xref: /dragonfly/sys/kern/vfs_bio.c (revision 7bc7e232)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.95 2007/11/07 00:46:36 dillon Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <vm/vm_page2.h>
61 
62 #include "opt_ddb.h"
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 /*
68  * Buffer queues.
69  */
70 #define BUFFER_QUEUES	6
71 enum bufq_type {
72 	BQUEUE_NONE,    	/* not on any queue */
73 	BQUEUE_LOCKED,  	/* locked buffers */
74 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
75 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
76 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
77 	BQUEUE_EMPTY    	/* empty buffer headers */
78 };
79 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
80 
81 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
82 
83 struct buf *buf;		/* buffer header pool */
84 
85 static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
86 		vm_offset_t to);
87 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
88 		vm_offset_t to);
89 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
90 			       int pageno, vm_page_t m);
91 static void vfs_clean_pages(struct buf *bp);
92 static void vfs_setdirty(struct buf *bp);
93 static void vfs_vmio_release(struct buf *bp);
94 static int flushbufqueues(void);
95 
96 static void buf_daemon (void);
97 /*
98  * bogus page -- for I/O to/from partially complete buffers
99  * this is a temporary solution to the problem, but it is not
100  * really that bad.  it would be better to split the buffer
101  * for input in the case of buffers partially already in memory,
102  * but the code is intricate enough already.
103  */
104 vm_page_t bogus_page;
105 int runningbufspace;
106 
107 /*
108  * These are all static, but make the ones we export globals so we do
109  * not need to use compiler magic.
110  */
111 int bufspace, maxbufspace,
112 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
113 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
114 static int lorunningspace, hirunningspace, runningbufreq;
115 int numdirtybuffers, lodirtybuffers, hidirtybuffers;
116 static int numfreebuffers, lofreebuffers, hifreebuffers;
117 static int getnewbufcalls;
118 static int getnewbufrestarts;
119 
120 static int needsbuffer;		/* locked by needsbuffer_spin */
121 static int bd_request;		/* locked by needsbuffer_spin */
122 static struct spinlock needsbuffer_spin;
123 
124 /*
125  * Sysctls for operational control of the buffer cache.
126  */
127 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
128 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
129 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
130 	"High watermark used to trigger explicit flushing of dirty buffers");
131 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
132 	"Low watermark for special reserve in low-memory situations");
133 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
134 	"High watermark for special reserve in low-memory situations");
135 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
136 	"Minimum amount of buffer space required for active I/O");
137 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
138 	"Maximum amount of buffer space to usable for active I/O");
139 /*
140  * Sysctls determining current state of the buffer cache.
141  */
142 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
143 	"Pending number of dirty buffers");
144 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
145 	"Number of free buffers on the buffer cache free list");
146 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
147 	"I/O bytes currently in progress due to asynchronous writes");
148 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
149 	"Hard limit on maximum amount of memory usable for buffer space");
150 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
151 	"Soft limit on maximum amount of memory usable for buffer space");
152 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
153 	"Minimum amount of memory to reserve for system buffer space");
154 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
155 	"Amount of memory available for buffers");
156 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
157 	0, "Maximum amount of memory reserved for buffers using malloc");
158 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
159 	"Amount of memory left for buffers using malloc-scheme");
160 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
161 	"New buffer header acquisition requests");
162 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
163 	0, "New buffer header acquisition restarts");
164 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
165 	"Buffer acquisition restarts due to fragmented buffer map");
166 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
167 	"Amount of time KVA space was deallocated in an arbitrary buffer");
168 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
169 	"Amount of time buffer re-use operations were successful");
170 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
171 	"sizeof(struct buf)");
172 
173 char *buf_wmesg = BUF_WMESG;
174 
175 extern int vm_swap_size;
176 
177 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
178 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
179 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
180 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
181 
182 /*
183  * numdirtywakeup:
184  *
185  *	If someone is blocked due to there being too many dirty buffers,
186  *	and numdirtybuffers is now reasonable, wake them up.
187  */
188 
189 static __inline void
190 numdirtywakeup(int level)
191 {
192 	if (numdirtybuffers <= level) {
193 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
194 			spin_lock_wr(&needsbuffer_spin);
195 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
196 			spin_unlock_wr(&needsbuffer_spin);
197 			wakeup(&needsbuffer);
198 		}
199 	}
200 }
201 
202 /*
203  * bufspacewakeup:
204  *
205  *	Called when buffer space is potentially available for recovery.
206  *	getnewbuf() will block on this flag when it is unable to free
207  *	sufficient buffer space.  Buffer space becomes recoverable when
208  *	bp's get placed back in the queues.
209  */
210 
211 static __inline void
212 bufspacewakeup(void)
213 {
214 	/*
215 	 * If someone is waiting for BUF space, wake them up.  Even
216 	 * though we haven't freed the kva space yet, the waiting
217 	 * process will be able to now.
218 	 */
219 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
220 		spin_lock_wr(&needsbuffer_spin);
221 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
222 		spin_unlock_wr(&needsbuffer_spin);
223 		wakeup(&needsbuffer);
224 	}
225 }
226 
227 /*
228  * runningbufwakeup:
229  *
230  *	Accounting for I/O in progress.
231  *
232  */
233 static __inline void
234 runningbufwakeup(struct buf *bp)
235 {
236 	if (bp->b_runningbufspace) {
237 		runningbufspace -= bp->b_runningbufspace;
238 		bp->b_runningbufspace = 0;
239 		if (runningbufreq && runningbufspace <= lorunningspace) {
240 			runningbufreq = 0;
241 			wakeup(&runningbufreq);
242 		}
243 	}
244 }
245 
246 /*
247  * bufcountwakeup:
248  *
249  *	Called when a buffer has been added to one of the free queues to
250  *	account for the buffer and to wakeup anyone waiting for free buffers.
251  *	This typically occurs when large amounts of metadata are being handled
252  *	by the buffer cache ( else buffer space runs out first, usually ).
253  */
254 
255 static __inline void
256 bufcountwakeup(void)
257 {
258 	++numfreebuffers;
259 	if (needsbuffer) {
260 		spin_lock_wr(&needsbuffer_spin);
261 		needsbuffer &= ~VFS_BIO_NEED_ANY;
262 		if (numfreebuffers >= hifreebuffers)
263 			needsbuffer &= ~VFS_BIO_NEED_FREE;
264 		spin_unlock_wr(&needsbuffer_spin);
265 		wakeup(&needsbuffer);
266 	}
267 }
268 
269 /*
270  * waitrunningbufspace()
271  *
272  *	runningbufspace is a measure of the amount of I/O currently
273  *	running.  This routine is used in async-write situations to
274  *	prevent creating huge backups of pending writes to a device.
275  *	Only asynchronous writes are governed by this function.
276  *
277  *	Reads will adjust runningbufspace, but will not block based on it.
278  *	The read load has a side effect of reducing the allowed write load.
279  *
280  *	This does NOT turn an async write into a sync write.  It waits
281  *	for earlier writes to complete and generally returns before the
282  *	caller's write has reached the device.
283  */
284 static __inline void
285 waitrunningbufspace(void)
286 {
287 	if (runningbufspace > hirunningspace) {
288 		crit_enter();
289 		while (runningbufspace > hirunningspace) {
290 			++runningbufreq;
291 			tsleep(&runningbufreq, 0, "wdrain", 0);
292 		}
293 		crit_exit();
294 	}
295 }
296 
297 /*
298  * vfs_buf_test_cache:
299  *
300  *	Called when a buffer is extended.  This function clears the B_CACHE
301  *	bit if the newly extended portion of the buffer does not contain
302  *	valid data.
303  */
304 static __inline__
305 void
306 vfs_buf_test_cache(struct buf *bp,
307 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
308 		  vm_page_t m)
309 {
310 	if (bp->b_flags & B_CACHE) {
311 		int base = (foff + off) & PAGE_MASK;
312 		if (vm_page_is_valid(m, base, size) == 0)
313 			bp->b_flags &= ~B_CACHE;
314 	}
315 }
316 
317 /*
318  * bd_wakeup:
319  *
320  *	Wake up the buffer daemon if the number of outstanding dirty buffers
321  *	is above specified threshold 'dirtybuflevel'.
322  *
323  *	The buffer daemon is explicitly woken up when (a) the pending number
324  *	of dirty buffers exceeds the recovery and stall mid-point value,
325  *	(b) during bwillwrite() or (c) buf freelist was exhausted.
326  */
327 static __inline__
328 void
329 bd_wakeup(int dirtybuflevel)
330 {
331 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
332 		spin_lock_wr(&needsbuffer_spin);
333 		bd_request = 1;
334 		spin_unlock_wr(&needsbuffer_spin);
335 		wakeup(&bd_request);
336 	}
337 }
338 
339 /*
340  * bd_speedup:
341  *
342  *	Speed up the buffer cache flushing process.
343  */
344 
345 static __inline__
346 void
347 bd_speedup(void)
348 {
349 	bd_wakeup(1);
350 }
351 
352 /*
353  * bufinit:
354  *
355  *	Load time initialisation of the buffer cache, called from machine
356  *	dependant initialization code.
357  */
358 void
359 bufinit(void)
360 {
361 	struct buf *bp;
362 	vm_offset_t bogus_offset;
363 	int i;
364 
365 	spin_init(&needsbuffer_spin);
366 
367 	/* next, make a null set of free lists */
368 	for (i = 0; i < BUFFER_QUEUES; i++)
369 		TAILQ_INIT(&bufqueues[i]);
370 
371 	/* finally, initialize each buffer header and stick on empty q */
372 	for (i = 0; i < nbuf; i++) {
373 		bp = &buf[i];
374 		bzero(bp, sizeof *bp);
375 		bp->b_flags = B_INVAL;	/* we're just an empty header */
376 		bp->b_cmd = BUF_CMD_DONE;
377 		bp->b_qindex = BQUEUE_EMPTY;
378 		initbufbio(bp);
379 		xio_init(&bp->b_xio);
380 		buf_dep_init(bp);
381 		BUF_LOCKINIT(bp);
382 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
383 	}
384 
385 	/*
386 	 * maxbufspace is the absolute maximum amount of buffer space we are
387 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
388 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
389 	 * used by most other processes.  The differential is required to
390 	 * ensure that buf_daemon is able to run when other processes might
391 	 * be blocked waiting for buffer space.
392 	 *
393 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
394 	 * this may result in KVM fragmentation which is not handled optimally
395 	 * by the system.
396 	 */
397 	maxbufspace = nbuf * BKVASIZE;
398 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
399 	lobufspace = hibufspace - MAXBSIZE;
400 
401 	lorunningspace = 512 * 1024;
402 	hirunningspace = 1024 * 1024;
403 
404 /*
405  * Limit the amount of malloc memory since it is wired permanently into
406  * the kernel space.  Even though this is accounted for in the buffer
407  * allocation, we don't want the malloced region to grow uncontrolled.
408  * The malloc scheme improves memory utilization significantly on average
409  * (small) directories.
410  */
411 	maxbufmallocspace = hibufspace / 20;
412 
413 /*
414  * Reduce the chance of a deadlock occuring by limiting the number
415  * of delayed-write dirty buffers we allow to stack up.
416  */
417 	hidirtybuffers = nbuf / 4 + 20;
418 	numdirtybuffers = 0;
419 /*
420  * To support extreme low-memory systems, make sure hidirtybuffers cannot
421  * eat up all available buffer space.  This occurs when our minimum cannot
422  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
423  * BKVASIZE'd (8K) buffers.
424  */
425 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
426 		hidirtybuffers >>= 1;
427 	}
428 	lodirtybuffers = hidirtybuffers / 2;
429 
430 /*
431  * Try to keep the number of free buffers in the specified range,
432  * and give special processes (e.g. like buf_daemon) access to an
433  * emergency reserve.
434  */
435 	lofreebuffers = nbuf / 18 + 5;
436 	hifreebuffers = 2 * lofreebuffers;
437 	numfreebuffers = nbuf;
438 
439 /*
440  * Maximum number of async ops initiated per buf_daemon loop.  This is
441  * somewhat of a hack at the moment, we really need to limit ourselves
442  * based on the number of bytes of I/O in-transit that were initiated
443  * from buf_daemon.
444  */
445 
446 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
447 	bogus_page = vm_page_alloc(&kernel_object,
448 				   (bogus_offset >> PAGE_SHIFT),
449 				   VM_ALLOC_NORMAL);
450 	vmstats.v_wire_count++;
451 
452 }
453 
454 /*
455  * Initialize the embedded bio structures
456  */
457 void
458 initbufbio(struct buf *bp)
459 {
460 	bp->b_bio1.bio_buf = bp;
461 	bp->b_bio1.bio_prev = NULL;
462 	bp->b_bio1.bio_offset = NOOFFSET;
463 	bp->b_bio1.bio_next = &bp->b_bio2;
464 	bp->b_bio1.bio_done = NULL;
465 
466 	bp->b_bio2.bio_buf = bp;
467 	bp->b_bio2.bio_prev = &bp->b_bio1;
468 	bp->b_bio2.bio_offset = NOOFFSET;
469 	bp->b_bio2.bio_next = NULL;
470 	bp->b_bio2.bio_done = NULL;
471 }
472 
473 /*
474  * Reinitialize the embedded bio structures as well as any additional
475  * translation cache layers.
476  */
477 void
478 reinitbufbio(struct buf *bp)
479 {
480 	struct bio *bio;
481 
482 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
483 		bio->bio_done = NULL;
484 		bio->bio_offset = NOOFFSET;
485 	}
486 }
487 
488 /*
489  * Push another BIO layer onto an existing BIO and return it.  The new
490  * BIO layer may already exist, holding cached translation data.
491  */
492 struct bio *
493 push_bio(struct bio *bio)
494 {
495 	struct bio *nbio;
496 
497 	if ((nbio = bio->bio_next) == NULL) {
498 		int index = bio - &bio->bio_buf->b_bio_array[0];
499 		if (index >= NBUF_BIO - 1) {
500 			panic("push_bio: too many layers bp %p\n",
501 				bio->bio_buf);
502 		}
503 		nbio = &bio->bio_buf->b_bio_array[index + 1];
504 		bio->bio_next = nbio;
505 		nbio->bio_prev = bio;
506 		nbio->bio_buf = bio->bio_buf;
507 		nbio->bio_offset = NOOFFSET;
508 		nbio->bio_done = NULL;
509 		nbio->bio_next = NULL;
510 	}
511 	KKASSERT(nbio->bio_done == NULL);
512 	return(nbio);
513 }
514 
515 void
516 pop_bio(struct bio *bio)
517 {
518 	/* NOP */
519 }
520 
521 void
522 clearbiocache(struct bio *bio)
523 {
524 	while (bio) {
525 		bio->bio_offset = NOOFFSET;
526 		bio = bio->bio_next;
527 	}
528 }
529 
530 /*
531  * bfreekva:
532  *
533  *	Free the KVA allocation for buffer 'bp'.
534  *
535  *	Must be called from a critical section as this is the only locking for
536  *	buffer_map.
537  *
538  *	Since this call frees up buffer space, we call bufspacewakeup().
539  */
540 static void
541 bfreekva(struct buf *bp)
542 {
543 	int count;
544 
545 	if (bp->b_kvasize) {
546 		++buffreekvacnt;
547 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
548 		vm_map_lock(&buffer_map);
549 		bufspace -= bp->b_kvasize;
550 		vm_map_delete(&buffer_map,
551 		    (vm_offset_t) bp->b_kvabase,
552 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
553 		    &count
554 		);
555 		vm_map_unlock(&buffer_map);
556 		vm_map_entry_release(count);
557 		bp->b_kvasize = 0;
558 		bufspacewakeup();
559 	}
560 }
561 
562 /*
563  * bremfree:
564  *
565  *	Remove the buffer from the appropriate free list.
566  */
567 void
568 bremfree(struct buf *bp)
569 {
570 	int old_qindex;
571 
572 	crit_enter();
573 	old_qindex = bp->b_qindex;
574 
575 	if (bp->b_qindex != BQUEUE_NONE) {
576 		KASSERT(BUF_REFCNTNB(bp) == 1,
577 				("bremfree: bp %p not locked",bp));
578 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
579 		bp->b_qindex = BQUEUE_NONE;
580 	} else {
581 		if (BUF_REFCNTNB(bp) <= 1)
582 			panic("bremfree: removing a buffer not on a queue");
583 	}
584 
585 	/*
586 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
587 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
588 	 * the buffer was free and we must decrement numfreebuffers.
589 	 */
590 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
591 		switch(old_qindex) {
592 		case BQUEUE_DIRTY:
593 		case BQUEUE_CLEAN:
594 		case BQUEUE_EMPTY:
595 		case BQUEUE_EMPTYKVA:
596 			--numfreebuffers;
597 			break;
598 		default:
599 			break;
600 		}
601 	}
602 	crit_exit();
603 }
604 
605 
606 /*
607  * bread:
608  *
609  *	Get a buffer with the specified data.  Look in the cache first.  We
610  *	must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
611  *	is set, the buffer is valid and we do not have to do anything ( see
612  *	getblk() ).
613  */
614 int
615 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
616 {
617 	struct buf *bp;
618 
619 	bp = getblk(vp, loffset, size, 0, 0);
620 	*bpp = bp;
621 
622 	/* if not found in cache, do some I/O */
623 	if ((bp->b_flags & B_CACHE) == 0) {
624 		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
625 		bp->b_flags &= ~(B_ERROR | B_INVAL);
626 		bp->b_cmd = BUF_CMD_READ;
627 		vfs_busy_pages(vp, bp);
628 		vn_strategy(vp, &bp->b_bio1);
629 		return (biowait(bp));
630 	}
631 	return (0);
632 }
633 
634 /*
635  * breadn:
636  *
637  *	Operates like bread, but also starts asynchronous I/O on
638  *	read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
639  *	to initiating I/O . If B_CACHE is set, the buffer is valid
640  *	and we do not have to do anything.
641  */
642 int
643 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
644 	int *rabsize, int cnt, struct buf **bpp)
645 {
646 	struct buf *bp, *rabp;
647 	int i;
648 	int rv = 0, readwait = 0;
649 
650 	*bpp = bp = getblk(vp, loffset, size, 0, 0);
651 
652 	/* if not found in cache, do some I/O */
653 	if ((bp->b_flags & B_CACHE) == 0) {
654 		bp->b_flags &= ~(B_ERROR | B_INVAL);
655 		bp->b_cmd = BUF_CMD_READ;
656 		vfs_busy_pages(vp, bp);
657 		vn_strategy(vp, &bp->b_bio1);
658 		++readwait;
659 	}
660 
661 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
662 		if (inmem(vp, *raoffset))
663 			continue;
664 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
665 
666 		if ((rabp->b_flags & B_CACHE) == 0) {
667 			rabp->b_flags |= B_ASYNC;
668 			rabp->b_flags &= ~(B_ERROR | B_INVAL);
669 			rabp->b_cmd = BUF_CMD_READ;
670 			vfs_busy_pages(vp, rabp);
671 			BUF_KERNPROC(rabp);
672 			vn_strategy(vp, &rabp->b_bio1);
673 		} else {
674 			brelse(rabp);
675 		}
676 	}
677 
678 	if (readwait) {
679 		rv = biowait(bp);
680 	}
681 	return (rv);
682 }
683 
684 /*
685  * bwrite:
686  *
687  *	Write, release buffer on completion.  (Done by iodone
688  *	if async).  Do not bother writing anything if the buffer
689  *	is invalid.
690  *
691  *	Note that we set B_CACHE here, indicating that buffer is
692  *	fully valid and thus cacheable.  This is true even of NFS
693  *	now so we set it generally.  This could be set either here
694  *	or in biodone() since the I/O is synchronous.  We put it
695  *	here.
696  */
697 int
698 bwrite(struct buf *bp)
699 {
700 	int oldflags;
701 
702 	if (bp->b_flags & B_INVAL) {
703 		brelse(bp);
704 		return (0);
705 	}
706 
707 	oldflags = bp->b_flags;
708 
709 	if (BUF_REFCNTNB(bp) == 0)
710 		panic("bwrite: buffer is not busy???");
711 	crit_enter();
712 
713 	/* Mark the buffer clean */
714 	bundirty(bp);
715 
716 	bp->b_flags &= ~B_ERROR;
717 	bp->b_flags |= B_CACHE;
718 	bp->b_cmd = BUF_CMD_WRITE;
719 	vfs_busy_pages(bp->b_vp, bp);
720 
721 	/*
722 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
723 	 * valid for vnode-backed buffers.
724 	 */
725 	bp->b_runningbufspace = bp->b_bufsize;
726 	runningbufspace += bp->b_runningbufspace;
727 
728 	crit_exit();
729 	if (oldflags & B_ASYNC)
730 		BUF_KERNPROC(bp);
731 	vn_strategy(bp->b_vp, &bp->b_bio1);
732 
733 	if ((oldflags & B_ASYNC) == 0) {
734 		int rtval = biowait(bp);
735 		brelse(bp);
736 		return (rtval);
737 	} else if ((oldflags & B_NOWDRAIN) == 0) {
738 		/*
739 		 * don't allow the async write to saturate the I/O
740 		 * system.  Deadlocks can occur only if a device strategy
741 		 * routine (like in VN) turns around and issues another
742 		 * high-level write, in which case B_NOWDRAIN is expected
743 		 * to be set.   Otherwise we will not deadlock here because
744 		 * we are blocking waiting for I/O that is already in-progress
745 		 * to complete.
746 		 */
747 		waitrunningbufspace();
748 	}
749 
750 	return (0);
751 }
752 
753 /*
754  * bdwrite:
755  *
756  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
757  *	anything if the buffer is marked invalid.
758  *
759  *	Note that since the buffer must be completely valid, we can safely
760  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
761  *	biodone() in order to prevent getblk from writing the buffer
762  *	out synchronously.
763  */
764 void
765 bdwrite(struct buf *bp)
766 {
767 	if (BUF_REFCNTNB(bp) == 0)
768 		panic("bdwrite: buffer is not busy");
769 
770 	if (bp->b_flags & B_INVAL) {
771 		brelse(bp);
772 		return;
773 	}
774 	bdirty(bp);
775 
776 	/*
777 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
778 	 * true even of NFS now.
779 	 */
780 	bp->b_flags |= B_CACHE;
781 
782 	/*
783 	 * This bmap keeps the system from needing to do the bmap later,
784 	 * perhaps when the system is attempting to do a sync.  Since it
785 	 * is likely that the indirect block -- or whatever other datastructure
786 	 * that the filesystem needs is still in memory now, it is a good
787 	 * thing to do this.  Note also, that if the pageout daemon is
788 	 * requesting a sync -- there might not be enough memory to do
789 	 * the bmap then...  So, this is important to do.
790 	 */
791 	if (bp->b_bio2.bio_offset == NOOFFSET) {
792 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
793 			 NULL, NULL);
794 	}
795 
796 	/*
797 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
798 	 */
799 	vfs_setdirty(bp);
800 
801 	/*
802 	 * We need to do this here to satisfy the vnode_pager and the
803 	 * pageout daemon, so that it thinks that the pages have been
804 	 * "cleaned".  Note that since the pages are in a delayed write
805 	 * buffer -- the VFS layer "will" see that the pages get written
806 	 * out on the next sync, or perhaps the cluster will be completed.
807 	 */
808 	vfs_clean_pages(bp);
809 	bqrelse(bp);
810 
811 	/*
812 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
813 	 * buffers (midpoint between our recovery point and our stall
814 	 * point).
815 	 */
816 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
817 
818 	/*
819 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
820 	 * due to the softdep code.
821 	 */
822 }
823 
824 /*
825  * bdirty:
826  *
827  *	Turn buffer into delayed write request by marking it B_DELWRI.
828  *	B_RELBUF and B_NOCACHE must be cleared.
829  *
830  *	We reassign the buffer to itself to properly update it in the
831  *	dirty/clean lists.
832  *
833  *	Since the buffer is not on a queue, we do not update the
834  *	numfreebuffers count.
835  *
836  *	Must be called from a critical section.
837  *	The buffer must be on BQUEUE_NONE.
838  */
839 void
840 bdirty(struct buf *bp)
841 {
842 	KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
843 	if (bp->b_flags & B_NOCACHE) {
844 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
845 		bp->b_flags &= ~B_NOCACHE;
846 	}
847 	if (bp->b_flags & B_INVAL) {
848 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
849 	}
850 	bp->b_flags &= ~B_RELBUF;
851 
852 	if ((bp->b_flags & B_DELWRI) == 0) {
853 		bp->b_flags |= B_DELWRI;
854 		reassignbuf(bp);
855 		++numdirtybuffers;
856 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
857 	}
858 }
859 
860 /*
861  * bundirty:
862  *
863  *	Clear B_DELWRI for buffer.
864  *
865  *	Since the buffer is not on a queue, we do not update the numfreebuffers
866  *	count.
867  *
868  *	Must be called from a critical section.
869  *
870  *	The buffer is typically on BQUEUE_NONE but there is one case in
871  *	brelse() that calls this function after placing the buffer on
872  *	a different queue.
873  */
874 
875 void
876 bundirty(struct buf *bp)
877 {
878 	if (bp->b_flags & B_DELWRI) {
879 		bp->b_flags &= ~B_DELWRI;
880 		reassignbuf(bp);
881 		--numdirtybuffers;
882 		numdirtywakeup(lodirtybuffers);
883 	}
884 	/*
885 	 * Since it is now being written, we can clear its deferred write flag.
886 	 */
887 	bp->b_flags &= ~B_DEFERRED;
888 }
889 
890 /*
891  * bawrite:
892  *
893  *	Asynchronous write.  Start output on a buffer, but do not wait for
894  *	it to complete.  The buffer is released when the output completes.
895  *
896  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
897  *	B_INVAL buffers.  Not us.
898  */
899 void
900 bawrite(struct buf *bp)
901 {
902 	bp->b_flags |= B_ASYNC;
903 	bwrite(bp);
904 }
905 
906 /*
907  * bowrite:
908  *
909  *	Ordered write.  Start output on a buffer, and flag it so that the
910  *	device will write it in the order it was queued.  The buffer is
911  *	released when the output completes.  bwrite() ( or the VOP routine
912  *	anyway ) is responsible for handling B_INVAL buffers.
913  */
914 int
915 bowrite(struct buf *bp)
916 {
917 	bp->b_flags |= B_ORDERED | B_ASYNC;
918 	return (bwrite(bp));
919 }
920 
921 /*
922  * bwillwrite:
923  *
924  *	Called prior to the locking of any vnodes when we are expecting to
925  *	write.  We do not want to starve the buffer cache with too many
926  *	dirty buffers so we block here.  By blocking prior to the locking
927  *	of any vnodes we attempt to avoid the situation where a locked vnode
928  *	prevents the various system daemons from flushing related buffers.
929  */
930 
931 void
932 bwillwrite(void)
933 {
934 	if (numdirtybuffers >= hidirtybuffers) {
935 		while (numdirtybuffers >= hidirtybuffers) {
936 			bd_wakeup(1);
937 			spin_lock_wr(&needsbuffer_spin);
938 			if (numdirtybuffers >= hidirtybuffers) {
939 				needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
940 				msleep(&needsbuffer, &needsbuffer_spin, 0,
941 				       "flswai", 0);
942 			}
943 			spin_unlock_wr(&needsbuffer_spin);
944 		}
945 	}
946 }
947 
948 /*
949  * buf_dirty_count_severe:
950  *
951  *	Return true if we have too many dirty buffers.
952  */
953 int
954 buf_dirty_count_severe(void)
955 {
956 	return(numdirtybuffers >= hidirtybuffers);
957 }
958 
959 /*
960  * brelse:
961  *
962  *	Release a busy buffer and, if requested, free its resources.  The
963  *	buffer will be stashed in the appropriate bufqueue[] allowing it
964  *	to be accessed later as a cache entity or reused for other purposes.
965  */
966 void
967 brelse(struct buf *bp)
968 {
969 #ifdef INVARIANTS
970 	int saved_flags = bp->b_flags;
971 #endif
972 
973 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
974 
975 	crit_enter();
976 
977 	/*
978 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
979 	 * its backing store.  Clear B_DELWRI.
980 	 *
981 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
982 	 * to destroy the buffer and backing store and (2) when the caller
983 	 * wants to destroy the buffer and backing store after a write
984 	 * completes.
985 	 */
986 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
987 		bundirty(bp);
988 	}
989 
990 	if (bp->b_flags & B_LOCKED)
991 		bp->b_flags &= ~B_ERROR;
992 
993 	/*
994 	 * If a write error occurs and the caller does not want to throw
995 	 * away the buffer, redirty the buffer.  This will also clear
996 	 * B_NOCACHE.
997 	 */
998 	if (bp->b_cmd == BUF_CMD_WRITE &&
999 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
1000 		/*
1001 		 * Failed write, redirty.  Must clear B_ERROR to prevent
1002 		 * pages from being scrapped.  If B_INVAL is set then
1003 		 * this case is not run and the next case is run to
1004 		 * destroy the buffer.  B_INVAL can occur if the buffer
1005 		 * is outside the range supported by the underlying device.
1006 		 */
1007 		bp->b_flags &= ~B_ERROR;
1008 		bdirty(bp);
1009 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1010 		   (bp->b_bufsize <= 0) || bp->b_cmd == BUF_CMD_FREEBLKS) {
1011 		/*
1012 		 * Either a failed I/O or we were asked to free or not
1013 		 * cache the buffer.
1014 		 *
1015 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1016 		 * buffer cannot be immediately freed.
1017 		 */
1018 		bp->b_flags |= B_INVAL;
1019 		if (LIST_FIRST(&bp->b_dep) != NULL)
1020 			buf_deallocate(bp);
1021 		if (bp->b_flags & B_DELWRI) {
1022 			--numdirtybuffers;
1023 			numdirtywakeup(lodirtybuffers);
1024 		}
1025 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1026 	}
1027 
1028 	/*
1029 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1030 	 * If vfs_vmio_release() is called with either bit set, the
1031 	 * underlying pages may wind up getting freed causing a previous
1032 	 * write (bdwrite()) to get 'lost' because pages associated with
1033 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1034 	 * B_LOCKED buffer may be mapped by the filesystem.
1035 	 *
1036 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1037 	 * if B_DELWRI is set.
1038 	 *
1039 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1040 	 * on pages to return pages to the VM page queues.
1041 	 */
1042 	if (bp->b_flags & (B_DELWRI | B_LOCKED))
1043 		bp->b_flags &= ~B_RELBUF;
1044 	else if (vm_page_count_severe())
1045 		bp->b_flags |= B_RELBUF;
1046 
1047 	/*
1048 	 * At this point destroying the buffer is governed by the B_INVAL
1049 	 * or B_RELBUF flags.
1050 	 */
1051 	bp->b_cmd = BUF_CMD_DONE;
1052 
1053 	/*
1054 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1055 	 * after an I/O may have replaces some of the pages with bogus pages
1056 	 * in order to not destroy dirty pages in a fill-in read.
1057 	 *
1058 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1059 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1060 	 * B_INVAL may still be set, however.
1061 	 *
1062 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1063 	 * but not the backing store.   B_NOCACHE will destroy the backing
1064 	 * store.
1065 	 *
1066 	 * Note that dirty NFS buffers contain byte-granular write ranges
1067 	 * and should not be destroyed w/ B_INVAL even if the backing store
1068 	 * is left intact.
1069 	 */
1070 	if (bp->b_flags & B_VMIO) {
1071 		/*
1072 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1073 		 */
1074 		int i, j, resid;
1075 		vm_page_t m;
1076 		off_t foff;
1077 		vm_pindex_t poff;
1078 		vm_object_t obj;
1079 		struct vnode *vp;
1080 
1081 		vp = bp->b_vp;
1082 
1083 		/*
1084 		 * Get the base offset and length of the buffer.  Note that
1085 		 * in the VMIO case if the buffer block size is not
1086 		 * page-aligned then b_data pointer may not be page-aligned.
1087 		 * But our b_xio.xio_pages array *IS* page aligned.
1088 		 *
1089 		 * block sizes less then DEV_BSIZE (usually 512) are not
1090 		 * supported due to the page granularity bits (m->valid,
1091 		 * m->dirty, etc...).
1092 		 *
1093 		 * See man buf(9) for more information
1094 		 */
1095 
1096 		resid = bp->b_bufsize;
1097 		foff = bp->b_loffset;
1098 
1099 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1100 			m = bp->b_xio.xio_pages[i];
1101 			vm_page_flag_clear(m, PG_ZERO);
1102 			/*
1103 			 * If we hit a bogus page, fixup *all* of them
1104 			 * now.  Note that we left these pages wired
1105 			 * when we removed them so they had better exist,
1106 			 * and they cannot be ripped out from under us so
1107 			 * no critical section protection is necessary.
1108 			 */
1109 			if (m == bogus_page) {
1110 				obj = vp->v_object;
1111 				poff = OFF_TO_IDX(bp->b_loffset);
1112 
1113 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1114 					vm_page_t mtmp;
1115 
1116 					mtmp = bp->b_xio.xio_pages[j];
1117 					if (mtmp == bogus_page) {
1118 						mtmp = vm_page_lookup(obj, poff + j);
1119 						if (!mtmp) {
1120 							panic("brelse: page missing");
1121 						}
1122 						bp->b_xio.xio_pages[j] = mtmp;
1123 					}
1124 				}
1125 
1126 				if ((bp->b_flags & B_INVAL) == 0) {
1127 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1128 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1129 				}
1130 				m = bp->b_xio.xio_pages[i];
1131 			}
1132 
1133 			/*
1134 			 * Invalidate the backing store if B_NOCACHE is set
1135 			 * (e.g. used with vinvalbuf()).  If this is NFS
1136 			 * we impose a requirement that the block size be
1137 			 * a multiple of PAGE_SIZE and create a temporary
1138 			 * hack to basically invalidate the whole page.  The
1139 			 * problem is that NFS uses really odd buffer sizes
1140 			 * especially when tracking piecemeal writes and
1141 			 * it also vinvalbuf()'s a lot, which would result
1142 			 * in only partial page validation and invalidation
1143 			 * here.  If the file page is mmap()'d, however,
1144 			 * all the valid bits get set so after we invalidate
1145 			 * here we would end up with weird m->valid values
1146 			 * like 0xfc.  nfs_getpages() can't handle this so
1147 			 * we clear all the valid bits for the NFS case
1148 			 * instead of just some of them.
1149 			 *
1150 			 * The real bug is the VM system having to set m->valid
1151 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1152 			 * itself is an artifact of the whole 512-byte
1153 			 * granular mess that exists to support odd block
1154 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1155 			 * A complete rewrite is required.
1156 			 */
1157 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1158 				int poffset = foff & PAGE_MASK;
1159 				int presid;
1160 
1161 				presid = PAGE_SIZE - poffset;
1162 				if (bp->b_vp->v_tag == VT_NFS &&
1163 				    bp->b_vp->v_type == VREG) {
1164 					; /* entire page */
1165 				} else if (presid > resid) {
1166 					presid = resid;
1167 				}
1168 				KASSERT(presid >= 0, ("brelse: extra page"));
1169 				vm_page_set_invalid(m, poffset, presid);
1170 			}
1171 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1172 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1173 		}
1174 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1175 			vfs_vmio_release(bp);
1176 	} else {
1177 		/*
1178 		 * Rundown for non-VMIO buffers.
1179 		 */
1180 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1181 #if 0
1182 			if (bp->b_vp)
1183 				kprintf("brelse bp %p %08x/%08x: Warning, caught and fixed brelvp bug\n", bp, saved_flags, bp->b_flags);
1184 #endif
1185 			if (bp->b_bufsize)
1186 				allocbuf(bp, 0);
1187 			if (bp->b_vp)
1188 				brelvp(bp);
1189 		}
1190 	}
1191 
1192 	if (bp->b_qindex != BQUEUE_NONE)
1193 		panic("brelse: free buffer onto another queue???");
1194 	if (BUF_REFCNTNB(bp) > 1) {
1195 		/* Temporary panic to verify exclusive locking */
1196 		/* This panic goes away when we allow shared refs */
1197 		panic("brelse: multiple refs");
1198 		/* do not release to free list */
1199 		BUF_UNLOCK(bp);
1200 		crit_exit();
1201 		return;
1202 	}
1203 
1204 	/*
1205 	 * Figure out the correct queue to place the cleaned up buffer on.
1206 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1207 	 * disassociated from their vnode.
1208 	 */
1209 	if (bp->b_flags & B_LOCKED) {
1210 		/*
1211 		 * Buffers that are locked are placed in the locked queue
1212 		 * immediately, regardless of their state.
1213 		 */
1214 		bp->b_qindex = BQUEUE_LOCKED;
1215 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1216 	} else if (bp->b_bufsize == 0) {
1217 		/*
1218 		 * Buffers with no memory.  Due to conditionals near the top
1219 		 * of brelse() such buffers should probably already be
1220 		 * marked B_INVAL and disassociated from their vnode.
1221 		 */
1222 		bp->b_flags |= B_INVAL;
1223 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1224 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1225 		if (bp->b_kvasize) {
1226 			bp->b_qindex = BQUEUE_EMPTYKVA;
1227 		} else {
1228 			bp->b_qindex = BQUEUE_EMPTY;
1229 		}
1230 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1231 	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1232 		/*
1233 		 * Buffers with junk contents.   Again these buffers had better
1234 		 * already be disassociated from their vnode.
1235 		 */
1236 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1237 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1238 		bp->b_flags |= B_INVAL;
1239 		bp->b_qindex = BQUEUE_CLEAN;
1240 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1241 	} else {
1242 		/*
1243 		 * Remaining buffers.  These buffers are still associated with
1244 		 * their vnode.
1245 		 */
1246 		switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1247 		case B_DELWRI | B_AGE:
1248 		    bp->b_qindex = BQUEUE_DIRTY;
1249 		    TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1250 		    break;
1251 		case B_DELWRI:
1252 		    bp->b_qindex = BQUEUE_DIRTY;
1253 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1254 		    break;
1255 		case B_AGE:
1256 		    bp->b_qindex = BQUEUE_CLEAN;
1257 		    TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1258 		    break;
1259 		default:
1260 		    bp->b_qindex = BQUEUE_CLEAN;
1261 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1262 		    break;
1263 		}
1264 	}
1265 
1266 	/*
1267 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1268 	 * on the correct queue.
1269 	 */
1270 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1271 		bundirty(bp);
1272 
1273 	/*
1274 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1275 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1276 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1277 	 * if B_INVAL is set ).
1278 	 */
1279 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1280 		bufcountwakeup();
1281 
1282 	/*
1283 	 * Something we can maybe free or reuse
1284 	 */
1285 	if (bp->b_bufsize || bp->b_kvasize)
1286 		bufspacewakeup();
1287 
1288 	/*
1289 	 * Clean up temporary flags and unlock the buffer.
1290 	 */
1291 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1292 			B_DIRECT | B_NOWDRAIN);
1293 	BUF_UNLOCK(bp);
1294 	crit_exit();
1295 }
1296 
1297 /*
1298  * bqrelse:
1299  *
1300  *	Release a buffer back to the appropriate queue but do not try to free
1301  *	it.  The buffer is expected to be used again soon.
1302  *
1303  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1304  *	biodone() to requeue an async I/O on completion.  It is also used when
1305  *	known good buffers need to be requeued but we think we may need the data
1306  *	again soon.
1307  *
1308  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1309  */
1310 void
1311 bqrelse(struct buf *bp)
1312 {
1313 	crit_enter();
1314 
1315 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1316 
1317 	if (bp->b_qindex != BQUEUE_NONE)
1318 		panic("bqrelse: free buffer onto another queue???");
1319 	if (BUF_REFCNTNB(bp) > 1) {
1320 		/* do not release to free list */
1321 		panic("bqrelse: multiple refs");
1322 		BUF_UNLOCK(bp);
1323 		crit_exit();
1324 		return;
1325 	}
1326 	if (bp->b_flags & B_LOCKED) {
1327 		/*
1328 		 * Locked buffers are released to the locked queue.  However,
1329 		 * if the buffer is dirty it will first go into the dirty
1330 		 * queue and later on after the I/O completes successfully it
1331 		 * will be released to the locked queue.
1332 		 */
1333 		bp->b_flags &= ~B_ERROR;
1334 		bp->b_qindex = BQUEUE_LOCKED;
1335 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1336 	} else if (bp->b_flags & B_DELWRI) {
1337 		bp->b_qindex = BQUEUE_DIRTY;
1338 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1339 	} else if (vm_page_count_severe()) {
1340 		/*
1341 		 * We are too low on memory, we have to try to free the
1342 		 * buffer (most importantly: the wired pages making up its
1343 		 * backing store) *now*.
1344 		 */
1345 		crit_exit();
1346 		brelse(bp);
1347 		return;
1348 	} else {
1349 		bp->b_qindex = BQUEUE_CLEAN;
1350 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1351 	}
1352 
1353 	if ((bp->b_flags & B_LOCKED) == 0 &&
1354 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1355 		bufcountwakeup();
1356 	}
1357 
1358 	/*
1359 	 * Something we can maybe free or reuse.
1360 	 */
1361 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1362 		bufspacewakeup();
1363 
1364 	/*
1365 	 * Final cleanup and unlock.  Clear bits that are only used while a
1366 	 * buffer is actively locked.
1367 	 */
1368 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1369 	BUF_UNLOCK(bp);
1370 	crit_exit();
1371 }
1372 
1373 /*
1374  * vfs_vmio_release:
1375  *
1376  *	Return backing pages held by the buffer 'bp' back to the VM system
1377  *	if possible.  The pages are freed if they are no longer valid or
1378  *	attempt to free if it was used for direct I/O otherwise they are
1379  *	sent to the page cache.
1380  *
1381  *	Pages that were marked busy are left alone and skipped.
1382  *
1383  *	The KVA mapping (b_data) for the underlying pages is removed by
1384  *	this function.
1385  */
1386 static void
1387 vfs_vmio_release(struct buf *bp)
1388 {
1389 	int i;
1390 	vm_page_t m;
1391 
1392 	crit_enter();
1393 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1394 		m = bp->b_xio.xio_pages[i];
1395 		bp->b_xio.xio_pages[i] = NULL;
1396 		/*
1397 		 * In order to keep page LRU ordering consistent, put
1398 		 * everything on the inactive queue.
1399 		 */
1400 		vm_page_unwire(m, 0);
1401 		/*
1402 		 * We don't mess with busy pages, it is
1403 		 * the responsibility of the process that
1404 		 * busied the pages to deal with them.
1405 		 */
1406 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1407 			continue;
1408 
1409 		if (m->wire_count == 0) {
1410 			vm_page_flag_clear(m, PG_ZERO);
1411 			/*
1412 			 * Might as well free the page if we can and it has
1413 			 * no valid data.  We also free the page if the
1414 			 * buffer was used for direct I/O.
1415 			 */
1416 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1417 					m->hold_count == 0) {
1418 				vm_page_busy(m);
1419 				vm_page_protect(m, VM_PROT_NONE);
1420 				vm_page_free(m);
1421 			} else if (bp->b_flags & B_DIRECT) {
1422 				vm_page_try_to_free(m);
1423 			} else if (vm_page_count_severe()) {
1424 				vm_page_try_to_cache(m);
1425 			}
1426 		}
1427 	}
1428 	crit_exit();
1429 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1430 	if (bp->b_bufsize) {
1431 		bufspacewakeup();
1432 		bp->b_bufsize = 0;
1433 	}
1434 	bp->b_xio.xio_npages = 0;
1435 	bp->b_flags &= ~B_VMIO;
1436 	if (bp->b_vp)
1437 		brelvp(bp);
1438 }
1439 
1440 /*
1441  * vfs_bio_awrite:
1442  *
1443  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1444  *	This is much better then the old way of writing only one buffer at
1445  *	a time.  Note that we may not be presented with the buffers in the
1446  *	correct order, so we search for the cluster in both directions.
1447  *
1448  *	The buffer is locked on call.
1449  */
1450 int
1451 vfs_bio_awrite(struct buf *bp)
1452 {
1453 	int i;
1454 	int j;
1455 	off_t loffset = bp->b_loffset;
1456 	struct vnode *vp = bp->b_vp;
1457 	int nbytes;
1458 	struct buf *bpa;
1459 	int nwritten;
1460 	int size;
1461 
1462 	crit_enter();
1463 	/*
1464 	 * right now we support clustered writing only to regular files.  If
1465 	 * we find a clusterable block we could be in the middle of a cluster
1466 	 * rather then at the beginning.
1467 	 *
1468 	 * NOTE: b_bio1 contains the logical loffset and is aliased
1469 	 * to b_loffset.  b_bio2 contains the translated block number.
1470 	 */
1471 	if ((vp->v_type == VREG) &&
1472 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1473 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1474 
1475 		size = vp->v_mount->mnt_stat.f_iosize;
1476 
1477 		for (i = size; i < MAXPHYS; i += size) {
1478 			if ((bpa = findblk(vp, loffset + i)) &&
1479 			    BUF_REFCNT(bpa) == 0 &&
1480 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1481 			    (B_DELWRI | B_CLUSTEROK)) &&
1482 			    (bpa->b_bufsize == size)) {
1483 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1484 				    (bpa->b_bio2.bio_offset !=
1485 				     bp->b_bio2.bio_offset + i))
1486 					break;
1487 			} else {
1488 				break;
1489 			}
1490 		}
1491 		for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1492 			if ((bpa = findblk(vp, loffset - j)) &&
1493 			    BUF_REFCNT(bpa) == 0 &&
1494 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1495 			    (B_DELWRI | B_CLUSTEROK)) &&
1496 			    (bpa->b_bufsize == size)) {
1497 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1498 				    (bpa->b_bio2.bio_offset !=
1499 				     bp->b_bio2.bio_offset - j))
1500 					break;
1501 			} else {
1502 				break;
1503 			}
1504 		}
1505 		j -= size;
1506 		nbytes = (i + j);
1507 		/*
1508 		 * this is a possible cluster write
1509 		 */
1510 		if (nbytes != size) {
1511 			BUF_UNLOCK(bp);
1512 			nwritten = cluster_wbuild(vp, size,
1513 						  loffset - j, nbytes);
1514 			crit_exit();
1515 			return nwritten;
1516 		}
1517 	}
1518 
1519 	bremfree(bp);
1520 	bp->b_flags |= B_ASYNC;
1521 
1522 	crit_exit();
1523 	/*
1524 	 * default (old) behavior, writing out only one block
1525 	 *
1526 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1527 	 */
1528 	nwritten = bp->b_bufsize;
1529 	bwrite(bp);
1530 
1531 	return nwritten;
1532 }
1533 
1534 /*
1535  * getnewbuf:
1536  *
1537  *	Find and initialize a new buffer header, freeing up existing buffers
1538  *	in the bufqueues as necessary.  The new buffer is returned locked.
1539  *
1540  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1541  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1542  *
1543  *	We block if:
1544  *		We have insufficient buffer headers
1545  *		We have insufficient buffer space
1546  *		buffer_map is too fragmented ( space reservation fails )
1547  *		If we have to flush dirty buffers ( but we try to avoid this )
1548  *
1549  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1550  *	Instead we ask the buf daemon to do it for us.  We attempt to
1551  *	avoid piecemeal wakeups of the pageout daemon.
1552  */
1553 
1554 static struct buf *
1555 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1556 {
1557 	struct buf *bp;
1558 	struct buf *nbp;
1559 	int defrag = 0;
1560 	int nqindex;
1561 	static int flushingbufs;
1562 
1563 	/*
1564 	 * We can't afford to block since we might be holding a vnode lock,
1565 	 * which may prevent system daemons from running.  We deal with
1566 	 * low-memory situations by proactively returning memory and running
1567 	 * async I/O rather then sync I/O.
1568 	 */
1569 
1570 	++getnewbufcalls;
1571 	--getnewbufrestarts;
1572 restart:
1573 	++getnewbufrestarts;
1574 
1575 	/*
1576 	 * Setup for scan.  If we do not have enough free buffers,
1577 	 * we setup a degenerate case that immediately fails.  Note
1578 	 * that if we are specially marked process, we are allowed to
1579 	 * dip into our reserves.
1580 	 *
1581 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1582 	 *
1583 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1584 	 * However, there are a number of cases (defragging, reusing, ...)
1585 	 * where we cannot backup.
1586 	 */
1587 	nqindex = BQUEUE_EMPTYKVA;
1588 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1589 
1590 	if (nbp == NULL) {
1591 		/*
1592 		 * If no EMPTYKVA buffers and we are either
1593 		 * defragging or reusing, locate a CLEAN buffer
1594 		 * to free or reuse.  If bufspace useage is low
1595 		 * skip this step so we can allocate a new buffer.
1596 		 */
1597 		if (defrag || bufspace >= lobufspace) {
1598 			nqindex = BQUEUE_CLEAN;
1599 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1600 		}
1601 
1602 		/*
1603 		 * If we could not find or were not allowed to reuse a
1604 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1605 		 * buffer.  We can only use an EMPTY buffer if allocating
1606 		 * its KVA would not otherwise run us out of buffer space.
1607 		 */
1608 		if (nbp == NULL && defrag == 0 &&
1609 		    bufspace + maxsize < hibufspace) {
1610 			nqindex = BQUEUE_EMPTY;
1611 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1612 		}
1613 	}
1614 
1615 	/*
1616 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1617 	 * depending.
1618 	 */
1619 
1620 	while ((bp = nbp) != NULL) {
1621 		int qindex = nqindex;
1622 
1623 		/*
1624 		 * Calculate next bp ( we can only use it if we do not block
1625 		 * or do other fancy things ).
1626 		 */
1627 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1628 			switch(qindex) {
1629 			case BQUEUE_EMPTY:
1630 				nqindex = BQUEUE_EMPTYKVA;
1631 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1632 					break;
1633 				/* fall through */
1634 			case BQUEUE_EMPTYKVA:
1635 				nqindex = BQUEUE_CLEAN;
1636 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1637 					break;
1638 				/* fall through */
1639 			case BQUEUE_CLEAN:
1640 				/*
1641 				 * nbp is NULL.
1642 				 */
1643 				break;
1644 			}
1645 		}
1646 
1647 		/*
1648 		 * Sanity Checks
1649 		 */
1650 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1651 
1652 		/*
1653 		 * Note: we no longer distinguish between VMIO and non-VMIO
1654 		 * buffers.
1655 		 */
1656 
1657 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1658 
1659 		/*
1660 		 * If we are defragging then we need a buffer with
1661 		 * b_kvasize != 0.  XXX this situation should no longer
1662 		 * occur, if defrag is non-zero the buffer's b_kvasize
1663 		 * should also be non-zero at this point.  XXX
1664 		 */
1665 		if (defrag && bp->b_kvasize == 0) {
1666 			kprintf("Warning: defrag empty buffer %p\n", bp);
1667 			continue;
1668 		}
1669 
1670 		/*
1671 		 * Start freeing the bp.  This is somewhat involved.  nbp
1672 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
1673 		 * on the clean list must be disassociated from their
1674 		 * current vnode.  Buffers on the empty[kva] lists have
1675 		 * already been disassociated.
1676 		 */
1677 
1678 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1679 			kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp);
1680 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
1681 			goto restart;
1682 		}
1683 		if (bp->b_qindex != qindex) {
1684 			kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
1685 			BUF_UNLOCK(bp);
1686 			goto restart;
1687 		}
1688 		bremfree(bp);
1689 
1690 		/*
1691 		 * Dependancies must be handled before we disassociate the
1692 		 * vnode.
1693 		 *
1694 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
1695 		 * be immediately disassociated.  HAMMER then becomes
1696 		 * responsible for releasing the buffer.
1697 		 */
1698 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1699 			buf_deallocate(bp);
1700 			if (bp->b_flags & B_LOCKED) {
1701 				bqrelse(bp);
1702 				goto restart;
1703 			}
1704 		}
1705 
1706 		if (qindex == BQUEUE_CLEAN) {
1707 			if (bp->b_flags & B_VMIO) {
1708 				bp->b_flags &= ~B_ASYNC;
1709 				vfs_vmio_release(bp);
1710 			}
1711 			if (bp->b_vp)
1712 				brelvp(bp);
1713 		}
1714 
1715 		/*
1716 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1717 		 * the scan from this point on.
1718 		 *
1719 		 * Get the rest of the buffer freed up.  b_kva* is still
1720 		 * valid after this operation.
1721 		 */
1722 
1723 		KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
1724 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1725 
1726 		/*
1727 		 * critical section protection is not required when
1728 		 * scrapping a buffer's contents because it is already
1729 		 * wired.
1730 		 */
1731 		if (bp->b_bufsize)
1732 			allocbuf(bp, 0);
1733 
1734 		bp->b_flags = B_BNOCLIP;
1735 		bp->b_cmd = BUF_CMD_DONE;
1736 		bp->b_vp = NULL;
1737 		bp->b_error = 0;
1738 		bp->b_resid = 0;
1739 		bp->b_bcount = 0;
1740 		bp->b_xio.xio_npages = 0;
1741 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1742 		reinitbufbio(bp);
1743 		buf_dep_init(bp);
1744 
1745 		/*
1746 		 * If we are defragging then free the buffer.
1747 		 */
1748 		if (defrag) {
1749 			bp->b_flags |= B_INVAL;
1750 			bfreekva(bp);
1751 			brelse(bp);
1752 			defrag = 0;
1753 			goto restart;
1754 		}
1755 
1756 		/*
1757 		 * If we are overcomitted then recover the buffer and its
1758 		 * KVM space.  This occurs in rare situations when multiple
1759 		 * processes are blocked in getnewbuf() or allocbuf().
1760 		 */
1761 		if (bufspace >= hibufspace)
1762 			flushingbufs = 1;
1763 		if (flushingbufs && bp->b_kvasize != 0) {
1764 			bp->b_flags |= B_INVAL;
1765 			bfreekva(bp);
1766 			brelse(bp);
1767 			goto restart;
1768 		}
1769 		if (bufspace < lobufspace)
1770 			flushingbufs = 0;
1771 		break;
1772 	}
1773 
1774 	/*
1775 	 * If we exhausted our list, sleep as appropriate.  We may have to
1776 	 * wakeup various daemons and write out some dirty buffers.
1777 	 *
1778 	 * Generally we are sleeping due to insufficient buffer space.
1779 	 */
1780 
1781 	if (bp == NULL) {
1782 		int flags;
1783 		char *waitmsg;
1784 
1785 		if (defrag) {
1786 			flags = VFS_BIO_NEED_BUFSPACE;
1787 			waitmsg = "nbufkv";
1788 		} else if (bufspace >= hibufspace) {
1789 			waitmsg = "nbufbs";
1790 			flags = VFS_BIO_NEED_BUFSPACE;
1791 		} else {
1792 			waitmsg = "newbuf";
1793 			flags = VFS_BIO_NEED_ANY;
1794 		}
1795 
1796 		bd_speedup();	/* heeeelp */
1797 
1798 		needsbuffer |= flags;
1799 		while (needsbuffer & flags) {
1800 			if (tsleep(&needsbuffer, slpflag, waitmsg, slptimeo))
1801 				return (NULL);
1802 		}
1803 	} else {
1804 		/*
1805 		 * We finally have a valid bp.  We aren't quite out of the
1806 		 * woods, we still have to reserve kva space.  In order
1807 		 * to keep fragmentation sane we only allocate kva in
1808 		 * BKVASIZE chunks.
1809 		 */
1810 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1811 
1812 		if (maxsize != bp->b_kvasize) {
1813 			vm_offset_t addr = 0;
1814 			int count;
1815 
1816 			bfreekva(bp);
1817 
1818 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1819 			vm_map_lock(&buffer_map);
1820 
1821 			if (vm_map_findspace(&buffer_map,
1822 				    vm_map_min(&buffer_map), maxsize,
1823 				    maxsize, &addr)) {
1824 				/*
1825 				 * Uh oh.  Buffer map is too fragmented.  We
1826 				 * must defragment the map.
1827 				 */
1828 				vm_map_unlock(&buffer_map);
1829 				vm_map_entry_release(count);
1830 				++bufdefragcnt;
1831 				defrag = 1;
1832 				bp->b_flags |= B_INVAL;
1833 				brelse(bp);
1834 				goto restart;
1835 			}
1836 			if (addr) {
1837 				vm_map_insert(&buffer_map, &count,
1838 					NULL, 0,
1839 					addr, addr + maxsize,
1840 					VM_MAPTYPE_NORMAL,
1841 					VM_PROT_ALL, VM_PROT_ALL,
1842 					MAP_NOFAULT);
1843 
1844 				bp->b_kvabase = (caddr_t) addr;
1845 				bp->b_kvasize = maxsize;
1846 				bufspace += bp->b_kvasize;
1847 				++bufreusecnt;
1848 			}
1849 			vm_map_unlock(&buffer_map);
1850 			vm_map_entry_release(count);
1851 		}
1852 		bp->b_data = bp->b_kvabase;
1853 	}
1854 	return(bp);
1855 }
1856 
1857 /*
1858  * buf_daemon:
1859  *
1860  *	Buffer flushing daemon.  Buffers are normally flushed by the
1861  *	update daemon but if it cannot keep up this process starts to
1862  *	take the load in an attempt to prevent getnewbuf() from blocking.
1863  */
1864 
1865 static struct thread *bufdaemonthread;
1866 
1867 static struct kproc_desc buf_kp = {
1868 	"bufdaemon",
1869 	buf_daemon,
1870 	&bufdaemonthread
1871 };
1872 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1873 
1874 static void
1875 buf_daemon(void)
1876 {
1877 	/*
1878 	 * This process needs to be suspended prior to shutdown sync.
1879 	 */
1880 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
1881 	    bufdaemonthread, SHUTDOWN_PRI_LAST);
1882 
1883 	/*
1884 	 * This process is allowed to take the buffer cache to the limit
1885 	 */
1886 	crit_enter();
1887 
1888 	for (;;) {
1889 		kproc_suspend_loop();
1890 
1891 		/*
1892 		 * Do the flush.  Limit the amount of in-transit I/O we
1893 		 * allow to build up, otherwise we would completely saturate
1894 		 * the I/O system.  Wakeup any waiting processes before we
1895 		 * normally would so they can run in parallel with our drain.
1896 		 */
1897 		while (numdirtybuffers > lodirtybuffers) {
1898 			if (flushbufqueues() == 0)
1899 				break;
1900 			waitrunningbufspace();
1901 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1902 		}
1903 
1904 		/*
1905 		 * Only clear bd_request if we have reached our low water
1906 		 * mark.  The buf_daemon normally waits 5 seconds and
1907 		 * then incrementally flushes any dirty buffers that have
1908 		 * built up, within reason.
1909 		 *
1910 		 * If we were unable to hit our low water mark and couldn't
1911 		 * find any flushable buffers, we sleep half a second.
1912 		 * Otherwise we loop immediately.
1913 		 */
1914 		if (numdirtybuffers <= lodirtybuffers) {
1915 			/*
1916 			 * We reached our low water mark, reset the
1917 			 * request and sleep until we are needed again.
1918 			 * The sleep is just so the suspend code works.
1919 			 */
1920 			spin_lock_wr(&needsbuffer_spin);
1921 			bd_request = 0;
1922 			msleep(&bd_request, &needsbuffer_spin, 0, "psleep", hz);
1923 			spin_unlock_wr(&needsbuffer_spin);
1924 		} else {
1925 			/*
1926 			 * We couldn't find any flushable dirty buffers but
1927 			 * still have too many dirty buffers, we
1928 			 * have to sleep and try again.  (rare)
1929 			 */
1930 			tsleep(&bd_request, 0, "qsleep", hz / 2);
1931 		}
1932 	}
1933 }
1934 
1935 /*
1936  * flushbufqueues:
1937  *
1938  *	Try to flush a buffer in the dirty queue.  We must be careful to
1939  *	free up B_INVAL buffers instead of write them, which NFS is
1940  *	particularly sensitive to.
1941  */
1942 
1943 static int
1944 flushbufqueues(void)
1945 {
1946 	struct buf *bp;
1947 	int r = 0;
1948 
1949 	bp = TAILQ_FIRST(&bufqueues[BQUEUE_DIRTY]);
1950 
1951 	while (bp) {
1952 		KASSERT((bp->b_flags & B_DELWRI),
1953 			("unexpected clean buffer %p", bp));
1954 		if (bp->b_flags & B_DELWRI) {
1955 			if (bp->b_flags & B_INVAL) {
1956 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1957 					panic("flushbufqueues: locked buf");
1958 				bremfree(bp);
1959 				brelse(bp);
1960 				++r;
1961 				break;
1962 			}
1963 			if (LIST_FIRST(&bp->b_dep) != NULL &&
1964 			    (bp->b_flags & B_DEFERRED) == 0 &&
1965 			    buf_countdeps(bp, 0)) {
1966 				TAILQ_REMOVE(&bufqueues[BQUEUE_DIRTY],
1967 					     bp, b_freelist);
1968 				TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY],
1969 						  bp, b_freelist);
1970 				bp->b_flags |= B_DEFERRED;
1971 				bp = TAILQ_FIRST(&bufqueues[BQUEUE_DIRTY]);
1972 				continue;
1973 			}
1974 
1975 			/*
1976 			 * Only write it out if we can successfully lock
1977 			 * it.  If the buffer has a dependancy,
1978 			 * buf_checkwrite must also return 0.
1979 			 */
1980 			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
1981 				if (LIST_FIRST(&bp->b_dep) != NULL &&
1982 				    buf_checkwrite(bp)) {
1983 					bremfree(bp);
1984 					brelse(bp);
1985 				} else {
1986 					vfs_bio_awrite(bp);
1987 				}
1988 				++r;
1989 				break;
1990 			}
1991 		}
1992 		bp = TAILQ_NEXT(bp, b_freelist);
1993 	}
1994 	return (r);
1995 }
1996 
1997 /*
1998  * inmem:
1999  *
2000  *	Returns true if no I/O is needed to access the associated VM object.
2001  *	This is like findblk except it also hunts around in the VM system for
2002  *	the data.
2003  *
2004  *	Note that we ignore vm_page_free() races from interrupts against our
2005  *	lookup, since if the caller is not protected our return value will not
2006  *	be any more valid then otherwise once we exit the critical section.
2007  */
2008 int
2009 inmem(struct vnode *vp, off_t loffset)
2010 {
2011 	vm_object_t obj;
2012 	vm_offset_t toff, tinc, size;
2013 	vm_page_t m;
2014 
2015 	if (findblk(vp, loffset))
2016 		return 1;
2017 	if (vp->v_mount == NULL)
2018 		return 0;
2019 	if ((obj = vp->v_object) == NULL)
2020 		return 0;
2021 
2022 	size = PAGE_SIZE;
2023 	if (size > vp->v_mount->mnt_stat.f_iosize)
2024 		size = vp->v_mount->mnt_stat.f_iosize;
2025 
2026 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2027 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2028 		if (m == NULL)
2029 			return 0;
2030 		tinc = size;
2031 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2032 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2033 		if (vm_page_is_valid(m,
2034 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2035 			return 0;
2036 	}
2037 	return 1;
2038 }
2039 
2040 /*
2041  * vfs_setdirty:
2042  *
2043  *	Sets the dirty range for a buffer based on the status of the dirty
2044  *	bits in the pages comprising the buffer.
2045  *
2046  *	The range is limited to the size of the buffer.
2047  *
2048  *	This routine is primarily used by NFS, but is generalized for the
2049  *	B_VMIO case.
2050  */
2051 static void
2052 vfs_setdirty(struct buf *bp)
2053 {
2054 	int i;
2055 	vm_object_t object;
2056 
2057 	/*
2058 	 * Degenerate case - empty buffer
2059 	 */
2060 
2061 	if (bp->b_bufsize == 0)
2062 		return;
2063 
2064 	/*
2065 	 * We qualify the scan for modified pages on whether the
2066 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2067 	 * is not cleared simply by protecting pages off.
2068 	 */
2069 
2070 	if ((bp->b_flags & B_VMIO) == 0)
2071 		return;
2072 
2073 	object = bp->b_xio.xio_pages[0]->object;
2074 
2075 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2076 		kprintf("Warning: object %p writeable but not mightbedirty\n", object);
2077 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2078 		kprintf("Warning: object %p mightbedirty but not writeable\n", object);
2079 
2080 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2081 		vm_offset_t boffset;
2082 		vm_offset_t eoffset;
2083 
2084 		/*
2085 		 * test the pages to see if they have been modified directly
2086 		 * by users through the VM system.
2087 		 */
2088 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2089 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
2090 			vm_page_test_dirty(bp->b_xio.xio_pages[i]);
2091 		}
2092 
2093 		/*
2094 		 * Calculate the encompassing dirty range, boffset and eoffset,
2095 		 * (eoffset - boffset) bytes.
2096 		 */
2097 
2098 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2099 			if (bp->b_xio.xio_pages[i]->dirty)
2100 				break;
2101 		}
2102 		boffset = (i << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2103 
2104 		for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) {
2105 			if (bp->b_xio.xio_pages[i]->dirty) {
2106 				break;
2107 			}
2108 		}
2109 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2110 
2111 		/*
2112 		 * Fit it to the buffer.
2113 		 */
2114 
2115 		if (eoffset > bp->b_bcount)
2116 			eoffset = bp->b_bcount;
2117 
2118 		/*
2119 		 * If we have a good dirty range, merge with the existing
2120 		 * dirty range.
2121 		 */
2122 
2123 		if (boffset < eoffset) {
2124 			if (bp->b_dirtyoff > boffset)
2125 				bp->b_dirtyoff = boffset;
2126 			if (bp->b_dirtyend < eoffset)
2127 				bp->b_dirtyend = eoffset;
2128 		}
2129 	}
2130 }
2131 
2132 /*
2133  * findblk:
2134  *
2135  *	Locate and return the specified buffer, or NULL if the buffer does
2136  *	not exist.  Do not attempt to lock the buffer or manipulate it in
2137  *	any way.  The caller must validate that the correct buffer has been
2138  *	obtain after locking it.
2139  */
2140 struct buf *
2141 findblk(struct vnode *vp, off_t loffset)
2142 {
2143 	struct buf *bp;
2144 
2145 	crit_enter();
2146 	bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2147 	crit_exit();
2148 	return(bp);
2149 }
2150 
2151 /*
2152  * getblk:
2153  *
2154  *	Get a block given a specified block and offset into a file/device.
2155  * 	B_INVAL may or may not be set on return.  The caller should clear
2156  *	B_INVAL prior to initiating a READ.
2157  *
2158  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2159  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2160  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2161  *	without doing any of those things the system will likely believe
2162  *	the buffer to be valid (especially if it is not B_VMIO), and the
2163  *	next getblk() will return the buffer with B_CACHE set.
2164  *
2165  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2166  *	an existing buffer.
2167  *
2168  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2169  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2170  *	and then cleared based on the backing VM.  If the previous buffer is
2171  *	non-0-sized but invalid, B_CACHE will be cleared.
2172  *
2173  *	If getblk() must create a new buffer, the new buffer is returned with
2174  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2175  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2176  *	backing VM.
2177  *
2178  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2179  *	B_CACHE bit is clear.
2180  *
2181  *	What this means, basically, is that the caller should use B_CACHE to
2182  *	determine whether the buffer is fully valid or not and should clear
2183  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2184  *	the buffer by loading its data area with something, the caller needs
2185  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2186  *	the caller should set B_CACHE ( as an optimization ), else the caller
2187  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2188  *	a write attempt or if it was a successfull read.  If the caller
2189  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2190  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2191  */
2192 struct buf *
2193 getblk(struct vnode *vp, off_t loffset, int size, int slpflag, int slptimeo)
2194 {
2195 	struct buf *bp;
2196 
2197 	if (size > MAXBSIZE)
2198 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2199 	if (vp->v_object == NULL)
2200 		panic("getblk: vnode %p has no object!", vp);
2201 
2202 	crit_enter();
2203 loop:
2204 	/*
2205 	 * Block if we are low on buffers.   Certain processes are allowed
2206 	 * to completely exhaust the buffer cache.
2207          *
2208          * If this check ever becomes a bottleneck it may be better to
2209          * move it into the else, when findblk() fails.  At the moment
2210          * it isn't a problem.
2211 	 *
2212 	 * XXX remove, we cannot afford to block anywhere if holding a vnode
2213 	 * lock in low-memory situation, so take it to the max.
2214          */
2215 	if (numfreebuffers == 0) {
2216 		if (!curproc)
2217 			return NULL;
2218 		needsbuffer |= VFS_BIO_NEED_ANY;
2219 		tsleep(&needsbuffer, slpflag, "newbuf", slptimeo);
2220 	}
2221 
2222 	if ((bp = findblk(vp, loffset))) {
2223 		/*
2224 		 * The buffer was found in the cache, but we need to lock it.
2225 		 * Even with LK_NOWAIT the lockmgr may break our critical
2226 		 * section, so double-check the validity of the buffer
2227 		 * once the lock has been obtained.
2228 		 */
2229 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2230 			int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2231 			if (slpflag & PCATCH)
2232 				lkflags |= LK_PCATCH;
2233 			if (BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo) ==
2234 			    ENOLCK) {
2235 				goto loop;
2236 			}
2237 			crit_exit();
2238 			return (NULL);
2239 		}
2240 
2241 		/*
2242 		 * Once the buffer has been locked, make sure we didn't race
2243 		 * a buffer recyclement.  Buffers that are no longer hashed
2244 		 * will have b_vp == NULL, so this takes care of that check
2245 		 * as well.
2246 		 */
2247 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2248 			kprintf("Warning buffer %p (vp %p loffset %lld) was recycled\n", bp, vp, loffset);
2249 			BUF_UNLOCK(bp);
2250 			goto loop;
2251 		}
2252 
2253 		/*
2254 		 * All vnode-based buffers must be backed by a VM object.
2255 		 */
2256 		KKASSERT(bp->b_flags & B_VMIO);
2257 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2258 
2259 		/*
2260 		 * Make sure that B_INVAL buffers do not have a cached
2261 		 * block number translation.
2262 		 */
2263 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2264 			kprintf("Warning invalid buffer %p (vp %p loffset %lld) did not have cleared bio_offset cache\n", bp, vp, loffset);
2265 			clearbiocache(&bp->b_bio2);
2266 		}
2267 
2268 		/*
2269 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2270 		 * invalid.
2271 		 */
2272 		if (bp->b_flags & B_INVAL)
2273 			bp->b_flags &= ~B_CACHE;
2274 		bremfree(bp);
2275 
2276 		/*
2277 		 * Any size inconsistancy with a dirty buffer or a buffer
2278 		 * with a softupdates dependancy must be resolved.  Resizing
2279 		 * the buffer in such circumstances can lead to problems.
2280 		 */
2281 		if (size != bp->b_bcount) {
2282 			if (bp->b_flags & B_DELWRI) {
2283 				bp->b_flags |= B_NOCACHE;
2284 				bwrite(bp);
2285 			} else if (LIST_FIRST(&bp->b_dep)) {
2286 				bp->b_flags |= B_NOCACHE;
2287 				bwrite(bp);
2288 			} else {
2289 				bp->b_flags |= B_RELBUF;
2290 				brelse(bp);
2291 			}
2292 			goto loop;
2293 		}
2294 		KKASSERT(size <= bp->b_kvasize);
2295 		KASSERT(bp->b_loffset != NOOFFSET,
2296 			("getblk: no buffer offset"));
2297 
2298 		/*
2299 		 * A buffer with B_DELWRI set and B_CACHE clear must
2300 		 * be committed before we can return the buffer in
2301 		 * order to prevent the caller from issuing a read
2302 		 * ( due to B_CACHE not being set ) and overwriting
2303 		 * it.
2304 		 *
2305 		 * Most callers, including NFS and FFS, need this to
2306 		 * operate properly either because they assume they
2307 		 * can issue a read if B_CACHE is not set, or because
2308 		 * ( for example ) an uncached B_DELWRI might loop due
2309 		 * to softupdates re-dirtying the buffer.  In the latter
2310 		 * case, B_CACHE is set after the first write completes,
2311 		 * preventing further loops.
2312 		 *
2313 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2314 		 * above while extending the buffer, we cannot allow the
2315 		 * buffer to remain with B_CACHE set after the write
2316 		 * completes or it will represent a corrupt state.  To
2317 		 * deal with this we set B_NOCACHE to scrap the buffer
2318 		 * after the write.
2319 		 *
2320 		 * We might be able to do something fancy, like setting
2321 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2322 		 * so the below call doesn't set B_CACHE, but that gets real
2323 		 * confusing.  This is much easier.
2324 		 */
2325 
2326 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2327 			bp->b_flags |= B_NOCACHE;
2328 			bwrite(bp);
2329 			goto loop;
2330 		}
2331 		crit_exit();
2332 	} else {
2333 		/*
2334 		 * Buffer is not in-core, create new buffer.  The buffer
2335 		 * returned by getnewbuf() is locked.  Note that the returned
2336 		 * buffer is also considered valid (not marked B_INVAL).
2337 		 *
2338 		 * Calculating the offset for the I/O requires figuring out
2339 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
2340 		 * the mount's f_iosize otherwise.  If the vnode does not
2341 		 * have an associated mount we assume that the passed size is
2342 		 * the block size.
2343 		 *
2344 		 * Note that vn_isdisk() cannot be used here since it may
2345 		 * return a failure for numerous reasons.   Note that the
2346 		 * buffer size may be larger then the block size (the caller
2347 		 * will use block numbers with the proper multiple).  Beware
2348 		 * of using any v_* fields which are part of unions.  In
2349 		 * particular, in DragonFly the mount point overloading
2350 		 * mechanism uses the namecache only and the underlying
2351 		 * directory vnode is not a special case.
2352 		 */
2353 		int bsize, maxsize;
2354 
2355 		if (vp->v_type == VBLK || vp->v_type == VCHR)
2356 			bsize = DEV_BSIZE;
2357 		else if (vp->v_mount)
2358 			bsize = vp->v_mount->mnt_stat.f_iosize;
2359 		else
2360 			bsize = size;
2361 
2362 		maxsize = size + (loffset & PAGE_MASK);
2363 		maxsize = imax(maxsize, bsize);
2364 
2365 		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2366 			if (slpflag || slptimeo) {
2367 				crit_exit();
2368 				return NULL;
2369 			}
2370 			goto loop;
2371 		}
2372 
2373 		/*
2374 		 * This code is used to make sure that a buffer is not
2375 		 * created while the getnewbuf routine is blocked.
2376 		 * This can be a problem whether the vnode is locked or not.
2377 		 * If the buffer is created out from under us, we have to
2378 		 * throw away the one we just created.  There is no window
2379 		 * race because we are safely running in a critical section
2380 		 * from the point of the duplicate buffer creation through
2381 		 * to here, and we've locked the buffer.
2382 		 */
2383 		if (findblk(vp, loffset)) {
2384 			bp->b_flags |= B_INVAL;
2385 			brelse(bp);
2386 			goto loop;
2387 		}
2388 
2389 		/*
2390 		 * Insert the buffer into the hash, so that it can
2391 		 * be found by findblk().
2392 		 *
2393 		 * Make sure the translation layer has been cleared.
2394 		 */
2395 		bp->b_loffset = loffset;
2396 		bp->b_bio2.bio_offset = NOOFFSET;
2397 		/* bp->b_bio2.bio_next = NULL; */
2398 
2399 		bgetvp(vp, bp);
2400 
2401 		/*
2402 		 * All vnode-based buffers must be backed by a VM object.
2403 		 */
2404 		KKASSERT(vp->v_object != NULL);
2405 		bp->b_flags |= B_VMIO;
2406 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2407 
2408 		allocbuf(bp, size);
2409 
2410 		crit_exit();
2411 	}
2412 	return (bp);
2413 }
2414 
2415 /*
2416  * regetblk(bp)
2417  *
2418  * Reacquire a buffer that was previously released to the locked queue,
2419  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
2420  * set B_LOCKED (which handles the acquisition race).
2421  *
2422  * To this end, either B_LOCKED must be set or the dependancy list must be
2423  * non-empty.
2424  */
2425 void
2426 regetblk(struct buf *bp)
2427 {
2428 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
2429 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
2430 	crit_enter();
2431 	bremfree(bp);
2432 	crit_exit();
2433 }
2434 
2435 /*
2436  * geteblk:
2437  *
2438  *	Get an empty, disassociated buffer of given size.  The buffer is
2439  *	initially set to B_INVAL.
2440  *
2441  *	critical section protection is not required for the allocbuf()
2442  *	call because races are impossible here.
2443  */
2444 struct buf *
2445 geteblk(int size)
2446 {
2447 	struct buf *bp;
2448 	int maxsize;
2449 
2450 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2451 
2452 	crit_enter();
2453 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2454 		;
2455 	crit_exit();
2456 	allocbuf(bp, size);
2457 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2458 	return (bp);
2459 }
2460 
2461 
2462 /*
2463  * allocbuf:
2464  *
2465  *	This code constitutes the buffer memory from either anonymous system
2466  *	memory (in the case of non-VMIO operations) or from an associated
2467  *	VM object (in the case of VMIO operations).  This code is able to
2468  *	resize a buffer up or down.
2469  *
2470  *	Note that this code is tricky, and has many complications to resolve
2471  *	deadlock or inconsistant data situations.  Tread lightly!!!
2472  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
2473  *	the caller.  Calling this code willy nilly can result in the loss of data.
2474  *
2475  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2476  *	B_CACHE for the non-VMIO case.
2477  *
2478  *	This routine does not need to be called from a critical section but you
2479  *	must own the buffer.
2480  */
2481 int
2482 allocbuf(struct buf *bp, int size)
2483 {
2484 	int newbsize, mbsize;
2485 	int i;
2486 
2487 	if (BUF_REFCNT(bp) == 0)
2488 		panic("allocbuf: buffer not busy");
2489 
2490 	if (bp->b_kvasize < size)
2491 		panic("allocbuf: buffer too small");
2492 
2493 	if ((bp->b_flags & B_VMIO) == 0) {
2494 		caddr_t origbuf;
2495 		int origbufsize;
2496 		/*
2497 		 * Just get anonymous memory from the kernel.  Don't
2498 		 * mess with B_CACHE.
2499 		 */
2500 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2501 		if (bp->b_flags & B_MALLOC)
2502 			newbsize = mbsize;
2503 		else
2504 			newbsize = round_page(size);
2505 
2506 		if (newbsize < bp->b_bufsize) {
2507 			/*
2508 			 * Malloced buffers are not shrunk
2509 			 */
2510 			if (bp->b_flags & B_MALLOC) {
2511 				if (newbsize) {
2512 					bp->b_bcount = size;
2513 				} else {
2514 					kfree(bp->b_data, M_BIOBUF);
2515 					if (bp->b_bufsize) {
2516 						bufmallocspace -= bp->b_bufsize;
2517 						bufspacewakeup();
2518 						bp->b_bufsize = 0;
2519 					}
2520 					bp->b_data = bp->b_kvabase;
2521 					bp->b_bcount = 0;
2522 					bp->b_flags &= ~B_MALLOC;
2523 				}
2524 				return 1;
2525 			}
2526 			vm_hold_free_pages(
2527 			    bp,
2528 			    (vm_offset_t) bp->b_data + newbsize,
2529 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2530 		} else if (newbsize > bp->b_bufsize) {
2531 			/*
2532 			 * We only use malloced memory on the first allocation.
2533 			 * and revert to page-allocated memory when the buffer
2534 			 * grows.
2535 			 */
2536 			if ((bufmallocspace < maxbufmallocspace) &&
2537 				(bp->b_bufsize == 0) &&
2538 				(mbsize <= PAGE_SIZE/2)) {
2539 
2540 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
2541 				bp->b_bufsize = mbsize;
2542 				bp->b_bcount = size;
2543 				bp->b_flags |= B_MALLOC;
2544 				bufmallocspace += mbsize;
2545 				return 1;
2546 			}
2547 			origbuf = NULL;
2548 			origbufsize = 0;
2549 			/*
2550 			 * If the buffer is growing on its other-than-first
2551 			 * allocation, then we revert to the page-allocation
2552 			 * scheme.
2553 			 */
2554 			if (bp->b_flags & B_MALLOC) {
2555 				origbuf = bp->b_data;
2556 				origbufsize = bp->b_bufsize;
2557 				bp->b_data = bp->b_kvabase;
2558 				if (bp->b_bufsize) {
2559 					bufmallocspace -= bp->b_bufsize;
2560 					bufspacewakeup();
2561 					bp->b_bufsize = 0;
2562 				}
2563 				bp->b_flags &= ~B_MALLOC;
2564 				newbsize = round_page(newbsize);
2565 			}
2566 			vm_hold_load_pages(
2567 			    bp,
2568 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2569 			    (vm_offset_t) bp->b_data + newbsize);
2570 			if (origbuf) {
2571 				bcopy(origbuf, bp->b_data, origbufsize);
2572 				kfree(origbuf, M_BIOBUF);
2573 			}
2574 		}
2575 	} else {
2576 		vm_page_t m;
2577 		int desiredpages;
2578 
2579 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2580 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
2581 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
2582 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
2583 
2584 		if (bp->b_flags & B_MALLOC)
2585 			panic("allocbuf: VMIO buffer can't be malloced");
2586 		/*
2587 		 * Set B_CACHE initially if buffer is 0 length or will become
2588 		 * 0-length.
2589 		 */
2590 		if (size == 0 || bp->b_bufsize == 0)
2591 			bp->b_flags |= B_CACHE;
2592 
2593 		if (newbsize < bp->b_bufsize) {
2594 			/*
2595 			 * DEV_BSIZE aligned new buffer size is less then the
2596 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2597 			 * if we have to remove any pages.
2598 			 */
2599 			if (desiredpages < bp->b_xio.xio_npages) {
2600 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
2601 					/*
2602 					 * the page is not freed here -- it
2603 					 * is the responsibility of
2604 					 * vnode_pager_setsize
2605 					 */
2606 					m = bp->b_xio.xio_pages[i];
2607 					KASSERT(m != bogus_page,
2608 					    ("allocbuf: bogus page found"));
2609 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2610 						;
2611 
2612 					bp->b_xio.xio_pages[i] = NULL;
2613 					vm_page_unwire(m, 0);
2614 				}
2615 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2616 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
2617 				bp->b_xio.xio_npages = desiredpages;
2618 			}
2619 		} else if (size > bp->b_bcount) {
2620 			/*
2621 			 * We are growing the buffer, possibly in a
2622 			 * byte-granular fashion.
2623 			 */
2624 			struct vnode *vp;
2625 			vm_object_t obj;
2626 			vm_offset_t toff;
2627 			vm_offset_t tinc;
2628 
2629 			/*
2630 			 * Step 1, bring in the VM pages from the object,
2631 			 * allocating them if necessary.  We must clear
2632 			 * B_CACHE if these pages are not valid for the
2633 			 * range covered by the buffer.
2634 			 *
2635 			 * critical section protection is required to protect
2636 			 * against interrupts unbusying and freeing pages
2637 			 * between our vm_page_lookup() and our
2638 			 * busycheck/wiring call.
2639 			 */
2640 			vp = bp->b_vp;
2641 			obj = vp->v_object;
2642 
2643 			crit_enter();
2644 			while (bp->b_xio.xio_npages < desiredpages) {
2645 				vm_page_t m;
2646 				vm_pindex_t pi;
2647 
2648 				pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
2649 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2650 					/*
2651 					 * note: must allocate system pages
2652 					 * since blocking here could intefere
2653 					 * with paging I/O, no matter which
2654 					 * process we are.
2655 					 */
2656 					m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
2657 					if (m == NULL) {
2658 						vm_wait();
2659 						vm_pageout_deficit += desiredpages -
2660 							bp->b_xio.xio_npages;
2661 					} else {
2662 						vm_page_wire(m);
2663 						vm_page_wakeup(m);
2664 						bp->b_flags &= ~B_CACHE;
2665 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2666 						++bp->b_xio.xio_npages;
2667 					}
2668 					continue;
2669 				}
2670 
2671 				/*
2672 				 * We found a page.  If we have to sleep on it,
2673 				 * retry because it might have gotten freed out
2674 				 * from under us.
2675 				 *
2676 				 * We can only test PG_BUSY here.  Blocking on
2677 				 * m->busy might lead to a deadlock:
2678 				 *
2679 				 *  vm_fault->getpages->cluster_read->allocbuf
2680 				 *
2681 				 */
2682 
2683 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2684 					continue;
2685 
2686 				/*
2687 				 * We have a good page.  Should we wakeup the
2688 				 * page daemon?
2689 				 */
2690 				if ((curthread != pagethread) &&
2691 				    ((m->queue - m->pc) == PQ_CACHE) &&
2692 				    ((vmstats.v_free_count + vmstats.v_cache_count) <
2693 					(vmstats.v_free_min + vmstats.v_cache_min))) {
2694 					pagedaemon_wakeup();
2695 				}
2696 				vm_page_flag_clear(m, PG_ZERO);
2697 				vm_page_wire(m);
2698 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2699 				++bp->b_xio.xio_npages;
2700 			}
2701 			crit_exit();
2702 
2703 			/*
2704 			 * Step 2.  We've loaded the pages into the buffer,
2705 			 * we have to figure out if we can still have B_CACHE
2706 			 * set.  Note that B_CACHE is set according to the
2707 			 * byte-granular range ( bcount and size ), not the
2708 			 * aligned range ( newbsize ).
2709 			 *
2710 			 * The VM test is against m->valid, which is DEV_BSIZE
2711 			 * aligned.  Needless to say, the validity of the data
2712 			 * needs to also be DEV_BSIZE aligned.  Note that this
2713 			 * fails with NFS if the server or some other client
2714 			 * extends the file's EOF.  If our buffer is resized,
2715 			 * B_CACHE may remain set! XXX
2716 			 */
2717 
2718 			toff = bp->b_bcount;
2719 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
2720 
2721 			while ((bp->b_flags & B_CACHE) && toff < size) {
2722 				vm_pindex_t pi;
2723 
2724 				if (tinc > (size - toff))
2725 					tinc = size - toff;
2726 
2727 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
2728 				    PAGE_SHIFT;
2729 
2730 				vfs_buf_test_cache(
2731 				    bp,
2732 				    bp->b_loffset,
2733 				    toff,
2734 				    tinc,
2735 				    bp->b_xio.xio_pages[pi]
2736 				);
2737 				toff += tinc;
2738 				tinc = PAGE_SIZE;
2739 			}
2740 
2741 			/*
2742 			 * Step 3, fixup the KVM pmap.  Remember that
2743 			 * bp->b_data is relative to bp->b_loffset, but
2744 			 * bp->b_loffset may be offset into the first page.
2745 			 */
2746 
2747 			bp->b_data = (caddr_t)
2748 			    trunc_page((vm_offset_t)bp->b_data);
2749 			pmap_qenter(
2750 			    (vm_offset_t)bp->b_data,
2751 			    bp->b_xio.xio_pages,
2752 			    bp->b_xio.xio_npages
2753 			);
2754 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2755 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
2756 		}
2757 	}
2758 	if (newbsize < bp->b_bufsize)
2759 		bufspacewakeup();
2760 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2761 	bp->b_bcount = size;		/* requested buffer size	*/
2762 	return 1;
2763 }
2764 
2765 /*
2766  * biowait:
2767  *
2768  *	Wait for buffer I/O completion, returning error status.  The buffer
2769  *	is left locked on return.  B_EINTR is converted into an EINTR error
2770  *	and cleared.
2771  *
2772  *	NOTE!  The original b_cmd is lost on return, since b_cmd will be
2773  *	set to BUF_CMD_DONE.
2774  */
2775 int
2776 biowait(struct buf *bp)
2777 {
2778 	crit_enter();
2779 	while (bp->b_cmd != BUF_CMD_DONE) {
2780 		if (bp->b_cmd == BUF_CMD_READ)
2781 			tsleep(bp, 0, "biord", 0);
2782 		else
2783 			tsleep(bp, 0, "biowr", 0);
2784 	}
2785 	crit_exit();
2786 	if (bp->b_flags & B_EINTR) {
2787 		bp->b_flags &= ~B_EINTR;
2788 		return (EINTR);
2789 	}
2790 	if (bp->b_flags & B_ERROR) {
2791 		return (bp->b_error ? bp->b_error : EIO);
2792 	} else {
2793 		return (0);
2794 	}
2795 }
2796 
2797 /*
2798  * This associates a tracking count with an I/O.  vn_strategy() and
2799  * dev_dstrategy() do this automatically but there are a few cases
2800  * where a vnode or device layer is bypassed when a block translation
2801  * is cached.  In such cases bio_start_transaction() may be called on
2802  * the bypassed layers so the system gets an I/O in progress indication
2803  * for those higher layers.
2804  */
2805 void
2806 bio_start_transaction(struct bio *bio, struct bio_track *track)
2807 {
2808 	bio->bio_track = track;
2809 	atomic_add_int(&track->bk_active, 1);
2810 }
2811 
2812 /*
2813  * Initiate I/O on a vnode.
2814  */
2815 void
2816 vn_strategy(struct vnode *vp, struct bio *bio)
2817 {
2818 	struct bio_track *track;
2819 
2820 	KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE);
2821         if (bio->bio_buf->b_cmd == BUF_CMD_READ)
2822                 track = &vp->v_track_read;
2823         else
2824                 track = &vp->v_track_write;
2825 	bio->bio_track = track;
2826 	atomic_add_int(&track->bk_active, 1);
2827         vop_strategy(*vp->v_ops, vp, bio);
2828 }
2829 
2830 
2831 /*
2832  * biodone:
2833  *
2834  *	Finish I/O on a buffer, optionally calling a completion function.
2835  *	This is usually called from an interrupt so process blocking is
2836  *	not allowed.
2837  *
2838  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2839  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2840  *	assuming B_INVAL is clear.
2841  *
2842  *	For the VMIO case, we set B_CACHE if the op was a read and no
2843  *	read error occured, or if the op was a write.  B_CACHE is never
2844  *	set if the buffer is invalid or otherwise uncacheable.
2845  *
2846  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2847  *	initiator to leave B_INVAL set to brelse the buffer out of existance
2848  *	in the biodone routine.
2849  */
2850 void
2851 biodone(struct bio *bio)
2852 {
2853 	struct buf *bp = bio->bio_buf;
2854 	buf_cmd_t cmd;
2855 
2856 	crit_enter();
2857 
2858 	KASSERT(BUF_REFCNTNB(bp) > 0,
2859 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
2860 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
2861 		("biodone: bp %p already done!", bp));
2862 
2863 	runningbufwakeup(bp);
2864 
2865 	/*
2866 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
2867 	 */
2868 	while (bio) {
2869 		biodone_t *done_func;
2870 		struct bio_track *track;
2871 
2872 		/*
2873 		 * BIO tracking.  Most but not all BIOs are tracked.
2874 		 */
2875 		if ((track = bio->bio_track) != NULL) {
2876 			atomic_subtract_int(&track->bk_active, 1);
2877 			if (track->bk_active < 0) {
2878 				panic("biodone: bad active count bio %p\n",
2879 				      bio);
2880 			}
2881 			if (track->bk_waitflag) {
2882 				track->bk_waitflag = 0;
2883 				wakeup(track);
2884 			}
2885 			bio->bio_track = NULL;
2886 		}
2887 
2888 		/*
2889 		 * A bio_done function terminates the loop.  The function
2890 		 * will be responsible for any further chaining and/or
2891 		 * buffer management.
2892 		 *
2893 		 * WARNING!  The done function can deallocate the buffer!
2894 		 */
2895 		if ((done_func = bio->bio_done) != NULL) {
2896 			bio->bio_done = NULL;
2897 			done_func(bio);
2898 			crit_exit();
2899 			return;
2900 		}
2901 		bio = bio->bio_prev;
2902 	}
2903 
2904 	cmd = bp->b_cmd;
2905 	bp->b_cmd = BUF_CMD_DONE;
2906 
2907 	/*
2908 	 * Only reads and writes are processed past this point.
2909 	 */
2910 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
2911 		brelse(bp);
2912 		crit_exit();
2913 		return;
2914 	}
2915 
2916 	/*
2917 	 * Warning: softupdates may re-dirty the buffer.
2918 	 */
2919 	if (LIST_FIRST(&bp->b_dep) != NULL)
2920 		buf_complete(bp);
2921 
2922 	if (bp->b_flags & B_VMIO) {
2923 		int i;
2924 		vm_ooffset_t foff;
2925 		vm_page_t m;
2926 		vm_object_t obj;
2927 		int iosize;
2928 		struct vnode *vp = bp->b_vp;
2929 
2930 		obj = vp->v_object;
2931 
2932 #if defined(VFS_BIO_DEBUG)
2933 		if (vp->v_auxrefs == 0)
2934 			panic("biodone: zero vnode hold count");
2935 		if ((vp->v_flag & VOBJBUF) == 0)
2936 			panic("biodone: vnode is not setup for merged cache");
2937 #endif
2938 
2939 		foff = bp->b_loffset;
2940 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
2941 		KASSERT(obj != NULL, ("biodone: missing VM object"));
2942 
2943 #if defined(VFS_BIO_DEBUG)
2944 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
2945 			kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
2946 			    obj->paging_in_progress, bp->b_xio.xio_npages);
2947 		}
2948 #endif
2949 
2950 		/*
2951 		 * Set B_CACHE if the op was a normal read and no error
2952 		 * occured.  B_CACHE is set for writes in the b*write()
2953 		 * routines.
2954 		 */
2955 		iosize = bp->b_bcount - bp->b_resid;
2956 		if (cmd == BUF_CMD_READ && (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
2957 			bp->b_flags |= B_CACHE;
2958 		}
2959 
2960 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2961 			int bogusflag = 0;
2962 			int resid;
2963 
2964 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2965 			if (resid > iosize)
2966 				resid = iosize;
2967 
2968 			/*
2969 			 * cleanup bogus pages, restoring the originals.  Since
2970 			 * the originals should still be wired, we don't have
2971 			 * to worry about interrupt/freeing races destroying
2972 			 * the VM object association.
2973 			 */
2974 			m = bp->b_xio.xio_pages[i];
2975 			if (m == bogus_page) {
2976 				bogusflag = 1;
2977 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2978 				if (m == NULL)
2979 					panic("biodone: page disappeared");
2980 				bp->b_xio.xio_pages[i] = m;
2981 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2982 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
2983 			}
2984 #if defined(VFS_BIO_DEBUG)
2985 			if (OFF_TO_IDX(foff) != m->pindex) {
2986 				kprintf(
2987 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2988 				    (unsigned long)foff, m->pindex);
2989 			}
2990 #endif
2991 
2992 			/*
2993 			 * In the write case, the valid and clean bits are
2994 			 * already changed correctly ( see bdwrite() ), so we
2995 			 * only need to do this here in the read case.
2996 			 */
2997 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
2998 				vfs_page_set_valid(bp, foff, i, m);
2999 			}
3000 			vm_page_flag_clear(m, PG_ZERO);
3001 
3002 			/*
3003 			 * when debugging new filesystems or buffer I/O methods, this
3004 			 * is the most common error that pops up.  if you see this, you
3005 			 * have not set the page busy flag correctly!!!
3006 			 */
3007 			if (m->busy == 0) {
3008 				kprintf("biodone: page busy < 0, "
3009 				    "pindex: %d, foff: 0x(%x,%x), "
3010 				    "resid: %d, index: %d\n",
3011 				    (int) m->pindex, (int)(foff >> 32),
3012 						(int) foff & 0xffffffff, resid, i);
3013 				if (!vn_isdisk(vp, NULL))
3014 					kprintf(" iosize: %ld, loffset: %lld, flags: 0x%08x, npages: %d\n",
3015 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3016 					    bp->b_loffset,
3017 					    bp->b_flags, bp->b_xio.xio_npages);
3018 				else
3019 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3020 					    bp->b_loffset,
3021 					    bp->b_flags, bp->b_xio.xio_npages);
3022 				kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3023 				    m->valid, m->dirty, m->wire_count);
3024 				panic("biodone: page busy < 0");
3025 			}
3026 			vm_page_io_finish(m);
3027 			vm_object_pip_subtract(obj, 1);
3028 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3029 			iosize -= resid;
3030 		}
3031 		if (obj)
3032 			vm_object_pip_wakeupn(obj, 0);
3033 	}
3034 
3035 	/*
3036 	 * For asynchronous completions, release the buffer now. The brelse
3037 	 * will do a wakeup there if necessary - so no need to do a wakeup
3038 	 * here in the async case. The sync case always needs to do a wakeup.
3039 	 */
3040 
3041 	if (bp->b_flags & B_ASYNC) {
3042 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
3043 			brelse(bp);
3044 		else
3045 			bqrelse(bp);
3046 	} else {
3047 		wakeup(bp);
3048 	}
3049 	crit_exit();
3050 }
3051 
3052 /*
3053  * vfs_unbusy_pages:
3054  *
3055  *	This routine is called in lieu of iodone in the case of
3056  *	incomplete I/O.  This keeps the busy status for pages
3057  *	consistant.
3058  */
3059 void
3060 vfs_unbusy_pages(struct buf *bp)
3061 {
3062 	int i;
3063 
3064 	runningbufwakeup(bp);
3065 	if (bp->b_flags & B_VMIO) {
3066 		struct vnode *vp = bp->b_vp;
3067 		vm_object_t obj;
3068 
3069 		obj = vp->v_object;
3070 
3071 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3072 			vm_page_t m = bp->b_xio.xio_pages[i];
3073 
3074 			/*
3075 			 * When restoring bogus changes the original pages
3076 			 * should still be wired, so we are in no danger of
3077 			 * losing the object association and do not need
3078 			 * critical section protection particularly.
3079 			 */
3080 			if (m == bogus_page) {
3081 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3082 				if (!m) {
3083 					panic("vfs_unbusy_pages: page missing");
3084 				}
3085 				bp->b_xio.xio_pages[i] = m;
3086 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3087 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3088 			}
3089 			vm_object_pip_subtract(obj, 1);
3090 			vm_page_flag_clear(m, PG_ZERO);
3091 			vm_page_io_finish(m);
3092 		}
3093 		vm_object_pip_wakeupn(obj, 0);
3094 	}
3095 }
3096 
3097 /*
3098  * vfs_page_set_valid:
3099  *
3100  *	Set the valid bits in a page based on the supplied offset.   The
3101  *	range is restricted to the buffer's size.
3102  *
3103  *	This routine is typically called after a read completes.
3104  */
3105 static void
3106 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3107 {
3108 	vm_ooffset_t soff, eoff;
3109 
3110 	/*
3111 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3112 	 * page boundry or cross the end of the buffer.  The end of the
3113 	 * buffer, in this case, is our file EOF, not the allocation size
3114 	 * of the buffer.
3115 	 */
3116 	soff = off;
3117 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3118 	if (eoff > bp->b_loffset + bp->b_bcount)
3119 		eoff = bp->b_loffset + bp->b_bcount;
3120 
3121 	/*
3122 	 * Set valid range.  This is typically the entire buffer and thus the
3123 	 * entire page.
3124 	 */
3125 	if (eoff > soff) {
3126 		vm_page_set_validclean(
3127 		    m,
3128 		   (vm_offset_t) (soff & PAGE_MASK),
3129 		   (vm_offset_t) (eoff - soff)
3130 		);
3131 	}
3132 }
3133 
3134 /*
3135  * vfs_busy_pages:
3136  *
3137  *	This routine is called before a device strategy routine.
3138  *	It is used to tell the VM system that paging I/O is in
3139  *	progress, and treat the pages associated with the buffer
3140  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
3141  *	flag is handled to make sure that the object doesn't become
3142  *	inconsistant.
3143  *
3144  *	Since I/O has not been initiated yet, certain buffer flags
3145  *	such as B_ERROR or B_INVAL may be in an inconsistant state
3146  *	and should be ignored.
3147  */
3148 void
3149 vfs_busy_pages(struct vnode *vp, struct buf *bp)
3150 {
3151 	int i, bogus;
3152 	struct lwp *lp = curthread->td_lwp;
3153 
3154 	/*
3155 	 * The buffer's I/O command must already be set.  If reading,
3156 	 * B_CACHE must be 0 (double check against callers only doing
3157 	 * I/O when B_CACHE is 0).
3158 	 */
3159 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3160 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3161 
3162 	if (bp->b_flags & B_VMIO) {
3163 		vm_object_t obj;
3164 		vm_ooffset_t foff;
3165 
3166 		obj = vp->v_object;
3167 		foff = bp->b_loffset;
3168 		KASSERT(bp->b_loffset != NOOFFSET,
3169 			("vfs_busy_pages: no buffer offset"));
3170 		vfs_setdirty(bp);
3171 
3172 retry:
3173 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3174 			vm_page_t m = bp->b_xio.xio_pages[i];
3175 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3176 				goto retry;
3177 		}
3178 
3179 		bogus = 0;
3180 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3181 			vm_page_t m = bp->b_xio.xio_pages[i];
3182 
3183 			vm_page_flag_clear(m, PG_ZERO);
3184 			if ((bp->b_flags & B_CLUSTER) == 0) {
3185 				vm_object_pip_add(obj, 1);
3186 				vm_page_io_start(m);
3187 			}
3188 
3189 			/*
3190 			 * When readying a vnode-backed buffer for a write
3191 			 * we must zero-fill any invalid portions of the
3192 			 * backing VM pages.
3193 			 *
3194 			 * When readying a vnode-backed buffer for a read
3195 			 * we must replace any dirty pages with a bogus
3196 			 * page so we do not destroy dirty data when
3197 			 * filling in gaps.  Dirty pages might not
3198 			 * necessarily be marked dirty yet, so use m->valid
3199 			 * as a reasonable test.
3200 			 *
3201 			 * Bogus page replacement is, uh, bogus.  We need
3202 			 * to find a better way.
3203 			 */
3204 			vm_page_protect(m, VM_PROT_NONE);
3205 			if (bp->b_cmd == BUF_CMD_WRITE) {
3206 				vfs_page_set_valid(bp, foff, i, m);
3207 			} else if (m->valid == VM_PAGE_BITS_ALL) {
3208 				bp->b_xio.xio_pages[i] = bogus_page;
3209 				bogus++;
3210 			}
3211 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3212 		}
3213 		if (bogus)
3214 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3215 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3216 	}
3217 
3218 	/*
3219 	 * This is the easiest place to put the process accounting for the I/O
3220 	 * for now.
3221 	 */
3222 	if (lp != NULL) {
3223 		if (bp->b_cmd == BUF_CMD_READ)
3224 			lp->lwp_ru.ru_inblock++;
3225 		else
3226 			lp->lwp_ru.ru_oublock++;
3227 	}
3228 }
3229 
3230 /*
3231  * vfs_clean_pages:
3232  *
3233  *	Tell the VM system that the pages associated with this buffer
3234  *	are clean.  This is used for delayed writes where the data is
3235  *	going to go to disk eventually without additional VM intevention.
3236  *
3237  *	Note that while we only really need to clean through to b_bcount, we
3238  *	just go ahead and clean through to b_bufsize.
3239  */
3240 static void
3241 vfs_clean_pages(struct buf *bp)
3242 {
3243 	int i;
3244 
3245 	if (bp->b_flags & B_VMIO) {
3246 		vm_ooffset_t foff;
3247 
3248 		foff = bp->b_loffset;
3249 		KASSERT(foff != NOOFFSET, ("vfs_clean_pages: no buffer offset"));
3250 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3251 			vm_page_t m = bp->b_xio.xio_pages[i];
3252 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3253 			vm_ooffset_t eoff = noff;
3254 
3255 			if (eoff > bp->b_loffset + bp->b_bufsize)
3256 				eoff = bp->b_loffset + bp->b_bufsize;
3257 			vfs_page_set_valid(bp, foff, i, m);
3258 			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3259 			foff = noff;
3260 		}
3261 	}
3262 }
3263 
3264 /*
3265  * vfs_bio_set_validclean:
3266  *
3267  *	Set the range within the buffer to valid and clean.  The range is
3268  *	relative to the beginning of the buffer, b_loffset.  Note that
3269  *	b_loffset itself may be offset from the beginning of the first page.
3270  */
3271 
3272 void
3273 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3274 {
3275 	if (bp->b_flags & B_VMIO) {
3276 		int i;
3277 		int n;
3278 
3279 		/*
3280 		 * Fixup base to be relative to beginning of first page.
3281 		 * Set initial n to be the maximum number of bytes in the
3282 		 * first page that can be validated.
3283 		 */
3284 
3285 		base += (bp->b_loffset & PAGE_MASK);
3286 		n = PAGE_SIZE - (base & PAGE_MASK);
3287 
3288 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) {
3289 			vm_page_t m = bp->b_xio.xio_pages[i];
3290 
3291 			if (n > size)
3292 				n = size;
3293 
3294 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3295 			base += n;
3296 			size -= n;
3297 			n = PAGE_SIZE;
3298 		}
3299 	}
3300 }
3301 
3302 /*
3303  * vfs_bio_clrbuf:
3304  *
3305  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
3306  *	to clear B_ERROR and B_INVAL.
3307  *
3308  *	Note that while we only theoretically need to clear through b_bcount,
3309  *	we go ahead and clear through b_bufsize.
3310  */
3311 
3312 void
3313 vfs_bio_clrbuf(struct buf *bp)
3314 {
3315 	int i, mask = 0;
3316 	caddr_t sa, ea;
3317 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3318 		bp->b_flags &= ~(B_INVAL|B_ERROR);
3319 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3320 		    (bp->b_loffset & PAGE_MASK) == 0) {
3321 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3322 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3323 				bp->b_resid = 0;
3324 				return;
3325 			}
3326 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3327 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3328 				bzero(bp->b_data, bp->b_bufsize);
3329 				bp->b_xio.xio_pages[0]->valid |= mask;
3330 				bp->b_resid = 0;
3331 				return;
3332 			}
3333 		}
3334 		ea = sa = bp->b_data;
3335 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3336 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3337 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3338 			ea = (caddr_t)(vm_offset_t)ulmin(
3339 			    (u_long)(vm_offset_t)ea,
3340 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3341 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3342 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3343 				continue;
3344 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3345 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3346 					bzero(sa, ea - sa);
3347 				}
3348 			} else {
3349 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3350 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3351 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3352 						bzero(sa, DEV_BSIZE);
3353 				}
3354 			}
3355 			bp->b_xio.xio_pages[i]->valid |= mask;
3356 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3357 		}
3358 		bp->b_resid = 0;
3359 	} else {
3360 		clrbuf(bp);
3361 	}
3362 }
3363 
3364 /*
3365  * vm_hold_load_pages:
3366  *
3367  *	Load pages into the buffer's address space.  The pages are
3368  *	allocated from the kernel object in order to reduce interference
3369  *	with the any VM paging I/O activity.  The range of loaded
3370  *	pages will be wired.
3371  *
3372  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
3373  *	retrieve the full range (to - from) of pages.
3374  *
3375  */
3376 void
3377 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3378 {
3379 	vm_offset_t pg;
3380 	vm_page_t p;
3381 	int index;
3382 
3383 	to = round_page(to);
3384 	from = round_page(from);
3385 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3386 
3387 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3388 
3389 tryagain:
3390 
3391 		/*
3392 		 * Note: must allocate system pages since blocking here
3393 		 * could intefere with paging I/O, no matter which
3394 		 * process we are.
3395 		 */
3396 		p = vm_page_alloc(&kernel_object,
3397 				  (pg >> PAGE_SHIFT),
3398 				  VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
3399 		if (!p) {
3400 			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3401 			vm_wait();
3402 			goto tryagain;
3403 		}
3404 		vm_page_wire(p);
3405 		p->valid = VM_PAGE_BITS_ALL;
3406 		vm_page_flag_clear(p, PG_ZERO);
3407 		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3408 		bp->b_xio.xio_pages[index] = p;
3409 		vm_page_wakeup(p);
3410 	}
3411 	bp->b_xio.xio_npages = index;
3412 }
3413 
3414 /*
3415  * vm_hold_free_pages:
3416  *
3417  *	Return pages associated with the buffer back to the VM system.
3418  *
3419  *	The range of pages underlying the buffer's address space will
3420  *	be unmapped and un-wired.
3421  */
3422 void
3423 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3424 {
3425 	vm_offset_t pg;
3426 	vm_page_t p;
3427 	int index, newnpages;
3428 
3429 	from = round_page(from);
3430 	to = round_page(to);
3431 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3432 
3433 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3434 		p = bp->b_xio.xio_pages[index];
3435 		if (p && (index < bp->b_xio.xio_npages)) {
3436 			if (p->busy) {
3437 				kprintf("vm_hold_free_pages: doffset: %lld, loffset: %lld\n",
3438 					bp->b_bio2.bio_offset, bp->b_loffset);
3439 			}
3440 			bp->b_xio.xio_pages[index] = NULL;
3441 			pmap_kremove(pg);
3442 			vm_page_busy(p);
3443 			vm_page_unwire(p, 0);
3444 			vm_page_free(p);
3445 		}
3446 	}
3447 	bp->b_xio.xio_npages = newnpages;
3448 }
3449 
3450 /*
3451  * vmapbuf:
3452  *
3453  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
3454  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
3455  *	initialized.
3456  */
3457 int
3458 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
3459 {
3460 	caddr_t addr;
3461 	vm_offset_t va;
3462 	vm_page_t m;
3463 	int vmprot;
3464 	int error;
3465 	int pidx;
3466 	int i;
3467 
3468 	/*
3469 	 * bp had better have a command and it better be a pbuf.
3470 	 */
3471 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3472 	KKASSERT(bp->b_flags & B_PAGING);
3473 
3474 	if (bytes < 0)
3475 		return (-1);
3476 
3477 	/*
3478 	 * Map the user data into KVM.  Mappings have to be page-aligned.
3479 	 */
3480 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
3481 	pidx = 0;
3482 
3483 	vmprot = VM_PROT_READ;
3484 	if (bp->b_cmd == BUF_CMD_READ)
3485 		vmprot |= VM_PROT_WRITE;
3486 
3487 	while (addr < udata + bytes) {
3488 		/*
3489 		 * Do the vm_fault if needed; do the copy-on-write thing
3490 		 * when reading stuff off device into memory.
3491 		 *
3492 		 * vm_fault_page*() returns a held VM page.
3493 		 */
3494 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
3495 		va = trunc_page(va);
3496 
3497 		m = vm_fault_page_quick(va, vmprot, &error);
3498 		if (m == NULL) {
3499 			for (i = 0; i < pidx; ++i) {
3500 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
3501 			    bp->b_xio.xio_pages[i] = NULL;
3502 			}
3503 			return(-1);
3504 		}
3505 		bp->b_xio.xio_pages[pidx] = m;
3506 		addr += PAGE_SIZE;
3507 		++pidx;
3508 	}
3509 
3510 	/*
3511 	 * Map the page array and set the buffer fields to point to
3512 	 * the mapped data buffer.
3513 	 */
3514 	if (pidx > btoc(MAXPHYS))
3515 		panic("vmapbuf: mapped more than MAXPHYS");
3516 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
3517 
3518 	bp->b_xio.xio_npages = pidx;
3519 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
3520 	bp->b_bcount = bytes;
3521 	bp->b_bufsize = bytes;
3522 	return(0);
3523 }
3524 
3525 /*
3526  * vunmapbuf:
3527  *
3528  *	Free the io map PTEs associated with this IO operation.
3529  *	We also invalidate the TLB entries and restore the original b_addr.
3530  */
3531 void
3532 vunmapbuf(struct buf *bp)
3533 {
3534 	int pidx;
3535 	int npages;
3536 
3537 	KKASSERT(bp->b_flags & B_PAGING);
3538 
3539 	npages = bp->b_xio.xio_npages;
3540 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3541 	for (pidx = 0; pidx < npages; ++pidx) {
3542 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
3543 		bp->b_xio.xio_pages[pidx] = NULL;
3544 	}
3545 	bp->b_xio.xio_npages = 0;
3546 	bp->b_data = bp->b_kvabase;
3547 }
3548 
3549 /*
3550  * Scan all buffers in the system and issue the callback.
3551  */
3552 int
3553 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
3554 {
3555 	int count = 0;
3556 	int error;
3557 	int n;
3558 
3559 	for (n = 0; n < nbuf; ++n) {
3560 		if ((error = callback(&buf[n], info)) < 0) {
3561 			count = error;
3562 			break;
3563 		}
3564 		count += error;
3565 	}
3566 	return (count);
3567 }
3568 
3569 /*
3570  * print out statistics from the current status of the buffer pool
3571  * this can be toggeled by the system control option debug.syncprt
3572  */
3573 #ifdef DEBUG
3574 void
3575 vfs_bufstats(void)
3576 {
3577         int i, j, count;
3578         struct buf *bp;
3579         struct bqueues *dp;
3580         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
3581         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
3582 
3583         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
3584                 count = 0;
3585                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3586                         counts[j] = 0;
3587 		crit_enter();
3588                 TAILQ_FOREACH(bp, dp, b_freelist) {
3589                         counts[bp->b_bufsize/PAGE_SIZE]++;
3590                         count++;
3591                 }
3592 		crit_exit();
3593                 kprintf("%s: total-%d", bname[i], count);
3594                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3595                         if (counts[j] != 0)
3596                                 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
3597                 kprintf("\n");
3598         }
3599 }
3600 #endif
3601 
3602 #ifdef DDB
3603 
3604 DB_SHOW_COMMAND(buffer, db_show_buffer)
3605 {
3606 	/* get args */
3607 	struct buf *bp = (struct buf *)addr;
3608 
3609 	if (!have_addr) {
3610 		db_printf("usage: show buffer <addr>\n");
3611 		return;
3612 	}
3613 
3614 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3615 	db_printf("b_cmd = %d\n", bp->b_cmd);
3616 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
3617 		  "b_resid = %d\n, b_data = %p, "
3618 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
3619 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3620 		  bp->b_data, bp->b_bio2.bio_offset, (bp->b_bio2.bio_next ? bp->b_bio2.bio_next->bio_offset : (off_t)-1));
3621 	if (bp->b_xio.xio_npages) {
3622 		int i;
3623 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
3624 			bp->b_xio.xio_npages);
3625 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3626 			vm_page_t m;
3627 			m = bp->b_xio.xio_pages[i];
3628 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3629 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3630 			if ((i + 1) < bp->b_xio.xio_npages)
3631 				db_printf(",");
3632 		}
3633 		db_printf("\n");
3634 	}
3635 }
3636 #endif /* DDB */
3637