--numdirtybuffershw;
1076 			numdirtywakeup();
1077 		}
1078 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1079 	}
1080 
1081 	/*
1082 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1083 	 * If vfs_vmio_release() is called with either bit set, the
1084 	 * underlying pages may wind up getting freed causing a previous
1085 	 * write (bdwrite()) to get 'lost' because pages associated with
1086 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1087 	 * B_LOCKED buffer may be mapped by the filesystem.
1088 	 *
1089 	 * If we want to release the buffer ourselves (rather then the
1090 	 * originator asking us to release it), give the originator a
1091 	 * chance to countermand the release by setting B_LOCKED.
1092 	 *
1093 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1094 	 * if B_DELWRI is set.
1095 	 *
1096 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1097 	 * on pages to return pages to the VM page queues.
1098 	 */
1099 	if (bp->b_flags & (B_DELWRI | B_LOCKED)) {
1100 		bp->b_flags &= ~B_RELBUF;
1101 	} else if (vm_page_count_severe()) {
1102 		if (LIST_FIRST(&bp->b_dep) != NULL)
1103 			buf_deallocate(bp);
1104 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1105 			bp->b_flags &= ~B_RELBUF;
1106 		else
1107 			bp->b_flags |= B_RELBUF;
1108 	}
1109 
1110 	/*
1111 	 * At this point destroying the buffer is governed by the B_INVAL
1112 	 * or B_RELBUF flags.
1113 	 */
1114 	bp->b_cmd = BUF_CMD_DONE;
1115 
1116 	/*
1117 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1118 	 * after an I/O may have replaces some of the pages with bogus pages
1119 	 * in order to not destroy dirty pages in a fill-in read.
1120 	 *
1121 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1122 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1123 	 * B_INVAL may still be set, however.
1124 	 *
1125 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1126 	 * but not the backing store.   B_NOCACHE will destroy the backing
1127 	 * store.
1128 	 *
1129 	 * Note that dirty NFS buffers contain byte-granular write ranges
1130 	 * and should not be destroyed w/ B_INVAL even if the backing store
1131 	 * is left intact.
1132 	 */
1133 	if (bp->b_flags & B_VMIO) {
1134 		/*
1135 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1136 		 */
1137 		int i, j, resid;
1138 		vm_page_t m;
1139 		off_t foff;
1140 		vm_pindex_t poff;
1141 		vm_object_t obj;
1142 		struct vnode *vp;
1143 
1144 		vp = bp->b_vp;
1145 
1146 		/*
1147 		 * Get the base offset and length of the buffer.  Note that
1148 		 * in the VMIO case if the buffer block size is not
1149 		 * page-aligned then b_data pointer may not be page-aligned.
1150 		 * But our b_xio.xio_pages array *IS* page aligned.
1151 		 *
1152 		 * block sizes less then DEV_BSIZE (usually 512) are not
1153 		 * supported due to the page granularity bits (m->valid,
1154 		 * m->dirty, etc...).
1155 		 *
1156 		 * See man buf(9) for more information
1157 		 */
1158 
1159 		resid = bp->b_bufsize;
1160 		foff = bp->b_loffset;
1161 
1162 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1163 			m = bp->b_xio.xio_pages[i];
1164 			vm_page_flag_clear(m, PG_ZERO);
1165 			/*
1166 			 * If we hit a bogus page, fixup *all* of them
1167 			 * now.  Note that we left these pages wired
1168 			 * when we removed them so they had better exist,
1169 			 * and they cannot be ripped out from under us so
1170 			 * no critical section protection is necessary.
1171 			 */
1172 			if (m == bogus_page) {
1173 				obj = vp->v_object;
1174 				poff = OFF_TO_IDX(bp->b_loffset);
1175 
1176 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1177 					vm_page_t mtmp;
1178 
1179 					mtmp = bp->b_xio.xio_pages[j];
1180 					if (mtmp == bogus_page) {
1181 						mtmp = vm_page_lookup(obj, poff + j);
1182 						if (!mtmp) {
1183 							panic("brelse: page missing");
1184 						}
1185 						bp->b_xio.xio_pages[j] = mtmp;
1186 					}
1187 				}
1188 
1189 				if ((bp->b_flags & B_INVAL) == 0) {
1190 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1191 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1192 				}
1193 				m = bp->b_xio.xio_pages[i];
1194 			}
1195 
1196 			/*
1197 			 * Invalidate the backing store if B_NOCACHE is set
1198 			 * (e.g. used with vinvalbuf()).  If this is NFS
1199 			 * we impose a requirement that the block size be
1200 			 * a multiple of PAGE_SIZE and create a temporary
1201 			 * hack to basically invalidate the whole page.  The
1202 			 * problem is that NFS uses really odd buffer sizes
1203 			 * especially when tracking piecemeal writes and
1204 			 * it also vinvalbuf()'s a lot, which would result
1205 			 * in only partial page validation and invalidation
1206 			 * here.  If the file page is mmap()'d, however,
1207 			 * all the valid bits get set so after we invalidate
1208 			 * here we would end up with weird m->valid values
1209 			 * like 0xfc.  nfs_getpages() can't handle this so
1210 			 * we clear all the valid bits for the NFS case
1211 			 * instead of just some of them.
1212 			 *
1213 			 * The real bug is the VM system having to set m->valid
1214 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1215 			 * itself is an artifact of the whole 512-byte
1216 			 * granular mess that exists to support odd block
1217 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1218 			 * A complete rewrite is required.
1219 			 */
1220 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1221 				int poffset = foff & PAGE_MASK;
1222 				int presid;
1223 
1224 				presid = PAGE_SIZE - poffset;
1225 				if (bp->b_vp->v_tag == VT_NFS &&
1226 				    bp->b_vp->v_type == VREG) {
1227 					; /* entire page */
1228 				} else if (presid > resid) {
1229 					presid = resid;
1230 				}
1231 				KASSERT(presid >= 0, ("brelse: extra page"));
1232 				vm_page_set_invalid(m, poffset, presid);
1233 			}
1234 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1235 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1236 		}
1237 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1238 			vfs_vmio_release(bp);
1239 	} else {
1240 		/*
1241 		 * Rundown for non-VMIO buffers.
1242 		 */
1243 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1244 #if 0
1245 			if (bp->b_vp)
1246 				kprintf("brelse bp %p %08x/%08x: Warning, caught and fixed brelvp bug\n", bp, saved_flags, bp->b_flags);
1247 #endif
1248 			if (bp->b_bufsize)
1249 				allocbuf(bp, 0);
1250 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1251 			if (bp->b_vp)
1252 				brelvp(bp);
1253 		}
1254 	}
1255 
1256 	if (bp->b_qindex != BQUEUE_NONE)
1257 		panic("brelse: free buffer onto another queue???");
1258 	if (BUF_REFCNTNB(bp) > 1) {
1259 		/* Temporary panic to verify exclusive locking */
1260 		/* This panic goes away when we allow shared refs */
1261 		panic("brelse: multiple refs");
1262 		/* do not release to free list */
1263 		BUF_UNLOCK(bp);
1264 		crit_exit();
1265 		return;
1266 	}
1267 
1268 	/*
1269 	 * Figure out the correct queue to place the cleaned up buffer on.
1270 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1271 	 * disassociated from their vnode.
1272 	 */
1273 	if (bp->b_flags & B_LOCKED) {
1274 		/*
1275 		 * Buffers that are locked are placed in the locked queue
1276 		 * immediately, regardless of their state.
1277 		 */
1278 		bp->b_qindex = BQUEUE_LOCKED;
1279 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1280 	} else if (bp->b_bufsize == 0) {
1281 		/*
1282 		 * Buffers with no memory.  Due to conditionals near the top
1283 		 * of brelse() such buffers should probably already be
1284 		 * marked B_INVAL and disassociated from their vnode.
1285 		 */
1286 		bp->b_flags |= B_INVAL;
1287 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1288 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1289 		if (bp->b_kvasize) {
1290 			bp->b_qindex = BQUEUE_EMPTYKVA;
1291 		} else {
1292 			bp->b_qindex = BQUEUE_EMPTY;
1293 		}
1294 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1295 	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1296 		/*
1297 		 * Buffers with junk contents.   Again these buffers had better
1298 		 * already be disassociated from their vnode.
1299 		 */
1300 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1301 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1302 		bp->b_flags |= B_INVAL;
1303 		bp->b_qindex = BQUEUE_CLEAN;
1304 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1305 	} else {
1306 		/*
1307 		 * Remaining buffers.  These buffers are still associated with
1308 		 * their vnode.
1309 		 */
1310 		switch(bp->b_flags & (B_DELWRI|B_HEAVY|B_AGE)) {
1311 		case B_DELWRI | B_AGE:
1312 		    bp->b_qindex = BQUEUE_DIRTY;
1313 		    TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1314 		    break;
1315 		case B_DELWRI:
1316 		    bp->b_qindex = BQUEUE_DIRTY;
1317 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1318 		    break;
1319 		case B_DELWRI | B_HEAVY | B_AGE:
1320 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1321 		    TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_DIRTY_HW], bp,
1322 				      b_freelist);
1323 		    break;
1324 		case B_DELWRI | B_HEAVY:
1325 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1326 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1327 				      b_freelist);
1328 		    break;
1329 		case B_HEAVY | B_AGE:
1330 		case B_AGE:
1331 		    bp->b_qindex = BQUEUE_CLEAN;
1332 		    TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1333 		    break;
1334 		default:
1335 		    bp->b_qindex = BQUEUE_CLEAN;
1336 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1337 		    break;
1338 		}
1339 	}
1340 
1341 	/*
1342 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1343 	 * on the correct queue.
1344 	 */
1345 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1346 		bundirty(bp);
1347 
1348 	/*
1349 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1350 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1351 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1352 	 * if B_INVAL is set ).
1353 	 */
1354 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1355 		bufcountwakeup();
1356 
1357 	/*
1358 	 * Something we can maybe free or reuse
1359 	 */
1360 	if (bp->b_bufsize || bp->b_kvasize)
1361 		bufspacewakeup();
1362 
1363 	/*
1364 	 * Clean up temporary flags and unlock the buffer.
1365 	 */
1366 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1367 			B_DIRECT);
1368 	BUF_UNLOCK(bp);
1369 	crit_exit();
1370 }
1371 
1372 /*
1373  * bqrelse:
1374  *
1375  *	Release a buffer back to the appropriate queue but do not try to free
1376  *	it.  The buffer is expected to be used again soon.
1377  *
1378  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1379  *	biodone() to requeue an async I/O on completion.  It is also used when
1380  *	known good buffers need to be requeued but we think we may need the data
1381  *	again soon.
1382  *
1383  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1384  */
1385 void
1386 bqrelse(struct buf *bp)
1387 {
1388 	crit_enter();
1389 
1390 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1391 
1392 	if (bp->b_qindex != BQUEUE_NONE)
1393 		panic("bqrelse: free buffer onto another queue???");
1394 	if (BUF_REFCNTNB(bp) > 1) {
1395 		/* do not release to free list */
1396 		panic("bqrelse: multiple refs");
1397 		BUF_UNLOCK(bp);
1398 		crit_exit();
1399 		return;
1400 	}
1401 	if (bp->b_flags & B_LOCKED) {
1402 		/*
1403 		 * Locked buffers are released to the locked queue.  However,
1404 		 * if the buffer is dirty it will first go into the dirty
1405 		 * queue and later on after the I/O completes successfully it
1406 		 * will be released to the locked queue.
1407 		 */
1408 		bp->b_flags &= ~B_ERROR;
1409 		bp->b_qindex = BQUEUE_LOCKED;
1410 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1411 	} else if (bp->b_flags & B_DELWRI) {
1412 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1413 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1414 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1415 	} else if (vm_page_count_severe()) {
1416 		/*
1417 		 * We are too low on memory, we have to try to free the
1418 		 * buffer (most importantly: the wired pages making up its
1419 		 * backing store) *now*.
1420 		 */
1421 		crit_exit();
1422 		brelse(bp);
1423 		return;
1424 	} else {
1425 		bp->b_qindex = BQUEUE_CLEAN;
1426 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1427 	}
1428 
1429 	if ((bp->b_flags & B_LOCKED) == 0 &&
1430 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1431 		bufcountwakeup();
1432 	}
1433 
1434 	/*
1435 	 * Something we can maybe free or reuse.
1436 	 */
1437 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1438 		bufspacewakeup();
1439 
1440 	/*
1441 	 * Final cleanup and unlock.  Clear bits that are only used while a
1442 	 * buffer is actively locked.
1443 	 */
1444 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1445 	BUF_UNLOCK(bp);
1446 	crit_exit();
1447 }
1448 
1449 /*
1450  * vfs_vmio_release:
1451  *
1452  *	Return backing pages held by the buffer 'bp' back to the VM system
1453  *	if possible.  The pages are freed if they are no longer valid or
1454  *	attempt to free if it was used for direct I/O otherwise they are
1455  *	sent to the page cache.
1456  *
1457  *	Pages that were marked busy are left alone and skipped.
1458  *
1459  *	The KVA mapping (b_data) for the underlying pages is removed by
1460  *	this function.
1461  */
1462 static void
1463 vfs_vmio_release(struct buf *bp)
1464 {
1465 	int i;
1466 	vm_page_t m;
1467 
1468 	crit_enter();
1469 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1470 		m = bp->b_xio.xio_pages[i];
1471 		bp->b_xio.xio_pages[i] = NULL;
1472 		/*
1473 		 * In order to keep page LRU ordering consistent, put
1474 		 * everything on the inactive queue.
1475 		 */
1476 		vm_page_unwire(m, 0);
1477 		/*
1478 		 * We don't mess with busy pages, it is
1479 		 * the responsibility of the process that
1480 		 * busied the pages to deal with them.
1481 		 */
1482 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1483 			continue;
1484 
1485 		if (m->wire_count == 0) {
1486 			vm_page_flag_clear(m, PG_ZERO);
1487 			/*
1488 			 * Might as well free the page if we can and it has
1489 			 * no valid data.  We also free the page if the
1490 			 * buffer was used for direct I/O.
1491 			 */
1492 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1493 					m->hold_count == 0) {
1494 				vm_page_busy(m);
1495 				vm_page_protect(m, VM_PROT_NONE);
1496 				vm_page_free(m);
1497 			} else if (bp->b_flags & B_DIRECT) {
1498 				vm_page_try_to_free(m);
1499 			} else if (vm_page_count_severe()) {
1500 				vm_page_try_to_cache(m);
1501 			}
1502 		}
1503 	}
1504 	crit_exit();
1505 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1506 	if (bp->b_bufsize) {
1507 		bufspacewakeup();
1508 		bp->b_bufsize = 0;
1509 	}
1510 	bp->b_xio.xio_npages = 0;
1511 	bp->b_flags &= ~B_VMIO;
1512 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1513 	if (bp->b_vp)
1514 		brelvp(bp);
1515 }
1516 
1517 /*
1518  * vfs_bio_awrite:
1519  *
1520  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1521  *	This is much better then the old way of writing only one buffer at
1522  *	a time.  Note that we may not be presented with the buffers in the
1523  *	correct order, so we search for the cluster in both directions.
1524  *
1525  *	The buffer is locked on call.
1526  */
1527 int
1528 vfs_bio_awrite(struct buf *bp)
1529 {
1530 	int i;
1531 	int j;
1532 	off_t loffset = bp->b_loffset;
1533 	struct vnode *vp = bp->b_vp;
1534 	int nbytes;
1535 	struct buf *bpa;
1536 	int nwritten;
1537 	int size;
1538 
1539 	crit_enter();
1540 	/*
1541 	 * right now we support clustered writing only to regular files.  If
1542 	 * we find a clusterable block we could be in the middle of a cluster
1543 	 * rather then at the beginning.
1544 	 *
1545 	 * NOTE: b_bio1 contains the logical loffset and is aliased
1546 	 * to b_loffset.  b_bio2 contains the translated block number.
1547 	 */
1548 	if ((vp->v_type == VREG) &&
1549 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1550 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1551 
1552 		size = vp->v_mount->mnt_stat.f_iosize;
1553 
1554 		for (i = size; i < MAXPHYS; i += size) {
1555 			if ((bpa = findblk(vp, loffset + i)) &&
1556 			    BUF_REFCNT(bpa) == 0 &&
1557 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1558 			    (B_DELWRI | B_CLUSTEROK)) &&
1559 			    (bpa->b_bufsize == size)) {
1560 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1561 				    (bpa->b_bio2.bio_offset !=
1562 				     bp->b_bio2.bio_offset + i))
1563 					break;
1564 			} else {
1565 				break;
1566 			}
1567 		}
1568 		for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1569 			if ((bpa = findblk(vp, loffset - j)) &&
1570 			    BUF_REFCNT(bpa) == 0 &&
1571 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1572 			    (B_DELWRI | B_CLUSTEROK)) &&
1573 			    (bpa->b_bufsize == size)) {
1574 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1575 				    (bpa->b_bio2.bio_offset !=
1576 				     bp->b_bio2.bio_offset - j))
1577 					break;
1578 			} else {
1579 				break;
1580 			}
1581 		}
1582 		j -= size;
1583 		nbytes = (i + j);
1584 		/*
1585 		 * this is a possible cluster write
1586 		 */
1587 		if (nbytes != size) {
1588 			BUF_UNLOCK(bp);
1589 			nwritten = cluster_wbuild(vp, size,
1590 						  loffset - j, nbytes);
1591 			crit_exit();
1592 			return nwritten;
1593 		}
1594 	}
1595 
1596 	bremfree(bp);
1597 	bp->b_flags |= B_ASYNC;
1598 
1599 	crit_exit();
1600 	/*
1601 	 * default (old) behavior, writing out only one block
1602 	 *
1603 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1604 	 */
1605 	nwritten = bp->b_bufsize;
1606 	bwrite(bp);
1607 
1608 	return nwritten;
1609 }
1610 
1611 /*
1612  * getnewbuf:
1613  *
1614  *	Find and initialize a new buffer header, freeing up existing buffers
1615  *	in the bufqueues as necessary.  The new buffer is returned locked.
1616  *
1617  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1618  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1619  *
1620  *	We block if:
1621  *		We have insufficient buffer headers
1622  *		We have insufficient buffer space
1623  *		buffer_map is too fragmented ( space reservation fails )
1624  *		If we have to flush dirty buffers ( but we try to avoid this )
1625  *
1626  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1627  *	Instead we ask the buf daemon to do it for us.  We attempt to
1628  *	avoid piecemeal wakeups of the pageout daemon.
1629  */
1630 
1631 static struct buf *
1632 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1633 {
1634 	struct buf *bp;
1635 	struct buf *nbp;
1636 	int defrag = 0;
1637 	int nqindex;
1638 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1639 	static int flushingbufs;
1640 
1641 	/*
1642 	 * We can't afford to block since we might be holding a vnode lock,
1643 	 * which may prevent system daemons from running.  We deal with
1644 	 * low-memory situations by proactively returning memory and running
1645 	 * async I/O rather then sync I/O.
1646 	 */
1647 
1648 	++getnewbufcalls;
1649 	--getnewbufrestarts;
1650 restart:
1651 	++getnewbufrestarts;
1652 
1653 	/*
1654 	 * Setup for scan.  If we do not have enough free buffers,
1655 	 * we setup a degenerate case that immediately fails.  Note
1656 	 * that if we are specially marked process, we are allowed to
1657 	 * dip into our reserves.
1658 	 *
1659 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1660 	 *
1661 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1662 	 * However, there are a number of cases (defragging, reusing, ...)
1663 	 * where we cannot backup.
1664 	 */
1665 	nqindex = BQUEUE_EMPTYKVA;
1666 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1667 
1668 	if (nbp == NULL) {
1669 		/*
1670 		 * If no EMPTYKVA buffers and we are either
1671 		 * defragging or reusing, locate a CLEAN buffer
1672 		 * to free or reuse.  If bufspace useage is low
1673 		 * skip this step so we can allocate a new buffer.
1674 		 */
1675 		if (defrag || bufspace >= lobufspace) {
1676 			nqindex = BQUEUE_CLEAN;
1677 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1678 		}
1679 
1680 		/*
1681 		 * If we could not find or were not allowed to reuse a
1682 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1683 		 * buffer.  We can only use an EMPTY buffer if allocating
1684 		 * its KVA would not otherwise run us out of buffer space.
1685 		 */
1686 		if (nbp == NULL && defrag == 0 &&
1687 		    bufspace + maxsize < hibufspace) {
1688 			nqindex = BQUEUE_EMPTY;
1689 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1690 		}
1691 	}
1692 
1693 	/*
1694 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1695 	 * depending.
1696 	 */
1697 
1698 	while ((bp = nbp) != NULL) {
1699 		int qindex = nqindex;
1700 
1701 		/*
1702 		 * Calculate next bp ( we can only use it if we do not block
1703 		 * or do other fancy things ).
1704 		 */
1705 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1706 			switch(qindex) {
1707 			case BQUEUE_EMPTY:
1708 				nqindex = BQUEUE_EMPTYKVA;
1709 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1710 					break;
1711 				/* fall through */
1712 			case BQUEUE_EMPTYKVA:
1713 				nqindex = BQUEUE_CLEAN;
1714 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1715 					break;
1716 				/* fall through */
1717 			case BQUEUE_CLEAN:
1718 				/*
1719 				 * nbp is NULL.
1720 				 */
1721 				break;
1722 			}
1723 		}
1724 
1725 		/*
1726 		 * Sanity Checks
1727 		 */
1728 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1729 
1730 		/*
1731 		 * Note: we no longer distinguish between VMIO and non-VMIO
1732 		 * buffers.
1733 		 */
1734 
1735 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1736 
1737 		/*
1738 		 * If we are defragging then we need a buffer with
1739 		 * b_kvasize != 0.  XXX this situation should no longer
1740 		 * occur, if defrag is non-zero the buffer's b_kvasize
1741 		 * should also be non-zero at this point.  XXX
1742 		 */
1743 		if (defrag && bp->b_kvasize == 0) {
1744 			kprintf("Warning: defrag empty buffer %p\n", bp);
1745 			continue;
1746 		}
1747 
1748 		/*
1749 		 * Start freeing the bp.  This is somewhat involved.  nbp
1750 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
1751 		 * on the clean list must be disassociated from their
1752 		 * current vnode.  Buffers on the empty[kva] lists have
1753 		 * already been disassociated.
1754 		 */
1755 
1756 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1757 			kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp);
1758 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
1759 			goto restart;
1760 		}
1761 		if (bp->b_qindex != qindex) {
1762 			kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
1763 			BUF_UNLOCK(bp);
1764 			goto restart;
1765 		}
1766 		bremfree(bp);
1767 
1768 		/*
1769 		 * Dependancies must be handled before we disassociate the
1770 		 * vnode.
1771 		 *
1772 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
1773 		 * be immediately disassociated.  HAMMER then becomes
1774 		 * responsible for releasing the buffer.
1775 		 */
1776 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1777 			buf_deallocate(bp);
1778 			if (bp->b_flags & B_LOCKED) {
1779 				bqrelse(bp);
1780 				goto restart;
1781 			}
1782 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
1783 		}
1784 
1785 		if (qindex == BQUEUE_CLEAN) {
1786 			if (bp->b_flags & B_VMIO) {
1787 				bp->b_flags &= ~B_ASYNC;
1788 				vfs_vmio_release(bp);
1789 			}
1790 			if (bp->b_vp)
1791 				brelvp(bp);
1792 		}
1793 
1794 		/*
1795 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1796 		 * the scan from this point on.
1797 		 *
1798 		 * Get the rest of the buffer freed up.  b_kva* is still
1799 		 * valid after this operation.
1800 		 */
1801 
1802 		KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
1803 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1804 
1805 		/*
1806 		 * critical section protection is not required when
1807 		 * scrapping a buffer's contents because it is already
1808 		 * wired.
1809 		 */
1810 		if (bp->b_bufsize)
1811 			allocbuf(bp, 0);
1812 
1813 		bp->b_flags = B_BNOCLIP;
1814 		bp->b_cmd = BUF_CMD_DONE;
1815 		bp->b_vp = NULL;
1816 		bp->b_error = 0;
1817 		bp->b_resid = 0;
1818 		bp->b_bcount = 0;
1819 		bp->b_xio.xio_npages = 0;
1820 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1821 		reinitbufbio(bp);
1822 		buf_dep_init(bp);
1823 		if (blkflags & GETBLK_BHEAVY)
1824 			bp->b_flags |= B_HEAVY;
1825 
1826 		/*
1827 		 * If we are defragging then free the buffer.
1828 		 */
1829 		if (defrag) {
1830 			bp->b_flags |= B_INVAL;
1831 			bfreekva(bp);
1832 			brelse(bp);
1833 			defrag = 0;
1834 			goto restart;
1835 		}
1836 
1837 		/*
1838 		 * If we are overcomitted then recover the buffer and its
1839 		 * KVM space.  This occurs in rare situations when multiple
1840 		 * processes are blocked in getnewbuf() or allocbuf().
1841 		 */
1842 		if (bufspace >= hibufspace)
1843 			flushingbufs = 1;
1844 		if (flushingbufs && bp->b_kvasize != 0) {
1845 			bp->b_flags |= B_INVAL;
1846 			bfreekva(bp);
1847 			brelse(bp);
1848 			goto restart;
1849 		}
1850 		if (bufspace < lobufspace)
1851 			flushingbufs = 0;
1852 		break;
1853 	}
1854 
1855 	/*
1856 	 * If we exhausted our list, sleep as appropriate.  We may have to
1857 	 * wakeup various daemons and write out some dirty buffers.
1858 	 *
1859 	 * Generally we are sleeping due to insufficient buffer space.
1860 	 */
1861 
1862 	if (bp == NULL) {
1863 		int flags;
1864 		char *waitmsg;
1865 
1866 		if (defrag) {
1867 			flags = VFS_BIO_NEED_BUFSPACE;
1868 			waitmsg = "nbufkv";
1869 		} else if (bufspace >= hibufspace) {
1870 			waitmsg = "nbufbs";
1871 			flags = VFS_BIO_NEED_BUFSPACE;
1872 		} else {
1873 			waitmsg = "newbuf";
1874 			flags = VFS_BIO_NEED_ANY;
1875 		}
1876 
1877 		needsbuffer |= flags;
1878 		bd_speedup();	/* heeeelp */
1879 		while (needsbuffer & flags) {
1880 			if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo))
1881 				return (NULL);
1882 		}
1883 	} else {
1884 		/*
1885 		 * We finally have a valid bp.  We aren't quite out of the
1886 		 * woods, we still have to reserve kva space.  In order
1887 		 * to keep fragmentation sane we only allocate kva in
1888 		 * BKVASIZE chunks.
1889 		 */
1890 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1891 
1892 		if (maxsize != bp->b_kvasize) {
1893 			vm_offset_t addr = 0;
1894 			int count;
1895 
1896 			bfreekva(bp);
1897 
1898 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1899 			vm_map_lock(&buffer_map);
1900 
1901 			if (vm_map_findspace(&buffer_map,
1902 				    vm_map_min(&buffer_map), maxsize,
1903 				    maxsize, &addr)) {
1904 				/*
1905 				 * Uh oh.  Buffer map is too fragmented.  We
1906 				 * must defragment the map.
1907 				 */
1908 				vm_map_unlock(&buffer_map);
1909 				vm_map_entry_release(count);
1910 				++bufdefragcnt;
1911 				defrag = 1;
1912 				bp->b_flags |= B_INVAL;
1913 				brelse(bp);
1914 				goto restart;
1915 			}
1916 			if (addr) {
1917 				vm_map_insert(&buffer_map, &count,
1918 					NULL, 0,
1919 					addr, addr + maxsize,
1920 					VM_MAPTYPE_NORMAL,
1921 					VM_PROT_ALL, VM_PROT_ALL,
1922 					MAP_NOFAULT);
1923 
1924 				bp->b_kvabase = (caddr_t) addr;
1925 				bp->b_kvasize = maxsize;
1926 				bufspace += bp->b_kvasize;
1927 				++bufreusecnt;
1928 			}
1929 			vm_map_unlock(&buffer_map);
1930 			vm_map_entry_release(count);
1931 		}
1932 		bp->b_data = bp->b_kvabase;
1933 	}
1934 	return(bp);
1935 }
1936 
1937 /*
1938  * buf_daemon:
1939  *
1940  *	Buffer flushing daemon.  Buffers are normally flushed by the
1941  *	update daemon but if it cannot keep up this process starts to
1942  *	take the load in an attempt to prevent getnewbuf() from blocking.
1943  *
1944  *	Once a flush is initiated it does not stop until the number
1945  *	of buffers falls below lodirtybuffers, but we will wake up anyone
1946  *	waiting at the mid-point.
1947  */
1948 
1949 static struct thread *bufdaemon_td;
1950 static struct thread *bufdaemonhw_td;
1951 
1952 static struct kproc_desc buf_kp = {
1953 	"bufdaemon",
1954 	buf_daemon,
1955 	&bufdaemon_td
1956 };
1957 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
1958 	kproc_start, &buf_kp)
1959 
1960 static struct kproc_desc bufhw_kp = {
1961 	"bufdaemon_hw",
1962 	buf_daemon_hw,
1963 	&bufdaemonhw_td
1964 };
1965 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
1966 	kproc_start, &bufhw_kp)
1967 
1968 static void
1969 buf_daemon(void)
1970 {
1971 	/*
1972 	 * This process needs to be suspended prior to shutdown sync.
1973 	 */
1974 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
1975 			      bufdaemon_td, SHUTDOWN_PRI_LAST);
1976 
1977 	/*
1978 	 * This process is allowed to take the buffer cache to the limit
1979 	 */
1980 	crit_enter();
1981 
1982 	for (;;) {
1983 		kproc_suspend_loop();
1984 
1985 		/*
1986 		 * Do the flush.  Limit the amount of in-transit I/O we
1987 		 * allow to build up, otherwise we would completely saturate
1988 		 * the I/O system.  Wakeup any waiting processes before we
1989 		 * normally would so they can run in parallel with our drain.
1990 		 */
1991 		while (numdirtybuffers > lodirtybuffers) {
1992 			if (flushbufqueues(BQUEUE_DIRTY) == 0)
1993 				break;
1994 			waitrunningbufspace();
1995 			numdirtywakeup();
1996 		}
1997 		if (runningbufcount + numdirtybuffers > lodirtybuffers) {
1998 			waitrunningbufspace();
1999 		}
2000 		numdirtywakeup();
2001 
2002 		/*
2003 		 * Only clear bd_request if we have reached our low water
2004 		 * mark.  The buf_daemon normally waits 5 seconds and
2005 		 * then incrementally flushes any dirty buffers that have
2006 		 * built up, within reason.
2007 		 *
2008 		 * If we were unable to hit our low water mark and couldn't
2009 		 * find any flushable buffers, we sleep half a second.
2010 		 * Otherwise we loop immediately.
2011 		 */
2012 		if (runningbufcount + numdirtybuffers <= lodirtybuffers) {
2013 			/*
2014 			 * We reached our low water mark, reset the
2015 			 * request and sleep until we are needed again.
2016 			 * The sleep is just so the suspend code works.
2017 			 */
2018 			spin_lock_wr(&needsbuffer_spin);
2019 			bd_request = 0;
2020 			msleep(&bd_request, &needsbuffer_spin, 0,
2021 			       "psleep", hz);
2022 			spin_unlock_wr(&needsbuffer_spin);
2023 		} else {
2024 			/*
2025 			 * We couldn't find any flushable dirty buffers but
2026 			 * still have too many dirty buffers, we
2027 			 * have to sleep and try again.  (rare)
2028 			 */
2029 			tsleep(&bd_request, 0, "qsleep", hz / 2);
2030 		}
2031 	}
2032 }
2033 
2034 static void
2035 buf_daemon_hw(void)
2036 {
2037 	/*
2038 	 * This process needs to be suspended prior to shutdown sync.
2039 	 */
2040 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2041 			      bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2042 
2043 	/*
2044 	 * This process is allowed to take the buffer cache to the limit
2045 	 */
2046 	crit_enter();
2047 
2048 	for (;;) {
2049 		kproc_suspend_loop();
2050 
2051 		/*
2052 		 * Do the flush.  Limit the amount of in-transit I/O we
2053 		 * allow to build up, otherwise we would completely saturate
2054 		 * the I/O system.  Wakeup any waiting processes before we
2055 		 * normally would so they can run in parallel with our drain.
2056 		 */
2057 		while (numdirtybuffershw > lodirtybuffers) {
2058 			if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2059 				break;
2060 			waitrunningbufspace();
2061 			numdirtywakeup();
2062 		}
2063 		if (runningbufcount + numdirtybuffershw > lodirtybuffers) {
2064 			waitrunningbufspace();
2065 		}
2066 
2067 		/*
2068 		 * Only clear bd_request if we have reached our low water
2069 		 * mark.  The buf_daemon normally waits 5 seconds and
2070 		 * then incrementally flushes any dirty buffers that have
2071 		 * built up, within reason.
2072 		 *
2073 		 * If we were unable to hit our low water mark and couldn't
2074 		 * find any flushable buffers, we sleep half a second.
2075 		 * Otherwise we loop immediately.
2076 		 */
2077 		if (runningbufcount + numdirtybuffershw <= lodirtybuffers) {
2078 			/*
2079 			 * We reached our low water mark, reset the
2080 			 * request and sleep until we are needed again.
2081 			 * The sleep is just so the suspend code works.
2082 			 */
2083 			spin_lock_wr(&needsbuffer_spin);
2084 			bd_request_hw = 0;
2085 			msleep(&bd_request_hw, &needsbuffer_spin, 0,
2086 			       "psleep", hz);
2087 			spin_unlock_wr(&needsbuffer_spin);
2088 		} else {
2089 			/*
2090 			 * We couldn't find any flushable dirty buffers but
2091 			 * still have too many dirty buffers, we
2092 			 * have to sleep and try again.  (rare)
2093 			 */
2094 			tsleep(&bd_request_hw, 0, "qsleep", hz / 2);
2095 		}
2096 	}
2097 }
2098 
2099 /*
2100  * flushbufqueues:
2101  *
2102  *	Try to flush a buffer in the dirty queue.  We must be careful to
2103  *	free up B_INVAL buffers instead of write them, which NFS is
2104  *	particularly sensitive to.
2105  */
2106 
2107 static int
2108 flushbufqueues(bufq_type_t q)
2109 {
2110 	struct buf *bp;
2111 	int r = 0;
2112 
2113 	bp = TAILQ_FIRST(&bufqueues[q]);
2114 
2115 	while (bp) {
2116 		KASSERT((bp->b_flags & B_DELWRI),
2117 			("unexpected clean buffer %p", bp));
2118 		if (bp->b_flags & B_DELWRI) {
2119 			if (bp->b_flags & B_INVAL) {
2120 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2121 					panic("flushbufqueues: locked buf");
2122 				bremfree(bp);
2123 				brelse(bp);
2124 				++r;
2125 				break;
2126 			}
2127 			if (LIST_FIRST(&bp->b_dep) != NULL &&
2128 			    (bp->b_flags & B_DEFERRED) == 0 &&
2129 			    buf_countdeps(bp, 0)) {
2130 				TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2131 				TAILQ_INSERT_TAIL(&bufqueues[q], bp,
2132 						  b_freelist);
2133 				bp->b_flags |= B_DEFERRED;
2134 				bp = TAILQ_FIRST(&bufqueues[q]);
2135 				continue;
2136 			}
2137 
2138 			/*
2139 			 * Only write it out if we can successfully lock
2140 			 * it.  If the buffer has a dependancy,
2141 			 * buf_checkwrite must also return 0.
2142 			 */
2143 			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
2144 				if (LIST_FIRST(&bp->b_dep) != NULL &&
2145 				    buf_checkwrite(bp)) {
2146 					bremfree(bp);
2147 					brelse(bp);
2148 				} else {
2149 					vfs_bio_awrite(bp);
2150 				}
2151 				++r;
2152 				break;
2153 			}
2154 		}
2155 		bp = TAILQ_NEXT(bp, b_freelist);
2156 	}
2157 	return (r);
2158 }
2159 
2160 /*
2161  * inmem:
2162  *
2163  *	Returns true if no I/O is needed to access the associated VM object.
2164  *	This is like findblk except it also hunts around in the VM system for
2165  *	the data.
2166  *
2167  *	Note that we ignore vm_page_free() races from interrupts against our
2168  *	lookup, since if the caller is not protected our return value will not
2169  *	be any more valid then otherwise once we exit the critical section.
2170  */
2171 int
2172 inmem(struct vnode *vp, off_t loffset)
2173 {
2174 	vm_object_t obj;
2175 	vm_offset_t toff, tinc, size;
2176 	vm_page_t m;
2177 
2178 	if (findblk(vp, loffset))
2179 		return 1;
2180 	if (vp->v_mount == NULL)
2181 		return 0;
2182 	if ((obj = vp->v_object) == NULL)
2183 		return 0;
2184 
2185 	size = PAGE_SIZE;
2186 	if (size > vp->v_mount->mnt_stat.f_iosize)
2187 		size = vp->v_mount->mnt_stat.f_iosize;
2188 
2189 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2190 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2191 		if (m == NULL)
2192 			return 0;
2193 		tinc = size;
2194 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2195 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2196 		if (vm_page_is_valid(m,
2197 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2198 			return 0;
2199 	}
2200 	return 1;
2201 }
2202 
2203 /*
2204  * vfs_setdirty:
2205  *
2206  *	Sets the dirty range for a buffer based on the status of the dirty
2207  *	bits in the pages comprising the buffer.
2208  *
2209  *	The range is limited to the size of the buffer.
2210  *
2211  *	This routine is primarily used by NFS, but is generalized for the
2212  *	B_VMIO case.
2213  */
2214 static void
2215 vfs_setdirty(struct buf *bp)
2216 {
2217 	int i;
2218 	vm_object_t object;
2219 
2220 	/*
2221 	 * Degenerate case - empty buffer
2222 	 */
2223 
2224 	if (bp->b_bufsize == 0)
2225 		return;
2226 
2227 	/*
2228 	 * We qualify the scan for modified pages on whether the
2229 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2230 	 * is not cleared simply by protecting pages off.
2231 	 */
2232 
2233 	if ((bp->b_flags & B_VMIO) == 0)
2234 		return;
2235 
2236 	object = bp->b_xio.xio_pages[0]->object;
2237 
2238 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2239 		kprintf("Warning: object %p writeable but not mightbedirty\n", object);
2240 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2241 		kprintf("Warning: object %p mightbedirty but not writeable\n", object);
2242 
2243 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2244 		vm_offset_t boffset;
2245 		vm_offset_t eoffset;
2246 
2247 		/*
2248 		 * test the pages to see if they have been modified directly
2249 		 * by users through the VM system.
2250 		 */
2251 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2252 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
2253 			vm_page_test_dirty(bp->b_xio.xio_pages[i]);
2254 		}
2255 
2256 		/*
2257 		 * Calculate the encompassing dirty range, boffset and eoffset,
2258 		 * (eoffset - boffset) bytes.
2259 		 */
2260 
2261 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2262 			if (bp->b_xio.xio_pages[i]->dirty)
2263 				break;
2264 		}
2265 		boffset = (i << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2266 
2267 		for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) {
2268 			if (bp->b_xio.xio_pages[i]->dirty) {
2269 				break;
2270 			}
2271 		}
2272 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2273 
2274 		/*
2275 		 * Fit it to the buffer.
2276 		 */
2277 
2278 		if (eoffset > bp->b_bcount)
2279 			eoffset = bp->b_bcount;
2280 
2281 		/*
2282 		 * If we have a good dirty range, merge with the existing
2283 		 * dirty range.
2284 		 */
2285 
2286 		if (boffset < eoffset) {
2287 			if (bp->b_dirtyoff > boffset)
2288 				bp->b_dirtyoff = boffset;
2289 			if (bp->b_dirtyend < eoffset)
2290 				bp->b_dirtyend = eoffset;
2291 		}
2292 	}
2293 }
2294 
2295 /*
2296  * findblk:
2297  *
2298  *	Locate and return the specified buffer, or NULL if the buffer does
2299  *	not exist.  Do not attempt to lock the buffer or manipulate it in
2300  *	any way.  The caller must validate that the correct buffer has been
2301  *	obtain after locking it.
2302  */
2303 struct buf *
2304 findblk(struct vnode *vp, off_t loffset)
2305 {
2306 	struct buf *bp;
2307 
2308 	crit_enter();
2309 	bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2310 	crit_exit();
2311 	return(bp);
2312 }
2313 
2314 /*
2315  * getblk:
2316  *
2317  *	Get a block given a specified block and offset into a file/device.
2318  * 	B_INVAL may or may not be set on return.  The caller should clear
2319  *	B_INVAL prior to initiating a READ.
2320  *
2321  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2322  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2323  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2324  *	without doing any of those things the system will likely believe
2325  *	the buffer to be valid (especially if it is not B_VMIO), and the
2326  *	next getblk() will return the buffer with B_CACHE set.
2327  *
2328  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2329  *	an existing buffer.
2330  *
2331  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2332  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2333  *	and then cleared based on the backing VM.  If the previous buffer is
2334  *	non-0-sized but invalid, B_CACHE will be cleared.
2335  *
2336  *	If getblk() must create a new buffer, the new buffer is returned with
2337  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2338  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2339  *	backing VM.
2340  *
2341  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2342  *	B_CACHE bit is clear.
2343  *
2344  *	What this means, basically, is that the caller should use B_CACHE to
2345  *	determine whether the buffer is fully valid or not and should clear
2346  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2347  *	the buffer by loading its data area with something, the caller needs
2348  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2349  *	the caller should set B_CACHE ( as an optimization ), else the caller
2350  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2351  *	a write attempt or if it was a successfull read.  If the caller
2352  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2353  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2354  *
2355  *	getblk flags:
2356  *
2357  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2358  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2359  */
2360 struct buf *
2361 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2362 {
2363 	struct buf *bp;
2364 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2365 
2366 	if (size > MAXBSIZE)
2367 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2368 	if (vp->v_object == NULL)
2369 		panic("getblk: vnode %p has no object!", vp);
2370 
2371 	crit_enter();
2372 loop:
2373 	if ((bp = findblk(vp, loffset))) {
2374 		/*
2375 		 * The buffer was found in the cache, but we need to lock it.
2376 		 * Even with LK_NOWAIT the lockmgr may break our critical
2377 		 * section, so double-check the validity of the buffer
2378 		 * once the lock has been obtained.
2379 		 */
2380 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2381 			int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2382 			if (blkflags & GETBLK_PCATCH)
2383 				lkflags |= LK_PCATCH;
2384 			if (BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo) ==
2385 			    ENOLCK) {
2386 				goto loop;
2387 			}
2388 			crit_exit();
2389 			return (NULL);
2390 		}
2391 
2392 		/*
2393 		 * Once the buffer has been locked, make sure we didn't race
2394 		 * a buffer recyclement.  Buffers that are no longer hashed
2395 		 * will have b_vp == NULL, so this takes care of that check
2396 		 * as well.
2397 		 */
2398 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2399 			kprintf("Warning buffer %p (vp %p loffset %lld) was recycled\n", bp, vp, loffset);
2400 			BUF_UNLOCK(bp);
2401 			goto loop;
2402 		}
2403 
2404 		/*
2405 		 * All vnode-based buffers must be backed by a VM object.
2406 		 */
2407 		KKASSERT(bp->b_flags & B_VMIO);
2408 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2409 
2410 		/*
2411 		 * Make sure that B_INVAL buffers do not have a cached
2412 		 * block number translation.
2413 		 */
2414 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2415 			kprintf("Warning invalid buffer %p (vp %p loffset %lld) did not have cleared bio_offset cache\n", bp, vp, loffset);
2416 			clearbiocache(&bp->b_bio2);
2417 		}
2418 
2419 		/*
2420 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2421 		 * invalid.
2422 		 */
2423 		if (bp->b_flags & B_INVAL)
2424 			bp->b_flags &= ~B_CACHE;
2425 		bremfree(bp);
2426 
2427 		/*
2428 		 * Any size inconsistancy with a dirty buffer or a buffer
2429 		 * with a softupdates dependancy must be resolved.  Resizing
2430 		 * the buffer in such circumstances can lead to problems.
2431 		 */
2432 		if (size != bp->b_bcount) {
2433 			if (bp->b_flags & B_DELWRI) {
2434 				bp->b_flags |= B_NOCACHE;
2435 				bwrite(bp);
2436 			} else if (LIST_FIRST(&bp->b_dep)) {
2437 				bp->b_flags |= B_NOCACHE;
2438 				bwrite(bp);
2439 			} else {
2440 				bp->b_flags |= B_RELBUF;
2441 				brelse(bp);
2442 			}
2443 			goto loop;
2444 		}
2445 		KKASSERT(size <= bp->b_kvasize);
2446 		KASSERT(bp->b_loffset != NOOFFSET,
2447 			("getblk: no buffer offset"));
2448 
2449 		/*
2450 		 * A buffer with B_DELWRI set and B_CACHE clear must
2451 		 * be committed before we can return the buffer in
2452 		 * order to prevent the caller from issuing a read
2453 		 * ( due to B_CACHE not being set ) and overwriting
2454 		 * it.
2455 		 *
2456 		 * Most callers, including NFS and FFS, need this to
2457 		 * operate properly either because they assume they
2458 		 * can issue a read if B_CACHE is not set, or because
2459 		 * ( for example ) an uncached B_DELWRI might loop due
2460 		 * to softupdates re-dirtying the buffer.  In the latter
2461 		 * case, B_CACHE is set after the first write completes,
2462 		 * preventing further loops.
2463 		 *
2464 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2465 		 * above while extending the buffer, we cannot allow the
2466 		 * buffer to remain with B_CACHE set after the write
2467 		 * completes or it will represent a corrupt state.  To
2468 		 * deal with this we set B_NOCACHE to scrap the buffer
2469 		 * after the write.
2470 		 *
2471 		 * We might be able to do something fancy, like setting
2472 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2473 		 * so the below call doesn't set B_CACHE, but that gets real
2474 		 * confusing.  This is much easier.
2475 		 */
2476 
2477 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2478 			bp->b_flags |= B_NOCACHE;
2479 			bwrite(bp);
2480 			goto loop;
2481 		}
2482 		crit_exit();
2483 	} else {
2484 		/*
2485 		 * Buffer is not in-core, create new buffer.  The buffer
2486 		 * returned by getnewbuf() is locked.  Note that the returned
2487 		 * buffer is also considered valid (not marked B_INVAL).
2488 		 *
2489 		 * Calculating the offset for the I/O requires figuring out
2490 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
2491 		 * the mount's f_iosize otherwise.  If the vnode does not
2492 		 * have an associated mount we assume that the passed size is
2493 		 * the block size.
2494 		 *
2495 		 * Note that vn_isdisk() cannot be used here since it may
2496 		 * return a failure for numerous reasons.   Note that the
2497 		 * buffer size may be larger then the block size (the caller
2498 		 * will use block numbers with the proper multiple).  Beware
2499 		 * of using any v_* fields which are part of unions.  In
2500 		 * particular, in DragonFly the mount point overloading
2501 		 * mechanism uses the namecache only and the underlying
2502 		 * directory vnode is not a special case.
2503 		 */
2504 		int bsize, maxsize;
2505 
2506 		if (vp->v_type == VBLK || vp->v_type == VCHR)
2507 			bsize = DEV_BSIZE;
2508 		else if (vp->v_mount)
2509 			bsize = vp->v_mount->mnt_stat.f_iosize;
2510 		else
2511 			bsize = size;
2512 
2513 		maxsize = size + (loffset & PAGE_MASK);
2514 		maxsize = imax(maxsize, bsize);
2515 
2516 		if ((bp = getnewbuf(blkflags, slptimeo, size, maxsize)) == NULL) {
2517 			if (slpflags || slptimeo) {
2518 				crit_exit();
2519 				return NULL;
2520 			}
2521 			goto loop;
2522 		}
2523 
2524 		/*
2525 		 * This code is used to make sure that a buffer is not
2526 		 * created while the getnewbuf routine is blocked.
2527 		 * This can be a problem whether the vnode is locked or not.
2528 		 * If the buffer is created out from under us, we have to
2529 		 * throw away the one we just created.  There is no window
2530 		 * race because we are safely running in a critical section
2531 		 * from the point of the duplicate buffer creation through
2532 		 * to here, and we've locked the buffer.
2533 		 */
2534 		if (findblk(vp, loffset)) {
2535 			bp->b_flags |= B_INVAL;
2536 			brelse(bp);
2537 			goto loop;
2538 		}
2539 
2540 		/*
2541 		 * Insert the buffer into the hash, so that it can
2542 		 * be found by findblk().
2543 		 *
2544 		 * Make sure the translation layer has been cleared.
2545 		 */
2546 		bp->b_loffset = loffset;
2547 		bp->b_bio2.bio_offset = NOOFFSET;
2548 		/* bp->b_bio2.bio_next = NULL; */
2549 
2550 		bgetvp(vp, bp);
2551 
2552 		/*
2553 		 * All vnode-based buffers must be backed by a VM object.
2554 		 */
2555 		KKASSERT(vp->v_object != NULL);
2556 		bp->b_flags |= B_VMIO;
2557 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2558 
2559 		allocbuf(bp, size);
2560 
2561 		crit_exit();
2562 	}
2563 	return (bp);
2564 }
2565 
2566 /*
2567  * regetblk(bp)
2568  *
2569  * Reacquire a buffer that was previously released to the locked queue,
2570  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
2571  * set B_LOCKED (which handles the acquisition race).
2572  *
2573  * To this end, either B_LOCKED must be set or the dependancy list must be
2574  * non-empty.
2575  */
2576 void
2577 regetblk(struct buf *bp)
2578 {
2579 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
2580 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
2581 	crit_enter();
2582 	bremfree(bp);
2583 	crit_exit();
2584 }
2585 
2586 /*
2587  * geteblk:
2588  *
2589  *	Get an empty, disassociated buffer of given size.  The buffer is
2590  *	initially set to B_INVAL.
2591  *
2592  *	critical section protection is not required for the allocbuf()
2593  *	call because races are impossible here.
2594  */
2595 struct buf *
2596 geteblk(int size)
2597 {
2598 	struct buf *bp;
2599 	int maxsize;
2600 
2601 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2602 
2603 	crit_enter();
2604 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2605 		;
2606 	crit_exit();
2607 	allocbuf(bp, size);
2608 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2609 	return (bp);
2610 }
2611 
2612 
2613 /*
2614  * allocbuf:
2615  *
2616  *	This code constitutes the buffer memory from either anonymous system
2617  *	memory (in the case of non-VMIO operations) or from an associated
2618  *	VM object (in the case of VMIO operations).  This code is able to
2619  *	resize a buffer up or down.
2620  *
2621  *	Note that this code is tricky, and has many complications to resolve
2622  *	deadlock or inconsistant data situations.  Tread lightly!!!
2623  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
2624  *	the caller.  Calling this code willy nilly can result in the loss of data.
2625  *
2626  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2627  *	B_CACHE for the non-VMIO case.
2628  *
2629  *	This routine does not need to be called from a critical section but you
2630  *	must own the buffer.
2631  */
2632 int
2633 allocbuf(struct buf *bp, int size)
2634 {
2635 	int newbsize, mbsize;
2636 	int i;
2637 
2638 	if (BUF_REFCNT(bp) == 0)
2639 		panic("allocbuf: buffer not busy");
2640 
2641 	if (bp->b_kvasize < size)
2642 		panic("allocbuf: buffer too small");
2643 
2644 	if ((bp->b_flags & B_VMIO) == 0) {
2645 		caddr_t origbuf;
2646 		int origbufsize;
2647 		/*
2648 		 * Just get anonymous memory from the kernel.  Don't
2649 		 * mess with B_CACHE.
2650 		 */
2651 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2652 		if (bp->b_flags & B_MALLOC)
2653 			newbsize = mbsize;
2654 		else
2655 			newbsize = round_page(size);
2656 
2657 		if (newbsize < bp->b_bufsize) {
2658 			/*
2659 			 * Malloced buffers are not shrunk
2660 			 */
2661 			if (bp->b_flags & B_MALLOC) {
2662 				if (newbsize) {
2663 					bp->b_bcount = size;
2664 				} else {
2665 					kfree(bp->b_data, M_BIOBUF);
2666 					if (bp->b_bufsize) {
2667 						bufmallocspace -= bp->b_bufsize;
2668 						bufspacewakeup();
2669 						bp->b_bufsize = 0;
2670 					}
2671 					bp->b_data = bp->b_kvabase;
2672 					bp->b_bcount = 0;
2673 					bp->b_flags &= ~B_MALLOC;
2674 				}
2675 				return 1;
2676 			}
2677 			vm_hold_free_pages(
2678 			    bp,
2679 			    (vm_offset_t) bp->b_data + newbsize,
2680 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2681 		} else if (newbsize > bp->b_bufsize) {
2682 			/*
2683 			 * We only use malloced memory on the first allocation.
2684 			 * and revert to page-allocated memory when the buffer
2685 			 * grows.
2686 			 */
2687 			if ((bufmallocspace < maxbufmallocspace) &&
2688 				(bp->b_bufsize == 0) &&
2689 				(mbsize <= PAGE_SIZE/2)) {
2690 
2691 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
2692 				bp->b_bufsize = mbsize;
2693 				bp->b_bcount = size;
2694 				bp->b_flags |= B_MALLOC;
2695 				bufmallocspace += mbsize;
2696 				return 1;
2697 			}
2698 			origbuf = NULL;
2699 			origbufsize = 0;
2700 			/*
2701 			 * If the buffer is growing on its other-than-first
2702 			 * allocation, then we revert to the page-allocation
2703 			 * scheme.
2704 			 */
2705 			if (bp->b_flags & B_MALLOC) {
2706 				origbuf = bp->b_data;
2707 				origbufsize = bp->b_bufsize;
2708 				bp->b_data = bp->b_kvabase;
2709 				if (bp->b_bufsize) {
2710 					bufmallocspace -= bp->b_bufsize;
2711 					bufspacewakeup();
2712 					bp->b_bufsize = 0;
2713 				}
2714 				bp->b_flags &= ~B_MALLOC;
2715 				newbsize = round_page(newbsize);
2716 			}
2717 			vm_hold_load_pages(
2718 			    bp,
2719 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2720 			    (vm_offset_t) bp->b_data + newbsize);
2721 			if (origbuf) {
2722 				bcopy(origbuf, bp->b_data, origbufsize);
2723 				kfree(origbuf, M_BIOBUF);
2724 			}
2725 		}
2726 	} else {
2727 		vm_page_t m;
2728 		int desiredpages;
2729 
2730 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2731 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
2732 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
2733 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
2734 
2735 		if (bp->b_flags & B_MALLOC)
2736 			panic("allocbuf: VMIO buffer can't be malloced");
2737 		/*
2738 		 * Set B_CACHE initially if buffer is 0 length or will become
2739 		 * 0-length.
2740 		 */
2741 		if (size == 0 || bp->b_bufsize == 0)
2742 			bp->b_flags |= B_CACHE;
2743 
2744 		if (newbsize < bp->b_bufsize) {
2745 			/*
2746 			 * DEV_BSIZE aligned new buffer size is less then the
2747 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2748 			 * if we have to remove any pages.
2749 			 */
2750 			if (desiredpages < bp->b_xio.xio_npages) {
2751 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
2752 					/*
2753 					 * the page is not freed here -- it
2754 					 * is the responsibility of
2755 					 * vnode_pager_setsize
2756 					 */
2757 					m = bp->b_xio.xio_pages[i];
2758 					KASSERT(m != bogus_page,
2759 					    ("allocbuf: bogus page found"));
2760 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2761 						;
2762 
2763 					bp->b_xio.xio_pages[i] = NULL;
2764 					vm_page_unwire(m, 0);
2765 				}
2766 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2767 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
2768 				bp->b_xio.xio_npages = desiredpages;
2769 			}
2770 		} else if (size > bp->b_bcount) {
2771 			/*
2772 			 * We are growing the buffer, possibly in a
2773 			 * byte-granular fashion.
2774 			 */
2775 			struct vnode *vp;
2776 			vm_object_t obj;
2777 			vm_offset_t toff;
2778 			vm_offset_t tinc;
2779 
2780 			/*
2781 			 * Step 1, bring in the VM pages from the object,
2782 			 * allocating them if necessary.  We must clear
2783 			 * B_CACHE if these pages are not valid for the
2784 			 * range covered by the buffer.
2785 			 *
2786 			 * critical section protection is required to protect
2787 			 * against interrupts unbusying and freeing pages
2788 			 * between our vm_page_lookup() and our
2789 			 * busycheck/wiring call.
2790 			 */
2791 			vp = bp->b_vp;
2792 			obj = vp->v_object;
2793 
2794 			crit_enter();
2795 			while (bp->b_xio.xio_npages < desiredpages) {
2796 				vm_page_t m;
2797 				vm_pindex_t pi;
2798 
2799 				pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
2800 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2801 					/*
2802 					 * note: must allocate system pages
2803 					 * since blocking here could intefere
2804 					 * with paging I/O, no matter which
2805 					 * process we are.
2806 					 */
2807 					m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
2808 					if (m == NULL) {
2809 						vm_wait();
2810 						vm_pageout_deficit += desiredpages -
2811 							bp->b_xio.xio_npages;
2812 					} else {
2813 						vm_page_wire(m);
2814 						vm_page_wakeup(m);
2815 						bp->b_flags &= ~B_CACHE;
2816 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2817 						++bp->b_xio.xio_npages;
2818 					}
2819 					continue;
2820 				}
2821 
2822 				/*
2823 				 * We found a page.  If we have to sleep on it,
2824 				 * retry because it might have gotten freed out
2825 				 * from under us.
2826 				 *
2827 				 * We can only test PG_BUSY here.  Blocking on
2828 				 * m->busy might lead to a deadlock:
2829 				 *
2830 				 *  vm_fault->getpages->cluster_read->allocbuf
2831 				 *
2832 				 */
2833 
2834 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2835 					continue;
2836 
2837 				/*
2838 				 * We have a good page.  Should we wakeup the
2839 				 * page daemon?
2840 				 */
2841 				if ((curthread != pagethread) &&
2842 				    ((m->queue - m->pc) == PQ_CACHE) &&
2843 				    ((vmstats.v_free_count + vmstats.v_cache_count) <
2844 					(vmstats.v_free_min + vmstats.v_cache_min))) {
2845 					pagedaemon_wakeup();
2846 				}
2847 				vm_page_flag_clear(m, PG_ZERO);
2848 				vm_page_wire(m);
2849 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2850 				++bp->b_xio.xio_npages;
2851 			}
2852 			crit_exit();
2853 
2854 			/*
2855 			 * Step 2.  We've loaded the pages into the buffer,
2856 			 * we have to figure out if we can still have B_CACHE
2857 			 * set.  Note that B_CACHE is set according to the
2858 			 * byte-granular range ( bcount and size ), not the
2859 			 * aligned range ( newbsize ).
2860 			 *
2861 			 * The VM test is against m->valid, which is DEV_BSIZE
2862 			 * aligned.  Needless to say, the validity of the data
2863 			 * needs to also be DEV_BSIZE aligned.  Note that this
2864 			 * fails with NFS if the server or some other client
2865 			 * extends the file's EOF.  If our buffer is resized,
2866 			 * B_CACHE may remain set! XXX
2867 			 */
2868 
2869 			toff = bp->b_bcount;
2870 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
2871 
2872 			while ((bp->b_flags & B_CACHE) && toff < size) {
2873 				vm_pindex_t pi;
2874 
2875 				if (tinc > (size - toff))
2876 					tinc = size - toff;
2877 
2878 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
2879 				    PAGE_SHIFT;
2880 
2881 				vfs_buf_test_cache(
2882 				    bp,
2883 				    bp->b_loffset,
2884 				    toff,
2885 				    tinc,
2886 				    bp->b_xio.xio_pages[pi]
2887 				);
2888 				toff += tinc;
2889 				tinc = PAGE_SIZE;
2890 			}
2891 
2892 			/*
2893 			 * Step 3, fixup the KVM pmap.  Remember that
2894 			 * bp->b_data is relative to bp->b_loffset, but
2895 			 * bp->b_loffset may be offset into the first page.
2896 			 */
2897 
2898 			bp->b_data = (caddr_t)
2899 			    trunc_page((vm_offset_t)bp->b_data);
2900 			pmap_qenter(
2901 			    (vm_offset_t)bp->b_data,
2902 			    bp->b_xio.xio_pages,
2903 			    bp->b_xio.xio_npages
2904 			);
2905 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2906 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
2907 		}
2908 	}
2909 	if (newbsize < bp->b_bufsize)
2910 		bufspacewakeup();
2911 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2912 	bp->b_bcount = size;		/* requested buffer size	*/
2913 	return 1;
2914 }
2915 
2916 /*
2917  * biowait:
2918  *
2919  *	Wait for buffer I/O completion, returning error status.  The buffer
2920  *	is left locked on return.  B_EINTR is converted into an EINTR error
2921  *	and cleared.
2922  *
2923  *	NOTE!  The original b_cmd is lost on return, since b_cmd will be
2924  *	set to BUF_CMD_DONE.
2925  */
2926 int
2927 biowait(struct buf *bp)
2928 {
2929 	crit_enter();
2930 	while (bp->b_cmd != BUF_CMD_DONE) {
2931 		if (bp->b_cmd == BUF_CMD_READ)
2932 			tsleep(bp, 0, "biord", 0);
2933 		else
2934 			tsleep(bp, 0, "biowr", 0);
2935 	}
2936 	crit_exit();
2937 	if (bp->b_flags & B_EINTR) {
2938 		bp->b_flags &= ~B_EINTR;
2939 		return (EINTR);
2940 	}
2941 	if (bp->b_flags & B_ERROR) {
2942 		return (bp->b_error ? bp->b_error : EIO);
2943 	} else {
2944 		return (0);
2945 	}
2946 }
2947 
2948 /*
2949  * This associates a tracking count with an I/O.  vn_strategy() and
2950  * dev_dstrategy() do this automatically but there are a few cases
2951  * where a vnode or device layer is bypassed when a block translation
2952  * is cached.  In such cases bio_start_transaction() may be called on
2953  * the bypassed layers so the system gets an I/O in progress indication
2954  * for those higher layers.
2955  */
2956 void
2957 bio_start_transaction(struct bio *bio, struct bio_track *track)
2958 {
2959 	bio->bio_track = track;
2960 	atomic_add_int(&track->bk_active, 1);
2961 }
2962 
2963 /*
2964  * Initiate I/O on a vnode.
2965  */
2966 void
2967 vn_strategy(struct vnode *vp, struct bio *bio)
2968 {
2969 	struct bio_track *track;
2970 
2971 	KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE);
2972         if (bio->bio_buf->b_cmd == BUF_CMD_READ)
2973                 track = &vp->v_track_read;
2974         else
2975                 track = &vp->v_track_write;
2976 	bio->bio_track = track;
2977 	atomic_add_int(&track->bk_active, 1);
2978         vop_strategy(*vp->v_ops, vp, bio);
2979 }
2980 
2981 
2982 /*
2983  * biodone:
2984  *
2985  *	Finish I/O on a buffer, optionally calling a completion function.
2986  *	This is usually called from an interrupt so process blocking is
2987  *	not allowed.
2988  *
2989  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2990  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2991  *	assuming B_INVAL is clear.
2992  *
2993  *	For the VMIO case, we set B_CACHE if the op was a read and no
2994  *	read error occured, or if the op was a write.  B_CACHE is never
2995  *	set if the buffer is invalid or otherwise uncacheable.
2996  *
2997  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2998  *	initiator to leave B_INVAL set to brelse the buffer out of existance
2999  *	in the biodone routine.
3000  */
3001 void
3002 biodone(struct bio *bio)
3003 {
3004 	struct buf *bp = bio->bio_buf;
3005 	buf_cmd_t cmd;
3006 
3007 	crit_enter();
3008 
3009 	KASSERT(BUF_REFCNTNB(bp) > 0,
3010 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3011 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3012 		("biodone: bp %p already done!", bp));
3013 
3014 	runningbufwakeup(bp);
3015 
3016 	/*
3017 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3018 	 */
3019 	while (bio) {
3020 		biodone_t *done_func;
3021 		struct bio_track *track;
3022 
3023 		/*
3024 		 * BIO tracking.  Most but not all BIOs are tracked.
3025 		 */
3026 		if ((track = bio->bio_track) != NULL) {
3027 			atomic_subtract_int(&track->bk_active, 1);
3028 			if (track->bk_active < 0) {
3029 				panic("biodone: bad active count bio %p\n",
3030 				      bio);
3031 			}
3032 			if (track->bk_waitflag) {
3033 				track->bk_waitflag = 0;
3034 				wakeup(track);
3035 			}
3036 			bio->bio_track = NULL;
3037 		}
3038 
3039 		/*
3040 		 * A bio_done function terminates the loop.  The function
3041 		 * will be responsible for any further chaining and/or
3042 		 * buffer management.
3043 		 *
3044 		 * WARNING!  The done function can deallocate the buffer!
3045 		 */
3046 		if ((done_func = bio->bio_done) != NULL) {
3047 			bio->bio_done = NULL;
3048 			done_func(bio);
3049 			crit_exit();
3050 			return;
3051 		}
3052 		bio = bio->bio_prev;
3053 	}
3054 
3055 	cmd = bp->b_cmd;
3056 	bp->b_cmd = BUF_CMD_DONE;
3057 
3058 	/*
3059 	 * Only reads and writes are processed past this point.
3060 	 */
3061 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3062 		brelse(bp);
3063 		crit_exit();
3064 		return;
3065 	}
3066 
3067 	/*
3068 	 * Warning: softupdates may re-dirty the buffer.
3069 	 */
3070 	if (LIST_FIRST(&bp->b_dep) != NULL)
3071 		buf_complete(bp);
3072 
3073 	if (bp->b_flags & B_VMIO) {
3074 		int i;
3075 		vm_ooffset_t foff;
3076 		vm_page_t m;
3077 		vm_object_t obj;
3078 		int iosize;
3079 		struct vnode *vp = bp->b_vp;
3080 
3081 		obj = vp->v_object;
3082 
3083 #if defined(VFS_BIO_DEBUG)
3084 		if (vp->v_auxrefs == 0)
3085 			panic("biodone: zero vnode hold count");
3086 		if ((vp->v_flag & VOBJBUF) == 0)
3087 			panic("biodone: vnode is not setup for merged cache");
3088 #endif
3089 
3090 		foff = bp->b_loffset;
3091 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3092 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3093 
3094 #if defined(VFS_BIO_DEBUG)
3095 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3096 			kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3097 			    obj->paging_in_progress, bp->b_xio.xio_npages);
3098 		}
3099 #endif
3100 
3101 		/*
3102 		 * Set B_CACHE if the op was a normal read and no error
3103 		 * occured.  B_CACHE is set for writes in the b*write()
3104 		 * routines.
3105 		 */
3106 		iosize = bp->b_bcount - bp->b_resid;
3107 		if (cmd == BUF_CMD_READ && (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3108 			bp->b_flags |= B_CACHE;
3109 		}
3110 
3111 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3112 			int bogusflag = 0;
3113 			int resid;
3114 
3115 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3116 			if (resid > iosize)
3117 				resid = iosize;
3118 
3119 			/*
3120 			 * cleanup bogus pages, restoring the originals.  Since
3121 			 * the originals should still be wired, we don't have
3122 			 * to worry about interrupt/freeing races destroying
3123 			 * the VM object association.
3124 			 */
3125 			m = bp->b_xio.xio_pages[i];
3126 			if (m == bogus_page) {
3127 				bogusflag = 1;
3128 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3129 				if (m == NULL)
3130 					panic("biodone: page disappeared");
3131 				bp->b_xio.xio_pages[i] = m;
3132 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3133 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3134 			}
3135 #if defined(VFS_BIO_DEBUG)
3136 			if (OFF_TO_IDX(foff) != m->pindex) {
3137 				kprintf(
3138 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
3139 				    (unsigned long)foff, m->pindex);
3140 			}
3141 #endif
3142 
3143 			/*
3144 			 * In the write case, the valid and clean bits are
3145 			 * already changed correctly ( see bdwrite() ), so we
3146 			 * only need to do this here in the read case.
3147 			 */
3148 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3149 				vfs_page_set_valid(bp, foff, i, m);
3150 			}
3151 			vm_page_flag_clear(m, PG_ZERO);
3152 
3153 			/*
3154 			 * when debugging new filesystems or buffer I/O methods, this
3155 			 * is the most common error that pops up.  if you see this, you
3156 			 * have not set the page busy flag correctly!!!
3157 			 */
3158 			if (m->busy == 0) {
3159 				kprintf("biodone: page busy < 0, "
3160 				    "pindex: %d, foff: 0x(%x,%x), "
3161 				    "resid: %d, index: %d\n",
3162 				    (int) m->pindex, (int)(foff >> 32),
3163 						(int) foff & 0xffffffff, resid, i);
3164 				if (!vn_isdisk(vp, NULL))
3165 					kprintf(" iosize: %ld, loffset: %lld, flags: 0x%08x, npages: %d\n",
3166 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3167 					    bp->b_loffset,
3168 					    bp->b_flags, bp->b_xio.xio_npages);
3169 				else
3170 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3171 					    bp->b_loffset,
3172 					    bp->b_flags, bp->b_xio.xio_npages);
3173 				kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3174 				    m->valid, m->dirty, m->wire_count);
3175 				panic("biodone: page busy < 0");
3176 			}
3177 			vm_page_io_finish(m);
3178 			vm_object_pip_subtract(obj, 1);
3179 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3180 			iosize -= resid;
3181 		}
3182 		if (obj)
3183 			vm_object_pip_wakeupn(obj, 0);
3184 	}
3185 
3186 	/*
3187 	 * For asynchronous completions, release the buffer now. The brelse
3188 	 * will do a wakeup there if necessary - so no need to do a wakeup
3189 	 * here in the async case. The sync case always needs to do a wakeup.
3190 	 */
3191 
3192 	if (bp->b_flags & B_ASYNC) {
3193 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
3194 			brelse(bp);
3195 		else
3196 			bqrelse(bp);
3197 	} else {
3198 		wakeup(bp);
3199 	}
3200 	crit_exit();
3201 }
3202 
3203 /*
3204  * vfs_unbusy_pages:
3205  *
3206  *	This routine is called in lieu of iodone in the case of
3207  *	incomplete I/O.  This keeps the busy status for pages
3208  *	consistant.
3209  */
3210 void
3211 vfs_unbusy_pages(struct buf *bp)
3212 {
3213 	int i;
3214 
3215 	runningbufwakeup(bp);
3216 	if (bp->b_flags & B_VMIO) {
3217 		struct vnode *vp = bp->b_vp;
3218 		vm_object_t obj;
3219 
3220 		obj = vp->v_object;
3221 
3222 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3223 			vm_page_t m = bp->b_xio.xio_pages[i];
3224 
3225 			/*
3226 			 * When restoring bogus changes the original pages
3227 			 * should still be wired, so we are in no danger of
3228 			 * losing the object association and do not need
3229 			 * critical section protection particularly.
3230 			 */
3231 			if (m == bogus_page) {
3232 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3233 				if (!m) {
3234 					panic("vfs_unbusy_pages: page missing");
3235 				}
3236 				bp->b_xio.xio_pages[i] = m;
3237 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3238 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3239 			}
3240 			vm_object_pip_subtract(obj, 1);
3241 			vm_page_flag_clear(m, PG_ZERO);
3242 			vm_page_io_finish(m);
3243 		}
3244 		vm_object_pip_wakeupn(obj, 0);
3245 	}
3246 }
3247 
3248 /*
3249  * vfs_page_set_valid:
3250  *
3251  *	Set the valid bits in a page based on the supplied offset.   The
3252  *	range is restricted to the buffer's size.
3253  *
3254  *	This routine is typically called after a read completes.
3255  */
3256 static void
3257 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3258 {
3259 	vm_ooffset_t soff, eoff;
3260 
3261 	/*
3262 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3263 	 * page boundry or cross the end of the buffer.  The end of the
3264 	 * buffer, in this case, is our file EOF, not the allocation size
3265 	 * of the buffer.
3266 	 */
3267 	soff = off;
3268 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3269 	if (eoff > bp->b_loffset + bp->b_bcount)
3270 		eoff = bp->b_loffset + bp->b_bcount;
3271 
3272 	/*
3273 	 * Set valid range.  This is typically the entire buffer and thus the
3274 	 * entire page.
3275 	 */
3276 	if (eoff > soff) {
3277 		vm_page_set_validclean(
3278 		    m,
3279 		   (vm_offset_t) (soff & PAGE_MASK),
3280 		   (vm_offset_t) (eoff - soff)
3281 		);
3282 	}
3283 }
3284 
3285 /*
3286  * vfs_busy_pages:
3287  *
3288  *	This routine is called before a device strategy routine.
3289  *	It is used to tell the VM system that paging I/O is in
3290  *	progress, and treat the pages associated with the buffer
3291  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
3292  *	flag is handled to make sure that the object doesn't become
3293  *	inconsistant.
3294  *
3295  *	Since I/O has not been initiated yet, certain buffer flags
3296  *	such as B_ERROR or B_INVAL may be in an inconsistant state
3297  *	and should be ignored.
3298  */
3299 void
3300 vfs_busy_pages(struct vnode *vp, struct buf *bp)
3301 {
3302 	int i, bogus;
3303 	struct lwp *lp = curthread->td_lwp;
3304 
3305 	/*
3306 	 * The buffer's I/O command must already be set.  If reading,
3307 	 * B_CACHE must be 0 (double check against callers only doing
3308 	 * I/O when B_CACHE is 0).
3309 	 */
3310 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3311 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3312 
3313 	if (bp->b_flags & B_VMIO) {
3314 		vm_object_t obj;
3315 		vm_ooffset_t foff;
3316 
3317 		obj = vp->v_object;
3318 		foff = bp->b_loffset;
3319 		KASSERT(bp->b_loffset != NOOFFSET,
3320 			("vfs_busy_pages: no buffer offset"));
3321 		vfs_setdirty(bp);
3322 
3323 		/*
3324 		 * Loop until none of the pages are busy.
3325 		 */
3326 retry:
3327 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3328 			vm_page_t m = bp->b_xio.xio_pages[i];
3329 
3330 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3331 				goto retry;
3332 		}
3333 
3334 		/*
3335 		 * Setup for I/O, soft-busy the page right now because
3336 		 * the next loop may block.
3337 		 */
3338 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3339 			vm_page_t m = bp->b_xio.xio_pages[i];
3340 
3341 			vm_page_flag_clear(m, PG_ZERO);
3342 			if ((bp->b_flags & B_CLUSTER) == 0) {
3343 				vm_object_pip_add(obj, 1);
3344 				vm_page_io_start(m);
3345 			}
3346 		}
3347 
3348 		/*
3349 		 * Adjust protections for I/O and do bogus-page mapping.
3350 		 * Assume that vm_page_protect() can block (it can block
3351 		 * if VM_PROT_NONE, don't take any chances regardless).
3352 		 */
3353 		bogus = 0;
3354 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3355 			vm_page_t m = bp->b_xio.xio_pages[i];
3356 
3357 			/*
3358 			 * When readying a vnode-backed buffer for a write
3359 			 * we must zero-fill any invalid portions of the
3360 			 * backing VM pages.
3361 			 *
3362 			 * When readying a vnode-backed buffer for a read
3363 			 * we must replace any dirty pages with a bogus
3364 			 * page so we do not destroy dirty data when
3365 			 * filling in gaps.  Dirty pages might not
3366 			 * necessarily be marked dirty yet, so use m->valid
3367 			 * as a reasonable test.
3368 			 *
3369 			 * Bogus page replacement is, uh, bogus.  We need
3370 			 * to find a better way.
3371 			 */
3372 			if (bp->b_cmd == BUF_CMD_WRITE) {
3373 				vm_page_protect(m, VM_PROT_READ);
3374 				vfs_page_set_valid(bp, foff, i, m);
3375 			} else if (m->valid == VM_PAGE_BITS_ALL) {
3376 				bp->b_xio.xio_pages[i] = bogus_page;
3377 				bogus++;
3378 			} else {
3379 				vm_page_protect(m, VM_PROT_NONE);
3380 			}
3381 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3382 		}
3383 		if (bogus)
3384 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3385 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3386 	}
3387 
3388 	/*
3389 	 * This is the easiest place to put the process accounting for the I/O
3390 	 * for now.
3391 	 */
3392 	if (lp != NULL) {
3393 		if (bp->b_cmd == BUF_CMD_READ)
3394 			lp->lwp_ru.ru_inblock++;
3395 		else
3396 			lp->lwp_ru.ru_oublock++;
3397 	}
3398 }
3399 
3400 /*
3401  * vfs_clean_pages:
3402  *
3403  *	Tell the VM system that the pages associated with this buffer
3404  *	are clean.  This is used for delayed writes where the data is
3405  *	going to go to disk eventually without additional VM intevention.
3406  *
3407  *	Note that while we only really need to clean through to b_bcount, we
3408  *	just go ahead and clean through to b_bufsize.
3409  */
3410 static void
3411 vfs_clean_pages(struct buf *bp)
3412 {
3413 	int i;
3414 
3415 	if (bp->b_flags & B_VMIO) {
3416 		vm_ooffset_t foff;
3417 
3418 		foff = bp->b_loffset;
3419 		KASSERT(foff != NOOFFSET, ("vfs_clean_pages: no buffer offset"));
3420 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3421 			vm_page_t m = bp->b_xio.xio_pages[i];
3422 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3423 			vm_ooffset_t eoff = noff;
3424 
3425 			if (eoff > bp->b_loffset + bp->b_bufsize)
3426 				eoff = bp->b_loffset + bp->b_bufsize;
3427 			vfs_page_set_valid(bp, foff, i, m);
3428 			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3429 			foff = noff;
3430 		}
3431 	}
3432 }
3433 
3434 /*
3435  * vfs_bio_set_validclean:
3436  *
3437  *	Set the range within the buffer to valid and clean.  The range is
3438  *	relative to the beginning of the buffer, b_loffset.  Note that
3439  *	b_loffset itself may be offset from the beginning of the first page.
3440  */
3441 
3442 void
3443 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3444 {
3445 	if (bp->b_flags & B_VMIO) {
3446 		int i;
3447 		int n;
3448 
3449 		/*
3450 		 * Fixup base to be relative to beginning of first page.
3451 		 * Set initial n to be the maximum number of bytes in the
3452 		 * first page that can be validated.
3453 		 */
3454 
3455 		base += (bp->b_loffset & PAGE_MASK);
3456 		n = PAGE_SIZE - (base & PAGE_MASK);
3457 
3458 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) {
3459 			vm_page_t m = bp->b_xio.xio_pages[i];
3460 
3461 			if (n > size)
3462 				n = size;
3463 
3464 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3465 			base += n;
3466 			size -= n;
3467 			n = PAGE_SIZE;
3468 		}
3469 	}
3470 }
3471 
3472 /*
3473  * vfs_bio_clrbuf:
3474  *
3475  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
3476  *	to clear B_ERROR and B_INVAL.
3477  *
3478  *	Note that while we only theoretically need to clear through b_bcount,
3479  *	we go ahead and clear through b_bufsize.
3480  */
3481 
3482 void
3483 vfs_bio_clrbuf(struct buf *bp)
3484 {
3485 	int i, mask = 0;
3486 	caddr_t sa, ea;
3487 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3488 		bp->b_flags &= ~(B_INVAL|B_ERROR);
3489 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3490 		    (bp->b_loffset & PAGE_MASK) == 0) {
3491 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3492 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3493 				bp->b_resid = 0;
3494 				return;
3495 			}
3496 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3497 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3498 				bzero(bp->b_data, bp->b_bufsize);
3499 				bp->b_xio.xio_pages[0]->valid |= mask;
3500 				bp->b_resid = 0;
3501 				return;
3502 			}
3503 		}
3504 		ea = sa = bp->b_data;
3505 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3506 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3507 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3508 			ea = (caddr_t)(vm_offset_t)ulmin(
3509 			    (u_long)(vm_offset_t)ea,
3510 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3511 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3512 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3513 				continue;
3514 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3515 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3516 					bzero(sa, ea - sa);
3517 				}
3518 			} else {
3519 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3520 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3521 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3522 						bzero(sa, DEV_BSIZE);
3523 				}
3524 			}
3525 			bp->b_xio.xio_pages[i]->valid |= mask;
3526 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3527 		}
3528 		bp->b_resid = 0;
3529 	} else {
3530 		clrbuf(bp);
3531 	}
3532 }
3533 
3534 /*
3535  * vm_hold_load_pages:
3536  *
3537  *	Load pages into the buffer's address space.  The pages are
3538  *	allocated from the kernel object in order to reduce interference
3539  *	with the any VM paging I/O activity.  The range of loaded
3540  *	pages will be wired.
3541  *
3542  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
3543  *	retrieve the full range (to - from) of pages.
3544  *
3545  */
3546 void
3547 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3548 {
3549 	vm_offset_t pg;
3550 	vm_page_t p;
3551 	int index;
3552 
3553 	to = round_page(to);
3554 	from = round_page(from);
3555 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3556 
3557 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3558 
3559 tryagain:
3560 
3561 		/*
3562 		 * Note: must allocate system pages since blocking here
3563 		 * could intefere with paging I/O, no matter which
3564 		 * process we are.
3565 		 */
3566 		p = vm_page_alloc(&kernel_object,
3567 				  (pg >> PAGE_SHIFT),
3568 				  VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
3569 		if (!p) {
3570 			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3571 			vm_wait();
3572 			goto tryagain;
3573 		}
3574 		vm_page_wire(p);
3575 		p->valid = VM_PAGE_BITS_ALL;
3576 		vm_page_flag_clear(p, PG_ZERO);
3577 		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3578 		bp->b_xio.xio_pages[index] = p;
3579 		vm_page_wakeup(p);
3580 	}
3581 	bp->b_xio.xio_npages = index;
3582 }
3583 
3584 /*
3585  * vm_hold_free_pages:
3586  *
3587  *	Return pages associated with the buffer back to the VM system.
3588  *
3589  *	The range of pages underlying the buffer's address space will
3590  *	be unmapped and un-wired.
3591  */
3592 void
3593 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3594 {
3595 	vm_offset_t pg;
3596 	vm_page_t p;
3597 	int index, newnpages;
3598 
3599 	from = round_page(from);
3600 	to = round_page(to);
3601 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3602 
3603 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3604 		p = bp->b_xio.xio_pages[index];
3605 		if (p && (index < bp->b_xio.xio_npages)) {
3606 			if (p->busy) {
3607 				kprintf("vm_hold_free_pages: doffset: %lld, loffset: %lld\n",
3608 					bp->b_bio2.bio_offset, bp->b_loffset);
3609 			}
3610 			bp->b_xio.xio_pages[index] = NULL;
3611 			pmap_kremove(pg);
3612 			vm_page_busy(p);
3613 			vm_page_unwire(p, 0);
3614 			vm_page_free(p);
3615 		}
3616 	}
3617 	bp->b_xio.xio_npages = newnpages;
3618 }
3619 
3620 /*
3621  * vmapbuf:
3622  *
3623  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
3624  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
3625  *	initialized.
3626  */
3627 int
3628 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
3629 {
3630 	caddr_t addr;
3631 	vm_offset_t va;
3632 	vm_page_t m;
3633 	int vmprot;
3634 	int error;
3635 	int pidx;
3636 	int i;
3637 
3638 	/*
3639 	 * bp had better have a command and it better be a pbuf.
3640 	 */
3641 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3642 	KKASSERT(bp->b_flags & B_PAGING);
3643 
3644 	if (bytes < 0)
3645 		return (-1);
3646 
3647 	/*
3648 	 * Map the user data into KVM.  Mappings have to be page-aligned.
3649 	 */
3650 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
3651 	pidx = 0;
3652 
3653 	vmprot = VM_PROT_READ;
3654 	if (bp->b_cmd == BUF_CMD_READ)
3655 		vmprot |= VM_PROT_WRITE;
3656 
3657 	while (addr < udata + bytes) {
3658 		/*
3659 		 * Do the vm_fault if needed; do the copy-on-write thing
3660 		 * when reading stuff off device into memory.
3661 		 *
3662 		 * vm_fault_page*() returns a held VM page.
3663 		 */
3664 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
3665 		va = trunc_page(va);
3666 
3667 		m = vm_fault_page_quick(va, vmprot, &error);
3668 		if (m == NULL) {
3669 			for (i = 0; i < pidx; ++i) {
3670 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
3671 			    bp->b_xio.xio_pages[i] = NULL;
3672 			}
3673 			return(-1);
3674 		}
3675 		bp->b_xio.xio_pages[pidx] = m;
3676 		addr += PAGE_SIZE;
3677 		++pidx;
3678 	}
3679 
3680 	/*
3681 	 * Map the page array and set the buffer fields to point to
3682 	 * the mapped data buffer.
3683 	 */
3684 	if (pidx > btoc(MAXPHYS))
3685 		panic("vmapbuf: mapped more than MAXPHYS");
3686 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
3687 
3688 	bp->b_xio.xio_npages = pidx;
3689 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
3690 	bp->b_bcount = bytes;
3691 	bp->b_bufsize = bytes;
3692 	return(0);
3693 }
3694 
3695 /*
3696  * vunmapbuf:
3697  *
3698  *	Free the io map PTEs associated with this IO operation.
3699  *	We also invalidate the TLB entries and restore the original b_addr.
3700  */
3701 void
3702 vunmapbuf(struct buf *bp)
3703 {
3704 	int pidx;
3705 	int npages;
3706 
3707 	KKASSERT(bp->b_flags & B_PAGING);
3708 
3709 	npages = bp->b_xio.xio_npages;
3710 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3711 	for (pidx = 0; pidx < npages; ++pidx) {
3712 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
3713 		bp->b_xio.xio_pages[pidx] = NULL;
3714 	}
3715 	bp->b_xio.xio_npages = 0;
3716 	bp->b_data = bp->b_kvabase;
3717 }
3718 
3719 /*
3720  * Scan all buffers in the system and issue the callback.
3721  */
3722 int
3723 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
3724 {
3725 	int count = 0;
3726 	int error;
3727 	int n;
3728 
3729 	for (n = 0; n < nbuf; ++n) {
3730 		if ((error = callback(&buf[n], info)) < 0) {
3731 			count = error;
3732 			break;
3733 		}
3734 		count += error;
3735 	}
3736 	return (count);
3737 }
3738 
3739 /*
3740  * print out statistics from the current status of the buffer pool
3741  * this can be toggeled by the system control option debug.syncprt
3742  */
3743 #ifdef DEBUG
3744 void
3745 vfs_bufstats(void)
3746 {
3747         int i, j, count;
3748         struct buf *bp;
3749         struct bqueues *dp;
3750         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
3751         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
3752 
3753         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
3754                 count = 0;
3755                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3756                         counts[j] = 0;
3757 		crit_enter();
3758                 TAILQ_FOREACH(bp, dp, b_freelist) {
3759                         counts[bp->b_bufsize/PAGE_SIZE]++;
3760                         count++;
3761                 }
3762 		crit_exit();
3763                 kprintf("%s: total-%d", bname[i], count);
3764                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3765                         if (counts[j] != 0)
3766                                 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
3767                 kprintf("\n");
3768         }
3769 }
3770 #endif
3771 
3772 #ifdef DDB
3773 
3774 DB_SHOW_COMMAND(buffer, db_show_buffer)
3775 {
3776 	/* get args */
3777 	struct buf *bp = (struct buf *)addr;
3778 
3779 	if (!have_addr) {
3780 		db_printf("usage: show buffer <addr>\n");
3781 		return;
3782 	}
3783 
3784 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3785 	db_printf("b_cmd = %d\n", bp->b_cmd);
3786 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
3787 		  "b_resid = %d\n, b_data = %p, "
3788 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
3789 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3790 		  bp->b_data, bp->b_bio2.bio_offset, (bp->b_bio2.bio_next ? bp->b_bio2.bio_next->bio_offset : (off_t)-1));
3791 	if (bp->b_xio.xio_npages) {
3792 		int i;
3793 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
3794 			bp->b_xio.xio_npages);
3795 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3796 			vm_page_t m;
3797 			m = bp->b_xio.xio_pages[i];
3798 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3799 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3800 			if ((i + 1) < bp->b_xio.xio_npages)
3801 				db_printf(",");
3802 		}
3803 		db_printf("\n");
3804 	}
3805 }
3806 #endif /* DDB */
3807