xref: /dragonfly/sys/kern/vfs_bio.c (revision 67640b13)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  */
16 
17 /*
18  * this file contains a new buffer I/O scheme implementing a coherent
19  * VM object and buffer cache scheme.  Pains have been taken to make
20  * sure that the performance degradation associated with schemes such
21  * as this is not realized.
22  *
23  * Author:  John S. Dyson
24  * Significant help during the development and debugging phases
25  * had been provided by David Greenman, also of the FreeBSD core team.
26  *
27  * see man buf(9) for more info.  Note that man buf(9) doesn't reflect
28  * the actual buf/bio implementation in DragonFly.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/devicestat.h>
36 #include <sys/eventhandler.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mount.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/proc.h>
43 #include <sys/reboot.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 #include <sys/dsched.h>
49 #include <vm/vm.h>
50 #include <vm/vm_param.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_pageout.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_map.h>
57 #include <vm/vm_pager.h>
58 #include <vm/swap_pager.h>
59 
60 #include <sys/buf2.h>
61 #include <sys/thread2.h>
62 #include <sys/spinlock2.h>
63 #include <sys/mplock2.h>
64 #include <vm/vm_page2.h>
65 
66 #include "opt_ddb.h"
67 #ifdef DDB
68 #include <ddb/ddb.h>
69 #endif
70 
71 /*
72  * Buffer queues.
73  */
74 enum bufq_type {
75 	BQUEUE_NONE,    	/* not on any queue */
76 	BQUEUE_LOCKED,  	/* locked buffers */
77 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
78 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
79 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
80 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
81 	BQUEUE_EMPTY,    	/* empty buffer headers */
82 
83 	BUFFER_QUEUES		/* number of buffer queues */
84 };
85 
86 typedef enum bufq_type bufq_type_t;
87 
88 #define BD_WAKE_SIZE	16384
89 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
90 
91 TAILQ_HEAD(bqueues, buf);
92 
93 struct bufpcpu {
94 	struct spinlock spin;
95 	struct bqueues bufqueues[BUFFER_QUEUES];
96 } __cachealign;
97 
98 struct bufpcpu bufpcpu[MAXCPU];
99 
100 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
101 
102 struct buf *buf;		/* buffer header pool */
103 
104 static void vfs_clean_pages(struct buf *bp);
105 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
106 #if 0
107 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
108 #endif
109 static void vfs_vmio_release(struct buf *bp);
110 static int flushbufqueues(struct buf *marker, bufq_type_t q);
111 static vm_page_t bio_page_alloc(struct buf *bp, vm_object_t obj,
112 				vm_pindex_t pg, int deficit);
113 
114 static void bd_signal(long totalspace);
115 static void buf_daemon(void);
116 static void buf_daemon_hw(void);
117 
118 /*
119  * bogus page -- for I/O to/from partially complete buffers
120  * this is a temporary solution to the problem, but it is not
121  * really that bad.  it would be better to split the buffer
122  * for input in the case of buffers partially already in memory,
123  * but the code is intricate enough already.
124  */
125 vm_page_t bogus_page;
126 
127 /*
128  * These are all static, but make the ones we export globals so we do
129  * not need to use compiler magic.
130  */
131 long bufspace;			/* locked by buffer_map */
132 long maxbufspace;
133 static long bufmallocspace;	/* atomic ops */
134 long maxbufmallocspace, lobufspace, hibufspace;
135 static long bufreusecnt, bufdefragcnt, buffreekvacnt;
136 static long lorunningspace;
137 static long hirunningspace;
138 static long dirtykvaspace;		/* atomic */
139 long dirtybufspace;			/* atomic (global for systat) */
140 static long dirtybufcount;		/* atomic */
141 static long dirtybufspacehw;		/* atomic */
142 static long dirtybufcounthw;		/* atomic */
143 static long runningbufspace;		/* atomic */
144 static long runningbufcount;		/* atomic */
145 long lodirtybufspace;
146 long hidirtybufspace;
147 static int getnewbufcalls;
148 static int getnewbufrestarts;
149 static int recoverbufcalls;
150 static int needsbuffer;			/* atomic */
151 static int runningbufreq;		/* atomic */
152 static int bd_request;			/* atomic */
153 static int bd_request_hw;		/* atomic */
154 static u_int bd_wake_ary[BD_WAKE_SIZE];
155 static u_int bd_wake_index;
156 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
157 static int debug_commit;
158 static int debug_bufbio;
159 
160 static struct thread *bufdaemon_td;
161 static struct thread *bufdaemonhw_td;
162 static u_int lowmempgallocs;
163 static u_int lowmempgfails;
164 
165 /*
166  * Sysctls for operational control of the buffer cache.
167  */
168 SYSCTL_LONG(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
169 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
170 SYSCTL_LONG(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
171 	"High watermark used to trigger explicit flushing of dirty buffers");
172 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
173 	"Minimum amount of buffer space required for active I/O");
174 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
175 	"Maximum amount of buffer space to usable for active I/O");
176 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
177 	"Page allocations done during periods of very low free memory");
178 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0,
179 	"Page allocations which failed during periods of very low free memory");
180 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
181 	"Recycle pages to active or inactive queue transition pt 0-64");
182 /*
183  * Sysctls determining current state of the buffer cache.
184  */
185 SYSCTL_LONG(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
186 	"Total number of buffers in buffer cache");
187 SYSCTL_LONG(_vfs, OID_AUTO, dirtykvaspace, CTLFLAG_RD, &dirtykvaspace, 0,
188 	"KVA reserved by dirty buffers (all)");
189 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
190 	"Pending bytes of dirty buffers (all)");
191 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
192 	"Pending bytes of dirty buffers (heavy weight)");
193 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
194 	"Pending number of dirty buffers");
195 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
196 	"Pending number of dirty buffers (heavy weight)");
197 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
198 	"I/O bytes currently in progress due to asynchronous writes");
199 SYSCTL_LONG(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
200 	"I/O buffers currently in progress due to asynchronous writes");
201 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
202 	"Hard limit on maximum amount of memory usable for buffer space");
203 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
204 	"Soft limit on maximum amount of memory usable for buffer space");
205 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
206 	"Minimum amount of memory to reserve for system buffer space");
207 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
208 	"Amount of memory available for buffers");
209 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
210 	0, "Maximum amount of memory reserved for buffers using malloc");
211 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
212 	"Amount of memory left for buffers using malloc-scheme");
213 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
214 	"New buffer header acquisition requests");
215 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
216 	0, "New buffer header acquisition restarts");
217 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
218 	"Recover VM space in an emergency");
219 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
220 	"Buffer acquisition restarts due to fragmented buffer map");
221 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
222 	"Amount of time KVA space was deallocated in an arbitrary buffer");
223 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
224 	"Amount of time buffer re-use operations were successful");
225 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
226 SYSCTL_INT(_vfs, OID_AUTO, debug_bufbio, CTLFLAG_RW, &debug_bufbio, 0, "");
227 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
228 	"sizeof(struct buf)");
229 
230 char *buf_wmesg = BUF_WMESG;
231 
232 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
233 #define VFS_BIO_NEED_UNUSED02	0x02
234 #define VFS_BIO_NEED_UNUSED04	0x04
235 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
236 
237 /*
238  * bufspacewakeup:
239  *
240  *	Called when buffer space is potentially available for recovery.
241  *	getnewbuf() will block on this flag when it is unable to free
242  *	sufficient buffer space.  Buffer space becomes recoverable when
243  *	bp's get placed back in the queues.
244  */
245 static __inline void
246 bufspacewakeup(void)
247 {
248 	/*
249 	 * If someone is waiting for BUF space, wake them up.  Even
250 	 * though we haven't freed the kva space yet, the waiting
251 	 * process will be able to now.
252 	 */
253 	for (;;) {
254 		int flags = needsbuffer;
255 		cpu_ccfence();
256 		if ((flags & VFS_BIO_NEED_BUFSPACE) == 0)
257 			break;
258 		if (atomic_cmpset_int(&needsbuffer, flags,
259 				      flags & ~VFS_BIO_NEED_BUFSPACE)) {
260 			wakeup(&needsbuffer);
261 			break;
262 		}
263 		/* retry */
264 	}
265 }
266 
267 /*
268  * runningbufwakeup:
269  *
270  *	Accounting for I/O in progress.
271  *
272  */
273 static __inline void
274 runningbufwakeup(struct buf *bp)
275 {
276 	long totalspace;
277 	long flags;
278 
279 	if ((totalspace = bp->b_runningbufspace) != 0) {
280 		atomic_add_long(&runningbufspace, -totalspace);
281 		atomic_add_long(&runningbufcount, -1);
282 		bp->b_runningbufspace = 0;
283 
284 		/*
285 		 * see waitrunningbufspace() for limit test.
286 		 */
287 		for (;;) {
288 			flags = runningbufreq;
289 			cpu_ccfence();
290 			if (flags == 0)
291 				break;
292 			if (atomic_cmpset_int(&runningbufreq, flags, 0)) {
293 				wakeup(&runningbufreq);
294 				break;
295 			}
296 			/* retry */
297 		}
298 		bd_signal(totalspace);
299 	}
300 }
301 
302 /*
303  * bufcountwakeup:
304  *
305  *	Called when a buffer has been added to one of the free queues to
306  *	account for the buffer and to wakeup anyone waiting for free buffers.
307  *	This typically occurs when large amounts of metadata are being handled
308  *	by the buffer cache ( else buffer space runs out first, usually ).
309  */
310 static __inline void
311 bufcountwakeup(void)
312 {
313 	long flags;
314 
315 	for (;;) {
316 		flags = needsbuffer;
317 		if (flags == 0)
318 			break;
319 		if (atomic_cmpset_int(&needsbuffer, flags,
320 				      (flags & ~VFS_BIO_NEED_ANY))) {
321 			wakeup(&needsbuffer);
322 			break;
323 		}
324 		/* retry */
325 	}
326 }
327 
328 /*
329  * waitrunningbufspace()
330  *
331  * If runningbufspace exceeds 4/6 hirunningspace we block until
332  * runningbufspace drops to 3/6 hirunningspace.  We also block if another
333  * thread blocked here in order to be fair, even if runningbufspace
334  * is now lower than the limit.
335  *
336  * The caller may be using this function to block in a tight loop, we
337  * must block while runningbufspace is greater than at least
338  * hirunningspace * 3 / 6.
339  */
340 void
341 waitrunningbufspace(void)
342 {
343 	long limit = hirunningspace * 4 / 6;
344 	long flags;
345 
346 	while (runningbufspace > limit || runningbufreq) {
347 		tsleep_interlock(&runningbufreq, 0);
348 		flags = atomic_fetchadd_int(&runningbufreq, 1);
349 		if (runningbufspace > limit || flags)
350 			tsleep(&runningbufreq, PINTERLOCKED, "wdrn1", hz);
351 	}
352 }
353 
354 /*
355  * buf_dirty_count_severe:
356  *
357  *	Return true if we have too many dirty buffers.
358  */
359 int
360 buf_dirty_count_severe(void)
361 {
362 	return (runningbufspace + dirtykvaspace >= hidirtybufspace ||
363 	        dirtybufcount >= nbuf / 2);
364 }
365 
366 /*
367  * Return true if the amount of running I/O is severe and BIOQ should
368  * start bursting.
369  */
370 int
371 buf_runningbufspace_severe(void)
372 {
373 	return (runningbufspace >= hirunningspace * 4 / 6);
374 }
375 
376 /*
377  * vfs_buf_test_cache:
378  *
379  * Called when a buffer is extended.  This function clears the B_CACHE
380  * bit if the newly extended portion of the buffer does not contain
381  * valid data.
382  *
383  * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
384  * cache buffers.  The VM pages remain dirty, as someone had mmap()'d
385  * them while a clean buffer was present.
386  */
387 static __inline__
388 void
389 vfs_buf_test_cache(struct buf *bp,
390 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
391 		  vm_page_t m)
392 {
393 	if (bp->b_flags & B_CACHE) {
394 		int base = (foff + off) & PAGE_MASK;
395 		if (vm_page_is_valid(m, base, size) == 0)
396 			bp->b_flags &= ~B_CACHE;
397 	}
398 }
399 
400 /*
401  * bd_speedup()
402  *
403  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
404  * low water mark.
405  */
406 static __inline__
407 void
408 bd_speedup(void)
409 {
410 	if (dirtykvaspace < lodirtybufspace && dirtybufcount < nbuf / 2)
411 		return;
412 
413 	if (bd_request == 0 &&
414 	    (dirtykvaspace > lodirtybufspace / 2 ||
415 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
416 		if (atomic_fetchadd_int(&bd_request, 1) == 0)
417 			wakeup(&bd_request);
418 	}
419 	if (bd_request_hw == 0 &&
420 	    (dirtykvaspace > lodirtybufspace / 2 ||
421 	     dirtybufcounthw >= nbuf / 2)) {
422 		if (atomic_fetchadd_int(&bd_request_hw, 1) == 0)
423 			wakeup(&bd_request_hw);
424 	}
425 }
426 
427 /*
428  * bd_heatup()
429  *
430  *	Get the buf_daemon heated up when the number of running and dirty
431  *	buffers exceeds the mid-point.
432  *
433  *	Return the total number of dirty bytes past the second mid point
434  *	as a measure of how much excess dirty data there is in the system.
435  */
436 long
437 bd_heatup(void)
438 {
439 	long mid1;
440 	long mid2;
441 	long totalspace;
442 
443 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
444 
445 	totalspace = runningbufspace + dirtykvaspace;
446 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
447 		bd_speedup();
448 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
449 		if (totalspace >= mid2)
450 			return(totalspace - mid2);
451 	}
452 	return(0);
453 }
454 
455 /*
456  * bd_wait()
457  *
458  *	Wait for the buffer cache to flush (totalspace) bytes worth of
459  *	buffers, then return.
460  *
461  *	Regardless this function blocks while the number of dirty buffers
462  *	exceeds hidirtybufspace.
463  */
464 void
465 bd_wait(long totalspace)
466 {
467 	u_int i;
468 	u_int j;
469 	u_int mi;
470 	int count;
471 
472 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
473 		return;
474 
475 	while (totalspace > 0) {
476 		bd_heatup();
477 
478 		/*
479 		 * Order is important.  Suppliers adjust bd_wake_index after
480 		 * updating runningbufspace/dirtykvaspace.  We want to fetch
481 		 * bd_wake_index before accessing.  Any error should thus
482 		 * be in our favor.
483 		 */
484 		i = atomic_fetchadd_int(&bd_wake_index, 0);
485 		if (totalspace > runningbufspace + dirtykvaspace)
486 			totalspace = runningbufspace + dirtykvaspace;
487 		count = totalspace / BKVASIZE;
488 		if (count >= BD_WAKE_SIZE / 2)
489 			count = BD_WAKE_SIZE / 2;
490 		i = i + count;
491 		mi = i & BD_WAKE_MASK;
492 
493 		/*
494 		 * This is not a strict interlock, so we play a bit loose
495 		 * with locking access to dirtybufspace*.  We have to re-check
496 		 * bd_wake_index to ensure that it hasn't passed us.
497 		 */
498 		tsleep_interlock(&bd_wake_ary[mi], 0);
499 		atomic_add_int(&bd_wake_ary[mi], 1);
500 		j = atomic_fetchadd_int(&bd_wake_index, 0);
501 		if ((int)(i - j) >= 0)
502 			tsleep(&bd_wake_ary[mi], PINTERLOCKED, "flstik", hz);
503 
504 		totalspace = runningbufspace + dirtykvaspace - hidirtybufspace;
505 	}
506 }
507 
508 /*
509  * bd_signal()
510  *
511  *	This function is called whenever runningbufspace or dirtykvaspace
512  *	is reduced.  Track threads waiting for run+dirty buffer I/O
513  *	complete.
514  */
515 static void
516 bd_signal(long totalspace)
517 {
518 	u_int i;
519 
520 	if (totalspace > 0) {
521 		if (totalspace > BKVASIZE * BD_WAKE_SIZE)
522 			totalspace = BKVASIZE * BD_WAKE_SIZE;
523 		while (totalspace > 0) {
524 			i = atomic_fetchadd_int(&bd_wake_index, 1);
525 			i &= BD_WAKE_MASK;
526 			if (atomic_readandclear_int(&bd_wake_ary[i]))
527 				wakeup(&bd_wake_ary[i]);
528 			totalspace -= BKVASIZE;
529 		}
530 	}
531 }
532 
533 /*
534  * BIO tracking support routines.
535  *
536  * Release a ref on a bio_track.  Wakeup requests are atomically released
537  * along with the last reference so bk_active will never wind up set to
538  * only 0x80000000.
539  */
540 static
541 void
542 bio_track_rel(struct bio_track *track)
543 {
544 	int	active;
545 	int	desired;
546 
547 	/*
548 	 * Shortcut
549 	 */
550 	active = track->bk_active;
551 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
552 		return;
553 
554 	/*
555 	 * Full-on.  Note that the wait flag is only atomically released on
556 	 * the 1->0 count transition.
557 	 *
558 	 * We check for a negative count transition using bit 30 since bit 31
559 	 * has a different meaning.
560 	 */
561 	for (;;) {
562 		desired = (active & 0x7FFFFFFF) - 1;
563 		if (desired)
564 			desired |= active & 0x80000000;
565 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
566 			if (desired & 0x40000000)
567 				panic("bio_track_rel: bad count: %p", track);
568 			if (active & 0x80000000)
569 				wakeup(track);
570 			break;
571 		}
572 		active = track->bk_active;
573 	}
574 }
575 
576 /*
577  * Wait for the tracking count to reach 0.
578  *
579  * Use atomic ops such that the wait flag is only set atomically when
580  * bk_active is non-zero.
581  */
582 int
583 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
584 {
585 	int	active;
586 	int	desired;
587 	int	error;
588 
589 	/*
590 	 * Shortcut
591 	 */
592 	if (track->bk_active == 0)
593 		return(0);
594 
595 	/*
596 	 * Full-on.  Note that the wait flag may only be atomically set if
597 	 * the active count is non-zero.
598 	 *
599 	 * NOTE: We cannot optimize active == desired since a wakeup could
600 	 *	 clear active prior to our tsleep_interlock().
601 	 */
602 	error = 0;
603 	while ((active = track->bk_active) != 0) {
604 		cpu_ccfence();
605 		desired = active | 0x80000000;
606 		tsleep_interlock(track, slp_flags);
607 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
608 			error = tsleep(track, slp_flags | PINTERLOCKED,
609 				       "trwait", slp_timo);
610 			if (error)
611 				break;
612 		}
613 	}
614 	return (error);
615 }
616 
617 /*
618  * bufinit:
619  *
620  *	Load time initialisation of the buffer cache, called from machine
621  *	dependant initialization code.
622  */
623 static
624 void
625 bufinit(void *dummy __unused)
626 {
627 	struct bufpcpu *pcpu;
628 	struct buf *bp;
629 	vm_offset_t bogus_offset;
630 	int i;
631 	int j;
632 	long n;
633 
634 	/* next, make a null set of free lists */
635 	for (i = 0; i < ncpus; ++i) {
636 		pcpu = &bufpcpu[i];
637 		spin_init(&pcpu->spin, "bufinit");
638 		for (j = 0; j < BUFFER_QUEUES; j++)
639 			TAILQ_INIT(&pcpu->bufqueues[j]);
640 	}
641 
642 	/* finally, initialize each buffer header and stick on empty q */
643 	i = 0;
644 	pcpu = &bufpcpu[i];
645 
646 	for (n = 0; n < nbuf; n++) {
647 		bp = &buf[n];
648 		bzero(bp, sizeof *bp);
649 		bp->b_flags = B_INVAL;	/* we're just an empty header */
650 		bp->b_cmd = BUF_CMD_DONE;
651 		bp->b_qindex = BQUEUE_EMPTY;
652 		bp->b_qcpu = i;
653 		initbufbio(bp);
654 		xio_init(&bp->b_xio);
655 		buf_dep_init(bp);
656 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
657 				  bp, b_freelist);
658 
659 		i = (i + 1) % ncpus;
660 		pcpu = &bufpcpu[i];
661 	}
662 
663 	/*
664 	 * maxbufspace is the absolute maximum amount of buffer space we are
665 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
666 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
667 	 * used by most other processes.  The differential is required to
668 	 * ensure that buf_daemon is able to run when other processes might
669 	 * be blocked waiting for buffer space.
670 	 *
671 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
672 	 * this may result in KVM fragmentation which is not handled optimally
673 	 * by the system.
674 	 */
675 	maxbufspace = nbuf * BKVASIZE;
676 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
677 	lobufspace = hibufspace - MAXBSIZE;
678 
679 	lorunningspace = 512 * 1024;
680 	/* hirunningspace -- see below */
681 
682 	/*
683 	 * Limit the amount of malloc memory since it is wired permanently
684 	 * into the kernel space.  Even though this is accounted for in
685 	 * the buffer allocation, we don't want the malloced region to grow
686 	 * uncontrolled.  The malloc scheme improves memory utilization
687 	 * significantly on average (small) directories.
688 	 */
689 	maxbufmallocspace = hibufspace / 20;
690 
691 	/*
692 	 * Reduce the chance of a deadlock occuring by limiting the number
693 	 * of delayed-write dirty buffers we allow to stack up.
694 	 *
695 	 * We don't want too much actually queued to the device at once
696 	 * (XXX this needs to be per-mount!), because the buffers will
697 	 * wind up locked for a very long period of time while the I/O
698 	 * drains.
699 	 */
700 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
701 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
702 	if (hirunningspace < 1024 * 1024)
703 		hirunningspace = 1024 * 1024;
704 
705 	dirtykvaspace = 0;
706 	dirtybufspace = 0;
707 	dirtybufspacehw = 0;
708 
709 	lodirtybufspace = hidirtybufspace / 2;
710 
711 	/*
712 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
713 	 * somewhat of a hack at the moment, we really need to limit ourselves
714 	 * based on the number of bytes of I/O in-transit that were initiated
715 	 * from buf_daemon.
716 	 */
717 
718 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
719 	vm_object_hold(&kernel_object);
720 	bogus_page = vm_page_alloc(&kernel_object,
721 				   (bogus_offset >> PAGE_SHIFT),
722 				   VM_ALLOC_NORMAL);
723 	vm_object_drop(&kernel_object);
724 	vmstats.v_wire_count++;
725 
726 }
727 
728 SYSINIT(do_bufinit, SI_BOOT2_MACHDEP, SI_ORDER_FIRST, bufinit, NULL);
729 
730 /*
731  * Initialize the embedded bio structures, typically used by
732  * deprecated code which tries to allocate its own struct bufs.
733  */
734 void
735 initbufbio(struct buf *bp)
736 {
737 	bp->b_bio1.bio_buf = bp;
738 	bp->b_bio1.bio_prev = NULL;
739 	bp->b_bio1.bio_offset = NOOFFSET;
740 	bp->b_bio1.bio_next = &bp->b_bio2;
741 	bp->b_bio1.bio_done = NULL;
742 	bp->b_bio1.bio_flags = 0;
743 
744 	bp->b_bio2.bio_buf = bp;
745 	bp->b_bio2.bio_prev = &bp->b_bio1;
746 	bp->b_bio2.bio_offset = NOOFFSET;
747 	bp->b_bio2.bio_next = NULL;
748 	bp->b_bio2.bio_done = NULL;
749 	bp->b_bio2.bio_flags = 0;
750 
751 	BUF_LOCKINIT(bp);
752 }
753 
754 /*
755  * Reinitialize the embedded bio structures as well as any additional
756  * translation cache layers.
757  */
758 void
759 reinitbufbio(struct buf *bp)
760 {
761 	struct bio *bio;
762 
763 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
764 		bio->bio_done = NULL;
765 		bio->bio_offset = NOOFFSET;
766 	}
767 }
768 
769 /*
770  * Undo the effects of an initbufbio().
771  */
772 void
773 uninitbufbio(struct buf *bp)
774 {
775 	dsched_buf_exit(bp);
776 	BUF_LOCKFREE(bp);
777 }
778 
779 /*
780  * Push another BIO layer onto an existing BIO and return it.  The new
781  * BIO layer may already exist, holding cached translation data.
782  */
783 struct bio *
784 push_bio(struct bio *bio)
785 {
786 	struct bio *nbio;
787 
788 	if ((nbio = bio->bio_next) == NULL) {
789 		int index = bio - &bio->bio_buf->b_bio_array[0];
790 		if (index >= NBUF_BIO - 1) {
791 			panic("push_bio: too many layers %d for bp %p",
792 				index, bio->bio_buf);
793 		}
794 		nbio = &bio->bio_buf->b_bio_array[index + 1];
795 		bio->bio_next = nbio;
796 		nbio->bio_prev = bio;
797 		nbio->bio_buf = bio->bio_buf;
798 		nbio->bio_offset = NOOFFSET;
799 		nbio->bio_done = NULL;
800 		nbio->bio_next = NULL;
801 	}
802 	KKASSERT(nbio->bio_done == NULL);
803 	return(nbio);
804 }
805 
806 /*
807  * Pop a BIO translation layer, returning the previous layer.  The
808  * must have been previously pushed.
809  */
810 struct bio *
811 pop_bio(struct bio *bio)
812 {
813 	return(bio->bio_prev);
814 }
815 
816 void
817 clearbiocache(struct bio *bio)
818 {
819 	while (bio) {
820 		bio->bio_offset = NOOFFSET;
821 		bio = bio->bio_next;
822 	}
823 }
824 
825 /*
826  * bfreekva:
827  *
828  *	Free the KVA allocation for buffer 'bp'.
829  *
830  *	Must be called from a critical section as this is the only locking for
831  *	buffer_map.
832  *
833  *	Since this call frees up buffer space, we call bufspacewakeup().
834  */
835 static void
836 bfreekva(struct buf *bp)
837 {
838 	int count;
839 
840 	if (bp->b_kvasize) {
841 		++buffreekvacnt;
842 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
843 		vm_map_lock(&buffer_map);
844 		bufspace -= bp->b_kvasize;
845 		vm_map_delete(&buffer_map,
846 		    (vm_offset_t) bp->b_kvabase,
847 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
848 		    &count
849 		);
850 		vm_map_unlock(&buffer_map);
851 		vm_map_entry_release(count);
852 		bp->b_kvasize = 0;
853 		bp->b_kvabase = NULL;
854 		bufspacewakeup();
855 	}
856 }
857 
858 /*
859  * Remove the buffer from the appropriate free list.
860  * (caller must be locked)
861  */
862 static __inline void
863 _bremfree(struct buf *bp)
864 {
865 	struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
866 
867 	if (bp->b_qindex != BQUEUE_NONE) {
868 		KASSERT(BUF_REFCNTNB(bp) == 1,
869 			("bremfree: bp %p not locked",bp));
870 		TAILQ_REMOVE(&pcpu->bufqueues[bp->b_qindex], bp, b_freelist);
871 		bp->b_qindex = BQUEUE_NONE;
872 	} else {
873 		if (BUF_REFCNTNB(bp) <= 1)
874 			panic("bremfree: removing a buffer not on a queue");
875 	}
876 }
877 
878 /*
879  * bremfree() - must be called with a locked buffer
880  */
881 void
882 bremfree(struct buf *bp)
883 {
884 	struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
885 
886 	spin_lock(&pcpu->spin);
887 	_bremfree(bp);
888 	spin_unlock(&pcpu->spin);
889 }
890 
891 /*
892  * bremfree_locked - must be called with pcpu->spin locked
893  */
894 static void
895 bremfree_locked(struct buf *bp)
896 {
897 	_bremfree(bp);
898 }
899 
900 /*
901  * This version of bread issues any required I/O asyncnronously and
902  * makes a callback on completion.
903  *
904  * The callback must check whether BIO_DONE is set in the bio and issue
905  * the bpdone(bp, 0) if it isn't.  The callback is responsible for clearing
906  * BIO_DONE and disposing of the I/O (bqrelse()ing it).
907  */
908 void
909 breadcb(struct vnode *vp, off_t loffset, int size,
910 	void (*func)(struct bio *), void *arg)
911 {
912 	struct buf *bp;
913 
914 	bp = getblk(vp, loffset, size, 0, 0);
915 
916 	/* if not found in cache, do some I/O */
917 	if ((bp->b_flags & B_CACHE) == 0) {
918 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
919 		bp->b_cmd = BUF_CMD_READ;
920 		bp->b_bio1.bio_done = func;
921 		bp->b_bio1.bio_caller_info1.ptr = arg;
922 		vfs_busy_pages(vp, bp);
923 		BUF_KERNPROC(bp);
924 		vn_strategy(vp, &bp->b_bio1);
925 	} else if (func) {
926 		/*
927 		 * Since we are issuing the callback synchronously it cannot
928 		 * race the BIO_DONE, so no need for atomic ops here.
929 		 */
930 		/*bp->b_bio1.bio_done = func;*/
931 		bp->b_bio1.bio_caller_info1.ptr = arg;
932 		bp->b_bio1.bio_flags |= BIO_DONE;
933 		func(&bp->b_bio1);
934 	} else {
935 		bqrelse(bp);
936 	}
937 }
938 
939 /*
940  * breadnx() - Terminal function for bread() and breadn().
941  *
942  * This function will start asynchronous I/O on read-ahead blocks as well
943  * as satisfy the primary request.
944  *
945  * We must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE is
946  * set, the buffer is valid and we do not have to do anything.
947  */
948 int
949 breadnx(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
950 	int *rabsize, int cnt, struct buf **bpp)
951 {
952 	struct buf *bp, *rabp;
953 	int i;
954 	int rv = 0, readwait = 0;
955 
956 	if (*bpp)
957 		bp = *bpp;
958 	else
959 		*bpp = bp = getblk(vp, loffset, size, 0, 0);
960 
961 	/* if not found in cache, do some I/O */
962 	if ((bp->b_flags & B_CACHE) == 0) {
963 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
964 		bp->b_cmd = BUF_CMD_READ;
965 		bp->b_bio1.bio_done = biodone_sync;
966 		bp->b_bio1.bio_flags |= BIO_SYNC;
967 		vfs_busy_pages(vp, bp);
968 		vn_strategy(vp, &bp->b_bio1);
969 		++readwait;
970 	}
971 
972 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
973 		if (inmem(vp, *raoffset))
974 			continue;
975 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
976 
977 		if ((rabp->b_flags & B_CACHE) == 0) {
978 			rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
979 			rabp->b_cmd = BUF_CMD_READ;
980 			vfs_busy_pages(vp, rabp);
981 			BUF_KERNPROC(rabp);
982 			vn_strategy(vp, &rabp->b_bio1);
983 		} else {
984 			brelse(rabp);
985 		}
986 	}
987 	if (readwait)
988 		rv = biowait(&bp->b_bio1, "biord");
989 	return (rv);
990 }
991 
992 /*
993  * bwrite:
994  *
995  *	Synchronous write, waits for completion.
996  *
997  *	Write, release buffer on completion.  (Done by iodone
998  *	if async).  Do not bother writing anything if the buffer
999  *	is invalid.
1000  *
1001  *	Note that we set B_CACHE here, indicating that buffer is
1002  *	fully valid and thus cacheable.  This is true even of NFS
1003  *	now so we set it generally.  This could be set either here
1004  *	or in biodone() since the I/O is synchronous.  We put it
1005  *	here.
1006  */
1007 int
1008 bwrite(struct buf *bp)
1009 {
1010 	int error;
1011 
1012 	if (bp->b_flags & B_INVAL) {
1013 		brelse(bp);
1014 		return (0);
1015 	}
1016 	if (BUF_REFCNTNB(bp) == 0)
1017 		panic("bwrite: buffer is not busy???");
1018 
1019 	/*
1020 	 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
1021 	 *	 call because it will remove the buffer from the vnode's
1022 	 *	 dirty buffer list prematurely and possibly cause filesystem
1023 	 *	 checks to race buffer flushes.  This is now handled in
1024 	 *	 bpdone().
1025 	 *
1026 	 *	 bundirty(bp); REMOVED
1027 	 */
1028 
1029 	bp->b_flags &= ~(B_ERROR | B_EINTR);
1030 	bp->b_flags |= B_CACHE;
1031 	bp->b_cmd = BUF_CMD_WRITE;
1032 	bp->b_bio1.bio_done = biodone_sync;
1033 	bp->b_bio1.bio_flags |= BIO_SYNC;
1034 	vfs_busy_pages(bp->b_vp, bp);
1035 
1036 	/*
1037 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1038 	 * valid for vnode-backed buffers.
1039 	 */
1040 	bsetrunningbufspace(bp, bp->b_bufsize);
1041 	vn_strategy(bp->b_vp, &bp->b_bio1);
1042 	error = biowait(&bp->b_bio1, "biows");
1043 	brelse(bp);
1044 
1045 	return (error);
1046 }
1047 
1048 /*
1049  * bawrite:
1050  *
1051  *	Asynchronous write.  Start output on a buffer, but do not wait for
1052  *	it to complete.  The buffer is released when the output completes.
1053  *
1054  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1055  *	B_INVAL buffers.  Not us.
1056  */
1057 void
1058 bawrite(struct buf *bp)
1059 {
1060 	if (bp->b_flags & B_INVAL) {
1061 		brelse(bp);
1062 		return;
1063 	}
1064 	if (BUF_REFCNTNB(bp) == 0)
1065 		panic("bawrite: buffer is not busy???");
1066 
1067 	/*
1068 	 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
1069 	 *	 call because it will remove the buffer from the vnode's
1070 	 *	 dirty buffer list prematurely and possibly cause filesystem
1071 	 *	 checks to race buffer flushes.  This is now handled in
1072 	 *	 bpdone().
1073 	 *
1074 	 *	 bundirty(bp); REMOVED
1075 	 */
1076 	bp->b_flags &= ~(B_ERROR | B_EINTR);
1077 	bp->b_flags |= B_CACHE;
1078 	bp->b_cmd = BUF_CMD_WRITE;
1079 	KKASSERT(bp->b_bio1.bio_done == NULL);
1080 	vfs_busy_pages(bp->b_vp, bp);
1081 
1082 	/*
1083 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1084 	 * valid for vnode-backed buffers.
1085 	 */
1086 	bsetrunningbufspace(bp, bp->b_bufsize);
1087 	BUF_KERNPROC(bp);
1088 	vn_strategy(bp->b_vp, &bp->b_bio1);
1089 }
1090 
1091 /*
1092  * bowrite:
1093  *
1094  *	Ordered write.  Start output on a buffer, and flag it so that the
1095  *	device will write it in the order it was queued.  The buffer is
1096  *	released when the output completes.  bwrite() ( or the VOP routine
1097  *	anyway ) is responsible for handling B_INVAL buffers.
1098  */
1099 int
1100 bowrite(struct buf *bp)
1101 {
1102 	bp->b_flags |= B_ORDERED;
1103 	bawrite(bp);
1104 	return (0);
1105 }
1106 
1107 /*
1108  * bdwrite:
1109  *
1110  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1111  *	anything if the buffer is marked invalid.
1112  *
1113  *	Note that since the buffer must be completely valid, we can safely
1114  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1115  *	biodone() in order to prevent getblk from writing the buffer
1116  *	out synchronously.
1117  */
1118 void
1119 bdwrite(struct buf *bp)
1120 {
1121 	if (BUF_REFCNTNB(bp) == 0)
1122 		panic("bdwrite: buffer is not busy");
1123 
1124 	if (bp->b_flags & B_INVAL) {
1125 		brelse(bp);
1126 		return;
1127 	}
1128 	bdirty(bp);
1129 
1130 	dsched_buf_enter(bp);	/* might stack */
1131 
1132 	/*
1133 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1134 	 * true even of NFS now.
1135 	 */
1136 	bp->b_flags |= B_CACHE;
1137 
1138 	/*
1139 	 * This bmap keeps the system from needing to do the bmap later,
1140 	 * perhaps when the system is attempting to do a sync.  Since it
1141 	 * is likely that the indirect block -- or whatever other datastructure
1142 	 * that the filesystem needs is still in memory now, it is a good
1143 	 * thing to do this.  Note also, that if the pageout daemon is
1144 	 * requesting a sync -- there might not be enough memory to do
1145 	 * the bmap then...  So, this is important to do.
1146 	 */
1147 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1148 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1149 			 NULL, NULL, BUF_CMD_WRITE);
1150 	}
1151 
1152 	/*
1153 	 * Because the underlying pages may still be mapped and
1154 	 * writable trying to set the dirty buffer (b_dirtyoff/end)
1155 	 * range here will be inaccurate.
1156 	 *
1157 	 * However, we must still clean the pages to satisfy the
1158 	 * vnode_pager and pageout daemon, so theythink the pages
1159 	 * have been "cleaned".  What has really occured is that
1160 	 * they've been earmarked for later writing by the buffer
1161 	 * cache.
1162 	 *
1163 	 * So we get the b_dirtyoff/end update but will not actually
1164 	 * depend on it (NFS that is) until the pages are busied for
1165 	 * writing later on.
1166 	 */
1167 	vfs_clean_pages(bp);
1168 	bqrelse(bp);
1169 
1170 	/*
1171 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1172 	 * due to the softdep code.
1173 	 */
1174 }
1175 
1176 /*
1177  * Fake write - return pages to VM system as dirty, leave the buffer clean.
1178  * This is used by tmpfs.
1179  *
1180  * It is important for any VFS using this routine to NOT use it for
1181  * IO_SYNC or IO_ASYNC operations which occur when the system really
1182  * wants to flush VM pages to backing store.
1183  */
1184 void
1185 buwrite(struct buf *bp)
1186 {
1187 	vm_page_t m;
1188 	int i;
1189 
1190 	/*
1191 	 * Only works for VMIO buffers.  If the buffer is already
1192 	 * marked for delayed-write we can't avoid the bdwrite().
1193 	 */
1194 	if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1195 		bdwrite(bp);
1196 		return;
1197 	}
1198 
1199 	/*
1200 	 * Mark as needing a commit.
1201 	 */
1202 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1203 		m = bp->b_xio.xio_pages[i];
1204 		vm_page_need_commit(m);
1205 	}
1206 	bqrelse(bp);
1207 }
1208 
1209 /*
1210  * bdirty:
1211  *
1212  *	Turn buffer into delayed write request by marking it B_DELWRI.
1213  *	B_RELBUF and B_NOCACHE must be cleared.
1214  *
1215  *	We reassign the buffer to itself to properly update it in the
1216  *	dirty/clean lists.
1217  *
1218  *	Must be called from a critical section.
1219  *	The buffer must be on BQUEUE_NONE.
1220  */
1221 void
1222 bdirty(struct buf *bp)
1223 {
1224 	KASSERT(bp->b_qindex == BQUEUE_NONE,
1225 		("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1226 	if (bp->b_flags & B_NOCACHE) {
1227 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1228 		bp->b_flags &= ~B_NOCACHE;
1229 	}
1230 	if (bp->b_flags & B_INVAL) {
1231 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1232 	}
1233 	bp->b_flags &= ~B_RELBUF;
1234 
1235 	if ((bp->b_flags & B_DELWRI) == 0) {
1236 		lwkt_gettoken(&bp->b_vp->v_token);
1237 		bp->b_flags |= B_DELWRI;
1238 		reassignbuf(bp);
1239 		lwkt_reltoken(&bp->b_vp->v_token);
1240 
1241 		atomic_add_long(&dirtybufcount, 1);
1242 		atomic_add_long(&dirtykvaspace, bp->b_kvasize);
1243 		atomic_add_long(&dirtybufspace, bp->b_bufsize);
1244 		if (bp->b_flags & B_HEAVY) {
1245 			atomic_add_long(&dirtybufcounthw, 1);
1246 			atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1247 		}
1248 		bd_heatup();
1249 	}
1250 }
1251 
1252 /*
1253  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1254  * needs to be flushed with a different buf_daemon thread to avoid
1255  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1256  */
1257 void
1258 bheavy(struct buf *bp)
1259 {
1260 	if ((bp->b_flags & B_HEAVY) == 0) {
1261 		bp->b_flags |= B_HEAVY;
1262 		if (bp->b_flags & B_DELWRI) {
1263 			atomic_add_long(&dirtybufcounthw, 1);
1264 			atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1265 		}
1266 	}
1267 }
1268 
1269 /*
1270  * bundirty:
1271  *
1272  *	Clear B_DELWRI for buffer.
1273  *
1274  *	Must be called from a critical section.
1275  *
1276  *	The buffer is typically on BQUEUE_NONE but there is one case in
1277  *	brelse() that calls this function after placing the buffer on
1278  *	a different queue.
1279  */
1280 void
1281 bundirty(struct buf *bp)
1282 {
1283 	if (bp->b_flags & B_DELWRI) {
1284 		lwkt_gettoken(&bp->b_vp->v_token);
1285 		bp->b_flags &= ~B_DELWRI;
1286 		reassignbuf(bp);
1287 		lwkt_reltoken(&bp->b_vp->v_token);
1288 
1289 		atomic_add_long(&dirtybufcount, -1);
1290 		atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1291 		atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1292 		if (bp->b_flags & B_HEAVY) {
1293 			atomic_add_long(&dirtybufcounthw, -1);
1294 			atomic_add_long(&dirtybufspacehw, -bp->b_bufsize);
1295 		}
1296 		bd_signal(bp->b_bufsize);
1297 	}
1298 	/*
1299 	 * Since it is now being written, we can clear its deferred write flag.
1300 	 */
1301 	bp->b_flags &= ~B_DEFERRED;
1302 }
1303 
1304 /*
1305  * Set the b_runningbufspace field, used to track how much I/O is
1306  * in progress at any given moment.
1307  */
1308 void
1309 bsetrunningbufspace(struct buf *bp, int bytes)
1310 {
1311 	bp->b_runningbufspace = bytes;
1312 	if (bytes) {
1313 		atomic_add_long(&runningbufspace, bytes);
1314 		atomic_add_long(&runningbufcount, 1);
1315 	}
1316 }
1317 
1318 /*
1319  * brelse:
1320  *
1321  *	Release a busy buffer and, if requested, free its resources.  The
1322  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1323  *	to be accessed later as a cache entity or reused for other purposes.
1324  */
1325 void
1326 brelse(struct buf *bp)
1327 {
1328 	struct bufpcpu *pcpu;
1329 #ifdef INVARIANTS
1330 	int saved_flags = bp->b_flags;
1331 #endif
1332 
1333 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1334 		("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1335 
1336 	/*
1337 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1338 	 * its backing store.  Clear B_DELWRI.
1339 	 *
1340 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1341 	 * to destroy the buffer and backing store and (2) when the caller
1342 	 * wants to destroy the buffer and backing store after a write
1343 	 * completes.
1344 	 */
1345 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1346 		bundirty(bp);
1347 	}
1348 
1349 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1350 		/*
1351 		 * A re-dirtied buffer is only subject to destruction
1352 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1353 		 */
1354 		/* leave buffer intact */
1355 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1356 		   (bp->b_bufsize <= 0)) {
1357 		/*
1358 		 * Either a failed read or we were asked to free or not
1359 		 * cache the buffer.  This path is reached with B_DELWRI
1360 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1361 		 * backing store destruction.
1362 		 *
1363 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1364 		 * buffer cannot be immediately freed.
1365 		 */
1366 		bp->b_flags |= B_INVAL;
1367 		if (LIST_FIRST(&bp->b_dep) != NULL)
1368 			buf_deallocate(bp);
1369 		if (bp->b_flags & B_DELWRI) {
1370 			atomic_add_long(&dirtybufcount, -1);
1371 			atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1372 			atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1373 			if (bp->b_flags & B_HEAVY) {
1374 				atomic_add_long(&dirtybufcounthw, -1);
1375 				atomic_add_long(&dirtybufspacehw,
1376 						-bp->b_bufsize);
1377 			}
1378 			bd_signal(bp->b_bufsize);
1379 		}
1380 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1381 	}
1382 
1383 	/*
1384 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1385 	 * or if b_refs is non-zero.
1386 	 *
1387 	 * If vfs_vmio_release() is called with either bit set, the
1388 	 * underlying pages may wind up getting freed causing a previous
1389 	 * write (bdwrite()) to get 'lost' because pages associated with
1390 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1391 	 * B_LOCKED buffer may be mapped by the filesystem.
1392 	 *
1393 	 * If we want to release the buffer ourselves (rather then the
1394 	 * originator asking us to release it), give the originator a
1395 	 * chance to countermand the release by setting B_LOCKED.
1396 	 *
1397 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1398 	 * if B_DELWRI is set.
1399 	 *
1400 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1401 	 * on pages to return pages to the VM page queues.
1402 	 */
1403 	if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) {
1404 		bp->b_flags &= ~B_RELBUF;
1405 	} else if (vm_page_count_min(0)) {
1406 		if (LIST_FIRST(&bp->b_dep) != NULL)
1407 			buf_deallocate(bp);		/* can set B_LOCKED */
1408 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1409 			bp->b_flags &= ~B_RELBUF;
1410 		else
1411 			bp->b_flags |= B_RELBUF;
1412 	}
1413 
1414 	/*
1415 	 * Make sure b_cmd is clear.  It may have already been cleared by
1416 	 * biodone().
1417 	 *
1418 	 * At this point destroying the buffer is governed by the B_INVAL
1419 	 * or B_RELBUF flags.
1420 	 */
1421 	bp->b_cmd = BUF_CMD_DONE;
1422 	dsched_buf_exit(bp);
1423 
1424 	/*
1425 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1426 	 * after an I/O may have replaces some of the pages with bogus pages
1427 	 * in order to not destroy dirty pages in a fill-in read.
1428 	 *
1429 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1430 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1431 	 * B_INVAL may still be set, however.
1432 	 *
1433 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1434 	 * but not the backing store.   B_NOCACHE will destroy the backing
1435 	 * store.
1436 	 *
1437 	 * Note that dirty NFS buffers contain byte-granular write ranges
1438 	 * and should not be destroyed w/ B_INVAL even if the backing store
1439 	 * is left intact.
1440 	 */
1441 	if (bp->b_flags & B_VMIO) {
1442 		/*
1443 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1444 		 */
1445 		int i, j, resid;
1446 		vm_page_t m;
1447 		off_t foff;
1448 		vm_pindex_t poff;
1449 		vm_object_t obj;
1450 		struct vnode *vp;
1451 
1452 		vp = bp->b_vp;
1453 
1454 		/*
1455 		 * Get the base offset and length of the buffer.  Note that
1456 		 * in the VMIO case if the buffer block size is not
1457 		 * page-aligned then b_data pointer may not be page-aligned.
1458 		 * But our b_xio.xio_pages array *IS* page aligned.
1459 		 *
1460 		 * block sizes less then DEV_BSIZE (usually 512) are not
1461 		 * supported due to the page granularity bits (m->valid,
1462 		 * m->dirty, etc...).
1463 		 *
1464 		 * See man buf(9) for more information
1465 		 */
1466 
1467 		resid = bp->b_bufsize;
1468 		foff = bp->b_loffset;
1469 
1470 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1471 			m = bp->b_xio.xio_pages[i];
1472 			vm_page_flag_clear(m, PG_ZERO);
1473 			/*
1474 			 * If we hit a bogus page, fixup *all* of them
1475 			 * now.  Note that we left these pages wired
1476 			 * when we removed them so they had better exist,
1477 			 * and they cannot be ripped out from under us so
1478 			 * no critical section protection is necessary.
1479 			 */
1480 			if (m == bogus_page) {
1481 				obj = vp->v_object;
1482 				poff = OFF_TO_IDX(bp->b_loffset);
1483 
1484 				vm_object_hold(obj);
1485 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1486 					vm_page_t mtmp;
1487 
1488 					mtmp = bp->b_xio.xio_pages[j];
1489 					if (mtmp == bogus_page) {
1490 						mtmp = vm_page_lookup(obj, poff + j);
1491 						if (!mtmp) {
1492 							panic("brelse: page missing");
1493 						}
1494 						bp->b_xio.xio_pages[j] = mtmp;
1495 					}
1496 				}
1497 				bp->b_flags &= ~B_HASBOGUS;
1498 				vm_object_drop(obj);
1499 
1500 				if ((bp->b_flags & B_INVAL) == 0) {
1501 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1502 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1503 				}
1504 				m = bp->b_xio.xio_pages[i];
1505 			}
1506 
1507 			/*
1508 			 * Invalidate the backing store if B_NOCACHE is set
1509 			 * (e.g. used with vinvalbuf()).  If this is NFS
1510 			 * we impose a requirement that the block size be
1511 			 * a multiple of PAGE_SIZE and create a temporary
1512 			 * hack to basically invalidate the whole page.  The
1513 			 * problem is that NFS uses really odd buffer sizes
1514 			 * especially when tracking piecemeal writes and
1515 			 * it also vinvalbuf()'s a lot, which would result
1516 			 * in only partial page validation and invalidation
1517 			 * here.  If the file page is mmap()'d, however,
1518 			 * all the valid bits get set so after we invalidate
1519 			 * here we would end up with weird m->valid values
1520 			 * like 0xfc.  nfs_getpages() can't handle this so
1521 			 * we clear all the valid bits for the NFS case
1522 			 * instead of just some of them.
1523 			 *
1524 			 * The real bug is the VM system having to set m->valid
1525 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1526 			 * itself is an artifact of the whole 512-byte
1527 			 * granular mess that exists to support odd block
1528 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1529 			 * A complete rewrite is required.
1530 			 *
1531 			 * XXX
1532 			 */
1533 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1534 				int poffset = foff & PAGE_MASK;
1535 				int presid;
1536 
1537 				presid = PAGE_SIZE - poffset;
1538 				if (bp->b_vp->v_tag == VT_NFS &&
1539 				    bp->b_vp->v_type == VREG) {
1540 					; /* entire page */
1541 				} else if (presid > resid) {
1542 					presid = resid;
1543 				}
1544 				KASSERT(presid >= 0, ("brelse: extra page"));
1545 				vm_page_set_invalid(m, poffset, presid);
1546 
1547 				/*
1548 				 * Also make sure any swap cache is removed
1549 				 * as it is now stale (HAMMER in particular
1550 				 * uses B_NOCACHE to deal with buffer
1551 				 * aliasing).
1552 				 */
1553 				swap_pager_unswapped(m);
1554 			}
1555 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1556 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1557 		}
1558 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1559 			vfs_vmio_release(bp);
1560 	} else {
1561 		/*
1562 		 * Rundown for non-VMIO buffers.
1563 		 */
1564 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1565 			if (bp->b_bufsize)
1566 				allocbuf(bp, 0);
1567 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1568 			if (bp->b_vp)
1569 				brelvp(bp);
1570 		}
1571 	}
1572 
1573 	if (bp->b_qindex != BQUEUE_NONE)
1574 		panic("brelse: free buffer onto another queue???");
1575 	if (BUF_REFCNTNB(bp) > 1) {
1576 		/* Temporary panic to verify exclusive locking */
1577 		/* This panic goes away when we allow shared refs */
1578 		panic("brelse: multiple refs");
1579 		/* NOT REACHED */
1580 		return;
1581 	}
1582 
1583 	/*
1584 	 * Figure out the correct queue to place the cleaned up buffer on.
1585 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1586 	 * disassociated from their vnode.
1587 	 *
1588 	 * Return the buffer to its original pcpu area
1589 	 */
1590 	pcpu = &bufpcpu[bp->b_qcpu];
1591 	spin_lock(&pcpu->spin);
1592 
1593 	if (bp->b_flags & B_LOCKED) {
1594 		/*
1595 		 * Buffers that are locked are placed in the locked queue
1596 		 * immediately, regardless of their state.
1597 		 */
1598 		bp->b_qindex = BQUEUE_LOCKED;
1599 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1600 				  bp, b_freelist);
1601 	} else if (bp->b_bufsize == 0) {
1602 		/*
1603 		 * Buffers with no memory.  Due to conditionals near the top
1604 		 * of brelse() such buffers should probably already be
1605 		 * marked B_INVAL and disassociated from their vnode.
1606 		 */
1607 		bp->b_flags |= B_INVAL;
1608 		KASSERT(bp->b_vp == NULL,
1609 			("bp1 %p flags %08x/%08x vnode %p "
1610 			 "unexpectededly still associated!",
1611 			bp, saved_flags, bp->b_flags, bp->b_vp));
1612 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1613 		if (bp->b_kvasize) {
1614 			bp->b_qindex = BQUEUE_EMPTYKVA;
1615 		} else {
1616 			bp->b_qindex = BQUEUE_EMPTY;
1617 		}
1618 		TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1619 				  bp, b_freelist);
1620 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1621 		/*
1622 		 * Buffers with junk contents.   Again these buffers had better
1623 		 * already be disassociated from their vnode.
1624 		 */
1625 		KASSERT(bp->b_vp == NULL,
1626 			("bp2 %p flags %08x/%08x vnode %p unexpectededly "
1627 			 "still associated!",
1628 			bp, saved_flags, bp->b_flags, bp->b_vp));
1629 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1630 		bp->b_flags |= B_INVAL;
1631 		bp->b_qindex = BQUEUE_CLEAN;
1632 		TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1633 				  bp, b_freelist);
1634 	} else {
1635 		/*
1636 		 * Remaining buffers.  These buffers are still associated with
1637 		 * their vnode.
1638 		 */
1639 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1640 		case B_DELWRI:
1641 			bp->b_qindex = BQUEUE_DIRTY;
1642 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1643 					  bp, b_freelist);
1644 			break;
1645 		case B_DELWRI | B_HEAVY:
1646 			bp->b_qindex = BQUEUE_DIRTY_HW;
1647 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1648 					  bp, b_freelist);
1649 			break;
1650 		default:
1651 			/*
1652 			 * NOTE: Buffers are always placed at the end of the
1653 			 * queue.  If B_AGE is not set the buffer will cycle
1654 			 * through the queue twice.
1655 			 */
1656 			bp->b_qindex = BQUEUE_CLEAN;
1657 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1658 					  bp, b_freelist);
1659 			break;
1660 		}
1661 	}
1662 	spin_unlock(&pcpu->spin);
1663 
1664 	/*
1665 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1666 	 * on the correct queue but we have not yet unlocked it.
1667 	 */
1668 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1669 		bundirty(bp);
1670 
1671 	/*
1672 	 * The bp is on an appropriate queue unless locked.  If it is not
1673 	 * locked or dirty we can wakeup threads waiting for buffer space.
1674 	 *
1675 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1676 	 * if B_INVAL is set ).
1677 	 */
1678 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1679 		bufcountwakeup();
1680 
1681 	/*
1682 	 * Something we can maybe free or reuse
1683 	 */
1684 	if (bp->b_bufsize || bp->b_kvasize)
1685 		bufspacewakeup();
1686 
1687 	/*
1688 	 * Clean up temporary flags and unlock the buffer.
1689 	 */
1690 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1691 	BUF_UNLOCK(bp);
1692 }
1693 
1694 /*
1695  * bqrelse:
1696  *
1697  *	Release a buffer back to the appropriate queue but do not try to free
1698  *	it.  The buffer is expected to be used again soon.
1699  *
1700  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1701  *	biodone() to requeue an async I/O on completion.  It is also used when
1702  *	known good buffers need to be requeued but we think we may need the data
1703  *	again soon.
1704  *
1705  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1706  */
1707 void
1708 bqrelse(struct buf *bp)
1709 {
1710 	struct bufpcpu *pcpu;
1711 
1712 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1713 		("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1714 
1715 	if (bp->b_qindex != BQUEUE_NONE)
1716 		panic("bqrelse: free buffer onto another queue???");
1717 	if (BUF_REFCNTNB(bp) > 1) {
1718 		/* do not release to free list */
1719 		panic("bqrelse: multiple refs");
1720 		return;
1721 	}
1722 
1723 	buf_act_advance(bp);
1724 
1725 	pcpu = &bufpcpu[bp->b_qcpu];
1726 	spin_lock(&pcpu->spin);
1727 
1728 	if (bp->b_flags & B_LOCKED) {
1729 		/*
1730 		 * Locked buffers are released to the locked queue.  However,
1731 		 * if the buffer is dirty it will first go into the dirty
1732 		 * queue and later on after the I/O completes successfully it
1733 		 * will be released to the locked queue.
1734 		 */
1735 		bp->b_qindex = BQUEUE_LOCKED;
1736 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1737 				  bp, b_freelist);
1738 	} else if (bp->b_flags & B_DELWRI) {
1739 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1740 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1741 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1742 				  bp, b_freelist);
1743 	} else if (vm_page_count_min(0)) {
1744 		/*
1745 		 * We are too low on memory, we have to try to free the
1746 		 * buffer (most importantly: the wired pages making up its
1747 		 * backing store) *now*.
1748 		 */
1749 		spin_unlock(&pcpu->spin);
1750 		brelse(bp);
1751 		return;
1752 	} else {
1753 		bp->b_qindex = BQUEUE_CLEAN;
1754 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1755 				  bp, b_freelist);
1756 	}
1757 	spin_unlock(&pcpu->spin);
1758 
1759 	/*
1760 	 * We have now placed the buffer on the proper queue, but have yet
1761 	 * to unlock it.
1762 	 */
1763 	if ((bp->b_flags & B_LOCKED) == 0 &&
1764 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1765 		bufcountwakeup();
1766 	}
1767 
1768 	/*
1769 	 * Something we can maybe free or reuse.
1770 	 */
1771 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1772 		bufspacewakeup();
1773 
1774 	/*
1775 	 * Final cleanup and unlock.  Clear bits that are only used while a
1776 	 * buffer is actively locked.
1777 	 */
1778 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1779 	dsched_buf_exit(bp);
1780 	BUF_UNLOCK(bp);
1781 }
1782 
1783 /*
1784  * Hold a buffer, preventing it from being reused.  This will prevent
1785  * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1786  * operations.  If a B_INVAL operation occurs the buffer will remain held
1787  * but the underlying pages may get ripped out.
1788  *
1789  * These functions are typically used in VOP_READ/VOP_WRITE functions
1790  * to hold a buffer during a copyin or copyout, preventing deadlocks
1791  * or recursive lock panics when read()/write() is used over mmap()'d
1792  * space.
1793  *
1794  * NOTE: bqhold() requires that the buffer be locked at the time of the
1795  *	 hold.  bqdrop() has no requirements other than the buffer having
1796  *	 previously been held.
1797  */
1798 void
1799 bqhold(struct buf *bp)
1800 {
1801 	atomic_add_int(&bp->b_refs, 1);
1802 }
1803 
1804 void
1805 bqdrop(struct buf *bp)
1806 {
1807 	KKASSERT(bp->b_refs > 0);
1808 	atomic_add_int(&bp->b_refs, -1);
1809 }
1810 
1811 /*
1812  * Return backing pages held by the buffer 'bp' back to the VM system.
1813  * This routine is called when the bp is invalidated, released, or
1814  * reused.
1815  *
1816  * The KVA mapping (b_data) for the underlying pages is removed by
1817  * this function.
1818  *
1819  * WARNING! This routine is integral to the low memory critical path
1820  *          when a buffer is B_RELBUF'd.  If the system has a severe page
1821  *          deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE
1822  *          queues so they can be reused in the current pageout daemon
1823  *          pass.
1824  */
1825 static void
1826 vfs_vmio_release(struct buf *bp)
1827 {
1828 	int i;
1829 	vm_page_t m;
1830 
1831 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1832 		m = bp->b_xio.xio_pages[i];
1833 		bp->b_xio.xio_pages[i] = NULL;
1834 
1835 		/*
1836 		 * We need to own the page in order to safely unwire it.
1837 		 */
1838 		vm_page_busy_wait(m, FALSE, "vmiopg");
1839 
1840 		/*
1841 		 * The VFS is telling us this is not a meta-data buffer
1842 		 * even if it is backed by a block device.
1843 		 */
1844 		if (bp->b_flags & B_NOTMETA)
1845 			vm_page_flag_set(m, PG_NOTMETA);
1846 
1847 		/*
1848 		 * This is a very important bit of code.  We try to track
1849 		 * VM page use whether the pages are wired into the buffer
1850 		 * cache or not.  While wired into the buffer cache the
1851 		 * bp tracks the act_count.
1852 		 *
1853 		 * We can choose to place unwired pages on the inactive
1854 		 * queue (0) or active queue (1).  If we place too many
1855 		 * on the active queue the queue will cycle the act_count
1856 		 * on pages we'd like to keep, just from single-use pages
1857 		 * (such as when doing a tar-up or file scan).
1858 		 */
1859 		if (bp->b_act_count < vm_cycle_point)
1860 			vm_page_unwire(m, 0);
1861 		else
1862 			vm_page_unwire(m, 1);
1863 
1864 		/*
1865 		 * If the wire_count has dropped to 0 we may need to take
1866 		 * further action before unbusying the page.
1867 		 *
1868 		 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us.
1869 		 */
1870 		if (m->wire_count == 0) {
1871 			vm_page_flag_clear(m, PG_ZERO);
1872 
1873 			if (bp->b_flags & B_DIRECT) {
1874 				/*
1875 				 * Attempt to free the page if B_DIRECT is
1876 				 * set, the caller does not desire the page
1877 				 * to be cached.
1878 				 */
1879 				vm_page_wakeup(m);
1880 				vm_page_try_to_free(m);
1881 			} else if ((bp->b_flags & B_NOTMETA) ||
1882 				   vm_page_count_min(0)) {
1883 				/*
1884 				 * Attempt to move the page to PQ_CACHE
1885 				 * if B_NOTMETA is set.  This flag is set
1886 				 * by HAMMER to remove one of the two pages
1887 				 * present when double buffering is enabled.
1888 				 *
1889 				 * Attempt to move the page to PQ_CACHE
1890 				 * If we have a severe page deficit.  This
1891 				 * will cause buffer cache operations related
1892 				 * to pageouts to recycle the related pages
1893 				 * in order to avoid a low memory deadlock.
1894 				 */
1895 				m->act_count = bp->b_act_count;
1896 				vm_page_wakeup(m);
1897 				vm_page_try_to_cache(m);
1898 			} else {
1899 				/*
1900 				 * Nominal case, leave the page on the
1901 				 * queue the original unwiring placed it on
1902 				 * (active or inactive).
1903 				 */
1904 				m->act_count = bp->b_act_count;
1905 				vm_page_wakeup(m);
1906 			}
1907 		} else {
1908 			vm_page_wakeup(m);
1909 		}
1910 	}
1911 
1912 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data),
1913 		     bp->b_xio.xio_npages);
1914 	if (bp->b_bufsize) {
1915 		bufspacewakeup();
1916 		bp->b_bufsize = 0;
1917 	}
1918 	bp->b_xio.xio_npages = 0;
1919 	bp->b_flags &= ~B_VMIO;
1920 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1921 	if (bp->b_vp)
1922 		brelvp(bp);
1923 }
1924 
1925 /*
1926  * Find and initialize a new buffer header, freeing up existing buffers
1927  * in the bufqueues as necessary.  The new buffer is returned locked.
1928  *
1929  * Important:  B_INVAL is not set.  If the caller wishes to throw the
1930  * buffer away, the caller must set B_INVAL prior to calling brelse().
1931  *
1932  * We block if:
1933  *	We have insufficient buffer headers
1934  *	We have insufficient buffer space
1935  *	buffer_map is too fragmented ( space reservation fails )
1936  *	If we have to flush dirty buffers ( but we try to avoid this )
1937  *
1938  * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1939  * Instead we ask the buf daemon to do it for us.  We attempt to
1940  * avoid piecemeal wakeups of the pageout daemon.
1941  */
1942 struct buf *
1943 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1944 {
1945 	struct bufpcpu *pcpu;
1946 	struct buf *bp;
1947 	struct buf *nbp;
1948 	int defrag = 0;
1949 	int nqindex;
1950 	int nqcpu;
1951 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1952 	int maxloops = 200000;
1953 	int restart_reason = 0;
1954 	struct buf *restart_bp = NULL;
1955 	static int flushingbufs;
1956 
1957 	/*
1958 	 * We can't afford to block since we might be holding a vnode lock,
1959 	 * which may prevent system daemons from running.  We deal with
1960 	 * low-memory situations by proactively returning memory and running
1961 	 * async I/O rather then sync I/O.
1962 	 */
1963 
1964 	++getnewbufcalls;
1965 	--getnewbufrestarts;
1966 	nqcpu = mycpu->gd_cpuid;
1967 restart:
1968 	++getnewbufrestarts;
1969 
1970 	if (debug_bufbio && --maxloops == 0)
1971 		panic("getnewbuf, excessive loops on cpu %d restart %d (%p)",
1972 			mycpu->gd_cpuid, restart_reason, restart_bp);
1973 
1974 	/*
1975 	 * Setup for scan.  If we do not have enough free buffers,
1976 	 * we setup a degenerate case that immediately fails.  Note
1977 	 * that if we are specially marked process, we are allowed to
1978 	 * dip into our reserves.
1979 	 *
1980 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1981 	 *
1982 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1983 	 * However, there are a number of cases (defragging, reusing, ...)
1984 	 * where we cannot backup.
1985 	 */
1986 	pcpu = &bufpcpu[nqcpu];
1987 	nqindex = BQUEUE_EMPTYKVA;
1988 	spin_lock(&pcpu->spin);
1989 
1990 	nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_EMPTYKVA]);
1991 
1992 	if (nbp == NULL) {
1993 		/*
1994 		 * If no EMPTYKVA buffers and we are either
1995 		 * defragging or reusing, locate a CLEAN buffer
1996 		 * to free or reuse.  If bufspace useage is low
1997 		 * skip this step so we can allocate a new buffer.
1998 		 */
1999 		if (defrag || bufspace >= lobufspace) {
2000 			nqindex = BQUEUE_CLEAN;
2001 			nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN]);
2002 		}
2003 
2004 		/*
2005 		 * If we could not find or were not allowed to reuse a
2006 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
2007 		 * buffer.  We can only use an EMPTY buffer if allocating
2008 		 * its KVA would not otherwise run us out of buffer space.
2009 		 */
2010 		if (nbp == NULL && defrag == 0 &&
2011 		    bufspace + maxsize < hibufspace) {
2012 			nqindex = BQUEUE_EMPTY;
2013 			nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_EMPTY]);
2014 		}
2015 	}
2016 
2017 	/*
2018 	 * Run scan, possibly freeing data and/or kva mappings on the fly
2019 	 * depending.
2020 	 *
2021 	 * WARNING! spin is held!
2022 	 */
2023 	while ((bp = nbp) != NULL) {
2024 		int qindex = nqindex;
2025 
2026 		nbp = TAILQ_NEXT(bp, b_freelist);
2027 
2028 		/*
2029 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2030 		 * cycles through the queue twice before being selected.
2031 		 */
2032 		if (qindex == BQUEUE_CLEAN &&
2033 		    (bp->b_flags & B_AGE) == 0 && nbp) {
2034 			bp->b_flags |= B_AGE;
2035 			TAILQ_REMOVE(&pcpu->bufqueues[qindex],
2036 				     bp, b_freelist);
2037 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[qindex],
2038 					  bp, b_freelist);
2039 			continue;
2040 		}
2041 
2042 		/*
2043 		 * Calculate next bp ( we can only use it if we do not block
2044 		 * or do other fancy things ).
2045 		 */
2046 		if (nbp == NULL) {
2047 			switch(qindex) {
2048 			case BQUEUE_EMPTY:
2049 				nqindex = BQUEUE_EMPTYKVA;
2050 				if ((nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_EMPTYKVA])))
2051 					break;
2052 				/* fall through */
2053 			case BQUEUE_EMPTYKVA:
2054 				nqindex = BQUEUE_CLEAN;
2055 				if ((nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN])))
2056 					break;
2057 				/* fall through */
2058 			case BQUEUE_CLEAN:
2059 				/*
2060 				 * nbp is NULL.
2061 				 */
2062 				break;
2063 			}
2064 		}
2065 
2066 		/*
2067 		 * Sanity Checks
2068 		 */
2069 		KASSERT(bp->b_qindex == qindex,
2070 			("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2071 
2072 		/*
2073 		 * Note: we no longer distinguish between VMIO and non-VMIO
2074 		 * buffers.
2075 		 */
2076 		KASSERT((bp->b_flags & B_DELWRI) == 0,
2077 			("delwri buffer %p found in queue %d", bp, qindex));
2078 
2079 		/*
2080 		 * Do not try to reuse a buffer with a non-zero b_refs.
2081 		 * This is an unsynchronized test.  A synchronized test
2082 		 * is also performed after we lock the buffer.
2083 		 */
2084 		if (bp->b_refs)
2085 			continue;
2086 
2087 		/*
2088 		 * If we are defragging then we need a buffer with
2089 		 * b_kvasize != 0.  XXX this situation should no longer
2090 		 * occur, if defrag is non-zero the buffer's b_kvasize
2091 		 * should also be non-zero at this point.  XXX
2092 		 */
2093 		if (defrag && bp->b_kvasize == 0) {
2094 			kprintf("Warning: defrag empty buffer %p\n", bp);
2095 			continue;
2096 		}
2097 
2098 		/*
2099 		 * Start freeing the bp.  This is somewhat involved.  nbp
2100 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
2101 		 * on the clean list must be disassociated from their
2102 		 * current vnode.  Buffers on the empty[kva] lists have
2103 		 * already been disassociated.
2104 		 *
2105 		 * b_refs is checked after locking along with queue changes.
2106 		 * We must check here to deal with zero->nonzero transitions
2107 		 * made by the owner of the buffer lock, which is used by
2108 		 * VFS's to hold the buffer while issuing an unlocked
2109 		 * uiomove()s.  We cannot invalidate the buffer's pages
2110 		 * for this case.  Once we successfully lock a buffer the
2111 		 * only 0->1 transitions of b_refs will occur via findblk().
2112 		 *
2113 		 * We must also check for queue changes after successful
2114 		 * locking as the current lock holder may dispose of the
2115 		 * buffer and change its queue.
2116 		 */
2117 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2118 			spin_unlock(&pcpu->spin);
2119 			tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100);
2120 			restart_reason = 1;
2121 			restart_bp = bp;
2122 			goto restart;
2123 		}
2124 		if (bp->b_qindex != qindex || bp->b_refs) {
2125 			spin_unlock(&pcpu->spin);
2126 			BUF_UNLOCK(bp);
2127 			restart_reason = 2;
2128 			restart_bp = bp;
2129 			goto restart;
2130 		}
2131 		bremfree_locked(bp);
2132 		spin_unlock(&pcpu->spin);
2133 
2134 		/*
2135 		 * Dependancies must be handled before we disassociate the
2136 		 * vnode.
2137 		 *
2138 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2139 		 * be immediately disassociated.  HAMMER then becomes
2140 		 * responsible for releasing the buffer.
2141 		 *
2142 		 * NOTE: spin is UNLOCKED now.
2143 		 */
2144 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2145 			buf_deallocate(bp);
2146 			if (bp->b_flags & B_LOCKED) {
2147 				bqrelse(bp);
2148 				restart_reason = 3;
2149 				restart_bp = bp;
2150 				goto restart;
2151 			}
2152 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2153 		}
2154 
2155 		if (qindex == BQUEUE_CLEAN) {
2156 			if (bp->b_flags & B_VMIO)
2157 				vfs_vmio_release(bp);
2158 			if (bp->b_vp)
2159 				brelvp(bp);
2160 		}
2161 
2162 		/*
2163 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2164 		 * the scan from this point on.
2165 		 *
2166 		 * Get the rest of the buffer freed up.  b_kva* is still
2167 		 * valid after this operation.
2168 		 */
2169 		KASSERT(bp->b_vp == NULL,
2170 			("bp3 %p flags %08x vnode %p qindex %d "
2171 			 "unexpectededly still associated!",
2172 			 bp, bp->b_flags, bp->b_vp, qindex));
2173 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2174 
2175 		/*
2176 		 * critical section protection is not required when
2177 		 * scrapping a buffer's contents because it is already
2178 		 * wired.
2179 		 */
2180 		if (bp->b_bufsize)
2181 			allocbuf(bp, 0);
2182 
2183                 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN | B_HASHED)) {
2184 			kprintf("getnewbuf: caught bug vp queue "
2185 				"%p/%08x qidx %d\n",
2186 				bp, bp->b_flags, qindex);
2187 			brelvp(bp);
2188 		}
2189 		bp->b_flags = B_BNOCLIP;
2190 		bp->b_cmd = BUF_CMD_DONE;
2191 		bp->b_vp = NULL;
2192 		bp->b_error = 0;
2193 		bp->b_resid = 0;
2194 		bp->b_bcount = 0;
2195 		bp->b_xio.xio_npages = 0;
2196 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2197 		bp->b_act_count = ACT_INIT;
2198 		reinitbufbio(bp);
2199 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2200 		buf_dep_init(bp);
2201 		if (blkflags & GETBLK_BHEAVY)
2202 			bp->b_flags |= B_HEAVY;
2203 
2204 		/*
2205 		 * If we are defragging then free the buffer.
2206 		 */
2207 		if (defrag) {
2208 			bp->b_flags |= B_INVAL;
2209 			bfreekva(bp);
2210 			brelse(bp);
2211 			defrag = 0;
2212 			restart_reason = 4;
2213 			restart_bp = bp;
2214 			goto restart;
2215 		}
2216 
2217 		/*
2218 		 * If we are overcomitted then recover the buffer and its
2219 		 * KVM space.  This occurs in rare situations when multiple
2220 		 * processes are blocked in getnewbuf() or allocbuf().
2221 		 *
2222 		 * On 64-bit systems BKVASIZE == MAXBSIZE and overcommit
2223 		 * should not be possible.
2224 		 */
2225 		if (bufspace >= hibufspace)
2226 			flushingbufs = 1;
2227 		if (BKVASIZE != MAXBSIZE) {
2228 			if (flushingbufs && bp->b_kvasize != 0) {
2229 				bp->b_flags |= B_INVAL;
2230 				bfreekva(bp);
2231 				brelse(bp);
2232 				restart_reason = 5;
2233 				restart_bp = bp;
2234 				goto restart;
2235 			}
2236 		}
2237 		if (bufspace < lobufspace)
2238 			flushingbufs = 0;
2239 
2240 		/*
2241 		 * b_refs can transition to a non-zero value while we hold
2242 		 * the buffer locked due to a findblk().  Our brelvp() above
2243 		 * interlocked any future possible transitions due to
2244 		 * findblk()s.
2245 		 *
2246 		 * If we find b_refs to be non-zero we can destroy the
2247 		 * buffer's contents but we cannot yet reuse the buffer.
2248 		 */
2249 		if (bp->b_refs) {
2250 			bp->b_flags |= B_INVAL;
2251 			if (BKVASIZE != MAXBSIZE)
2252 				bfreekva(bp);
2253 			brelse(bp);
2254 			restart_reason = 6;
2255 			restart_bp = bp;
2256 			goto restart;
2257 		}
2258 		break;
2259 		/* NOT REACHED, spin not held */
2260 	}
2261 
2262 	/*
2263 	 * If we exhausted our list, iterate other cpus.  If that fails,
2264 	 * sleep as appropriate.  We may have to wakeup various daemons
2265 	 * and write out some dirty buffers.
2266 	 *
2267 	 * Generally we are sleeping due to insufficient buffer space.
2268 	 *
2269 	 * NOTE: spin is held if bp is NULL, else it is not held.
2270 	 */
2271 	if (bp == NULL) {
2272 		int flags;
2273 		char *waitmsg;
2274 
2275 		spin_unlock(&pcpu->spin);
2276 
2277 		nqcpu = (nqcpu + 1) % ncpus;
2278 		if (nqcpu != mycpu->gd_cpuid) {
2279 			restart_reason = 7;
2280 			restart_bp = bp;
2281 			goto restart;
2282 		}
2283 
2284 		if (defrag) {
2285 			flags = VFS_BIO_NEED_BUFSPACE;
2286 			waitmsg = "nbufkv";
2287 		} else if (bufspace >= hibufspace) {
2288 			waitmsg = "nbufbs";
2289 			flags = VFS_BIO_NEED_BUFSPACE;
2290 		} else {
2291 			waitmsg = "newbuf";
2292 			flags = VFS_BIO_NEED_ANY;
2293 		}
2294 
2295 		bd_speedup();	/* heeeelp */
2296 		atomic_set_int(&needsbuffer, flags);
2297 		while (needsbuffer & flags) {
2298 			int value;
2299 
2300 			tsleep_interlock(&needsbuffer, 0);
2301 			value = atomic_fetchadd_int(&needsbuffer, 0);
2302 			if (value & flags) {
2303 				if (tsleep(&needsbuffer, PINTERLOCKED|slpflags,
2304 					   waitmsg, slptimeo)) {
2305 					return (NULL);
2306 				}
2307 			}
2308 		}
2309 	} else {
2310 		/*
2311 		 * We finally have a valid bp.  We aren't quite out of the
2312 		 * woods, we still have to reserve kva space.  In order
2313 		 * to keep fragmentation sane we only allocate kva in
2314 		 * BKVASIZE chunks.
2315 		 *
2316 		 * (spin is not held)
2317 		 */
2318 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2319 
2320 		if (maxsize != bp->b_kvasize) {
2321 			vm_offset_t addr = 0;
2322 			int count;
2323 
2324 			bfreekva(bp);
2325 
2326 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2327 			vm_map_lock(&buffer_map);
2328 
2329 			if (vm_map_findspace(&buffer_map,
2330 				    vm_map_min(&buffer_map), maxsize,
2331 				    maxsize, 0, &addr)) {
2332 				/*
2333 				 * Uh oh.  Buffer map is too fragmented.  We
2334 				 * must defragment the map.
2335 				 */
2336 				vm_map_unlock(&buffer_map);
2337 				vm_map_entry_release(count);
2338 				++bufdefragcnt;
2339 				defrag = 1;
2340 				bp->b_flags |= B_INVAL;
2341 				brelse(bp);
2342 				restart_reason = 8;
2343 				restart_bp = bp;
2344 				goto restart;
2345 			}
2346 			if (addr) {
2347 				vm_map_insert(&buffer_map, &count,
2348 					NULL, NULL,
2349 					0, addr, addr + maxsize,
2350 					VM_MAPTYPE_NORMAL,
2351 					VM_PROT_ALL, VM_PROT_ALL,
2352 					MAP_NOFAULT);
2353 
2354 				bp->b_kvabase = (caddr_t) addr;
2355 				bp->b_kvasize = maxsize;
2356 				bufspace += bp->b_kvasize;
2357 				++bufreusecnt;
2358 			}
2359 			vm_map_unlock(&buffer_map);
2360 			vm_map_entry_release(count);
2361 		}
2362 		bp->b_data = bp->b_kvabase;
2363 	}
2364 	return(bp);
2365 }
2366 
2367 /*
2368  * buf_daemon:
2369  *
2370  *	Buffer flushing daemon.  Buffers are normally flushed by the
2371  *	update daemon but if it cannot keep up this process starts to
2372  *	take the load in an attempt to prevent getnewbuf() from blocking.
2373  *
2374  *	Once a flush is initiated it does not stop until the number
2375  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2376  *	waiting at the mid-point.
2377  */
2378 static struct kproc_desc buf_kp = {
2379 	"bufdaemon",
2380 	buf_daemon,
2381 	&bufdaemon_td
2382 };
2383 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2384 	kproc_start, &buf_kp);
2385 
2386 static struct kproc_desc bufhw_kp = {
2387 	"bufdaemon_hw",
2388 	buf_daemon_hw,
2389 	&bufdaemonhw_td
2390 };
2391 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2392 	kproc_start, &bufhw_kp);
2393 
2394 static void
2395 buf_daemon1(struct thread *td, int queue, int (*buf_limit_fn)(long),
2396 	    int *bd_req)
2397 {
2398 	long limit;
2399 	struct buf *marker;
2400 
2401 	marker = kmalloc(sizeof(*marker), M_BIOBUF, M_WAITOK | M_ZERO);
2402 	marker->b_flags |= B_MARKER;
2403 	marker->b_qindex = BQUEUE_NONE;
2404 	marker->b_qcpu = 0;
2405 
2406 	/*
2407 	 * This process needs to be suspended prior to shutdown sync.
2408 	 */
2409 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2410 			      td, SHUTDOWN_PRI_LAST);
2411 	curthread->td_flags |= TDF_SYSTHREAD;
2412 
2413 	/*
2414 	 * This process is allowed to take the buffer cache to the limit
2415 	 */
2416 	for (;;) {
2417 		kproc_suspend_loop();
2418 
2419 		/*
2420 		 * Do the flush as long as the number of dirty buffers
2421 		 * (including those running) exceeds lodirtybufspace.
2422 		 *
2423 		 * When flushing limit running I/O to hirunningspace
2424 		 * Do the flush.  Limit the amount of in-transit I/O we
2425 		 * allow to build up, otherwise we would completely saturate
2426 		 * the I/O system.  Wakeup any waiting processes before we
2427 		 * normally would so they can run in parallel with our drain.
2428 		 *
2429 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2430 		 * but because we split the operation into two threads we
2431 		 * have to cut it in half for each thread.
2432 		 */
2433 		waitrunningbufspace();
2434 		limit = lodirtybufspace / 2;
2435 		while (buf_limit_fn(limit)) {
2436 			if (flushbufqueues(marker, queue) == 0)
2437 				break;
2438 			if (runningbufspace < hirunningspace)
2439 				continue;
2440 			waitrunningbufspace();
2441 		}
2442 
2443 		/*
2444 		 * We reached our low water mark, reset the
2445 		 * request and sleep until we are needed again.
2446 		 * The sleep is just so the suspend code works.
2447 		 */
2448 		tsleep_interlock(bd_req, 0);
2449 		if (atomic_swap_int(bd_req, 0) == 0)
2450 			tsleep(bd_req, PINTERLOCKED, "psleep", hz);
2451 	}
2452 	/* NOT REACHED */
2453 	/*kfree(marker, M_BIOBUF);*/
2454 }
2455 
2456 static int
2457 buf_daemon_limit(long limit)
2458 {
2459 	return (runningbufspace + dirtykvaspace > limit ||
2460 		dirtybufcount - dirtybufcounthw >= nbuf / 2);
2461 }
2462 
2463 static int
2464 buf_daemon_hw_limit(long limit)
2465 {
2466 	return (runningbufspace + dirtykvaspace > limit ||
2467 		dirtybufcounthw >= nbuf / 2);
2468 }
2469 
2470 static void
2471 buf_daemon(void)
2472 {
2473 	buf_daemon1(bufdaemon_td, BQUEUE_DIRTY, buf_daemon_limit,
2474 		    &bd_request);
2475 }
2476 
2477 static void
2478 buf_daemon_hw(void)
2479 {
2480 	buf_daemon1(bufdaemonhw_td, BQUEUE_DIRTY_HW, buf_daemon_hw_limit,
2481 		    &bd_request_hw);
2482 }
2483 
2484 /*
2485  * flushbufqueues:
2486  *
2487  *	Try to flush a buffer in the dirty queue.  We must be careful to
2488  *	free up B_INVAL buffers instead of write them, which NFS is
2489  *	particularly sensitive to.
2490  *
2491  *	B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate
2492  *	that we really want to try to get the buffer out and reuse it
2493  *	due to the write load on the machine.
2494  *
2495  *	We must lock the buffer in order to check its validity before we
2496  *	can mess with its contents.  spin isn't enough.
2497  */
2498 static int
2499 flushbufqueues(struct buf *marker, bufq_type_t q)
2500 {
2501 	struct bufpcpu *pcpu;
2502 	struct buf *bp;
2503 	int r = 0;
2504 	int lcpu = marker->b_qcpu;
2505 
2506 	KKASSERT(marker->b_qindex == BQUEUE_NONE);
2507 	KKASSERT(marker->b_flags & B_MARKER);
2508 
2509 again:
2510 	/*
2511 	 * Spinlock needed to perform operations on the queue and may be
2512 	 * held through a non-blocking BUF_LOCK(), but cannot be held when
2513 	 * BUF_UNLOCK()ing or through any other major operation.
2514 	 */
2515 	pcpu = &bufpcpu[marker->b_qcpu];
2516 	spin_lock(&pcpu->spin);
2517 	marker->b_qindex = q;
2518 	TAILQ_INSERT_HEAD(&pcpu->bufqueues[q], marker, b_freelist);
2519 	bp = marker;
2520 
2521 	while ((bp = TAILQ_NEXT(bp, b_freelist)) != NULL) {
2522 		/*
2523 		 * NOTE: spinlock is always held at the top of the loop
2524 		 */
2525 		if (bp->b_flags & B_MARKER)
2526 			continue;
2527 		if ((bp->b_flags & B_DELWRI) == 0) {
2528 			kprintf("Unexpected clean buffer %p\n", bp);
2529 			continue;
2530 		}
2531 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
2532 			continue;
2533 		KKASSERT(bp->b_qcpu == marker->b_qcpu && bp->b_qindex == q);
2534 
2535 		/*
2536 		 * Once the buffer is locked we will have no choice but to
2537 		 * unlock the spinlock around a later BUF_UNLOCK and re-set
2538 		 * bp = marker when looping.  Move the marker now to make
2539 		 * things easier.
2540 		 */
2541 		TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2542 		TAILQ_INSERT_AFTER(&pcpu->bufqueues[q], bp, marker, b_freelist);
2543 
2544 		/*
2545 		 * Must recheck B_DELWRI after successfully locking
2546 		 * the buffer.
2547 		 */
2548 		if ((bp->b_flags & B_DELWRI) == 0) {
2549 			spin_unlock(&pcpu->spin);
2550 			BUF_UNLOCK(bp);
2551 			spin_lock(&pcpu->spin);
2552 			bp = marker;
2553 			continue;
2554 		}
2555 
2556 		/*
2557 		 * Remove the buffer from its queue.  We still own the
2558 		 * spinlock here.
2559 		 */
2560 		_bremfree(bp);
2561 
2562 		/*
2563 		 * Disposing of an invalid buffer counts as a flush op
2564 		 */
2565 		if (bp->b_flags & B_INVAL) {
2566 			spin_unlock(&pcpu->spin);
2567 			brelse(bp);
2568 			spin_lock(&pcpu->spin);
2569 			++r;
2570 			break;
2571 		}
2572 
2573 		/*
2574 		 * Release the spinlock for the more complex ops we
2575 		 * are now going to do.
2576 		 */
2577 		spin_unlock(&pcpu->spin);
2578 		lwkt_yield();
2579 
2580 		/*
2581 		 * This is a bit messy
2582 		 */
2583 		if (LIST_FIRST(&bp->b_dep) != NULL &&
2584 		    (bp->b_flags & B_DEFERRED) == 0 &&
2585 		    buf_countdeps(bp, 0)) {
2586 			spin_lock(&pcpu->spin);
2587 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[q], bp, b_freelist);
2588 			bp->b_qindex = q;
2589 			bp->b_flags |= B_DEFERRED;
2590 			spin_unlock(&pcpu->spin);
2591 			BUF_UNLOCK(bp);
2592 			spin_lock(&pcpu->spin);
2593 			bp = marker;
2594 			continue;
2595 		}
2596 
2597 		/*
2598 		 * spinlock not held here.
2599 		 *
2600 		 * If the buffer has a dependancy, buf_checkwrite() must
2601 		 * also return 0 for us to be able to initate the write.
2602 		 *
2603 		 * If the buffer is flagged B_ERROR it may be requeued
2604 		 * over and over again, we try to avoid a live lock.
2605 		 */
2606 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2607 			brelse(bp);
2608 		} else if (bp->b_flags & B_ERROR) {
2609 			tsleep(bp, 0, "bioer", 1);
2610 			bp->b_flags &= ~B_AGE;
2611 			cluster_awrite(bp);
2612 		} else {
2613 			bp->b_flags |= B_AGE;
2614 			cluster_awrite(bp);
2615 		}
2616 		spin_lock(&pcpu->spin);
2617 		++r;
2618 		break;
2619 	}
2620 
2621 	TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2622 	marker->b_qindex = BQUEUE_NONE;
2623 	spin_unlock(&pcpu->spin);
2624 
2625 	/*
2626 	 * Advance the marker to be fair.
2627 	 */
2628 	marker->b_qcpu = (marker->b_qcpu + 1) % ncpus;
2629 	if (bp == NULL) {
2630 		if (marker->b_qcpu != lcpu)
2631 			goto again;
2632 	}
2633 
2634 	return (r);
2635 }
2636 
2637 /*
2638  * inmem:
2639  *
2640  *	Returns true if no I/O is needed to access the associated VM object.
2641  *	This is like findblk except it also hunts around in the VM system for
2642  *	the data.
2643  *
2644  *	Note that we ignore vm_page_free() races from interrupts against our
2645  *	lookup, since if the caller is not protected our return value will not
2646  *	be any more valid then otherwise once we exit the critical section.
2647  */
2648 int
2649 inmem(struct vnode *vp, off_t loffset)
2650 {
2651 	vm_object_t obj;
2652 	vm_offset_t toff, tinc, size;
2653 	vm_page_t m;
2654 	int res = 1;
2655 
2656 	if (findblk(vp, loffset, FINDBLK_TEST))
2657 		return 1;
2658 	if (vp->v_mount == NULL)
2659 		return 0;
2660 	if ((obj = vp->v_object) == NULL)
2661 		return 0;
2662 
2663 	size = PAGE_SIZE;
2664 	if (size > vp->v_mount->mnt_stat.f_iosize)
2665 		size = vp->v_mount->mnt_stat.f_iosize;
2666 
2667 	vm_object_hold(obj);
2668 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2669 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2670 		if (m == NULL) {
2671 			res = 0;
2672 			break;
2673 		}
2674 		tinc = size;
2675 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2676 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2677 		if (vm_page_is_valid(m,
2678 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) {
2679 			res = 0;
2680 			break;
2681 		}
2682 	}
2683 	vm_object_drop(obj);
2684 	return (res);
2685 }
2686 
2687 /*
2688  * findblk:
2689  *
2690  *	Locate and return the specified buffer.  Unless flagged otherwise,
2691  *	a locked buffer will be returned if it exists or NULL if it does not.
2692  *
2693  *	findblk()'d buffers are still on the bufqueues and if you intend
2694  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2695  *	and possibly do other stuff to it.
2696  *
2697  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2698  *			  for locking the buffer and ensuring that it remains
2699  *			  the desired buffer after locking.
2700  *
2701  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2702  *			  to acquire the lock we return NULL, even if the
2703  *			  buffer exists.
2704  *
2705  *	FINDBLK_REF	- Returns the buffer ref'd, which prevents normal
2706  *			  reuse by getnewbuf() but does not prevent
2707  *			  disassociation (B_INVAL).  Used to avoid deadlocks
2708  *			  against random (vp,loffset)s due to reassignment.
2709  *
2710  *	(0)		- Lock the buffer blocking.
2711  */
2712 struct buf *
2713 findblk(struct vnode *vp, off_t loffset, int flags)
2714 {
2715 	struct buf *bp;
2716 	int lkflags;
2717 
2718 	lkflags = LK_EXCLUSIVE;
2719 	if (flags & FINDBLK_NBLOCK)
2720 		lkflags |= LK_NOWAIT;
2721 
2722 	for (;;) {
2723 		/*
2724 		 * Lookup.  Ref the buf while holding v_token to prevent
2725 		 * reuse (but does not prevent diassociation).
2726 		 */
2727 		lwkt_gettoken_shared(&vp->v_token);
2728 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2729 		if (bp == NULL) {
2730 			lwkt_reltoken(&vp->v_token);
2731 			return(NULL);
2732 		}
2733 		bqhold(bp);
2734 		lwkt_reltoken(&vp->v_token);
2735 
2736 		/*
2737 		 * If testing only break and return bp, do not lock.
2738 		 */
2739 		if (flags & FINDBLK_TEST)
2740 			break;
2741 
2742 		/*
2743 		 * Lock the buffer, return an error if the lock fails.
2744 		 * (only FINDBLK_NBLOCK can cause the lock to fail).
2745 		 */
2746 		if (BUF_LOCK(bp, lkflags)) {
2747 			atomic_subtract_int(&bp->b_refs, 1);
2748 			/* bp = NULL; not needed */
2749 			return(NULL);
2750 		}
2751 
2752 		/*
2753 		 * Revalidate the locked buf before allowing it to be
2754 		 * returned.
2755 		 */
2756 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2757 			break;
2758 		atomic_subtract_int(&bp->b_refs, 1);
2759 		BUF_UNLOCK(bp);
2760 	}
2761 
2762 	/*
2763 	 * Success
2764 	 */
2765 	if ((flags & FINDBLK_REF) == 0)
2766 		atomic_subtract_int(&bp->b_refs, 1);
2767 	return(bp);
2768 }
2769 
2770 /*
2771  * getcacheblk:
2772  *
2773  *	Similar to getblk() except only returns the buffer if it is
2774  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2775  *	is returned.  NULL is also returned if GETBLK_NOWAIT is set
2776  *	and the getblk() would block.
2777  *
2778  *	If B_RAM is set the buffer might be just fine, but we return
2779  *	NULL anyway because we want the code to fall through to the
2780  *	cluster read.  Otherwise read-ahead breaks.
2781  *
2782  *	If blksize is 0 the buffer cache buffer must already be fully
2783  *	cached.
2784  *
2785  *	If blksize is non-zero getblk() will be used, allowing a buffer
2786  *	to be reinstantiated from its VM backing store.  The buffer must
2787  *	still be fully cached after reinstantiation to be returned.
2788  */
2789 struct buf *
2790 getcacheblk(struct vnode *vp, off_t loffset, int blksize, int blkflags)
2791 {
2792 	struct buf *bp;
2793 	int fndflags = (blkflags & GETBLK_NOWAIT) ? FINDBLK_NBLOCK : 0;
2794 
2795 	if (blksize) {
2796 		bp = getblk(vp, loffset, blksize, blkflags, 0);
2797 		if (bp) {
2798 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2799 			    B_CACHE) {
2800 				bp->b_flags &= ~B_AGE;
2801 			} else {
2802 				brelse(bp);
2803 				bp = NULL;
2804 			}
2805 		}
2806 	} else {
2807 		bp = findblk(vp, loffset, fndflags);
2808 		if (bp) {
2809 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2810 			    B_CACHE) {
2811 				bp->b_flags &= ~B_AGE;
2812 				bremfree(bp);
2813 			} else {
2814 				BUF_UNLOCK(bp);
2815 				bp = NULL;
2816 			}
2817 		}
2818 	}
2819 	return (bp);
2820 }
2821 
2822 /*
2823  * getblk:
2824  *
2825  *	Get a block given a specified block and offset into a file/device.
2826  * 	B_INVAL may or may not be set on return.  The caller should clear
2827  *	B_INVAL prior to initiating a READ.
2828  *
2829  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2830  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2831  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2832  *	without doing any of those things the system will likely believe
2833  *	the buffer to be valid (especially if it is not B_VMIO), and the
2834  *	next getblk() will return the buffer with B_CACHE set.
2835  *
2836  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2837  *	an existing buffer.
2838  *
2839  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2840  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2841  *	and then cleared based on the backing VM.  If the previous buffer is
2842  *	non-0-sized but invalid, B_CACHE will be cleared.
2843  *
2844  *	If getblk() must create a new buffer, the new buffer is returned with
2845  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2846  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2847  *	backing VM.
2848  *
2849  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2850  *	B_CACHE bit is clear.
2851  *
2852  *	What this means, basically, is that the caller should use B_CACHE to
2853  *	determine whether the buffer is fully valid or not and should clear
2854  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2855  *	the buffer by loading its data area with something, the caller needs
2856  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2857  *	the caller should set B_CACHE ( as an optimization ), else the caller
2858  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2859  *	a write attempt or if it was a successfull read.  If the caller
2860  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2861  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2862  *
2863  *	getblk flags:
2864  *
2865  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2866  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2867  */
2868 struct buf *
2869 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2870 {
2871 	struct buf *bp;
2872 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2873 	int error;
2874 	int lkflags;
2875 
2876 	if (size > MAXBSIZE)
2877 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2878 	if (vp->v_object == NULL)
2879 		panic("getblk: vnode %p has no object!", vp);
2880 
2881 loop:
2882 	if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2883 		/*
2884 		 * The buffer was found in the cache, but we need to lock it.
2885 		 * We must acquire a ref on the bp to prevent reuse, but
2886 		 * this will not prevent disassociation (brelvp()) so we
2887 		 * must recheck (vp,loffset) after acquiring the lock.
2888 		 *
2889 		 * Without the ref the buffer could potentially be reused
2890 		 * before we acquire the lock and create a deadlock
2891 		 * situation between the thread trying to reuse the buffer
2892 		 * and us due to the fact that we would wind up blocking
2893 		 * on a random (vp,loffset).
2894 		 */
2895 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2896 			if (blkflags & GETBLK_NOWAIT) {
2897 				bqdrop(bp);
2898 				return(NULL);
2899 			}
2900 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2901 			if (blkflags & GETBLK_PCATCH)
2902 				lkflags |= LK_PCATCH;
2903 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2904 			if (error) {
2905 				bqdrop(bp);
2906 				if (error == ENOLCK)
2907 					goto loop;
2908 				return (NULL);
2909 			}
2910 			/* buffer may have changed on us */
2911 		}
2912 		bqdrop(bp);
2913 
2914 		/*
2915 		 * Once the buffer has been locked, make sure we didn't race
2916 		 * a buffer recyclement.  Buffers that are no longer hashed
2917 		 * will have b_vp == NULL, so this takes care of that check
2918 		 * as well.
2919 		 */
2920 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2921 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2922 				"was recycled\n",
2923 				bp, vp, (long long)loffset);
2924 			BUF_UNLOCK(bp);
2925 			goto loop;
2926 		}
2927 
2928 		/*
2929 		 * If SZMATCH any pre-existing buffer must be of the requested
2930 		 * size or NULL is returned.  The caller absolutely does not
2931 		 * want getblk() to bwrite() the buffer on a size mismatch.
2932 		 */
2933 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2934 			BUF_UNLOCK(bp);
2935 			return(NULL);
2936 		}
2937 
2938 		/*
2939 		 * All vnode-based buffers must be backed by a VM object.
2940 		 */
2941 		KKASSERT(bp->b_flags & B_VMIO);
2942 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2943 		bp->b_flags &= ~B_AGE;
2944 
2945 		/*
2946 		 * Make sure that B_INVAL buffers do not have a cached
2947 		 * block number translation.
2948 		 */
2949 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2950 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2951 				" did not have cleared bio_offset cache\n",
2952 				bp, vp, (long long)loffset);
2953 			clearbiocache(&bp->b_bio2);
2954 		}
2955 
2956 		/*
2957 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2958 		 * invalid.
2959 		 */
2960 		if (bp->b_flags & B_INVAL)
2961 			bp->b_flags &= ~B_CACHE;
2962 		bremfree(bp);
2963 
2964 		/*
2965 		 * Any size inconsistancy with a dirty buffer or a buffer
2966 		 * with a softupdates dependancy must be resolved.  Resizing
2967 		 * the buffer in such circumstances can lead to problems.
2968 		 *
2969 		 * Dirty or dependant buffers are written synchronously.
2970 		 * Other types of buffers are simply released and
2971 		 * reconstituted as they may be backed by valid, dirty VM
2972 		 * pages (but not marked B_DELWRI).
2973 		 *
2974 		 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2975 		 * and may be left over from a prior truncation (and thus
2976 		 * no longer represent the actual EOF point), so we
2977 		 * definitely do not want to B_NOCACHE the backing store.
2978 		 */
2979 		if (size != bp->b_bcount) {
2980 			if (bp->b_flags & B_DELWRI) {
2981 				bp->b_flags |= B_RELBUF;
2982 				bwrite(bp);
2983 			} else if (LIST_FIRST(&bp->b_dep)) {
2984 				bp->b_flags |= B_RELBUF;
2985 				bwrite(bp);
2986 			} else {
2987 				bp->b_flags |= B_RELBUF;
2988 				brelse(bp);
2989 			}
2990 			goto loop;
2991 		}
2992 		KKASSERT(size <= bp->b_kvasize);
2993 		KASSERT(bp->b_loffset != NOOFFSET,
2994 			("getblk: no buffer offset"));
2995 
2996 		/*
2997 		 * A buffer with B_DELWRI set and B_CACHE clear must
2998 		 * be committed before we can return the buffer in
2999 		 * order to prevent the caller from issuing a read
3000 		 * ( due to B_CACHE not being set ) and overwriting
3001 		 * it.
3002 		 *
3003 		 * Most callers, including NFS and FFS, need this to
3004 		 * operate properly either because they assume they
3005 		 * can issue a read if B_CACHE is not set, or because
3006 		 * ( for example ) an uncached B_DELWRI might loop due
3007 		 * to softupdates re-dirtying the buffer.  In the latter
3008 		 * case, B_CACHE is set after the first write completes,
3009 		 * preventing further loops.
3010 		 *
3011 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3012 		 * above while extending the buffer, we cannot allow the
3013 		 * buffer to remain with B_CACHE set after the write
3014 		 * completes or it will represent a corrupt state.  To
3015 		 * deal with this we set B_NOCACHE to scrap the buffer
3016 		 * after the write.
3017 		 *
3018 		 * XXX Should this be B_RELBUF instead of B_NOCACHE?
3019 		 *     I'm not even sure this state is still possible
3020 		 *     now that getblk() writes out any dirty buffers
3021 		 *     on size changes.
3022 		 *
3023 		 * We might be able to do something fancy, like setting
3024 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3025 		 * so the below call doesn't set B_CACHE, but that gets real
3026 		 * confusing.  This is much easier.
3027 		 */
3028 
3029 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3030 			kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
3031 				"and CACHE clear, b_flags %08x\n",
3032 				bp, (uintmax_t)bp->b_loffset, bp->b_flags);
3033 			bp->b_flags |= B_NOCACHE;
3034 			bwrite(bp);
3035 			goto loop;
3036 		}
3037 	} else {
3038 		/*
3039 		 * Buffer is not in-core, create new buffer.  The buffer
3040 		 * returned by getnewbuf() is locked.  Note that the returned
3041 		 * buffer is also considered valid (not marked B_INVAL).
3042 		 *
3043 		 * Calculating the offset for the I/O requires figuring out
3044 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
3045 		 * the mount's f_iosize otherwise.  If the vnode does not
3046 		 * have an associated mount we assume that the passed size is
3047 		 * the block size.
3048 		 *
3049 		 * Note that vn_isdisk() cannot be used here since it may
3050 		 * return a failure for numerous reasons.   Note that the
3051 		 * buffer size may be larger then the block size (the caller
3052 		 * will use block numbers with the proper multiple).  Beware
3053 		 * of using any v_* fields which are part of unions.  In
3054 		 * particular, in DragonFly the mount point overloading
3055 		 * mechanism uses the namecache only and the underlying
3056 		 * directory vnode is not a special case.
3057 		 */
3058 		int bsize, maxsize;
3059 
3060 		if (vp->v_type == VBLK || vp->v_type == VCHR)
3061 			bsize = DEV_BSIZE;
3062 		else if (vp->v_mount)
3063 			bsize = vp->v_mount->mnt_stat.f_iosize;
3064 		else
3065 			bsize = size;
3066 
3067 		maxsize = size + (loffset & PAGE_MASK);
3068 		maxsize = imax(maxsize, bsize);
3069 
3070 		bp = getnewbuf(blkflags, slptimeo, size, maxsize);
3071 		if (bp == NULL) {
3072 			if (slpflags || slptimeo)
3073 				return NULL;
3074 			goto loop;
3075 		}
3076 
3077 		/*
3078 		 * Atomically insert the buffer into the hash, so that it can
3079 		 * be found by findblk().
3080 		 *
3081 		 * If bgetvp() returns non-zero a collision occured, and the
3082 		 * bp will not be associated with the vnode.
3083 		 *
3084 		 * Make sure the translation layer has been cleared.
3085 		 */
3086 		bp->b_loffset = loffset;
3087 		bp->b_bio2.bio_offset = NOOFFSET;
3088 		/* bp->b_bio2.bio_next = NULL; */
3089 
3090 		if (bgetvp(vp, bp, size)) {
3091 			bp->b_flags |= B_INVAL;
3092 			brelse(bp);
3093 			goto loop;
3094 		}
3095 
3096 		/*
3097 		 * All vnode-based buffers must be backed by a VM object.
3098 		 */
3099 		KKASSERT(vp->v_object != NULL);
3100 		bp->b_flags |= B_VMIO;
3101 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3102 
3103 		allocbuf(bp, size);
3104 	}
3105 	return (bp);
3106 }
3107 
3108 /*
3109  * regetblk(bp)
3110  *
3111  * Reacquire a buffer that was previously released to the locked queue,
3112  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3113  * set B_LOCKED (which handles the acquisition race).
3114  *
3115  * To this end, either B_LOCKED must be set or the dependancy list must be
3116  * non-empty.
3117  */
3118 void
3119 regetblk(struct buf *bp)
3120 {
3121 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3122 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3123 	bremfree(bp);
3124 }
3125 
3126 /*
3127  * geteblk:
3128  *
3129  *	Get an empty, disassociated buffer of given size.  The buffer is
3130  *	initially set to B_INVAL.
3131  *
3132  *	critical section protection is not required for the allocbuf()
3133  *	call because races are impossible here.
3134  */
3135 struct buf *
3136 geteblk(int size)
3137 {
3138 	struct buf *bp;
3139 	int maxsize;
3140 
3141 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3142 
3143 	while ((bp = getnewbuf(0, 0, size, maxsize)) == NULL)
3144 		;
3145 	allocbuf(bp, size);
3146 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3147 	return (bp);
3148 }
3149 
3150 
3151 /*
3152  * allocbuf:
3153  *
3154  *	This code constitutes the buffer memory from either anonymous system
3155  *	memory (in the case of non-VMIO operations) or from an associated
3156  *	VM object (in the case of VMIO operations).  This code is able to
3157  *	resize a buffer up or down.
3158  *
3159  *	Note that this code is tricky, and has many complications to resolve
3160  *	deadlock or inconsistant data situations.  Tread lightly!!!
3161  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
3162  *	the caller.  Calling this code willy nilly can result in the loss of
3163  *	data.
3164  *
3165  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3166  *	B_CACHE for the non-VMIO case.
3167  *
3168  *	This routine does not need to be called from a critical section but you
3169  *	must own the buffer.
3170  */
3171 int
3172 allocbuf(struct buf *bp, int size)
3173 {
3174 	int newbsize, mbsize;
3175 	int i;
3176 
3177 	if (BUF_REFCNT(bp) == 0)
3178 		panic("allocbuf: buffer not busy");
3179 
3180 	if (bp->b_kvasize < size)
3181 		panic("allocbuf: buffer too small");
3182 
3183 	if ((bp->b_flags & B_VMIO) == 0) {
3184 		caddr_t origbuf;
3185 		int origbufsize;
3186 		/*
3187 		 * Just get anonymous memory from the kernel.  Don't
3188 		 * mess with B_CACHE.
3189 		 */
3190 		mbsize = roundup2(size, DEV_BSIZE);
3191 		if (bp->b_flags & B_MALLOC)
3192 			newbsize = mbsize;
3193 		else
3194 			newbsize = round_page(size);
3195 
3196 		if (newbsize < bp->b_bufsize) {
3197 			/*
3198 			 * Malloced buffers are not shrunk
3199 			 */
3200 			if (bp->b_flags & B_MALLOC) {
3201 				if (newbsize) {
3202 					bp->b_bcount = size;
3203 				} else {
3204 					kfree(bp->b_data, M_BIOBUF);
3205 					if (bp->b_bufsize) {
3206 						atomic_subtract_long(&bufmallocspace, bp->b_bufsize);
3207 						bufspacewakeup();
3208 						bp->b_bufsize = 0;
3209 					}
3210 					bp->b_data = bp->b_kvabase;
3211 					bp->b_bcount = 0;
3212 					bp->b_flags &= ~B_MALLOC;
3213 				}
3214 				return 1;
3215 			}
3216 			vm_hold_free_pages(
3217 			    bp,
3218 			    (vm_offset_t) bp->b_data + newbsize,
3219 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3220 		} else if (newbsize > bp->b_bufsize) {
3221 			/*
3222 			 * We only use malloced memory on the first allocation.
3223 			 * and revert to page-allocated memory when the buffer
3224 			 * grows.
3225 			 */
3226 			if ((bufmallocspace < maxbufmallocspace) &&
3227 				(bp->b_bufsize == 0) &&
3228 				(mbsize <= PAGE_SIZE/2)) {
3229 
3230 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3231 				bp->b_bufsize = mbsize;
3232 				bp->b_bcount = size;
3233 				bp->b_flags |= B_MALLOC;
3234 				atomic_add_long(&bufmallocspace, mbsize);
3235 				return 1;
3236 			}
3237 			origbuf = NULL;
3238 			origbufsize = 0;
3239 			/*
3240 			 * If the buffer is growing on its other-than-first
3241 			 * allocation, then we revert to the page-allocation
3242 			 * scheme.
3243 			 */
3244 			if (bp->b_flags & B_MALLOC) {
3245 				origbuf = bp->b_data;
3246 				origbufsize = bp->b_bufsize;
3247 				bp->b_data = bp->b_kvabase;
3248 				if (bp->b_bufsize) {
3249 					atomic_subtract_long(&bufmallocspace,
3250 							     bp->b_bufsize);
3251 					bufspacewakeup();
3252 					bp->b_bufsize = 0;
3253 				}
3254 				bp->b_flags &= ~B_MALLOC;
3255 				newbsize = round_page(newbsize);
3256 			}
3257 			vm_hold_load_pages(
3258 			    bp,
3259 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3260 			    (vm_offset_t) bp->b_data + newbsize);
3261 			if (origbuf) {
3262 				bcopy(origbuf, bp->b_data, origbufsize);
3263 				kfree(origbuf, M_BIOBUF);
3264 			}
3265 		}
3266 	} else {
3267 		vm_page_t m;
3268 		int desiredpages;
3269 
3270 		newbsize = roundup2(size, DEV_BSIZE);
3271 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3272 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3273 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3274 
3275 		if (bp->b_flags & B_MALLOC)
3276 			panic("allocbuf: VMIO buffer can't be malloced");
3277 		/*
3278 		 * Set B_CACHE initially if buffer is 0 length or will become
3279 		 * 0-length.
3280 		 */
3281 		if (size == 0 || bp->b_bufsize == 0)
3282 			bp->b_flags |= B_CACHE;
3283 
3284 		if (newbsize < bp->b_bufsize) {
3285 			/*
3286 			 * DEV_BSIZE aligned new buffer size is less then the
3287 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3288 			 * if we have to remove any pages.
3289 			 */
3290 			if (desiredpages < bp->b_xio.xio_npages) {
3291 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3292 					/*
3293 					 * the page is not freed here -- it
3294 					 * is the responsibility of
3295 					 * vnode_pager_setsize
3296 					 */
3297 					m = bp->b_xio.xio_pages[i];
3298 					KASSERT(m != bogus_page,
3299 					    ("allocbuf: bogus page found"));
3300 					vm_page_busy_wait(m, TRUE, "biodep");
3301 					bp->b_xio.xio_pages[i] = NULL;
3302 					vm_page_unwire(m, 0);
3303 					vm_page_wakeup(m);
3304 				}
3305 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3306 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3307 				bp->b_xio.xio_npages = desiredpages;
3308 			}
3309 		} else if (size > bp->b_bcount) {
3310 			/*
3311 			 * We are growing the buffer, possibly in a
3312 			 * byte-granular fashion.
3313 			 */
3314 			struct vnode *vp;
3315 			vm_object_t obj;
3316 			vm_offset_t toff;
3317 			vm_offset_t tinc;
3318 
3319 			/*
3320 			 * Step 1, bring in the VM pages from the object,
3321 			 * allocating them if necessary.  We must clear
3322 			 * B_CACHE if these pages are not valid for the
3323 			 * range covered by the buffer.
3324 			 *
3325 			 * critical section protection is required to protect
3326 			 * against interrupts unbusying and freeing pages
3327 			 * between our vm_page_lookup() and our
3328 			 * busycheck/wiring call.
3329 			 */
3330 			vp = bp->b_vp;
3331 			obj = vp->v_object;
3332 
3333 			vm_object_hold(obj);
3334 			while (bp->b_xio.xio_npages < desiredpages) {
3335 				vm_page_t m;
3336 				vm_pindex_t pi;
3337 				int error;
3338 
3339 				pi = OFF_TO_IDX(bp->b_loffset) +
3340 				     bp->b_xio.xio_npages;
3341 
3342 				/*
3343 				 * Blocking on m->busy might lead to a
3344 				 * deadlock:
3345 				 *
3346 				 *  vm_fault->getpages->cluster_read->allocbuf
3347 				 */
3348 				m = vm_page_lookup_busy_try(obj, pi, FALSE,
3349 							    &error);
3350 				if (error) {
3351 					vm_page_sleep_busy(m, FALSE, "pgtblk");
3352 					continue;
3353 				}
3354 				if (m == NULL) {
3355 					/*
3356 					 * note: must allocate system pages
3357 					 * since blocking here could intefere
3358 					 * with paging I/O, no matter which
3359 					 * process we are.
3360 					 */
3361 					m = bio_page_alloc(bp, obj, pi, desiredpages - bp->b_xio.xio_npages);
3362 					if (m) {
3363 						vm_page_wire(m);
3364 						vm_page_flag_clear(m, PG_ZERO);
3365 						vm_page_wakeup(m);
3366 						bp->b_flags &= ~B_CACHE;
3367 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3368 						++bp->b_xio.xio_npages;
3369 					}
3370 					continue;
3371 				}
3372 
3373 				/*
3374 				 * We found a page and were able to busy it.
3375 				 */
3376 				vm_page_flag_clear(m, PG_ZERO);
3377 				vm_page_wire(m);
3378 				vm_page_wakeup(m);
3379 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3380 				++bp->b_xio.xio_npages;
3381 				if (bp->b_act_count < m->act_count)
3382 					bp->b_act_count = m->act_count;
3383 			}
3384 			vm_object_drop(obj);
3385 
3386 			/*
3387 			 * Step 2.  We've loaded the pages into the buffer,
3388 			 * we have to figure out if we can still have B_CACHE
3389 			 * set.  Note that B_CACHE is set according to the
3390 			 * byte-granular range ( bcount and size ), not the
3391 			 * aligned range ( newbsize ).
3392 			 *
3393 			 * The VM test is against m->valid, which is DEV_BSIZE
3394 			 * aligned.  Needless to say, the validity of the data
3395 			 * needs to also be DEV_BSIZE aligned.  Note that this
3396 			 * fails with NFS if the server or some other client
3397 			 * extends the file's EOF.  If our buffer is resized,
3398 			 * B_CACHE may remain set! XXX
3399 			 */
3400 
3401 			toff = bp->b_bcount;
3402 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3403 
3404 			while ((bp->b_flags & B_CACHE) && toff < size) {
3405 				vm_pindex_t pi;
3406 
3407 				if (tinc > (size - toff))
3408 					tinc = size - toff;
3409 
3410 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3411 				    PAGE_SHIFT;
3412 
3413 				vfs_buf_test_cache(
3414 				    bp,
3415 				    bp->b_loffset,
3416 				    toff,
3417 				    tinc,
3418 				    bp->b_xio.xio_pages[pi]
3419 				);
3420 				toff += tinc;
3421 				tinc = PAGE_SIZE;
3422 			}
3423 
3424 			/*
3425 			 * Step 3, fixup the KVM pmap.  Remember that
3426 			 * bp->b_data is relative to bp->b_loffset, but
3427 			 * bp->b_loffset may be offset into the first page.
3428 			 */
3429 
3430 			bp->b_data = (caddr_t)
3431 			    trunc_page((vm_offset_t)bp->b_data);
3432 			pmap_qenter(
3433 			    (vm_offset_t)bp->b_data,
3434 			    bp->b_xio.xio_pages,
3435 			    bp->b_xio.xio_npages
3436 			);
3437 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3438 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3439 		}
3440 	}
3441 
3442 	/* adjust space use on already-dirty buffer */
3443 	if (bp->b_flags & B_DELWRI) {
3444 		/* dirtykvaspace unchanged */
3445 		atomic_add_long(&dirtybufspace, newbsize - bp->b_bufsize);
3446 		if (bp->b_flags & B_HEAVY) {
3447 			atomic_add_long(&dirtybufspacehw,
3448 					newbsize - bp->b_bufsize);
3449 		}
3450 	}
3451 	if (newbsize < bp->b_bufsize)
3452 		bufspacewakeup();
3453 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3454 	bp->b_bcount = size;		/* requested buffer size	*/
3455 	return 1;
3456 }
3457 
3458 /*
3459  * biowait:
3460  *
3461  *	Wait for buffer I/O completion, returning error status. B_EINTR
3462  *	is converted into an EINTR error but not cleared (since a chain
3463  *	of biowait() calls may occur).
3464  *
3465  *	On return bpdone() will have been called but the buffer will remain
3466  *	locked and will not have been brelse()'d.
3467  *
3468  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3469  *	likely still in progress on return.
3470  *
3471  *	NOTE!  This operation is on a BIO, not a BUF.
3472  *
3473  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3474  */
3475 static __inline int
3476 _biowait(struct bio *bio, const char *wmesg, int to)
3477 {
3478 	struct buf *bp = bio->bio_buf;
3479 	u_int32_t flags;
3480 	u_int32_t nflags;
3481 	int error;
3482 
3483 	KKASSERT(bio == &bp->b_bio1);
3484 	for (;;) {
3485 		flags = bio->bio_flags;
3486 		if (flags & BIO_DONE)
3487 			break;
3488 		nflags = flags | BIO_WANT;
3489 		tsleep_interlock(bio, 0);
3490 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3491 			if (wmesg)
3492 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3493 			else if (bp->b_cmd == BUF_CMD_READ)
3494 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3495 			else
3496 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3497 			if (error) {
3498 				kprintf("tsleep error biowait %d\n", error);
3499 				return (error);
3500 			}
3501 		}
3502 	}
3503 
3504 	/*
3505 	 * Finish up.
3506 	 */
3507 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3508 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3509 	if (bp->b_flags & B_EINTR)
3510 		return (EINTR);
3511 	if (bp->b_flags & B_ERROR)
3512 		return (bp->b_error ? bp->b_error : EIO);
3513 	return (0);
3514 }
3515 
3516 int
3517 biowait(struct bio *bio, const char *wmesg)
3518 {
3519 	return(_biowait(bio, wmesg, 0));
3520 }
3521 
3522 int
3523 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3524 {
3525 	return(_biowait(bio, wmesg, to));
3526 }
3527 
3528 /*
3529  * This associates a tracking count with an I/O.  vn_strategy() and
3530  * dev_dstrategy() do this automatically but there are a few cases
3531  * where a vnode or device layer is bypassed when a block translation
3532  * is cached.  In such cases bio_start_transaction() may be called on
3533  * the bypassed layers so the system gets an I/O in progress indication
3534  * for those higher layers.
3535  */
3536 void
3537 bio_start_transaction(struct bio *bio, struct bio_track *track)
3538 {
3539 	bio->bio_track = track;
3540 	bio_track_ref(track);
3541 	dsched_buf_enter(bio->bio_buf);	/* might stack */
3542 }
3543 
3544 /*
3545  * Initiate I/O on a vnode.
3546  *
3547  * SWAPCACHE OPERATION:
3548  *
3549  *	Real buffer cache buffers have a non-NULL bp->b_vp.  Unfortunately
3550  *	devfs also uses b_vp for fake buffers so we also have to check
3551  *	that B_PAGING is 0.  In this case the passed 'vp' is probably the
3552  *	underlying block device.  The swap assignments are related to the
3553  *	buffer cache buffer's b_vp, not the passed vp.
3554  *
3555  *	The passed vp == bp->b_vp only in the case where the strategy call
3556  *	is made on the vp itself for its own buffers (a regular file or
3557  *	block device vp).  The filesystem usually then re-calls vn_strategy()
3558  *	after translating the request to an underlying device.
3559  *
3560  *	Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3561  *	underlying buffer cache buffers.
3562  *
3563  *	We can only deal with page-aligned buffers at the moment, because
3564  *	we can't tell what the real dirty state for pages straddling a buffer
3565  *	are.
3566  *
3567  *	In order to call swap_pager_strategy() we must provide the VM object
3568  *	and base offset for the underlying buffer cache pages so it can find
3569  *	the swap blocks.
3570  */
3571 void
3572 vn_strategy(struct vnode *vp, struct bio *bio)
3573 {
3574 	struct bio_track *track;
3575 	struct buf *bp = bio->bio_buf;
3576 
3577 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3578 
3579 	/*
3580 	 * Set when an I/O is issued on the bp.  Cleared by consumers
3581 	 * (aka HAMMER), allowing the consumer to determine if I/O had
3582 	 * actually occurred.
3583 	 */
3584 	bp->b_flags |= B_IODEBUG;
3585 
3586 	/*
3587 	 * Handle the swap cache intercept.
3588 	 */
3589 	if (vn_cache_strategy(vp, bio))
3590 		return;
3591 
3592 	/*
3593 	 * Otherwise do the operation through the filesystem
3594 	 */
3595         if (bp->b_cmd == BUF_CMD_READ)
3596                 track = &vp->v_track_read;
3597         else
3598                 track = &vp->v_track_write;
3599 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3600 	bio->bio_track = track;
3601 	bio_track_ref(track);
3602 	dsched_buf_enter(bp);	/* might stack */
3603         vop_strategy(*vp->v_ops, vp, bio);
3604 }
3605 
3606 static void vn_cache_strategy_callback(struct bio *bio);
3607 
3608 int
3609 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3610 {
3611 	struct buf *bp = bio->bio_buf;
3612 	struct bio *nbio;
3613 	vm_object_t object;
3614 	vm_page_t m;
3615 	int i;
3616 
3617 	/*
3618 	 * Stop using swapcache if paniced, dumping, or dumped
3619 	 */
3620 	if (panicstr || dumping)
3621 		return(0);
3622 
3623 	/*
3624 	 * Is this buffer cache buffer suitable for reading from
3625 	 * the swap cache?
3626 	 */
3627 	if (vm_swapcache_read_enable == 0 ||
3628 	    bp->b_cmd != BUF_CMD_READ ||
3629 	    ((bp->b_flags & B_CLUSTER) == 0 &&
3630 	     (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3631 	    ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3632 	    (bp->b_bcount & PAGE_MASK) != 0) {
3633 		return(0);
3634 	}
3635 
3636 	/*
3637 	 * Figure out the original VM object (it will match the underlying
3638 	 * VM pages).  Note that swap cached data uses page indices relative
3639 	 * to that object, not relative to bio->bio_offset.
3640 	 */
3641 	if (bp->b_flags & B_CLUSTER)
3642 		object = vp->v_object;
3643 	else
3644 		object = bp->b_vp->v_object;
3645 
3646 	/*
3647 	 * In order to be able to use the swap cache all underlying VM
3648 	 * pages must be marked as such, and we can't have any bogus pages.
3649 	 */
3650 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3651 		m = bp->b_xio.xio_pages[i];
3652 		if ((m->flags & PG_SWAPPED) == 0)
3653 			break;
3654 		if (m == bogus_page)
3655 			break;
3656 	}
3657 
3658 	/*
3659 	 * If we are good then issue the I/O using swap_pager_strategy().
3660 	 *
3661 	 * We can only do this if the buffer actually supports object-backed
3662 	 * I/O.  If it doesn't npages will be 0.
3663 	 */
3664 	if (i && i == bp->b_xio.xio_npages) {
3665 		m = bp->b_xio.xio_pages[0];
3666 		nbio = push_bio(bio);
3667 		nbio->bio_done = vn_cache_strategy_callback;
3668 		nbio->bio_offset = ptoa(m->pindex);
3669 		KKASSERT(m->object == object);
3670 		swap_pager_strategy(object, nbio);
3671 		return(1);
3672 	}
3673 	return(0);
3674 }
3675 
3676 /*
3677  * This is a bit of a hack but since the vn_cache_strategy() function can
3678  * override a VFS's strategy function we must make sure that the bio, which
3679  * is probably bio2, doesn't leak an unexpected offset value back to the
3680  * filesystem.  The filesystem (e.g. UFS) might otherwise assume that the
3681  * bio went through its own file strategy function and the the bio2 offset
3682  * is a cached disk offset when, in fact, it isn't.
3683  */
3684 static void
3685 vn_cache_strategy_callback(struct bio *bio)
3686 {
3687 	bio->bio_offset = NOOFFSET;
3688 	biodone(pop_bio(bio));
3689 }
3690 
3691 /*
3692  * bpdone:
3693  *
3694  *	Finish I/O on a buffer after all BIOs have been processed.
3695  *	Called when the bio chain is exhausted or by biowait.  If called
3696  *	by biowait, elseit is typically 0.
3697  *
3698  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3699  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3700  *	assuming B_INVAL is clear.
3701  *
3702  *	For the VMIO case, we set B_CACHE if the op was a read and no
3703  *	read error occured, or if the op was a write.  B_CACHE is never
3704  *	set if the buffer is invalid or otherwise uncacheable.
3705  *
3706  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3707  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3708  *	in the biodone routine.
3709  *
3710  *	bpdone is responsible for calling bundirty() on the buffer after a
3711  *	successful write.  We previously did this prior to initiating the
3712  *	write under the assumption that the buffer might be dirtied again
3713  *	while the write was in progress, however doing it before-hand creates
3714  *	a race condition prior to the call to vn_strategy() where the
3715  *	filesystem may not be aware that a dirty buffer is present.
3716  *	It should not be possible for the buffer or its underlying pages to
3717  *	be redirtied prior to bpdone()'s unbusying of the underlying VM
3718  *	pages.
3719  */
3720 void
3721 bpdone(struct buf *bp, int elseit)
3722 {
3723 	buf_cmd_t cmd;
3724 
3725 	KASSERT(BUF_REFCNTNB(bp) > 0,
3726 		("bpdone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3727 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3728 		("bpdone: bp %p already done!", bp));
3729 
3730 	/*
3731 	 * No more BIOs are left.  All completion functions have been dealt
3732 	 * with, now we clean up the buffer.
3733 	 */
3734 	cmd = bp->b_cmd;
3735 	bp->b_cmd = BUF_CMD_DONE;
3736 
3737 	/*
3738 	 * Only reads and writes are processed past this point.
3739 	 */
3740 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3741 		if (cmd == BUF_CMD_FREEBLKS)
3742 			bp->b_flags |= B_NOCACHE;
3743 		if (elseit)
3744 			brelse(bp);
3745 		return;
3746 	}
3747 
3748 	/*
3749 	 * A failed write must re-dirty the buffer unless B_INVAL
3750 	 * was set.
3751 	 *
3752 	 * A successful write must clear the dirty flag.  This is done after
3753 	 * the write to ensure that the buffer remains on the vnode's dirty
3754 	 * list for filesystem interlocks / checks until the write is actually
3755 	 * complete.  HAMMER2 is sensitive to this issue.
3756 	 *
3757 	 * Only applicable to normal buffers (with VPs).  vinum buffers may
3758 	 * not have a vp.
3759 	 *
3760 	 * Must be done prior to calling buf_complete() as the callback might
3761 	 * re-dirty the buffer.
3762 	 */
3763 	if (cmd == BUF_CMD_WRITE) {
3764 		if ((bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3765 			bp->b_flags &= ~B_NOCACHE;
3766 			if (bp->b_vp)
3767 				bdirty(bp);
3768 		} else {
3769 			if (bp->b_vp)
3770 				bundirty(bp);
3771 		}
3772 	}
3773 
3774 	/*
3775 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3776 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3777 	 */
3778 	if (LIST_FIRST(&bp->b_dep) != NULL)
3779 		buf_complete(bp);
3780 
3781 	if (bp->b_flags & B_VMIO) {
3782 		int i;
3783 		vm_ooffset_t foff;
3784 		vm_page_t m;
3785 		vm_object_t obj;
3786 		int iosize;
3787 		struct vnode *vp = bp->b_vp;
3788 
3789 		obj = vp->v_object;
3790 
3791 #if defined(VFS_BIO_DEBUG)
3792 		if (vp->v_auxrefs == 0)
3793 			panic("bpdone: zero vnode hold count");
3794 		if ((vp->v_flag & VOBJBUF) == 0)
3795 			panic("bpdone: vnode is not setup for merged cache");
3796 #endif
3797 
3798 		foff = bp->b_loffset;
3799 		KASSERT(foff != NOOFFSET, ("bpdone: no buffer offset"));
3800 		KASSERT(obj != NULL, ("bpdone: missing VM object"));
3801 
3802 #if defined(VFS_BIO_DEBUG)
3803 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3804 			kprintf("bpdone: paging in progress(%d) < "
3805 				"bp->b_xio.xio_npages(%d)\n",
3806 				obj->paging_in_progress,
3807 				bp->b_xio.xio_npages);
3808 		}
3809 #endif
3810 
3811 		/*
3812 		 * Set B_CACHE if the op was a normal read and no error
3813 		 * occured.  B_CACHE is set for writes in the b*write()
3814 		 * routines.
3815 		 */
3816 		iosize = bp->b_bcount - bp->b_resid;
3817 		if (cmd == BUF_CMD_READ &&
3818 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3819 			bp->b_flags |= B_CACHE;
3820 		}
3821 
3822 		vm_object_hold(obj);
3823 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3824 			int bogusflag = 0;
3825 			int resid;
3826 
3827 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3828 			if (resid > iosize)
3829 				resid = iosize;
3830 
3831 			/*
3832 			 * cleanup bogus pages, restoring the originals.  Since
3833 			 * the originals should still be wired, we don't have
3834 			 * to worry about interrupt/freeing races destroying
3835 			 * the VM object association.
3836 			 */
3837 			m = bp->b_xio.xio_pages[i];
3838 			if (m == bogus_page) {
3839 				bogusflag = 1;
3840 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3841 				if (m == NULL)
3842 					panic("bpdone: page disappeared");
3843 				bp->b_xio.xio_pages[i] = m;
3844 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3845 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3846 			}
3847 #if defined(VFS_BIO_DEBUG)
3848 			if (OFF_TO_IDX(foff) != m->pindex) {
3849 				kprintf("bpdone: foff(%lu)/m->pindex(%ld) "
3850 					"mismatch\n",
3851 					(unsigned long)foff, (long)m->pindex);
3852 			}
3853 #endif
3854 
3855 			/*
3856 			 * In the write case, the valid and clean bits are
3857 			 * already changed correctly (see bdwrite()), so we
3858 			 * only need to do this here in the read case.
3859 			 */
3860 			vm_page_busy_wait(m, FALSE, "bpdpgw");
3861 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3862 				vfs_clean_one_page(bp, i, m);
3863 			}
3864 			vm_page_flag_clear(m, PG_ZERO);
3865 
3866 			/*
3867 			 * when debugging new filesystems or buffer I/O
3868 			 * methods, this is the most common error that pops
3869 			 * up.  if you see this, you have not set the page
3870 			 * busy flag correctly!!!
3871 			 */
3872 			if (m->busy == 0) {
3873 				kprintf("bpdone: page busy < 0, "
3874 				    "pindex: %d, foff: 0x(%x,%x), "
3875 				    "resid: %d, index: %d\n",
3876 				    (int) m->pindex, (int)(foff >> 32),
3877 						(int) foff & 0xffffffff, resid, i);
3878 				if (!vn_isdisk(vp, NULL))
3879 					kprintf(" iosize: %ld, loffset: %lld, "
3880 						"flags: 0x%08x, npages: %d\n",
3881 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3882 					    (long long)bp->b_loffset,
3883 					    bp->b_flags, bp->b_xio.xio_npages);
3884 				else
3885 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3886 					    (long long)bp->b_loffset,
3887 					    bp->b_flags, bp->b_xio.xio_npages);
3888 				kprintf(" valid: 0x%x, dirty: 0x%x, "
3889 					"wired: %d\n",
3890 					m->valid, m->dirty,
3891 					m->wire_count);
3892 				panic("bpdone: page busy < 0");
3893 			}
3894 			vm_page_io_finish(m);
3895 			vm_page_wakeup(m);
3896 			vm_object_pip_wakeup(obj);
3897 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3898 			iosize -= resid;
3899 		}
3900 		bp->b_flags &= ~B_HASBOGUS;
3901 		vm_object_drop(obj);
3902 	}
3903 
3904 	/*
3905 	 * Finish up by releasing the buffer.  There are no more synchronous
3906 	 * or asynchronous completions, those were handled by bio_done
3907 	 * callbacks.
3908 	 */
3909 	if (elseit) {
3910 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3911 			brelse(bp);
3912 		else
3913 			bqrelse(bp);
3914 	}
3915 }
3916 
3917 /*
3918  * Normal biodone.
3919  */
3920 void
3921 biodone(struct bio *bio)
3922 {
3923 	struct buf *bp = bio->bio_buf;
3924 
3925 	runningbufwakeup(bp);
3926 
3927 	/*
3928 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3929 	 */
3930 	while (bio) {
3931 		biodone_t *done_func;
3932 		struct bio_track *track;
3933 
3934 		/*
3935 		 * BIO tracking.  Most but not all BIOs are tracked.
3936 		 */
3937 		if ((track = bio->bio_track) != NULL) {
3938 			bio_track_rel(track);
3939 			bio->bio_track = NULL;
3940 		}
3941 
3942 		/*
3943 		 * A bio_done function terminates the loop.  The function
3944 		 * will be responsible for any further chaining and/or
3945 		 * buffer management.
3946 		 *
3947 		 * WARNING!  The done function can deallocate the buffer!
3948 		 */
3949 		if ((done_func = bio->bio_done) != NULL) {
3950 			bio->bio_done = NULL;
3951 			done_func(bio);
3952 			return;
3953 		}
3954 		bio = bio->bio_prev;
3955 	}
3956 
3957 	/*
3958 	 * If we've run out of bio's do normal [a]synchronous completion.
3959 	 */
3960 	bpdone(bp, 1);
3961 }
3962 
3963 /*
3964  * Synchronous biodone - this terminates a synchronous BIO.
3965  *
3966  * bpdone() is called with elseit=FALSE, leaving the buffer completed
3967  * but still locked.  The caller must brelse() the buffer after waiting
3968  * for completion.
3969  */
3970 void
3971 biodone_sync(struct bio *bio)
3972 {
3973 	struct buf *bp = bio->bio_buf;
3974 	int flags;
3975 	int nflags;
3976 
3977 	KKASSERT(bio == &bp->b_bio1);
3978 	bpdone(bp, 0);
3979 
3980 	for (;;) {
3981 		flags = bio->bio_flags;
3982 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
3983 
3984 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3985 			if (flags & BIO_WANT)
3986 				wakeup(bio);
3987 			break;
3988 		}
3989 	}
3990 }
3991 
3992 /*
3993  * vfs_unbusy_pages:
3994  *
3995  *	This routine is called in lieu of iodone in the case of
3996  *	incomplete I/O.  This keeps the busy status for pages
3997  *	consistant.
3998  */
3999 void
4000 vfs_unbusy_pages(struct buf *bp)
4001 {
4002 	int i;
4003 
4004 	runningbufwakeup(bp);
4005 
4006 	if (bp->b_flags & B_VMIO) {
4007 		struct vnode *vp = bp->b_vp;
4008 		vm_object_t obj;
4009 
4010 		obj = vp->v_object;
4011 		vm_object_hold(obj);
4012 
4013 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4014 			vm_page_t m = bp->b_xio.xio_pages[i];
4015 
4016 			/*
4017 			 * When restoring bogus changes the original pages
4018 			 * should still be wired, so we are in no danger of
4019 			 * losing the object association and do not need
4020 			 * critical section protection particularly.
4021 			 */
4022 			if (m == bogus_page) {
4023 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
4024 				if (!m) {
4025 					panic("vfs_unbusy_pages: page missing");
4026 				}
4027 				bp->b_xio.xio_pages[i] = m;
4028 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4029 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4030 			}
4031 			vm_page_busy_wait(m, FALSE, "bpdpgw");
4032 			vm_page_flag_clear(m, PG_ZERO);
4033 			vm_page_io_finish(m);
4034 			vm_page_wakeup(m);
4035 			vm_object_pip_wakeup(obj);
4036 		}
4037 		bp->b_flags &= ~B_HASBOGUS;
4038 		vm_object_drop(obj);
4039 	}
4040 }
4041 
4042 /*
4043  * vfs_busy_pages:
4044  *
4045  *	This routine is called before a device strategy routine.
4046  *	It is used to tell the VM system that paging I/O is in
4047  *	progress, and treat the pages associated with the buffer
4048  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
4049  *	flag is handled to make sure that the object doesn't become
4050  *	inconsistant.
4051  *
4052  *	Since I/O has not been initiated yet, certain buffer flags
4053  *	such as B_ERROR or B_INVAL may be in an inconsistant state
4054  *	and should be ignored.
4055  */
4056 void
4057 vfs_busy_pages(struct vnode *vp, struct buf *bp)
4058 {
4059 	int i, bogus;
4060 	struct lwp *lp = curthread->td_lwp;
4061 
4062 	/*
4063 	 * The buffer's I/O command must already be set.  If reading,
4064 	 * B_CACHE must be 0 (double check against callers only doing
4065 	 * I/O when B_CACHE is 0).
4066 	 */
4067 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4068 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
4069 
4070 	if (bp->b_flags & B_VMIO) {
4071 		vm_object_t obj;
4072 
4073 		obj = vp->v_object;
4074 		KASSERT(bp->b_loffset != NOOFFSET,
4075 			("vfs_busy_pages: no buffer offset"));
4076 
4077 		/*
4078 		 * Busy all the pages.  We have to busy them all at once
4079 		 * to avoid deadlocks.
4080 		 */
4081 retry:
4082 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4083 			vm_page_t m = bp->b_xio.xio_pages[i];
4084 
4085 			if (vm_page_busy_try(m, FALSE)) {
4086 				vm_page_sleep_busy(m, FALSE, "vbpage");
4087 				while (--i >= 0)
4088 					vm_page_wakeup(bp->b_xio.xio_pages[i]);
4089 				goto retry;
4090 			}
4091 		}
4092 
4093 		/*
4094 		 * Setup for I/O, soft-busy the page right now because
4095 		 * the next loop may block.
4096 		 */
4097 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4098 			vm_page_t m = bp->b_xio.xio_pages[i];
4099 
4100 			vm_page_flag_clear(m, PG_ZERO);
4101 			if ((bp->b_flags & B_CLUSTER) == 0) {
4102 				vm_object_pip_add(obj, 1);
4103 				vm_page_io_start(m);
4104 			}
4105 		}
4106 
4107 		/*
4108 		 * Adjust protections for I/O and do bogus-page mapping.
4109 		 * Assume that vm_page_protect() can block (it can block
4110 		 * if VM_PROT_NONE, don't take any chances regardless).
4111 		 *
4112 		 * In particular note that for writes we must incorporate
4113 		 * page dirtyness from the VM system into the buffer's
4114 		 * dirty range.
4115 		 *
4116 		 * For reads we theoretically must incorporate page dirtyness
4117 		 * from the VM system to determine if the page needs bogus
4118 		 * replacement, but we shortcut the test by simply checking
4119 		 * that all m->valid bits are set, indicating that the page
4120 		 * is fully valid and does not need to be re-read.  For any
4121 		 * VM system dirtyness the page will also be fully valid
4122 		 * since it was mapped at one point.
4123 		 */
4124 		bogus = 0;
4125 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4126 			vm_page_t m = bp->b_xio.xio_pages[i];
4127 
4128 			vm_page_flag_clear(m, PG_ZERO);	/* XXX */
4129 			if (bp->b_cmd == BUF_CMD_WRITE) {
4130 				/*
4131 				 * When readying a vnode-backed buffer for
4132 				 * a write we must zero-fill any invalid
4133 				 * portions of the backing VM pages, mark
4134 				 * it valid and clear related dirty bits.
4135 				 *
4136 				 * vfs_clean_one_page() incorporates any
4137 				 * VM dirtyness and updates the b_dirtyoff
4138 				 * range (after we've made the page RO).
4139 				 *
4140 				 * It is also expected that the pmap modified
4141 				 * bit has already been cleared by the
4142 				 * vm_page_protect().  We may not be able
4143 				 * to clear all dirty bits for a page if it
4144 				 * was also memory mapped (NFS).
4145 				 *
4146 				 * Finally be sure to unassign any swap-cache
4147 				 * backing store as it is now stale.
4148 				 */
4149 				vm_page_protect(m, VM_PROT_READ);
4150 				vfs_clean_one_page(bp, i, m);
4151 				swap_pager_unswapped(m);
4152 			} else if (m->valid == VM_PAGE_BITS_ALL) {
4153 				/*
4154 				 * When readying a vnode-backed buffer for
4155 				 * read we must replace any dirty pages with
4156 				 * a bogus page so dirty data is not destroyed
4157 				 * when filling gaps.
4158 				 *
4159 				 * To avoid testing whether the page is
4160 				 * dirty we instead test that the page was
4161 				 * at some point mapped (m->valid fully
4162 				 * valid) with the understanding that
4163 				 * this also covers the dirty case.
4164 				 */
4165 				bp->b_xio.xio_pages[i] = bogus_page;
4166 				bp->b_flags |= B_HASBOGUS;
4167 				bogus++;
4168 			} else if (m->valid & m->dirty) {
4169 				/*
4170 				 * This case should not occur as partial
4171 				 * dirtyment can only happen if the buffer
4172 				 * is B_CACHE, and this code is not entered
4173 				 * if the buffer is B_CACHE.
4174 				 */
4175 				kprintf("Warning: vfs_busy_pages - page not "
4176 					"fully valid! loff=%jx bpf=%08x "
4177 					"idx=%d val=%02x dir=%02x\n",
4178 					(uintmax_t)bp->b_loffset, bp->b_flags,
4179 					i, m->valid, m->dirty);
4180 				vm_page_protect(m, VM_PROT_NONE);
4181 			} else {
4182 				/*
4183 				 * The page is not valid and can be made
4184 				 * part of the read.
4185 				 */
4186 				vm_page_protect(m, VM_PROT_NONE);
4187 			}
4188 			vm_page_wakeup(m);
4189 		}
4190 		if (bogus) {
4191 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4192 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4193 		}
4194 	}
4195 
4196 	/*
4197 	 * This is the easiest place to put the process accounting for the I/O
4198 	 * for now.
4199 	 */
4200 	if (lp != NULL) {
4201 		if (bp->b_cmd == BUF_CMD_READ)
4202 			lp->lwp_ru.ru_inblock++;
4203 		else
4204 			lp->lwp_ru.ru_oublock++;
4205 	}
4206 }
4207 
4208 /*
4209  * Tell the VM system that the pages associated with this buffer
4210  * are clean.  This is used for delayed writes where the data is
4211  * going to go to disk eventually without additional VM intevention.
4212  *
4213  * NOTE: While we only really need to clean through to b_bcount, we
4214  *	 just go ahead and clean through to b_bufsize.
4215  */
4216 static void
4217 vfs_clean_pages(struct buf *bp)
4218 {
4219 	vm_page_t m;
4220 	int i;
4221 
4222 	if ((bp->b_flags & B_VMIO) == 0)
4223 		return;
4224 
4225 	KASSERT(bp->b_loffset != NOOFFSET,
4226 		("vfs_clean_pages: no buffer offset"));
4227 
4228 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
4229 		m = bp->b_xio.xio_pages[i];
4230 		vfs_clean_one_page(bp, i, m);
4231 	}
4232 }
4233 
4234 /*
4235  * vfs_clean_one_page:
4236  *
4237  *	Set the valid bits and clear the dirty bits in a page within a
4238  *	buffer.  The range is restricted to the buffer's size and the
4239  *	buffer's logical offset might index into the first page.
4240  *
4241  *	The caller has busied or soft-busied the page and it is not mapped,
4242  *	test and incorporate the dirty bits into b_dirtyoff/end before
4243  *	clearing them.  Note that we need to clear the pmap modified bits
4244  *	after determining the the page was dirty, vm_page_set_validclean()
4245  *	does not do it for us.
4246  *
4247  *	This routine is typically called after a read completes (dirty should
4248  *	be zero in that case as we are not called on bogus-replace pages),
4249  *	or before a write is initiated.
4250  */
4251 static void
4252 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4253 {
4254 	int bcount;
4255 	int xoff;
4256 	int soff;
4257 	int eoff;
4258 
4259 	/*
4260 	 * Calculate offset range within the page but relative to buffer's
4261 	 * loffset.  loffset might be offset into the first page.
4262 	 */
4263 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4264 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4265 
4266 	if (pageno == 0) {
4267 		soff = xoff;
4268 		eoff = PAGE_SIZE;
4269 	} else {
4270 		soff = (pageno << PAGE_SHIFT);
4271 		eoff = soff + PAGE_SIZE;
4272 	}
4273 	if (eoff > bcount)
4274 		eoff = bcount;
4275 	if (soff >= eoff)
4276 		return;
4277 
4278 	/*
4279 	 * Test dirty bits and adjust b_dirtyoff/end.
4280 	 *
4281 	 * If dirty pages are incorporated into the bp any prior
4282 	 * B_NEEDCOMMIT state (NFS) must be cleared because the
4283 	 * caller has not taken into account the new dirty data.
4284 	 *
4285 	 * If the page was memory mapped the dirty bits might go beyond the
4286 	 * end of the buffer, but we can't really make the assumption that
4287 	 * a file EOF straddles the buffer (even though this is the case for
4288 	 * NFS if B_NEEDCOMMIT is also set).  So for the purposes of clearing
4289 	 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4290 	 * This also saves some console spam.
4291 	 *
4292 	 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4293 	 * NFS can handle huge commits but not huge writes.
4294 	 */
4295 	vm_page_test_dirty(m);
4296 	if (m->dirty) {
4297 		if ((bp->b_flags & B_NEEDCOMMIT) &&
4298 		    (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4299 			if (debug_commit)
4300 				kprintf("Warning: vfs_clean_one_page: bp %p "
4301 				    "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4302 				    " cmd %d vd %02x/%02x x/s/e %d %d %d "
4303 				    "doff/end %d %d\n",
4304 				    bp, (uintmax_t)bp->b_loffset, bp->b_bcount,
4305 				    bp->b_flags, bp->b_cmd,
4306 				    m->valid, m->dirty, xoff, soff, eoff,
4307 				    bp->b_dirtyoff, bp->b_dirtyend);
4308 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4309 			if (debug_commit)
4310 				print_backtrace(-1);
4311 		}
4312 		/*
4313 		 * Only clear the pmap modified bits if ALL the dirty bits
4314 		 * are set, otherwise the system might mis-clear portions
4315 		 * of a page.
4316 		 */
4317 		if (m->dirty == VM_PAGE_BITS_ALL &&
4318 		    (bp->b_flags & B_NEEDCOMMIT) == 0) {
4319 			pmap_clear_modify(m);
4320 		}
4321 		if (bp->b_dirtyoff > soff - xoff)
4322 			bp->b_dirtyoff = soff - xoff;
4323 		if (bp->b_dirtyend < eoff - xoff)
4324 			bp->b_dirtyend = eoff - xoff;
4325 	}
4326 
4327 	/*
4328 	 * Set related valid bits, clear related dirty bits.
4329 	 * Does not mess with the pmap modified bit.
4330 	 *
4331 	 * WARNING!  We cannot just clear all of m->dirty here as the
4332 	 *	     buffer cache buffers may use a DEV_BSIZE'd aligned
4333 	 *	     block size, or have an odd size (e.g. NFS at file EOF).
4334 	 *	     The putpages code can clear m->dirty to 0.
4335 	 *
4336 	 *	     If a VOP_WRITE generates a buffer cache buffer which
4337 	 *	     covers the same space as mapped writable pages the
4338 	 *	     buffer flush might not be able to clear all the dirty
4339 	 *	     bits and still require a putpages from the VM system
4340 	 *	     to finish it off.
4341 	 *
4342 	 * WARNING!  vm_page_set_validclean() currently assumes vm_token
4343 	 *	     is held.  The page might not be busied (bdwrite() case).
4344 	 *	     XXX remove this comment once we've validated that this
4345 	 *	     is no longer an issue.
4346 	 */
4347 	vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4348 }
4349 
4350 #if 0
4351 /*
4352  * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4353  * The page data is assumed to be valid (there is no zeroing here).
4354  */
4355 static void
4356 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4357 {
4358 	int bcount;
4359 	int xoff;
4360 	int soff;
4361 	int eoff;
4362 
4363 	/*
4364 	 * Calculate offset range within the page but relative to buffer's
4365 	 * loffset.  loffset might be offset into the first page.
4366 	 */
4367 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4368 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4369 
4370 	if (pageno == 0) {
4371 		soff = xoff;
4372 		eoff = PAGE_SIZE;
4373 	} else {
4374 		soff = (pageno << PAGE_SHIFT);
4375 		eoff = soff + PAGE_SIZE;
4376 	}
4377 	if (eoff > bcount)
4378 		eoff = bcount;
4379 	if (soff >= eoff)
4380 		return;
4381 	vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4382 }
4383 #endif
4384 
4385 /*
4386  * vfs_bio_clrbuf:
4387  *
4388  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
4389  *	to clear B_ERROR and B_INVAL.
4390  *
4391  *	Note that while we only theoretically need to clear through b_bcount,
4392  *	we go ahead and clear through b_bufsize.
4393  */
4394 
4395 void
4396 vfs_bio_clrbuf(struct buf *bp)
4397 {
4398 	int i, mask = 0;
4399 	caddr_t sa, ea;
4400 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4401 		bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4402 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4403 		    (bp->b_loffset & PAGE_MASK) == 0) {
4404 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4405 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4406 				bp->b_resid = 0;
4407 				return;
4408 			}
4409 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
4410 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
4411 				bzero(bp->b_data, bp->b_bufsize);
4412 				bp->b_xio.xio_pages[0]->valid |= mask;
4413 				bp->b_resid = 0;
4414 				return;
4415 			}
4416 		}
4417 		sa = bp->b_data;
4418 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4419 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4420 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4421 			ea = (caddr_t)(vm_offset_t)ulmin(
4422 			    (u_long)(vm_offset_t)ea,
4423 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4424 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4425 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4426 				continue;
4427 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4428 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
4429 					bzero(sa, ea - sa);
4430 				}
4431 			} else {
4432 				for (; sa < ea; sa += DEV_BSIZE, j++) {
4433 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
4434 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
4435 						bzero(sa, DEV_BSIZE);
4436 				}
4437 			}
4438 			bp->b_xio.xio_pages[i]->valid |= mask;
4439 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4440 		}
4441 		bp->b_resid = 0;
4442 	} else {
4443 		clrbuf(bp);
4444 	}
4445 }
4446 
4447 /*
4448  * vm_hold_load_pages:
4449  *
4450  *	Load pages into the buffer's address space.  The pages are
4451  *	allocated from the kernel object in order to reduce interference
4452  *	with the any VM paging I/O activity.  The range of loaded
4453  *	pages will be wired.
4454  *
4455  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
4456  *	retrieve the full range (to - from) of pages.
4457  */
4458 void
4459 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4460 {
4461 	vm_offset_t pg;
4462 	vm_page_t p;
4463 	int index;
4464 
4465 	to = round_page(to);
4466 	from = round_page(from);
4467 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4468 
4469 	pg = from;
4470 	while (pg < to) {
4471 		/*
4472 		 * Note: must allocate system pages since blocking here
4473 		 * could intefere with paging I/O, no matter which
4474 		 * process we are.
4475 		 */
4476 		vm_object_hold(&kernel_object);
4477 		p = bio_page_alloc(bp, &kernel_object, pg >> PAGE_SHIFT,
4478 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4479 		vm_object_drop(&kernel_object);
4480 		if (p) {
4481 			vm_page_wire(p);
4482 			p->valid = VM_PAGE_BITS_ALL;
4483 			vm_page_flag_clear(p, PG_ZERO);
4484 			pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4485 			bp->b_xio.xio_pages[index] = p;
4486 			vm_page_wakeup(p);
4487 
4488 			pg += PAGE_SIZE;
4489 			++index;
4490 		}
4491 	}
4492 	bp->b_xio.xio_npages = index;
4493 }
4494 
4495 /*
4496  * Allocate a page for a buffer cache buffer.
4497  *
4498  * If NULL is returned the caller is expected to retry (typically check if
4499  * the page already exists on retry before trying to allocate one).
4500  *
4501  * NOTE! Low-memory handling is dealt with in b[q]relse(), not here.  This
4502  *	 function will use the system reserve with the hope that the page
4503  *	 allocations can be returned to PQ_CACHE/PQ_FREE when the caller
4504  *	 is done with the buffer.
4505  *
4506  * NOTE! However, TMPFS is a special case because flushing a dirty buffer
4507  *	 to TMPFS doesn't clean the page.  For TMPFS, only the pagedaemon
4508  *	 is capable of retiring pages (to swap).  For TMPFS we don't dig
4509  *	 into the system reserve because doing so could stall out pretty
4510  *	 much every process running on the system.
4511  */
4512 static
4513 vm_page_t
4514 bio_page_alloc(struct buf *bp, vm_object_t obj, vm_pindex_t pg, int deficit)
4515 {
4516 	int vmflags = VM_ALLOC_NORMAL | VM_ALLOC_NULL_OK;
4517 	vm_page_t p;
4518 
4519 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj));
4520 
4521 	/*
4522 	 * Try a normal allocation first.
4523 	 */
4524 	p = vm_page_alloc(obj, pg, vmflags);
4525 	if (p)
4526 		return(p);
4527 	if (vm_page_lookup(obj, pg))
4528 		return(NULL);
4529 	vm_pageout_deficit += deficit;
4530 
4531 	/*
4532 	 * Try again, digging into the system reserve.
4533 	 *
4534 	 * Trying to recover pages from the buffer cache here can deadlock
4535 	 * against other threads trying to busy underlying pages so we
4536 	 * depend on the code in brelse() and bqrelse() to free/cache the
4537 	 * underlying buffer cache pages when memory is low.
4538 	 */
4539 	if (curthread->td_flags & TDF_SYSTHREAD)
4540 		vmflags |= VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT;
4541 	else if (bp->b_vp && bp->b_vp->v_tag == VT_TMPFS)
4542 		vmflags |= 0;
4543 	else
4544 		vmflags |= VM_ALLOC_SYSTEM;
4545 
4546 	/*recoverbufpages();*/
4547 	p = vm_page_alloc(obj, pg, vmflags);
4548 	if (p)
4549 		return(p);
4550 	if (vm_page_lookup(obj, pg))
4551 		return(NULL);
4552 
4553 	/*
4554 	 * Wait for memory to free up and try again
4555 	 */
4556 	if (vm_page_count_severe())
4557 		++lowmempgallocs;
4558 	vm_wait(hz / 20 + 1);
4559 
4560 	p = vm_page_alloc(obj, pg, vmflags);
4561 	if (p)
4562 		return(p);
4563 	if (vm_page_lookup(obj, pg))
4564 		return(NULL);
4565 
4566 	/*
4567 	 * Ok, now we are really in trouble.
4568 	 */
4569 	{
4570 		static struct krate biokrate = { .freq = 1 };
4571 		krateprintf(&biokrate,
4572 			    "Warning: bio_page_alloc: memory exhausted "
4573 			    "during bufcache page allocation from %s\n",
4574 			    curthread->td_comm);
4575 	}
4576 	if (curthread->td_flags & TDF_SYSTHREAD)
4577 		vm_wait(hz / 20 + 1);
4578 	else
4579 		vm_wait(hz / 2 + 1);
4580 	return (NULL);
4581 }
4582 
4583 /*
4584  * vm_hold_free_pages:
4585  *
4586  *	Return pages associated with the buffer back to the VM system.
4587  *
4588  *	The range of pages underlying the buffer's address space will
4589  *	be unmapped and un-wired.
4590  */
4591 void
4592 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4593 {
4594 	vm_offset_t pg;
4595 	vm_page_t p;
4596 	int index, newnpages;
4597 
4598 	from = round_page(from);
4599 	to = round_page(to);
4600 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4601 	newnpages = index;
4602 
4603 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4604 		p = bp->b_xio.xio_pages[index];
4605 		if (p && (index < bp->b_xio.xio_npages)) {
4606 			if (p->busy) {
4607 				kprintf("vm_hold_free_pages: doffset: %lld, "
4608 					"loffset: %lld\n",
4609 					(long long)bp->b_bio2.bio_offset,
4610 					(long long)bp->b_loffset);
4611 			}
4612 			bp->b_xio.xio_pages[index] = NULL;
4613 			pmap_kremove(pg);
4614 			vm_page_busy_wait(p, FALSE, "vmhldpg");
4615 			vm_page_unwire(p, 0);
4616 			vm_page_free(p);
4617 		}
4618 	}
4619 	bp->b_xio.xio_npages = newnpages;
4620 }
4621 
4622 /*
4623  * vmapbuf:
4624  *
4625  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
4626  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4627  *	initialized.
4628  */
4629 int
4630 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4631 {
4632 	caddr_t addr;
4633 	vm_offset_t va;
4634 	vm_page_t m;
4635 	int vmprot;
4636 	int error;
4637 	int pidx;
4638 	int i;
4639 
4640 	/*
4641 	 * bp had better have a command and it better be a pbuf.
4642 	 */
4643 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4644 	KKASSERT(bp->b_flags & B_PAGING);
4645 	KKASSERT(bp->b_kvabase);
4646 
4647 	if (bytes < 0)
4648 		return (-1);
4649 
4650 	/*
4651 	 * Map the user data into KVM.  Mappings have to be page-aligned.
4652 	 */
4653 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
4654 	pidx = 0;
4655 
4656 	vmprot = VM_PROT_READ;
4657 	if (bp->b_cmd == BUF_CMD_READ)
4658 		vmprot |= VM_PROT_WRITE;
4659 
4660 	while (addr < udata + bytes) {
4661 		/*
4662 		 * Do the vm_fault if needed; do the copy-on-write thing
4663 		 * when reading stuff off device into memory.
4664 		 *
4665 		 * vm_fault_page*() returns a held VM page.
4666 		 */
4667 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4668 		va = trunc_page(va);
4669 
4670 		m = vm_fault_page_quick(va, vmprot, &error);
4671 		if (m == NULL) {
4672 			for (i = 0; i < pidx; ++i) {
4673 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
4674 			    bp->b_xio.xio_pages[i] = NULL;
4675 			}
4676 			return(-1);
4677 		}
4678 		bp->b_xio.xio_pages[pidx] = m;
4679 		addr += PAGE_SIZE;
4680 		++pidx;
4681 	}
4682 
4683 	/*
4684 	 * Map the page array and set the buffer fields to point to
4685 	 * the mapped data buffer.
4686 	 */
4687 	if (pidx > btoc(MAXPHYS))
4688 		panic("vmapbuf: mapped more than MAXPHYS");
4689 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4690 
4691 	bp->b_xio.xio_npages = pidx;
4692 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4693 	bp->b_bcount = bytes;
4694 	bp->b_bufsize = bytes;
4695 	return(0);
4696 }
4697 
4698 /*
4699  * vunmapbuf:
4700  *
4701  *	Free the io map PTEs associated with this IO operation.
4702  *	We also invalidate the TLB entries and restore the original b_addr.
4703  */
4704 void
4705 vunmapbuf(struct buf *bp)
4706 {
4707 	int pidx;
4708 	int npages;
4709 
4710 	KKASSERT(bp->b_flags & B_PAGING);
4711 
4712 	npages = bp->b_xio.xio_npages;
4713 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4714 	for (pidx = 0; pidx < npages; ++pidx) {
4715 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4716 		bp->b_xio.xio_pages[pidx] = NULL;
4717 	}
4718 	bp->b_xio.xio_npages = 0;
4719 	bp->b_data = bp->b_kvabase;
4720 }
4721 
4722 /*
4723  * Scan all buffers in the system and issue the callback.
4724  */
4725 int
4726 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4727 {
4728 	int count = 0;
4729 	int error;
4730 	long n;
4731 
4732 	for (n = 0; n < nbuf; ++n) {
4733 		if ((error = callback(&buf[n], info)) < 0) {
4734 			count = error;
4735 			break;
4736 		}
4737 		count += error;
4738 	}
4739 	return (count);
4740 }
4741 
4742 /*
4743  * nestiobuf_iodone: biodone callback for nested buffers and propagate
4744  * completion to the master buffer.
4745  */
4746 static void
4747 nestiobuf_iodone(struct bio *bio)
4748 {
4749 	struct bio *mbio;
4750 	struct buf *mbp, *bp;
4751 	struct devstat *stats;
4752 	int error;
4753 	int donebytes;
4754 
4755 	bp = bio->bio_buf;
4756 	mbio = bio->bio_caller_info1.ptr;
4757 	stats = bio->bio_caller_info2.ptr;
4758 	mbp = mbio->bio_buf;
4759 
4760 	KKASSERT(bp->b_bcount <= bp->b_bufsize);
4761 	KKASSERT(mbp != bp);
4762 
4763 	error = bp->b_error;
4764 	if (bp->b_error == 0 &&
4765 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4766 		/*
4767 		 * Not all got transfered, raise an error. We have no way to
4768 		 * propagate these conditions to mbp.
4769 		 */
4770 		error = EIO;
4771 	}
4772 
4773 	donebytes = bp->b_bufsize;
4774 
4775 	relpbuf(bp, NULL);
4776 
4777 	nestiobuf_done(mbio, donebytes, error, stats);
4778 }
4779 
4780 void
4781 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats)
4782 {
4783 	struct buf *mbp;
4784 
4785 	mbp = mbio->bio_buf;
4786 
4787 	KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4788 
4789 	/*
4790 	 * If an error occured, propagate it to the master buffer.
4791 	 *
4792 	 * Several biodone()s may wind up running concurrently so
4793 	 * use an atomic op to adjust b_flags.
4794 	 */
4795 	if (error) {
4796 		mbp->b_error = error;
4797 		atomic_set_int(&mbp->b_flags, B_ERROR);
4798 	}
4799 
4800 	/*
4801 	 * Decrement the operations in progress counter and terminate the
4802 	 * I/O if this was the last bit.
4803 	 */
4804 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4805 		mbp->b_resid = 0;
4806 		if (stats)
4807 			devstat_end_transaction_buf(stats, mbp);
4808 		biodone(mbio);
4809 	}
4810 }
4811 
4812 /*
4813  * Initialize a nestiobuf for use.  Set an initial count of 1 to prevent
4814  * the mbio from being biodone()'d while we are still adding sub-bios to
4815  * it.
4816  */
4817 void
4818 nestiobuf_init(struct bio *bio)
4819 {
4820 	bio->bio_driver_info = (void *)1;
4821 }
4822 
4823 /*
4824  * The BIOs added to the nestedio have already been started, remove the
4825  * count that placeheld our mbio and biodone() it if the count would
4826  * transition to 0.
4827  */
4828 void
4829 nestiobuf_start(struct bio *mbio)
4830 {
4831 	struct buf *mbp = mbio->bio_buf;
4832 
4833 	/*
4834 	 * Decrement the operations in progress counter and terminate the
4835 	 * I/O if this was the last bit.
4836 	 */
4837 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4838 		if (mbp->b_flags & B_ERROR)
4839 			mbp->b_resid = mbp->b_bcount;
4840 		else
4841 			mbp->b_resid = 0;
4842 		biodone(mbio);
4843 	}
4844 }
4845 
4846 /*
4847  * Set an intermediate error prior to calling nestiobuf_start()
4848  */
4849 void
4850 nestiobuf_error(struct bio *mbio, int error)
4851 {
4852 	struct buf *mbp = mbio->bio_buf;
4853 
4854 	if (error) {
4855 		mbp->b_error = error;
4856 		atomic_set_int(&mbp->b_flags, B_ERROR);
4857 	}
4858 }
4859 
4860 /*
4861  * nestiobuf_add: setup a "nested" buffer.
4862  *
4863  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4864  * => 'bp' should be a buffer allocated by getiobuf.
4865  * => 'offset' is a byte offset in the master buffer.
4866  * => 'size' is a size in bytes of this nested buffer.
4867  */
4868 void
4869 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats)
4870 {
4871 	struct buf *mbp = mbio->bio_buf;
4872 	struct vnode *vp = mbp->b_vp;
4873 
4874 	KKASSERT(mbp->b_bcount >= offset + size);
4875 
4876 	atomic_add_int((int *)&mbio->bio_driver_info, 1);
4877 
4878 	/* kernel needs to own the lock for it to be released in biodone */
4879 	BUF_KERNPROC(bp);
4880 	bp->b_vp = vp;
4881 	bp->b_cmd = mbp->b_cmd;
4882 	bp->b_bio1.bio_done = nestiobuf_iodone;
4883 	bp->b_data = (char *)mbp->b_data + offset;
4884 	bp->b_resid = bp->b_bcount = size;
4885 	bp->b_bufsize = bp->b_bcount;
4886 
4887 	bp->b_bio1.bio_track = NULL;
4888 	bp->b_bio1.bio_caller_info1.ptr = mbio;
4889 	bp->b_bio1.bio_caller_info2.ptr = stats;
4890 }
4891 
4892 #ifdef DDB
4893 
4894 DB_SHOW_COMMAND(buffer, db_show_buffer)
4895 {
4896 	/* get args */
4897 	struct buf *bp = (struct buf *)addr;
4898 
4899 	if (!have_addr) {
4900 		db_printf("usage: show buffer <addr>\n");
4901 		return;
4902 	}
4903 
4904 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4905 	db_printf("b_cmd = %d\n", bp->b_cmd);
4906 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4907 		  "b_resid = %d\n, b_data = %p, "
4908 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4909 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4910 		  bp->b_data,
4911 		  (long long)bp->b_bio2.bio_offset,
4912 		  (long long)(bp->b_bio2.bio_next ?
4913 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4914 	if (bp->b_xio.xio_npages) {
4915 		int i;
4916 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4917 			bp->b_xio.xio_npages);
4918 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4919 			vm_page_t m;
4920 			m = bp->b_xio.xio_pages[i];
4921 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4922 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4923 			if ((i + 1) < bp->b_xio.xio_npages)
4924 				db_printf(",");
4925 		}
4926 		db_printf("\n");
4927 	}
4928 }
4929 #endif /* DDB */
4930