xref: /dragonfly/sys/kern/vfs_bio.c (revision 806343b9)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  */
16 
17 /*
18  * this file contains a new buffer I/O scheme implementing a coherent
19  * VM object and buffer cache scheme.  Pains have been taken to make
20  * sure that the performance degradation associated with schemes such
21  * as this is not realized.
22  *
23  * Author:  John S. Dyson
24  * Significant help during the development and debugging phases
25  * had been provided by David Greenman, also of the FreeBSD core team.
26  *
27  * see man buf(9) for more info.  Note that man buf(9) doesn't reflect
28  * the actual buf/bio implementation in DragonFly.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/devicestat.h>
36 #include <sys/eventhandler.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mount.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/proc.h>
43 #include <sys/reboot.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 #include <sys/dsched.h>
49 #include <vm/vm.h>
50 #include <vm/vm_param.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_pageout.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_map.h>
57 #include <vm/vm_pager.h>
58 #include <vm/swap_pager.h>
59 
60 #include <sys/buf2.h>
61 #include <sys/thread2.h>
62 #include <sys/spinlock2.h>
63 #include <vm/vm_page2.h>
64 
65 #include "opt_ddb.h"
66 #ifdef DDB
67 #include <ddb/ddb.h>
68 #endif
69 
70 /*
71  * Buffer queues.
72  */
73 enum bufq_type {
74 	BQUEUE_NONE,    	/* not on any queue */
75 	BQUEUE_LOCKED,  	/* locked buffers */
76 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
77 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
78 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
79 	BQUEUE_EMPTY,    	/* empty buffer headers */
80 
81 	BUFFER_QUEUES		/* number of buffer queues */
82 };
83 
84 typedef enum bufq_type bufq_type_t;
85 
86 #define BD_WAKE_SIZE	16384
87 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
88 
89 TAILQ_HEAD(bqueues, buf);
90 
91 struct bufpcpu {
92 	struct spinlock spin;
93 	struct bqueues bufqueues[BUFFER_QUEUES];
94 } __cachealign;
95 
96 struct bufpcpu bufpcpu[MAXCPU];
97 
98 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
99 
100 struct buf *buf;		/* buffer header pool */
101 
102 static void vfs_clean_pages(struct buf *bp);
103 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
104 #if 0
105 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
106 #endif
107 static void vfs_vmio_release(struct buf *bp);
108 static int flushbufqueues(struct buf *marker, bufq_type_t q);
109 static vm_page_t bio_page_alloc(struct buf *bp, vm_object_t obj,
110 				vm_pindex_t pg, int deficit);
111 
112 static void bd_signal(long totalspace);
113 static void buf_daemon(void);
114 static void buf_daemon_hw(void);
115 
116 /*
117  * bogus page -- for I/O to/from partially complete buffers
118  * this is a temporary solution to the problem, but it is not
119  * really that bad.  it would be better to split the buffer
120  * for input in the case of buffers partially already in memory,
121  * but the code is intricate enough already.
122  */
123 vm_page_t bogus_page;
124 
125 /*
126  * These are all static, but make the ones we export globals so we do
127  * not need to use compiler magic.
128  */
129 long bufspace;			/* atomic ops */
130 long maxbufspace;
131 long maxbufmallocspace, lobufspace, hibufspace;
132 static long lorunningspace;
133 static long hirunningspace;
134 static long dirtykvaspace;		/* atomic */
135 long dirtybufspace;			/* atomic (global for systat) */
136 static long dirtybufcount;		/* atomic */
137 static long dirtybufspacehw;		/* atomic */
138 static long dirtybufcounthw;		/* atomic */
139 static long runningbufspace;		/* atomic */
140 static long runningbufcount;		/* atomic */
141 long lodirtybufspace;
142 long hidirtybufspace;
143 static int getnewbufcalls;
144 static int needsbuffer;			/* atomic */
145 static int runningbufreq;		/* atomic */
146 static int bd_request;			/* atomic */
147 static int bd_request_hw;		/* atomic */
148 static u_int bd_wake_ary[BD_WAKE_SIZE];
149 static u_int bd_wake_index;
150 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
151 static int debug_commit;
152 static int debug_bufbio;
153 static int debug_kvabio;
154 static long bufcache_bw = 200 * 1024 * 1024;
155 
156 static struct thread *bufdaemon_td;
157 static struct thread *bufdaemonhw_td;
158 static u_int lowmempgallocs;
159 static u_int flushperqueue = 1024;
160 
161 /*
162  * Sysctls for operational control of the buffer cache.
163  */
164 SYSCTL_UINT(_vfs, OID_AUTO, flushperqueue, CTLFLAG_RW, &flushperqueue, 0,
165 	"Number of buffers to flush from each per-cpu queue");
166 SYSCTL_LONG(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
167 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
168 SYSCTL_LONG(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
169 	"High watermark used to trigger explicit flushing of dirty buffers");
170 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
171 	"Minimum amount of buffer space required for active I/O");
172 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
173 	"Maximum amount of buffer space to usable for active I/O");
174 SYSCTL_LONG(_vfs, OID_AUTO, bufcache_bw, CTLFLAG_RW, &bufcache_bw, 0,
175 	"Buffer-cache -> VM page cache transfer bandwidth");
176 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
177 	"Page allocations done during periods of very low free memory");
178 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
179 	"Recycle pages to active or inactive queue transition pt 0-64");
180 /*
181  * Sysctls determining current state of the buffer cache.
182  */
183 SYSCTL_LONG(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
184 	"Total number of buffers in buffer cache");
185 SYSCTL_LONG(_vfs, OID_AUTO, dirtykvaspace, CTLFLAG_RD, &dirtykvaspace, 0,
186 	"KVA reserved by dirty buffers (all)");
187 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
188 	"Pending bytes of dirty buffers (all)");
189 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
190 	"Pending bytes of dirty buffers (heavy weight)");
191 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
192 	"Pending number of dirty buffers");
193 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
194 	"Pending number of dirty buffers (heavy weight)");
195 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
196 	"I/O bytes currently in progress due to asynchronous writes");
197 SYSCTL_LONG(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
198 	"I/O buffers currently in progress due to asynchronous writes");
199 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
200 	"Hard limit on maximum amount of memory usable for buffer space");
201 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
202 	"Soft limit on maximum amount of memory usable for buffer space");
203 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
204 	"Minimum amount of memory to reserve for system buffer space");
205 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
206 	"Amount of memory available for buffers");
207 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
208 	0, "Maximum amount of memory reserved for buffers using malloc");
209 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
210 	"New buffer header acquisition requests");
211 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
212 SYSCTL_INT(_vfs, OID_AUTO, debug_bufbio, CTLFLAG_RW, &debug_bufbio, 0, "");
213 SYSCTL_INT(_vfs, OID_AUTO, debug_kvabio, CTLFLAG_RW, &debug_kvabio, 0, "");
214 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
215 	"sizeof(struct buf)");
216 
217 char *buf_wmesg = BUF_WMESG;
218 
219 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
220 #define VFS_BIO_NEED_UNUSED02	0x02
221 #define VFS_BIO_NEED_UNUSED04	0x04
222 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
223 
224 /*
225  * Called when buffer space is potentially available for recovery.
226  * getnewbuf() will block on this flag when it is unable to free
227  * sufficient buffer space.  Buffer space becomes recoverable when
228  * bp's get placed back in the queues.
229  */
230 static __inline void
231 bufspacewakeup(void)
232 {
233 	/*
234 	 * If someone is waiting for BUF space, wake them up.  Even
235 	 * though we haven't freed the kva space yet, the waiting
236 	 * process will be able to now.
237 	 */
238 	for (;;) {
239 		int flags = needsbuffer;
240 		cpu_ccfence();
241 		if ((flags & VFS_BIO_NEED_BUFSPACE) == 0)
242 			break;
243 		if (atomic_cmpset_int(&needsbuffer, flags,
244 				      flags & ~VFS_BIO_NEED_BUFSPACE)) {
245 			wakeup(&needsbuffer);
246 			break;
247 		}
248 		/* retry */
249 	}
250 }
251 
252 /*
253  * runningbufwakeup:
254  *
255  *	Accounting for I/O in progress.
256  *
257  */
258 static __inline void
259 runningbufwakeup(struct buf *bp)
260 {
261 	long totalspace;
262 	long flags;
263 
264 	if ((totalspace = bp->b_runningbufspace) != 0) {
265 		atomic_add_long(&runningbufspace, -totalspace);
266 		atomic_add_long(&runningbufcount, -1);
267 		bp->b_runningbufspace = 0;
268 
269 		/*
270 		 * see waitrunningbufspace() for limit test.
271 		 */
272 		for (;;) {
273 			flags = runningbufreq;
274 			cpu_ccfence();
275 			if (flags == 0)
276 				break;
277 			if (atomic_cmpset_int(&runningbufreq, flags, 0)) {
278 				wakeup(&runningbufreq);
279 				break;
280 			}
281 			/* retry */
282 		}
283 		bd_signal(totalspace);
284 	}
285 }
286 
287 /*
288  * bufcountwakeup:
289  *
290  *	Called when a buffer has been added to one of the free queues to
291  *	account for the buffer and to wakeup anyone waiting for free buffers.
292  *	This typically occurs when large amounts of metadata are being handled
293  *	by the buffer cache ( else buffer space runs out first, usually ).
294  */
295 static __inline void
296 bufcountwakeup(void)
297 {
298 	long flags;
299 
300 	for (;;) {
301 		flags = needsbuffer;
302 		if (flags == 0)
303 			break;
304 		if (atomic_cmpset_int(&needsbuffer, flags,
305 				      (flags & ~VFS_BIO_NEED_ANY))) {
306 			wakeup(&needsbuffer);
307 			break;
308 		}
309 		/* retry */
310 	}
311 }
312 
313 /*
314  * waitrunningbufspace()
315  *
316  * If runningbufspace exceeds 4/6 hirunningspace we block until
317  * runningbufspace drops to 3/6 hirunningspace.  We also block if another
318  * thread blocked here in order to be fair, even if runningbufspace
319  * is now lower than the limit.
320  *
321  * The caller may be using this function to block in a tight loop, we
322  * must block while runningbufspace is greater than at least
323  * hirunningspace * 3 / 6.
324  */
325 void
326 waitrunningbufspace(void)
327 {
328 	long limit = hirunningspace * 4 / 6;
329 	long flags;
330 
331 	while (runningbufspace > limit || runningbufreq) {
332 		tsleep_interlock(&runningbufreq, 0);
333 		flags = atomic_fetchadd_int(&runningbufreq, 1);
334 		if (runningbufspace > limit || flags)
335 			tsleep(&runningbufreq, PINTERLOCKED, "wdrn1", hz);
336 	}
337 }
338 
339 /*
340  * buf_dirty_count_severe:
341  *
342  *	Return true if we have too many dirty buffers.
343  */
344 int
345 buf_dirty_count_severe(void)
346 {
347 	return (runningbufspace + dirtykvaspace >= hidirtybufspace ||
348 	        dirtybufcount >= nbuf / 2);
349 }
350 
351 /*
352  * Return true if the amount of running I/O is severe and BIOQ should
353  * start bursting.
354  */
355 int
356 buf_runningbufspace_severe(void)
357 {
358 	return (runningbufspace >= hirunningspace * 4 / 6);
359 }
360 
361 /*
362  * vfs_buf_test_cache:
363  *
364  * Called when a buffer is extended.  This function clears the B_CACHE
365  * bit if the newly extended portion of the buffer does not contain
366  * valid data.
367  *
368  * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
369  * cache buffers.  The VM pages remain dirty, as someone had mmap()'d
370  * them while a clean buffer was present.
371  */
372 static __inline__
373 void
374 vfs_buf_test_cache(struct buf *bp,
375 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
376 		  vm_page_t m)
377 {
378 	if (bp->b_flags & B_CACHE) {
379 		int base = (foff + off) & PAGE_MASK;
380 		if (vm_page_is_valid(m, base, size) == 0)
381 			bp->b_flags &= ~B_CACHE;
382 	}
383 }
384 
385 /*
386  * bd_speedup()
387  *
388  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
389  * low water mark.
390  */
391 static __inline__
392 void
393 bd_speedup(void)
394 {
395 	if (dirtykvaspace < lodirtybufspace && dirtybufcount < nbuf / 2)
396 		return;
397 
398 	if (bd_request == 0 &&
399 	    (dirtykvaspace > lodirtybufspace / 2 ||
400 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
401 		if (atomic_fetchadd_int(&bd_request, 1) == 0)
402 			wakeup(&bd_request);
403 	}
404 	if (bd_request_hw == 0 &&
405 	    (dirtykvaspace > lodirtybufspace / 2 ||
406 	     dirtybufcounthw >= nbuf / 2)) {
407 		if (atomic_fetchadd_int(&bd_request_hw, 1) == 0)
408 			wakeup(&bd_request_hw);
409 	}
410 }
411 
412 /*
413  * bd_heatup()
414  *
415  *	Get the buf_daemon heated up when the number of running and dirty
416  *	buffers exceeds the mid-point.
417  *
418  *	Return the total number of dirty bytes past the second mid point
419  *	as a measure of how much excess dirty data there is in the system.
420  */
421 long
422 bd_heatup(void)
423 {
424 	long mid1;
425 	long mid2;
426 	long totalspace;
427 
428 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
429 
430 	totalspace = runningbufspace + dirtykvaspace;
431 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
432 		bd_speedup();
433 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
434 		if (totalspace >= mid2)
435 			return(totalspace - mid2);
436 	}
437 	return(0);
438 }
439 
440 /*
441  * bd_wait()
442  *
443  *	Wait for the buffer cache to flush (totalspace) bytes worth of
444  *	buffers, then return.
445  *
446  *	Regardless this function blocks while the number of dirty buffers
447  *	exceeds hidirtybufspace.
448  */
449 void
450 bd_wait(long totalspace)
451 {
452 	u_int i;
453 	u_int j;
454 	u_int mi;
455 	int count;
456 
457 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
458 		return;
459 
460 	while (totalspace > 0) {
461 		bd_heatup();
462 
463 		/*
464 		 * Order is important.  Suppliers adjust bd_wake_index after
465 		 * updating runningbufspace/dirtykvaspace.  We want to fetch
466 		 * bd_wake_index before accessing.  Any error should thus
467 		 * be in our favor.
468 		 */
469 		i = atomic_fetchadd_int(&bd_wake_index, 0);
470 		if (totalspace > runningbufspace + dirtykvaspace)
471 			totalspace = runningbufspace + dirtykvaspace;
472 		count = totalspace / MAXBSIZE;
473 		if (count >= BD_WAKE_SIZE / 2)
474 			count = BD_WAKE_SIZE / 2;
475 		i = i + count;
476 		mi = i & BD_WAKE_MASK;
477 
478 		/*
479 		 * This is not a strict interlock, so we play a bit loose
480 		 * with locking access to dirtybufspace*.  We have to re-check
481 		 * bd_wake_index to ensure that it hasn't passed us.
482 		 */
483 		tsleep_interlock(&bd_wake_ary[mi], 0);
484 		atomic_add_int(&bd_wake_ary[mi], 1);
485 		j = atomic_fetchadd_int(&bd_wake_index, 0);
486 		if ((int)(i - j) >= 0)
487 			tsleep(&bd_wake_ary[mi], PINTERLOCKED, "flstik", hz);
488 
489 		totalspace = runningbufspace + dirtykvaspace - hidirtybufspace;
490 	}
491 }
492 
493 /*
494  * bd_signal()
495  *
496  *	This function is called whenever runningbufspace or dirtykvaspace
497  *	is reduced.  Track threads waiting for run+dirty buffer I/O
498  *	complete.
499  */
500 static void
501 bd_signal(long totalspace)
502 {
503 	u_int i;
504 
505 	if (totalspace > 0) {
506 		if (totalspace > MAXBSIZE * BD_WAKE_SIZE)
507 			totalspace = MAXBSIZE * BD_WAKE_SIZE;
508 		while (totalspace > 0) {
509 			i = atomic_fetchadd_int(&bd_wake_index, 1);
510 			i &= BD_WAKE_MASK;
511 			if (atomic_readandclear_int(&bd_wake_ary[i]))
512 				wakeup(&bd_wake_ary[i]);
513 			totalspace -= MAXBSIZE;
514 		}
515 	}
516 }
517 
518 /*
519  * BIO tracking support routines.
520  *
521  * Release a ref on a bio_track.  Wakeup requests are atomically released
522  * along with the last reference so bk_active will never wind up set to
523  * only 0x80000000.
524  */
525 static
526 void
527 bio_track_rel(struct bio_track *track)
528 {
529 	int	active;
530 	int	desired;
531 
532 	/*
533 	 * Shortcut
534 	 */
535 	active = track->bk_active;
536 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
537 		return;
538 
539 	/*
540 	 * Full-on.  Note that the wait flag is only atomically released on
541 	 * the 1->0 count transition.
542 	 *
543 	 * We check for a negative count transition using bit 30 since bit 31
544 	 * has a different meaning.
545 	 */
546 	for (;;) {
547 		desired = (active & 0x7FFFFFFF) - 1;
548 		if (desired)
549 			desired |= active & 0x80000000;
550 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
551 			if (desired & 0x40000000)
552 				panic("bio_track_rel: bad count: %p", track);
553 			if (active & 0x80000000)
554 				wakeup(track);
555 			break;
556 		}
557 		active = track->bk_active;
558 	}
559 }
560 
561 /*
562  * Wait for the tracking count to reach 0.
563  *
564  * Use atomic ops such that the wait flag is only set atomically when
565  * bk_active is non-zero.
566  */
567 int
568 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
569 {
570 	int	active;
571 	int	desired;
572 	int	error;
573 
574 	/*
575 	 * Shortcut
576 	 */
577 	if (track->bk_active == 0)
578 		return(0);
579 
580 	/*
581 	 * Full-on.  Note that the wait flag may only be atomically set if
582 	 * the active count is non-zero.
583 	 *
584 	 * NOTE: We cannot optimize active == desired since a wakeup could
585 	 *	 clear active prior to our tsleep_interlock().
586 	 */
587 	error = 0;
588 	while ((active = track->bk_active) != 0) {
589 		cpu_ccfence();
590 		desired = active | 0x80000000;
591 		tsleep_interlock(track, slp_flags);
592 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
593 			error = tsleep(track, slp_flags | PINTERLOCKED,
594 				       "trwait", slp_timo);
595 			if (error)
596 				break;
597 		}
598 	}
599 	return (error);
600 }
601 
602 /*
603  * bufinit:
604  *
605  *	Load time initialisation of the buffer cache, called from machine
606  *	dependant initialization code.
607  */
608 static
609 void
610 bufinit(void *dummy __unused)
611 {
612 	struct bufpcpu *pcpu;
613 	struct buf *bp;
614 	vm_offset_t bogus_offset;
615 	int i;
616 	int j;
617 	long n;
618 
619 	/* next, make a null set of free lists */
620 	for (i = 0; i < ncpus; ++i) {
621 		pcpu = &bufpcpu[i];
622 		spin_init(&pcpu->spin, "bufinit");
623 		for (j = 0; j < BUFFER_QUEUES; j++)
624 			TAILQ_INIT(&pcpu->bufqueues[j]);
625 	}
626 
627 	/*
628 	 * Finally, initialize each buffer header and stick on empty q.
629 	 * Each buffer gets its own KVA reservation.
630 	 */
631 	i = 0;
632 	pcpu = &bufpcpu[i];
633 
634 	for (n = 0; n < nbuf; n++) {
635 		bp = &buf[n];
636 		bzero(bp, sizeof *bp);
637 		bp->b_flags = B_INVAL;	/* we're just an empty header */
638 		bp->b_cmd = BUF_CMD_DONE;
639 		bp->b_qindex = BQUEUE_EMPTY;
640 		bp->b_qcpu = i;
641 		bp->b_kvabase = (void *)(vm_map_min(&buffer_map) +
642 					 MAXBSIZE * n);
643 		bp->b_kvasize = MAXBSIZE;
644 		initbufbio(bp);
645 		xio_init(&bp->b_xio);
646 		buf_dep_init(bp);
647 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
648 				  bp, b_freelist);
649 
650 		i = (i + 1) % ncpus;
651 		pcpu = &bufpcpu[i];
652 	}
653 
654 	/*
655 	 * maxbufspace is the absolute maximum amount of buffer space we are
656 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
657 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
658 	 * used by most other processes.  The differential is required to
659 	 * ensure that buf_daemon is able to run when other processes might
660 	 * be blocked waiting for buffer space.
661 	 *
662 	 * Calculate hysteresis (lobufspace, hibufspace).  Don't make it
663 	 * too large or we might lockup a cpu for too long a period of
664 	 * time in our tight loop.
665 	 */
666 	maxbufspace = nbuf * NBUFCALCSIZE;
667 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
668 	lobufspace = hibufspace * 7 / 8;
669 	if (hibufspace - lobufspace > 64 * 1024 * 1024)
670 		lobufspace = hibufspace - 64 * 1024 * 1024;
671 	if (lobufspace > hibufspace - MAXBSIZE)
672 		lobufspace = hibufspace - MAXBSIZE;
673 
674 	lorunningspace = 512 * 1024;
675 	/* hirunningspace -- see below */
676 
677 	/*
678 	 * Limit the amount of malloc memory since it is wired permanently
679 	 * into the kernel space.  Even though this is accounted for in
680 	 * the buffer allocation, we don't want the malloced region to grow
681 	 * uncontrolled.  The malloc scheme improves memory utilization
682 	 * significantly on average (small) directories.
683 	 */
684 	maxbufmallocspace = hibufspace / 20;
685 
686 	/*
687 	 * Reduce the chance of a deadlock occuring by limiting the number
688 	 * of delayed-write dirty buffers we allow to stack up.
689 	 *
690 	 * We don't want too much actually queued to the device at once
691 	 * (XXX this needs to be per-mount!), because the buffers will
692 	 * wind up locked for a very long period of time while the I/O
693 	 * drains.
694 	 */
695 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
696 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
697 	if (hirunningspace < 1024 * 1024)
698 		hirunningspace = 1024 * 1024;
699 
700 	dirtykvaspace = 0;
701 	dirtybufspace = 0;
702 	dirtybufspacehw = 0;
703 
704 	lodirtybufspace = hidirtybufspace / 2;
705 
706 	/*
707 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
708 	 * somewhat of a hack at the moment, we really need to limit ourselves
709 	 * based on the number of bytes of I/O in-transit that were initiated
710 	 * from buf_daemon.
711 	 */
712 
713 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE,
714 					   VM_SUBSYS_BOGUS);
715 	vm_object_hold(&kernel_object);
716 	bogus_page = vm_page_alloc(&kernel_object,
717 				   (bogus_offset >> PAGE_SHIFT),
718 				   VM_ALLOC_NORMAL);
719 	vm_object_drop(&kernel_object);
720 	vmstats.v_wire_count++;
721 
722 }
723 
724 SYSINIT(do_bufinit, SI_BOOT2_MACHDEP, SI_ORDER_FIRST, bufinit, NULL);
725 
726 /*
727  * Initialize the embedded bio structures, typically used by
728  * deprecated code which tries to allocate its own struct bufs.
729  */
730 void
731 initbufbio(struct buf *bp)
732 {
733 	bp->b_bio1.bio_buf = bp;
734 	bp->b_bio1.bio_prev = NULL;
735 	bp->b_bio1.bio_offset = NOOFFSET;
736 	bp->b_bio1.bio_next = &bp->b_bio2;
737 	bp->b_bio1.bio_done = NULL;
738 	bp->b_bio1.bio_flags = 0;
739 
740 	bp->b_bio2.bio_buf = bp;
741 	bp->b_bio2.bio_prev = &bp->b_bio1;
742 	bp->b_bio2.bio_offset = NOOFFSET;
743 	bp->b_bio2.bio_next = NULL;
744 	bp->b_bio2.bio_done = NULL;
745 	bp->b_bio2.bio_flags = 0;
746 
747 	BUF_LOCKINIT(bp);
748 }
749 
750 /*
751  * Reinitialize the embedded bio structures as well as any additional
752  * translation cache layers.
753  */
754 void
755 reinitbufbio(struct buf *bp)
756 {
757 	struct bio *bio;
758 
759 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
760 		bio->bio_done = NULL;
761 		bio->bio_offset = NOOFFSET;
762 	}
763 }
764 
765 /*
766  * Undo the effects of an initbufbio().
767  */
768 void
769 uninitbufbio(struct buf *bp)
770 {
771 	dsched_buf_exit(bp);
772 	BUF_LOCKFREE(bp);
773 }
774 
775 /*
776  * Push another BIO layer onto an existing BIO and return it.  The new
777  * BIO layer may already exist, holding cached translation data.
778  */
779 struct bio *
780 push_bio(struct bio *bio)
781 {
782 	struct bio *nbio;
783 
784 	if ((nbio = bio->bio_next) == NULL) {
785 		int index = bio - &bio->bio_buf->b_bio_array[0];
786 		if (index >= NBUF_BIO - 1) {
787 			panic("push_bio: too many layers %d for bp %p",
788 				index, bio->bio_buf);
789 		}
790 		nbio = &bio->bio_buf->b_bio_array[index + 1];
791 		bio->bio_next = nbio;
792 		nbio->bio_prev = bio;
793 		nbio->bio_buf = bio->bio_buf;
794 		nbio->bio_offset = NOOFFSET;
795 		nbio->bio_done = NULL;
796 		nbio->bio_next = NULL;
797 	}
798 	KKASSERT(nbio->bio_done == NULL);
799 	return(nbio);
800 }
801 
802 /*
803  * Pop a BIO translation layer, returning the previous layer.  The
804  * must have been previously pushed.
805  */
806 struct bio *
807 pop_bio(struct bio *bio)
808 {
809 	return(bio->bio_prev);
810 }
811 
812 void
813 clearbiocache(struct bio *bio)
814 {
815 	while (bio) {
816 		bio->bio_offset = NOOFFSET;
817 		bio = bio->bio_next;
818 	}
819 }
820 
821 /*
822  * Remove the buffer from the appropriate free list.
823  * (caller must be locked)
824  */
825 static __inline void
826 _bremfree(struct buf *bp)
827 {
828 	struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
829 
830 	if (bp->b_qindex != BQUEUE_NONE) {
831 		KASSERT(BUF_LOCKINUSE(bp), ("bremfree: bp %p not locked", bp));
832 		TAILQ_REMOVE(&pcpu->bufqueues[bp->b_qindex], bp, b_freelist);
833 		bp->b_qindex = BQUEUE_NONE;
834 	} else {
835 		if (!BUF_LOCKINUSE(bp))
836 			panic("bremfree: removing a buffer not on a queue");
837 	}
838 }
839 
840 /*
841  * bremfree() - must be called with a locked buffer
842  */
843 void
844 bremfree(struct buf *bp)
845 {
846 	struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
847 
848 	spin_lock(&pcpu->spin);
849 	_bremfree(bp);
850 	spin_unlock(&pcpu->spin);
851 }
852 
853 /*
854  * bremfree_locked - must be called with pcpu->spin locked
855  */
856 static void
857 bremfree_locked(struct buf *bp)
858 {
859 	_bremfree(bp);
860 }
861 
862 /*
863  * This version of bread issues any required I/O asyncnronously and
864  * makes a callback on completion.
865  *
866  * The callback must check whether BIO_DONE is set in the bio and issue
867  * the bpdone(bp, 0) if it isn't.  The callback is responsible for clearing
868  * BIO_DONE and disposing of the I/O (bqrelse()ing it).
869  */
870 void
871 breadcb(struct vnode *vp, off_t loffset, int size, int bflags,
872 	void (*func)(struct bio *), void *arg)
873 {
874 	struct buf *bp;
875 
876 	bp = getblk(vp, loffset, size, 0, 0);
877 
878 	/* if not found in cache, do some I/O */
879 	if ((bp->b_flags & B_CACHE) == 0) {
880 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL | B_NOTMETA);
881 		bp->b_flags |= bflags;
882 		bp->b_cmd = BUF_CMD_READ;
883 		bp->b_bio1.bio_done = func;
884 		bp->b_bio1.bio_caller_info1.ptr = arg;
885 		vfs_busy_pages(vp, bp);
886 		BUF_KERNPROC(bp);
887 		vn_strategy(vp, &bp->b_bio1);
888 	} else if (func) {
889 		/*
890 		 * Since we are issuing the callback synchronously it cannot
891 		 * race the BIO_DONE, so no need for atomic ops here.
892 		 */
893 		/*bp->b_bio1.bio_done = func;*/
894 		bp->b_bio1.bio_caller_info1.ptr = arg;
895 		bp->b_bio1.bio_flags |= BIO_DONE;
896 		func(&bp->b_bio1);
897 	} else {
898 		bqrelse(bp);
899 	}
900 }
901 
902 /*
903  * breadnx() - Terminal function for bread() and breadn().
904  *
905  * This function will start asynchronous I/O on read-ahead blocks as well
906  * as satisfy the primary request.
907  *
908  * We must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE is
909  * set, the buffer is valid and we do not have to do anything.
910  */
911 int
912 breadnx(struct vnode *vp, off_t loffset, int size, int bflags,
913 	off_t *raoffset, int *rabsize,
914 	int cnt, struct buf **bpp)
915 {
916 	struct buf *bp, *rabp;
917 	int i;
918 	int rv = 0, readwait = 0;
919 	int blkflags = (bflags & B_KVABIO) ? GETBLK_KVABIO : 0;
920 
921 	if (*bpp)
922 		bp = *bpp;
923 	else
924 		*bpp = bp = getblk(vp, loffset, size, blkflags, 0);
925 
926 	/* if not found in cache, do some I/O */
927 	if ((bp->b_flags & B_CACHE) == 0) {
928 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL | B_NOTMETA);
929 		bp->b_flags |= bflags;
930 		bp->b_cmd = BUF_CMD_READ;
931 		bp->b_bio1.bio_done = biodone_sync;
932 		bp->b_bio1.bio_flags |= BIO_SYNC;
933 		vfs_busy_pages(vp, bp);
934 		vn_strategy(vp, &bp->b_bio1);
935 		++readwait;
936 	}
937 
938 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
939 		if (inmem(vp, *raoffset))
940 			continue;
941 		rabp = getblk(vp, *raoffset, *rabsize, GETBLK_KVABIO, 0);
942 
943 		if ((rabp->b_flags & B_CACHE) == 0) {
944 			rabp->b_flags &= ~(B_ERROR | B_EINTR |
945 					   B_INVAL | B_NOTMETA);
946 			rabp->b_flags |= (bflags & ~B_KVABIO);
947 			rabp->b_cmd = BUF_CMD_READ;
948 			vfs_busy_pages(vp, rabp);
949 			BUF_KERNPROC(rabp);
950 			vn_strategy(vp, &rabp->b_bio1);
951 		} else {
952 			brelse(rabp);
953 		}
954 	}
955 	if (readwait)
956 		rv = biowait(&bp->b_bio1, "biord");
957 	return (rv);
958 }
959 
960 /*
961  * bwrite:
962  *
963  *	Synchronous write, waits for completion.
964  *
965  *	Write, release buffer on completion.  (Done by iodone
966  *	if async).  Do not bother writing anything if the buffer
967  *	is invalid.
968  *
969  *	Note that we set B_CACHE here, indicating that buffer is
970  *	fully valid and thus cacheable.  This is true even of NFS
971  *	now so we set it generally.  This could be set either here
972  *	or in biodone() since the I/O is synchronous.  We put it
973  *	here.
974  */
975 int
976 bwrite(struct buf *bp)
977 {
978 	int error;
979 
980 	if (bp->b_flags & B_INVAL) {
981 		brelse(bp);
982 		return (0);
983 	}
984 	if (BUF_LOCKINUSE(bp) == 0)
985 		panic("bwrite: buffer is not busy???");
986 
987 	/*
988 	 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
989 	 *	 call because it will remove the buffer from the vnode's
990 	 *	 dirty buffer list prematurely and possibly cause filesystem
991 	 *	 checks to race buffer flushes.  This is now handled in
992 	 *	 bpdone().
993 	 *
994 	 *	 bundirty(bp); REMOVED
995 	 */
996 
997 	bp->b_flags &= ~(B_ERROR | B_EINTR);
998 	bp->b_flags |= B_CACHE;
999 	bp->b_cmd = BUF_CMD_WRITE;
1000 	bp->b_error = 0;
1001 	bp->b_bio1.bio_done = biodone_sync;
1002 	bp->b_bio1.bio_flags |= BIO_SYNC;
1003 	vfs_busy_pages(bp->b_vp, bp);
1004 
1005 	/*
1006 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1007 	 * valid for vnode-backed buffers.
1008 	 */
1009 	bsetrunningbufspace(bp, bp->b_bufsize);
1010 	vn_strategy(bp->b_vp, &bp->b_bio1);
1011 	error = biowait(&bp->b_bio1, "biows");
1012 	brelse(bp);
1013 
1014 	return (error);
1015 }
1016 
1017 /*
1018  * bawrite:
1019  *
1020  *	Asynchronous write.  Start output on a buffer, but do not wait for
1021  *	it to complete.  The buffer is released when the output completes.
1022  *
1023  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1024  *	B_INVAL buffers.  Not us.
1025  */
1026 void
1027 bawrite(struct buf *bp)
1028 {
1029 	if (bp->b_flags & B_INVAL) {
1030 		brelse(bp);
1031 		return;
1032 	}
1033 	if (BUF_LOCKINUSE(bp) == 0)
1034 		panic("bawrite: buffer is not busy???");
1035 
1036 	/*
1037 	 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
1038 	 *	 call because it will remove the buffer from the vnode's
1039 	 *	 dirty buffer list prematurely and possibly cause filesystem
1040 	 *	 checks to race buffer flushes.  This is now handled in
1041 	 *	 bpdone().
1042 	 *
1043 	 *	 bundirty(bp); REMOVED
1044 	 */
1045 	bp->b_flags &= ~(B_ERROR | B_EINTR);
1046 	bp->b_flags |= B_CACHE;
1047 	bp->b_cmd = BUF_CMD_WRITE;
1048 	bp->b_error = 0;
1049 	KKASSERT(bp->b_bio1.bio_done == NULL);
1050 	vfs_busy_pages(bp->b_vp, bp);
1051 
1052 	/*
1053 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1054 	 * valid for vnode-backed buffers.
1055 	 */
1056 	bsetrunningbufspace(bp, bp->b_bufsize);
1057 	BUF_KERNPROC(bp);
1058 	vn_strategy(bp->b_vp, &bp->b_bio1);
1059 }
1060 
1061 /*
1062  * bdwrite:
1063  *
1064  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1065  *	anything if the buffer is marked invalid.
1066  *
1067  *	Note that since the buffer must be completely valid, we can safely
1068  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1069  *	biodone() in order to prevent getblk from writing the buffer
1070  *	out synchronously.
1071  */
1072 void
1073 bdwrite(struct buf *bp)
1074 {
1075 	if (BUF_LOCKINUSE(bp) == 0)
1076 		panic("bdwrite: buffer is not busy");
1077 
1078 	if (bp->b_flags & B_INVAL) {
1079 		brelse(bp);
1080 		return;
1081 	}
1082 	bdirty(bp);
1083 
1084 	dsched_buf_enter(bp);	/* might stack */
1085 
1086 	/*
1087 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1088 	 * true even of NFS now.
1089 	 */
1090 	bp->b_flags |= B_CACHE;
1091 
1092 	/*
1093 	 * This bmap keeps the system from needing to do the bmap later,
1094 	 * perhaps when the system is attempting to do a sync.  Since it
1095 	 * is likely that the indirect block -- or whatever other datastructure
1096 	 * that the filesystem needs is still in memory now, it is a good
1097 	 * thing to do this.  Note also, that if the pageout daemon is
1098 	 * requesting a sync -- there might not be enough memory to do
1099 	 * the bmap then...  So, this is important to do.
1100 	 */
1101 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1102 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1103 			 NULL, NULL, BUF_CMD_WRITE);
1104 	}
1105 
1106 	/*
1107 	 * Because the underlying pages may still be mapped and
1108 	 * writable trying to set the dirty buffer (b_dirtyoff/end)
1109 	 * range here will be inaccurate.
1110 	 *
1111 	 * However, we must still clean the pages to satisfy the
1112 	 * vnode_pager and pageout daemon, so they think the pages
1113 	 * have been "cleaned".  What has really occured is that
1114 	 * they've been earmarked for later writing by the buffer
1115 	 * cache.
1116 	 *
1117 	 * So we get the b_dirtyoff/end update but will not actually
1118 	 * depend on it (NFS that is) until the pages are busied for
1119 	 * writing later on.
1120 	 */
1121 	vfs_clean_pages(bp);
1122 	bqrelse(bp);
1123 
1124 	/*
1125 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1126 	 * due to the softdep code.
1127 	 */
1128 }
1129 
1130 /*
1131  * Fake write - return pages to VM system as dirty, leave the buffer clean.
1132  * This is used by tmpfs.
1133  *
1134  * It is important for any VFS using this routine to NOT use it for
1135  * IO_SYNC or IO_ASYNC operations which occur when the system really
1136  * wants to flush VM pages to backing store.
1137  */
1138 void
1139 buwrite(struct buf *bp)
1140 {
1141 	vm_page_t m;
1142 	int i;
1143 
1144 	/*
1145 	 * Only works for VMIO buffers.  If the buffer is already
1146 	 * marked for delayed-write we can't avoid the bdwrite().
1147 	 */
1148 	if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1149 		bdwrite(bp);
1150 		return;
1151 	}
1152 
1153 	/*
1154 	 * Mark as needing a commit.
1155 	 */
1156 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1157 		m = bp->b_xio.xio_pages[i];
1158 		vm_page_need_commit(m);
1159 	}
1160 	bqrelse(bp);
1161 }
1162 
1163 /*
1164  * bdirty:
1165  *
1166  *	Turn buffer into delayed write request by marking it B_DELWRI.
1167  *	B_RELBUF and B_NOCACHE must be cleared.
1168  *
1169  *	We reassign the buffer to itself to properly update it in the
1170  *	dirty/clean lists.
1171  *
1172  *	Must be called from a critical section.
1173  *	The buffer must be on BQUEUE_NONE.
1174  */
1175 void
1176 bdirty(struct buf *bp)
1177 {
1178 	KASSERT(bp->b_qindex == BQUEUE_NONE,
1179 		("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1180 	if (bp->b_flags & B_NOCACHE) {
1181 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1182 		bp->b_flags &= ~B_NOCACHE;
1183 	}
1184 	if (bp->b_flags & B_INVAL) {
1185 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1186 	}
1187 	bp->b_flags &= ~B_RELBUF;
1188 
1189 	if ((bp->b_flags & B_DELWRI) == 0) {
1190 		lwkt_gettoken(&bp->b_vp->v_token);
1191 		bp->b_flags |= B_DELWRI;
1192 		reassignbuf(bp);
1193 		lwkt_reltoken(&bp->b_vp->v_token);
1194 
1195 		atomic_add_long(&dirtybufcount, 1);
1196 		atomic_add_long(&dirtykvaspace, bp->b_kvasize);
1197 		atomic_add_long(&dirtybufspace, bp->b_bufsize);
1198 		if (bp->b_flags & B_HEAVY) {
1199 			atomic_add_long(&dirtybufcounthw, 1);
1200 			atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1201 		}
1202 		bd_heatup();
1203 	}
1204 }
1205 
1206 /*
1207  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1208  * needs to be flushed with a different buf_daemon thread to avoid
1209  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1210  */
1211 void
1212 bheavy(struct buf *bp)
1213 {
1214 	if ((bp->b_flags & B_HEAVY) == 0) {
1215 		bp->b_flags |= B_HEAVY;
1216 		if (bp->b_flags & B_DELWRI) {
1217 			atomic_add_long(&dirtybufcounthw, 1);
1218 			atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1219 		}
1220 	}
1221 }
1222 
1223 /*
1224  * bundirty:
1225  *
1226  *	Clear B_DELWRI for buffer.
1227  *
1228  *	Must be called from a critical section.
1229  *
1230  *	The buffer is typically on BQUEUE_NONE but there is one case in
1231  *	brelse() that calls this function after placing the buffer on
1232  *	a different queue.
1233  */
1234 void
1235 bundirty(struct buf *bp)
1236 {
1237 	if (bp->b_flags & B_DELWRI) {
1238 		lwkt_gettoken(&bp->b_vp->v_token);
1239 		bp->b_flags &= ~B_DELWRI;
1240 		reassignbuf(bp);
1241 		lwkt_reltoken(&bp->b_vp->v_token);
1242 
1243 		atomic_add_long(&dirtybufcount, -1);
1244 		atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1245 		atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1246 		if (bp->b_flags & B_HEAVY) {
1247 			atomic_add_long(&dirtybufcounthw, -1);
1248 			atomic_add_long(&dirtybufspacehw, -bp->b_bufsize);
1249 		}
1250 		bd_signal(bp->b_bufsize);
1251 	}
1252 	/*
1253 	 * Since it is now being written, we can clear its deferred write flag.
1254 	 */
1255 	bp->b_flags &= ~B_DEFERRED;
1256 }
1257 
1258 /*
1259  * Set the b_runningbufspace field, used to track how much I/O is
1260  * in progress at any given moment.
1261  */
1262 void
1263 bsetrunningbufspace(struct buf *bp, int bytes)
1264 {
1265 	bp->b_runningbufspace = bytes;
1266 	if (bytes) {
1267 		atomic_add_long(&runningbufspace, bytes);
1268 		atomic_add_long(&runningbufcount, 1);
1269 	}
1270 }
1271 
1272 /*
1273  * brelse:
1274  *
1275  *	Release a busy buffer and, if requested, free its resources.  The
1276  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1277  *	to be accessed later as a cache entity or reused for other purposes.
1278  */
1279 void
1280 brelse(struct buf *bp)
1281 {
1282 	struct bufpcpu *pcpu;
1283 #ifdef INVARIANTS
1284 	int saved_flags = bp->b_flags;
1285 #endif
1286 
1287 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1288 		("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1289 
1290 	/*
1291 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1292 	 * its backing store.  Clear B_DELWRI.
1293 	 *
1294 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1295 	 * to destroy the buffer and backing store and (2) when the caller
1296 	 * wants to destroy the buffer and backing store after a write
1297 	 * completes.
1298 	 */
1299 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1300 		bundirty(bp);
1301 	}
1302 
1303 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1304 		/*
1305 		 * A re-dirtied buffer is only subject to destruction
1306 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1307 		 */
1308 		/* leave buffer intact */
1309 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1310 		   (bp->b_bufsize <= 0)) {
1311 		/*
1312 		 * Either a failed read or we were asked to free or not
1313 		 * cache the buffer.  This path is reached with B_DELWRI
1314 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1315 		 * backing store destruction.
1316 		 *
1317 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1318 		 * buffer cannot be immediately freed.
1319 		 */
1320 		bp->b_flags |= B_INVAL;
1321 		if (LIST_FIRST(&bp->b_dep) != NULL)
1322 			buf_deallocate(bp);
1323 		if (bp->b_flags & B_DELWRI) {
1324 			atomic_add_long(&dirtybufcount, -1);
1325 			atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1326 			atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1327 			if (bp->b_flags & B_HEAVY) {
1328 				atomic_add_long(&dirtybufcounthw, -1);
1329 				atomic_add_long(&dirtybufspacehw,
1330 						-bp->b_bufsize);
1331 			}
1332 			bd_signal(bp->b_bufsize);
1333 		}
1334 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1335 	}
1336 
1337 	/*
1338 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1339 	 * or if b_refs is non-zero.
1340 	 *
1341 	 * If vfs_vmio_release() is called with either bit set, the
1342 	 * underlying pages may wind up getting freed causing a previous
1343 	 * write (bdwrite()) to get 'lost' because pages associated with
1344 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1345 	 * B_LOCKED buffer may be mapped by the filesystem.
1346 	 *
1347 	 * If we want to release the buffer ourselves (rather then the
1348 	 * originator asking us to release it), give the originator a
1349 	 * chance to countermand the release by setting B_LOCKED.
1350 	 *
1351 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1352 	 * if B_DELWRI is set.
1353 	 *
1354 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1355 	 * on pages to return pages to the VM page queues.
1356 	 */
1357 	if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) {
1358 		bp->b_flags &= ~B_RELBUF;
1359 	} else if (vm_page_count_min(0)) {
1360 		if (LIST_FIRST(&bp->b_dep) != NULL)
1361 			buf_deallocate(bp);		/* can set B_LOCKED */
1362 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1363 			bp->b_flags &= ~B_RELBUF;
1364 		else
1365 			bp->b_flags |= B_RELBUF;
1366 	}
1367 
1368 	/*
1369 	 * Make sure b_cmd is clear.  It may have already been cleared by
1370 	 * biodone().
1371 	 *
1372 	 * At this point destroying the buffer is governed by the B_INVAL
1373 	 * or B_RELBUF flags.
1374 	 */
1375 	bp->b_cmd = BUF_CMD_DONE;
1376 	dsched_buf_exit(bp);
1377 
1378 	/*
1379 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1380 	 * after an I/O may have replaces some of the pages with bogus pages
1381 	 * in order to not destroy dirty pages in a fill-in read.
1382 	 *
1383 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1384 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1385 	 * B_INVAL may still be set, however.
1386 	 *
1387 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1388 	 * but not the backing store.   B_NOCACHE will destroy the backing
1389 	 * store.
1390 	 *
1391 	 * Note that dirty NFS buffers contain byte-granular write ranges
1392 	 * and should not be destroyed w/ B_INVAL even if the backing store
1393 	 * is left intact.
1394 	 */
1395 	if (bp->b_flags & B_VMIO) {
1396 		/*
1397 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1398 		 */
1399 		int i, j, resid;
1400 		vm_page_t m;
1401 		off_t foff;
1402 		vm_pindex_t poff;
1403 		vm_object_t obj;
1404 		struct vnode *vp;
1405 
1406 		vp = bp->b_vp;
1407 
1408 		/*
1409 		 * Get the base offset and length of the buffer.  Note that
1410 		 * in the VMIO case if the buffer block size is not
1411 		 * page-aligned then b_data pointer may not be page-aligned.
1412 		 * But our b_xio.xio_pages array *IS* page aligned.
1413 		 *
1414 		 * block sizes less then DEV_BSIZE (usually 512) are not
1415 		 * supported due to the page granularity bits (m->valid,
1416 		 * m->dirty, etc...).
1417 		 *
1418 		 * See man buf(9) for more information
1419 		 */
1420 
1421 		resid = bp->b_bufsize;
1422 		foff = bp->b_loffset;
1423 
1424 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1425 			m = bp->b_xio.xio_pages[i];
1426 
1427 			/*
1428 			 * If we hit a bogus page, fixup *all* of them
1429 			 * now.  Note that we left these pages wired
1430 			 * when we removed them so they had better exist,
1431 			 * and they cannot be ripped out from under us so
1432 			 * no critical section protection is necessary.
1433 			 */
1434 			if (m == bogus_page) {
1435 				obj = vp->v_object;
1436 				poff = OFF_TO_IDX(bp->b_loffset);
1437 
1438 				vm_object_hold(obj);
1439 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1440 					vm_page_t mtmp;
1441 
1442 					mtmp = bp->b_xio.xio_pages[j];
1443 					if (mtmp == bogus_page) {
1444 						if ((bp->b_flags & B_HASBOGUS) == 0)
1445 							panic("brelse: bp %p corrupt bogus", bp);
1446 						mtmp = vm_page_lookup(obj, poff + j);
1447 						if (!mtmp)
1448 							panic("brelse: bp %p page %d missing", bp, j);
1449 						bp->b_xio.xio_pages[j] = mtmp;
1450 					}
1451 				}
1452 				vm_object_drop(obj);
1453 
1454 				if ((bp->b_flags & B_HASBOGUS) ||
1455 				    (bp->b_flags & B_INVAL) == 0) {
1456 					pmap_qenter_noinval(
1457 					    trunc_page((vm_offset_t)bp->b_data),
1458 					    bp->b_xio.xio_pages,
1459 					    bp->b_xio.xio_npages);
1460 					bp->b_flags &= ~B_HASBOGUS;
1461 					bp->b_flags |= B_KVABIO;
1462 					bkvareset(bp);
1463 				}
1464 				m = bp->b_xio.xio_pages[i];
1465 			}
1466 
1467 			/*
1468 			 * Invalidate the backing store if B_NOCACHE is set
1469 			 * (e.g. used with vinvalbuf()).  If this is NFS
1470 			 * we impose a requirement that the block size be
1471 			 * a multiple of PAGE_SIZE and create a temporary
1472 			 * hack to basically invalidate the whole page.  The
1473 			 * problem is that NFS uses really odd buffer sizes
1474 			 * especially when tracking piecemeal writes and
1475 			 * it also vinvalbuf()'s a lot, which would result
1476 			 * in only partial page validation and invalidation
1477 			 * here.  If the file page is mmap()'d, however,
1478 			 * all the valid bits get set so after we invalidate
1479 			 * here we would end up with weird m->valid values
1480 			 * like 0xfc.  nfs_getpages() can't handle this so
1481 			 * we clear all the valid bits for the NFS case
1482 			 * instead of just some of them.
1483 			 *
1484 			 * The real bug is the VM system having to set m->valid
1485 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1486 			 * itself is an artifact of the whole 512-byte
1487 			 * granular mess that exists to support odd block
1488 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1489 			 * A complete rewrite is required.
1490 			 *
1491 			 * XXX
1492 			 */
1493 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1494 				int poffset = foff & PAGE_MASK;
1495 				int presid;
1496 
1497 				presid = PAGE_SIZE - poffset;
1498 				if (bp->b_vp->v_tag == VT_NFS &&
1499 				    bp->b_vp->v_type == VREG) {
1500 					; /* entire page */
1501 				} else if (presid > resid) {
1502 					presid = resid;
1503 				}
1504 				KASSERT(presid >= 0, ("brelse: extra page"));
1505 				vm_page_set_invalid(m, poffset, presid);
1506 
1507 				/*
1508 				 * Also make sure any swap cache is removed
1509 				 * as it is now stale (HAMMER in particular
1510 				 * uses B_NOCACHE to deal with buffer
1511 				 * aliasing).
1512 				 */
1513 				swap_pager_unswapped(m);
1514 			}
1515 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1516 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1517 		}
1518 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1519 			vfs_vmio_release(bp);
1520 	} else {
1521 		/*
1522 		 * Rundown for non-VMIO buffers.
1523 		 */
1524 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1525 			if (bp->b_bufsize)
1526 				allocbuf(bp, 0);
1527 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1528 			if (bp->b_vp)
1529 				brelvp(bp);
1530 		}
1531 	}
1532 
1533 	if (bp->b_qindex != BQUEUE_NONE)
1534 		panic("brelse: free buffer onto another queue???");
1535 
1536 	/*
1537 	 * Figure out the correct queue to place the cleaned up buffer on.
1538 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1539 	 * disassociated from their vnode.
1540 	 *
1541 	 * Return the buffer to its original pcpu area
1542 	 */
1543 	pcpu = &bufpcpu[bp->b_qcpu];
1544 	spin_lock(&pcpu->spin);
1545 
1546 	if (bp->b_flags & B_LOCKED) {
1547 		/*
1548 		 * Buffers that are locked are placed in the locked queue
1549 		 * immediately, regardless of their state.
1550 		 */
1551 		bp->b_qindex = BQUEUE_LOCKED;
1552 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1553 				  bp, b_freelist);
1554 	} else if (bp->b_bufsize == 0) {
1555 		/*
1556 		 * Buffers with no memory.  Due to conditionals near the top
1557 		 * of brelse() such buffers should probably already be
1558 		 * marked B_INVAL and disassociated from their vnode.
1559 		 */
1560 		bp->b_flags |= B_INVAL;
1561 		KASSERT(bp->b_vp == NULL,
1562 			("bp1 %p flags %08x/%08x vnode %p "
1563 			 "unexpectededly still associated!",
1564 			bp, saved_flags, bp->b_flags, bp->b_vp));
1565 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1566 		bp->b_qindex = BQUEUE_EMPTY;
1567 		TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1568 				  bp, b_freelist);
1569 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1570 		/*
1571 		 * Buffers with junk contents.   Again these buffers had better
1572 		 * already be disassociated from their vnode.
1573 		 */
1574 		KASSERT(bp->b_vp == NULL,
1575 			("bp2 %p flags %08x/%08x vnode %p unexpectededly "
1576 			 "still associated!",
1577 			bp, saved_flags, bp->b_flags, bp->b_vp));
1578 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1579 		bp->b_flags |= B_INVAL;
1580 		bp->b_qindex = BQUEUE_CLEAN;
1581 		TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1582 				  bp, b_freelist);
1583 	} else {
1584 		/*
1585 		 * Remaining buffers.  These buffers are still associated with
1586 		 * their vnode.
1587 		 */
1588 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1589 		case B_DELWRI:
1590 			bp->b_qindex = BQUEUE_DIRTY;
1591 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1592 					  bp, b_freelist);
1593 			break;
1594 		case B_DELWRI | B_HEAVY:
1595 			bp->b_qindex = BQUEUE_DIRTY_HW;
1596 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1597 					  bp, b_freelist);
1598 			break;
1599 		default:
1600 			/*
1601 			 * NOTE: Buffers are always placed at the end of the
1602 			 * queue.  If B_AGE is not set the buffer will cycle
1603 			 * through the queue twice.
1604 			 */
1605 			bp->b_qindex = BQUEUE_CLEAN;
1606 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1607 					  bp, b_freelist);
1608 			break;
1609 		}
1610 	}
1611 	spin_unlock(&pcpu->spin);
1612 
1613 	/*
1614 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1615 	 * on the correct queue but we have not yet unlocked it.
1616 	 */
1617 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1618 		bundirty(bp);
1619 
1620 	/*
1621 	 * The bp is on an appropriate queue unless locked.  If it is not
1622 	 * locked or dirty we can wakeup threads waiting for buffer space.
1623 	 *
1624 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1625 	 * if B_INVAL is set ).
1626 	 */
1627 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1628 		bufcountwakeup();
1629 
1630 	/*
1631 	 * Something we can maybe free or reuse
1632 	 */
1633 	if (bp->b_bufsize || bp->b_kvasize)
1634 		bufspacewakeup();
1635 
1636 	/*
1637 	 * Clean up temporary flags and unlock the buffer.
1638 	 */
1639 	bp->b_flags &= ~(B_NOCACHE | B_RELBUF | B_DIRECT);
1640 	BUF_UNLOCK(bp);
1641 }
1642 
1643 /*
1644  * bqrelse:
1645  *
1646  *	Release a buffer back to the appropriate queue but do not try to free
1647  *	it.  The buffer is expected to be used again soon.
1648  *
1649  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1650  *	biodone() to requeue an async I/O on completion.  It is also used when
1651  *	known good buffers need to be requeued but we think we may need the data
1652  *	again soon.
1653  *
1654  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1655  */
1656 void
1657 bqrelse(struct buf *bp)
1658 {
1659 	struct bufpcpu *pcpu;
1660 
1661 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1662 		("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1663 
1664 	if (bp->b_qindex != BQUEUE_NONE)
1665 		panic("bqrelse: free buffer onto another queue???");
1666 
1667 	buf_act_advance(bp);
1668 
1669 	pcpu = &bufpcpu[bp->b_qcpu];
1670 	spin_lock(&pcpu->spin);
1671 
1672 	if (bp->b_flags & B_LOCKED) {
1673 		/*
1674 		 * Locked buffers are released to the locked queue.  However,
1675 		 * if the buffer is dirty it will first go into the dirty
1676 		 * queue and later on after the I/O completes successfully it
1677 		 * will be released to the locked queue.
1678 		 */
1679 		bp->b_qindex = BQUEUE_LOCKED;
1680 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1681 				  bp, b_freelist);
1682 	} else if (bp->b_flags & B_DELWRI) {
1683 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1684 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1685 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1686 				  bp, b_freelist);
1687 	} else if (vm_page_count_min(0)) {
1688 		/*
1689 		 * We are too low on memory, we have to try to free the
1690 		 * buffer (most importantly: the wired pages making up its
1691 		 * backing store) *now*.
1692 		 */
1693 		spin_unlock(&pcpu->spin);
1694 		brelse(bp);
1695 		return;
1696 	} else {
1697 		bp->b_qindex = BQUEUE_CLEAN;
1698 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1699 				  bp, b_freelist);
1700 	}
1701 	spin_unlock(&pcpu->spin);
1702 
1703 	/*
1704 	 * We have now placed the buffer on the proper queue, but have yet
1705 	 * to unlock it.
1706 	 */
1707 	if ((bp->b_flags & B_LOCKED) == 0 &&
1708 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1709 		bufcountwakeup();
1710 	}
1711 
1712 	/*
1713 	 * Something we can maybe free or reuse.
1714 	 */
1715 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1716 		bufspacewakeup();
1717 
1718 	/*
1719 	 * Final cleanup and unlock.  Clear bits that are only used while a
1720 	 * buffer is actively locked.
1721 	 */
1722 	bp->b_flags &= ~(B_NOCACHE | B_RELBUF);
1723 	dsched_buf_exit(bp);
1724 	BUF_UNLOCK(bp);
1725 }
1726 
1727 /*
1728  * Hold a buffer, preventing it from being reused.  This will prevent
1729  * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1730  * operations.  If a B_INVAL operation occurs the buffer will remain held
1731  * but the underlying pages may get ripped out.
1732  *
1733  * These functions are typically used in VOP_READ/VOP_WRITE functions
1734  * to hold a buffer during a copyin or copyout, preventing deadlocks
1735  * or recursive lock panics when read()/write() is used over mmap()'d
1736  * space.
1737  *
1738  * NOTE: bqhold() requires that the buffer be locked at the time of the
1739  *	 hold.  bqdrop() has no requirements other than the buffer having
1740  *	 previously been held.
1741  */
1742 void
1743 bqhold(struct buf *bp)
1744 {
1745 	atomic_add_int(&bp->b_refs, 1);
1746 }
1747 
1748 void
1749 bqdrop(struct buf *bp)
1750 {
1751 	KKASSERT(bp->b_refs > 0);
1752 	atomic_add_int(&bp->b_refs, -1);
1753 }
1754 
1755 /*
1756  * Return backing pages held by the buffer 'bp' back to the VM system.
1757  * This routine is called when the bp is invalidated, released, or
1758  * reused.
1759  *
1760  * The KVA mapping (b_data) for the underlying pages is removed by
1761  * this function.
1762  *
1763  * WARNING! This routine is integral to the low memory critical path
1764  *          when a buffer is B_RELBUF'd.  If the system has a severe page
1765  *          deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE
1766  *          queues so they can be reused in the current pageout daemon
1767  *          pass.
1768  */
1769 static void
1770 vfs_vmio_release(struct buf *bp)
1771 {
1772 	int i;
1773 	vm_page_t m;
1774 
1775 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1776 		m = bp->b_xio.xio_pages[i];
1777 		bp->b_xio.xio_pages[i] = NULL;
1778 
1779 		/*
1780 		 * We need to own the page in order to safely unwire it.
1781 		 */
1782 		vm_page_busy_wait(m, FALSE, "vmiopg");
1783 
1784 		/*
1785 		 * The VFS is telling us this is not a meta-data buffer
1786 		 * even if it is backed by a block device.
1787 		 */
1788 		if (bp->b_flags & B_NOTMETA)
1789 			vm_page_flag_set(m, PG_NOTMETA);
1790 
1791 		/*
1792 		 * This is a very important bit of code.  We try to track
1793 		 * VM page use whether the pages are wired into the buffer
1794 		 * cache or not.  While wired into the buffer cache the
1795 		 * bp tracks the act_count.
1796 		 *
1797 		 * We can choose to place unwired pages on the inactive
1798 		 * queue (0) or active queue (1).  If we place too many
1799 		 * on the active queue the queue will cycle the act_count
1800 		 * on pages we'd like to keep, just from single-use pages
1801 		 * (such as when doing a tar-up or file scan).
1802 		 */
1803 		if (bp->b_act_count < vm_cycle_point)
1804 			vm_page_unwire(m, 0);
1805 		else
1806 			vm_page_unwire(m, 1);
1807 
1808 		/*
1809 		 * If the wire_count has dropped to 0 we may need to take
1810 		 * further action before unbusying the page.
1811 		 *
1812 		 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us.
1813 		 */
1814 		if (m->wire_count == 0) {
1815 			if (bp->b_flags & B_DIRECT) {
1816 				/*
1817 				 * Attempt to free the page if B_DIRECT is
1818 				 * set, the caller does not desire the page
1819 				 * to be cached.
1820 				 */
1821 				vm_page_wakeup(m);
1822 				vm_page_try_to_free(m);
1823 			} else if ((bp->b_flags & B_NOTMETA) ||
1824 				   vm_page_count_min(0)) {
1825 				/*
1826 				 * Attempt to move the page to PQ_CACHE
1827 				 * if B_NOTMETA is set.  This flag is set
1828 				 * by HAMMER to remove one of the two pages
1829 				 * present when double buffering is enabled.
1830 				 *
1831 				 * Attempt to move the page to PQ_CACHE
1832 				 * If we have a severe page deficit.  This
1833 				 * will cause buffer cache operations related
1834 				 * to pageouts to recycle the related pages
1835 				 * in order to avoid a low memory deadlock.
1836 				 */
1837 				m->act_count = bp->b_act_count;
1838 				vm_page_try_to_cache(m);
1839 			} else {
1840 				/*
1841 				 * Nominal case, leave the page on the
1842 				 * queue the original unwiring placed it on
1843 				 * (active or inactive).
1844 				 */
1845 				m->act_count = bp->b_act_count;
1846 				vm_page_wakeup(m);
1847 			}
1848 		} else {
1849 			vm_page_wakeup(m);
1850 		}
1851 	}
1852 
1853 	/*
1854 	 * Zero out the pmap pte's for the mapping, but don't bother
1855 	 * invalidating the TLB.  The range will be properly invalidating
1856 	 * when new pages are entered into the mapping.
1857 	 *
1858 	 * This in particular reduces tmpfs tear-down overhead and reduces
1859 	 * buffer cache re-use overhead (one invalidation sequence instead
1860 	 * of two per re-use).
1861 	 */
1862 	pmap_qremove_noinval(trunc_page((vm_offset_t) bp->b_data),
1863 			     bp->b_xio.xio_npages);
1864 	CPUMASK_ASSZERO(bp->b_cpumask);
1865 	if (bp->b_bufsize) {
1866 		atomic_add_long(&bufspace, -bp->b_bufsize);
1867 		bp->b_bufsize = 0;
1868 		bufspacewakeup();
1869 	}
1870 	bp->b_xio.xio_npages = 0;
1871 	bp->b_flags &= ~B_VMIO;
1872 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1873 	if (bp->b_vp)
1874 		brelvp(bp);
1875 }
1876 
1877 /*
1878  * Find and initialize a new buffer header, freeing up existing buffers
1879  * in the bufqueues as necessary.  The new buffer is returned locked.
1880  *
1881  * Important:  B_INVAL is not set.  If the caller wishes to throw the
1882  * buffer away, the caller must set B_INVAL prior to calling brelse().
1883  *
1884  * We block if:
1885  *	We have insufficient buffer headers
1886  *	We have insufficient buffer space
1887  *
1888  * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1889  * Instead we ask the buf daemon to do it for us.  We attempt to
1890  * avoid piecemeal wakeups of the pageout daemon.
1891  */
1892 struct buf *
1893 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1894 {
1895 	struct bufpcpu *pcpu;
1896 	struct buf *bp;
1897 	struct buf *nbp;
1898 	int nqindex;
1899 	int nqcpu;
1900 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1901 	int maxloops = 200000;
1902 	int restart_reason = 0;
1903 	struct buf *restart_bp = NULL;
1904 	static char flushingbufs[MAXCPU];
1905 	char *flushingp;
1906 
1907 	/*
1908 	 * We can't afford to block since we might be holding a vnode lock,
1909 	 * which may prevent system daemons from running.  We deal with
1910 	 * low-memory situations by proactively returning memory and running
1911 	 * async I/O rather then sync I/O.
1912 	 */
1913 
1914 	++getnewbufcalls;
1915 	nqcpu = mycpu->gd_cpuid;
1916 	flushingp = &flushingbufs[nqcpu];
1917 restart:
1918 	if (bufspace < lobufspace)
1919 		*flushingp = 0;
1920 
1921 	if (debug_bufbio && --maxloops == 0)
1922 		panic("getnewbuf, excessive loops on cpu %d restart %d (%p)",
1923 			mycpu->gd_cpuid, restart_reason, restart_bp);
1924 
1925 	/*
1926 	 * Setup for scan.  If we do not have enough free buffers,
1927 	 * we setup a degenerate case that immediately fails.  Note
1928 	 * that if we are specially marked process, we are allowed to
1929 	 * dip into our reserves.
1930 	 *
1931 	 * The scanning sequence is nominally:  EMPTY->CLEAN
1932 	 */
1933 	pcpu = &bufpcpu[nqcpu];
1934 	spin_lock(&pcpu->spin);
1935 
1936 	/*
1937 	 * Prime the scan for this cpu.  Locate the first buffer to
1938 	 * check.  If we are flushing buffers we must skip the
1939 	 * EMPTY queue.
1940 	 */
1941 	nqindex = BQUEUE_EMPTY;
1942 	nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_EMPTY]);
1943 	if (nbp == NULL || *flushingp) {
1944 		nqindex = BQUEUE_CLEAN;
1945 		nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN]);
1946 	}
1947 
1948 	/*
1949 	 * Run scan, possibly freeing data and/or kva mappings on the fly,
1950 	 * depending.
1951 	 *
1952 	 * WARNING! spin is held!
1953 	 */
1954 	while ((bp = nbp) != NULL) {
1955 		int qindex = nqindex;
1956 
1957 		nbp = TAILQ_NEXT(bp, b_freelist);
1958 
1959 		/*
1960 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
1961 		 * cycles through the queue twice before being selected.
1962 		 */
1963 		if (qindex == BQUEUE_CLEAN &&
1964 		    (bp->b_flags & B_AGE) == 0 && nbp) {
1965 			bp->b_flags |= B_AGE;
1966 			TAILQ_REMOVE(&pcpu->bufqueues[qindex],
1967 				     bp, b_freelist);
1968 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[qindex],
1969 					  bp, b_freelist);
1970 			continue;
1971 		}
1972 
1973 		/*
1974 		 * Calculate next bp ( we can only use it if we do not block
1975 		 * or do other fancy things ).
1976 		 */
1977 		if (nbp == NULL) {
1978 			switch(qindex) {
1979 			case BQUEUE_EMPTY:
1980 				nqindex = BQUEUE_CLEAN;
1981 				if ((nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN])))
1982 					break;
1983 				/* fall through */
1984 			case BQUEUE_CLEAN:
1985 				/*
1986 				 * nbp is NULL.
1987 				 */
1988 				break;
1989 			}
1990 		}
1991 
1992 		/*
1993 		 * Sanity Checks
1994 		 */
1995 		KASSERT(bp->b_qindex == qindex,
1996 			("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1997 
1998 		/*
1999 		 * Note: we no longer distinguish between VMIO and non-VMIO
2000 		 * buffers.
2001 		 */
2002 		KASSERT((bp->b_flags & B_DELWRI) == 0,
2003 			("delwri buffer %p found in queue %d", bp, qindex));
2004 
2005 		/*
2006 		 * Do not try to reuse a buffer with a non-zero b_refs.
2007 		 * This is an unsynchronized test.  A synchronized test
2008 		 * is also performed after we lock the buffer.
2009 		 */
2010 		if (bp->b_refs)
2011 			continue;
2012 
2013 		/*
2014 		 * Start freeing the bp.  This is somewhat involved.  nbp
2015 		 * remains valid only for BQUEUE_EMPTY bp's.  Buffers
2016 		 * on the clean list must be disassociated from their
2017 		 * current vnode.  Buffers on the empty lists have
2018 		 * already been disassociated.
2019 		 *
2020 		 * b_refs is checked after locking along with queue changes.
2021 		 * We must check here to deal with zero->nonzero transitions
2022 		 * made by the owner of the buffer lock, which is used by
2023 		 * VFS's to hold the buffer while issuing an unlocked
2024 		 * uiomove()s.  We cannot invalidate the buffer's pages
2025 		 * for this case.  Once we successfully lock a buffer the
2026 		 * only 0->1 transitions of b_refs will occur via findblk().
2027 		 *
2028 		 * We must also check for queue changes after successful
2029 		 * locking as the current lock holder may dispose of the
2030 		 * buffer and change its queue.
2031 		 */
2032 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2033 			spin_unlock(&pcpu->spin);
2034 			tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100);
2035 			restart_reason = 1;
2036 			restart_bp = bp;
2037 			goto restart;
2038 		}
2039 		if (bp->b_qindex != qindex || bp->b_refs) {
2040 			spin_unlock(&pcpu->spin);
2041 			BUF_UNLOCK(bp);
2042 			restart_reason = 2;
2043 			restart_bp = bp;
2044 			goto restart;
2045 		}
2046 		bremfree_locked(bp);
2047 		spin_unlock(&pcpu->spin);
2048 
2049 		/*
2050 		 * Dependancies must be handled before we disassociate the
2051 		 * vnode.
2052 		 *
2053 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2054 		 * be immediately disassociated.  HAMMER then becomes
2055 		 * responsible for releasing the buffer.
2056 		 *
2057 		 * NOTE: spin is UNLOCKED now.
2058 		 */
2059 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2060 			buf_deallocate(bp);
2061 			if (bp->b_flags & B_LOCKED) {
2062 				bqrelse(bp);
2063 				restart_reason = 3;
2064 				restart_bp = bp;
2065 				goto restart;
2066 			}
2067 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2068 		}
2069 
2070 		/*
2071 		 * CLEAN buffers have content or associations that must be
2072 		 * cleaned out if not repurposing.
2073 		 */
2074 		if (qindex == BQUEUE_CLEAN) {
2075 			if (bp->b_flags & B_VMIO)
2076 				vfs_vmio_release(bp);
2077 			if (bp->b_vp)
2078 				brelvp(bp);
2079 		}
2080 
2081 		/*
2082 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2083 		 * the scan from this point on.
2084 		 *
2085 		 * Get the rest of the buffer freed up.  b_kva* is still
2086 		 * valid after this operation.
2087 		 */
2088 		KASSERT(bp->b_vp == NULL,
2089 			("bp3 %p flags %08x vnode %p qindex %d "
2090 			 "unexpectededly still associated!",
2091 			 bp, bp->b_flags, bp->b_vp, qindex));
2092 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2093 
2094 		if (bp->b_bufsize)
2095 			allocbuf(bp, 0);
2096 
2097                 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN | B_HASHED)) {
2098 			kprintf("getnewbuf: caught bug vp queue "
2099 				"%p/%08x qidx %d\n",
2100 				bp, bp->b_flags, qindex);
2101 			brelvp(bp);
2102 		}
2103 		bp->b_flags = B_BNOCLIP;
2104 		bp->b_cmd = BUF_CMD_DONE;
2105 		bp->b_vp = NULL;
2106 		bp->b_error = 0;
2107 		bp->b_resid = 0;
2108 		bp->b_bcount = 0;
2109 		bp->b_xio.xio_npages = 0;
2110 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2111 		bp->b_act_count = ACT_INIT;
2112 		reinitbufbio(bp);
2113 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2114 		buf_dep_init(bp);
2115 		if (blkflags & GETBLK_BHEAVY)
2116 			bp->b_flags |= B_HEAVY;
2117 
2118 		if (bufspace >= hibufspace)
2119 			*flushingp = 1;
2120 		if (bufspace < lobufspace)
2121 			*flushingp = 0;
2122 		if (*flushingp) {
2123 			bp->b_flags |= B_INVAL;
2124 			brelse(bp);
2125 			restart_reason = 5;
2126 			restart_bp = bp;
2127 			goto restart;
2128 		}
2129 
2130 		/*
2131 		 * b_refs can transition to a non-zero value while we hold
2132 		 * the buffer locked due to a findblk().  Our brelvp() above
2133 		 * interlocked any future possible transitions due to
2134 		 * findblk()s.
2135 		 *
2136 		 * If we find b_refs to be non-zero we can destroy the
2137 		 * buffer's contents but we cannot yet reuse the buffer.
2138 		 */
2139 		if (bp->b_refs) {
2140 			bp->b_flags |= B_INVAL;
2141 			brelse(bp);
2142 			restart_reason = 6;
2143 			restart_bp = bp;
2144 
2145 			goto restart;
2146 		}
2147 
2148 		/*
2149 		 * We found our buffer!
2150 		 */
2151 		break;
2152 	}
2153 
2154 	/*
2155 	 * If we exhausted our list, iterate other cpus.  If that fails,
2156 	 * sleep as appropriate.  We may have to wakeup various daemons
2157 	 * and write out some dirty buffers.
2158 	 *
2159 	 * Generally we are sleeping due to insufficient buffer space.
2160 	 *
2161 	 * NOTE: spin is held if bp is NULL, else it is not held.
2162 	 */
2163 	if (bp == NULL) {
2164 		int flags;
2165 		char *waitmsg;
2166 
2167 		spin_unlock(&pcpu->spin);
2168 
2169 		nqcpu = (nqcpu + 1) % ncpus;
2170 		if (nqcpu != mycpu->gd_cpuid) {
2171 			restart_reason = 7;
2172 			restart_bp = bp;
2173 			goto restart;
2174 		}
2175 
2176 		if (bufspace >= hibufspace) {
2177 			waitmsg = "bufspc";
2178 			flags = VFS_BIO_NEED_BUFSPACE;
2179 		} else {
2180 			waitmsg = "newbuf";
2181 			flags = VFS_BIO_NEED_ANY;
2182 		}
2183 
2184 		bd_speedup();	/* heeeelp */
2185 		atomic_set_int(&needsbuffer, flags);
2186 		while (needsbuffer & flags) {
2187 			int value;
2188 
2189 			tsleep_interlock(&needsbuffer, 0);
2190 			value = atomic_fetchadd_int(&needsbuffer, 0);
2191 			if (value & flags) {
2192 				if (tsleep(&needsbuffer, PINTERLOCKED|slpflags,
2193 					   waitmsg, slptimeo)) {
2194 					return (NULL);
2195 				}
2196 			}
2197 		}
2198 	} else {
2199 		/*
2200 		 * We finally have a valid bp.  Reset b_data.
2201 		 *
2202 		 * (spin is not held)
2203 		 */
2204 		bp->b_data = bp->b_kvabase;
2205 	}
2206 	return(bp);
2207 }
2208 
2209 /*
2210  * buf_daemon:
2211  *
2212  *	Buffer flushing daemon.  Buffers are normally flushed by the
2213  *	update daemon but if it cannot keep up this process starts to
2214  *	take the load in an attempt to prevent getnewbuf() from blocking.
2215  *
2216  *	Once a flush is initiated it does not stop until the number
2217  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2218  *	waiting at the mid-point.
2219  */
2220 static struct kproc_desc buf_kp = {
2221 	"bufdaemon",
2222 	buf_daemon,
2223 	&bufdaemon_td
2224 };
2225 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2226 	kproc_start, &buf_kp);
2227 
2228 static struct kproc_desc bufhw_kp = {
2229 	"bufdaemon_hw",
2230 	buf_daemon_hw,
2231 	&bufdaemonhw_td
2232 };
2233 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2234 	kproc_start, &bufhw_kp);
2235 
2236 static void
2237 buf_daemon1(struct thread *td, int queue, int (*buf_limit_fn)(long),
2238 	    int *bd_req)
2239 {
2240 	long limit;
2241 	struct buf *marker;
2242 
2243 	marker = kmalloc(sizeof(*marker), M_BIOBUF, M_WAITOK | M_ZERO);
2244 	marker->b_flags |= B_MARKER;
2245 	marker->b_qindex = BQUEUE_NONE;
2246 	marker->b_qcpu = 0;
2247 
2248 	/*
2249 	 * This process needs to be suspended prior to shutdown sync.
2250 	 */
2251 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2252 			      td, SHUTDOWN_PRI_LAST);
2253 	curthread->td_flags |= TDF_SYSTHREAD;
2254 
2255 	/*
2256 	 * This process is allowed to take the buffer cache to the limit
2257 	 */
2258 	for (;;) {
2259 		kproc_suspend_loop();
2260 
2261 		/*
2262 		 * Do the flush as long as the number of dirty buffers
2263 		 * (including those running) exceeds lodirtybufspace.
2264 		 *
2265 		 * When flushing limit running I/O to hirunningspace
2266 		 * Do the flush.  Limit the amount of in-transit I/O we
2267 		 * allow to build up, otherwise we would completely saturate
2268 		 * the I/O system.  Wakeup any waiting processes before we
2269 		 * normally would so they can run in parallel with our drain.
2270 		 *
2271 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2272 		 * but because we split the operation into two threads we
2273 		 * have to cut it in half for each thread.
2274 		 */
2275 		waitrunningbufspace();
2276 		limit = lodirtybufspace / 2;
2277 		while (buf_limit_fn(limit)) {
2278 			if (flushbufqueues(marker, queue) == 0)
2279 				break;
2280 			if (runningbufspace < hirunningspace)
2281 				continue;
2282 			waitrunningbufspace();
2283 		}
2284 
2285 		/*
2286 		 * We reached our low water mark, reset the
2287 		 * request and sleep until we are needed again.
2288 		 * The sleep is just so the suspend code works.
2289 		 */
2290 		tsleep_interlock(bd_req, 0);
2291 		if (atomic_swap_int(bd_req, 0) == 0)
2292 			tsleep(bd_req, PINTERLOCKED, "psleep", hz);
2293 	}
2294 	/* NOT REACHED */
2295 	/*kfree(marker, M_BIOBUF);*/
2296 }
2297 
2298 static int
2299 buf_daemon_limit(long limit)
2300 {
2301 	return (runningbufspace + dirtykvaspace > limit ||
2302 		dirtybufcount - dirtybufcounthw >= nbuf / 2);
2303 }
2304 
2305 static int
2306 buf_daemon_hw_limit(long limit)
2307 {
2308 	return (runningbufspace + dirtykvaspace > limit ||
2309 		dirtybufcounthw >= nbuf / 2);
2310 }
2311 
2312 static void
2313 buf_daemon(void)
2314 {
2315 	buf_daemon1(bufdaemon_td, BQUEUE_DIRTY, buf_daemon_limit,
2316 		    &bd_request);
2317 }
2318 
2319 static void
2320 buf_daemon_hw(void)
2321 {
2322 	buf_daemon1(bufdaemonhw_td, BQUEUE_DIRTY_HW, buf_daemon_hw_limit,
2323 		    &bd_request_hw);
2324 }
2325 
2326 /*
2327  * Flush up to (flushperqueue) buffers in the dirty queue.  Each cpu has a
2328  * localized version of the queue.  Each call made to this function iterates
2329  * to another cpu.  It is desireable to flush several buffers from the same
2330  * cpu's queue at once, as these are likely going to be linear.
2331  *
2332  * We must be careful to free up B_INVAL buffers instead of write them, which
2333  * NFS is particularly sensitive to.
2334  *
2335  * B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate that we
2336  * really want to try to get the buffer out and reuse it due to the write
2337  * load on the machine.
2338  *
2339  * We must lock the buffer in order to check its validity before we can mess
2340  * with its contents.  spin isn't enough.
2341  */
2342 static int
2343 flushbufqueues(struct buf *marker, bufq_type_t q)
2344 {
2345 	struct bufpcpu *pcpu;
2346 	struct buf *bp;
2347 	int r = 0;
2348 	u_int loops = flushperqueue;
2349 	int lcpu = marker->b_qcpu;
2350 
2351 	KKASSERT(marker->b_qindex == BQUEUE_NONE);
2352 	KKASSERT(marker->b_flags & B_MARKER);
2353 
2354 again:
2355 	/*
2356 	 * Spinlock needed to perform operations on the queue and may be
2357 	 * held through a non-blocking BUF_LOCK(), but cannot be held when
2358 	 * BUF_UNLOCK()ing or through any other major operation.
2359 	 */
2360 	pcpu = &bufpcpu[marker->b_qcpu];
2361 	spin_lock(&pcpu->spin);
2362 	marker->b_qindex = q;
2363 	TAILQ_INSERT_HEAD(&pcpu->bufqueues[q], marker, b_freelist);
2364 	bp = marker;
2365 
2366 	while ((bp = TAILQ_NEXT(bp, b_freelist)) != NULL) {
2367 		/*
2368 		 * NOTE: spinlock is always held at the top of the loop
2369 		 */
2370 		if (bp->b_flags & B_MARKER)
2371 			continue;
2372 		if ((bp->b_flags & B_DELWRI) == 0) {
2373 			kprintf("Unexpected clean buffer %p\n", bp);
2374 			continue;
2375 		}
2376 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
2377 			continue;
2378 		KKASSERT(bp->b_qcpu == marker->b_qcpu && bp->b_qindex == q);
2379 
2380 		/*
2381 		 * Once the buffer is locked we will have no choice but to
2382 		 * unlock the spinlock around a later BUF_UNLOCK and re-set
2383 		 * bp = marker when looping.  Move the marker now to make
2384 		 * things easier.
2385 		 */
2386 		TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2387 		TAILQ_INSERT_AFTER(&pcpu->bufqueues[q], bp, marker, b_freelist);
2388 
2389 		/*
2390 		 * Must recheck B_DELWRI after successfully locking
2391 		 * the buffer.
2392 		 */
2393 		if ((bp->b_flags & B_DELWRI) == 0) {
2394 			spin_unlock(&pcpu->spin);
2395 			BUF_UNLOCK(bp);
2396 			spin_lock(&pcpu->spin);
2397 			bp = marker;
2398 			continue;
2399 		}
2400 
2401 		/*
2402 		 * Remove the buffer from its queue.  We still own the
2403 		 * spinlock here.
2404 		 */
2405 		_bremfree(bp);
2406 
2407 		/*
2408 		 * Disposing of an invalid buffer counts as a flush op
2409 		 */
2410 		if (bp->b_flags & B_INVAL) {
2411 			spin_unlock(&pcpu->spin);
2412 			brelse(bp);
2413 			goto doloop;
2414 		}
2415 
2416 		/*
2417 		 * Release the spinlock for the more complex ops we
2418 		 * are now going to do.
2419 		 */
2420 		spin_unlock(&pcpu->spin);
2421 		lwkt_yield();
2422 
2423 		/*
2424 		 * This is a bit messy
2425 		 */
2426 		if (LIST_FIRST(&bp->b_dep) != NULL &&
2427 		    (bp->b_flags & B_DEFERRED) == 0 &&
2428 		    buf_countdeps(bp, 0)) {
2429 			spin_lock(&pcpu->spin);
2430 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[q], bp, b_freelist);
2431 			bp->b_qindex = q;
2432 			bp->b_flags |= B_DEFERRED;
2433 			spin_unlock(&pcpu->spin);
2434 			BUF_UNLOCK(bp);
2435 			spin_lock(&pcpu->spin);
2436 			bp = marker;
2437 			continue;
2438 		}
2439 
2440 		/*
2441 		 * spinlock not held here.
2442 		 *
2443 		 * If the buffer has a dependancy, buf_checkwrite() must
2444 		 * also return 0 for us to be able to initate the write.
2445 		 *
2446 		 * If the buffer is flagged B_ERROR it may be requeued
2447 		 * over and over again, we try to avoid a live lock.
2448 		 */
2449 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2450 			brelse(bp);
2451 		} else if (bp->b_flags & B_ERROR) {
2452 			tsleep(bp, 0, "bioer", 1);
2453 			bp->b_flags &= ~B_AGE;
2454 			cluster_awrite(bp);
2455 		} else {
2456 			bp->b_flags |= B_AGE | B_KVABIO;
2457 			cluster_awrite(bp);
2458 		}
2459 		/* bp invalid but needs to be NULL-tested if we break out */
2460 doloop:
2461 		spin_lock(&pcpu->spin);
2462 		++r;
2463 		if (--loops == 0)
2464 			break;
2465 		bp = marker;
2466 	}
2467 	/* bp is invalid here but can be NULL-tested to advance */
2468 
2469 	TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2470 	marker->b_qindex = BQUEUE_NONE;
2471 	spin_unlock(&pcpu->spin);
2472 
2473 	/*
2474 	 * Advance the marker to be fair.
2475 	 */
2476 	marker->b_qcpu = (marker->b_qcpu + 1) % ncpus;
2477 	if (bp == NULL) {
2478 		if (marker->b_qcpu != lcpu)
2479 			goto again;
2480 	}
2481 
2482 	return (r);
2483 }
2484 
2485 /*
2486  * inmem:
2487  *
2488  *	Returns true if no I/O is needed to access the associated VM object.
2489  *	This is like findblk except it also hunts around in the VM system for
2490  *	the data.
2491  *
2492  *	Note that we ignore vm_page_free() races from interrupts against our
2493  *	lookup, since if the caller is not protected our return value will not
2494  *	be any more valid then otherwise once we exit the critical section.
2495  */
2496 int
2497 inmem(struct vnode *vp, off_t loffset)
2498 {
2499 	vm_object_t obj;
2500 	vm_offset_t toff, tinc, size;
2501 	vm_page_t m;
2502 	int res = 1;
2503 
2504 	if (findblk(vp, loffset, FINDBLK_TEST))
2505 		return 1;
2506 	if (vp->v_mount == NULL)
2507 		return 0;
2508 	if ((obj = vp->v_object) == NULL)
2509 		return 0;
2510 
2511 	size = PAGE_SIZE;
2512 	if (size > vp->v_mount->mnt_stat.f_iosize)
2513 		size = vp->v_mount->mnt_stat.f_iosize;
2514 
2515 	vm_object_hold(obj);
2516 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2517 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2518 		if (m == NULL) {
2519 			res = 0;
2520 			break;
2521 		}
2522 		tinc = size;
2523 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2524 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2525 		if (vm_page_is_valid(m,
2526 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) {
2527 			res = 0;
2528 			break;
2529 		}
2530 	}
2531 	vm_object_drop(obj);
2532 	return (res);
2533 }
2534 
2535 /*
2536  * findblk:
2537  *
2538  *	Locate and return the specified buffer.  Unless flagged otherwise,
2539  *	a locked buffer will be returned if it exists or NULL if it does not.
2540  *
2541  *	findblk()'d buffers are still on the bufqueues and if you intend
2542  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2543  *	and possibly do other stuff to it.
2544  *
2545  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2546  *			  for locking the buffer and ensuring that it remains
2547  *			  the desired buffer after locking.
2548  *
2549  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2550  *			  to acquire the lock we return NULL, even if the
2551  *			  buffer exists.
2552  *
2553  *	FINDBLK_REF	- Returns the buffer ref'd, which prevents normal
2554  *			  reuse by getnewbuf() but does not prevent
2555  *			  disassociation (B_INVAL).  Used to avoid deadlocks
2556  *			  against random (vp,loffset)s due to reassignment.
2557  *
2558  *	FINDBLK_KVABIO	- Only applicable when returning a locked buffer.
2559  *			  Indicates that the caller supports B_KVABIO.
2560  *
2561  *	(0)		- Lock the buffer blocking.
2562  */
2563 struct buf *
2564 findblk(struct vnode *vp, off_t loffset, int flags)
2565 {
2566 	struct buf *bp;
2567 	int lkflags;
2568 
2569 	lkflags = LK_EXCLUSIVE;
2570 	if (flags & FINDBLK_NBLOCK)
2571 		lkflags |= LK_NOWAIT;
2572 
2573 	for (;;) {
2574 		/*
2575 		 * Lookup.  Ref the buf while holding v_token to prevent
2576 		 * reuse (but does not prevent diassociation).
2577 		 */
2578 		lwkt_gettoken_shared(&vp->v_token);
2579 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2580 		if (bp == NULL) {
2581 			lwkt_reltoken(&vp->v_token);
2582 			return(NULL);
2583 		}
2584 		bqhold(bp);
2585 		lwkt_reltoken(&vp->v_token);
2586 
2587 		/*
2588 		 * If testing only break and return bp, do not lock.
2589 		 */
2590 		if (flags & FINDBLK_TEST)
2591 			break;
2592 
2593 		/*
2594 		 * Lock the buffer, return an error if the lock fails.
2595 		 * (only FINDBLK_NBLOCK can cause the lock to fail).
2596 		 */
2597 		if (BUF_LOCK(bp, lkflags)) {
2598 			atomic_subtract_int(&bp->b_refs, 1);
2599 			/* bp = NULL; not needed */
2600 			return(NULL);
2601 		}
2602 
2603 		/*
2604 		 * Revalidate the locked buf before allowing it to be
2605 		 * returned.
2606 		 *
2607 		 * B_KVABIO is only set/cleared when locking.  When
2608 		 * clearing B_KVABIO, we must ensure that the buffer
2609 		 * is synchronized to all cpus.
2610 		 */
2611 		if (bp->b_vp == vp && bp->b_loffset == loffset) {
2612 			if (flags & FINDBLK_KVABIO)
2613 				bp->b_flags |= B_KVABIO;
2614 			else
2615 				bkvasync_all(bp);
2616 			break;
2617 		}
2618 		atomic_subtract_int(&bp->b_refs, 1);
2619 		BUF_UNLOCK(bp);
2620 	}
2621 
2622 	/*
2623 	 * Success
2624 	 */
2625 	if ((flags & FINDBLK_REF) == 0)
2626 		atomic_subtract_int(&bp->b_refs, 1);
2627 	return(bp);
2628 }
2629 
2630 /*
2631  * getcacheblk:
2632  *
2633  *	Similar to getblk() except only returns the buffer if it is
2634  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2635  *	is returned.  NULL is also returned if GETBLK_NOWAIT is set
2636  *	and the getblk() would block.
2637  *
2638  *	If B_RAM is set the buffer might be just fine, but we return
2639  *	NULL anyway because we want the code to fall through to the
2640  *	cluster read to issue more read-aheads.  Otherwise read-ahead breaks.
2641  *
2642  *	If blksize is 0 the buffer cache buffer must already be fully
2643  *	cached.
2644  *
2645  *	If blksize is non-zero getblk() will be used, allowing a buffer
2646  *	to be reinstantiated from its VM backing store.  The buffer must
2647  *	still be fully cached after reinstantiation to be returned.
2648  */
2649 struct buf *
2650 getcacheblk(struct vnode *vp, off_t loffset, int blksize, int blkflags)
2651 {
2652 	struct buf *bp;
2653 	int fndflags = 0;
2654 
2655 	if (blkflags & GETBLK_NOWAIT)
2656 		fndflags |= FINDBLK_NBLOCK;
2657 	if (blkflags & GETBLK_KVABIO)
2658 		fndflags |= FINDBLK_KVABIO;
2659 
2660 	if (blksize) {
2661 		bp = getblk(vp, loffset, blksize, blkflags, 0);
2662 		if (bp) {
2663 			if ((bp->b_flags & (B_INVAL | B_CACHE)) == B_CACHE) {
2664 				bp->b_flags &= ~B_AGE;
2665 				if (bp->b_flags & B_RAM) {
2666 					bqrelse(bp);
2667 					bp = NULL;
2668 				}
2669 			} else {
2670 				brelse(bp);
2671 				bp = NULL;
2672 			}
2673 		}
2674 	} else {
2675 		bp = findblk(vp, loffset, fndflags);
2676 		if (bp) {
2677 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2678 			    B_CACHE) {
2679 				bp->b_flags &= ~B_AGE;
2680 				bremfree(bp);
2681 			} else {
2682 				BUF_UNLOCK(bp);
2683 				bp = NULL;
2684 			}
2685 		}
2686 	}
2687 	return (bp);
2688 }
2689 
2690 /*
2691  * getblk:
2692  *
2693  *	Get a block given a specified block and offset into a file/device.
2694  * 	B_INVAL may or may not be set on return.  The caller should clear
2695  *	B_INVAL prior to initiating a READ.
2696  *
2697  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2698  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2699  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2700  *	without doing any of those things the system will likely believe
2701  *	the buffer to be valid (especially if it is not B_VMIO), and the
2702  *	next getblk() will return the buffer with B_CACHE set.
2703  *
2704  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2705  *	an existing buffer.
2706  *
2707  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2708  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2709  *	and then cleared based on the backing VM.  If the previous buffer is
2710  *	non-0-sized but invalid, B_CACHE will be cleared.
2711  *
2712  *	If getblk() must create a new buffer, the new buffer is returned with
2713  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2714  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2715  *	backing VM.
2716  *
2717  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2718  *	B_CACHE bit is clear.
2719  *
2720  *	What this means, basically, is that the caller should use B_CACHE to
2721  *	determine whether the buffer is fully valid or not and should clear
2722  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2723  *	the buffer by loading its data area with something, the caller needs
2724  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2725  *	the caller should set B_CACHE ( as an optimization ), else the caller
2726  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2727  *	a write attempt or if it was a successfull read.  If the caller
2728  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2729  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2730  *
2731  *	getblk flags:
2732  *
2733  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2734  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2735  */
2736 struct buf *
2737 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2738 {
2739 	struct buf *bp;
2740 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2741 	int error;
2742 	int lkflags;
2743 
2744 	if (size > MAXBSIZE)
2745 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2746 	if (vp->v_object == NULL)
2747 		panic("getblk: vnode %p has no object!", vp);
2748 
2749 	/*
2750 	 * NOTE: findblk does not try to resolve KVABIO in REF-only mode.
2751 	 *	 we still have to handle that ourselves.
2752 	 */
2753 loop:
2754 	if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2755 		/*
2756 		 * The buffer was found in the cache, but we need to lock it.
2757 		 * We must acquire a ref on the bp to prevent reuse, but
2758 		 * this will not prevent disassociation (brelvp()) so we
2759 		 * must recheck (vp,loffset) after acquiring the lock.
2760 		 *
2761 		 * Without the ref the buffer could potentially be reused
2762 		 * before we acquire the lock and create a deadlock
2763 		 * situation between the thread trying to reuse the buffer
2764 		 * and us due to the fact that we would wind up blocking
2765 		 * on a random (vp,loffset).
2766 		 */
2767 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2768 			if (blkflags & GETBLK_NOWAIT) {
2769 				bqdrop(bp);
2770 				return(NULL);
2771 			}
2772 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2773 			if (blkflags & GETBLK_PCATCH)
2774 				lkflags |= LK_PCATCH;
2775 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2776 			if (error) {
2777 				bqdrop(bp);
2778 				if (error == ENOLCK)
2779 					goto loop;
2780 				return (NULL);
2781 			}
2782 			/* buffer may have changed on us */
2783 		}
2784 		bqdrop(bp);
2785 
2786 		/*
2787 		 * Once the buffer has been locked, make sure we didn't race
2788 		 * a buffer recyclement.  Buffers that are no longer hashed
2789 		 * will have b_vp == NULL, so this takes care of that check
2790 		 * as well.
2791 		 */
2792 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2793 #if 0
2794 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2795 				"was recycled\n",
2796 				bp, vp, (long long)loffset);
2797 #endif
2798 			BUF_UNLOCK(bp);
2799 			goto loop;
2800 		}
2801 
2802 		/*
2803 		 * If SZMATCH any pre-existing buffer must be of the requested
2804 		 * size or NULL is returned.  The caller absolutely does not
2805 		 * want getblk() to bwrite() the buffer on a size mismatch.
2806 		 */
2807 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2808 			BUF_UNLOCK(bp);
2809 			return(NULL);
2810 		}
2811 
2812 		/*
2813 		 * All vnode-based buffers must be backed by a VM object.
2814 		 *
2815 		 * Set B_KVABIO for any incidental work, we will fix it
2816 		 * up later.
2817 		 */
2818 		KKASSERT(bp->b_flags & B_VMIO);
2819 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2820 		bp->b_flags &= ~B_AGE;
2821 		bp->b_flags |= B_KVABIO;
2822 
2823 		/*
2824 		 * Make sure that B_INVAL buffers do not have a cached
2825 		 * block number translation.
2826 		 */
2827 		if ((bp->b_flags & B_INVAL) &&
2828 		    (bp->b_bio2.bio_offset != NOOFFSET)) {
2829 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2830 				" did not have cleared bio_offset cache\n",
2831 				bp, vp, (long long)loffset);
2832 			clearbiocache(&bp->b_bio2);
2833 		}
2834 
2835 		/*
2836 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2837 		 * invalid.
2838 		 *
2839 		 * After the bremfree(), disposals must use b[q]relse().
2840 		 */
2841 		if (bp->b_flags & B_INVAL)
2842 			bp->b_flags &= ~B_CACHE;
2843 		bremfree(bp);
2844 
2845 		/*
2846 		 * Any size inconsistancy with a dirty buffer or a buffer
2847 		 * with a softupdates dependancy must be resolved.  Resizing
2848 		 * the buffer in such circumstances can lead to problems.
2849 		 *
2850 		 * Dirty or dependant buffers are written synchronously.
2851 		 * Other types of buffers are simply released and
2852 		 * reconstituted as they may be backed by valid, dirty VM
2853 		 * pages (but not marked B_DELWRI).
2854 		 *
2855 		 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2856 		 * and may be left over from a prior truncation (and thus
2857 		 * no longer represent the actual EOF point), so we
2858 		 * definitely do not want to B_NOCACHE the backing store.
2859 		 */
2860 		if (size != bp->b_bcount) {
2861 			if (bp->b_flags & B_DELWRI) {
2862 				bp->b_flags |= B_RELBUF;
2863 				bwrite(bp);
2864 			} else if (LIST_FIRST(&bp->b_dep)) {
2865 				bp->b_flags |= B_RELBUF;
2866 				bwrite(bp);
2867 			} else {
2868 				bp->b_flags |= B_RELBUF;
2869 				brelse(bp);
2870 			}
2871 			goto loop;
2872 		}
2873 		KKASSERT(size <= bp->b_kvasize);
2874 		KASSERT(bp->b_loffset != NOOFFSET,
2875 			("getblk: no buffer offset"));
2876 
2877 		/*
2878 		 * A buffer with B_DELWRI set and B_CACHE clear must
2879 		 * be committed before we can return the buffer in
2880 		 * order to prevent the caller from issuing a read
2881 		 * ( due to B_CACHE not being set ) and overwriting
2882 		 * it.
2883 		 *
2884 		 * Most callers, including NFS and FFS, need this to
2885 		 * operate properly either because they assume they
2886 		 * can issue a read if B_CACHE is not set, or because
2887 		 * ( for example ) an uncached B_DELWRI might loop due
2888 		 * to softupdates re-dirtying the buffer.  In the latter
2889 		 * case, B_CACHE is set after the first write completes,
2890 		 * preventing further loops.
2891 		 *
2892 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2893 		 * above while extending the buffer, we cannot allow the
2894 		 * buffer to remain with B_CACHE set after the write
2895 		 * completes or it will represent a corrupt state.  To
2896 		 * deal with this we set B_NOCACHE to scrap the buffer
2897 		 * after the write.
2898 		 *
2899 		 * XXX Should this be B_RELBUF instead of B_NOCACHE?
2900 		 *     I'm not even sure this state is still possible
2901 		 *     now that getblk() writes out any dirty buffers
2902 		 *     on size changes.
2903 		 *
2904 		 * We might be able to do something fancy, like setting
2905 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2906 		 * so the below call doesn't set B_CACHE, but that gets real
2907 		 * confusing.  This is much easier.
2908 		 */
2909 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2910 			kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
2911 				"and CACHE clear, b_flags %08x\n",
2912 				bp, (uintmax_t)bp->b_loffset, bp->b_flags);
2913 			bp->b_flags |= B_NOCACHE;
2914 			bwrite(bp);
2915 			goto loop;
2916 		}
2917 	} else {
2918 		/*
2919 		 * Buffer is not in-core, create new buffer.  The buffer
2920 		 * returned by getnewbuf() is locked.  Note that the returned
2921 		 * buffer is also considered valid (not marked B_INVAL).
2922 		 *
2923 		 * Calculating the offset for the I/O requires figuring out
2924 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
2925 		 * the mount's f_iosize otherwise.  If the vnode does not
2926 		 * have an associated mount we assume that the passed size is
2927 		 * the block size.
2928 		 *
2929 		 * Note that vn_isdisk() cannot be used here since it may
2930 		 * return a failure for numerous reasons.   Note that the
2931 		 * buffer size may be larger then the block size (the caller
2932 		 * will use block numbers with the proper multiple).  Beware
2933 		 * of using any v_* fields which are part of unions.  In
2934 		 * particular, in DragonFly the mount point overloading
2935 		 * mechanism uses the namecache only and the underlying
2936 		 * directory vnode is not a special case.
2937 		 */
2938 		int bsize, maxsize;
2939 
2940 		if (vp->v_type == VBLK || vp->v_type == VCHR)
2941 			bsize = DEV_BSIZE;
2942 		else if (vp->v_mount)
2943 			bsize = vp->v_mount->mnt_stat.f_iosize;
2944 		else
2945 			bsize = size;
2946 
2947 		maxsize = size + (loffset & PAGE_MASK);
2948 		maxsize = imax(maxsize, bsize);
2949 
2950 		bp = getnewbuf(blkflags, slptimeo, size, maxsize);
2951 		if (bp == NULL) {
2952 			if (slpflags || slptimeo)
2953 				return NULL;
2954 			goto loop;
2955 		}
2956 
2957 		/*
2958 		 * Atomically insert the buffer into the hash, so that it can
2959 		 * be found by findblk().
2960 		 *
2961 		 * If bgetvp() returns non-zero a collision occured, and the
2962 		 * bp will not be associated with the vnode.
2963 		 *
2964 		 * Make sure the translation layer has been cleared.
2965 		 */
2966 		bp->b_loffset = loffset;
2967 		bp->b_bio2.bio_offset = NOOFFSET;
2968 		/* bp->b_bio2.bio_next = NULL; */
2969 
2970 		if (bgetvp(vp, bp, size)) {
2971 			bp->b_flags |= B_INVAL;
2972 			brelse(bp);
2973 			goto loop;
2974 		}
2975 
2976 		/*
2977 		 * All vnode-based buffers must be backed by a VM object.
2978 		 *
2979 		 * Set B_KVABIO for incidental work
2980 		 */
2981 		KKASSERT(vp->v_object != NULL);
2982 		bp->b_flags |= B_VMIO | B_KVABIO;
2983 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2984 
2985 		allocbuf(bp, size);
2986 	}
2987 
2988 	/*
2989 	 * Do the nasty smp broadcast (if the buffer needs it) when KVABIO
2990 	 * is not supported.
2991 	 */
2992 	if (bp && (blkflags & GETBLK_KVABIO) == 0) {
2993 		bkvasync_all(bp);
2994 	}
2995 	return (bp);
2996 }
2997 
2998 /*
2999  * regetblk(bp)
3000  *
3001  * Reacquire a buffer that was previously released to the locked queue,
3002  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3003  * set B_LOCKED (which handles the acquisition race).
3004  *
3005  * To this end, either B_LOCKED must be set or the dependancy list must be
3006  * non-empty.
3007  */
3008 void
3009 regetblk(struct buf *bp)
3010 {
3011 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3012 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3013 	bremfree(bp);
3014 }
3015 
3016 /*
3017  * allocbuf:
3018  *
3019  *	This code constitutes the buffer memory from either anonymous system
3020  *	memory (in the case of non-VMIO operations) or from an associated
3021  *	VM object (in the case of VMIO operations).  This code is able to
3022  *	resize a buffer up or down.
3023  *
3024  *	Note that this code is tricky, and has many complications to resolve
3025  *	deadlock or inconsistant data situations.  Tread lightly!!!
3026  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
3027  *	the caller.  Calling this code willy nilly can result in the loss of
3028  *	data.
3029  *
3030  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3031  *	B_CACHE for the non-VMIO case.
3032  *
3033  *	This routine does not need to be called from a critical section but you
3034  *	must own the buffer.
3035  */
3036 void
3037 allocbuf(struct buf *bp, int size)
3038 {
3039 	vm_page_t m;
3040 	int newbsize;
3041 	int desiredpages;
3042 	int i;
3043 
3044 	if (BUF_LOCKINUSE(bp) == 0)
3045 		panic("allocbuf: buffer not busy");
3046 
3047 	if (bp->b_kvasize < size)
3048 		panic("allocbuf: buffer too small");
3049 
3050 	KKASSERT(bp->b_flags & B_VMIO);
3051 
3052 	newbsize = roundup2(size, DEV_BSIZE);
3053 	desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3054 			newbsize + PAGE_MASK) >> PAGE_SHIFT;
3055 	KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3056 
3057 	/*
3058 	 * Set B_CACHE initially if buffer is 0 length or will become
3059 	 * 0-length.
3060 	 */
3061 	if (size == 0 || bp->b_bufsize == 0)
3062 		bp->b_flags |= B_CACHE;
3063 
3064 	if (newbsize < bp->b_bufsize) {
3065 		/*
3066 		 * DEV_BSIZE aligned new buffer size is less then the
3067 		 * DEV_BSIZE aligned existing buffer size.  Figure out
3068 		 * if we have to remove any pages.
3069 		 */
3070 		if (desiredpages < bp->b_xio.xio_npages) {
3071 			for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3072 				/*
3073 				 * the page is not freed here -- it
3074 				 * is the responsibility of
3075 				 * vnode_pager_setsize
3076 				 */
3077 				m = bp->b_xio.xio_pages[i];
3078 				KASSERT(m != bogus_page,
3079 				    ("allocbuf: bogus page found"));
3080 				vm_page_busy_wait(m, TRUE, "biodep");
3081 				bp->b_xio.xio_pages[i] = NULL;
3082 				vm_page_unwire(m, 0);
3083 				vm_page_wakeup(m);
3084 			}
3085 			pmap_qremove_noinval((vm_offset_t)
3086 				      trunc_page((vm_offset_t)bp->b_data) +
3087 				      (desiredpages << PAGE_SHIFT),
3088 				     (bp->b_xio.xio_npages - desiredpages));
3089 			bp->b_xio.xio_npages = desiredpages;
3090 
3091 			/*
3092 			 * Don't bother invalidating the pmap changes
3093 			 * (which wastes global SMP invalidation IPIs)
3094 			 * when setting the size to 0.  This case occurs
3095 			 * when called via getnewbuf() during buffer
3096 			 * recyclement.
3097 			 */
3098 			if (desiredpages == 0) {
3099 				CPUMASK_ASSZERO(bp->b_cpumask);
3100 			} else {
3101 				bkvareset(bp);
3102 			}
3103 		}
3104 	} else if (size > bp->b_bcount) {
3105 		/*
3106 		 * We are growing the buffer, possibly in a
3107 		 * byte-granular fashion.
3108 		 */
3109 		struct vnode *vp;
3110 		vm_object_t obj;
3111 		vm_offset_t toff;
3112 		vm_offset_t tinc;
3113 
3114 		/*
3115 		 * Step 1, bring in the VM pages from the object,
3116 		 * allocating them if necessary.  We must clear
3117 		 * B_CACHE if these pages are not valid for the
3118 		 * range covered by the buffer.
3119 		 */
3120 		vp = bp->b_vp;
3121 		obj = vp->v_object;
3122 
3123 		vm_object_hold(obj);
3124 		while (bp->b_xio.xio_npages < desiredpages) {
3125 			vm_page_t m;
3126 			vm_pindex_t pi;
3127 			int error;
3128 
3129 			pi = OFF_TO_IDX(bp->b_loffset) +
3130 			     bp->b_xio.xio_npages;
3131 
3132 			/*
3133 			 * Blocking on m->busy_count might lead to a
3134 			 * deadlock:
3135 			 *
3136 			 *  vm_fault->getpages->cluster_read->allocbuf
3137 			 */
3138 			m = vm_page_lookup_busy_try(obj, pi, FALSE,
3139 						    &error);
3140 			if (error) {
3141 				vm_page_sleep_busy(m, FALSE, "pgtblk");
3142 				continue;
3143 			}
3144 			if (m == NULL) {
3145 				/*
3146 				 * note: must allocate system pages
3147 				 * since blocking here could intefere
3148 				 * with paging I/O, no matter which
3149 				 * process we are.
3150 				 */
3151 				m = bio_page_alloc(bp, obj, pi,
3152 						   desiredpages -
3153 						    bp->b_xio.xio_npages);
3154 				if (m) {
3155 					vm_page_wire(m);
3156 					vm_page_wakeup(m);
3157 					bp->b_flags &= ~B_CACHE;
3158 					bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3159 					++bp->b_xio.xio_npages;
3160 				}
3161 				continue;
3162 			}
3163 
3164 			/*
3165 			 * We found a page and were able to busy it.
3166 			 */
3167 			vm_page_wire(m);
3168 			vm_page_wakeup(m);
3169 			bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3170 			++bp->b_xio.xio_npages;
3171 			if (bp->b_act_count < m->act_count)
3172 				bp->b_act_count = m->act_count;
3173 		}
3174 		vm_object_drop(obj);
3175 
3176 		/*
3177 		 * Step 2.  We've loaded the pages into the buffer,
3178 		 * we have to figure out if we can still have B_CACHE
3179 		 * set.  Note that B_CACHE is set according to the
3180 		 * byte-granular range ( bcount and size ), not the
3181 		 * aligned range ( newbsize ).
3182 		 *
3183 		 * The VM test is against m->valid, which is DEV_BSIZE
3184 		 * aligned.  Needless to say, the validity of the data
3185 		 * needs to also be DEV_BSIZE aligned.  Note that this
3186 		 * fails with NFS if the server or some other client
3187 		 * extends the file's EOF.  If our buffer is resized,
3188 		 * B_CACHE may remain set! XXX
3189 		 */
3190 
3191 		toff = bp->b_bcount;
3192 		tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3193 
3194 		while ((bp->b_flags & B_CACHE) && toff < size) {
3195 			vm_pindex_t pi;
3196 
3197 			if (tinc > (size - toff))
3198 				tinc = size - toff;
3199 
3200 			pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3201 			    PAGE_SHIFT;
3202 
3203 			vfs_buf_test_cache(
3204 			    bp,
3205 			    bp->b_loffset,
3206 			    toff,
3207 			    tinc,
3208 			    bp->b_xio.xio_pages[pi]
3209 			);
3210 			toff += tinc;
3211 			tinc = PAGE_SIZE;
3212 		}
3213 
3214 		/*
3215 		 * Step 3, fixup the KVM pmap.  Remember that
3216 		 * bp->b_data is relative to bp->b_loffset, but
3217 		 * bp->b_loffset may be offset into the first page.
3218 		 */
3219 		bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
3220 		pmap_qenter_noinval((vm_offset_t)bp->b_data,
3221 			    bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3222 		bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3223 				      (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3224 		bkvareset(bp);
3225 	}
3226 	atomic_add_long(&bufspace, newbsize - bp->b_bufsize);
3227 
3228 	/* adjust space use on already-dirty buffer */
3229 	if (bp->b_flags & B_DELWRI) {
3230 		/* dirtykvaspace unchanged */
3231 		atomic_add_long(&dirtybufspace, newbsize - bp->b_bufsize);
3232 		if (bp->b_flags & B_HEAVY) {
3233 			atomic_add_long(&dirtybufspacehw,
3234 					newbsize - bp->b_bufsize);
3235 		}
3236 	}
3237 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3238 	bp->b_bcount = size;		/* requested buffer size	*/
3239 	bufspacewakeup();
3240 }
3241 
3242 /*
3243  * biowait:
3244  *
3245  *	Wait for buffer I/O completion, returning error status. B_EINTR
3246  *	is converted into an EINTR error but not cleared (since a chain
3247  *	of biowait() calls may occur).
3248  *
3249  *	On return bpdone() will have been called but the buffer will remain
3250  *	locked and will not have been brelse()'d.
3251  *
3252  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3253  *	likely still in progress on return.
3254  *
3255  *	NOTE!  This operation is on a BIO, not a BUF.
3256  *
3257  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3258  */
3259 static __inline int
3260 _biowait(struct bio *bio, const char *wmesg, int to)
3261 {
3262 	struct buf *bp = bio->bio_buf;
3263 	u_int32_t flags;
3264 	u_int32_t nflags;
3265 	int error;
3266 
3267 	KKASSERT(bio == &bp->b_bio1);
3268 	for (;;) {
3269 		flags = bio->bio_flags;
3270 		if (flags & BIO_DONE)
3271 			break;
3272 		nflags = flags | BIO_WANT;
3273 		tsleep_interlock(bio, 0);
3274 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3275 			if (wmesg)
3276 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3277 			else if (bp->b_cmd == BUF_CMD_READ)
3278 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3279 			else
3280 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3281 			if (error) {
3282 				kprintf("tsleep error biowait %d\n", error);
3283 				return (error);
3284 			}
3285 		}
3286 	}
3287 
3288 	/*
3289 	 * Finish up.
3290 	 */
3291 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3292 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3293 	if (bp->b_flags & B_EINTR)
3294 		return (EINTR);
3295 	if (bp->b_flags & B_ERROR)
3296 		return (bp->b_error ? bp->b_error : EIO);
3297 	return (0);
3298 }
3299 
3300 int
3301 biowait(struct bio *bio, const char *wmesg)
3302 {
3303 	return(_biowait(bio, wmesg, 0));
3304 }
3305 
3306 int
3307 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3308 {
3309 	return(_biowait(bio, wmesg, to));
3310 }
3311 
3312 /*
3313  * This associates a tracking count with an I/O.  vn_strategy() and
3314  * dev_dstrategy() do this automatically but there are a few cases
3315  * where a vnode or device layer is bypassed when a block translation
3316  * is cached.  In such cases bio_start_transaction() may be called on
3317  * the bypassed layers so the system gets an I/O in progress indication
3318  * for those higher layers.
3319  */
3320 void
3321 bio_start_transaction(struct bio *bio, struct bio_track *track)
3322 {
3323 	bio->bio_track = track;
3324 	bio_track_ref(track);
3325 	dsched_buf_enter(bio->bio_buf);	/* might stack */
3326 }
3327 
3328 /*
3329  * Initiate I/O on a vnode.
3330  *
3331  * SWAPCACHE OPERATION:
3332  *
3333  *	Real buffer cache buffers have a non-NULL bp->b_vp.  Unfortunately
3334  *	devfs also uses b_vp for fake buffers so we also have to check
3335  *	that B_PAGING is 0.  In this case the passed 'vp' is probably the
3336  *	underlying block device.  The swap assignments are related to the
3337  *	buffer cache buffer's b_vp, not the passed vp.
3338  *
3339  *	The passed vp == bp->b_vp only in the case where the strategy call
3340  *	is made on the vp itself for its own buffers (a regular file or
3341  *	block device vp).  The filesystem usually then re-calls vn_strategy()
3342  *	after translating the request to an underlying device.
3343  *
3344  *	Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3345  *	underlying buffer cache buffers.
3346  *
3347  *	We can only deal with page-aligned buffers at the moment, because
3348  *	we can't tell what the real dirty state for pages straddling a buffer
3349  *	are.
3350  *
3351  *	In order to call swap_pager_strategy() we must provide the VM object
3352  *	and base offset for the underlying buffer cache pages so it can find
3353  *	the swap blocks.
3354  */
3355 void
3356 vn_strategy(struct vnode *vp, struct bio *bio)
3357 {
3358 	struct bio_track *track;
3359 	struct buf *bp = bio->bio_buf;
3360 
3361 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3362 
3363 	/*
3364 	 * Set when an I/O is issued on the bp.  Cleared by consumers
3365 	 * (aka HAMMER), allowing the consumer to determine if I/O had
3366 	 * actually occurred.
3367 	 */
3368 	bp->b_flags |= B_IOISSUED;
3369 
3370 	/*
3371 	 * Handle the swapcache intercept.
3372 	 *
3373 	 * NOTE: The swapcache itself always supports KVABIO and will
3374 	 *	 do the right thing if its underlying devices do not.
3375 	 */
3376 	if (vn_cache_strategy(vp, bio))
3377 		return;
3378 
3379 	/*
3380 	 * If the vnode does not support KVABIO and the buffer is using
3381 	 * KVABIO, we must synchronize b_data to all cpus before dispatching.
3382 	 */
3383 	if ((vp->v_flag & VKVABIO) == 0 && (bp->b_flags & B_KVABIO))
3384 		bkvasync_all(bp);
3385 
3386 	/*
3387 	 * Otherwise do the operation through the filesystem
3388 	 */
3389         if (bp->b_cmd == BUF_CMD_READ)
3390                 track = &vp->v_track_read;
3391         else
3392                 track = &vp->v_track_write;
3393 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3394 	bio->bio_track = track;
3395 	bio_track_ref(track);
3396 	dsched_buf_enter(bp);	/* might stack */
3397         vop_strategy(*vp->v_ops, vp, bio);
3398 }
3399 
3400 /*
3401  * vn_cache_strategy()
3402  *
3403  * Returns 1 if the interrupt was successful, 0 if not.
3404  *
3405  * NOTE: This function supports the KVABIO API wherein b_data might not
3406  *	 be synchronized to the current cpu.
3407  */
3408 static void vn_cache_strategy_callback(struct bio *bio);
3409 
3410 int
3411 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3412 {
3413 	struct buf *bp = bio->bio_buf;
3414 	struct bio *nbio;
3415 	vm_object_t object;
3416 	vm_page_t m;
3417 	int i;
3418 
3419 	/*
3420 	 * Stop using swapcache if paniced, dumping, or dumped
3421 	 */
3422 	if (panicstr || dumping)
3423 		return(0);
3424 
3425 	/*
3426 	 * Is this buffer cache buffer suitable for reading from
3427 	 * the swap cache?
3428 	 */
3429 	if (vm_swapcache_read_enable == 0 ||
3430 	    bp->b_cmd != BUF_CMD_READ ||
3431 	    ((bp->b_flags & B_CLUSTER) == 0 &&
3432 	     (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3433 	    ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3434 	    (bp->b_bcount & PAGE_MASK) != 0) {
3435 		return(0);
3436 	}
3437 
3438 	/*
3439 	 * Figure out the original VM object (it will match the underlying
3440 	 * VM pages).  Note that swap cached data uses page indices relative
3441 	 * to that object, not relative to bio->bio_offset.
3442 	 */
3443 	if (bp->b_flags & B_CLUSTER)
3444 		object = vp->v_object;
3445 	else
3446 		object = bp->b_vp->v_object;
3447 
3448 	/*
3449 	 * In order to be able to use the swap cache all underlying VM
3450 	 * pages must be marked as such, and we can't have any bogus pages.
3451 	 */
3452 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3453 		m = bp->b_xio.xio_pages[i];
3454 		if ((m->flags & PG_SWAPPED) == 0)
3455 			break;
3456 		if (m == bogus_page)
3457 			break;
3458 	}
3459 
3460 	/*
3461 	 * If we are good then issue the I/O using swap_pager_strategy().
3462 	 *
3463 	 * We can only do this if the buffer actually supports object-backed
3464 	 * I/O.  If it doesn't npages will be 0.
3465 	 */
3466 	if (i && i == bp->b_xio.xio_npages) {
3467 		m = bp->b_xio.xio_pages[0];
3468 		nbio = push_bio(bio);
3469 		nbio->bio_done = vn_cache_strategy_callback;
3470 		nbio->bio_offset = ptoa(m->pindex);
3471 		KKASSERT(m->object == object);
3472 		swap_pager_strategy(object, nbio);
3473 		return(1);
3474 	}
3475 	return(0);
3476 }
3477 
3478 /*
3479  * This is a bit of a hack but since the vn_cache_strategy() function can
3480  * override a VFS's strategy function we must make sure that the bio, which
3481  * is probably bio2, doesn't leak an unexpected offset value back to the
3482  * filesystem.  The filesystem (e.g. UFS) might otherwise assume that the
3483  * bio went through its own file strategy function and the the bio2 offset
3484  * is a cached disk offset when, in fact, it isn't.
3485  */
3486 static void
3487 vn_cache_strategy_callback(struct bio *bio)
3488 {
3489 	bio->bio_offset = NOOFFSET;
3490 	biodone(pop_bio(bio));
3491 }
3492 
3493 /*
3494  * bpdone:
3495  *
3496  *	Finish I/O on a buffer after all BIOs have been processed.
3497  *	Called when the bio chain is exhausted or by biowait.  If called
3498  *	by biowait, elseit is typically 0.
3499  *
3500  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3501  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3502  *	assuming B_INVAL is clear.
3503  *
3504  *	For the VMIO case, we set B_CACHE if the op was a read and no
3505  *	read error occured, or if the op was a write.  B_CACHE is never
3506  *	set if the buffer is invalid or otherwise uncacheable.
3507  *
3508  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3509  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3510  *	in the biodone routine.
3511  *
3512  *	bpdone is responsible for calling bundirty() on the buffer after a
3513  *	successful write.  We previously did this prior to initiating the
3514  *	write under the assumption that the buffer might be dirtied again
3515  *	while the write was in progress, however doing it before-hand creates
3516  *	a race condition prior to the call to vn_strategy() where the
3517  *	filesystem may not be aware that a dirty buffer is present.
3518  *	It should not be possible for the buffer or its underlying pages to
3519  *	be redirtied prior to bpdone()'s unbusying of the underlying VM
3520  *	pages.
3521  */
3522 void
3523 bpdone(struct buf *bp, int elseit)
3524 {
3525 	buf_cmd_t cmd;
3526 
3527 	KASSERT(BUF_LOCKINUSE(bp), ("bpdone: bp %p not busy", bp));
3528 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3529 		("bpdone: bp %p already done!", bp));
3530 
3531 	/*
3532 	 * No more BIOs are left.  All completion functions have been dealt
3533 	 * with, now we clean up the buffer.
3534 	 */
3535 	cmd = bp->b_cmd;
3536 	bp->b_cmd = BUF_CMD_DONE;
3537 
3538 	/*
3539 	 * Only reads and writes are processed past this point.
3540 	 */
3541 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3542 		if (cmd == BUF_CMD_FREEBLKS)
3543 			bp->b_flags |= B_NOCACHE;
3544 		if (elseit)
3545 			brelse(bp);
3546 		return;
3547 	}
3548 
3549 	/*
3550 	 * A failed write must re-dirty the buffer unless B_INVAL
3551 	 * was set.
3552 	 *
3553 	 * A successful write must clear the dirty flag.  This is done after
3554 	 * the write to ensure that the buffer remains on the vnode's dirty
3555 	 * list for filesystem interlocks / checks until the write is actually
3556 	 * complete.  HAMMER2 is sensitive to this issue.
3557 	 *
3558 	 * Only applicable to normal buffers (with VPs).  vinum buffers may
3559 	 * not have a vp.
3560 	 *
3561 	 * Must be done prior to calling buf_complete() as the callback might
3562 	 * re-dirty the buffer.
3563 	 */
3564 	if (cmd == BUF_CMD_WRITE) {
3565 		if ((bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3566 			bp->b_flags &= ~B_NOCACHE;
3567 			if (bp->b_vp)
3568 				bdirty(bp);
3569 		} else {
3570 			if (bp->b_vp)
3571 				bundirty(bp);
3572 		}
3573 	}
3574 
3575 	/*
3576 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3577 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3578 	 */
3579 	if (LIST_FIRST(&bp->b_dep) != NULL)
3580 		buf_complete(bp);
3581 
3582 	if (bp->b_flags & B_VMIO) {
3583 		int i;
3584 		vm_ooffset_t foff;
3585 		vm_page_t m;
3586 		vm_object_t obj;
3587 		int iosize;
3588 		struct vnode *vp = bp->b_vp;
3589 
3590 		obj = vp->v_object;
3591 
3592 #if defined(VFS_BIO_DEBUG)
3593 		if (vp->v_auxrefs == 0)
3594 			panic("bpdone: zero vnode hold count");
3595 		if ((vp->v_flag & VOBJBUF) == 0)
3596 			panic("bpdone: vnode is not setup for merged cache");
3597 #endif
3598 
3599 		foff = bp->b_loffset;
3600 		KASSERT(foff != NOOFFSET, ("bpdone: no buffer offset"));
3601 		KASSERT(obj != NULL, ("bpdone: missing VM object"));
3602 
3603 #if defined(VFS_BIO_DEBUG)
3604 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3605 			kprintf("bpdone: paging in progress(%d) < "
3606 				"bp->b_xio.xio_npages(%d)\n",
3607 				obj->paging_in_progress,
3608 				bp->b_xio.xio_npages);
3609 		}
3610 #endif
3611 
3612 		/*
3613 		 * Set B_CACHE if the op was a normal read and no error
3614 		 * occured.  B_CACHE is set for writes in the b*write()
3615 		 * routines.
3616 		 */
3617 		iosize = bp->b_bcount - bp->b_resid;
3618 		if (cmd == BUF_CMD_READ &&
3619 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3620 			bp->b_flags |= B_CACHE;
3621 		}
3622 
3623 		vm_object_hold(obj);
3624 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3625 			int resid;
3626 			int isbogus;
3627 
3628 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3629 			if (resid > iosize)
3630 				resid = iosize;
3631 
3632 			/*
3633 			 * cleanup bogus pages, restoring the originals.  Since
3634 			 * the originals should still be wired, we don't have
3635 			 * to worry about interrupt/freeing races destroying
3636 			 * the VM object association.
3637 			 */
3638 			m = bp->b_xio.xio_pages[i];
3639 			if (m == bogus_page) {
3640 				if ((bp->b_flags & B_HASBOGUS) == 0)
3641 					panic("bpdone: bp %p corrupt bogus", bp);
3642 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3643 				if (m == NULL)
3644 					panic("bpdone: page disappeared");
3645 				bp->b_xio.xio_pages[i] = m;
3646 				isbogus = 1;
3647 			} else {
3648 				isbogus = 0;
3649 			}
3650 #if defined(VFS_BIO_DEBUG)
3651 			if (OFF_TO_IDX(foff) != m->pindex) {
3652 				kprintf("bpdone: foff(%lu)/m->pindex(%ld) "
3653 					"mismatch\n",
3654 					(unsigned long)foff, (long)m->pindex);
3655 			}
3656 #endif
3657 
3658 			/*
3659 			 * In the write case, the valid and clean bits are
3660 			 * already changed correctly (see bdwrite()), so we
3661 			 * only need to do this here in the read case.
3662 			 */
3663 			vm_page_busy_wait(m, FALSE, "bpdpgw");
3664 			if (cmd == BUF_CMD_READ && isbogus == 0 && resid > 0)
3665 				vfs_clean_one_page(bp, i, m);
3666 
3667 			/*
3668 			 * when debugging new filesystems or buffer I/O
3669 			 * methods, this is the most common error that pops
3670 			 * up.  if you see this, you have not set the page
3671 			 * busy flag correctly!!!
3672 			 */
3673 			if ((m->busy_count & PBUSY_MASK) == 0) {
3674 				kprintf("bpdone: page busy < 0, "
3675 				    "pindex: %d, foff: 0x(%x,%x), "
3676 				    "resid: %d, index: %d\n",
3677 				    (int) m->pindex, (int)(foff >> 32),
3678 						(int) foff & 0xffffffff, resid, i);
3679 				if (!vn_isdisk(vp, NULL))
3680 					kprintf(" iosize: %ld, loffset: %lld, "
3681 						"flags: 0x%08x, npages: %d\n",
3682 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3683 					    (long long)bp->b_loffset,
3684 					    bp->b_flags, bp->b_xio.xio_npages);
3685 				else
3686 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3687 					    (long long)bp->b_loffset,
3688 					    bp->b_flags, bp->b_xio.xio_npages);
3689 				kprintf(" valid: 0x%x, dirty: 0x%x, "
3690 					"wired: %d\n",
3691 					m->valid, m->dirty,
3692 					m->wire_count);
3693 				panic("bpdone: page busy < 0");
3694 			}
3695 			vm_page_io_finish(m);
3696 			vm_page_wakeup(m);
3697 			vm_object_pip_wakeup(obj);
3698 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3699 			iosize -= resid;
3700 		}
3701 		if (bp->b_flags & B_HASBOGUS) {
3702 			pmap_qenter_noinval(trunc_page((vm_offset_t)bp->b_data),
3703 					    bp->b_xio.xio_pages,
3704 					    bp->b_xio.xio_npages);
3705 			bp->b_flags &= ~B_HASBOGUS;
3706 			bkvareset(bp);
3707 		}
3708 		vm_object_drop(obj);
3709 	}
3710 
3711 	/*
3712 	 * Finish up by releasing the buffer.  There are no more synchronous
3713 	 * or asynchronous completions, those were handled by bio_done
3714 	 * callbacks.
3715 	 */
3716 	if (elseit) {
3717 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3718 			brelse(bp);
3719 		else
3720 			bqrelse(bp);
3721 	}
3722 }
3723 
3724 /*
3725  * Normal biodone.
3726  */
3727 void
3728 biodone(struct bio *bio)
3729 {
3730 	struct buf *bp = bio->bio_buf;
3731 
3732 	runningbufwakeup(bp);
3733 
3734 	/*
3735 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3736 	 */
3737 	while (bio) {
3738 		biodone_t *done_func;
3739 		struct bio_track *track;
3740 
3741 		/*
3742 		 * BIO tracking.  Most but not all BIOs are tracked.
3743 		 */
3744 		if ((track = bio->bio_track) != NULL) {
3745 			bio_track_rel(track);
3746 			bio->bio_track = NULL;
3747 		}
3748 
3749 		/*
3750 		 * A bio_done function terminates the loop.  The function
3751 		 * will be responsible for any further chaining and/or
3752 		 * buffer management.
3753 		 *
3754 		 * WARNING!  The done function can deallocate the buffer!
3755 		 */
3756 		if ((done_func = bio->bio_done) != NULL) {
3757 			bio->bio_done = NULL;
3758 			done_func(bio);
3759 			return;
3760 		}
3761 		bio = bio->bio_prev;
3762 	}
3763 
3764 	/*
3765 	 * If we've run out of bio's do normal [a]synchronous completion.
3766 	 */
3767 	bpdone(bp, 1);
3768 }
3769 
3770 /*
3771  * Synchronous biodone - this terminates a synchronous BIO.
3772  *
3773  * bpdone() is called with elseit=FALSE, leaving the buffer completed
3774  * but still locked.  The caller must brelse() the buffer after waiting
3775  * for completion.
3776  */
3777 void
3778 biodone_sync(struct bio *bio)
3779 {
3780 	struct buf *bp = bio->bio_buf;
3781 	int flags;
3782 	int nflags;
3783 
3784 	KKASSERT(bio == &bp->b_bio1);
3785 	bpdone(bp, 0);
3786 
3787 	for (;;) {
3788 		flags = bio->bio_flags;
3789 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
3790 
3791 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3792 			if (flags & BIO_WANT)
3793 				wakeup(bio);
3794 			break;
3795 		}
3796 	}
3797 }
3798 
3799 /*
3800  * vfs_unbusy_pages:
3801  *
3802  *	This routine is called in lieu of iodone in the case of
3803  *	incomplete I/O.  This keeps the busy status for pages
3804  *	consistant.
3805  */
3806 void
3807 vfs_unbusy_pages(struct buf *bp)
3808 {
3809 	int i;
3810 
3811 	runningbufwakeup(bp);
3812 
3813 	if (bp->b_flags & B_VMIO) {
3814 		struct vnode *vp = bp->b_vp;
3815 		vm_object_t obj;
3816 
3817 		obj = vp->v_object;
3818 		vm_object_hold(obj);
3819 
3820 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3821 			vm_page_t m = bp->b_xio.xio_pages[i];
3822 
3823 			/*
3824 			 * When restoring bogus changes the original pages
3825 			 * should still be wired, so we are in no danger of
3826 			 * losing the object association and do not need
3827 			 * critical section protection particularly.
3828 			 */
3829 			if (m == bogus_page) {
3830 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3831 				if (!m) {
3832 					panic("vfs_unbusy_pages: page missing");
3833 				}
3834 				bp->b_xio.xio_pages[i] = m;
3835 			}
3836 			vm_page_busy_wait(m, FALSE, "bpdpgw");
3837 			vm_page_io_finish(m);
3838 			vm_page_wakeup(m);
3839 			vm_object_pip_wakeup(obj);
3840 		}
3841 		if (bp->b_flags & B_HASBOGUS) {
3842 			pmap_qenter_noinval(trunc_page((vm_offset_t)bp->b_data),
3843 					    bp->b_xio.xio_pages,
3844 					    bp->b_xio.xio_npages);
3845 			bp->b_flags &= ~B_HASBOGUS;
3846 			bkvareset(bp);
3847 		}
3848 		vm_object_drop(obj);
3849 	}
3850 }
3851 
3852 /*
3853  * vfs_busy_pages:
3854  *
3855  *	This routine is called before a device strategy routine.
3856  *	It is used to tell the VM system that paging I/O is in
3857  *	progress, and treat the pages associated with the buffer
3858  *	almost as being PBUSY_LOCKED.  Also the object 'paging_in_progress'
3859  *	flag is handled to make sure that the object doesn't become
3860  *	inconsistant.
3861  *
3862  *	Since I/O has not been initiated yet, certain buffer flags
3863  *	such as B_ERROR or B_INVAL may be in an inconsistant state
3864  *	and should be ignored.
3865  */
3866 void
3867 vfs_busy_pages(struct vnode *vp, struct buf *bp)
3868 {
3869 	int i, bogus;
3870 	struct lwp *lp = curthread->td_lwp;
3871 
3872 	/*
3873 	 * The buffer's I/O command must already be set.  If reading,
3874 	 * B_CACHE must be 0 (double check against callers only doing
3875 	 * I/O when B_CACHE is 0).
3876 	 */
3877 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3878 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3879 
3880 	if (bp->b_flags & B_VMIO) {
3881 		vm_object_t obj;
3882 
3883 		obj = vp->v_object;
3884 		KASSERT(bp->b_loffset != NOOFFSET,
3885 			("vfs_busy_pages: no buffer offset"));
3886 
3887 		/*
3888 		 * Busy all the pages.  We have to busy them all at once
3889 		 * to avoid deadlocks.
3890 		 */
3891 retry:
3892 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3893 			vm_page_t m = bp->b_xio.xio_pages[i];
3894 
3895 			if (vm_page_busy_try(m, FALSE)) {
3896 				vm_page_sleep_busy(m, FALSE, "vbpage");
3897 				while (--i >= 0)
3898 					vm_page_wakeup(bp->b_xio.xio_pages[i]);
3899 				goto retry;
3900 			}
3901 		}
3902 
3903 		/*
3904 		 * Setup for I/O, soft-busy the page right now because
3905 		 * the next loop may block.
3906 		 */
3907 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3908 			vm_page_t m = bp->b_xio.xio_pages[i];
3909 
3910 			if ((bp->b_flags & B_CLUSTER) == 0) {
3911 				vm_object_pip_add(obj, 1);
3912 				vm_page_io_start(m);
3913 			}
3914 		}
3915 
3916 		/*
3917 		 * Adjust protections for I/O and do bogus-page mapping.
3918 		 * Assume that vm_page_protect() can block (it can block
3919 		 * if VM_PROT_NONE, don't take any chances regardless).
3920 		 *
3921 		 * In particular note that for writes we must incorporate
3922 		 * page dirtyness from the VM system into the buffer's
3923 		 * dirty range.
3924 		 *
3925 		 * For reads we theoretically must incorporate page dirtyness
3926 		 * from the VM system to determine if the page needs bogus
3927 		 * replacement, but we shortcut the test by simply checking
3928 		 * that all m->valid bits are set, indicating that the page
3929 		 * is fully valid and does not need to be re-read.  For any
3930 		 * VM system dirtyness the page will also be fully valid
3931 		 * since it was mapped at one point.
3932 		 */
3933 		bogus = 0;
3934 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3935 			vm_page_t m = bp->b_xio.xio_pages[i];
3936 
3937 			if (bp->b_cmd == BUF_CMD_WRITE) {
3938 				/*
3939 				 * When readying a vnode-backed buffer for
3940 				 * a write we must zero-fill any invalid
3941 				 * portions of the backing VM pages, mark
3942 				 * it valid and clear related dirty bits.
3943 				 *
3944 				 * vfs_clean_one_page() incorporates any
3945 				 * VM dirtyness and updates the b_dirtyoff
3946 				 * range (after we've made the page RO).
3947 				 *
3948 				 * It is also expected that the pmap modified
3949 				 * bit has already been cleared by the
3950 				 * vm_page_protect().  We may not be able
3951 				 * to clear all dirty bits for a page if it
3952 				 * was also memory mapped (NFS).
3953 				 *
3954 				 * Finally be sure to unassign any swap-cache
3955 				 * backing store as it is now stale.
3956 				 */
3957 				vm_page_protect(m, VM_PROT_READ);
3958 				vfs_clean_one_page(bp, i, m);
3959 				swap_pager_unswapped(m);
3960 			} else if (m->valid == VM_PAGE_BITS_ALL) {
3961 				/*
3962 				 * When readying a vnode-backed buffer for
3963 				 * read we must replace any dirty pages with
3964 				 * a bogus page so dirty data is not destroyed
3965 				 * when filling gaps.
3966 				 *
3967 				 * To avoid testing whether the page is
3968 				 * dirty we instead test that the page was
3969 				 * at some point mapped (m->valid fully
3970 				 * valid) with the understanding that
3971 				 * this also covers the dirty case.
3972 				 */
3973 				bp->b_xio.xio_pages[i] = bogus_page;
3974 				bp->b_flags |= B_HASBOGUS;
3975 				bogus++;
3976 			} else if (m->valid & m->dirty) {
3977 				/*
3978 				 * This case should not occur as partial
3979 				 * dirtyment can only happen if the buffer
3980 				 * is B_CACHE, and this code is not entered
3981 				 * if the buffer is B_CACHE.
3982 				 */
3983 				kprintf("Warning: vfs_busy_pages - page not "
3984 					"fully valid! loff=%jx bpf=%08x "
3985 					"idx=%d val=%02x dir=%02x\n",
3986 					(uintmax_t)bp->b_loffset, bp->b_flags,
3987 					i, m->valid, m->dirty);
3988 				vm_page_protect(m, VM_PROT_NONE);
3989 			} else {
3990 				/*
3991 				 * The page is not valid and can be made
3992 				 * part of the read.
3993 				 */
3994 				vm_page_protect(m, VM_PROT_NONE);
3995 			}
3996 			vm_page_wakeup(m);
3997 		}
3998 		if (bogus) {
3999 			pmap_qenter_noinval(trunc_page((vm_offset_t)bp->b_data),
4000 					    bp->b_xio.xio_pages,
4001 					    bp->b_xio.xio_npages);
4002 			bkvareset(bp);
4003 		}
4004 	}
4005 
4006 	/*
4007 	 * This is the easiest place to put the process accounting for the I/O
4008 	 * for now.
4009 	 */
4010 	if (lp != NULL) {
4011 		if (bp->b_cmd == BUF_CMD_READ)
4012 			lp->lwp_ru.ru_inblock++;
4013 		else
4014 			lp->lwp_ru.ru_oublock++;
4015 	}
4016 }
4017 
4018 /*
4019  * Tell the VM system that the pages associated with this buffer
4020  * are clean.  This is used for delayed writes where the data is
4021  * going to go to disk eventually without additional VM intevention.
4022  *
4023  * NOTE: While we only really need to clean through to b_bcount, we
4024  *	 just go ahead and clean through to b_bufsize.
4025  */
4026 static void
4027 vfs_clean_pages(struct buf *bp)
4028 {
4029 	vm_page_t m;
4030 	int i;
4031 
4032 	if ((bp->b_flags & B_VMIO) == 0)
4033 		return;
4034 
4035 	KASSERT(bp->b_loffset != NOOFFSET,
4036 		("vfs_clean_pages: no buffer offset"));
4037 
4038 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
4039 		m = bp->b_xio.xio_pages[i];
4040 		vfs_clean_one_page(bp, i, m);
4041 	}
4042 }
4043 
4044 /*
4045  * vfs_clean_one_page:
4046  *
4047  *	Set the valid bits and clear the dirty bits in a page within a
4048  *	buffer.  The range is restricted to the buffer's size and the
4049  *	buffer's logical offset might index into the first page.
4050  *
4051  *	The caller has busied or soft-busied the page and it is not mapped,
4052  *	test and incorporate the dirty bits into b_dirtyoff/end before
4053  *	clearing them.  Note that we need to clear the pmap modified bits
4054  *	after determining the the page was dirty, vm_page_set_validclean()
4055  *	does not do it for us.
4056  *
4057  *	This routine is typically called after a read completes (dirty should
4058  *	be zero in that case as we are not called on bogus-replace pages),
4059  *	or before a write is initiated.
4060  */
4061 static void
4062 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4063 {
4064 	int bcount;
4065 	int xoff;
4066 	int soff;
4067 	int eoff;
4068 
4069 	/*
4070 	 * Calculate offset range within the page but relative to buffer's
4071 	 * loffset.  loffset might be offset into the first page.
4072 	 */
4073 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4074 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4075 
4076 	if (pageno == 0) {
4077 		soff = xoff;
4078 		eoff = PAGE_SIZE;
4079 	} else {
4080 		soff = (pageno << PAGE_SHIFT);
4081 		eoff = soff + PAGE_SIZE;
4082 	}
4083 	if (eoff > bcount)
4084 		eoff = bcount;
4085 	if (soff >= eoff)
4086 		return;
4087 
4088 	/*
4089 	 * Test dirty bits and adjust b_dirtyoff/end.
4090 	 *
4091 	 * If dirty pages are incorporated into the bp any prior
4092 	 * B_NEEDCOMMIT state (NFS) must be cleared because the
4093 	 * caller has not taken into account the new dirty data.
4094 	 *
4095 	 * If the page was memory mapped the dirty bits might go beyond the
4096 	 * end of the buffer, but we can't really make the assumption that
4097 	 * a file EOF straddles the buffer (even though this is the case for
4098 	 * NFS if B_NEEDCOMMIT is also set).  So for the purposes of clearing
4099 	 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4100 	 * This also saves some console spam.
4101 	 *
4102 	 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4103 	 * NFS can handle huge commits but not huge writes.
4104 	 */
4105 	vm_page_test_dirty(m);
4106 	if (m->dirty) {
4107 		if ((bp->b_flags & B_NEEDCOMMIT) &&
4108 		    (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4109 			if (debug_commit)
4110 				kprintf("Warning: vfs_clean_one_page: bp %p "
4111 				    "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4112 				    " cmd %d vd %02x/%02x x/s/e %d %d %d "
4113 				    "doff/end %d %d\n",
4114 				    bp, (uintmax_t)bp->b_loffset, bp->b_bcount,
4115 				    bp->b_flags, bp->b_cmd,
4116 				    m->valid, m->dirty, xoff, soff, eoff,
4117 				    bp->b_dirtyoff, bp->b_dirtyend);
4118 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4119 			if (debug_commit)
4120 				print_backtrace(-1);
4121 		}
4122 		/*
4123 		 * Only clear the pmap modified bits if ALL the dirty bits
4124 		 * are set, otherwise the system might mis-clear portions
4125 		 * of a page.
4126 		 */
4127 		if (m->dirty == VM_PAGE_BITS_ALL &&
4128 		    (bp->b_flags & B_NEEDCOMMIT) == 0) {
4129 			pmap_clear_modify(m);
4130 		}
4131 		if (bp->b_dirtyoff > soff - xoff)
4132 			bp->b_dirtyoff = soff - xoff;
4133 		if (bp->b_dirtyend < eoff - xoff)
4134 			bp->b_dirtyend = eoff - xoff;
4135 	}
4136 
4137 	/*
4138 	 * Set related valid bits, clear related dirty bits.
4139 	 * Does not mess with the pmap modified bit.
4140 	 *
4141 	 * WARNING!  We cannot just clear all of m->dirty here as the
4142 	 *	     buffer cache buffers may use a DEV_BSIZE'd aligned
4143 	 *	     block size, or have an odd size (e.g. NFS at file EOF).
4144 	 *	     The putpages code can clear m->dirty to 0.
4145 	 *
4146 	 *	     If a VOP_WRITE generates a buffer cache buffer which
4147 	 *	     covers the same space as mapped writable pages the
4148 	 *	     buffer flush might not be able to clear all the dirty
4149 	 *	     bits and still require a putpages from the VM system
4150 	 *	     to finish it off.
4151 	 *
4152 	 * WARNING!  vm_page_set_validclean() currently assumes vm_token
4153 	 *	     is held.  The page might not be busied (bdwrite() case).
4154 	 *	     XXX remove this comment once we've validated that this
4155 	 *	     is no longer an issue.
4156 	 */
4157 	vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4158 }
4159 
4160 #if 0
4161 /*
4162  * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4163  * The page data is assumed to be valid (there is no zeroing here).
4164  */
4165 static void
4166 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4167 {
4168 	int bcount;
4169 	int xoff;
4170 	int soff;
4171 	int eoff;
4172 
4173 	/*
4174 	 * Calculate offset range within the page but relative to buffer's
4175 	 * loffset.  loffset might be offset into the first page.
4176 	 */
4177 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4178 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4179 
4180 	if (pageno == 0) {
4181 		soff = xoff;
4182 		eoff = PAGE_SIZE;
4183 	} else {
4184 		soff = (pageno << PAGE_SHIFT);
4185 		eoff = soff + PAGE_SIZE;
4186 	}
4187 	if (eoff > bcount)
4188 		eoff = bcount;
4189 	if (soff >= eoff)
4190 		return;
4191 	vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4192 }
4193 #endif
4194 
4195 /*
4196  * vfs_bio_clrbuf:
4197  *
4198  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
4199  *	to clear B_ERROR and B_INVAL.
4200  *
4201  *	Note that while we only theoretically need to clear through b_bcount,
4202  *	we go ahead and clear through b_bufsize.
4203  */
4204 void
4205 vfs_bio_clrbuf(struct buf *bp)
4206 {
4207 	int i, mask = 0;
4208 	caddr_t sa, ea;
4209 	KKASSERT(bp->b_flags & B_VMIO);
4210 
4211 	bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4212 	bkvasync(bp);
4213 
4214 	if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4215 	    (bp->b_loffset & PAGE_MASK) == 0) {
4216 		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4217 		if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4218 			bp->b_resid = 0;
4219 			return;
4220 		}
4221 		if ((bp->b_xio.xio_pages[0]->valid & mask) == 0) {
4222 			bzero(bp->b_data, bp->b_bufsize);
4223 			bp->b_xio.xio_pages[0]->valid |= mask;
4224 			bp->b_resid = 0;
4225 			return;
4226 		}
4227 	}
4228 	sa = bp->b_data;
4229 	for(i = 0; i < bp->b_xio.xio_npages; i++, sa=ea) {
4230 		int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4231 		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4232 		ea = (caddr_t)(vm_offset_t)ulmin(
4233 			    (u_long)(vm_offset_t)ea,
4234 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4235 		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4236 		if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4237 			continue;
4238 		if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4239 			bzero(sa, ea - sa);
4240 		} else {
4241 			for (; sa < ea; sa += DEV_BSIZE, j++) {
4242 				if ((bp->b_xio.xio_pages[i]->valid &
4243 				    (1<<j)) == 0) {
4244 					bzero(sa, DEV_BSIZE);
4245 				}
4246 			}
4247 		}
4248 		bp->b_xio.xio_pages[i]->valid |= mask;
4249 	}
4250 	bp->b_resid = 0;
4251 }
4252 
4253 /*
4254  * Allocate a page for a buffer cache buffer.
4255  *
4256  * If NULL is returned the caller is expected to retry (typically check if
4257  * the page already exists on retry before trying to allocate one).
4258  *
4259  * NOTE! Low-memory handling is dealt with in b[q]relse(), not here.  This
4260  *	 function will use the system reserve with the hope that the page
4261  *	 allocations can be returned to PQ_CACHE/PQ_FREE when the caller
4262  *	 is done with the buffer.
4263  *
4264  * NOTE! However, TMPFS is a special case because flushing a dirty buffer
4265  *	 to TMPFS doesn't clean the page.  For TMPFS, only the pagedaemon
4266  *	 is capable of retiring pages (to swap).  For TMPFS we don't dig
4267  *	 into the system reserve because doing so could stall out pretty
4268  *	 much every process running on the system.
4269  */
4270 static
4271 vm_page_t
4272 bio_page_alloc(struct buf *bp, vm_object_t obj, vm_pindex_t pg, int deficit)
4273 {
4274 	int vmflags = VM_ALLOC_NORMAL | VM_ALLOC_NULL_OK;
4275 	vm_page_t p;
4276 
4277 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj));
4278 
4279 	/*
4280 	 * Try a normal allocation first.
4281 	 */
4282 	p = vm_page_alloc(obj, pg, vmflags);
4283 	if (p)
4284 		return(p);
4285 	if (vm_page_lookup(obj, pg))
4286 		return(NULL);
4287 	vm_pageout_deficit += deficit;
4288 
4289 	/*
4290 	 * Try again, digging into the system reserve.
4291 	 *
4292 	 * Trying to recover pages from the buffer cache here can deadlock
4293 	 * against other threads trying to busy underlying pages so we
4294 	 * depend on the code in brelse() and bqrelse() to free/cache the
4295 	 * underlying buffer cache pages when memory is low.
4296 	 */
4297 	if (curthread->td_flags & TDF_SYSTHREAD)
4298 		vmflags |= VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT;
4299 	else if (bp->b_vp && bp->b_vp->v_tag == VT_TMPFS)
4300 		vmflags |= 0;
4301 	else
4302 		vmflags |= VM_ALLOC_SYSTEM;
4303 
4304 	/*recoverbufpages();*/
4305 	p = vm_page_alloc(obj, pg, vmflags);
4306 	if (p)
4307 		return(p);
4308 	if (vm_page_lookup(obj, pg))
4309 		return(NULL);
4310 
4311 	/*
4312 	 * Wait for memory to free up and try again
4313 	 */
4314 	if (vm_page_count_severe())
4315 		++lowmempgallocs;
4316 	vm_wait(hz / 20 + 1);
4317 
4318 	p = vm_page_alloc(obj, pg, vmflags);
4319 	if (p)
4320 		return(p);
4321 	if (vm_page_lookup(obj, pg))
4322 		return(NULL);
4323 
4324 	/*
4325 	 * Ok, now we are really in trouble.
4326 	 */
4327 	if (bootverbose) {
4328 		static struct krate biokrate = { .freq = 1 };
4329 		krateprintf(&biokrate,
4330 			    "Warning: bio_page_alloc: memory exhausted "
4331 			    "during buffer cache page allocation from %s\n",
4332 			    curthread->td_comm);
4333 	}
4334 	if (curthread->td_flags & TDF_SYSTHREAD)
4335 		vm_wait(hz / 20 + 1);
4336 	else
4337 		vm_wait(hz / 2 + 1);
4338 	return (NULL);
4339 }
4340 
4341 /*
4342  * The buffer's mapping has changed.  Adjust the buffer's memory
4343  * synchronization.  The caller is the exclusive holder of the buffer
4344  * and has set or cleared B_KVABIO according to preference.
4345  *
4346  * WARNING! If the caller is using B_KVABIO mode, this function will
4347  *	    not map the data to the current cpu.  The caller must also
4348  *	    call bkvasync(bp).
4349  */
4350 void
4351 bkvareset(struct buf *bp)
4352 {
4353 	if (bp->b_flags & B_KVABIO) {
4354 		CPUMASK_ASSZERO(bp->b_cpumask);
4355 	} else {
4356 		CPUMASK_ORMASK(bp->b_cpumask, smp_active_mask);
4357 		smp_invltlb();
4358 		cpu_invltlb();
4359 	}
4360 }
4361 
4362 /*
4363  * The buffer will be used by the caller on the caller's cpu, synchronize
4364  * its data to the current cpu.  Caller must control the buffer by holding
4365  * its lock, but calling cpu does not necessarily have to be the owner of
4366  * the lock (i.e. HAMMER2's concurrent I/O accessors).
4367  *
4368  * If B_KVABIO is not set, the buffer is already fully synchronized.
4369  */
4370 void
4371 bkvasync(struct buf *bp)
4372 {
4373 	int cpuid = mycpu->gd_cpuid;
4374 	char *bdata;
4375 
4376 	if ((bp->b_flags & B_KVABIO) &&
4377 	    CPUMASK_TESTBIT(bp->b_cpumask, cpuid) == 0) {
4378 		bdata = bp->b_data;
4379 		while (bdata < bp->b_data + bp->b_bufsize) {
4380 			cpu_invlpg(bdata);
4381 			bdata += PAGE_SIZE -
4382 				 ((intptr_t)bdata & PAGE_MASK);
4383 		}
4384 		ATOMIC_CPUMASK_ORBIT(bp->b_cpumask, cpuid);
4385 	}
4386 }
4387 
4388 /*
4389  * The buffer will be used by a subsystem that does not understand
4390  * the KVABIO API.  Make sure its data is synchronized to all cpus.
4391  *
4392  * If B_KVABIO is not set, the buffer is already fully synchronized.
4393  *
4394  * NOTE! This is the only safe way to clear B_KVABIO on a buffer.
4395  */
4396 void
4397 bkvasync_all(struct buf *bp)
4398 {
4399 	if (debug_kvabio > 0) {
4400 		--debug_kvabio;
4401 		print_backtrace(10);
4402 	}
4403 
4404 	if ((bp->b_flags & B_KVABIO) &&
4405 	    CPUMASK_CMPMASKNEQ(bp->b_cpumask, smp_active_mask)) {
4406 		smp_invltlb();
4407 		cpu_invltlb();
4408 		ATOMIC_CPUMASK_ORMASK(bp->b_cpumask, smp_active_mask);
4409 	}
4410 	bp->b_flags &= ~B_KVABIO;
4411 }
4412 
4413 /*
4414  * Scan all buffers in the system and issue the callback.
4415  */
4416 int
4417 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4418 {
4419 	int count = 0;
4420 	int error;
4421 	long n;
4422 
4423 	for (n = 0; n < nbuf; ++n) {
4424 		if ((error = callback(&buf[n], info)) < 0) {
4425 			count = error;
4426 			break;
4427 		}
4428 		count += error;
4429 	}
4430 	return (count);
4431 }
4432 
4433 /*
4434  * nestiobuf_iodone: biodone callback for nested buffers and propagate
4435  * completion to the master buffer.
4436  */
4437 static void
4438 nestiobuf_iodone(struct bio *bio)
4439 {
4440 	struct bio *mbio;
4441 	struct buf *mbp, *bp;
4442 	struct devstat *stats;
4443 	int error;
4444 	int donebytes;
4445 
4446 	bp = bio->bio_buf;
4447 	mbio = bio->bio_caller_info1.ptr;
4448 	stats = bio->bio_caller_info2.ptr;
4449 	mbp = mbio->bio_buf;
4450 
4451 	KKASSERT(bp->b_bcount <= bp->b_bufsize);
4452 	KKASSERT(mbp != bp);
4453 
4454 	error = bp->b_error;
4455 	if (bp->b_error == 0 &&
4456 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4457 		/*
4458 		 * Not all got transfered, raise an error. We have no way to
4459 		 * propagate these conditions to mbp.
4460 		 */
4461 		error = EIO;
4462 	}
4463 
4464 	donebytes = bp->b_bufsize;
4465 
4466 	relpbuf(bp, NULL);
4467 
4468 	nestiobuf_done(mbio, donebytes, error, stats);
4469 }
4470 
4471 void
4472 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats)
4473 {
4474 	struct buf *mbp;
4475 
4476 	mbp = mbio->bio_buf;
4477 
4478 	KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4479 
4480 	/*
4481 	 * If an error occured, propagate it to the master buffer.
4482 	 *
4483 	 * Several biodone()s may wind up running concurrently so
4484 	 * use an atomic op to adjust b_flags.
4485 	 */
4486 	if (error) {
4487 		mbp->b_error = error;
4488 		atomic_set_int(&mbp->b_flags, B_ERROR);
4489 	}
4490 
4491 	/*
4492 	 * Decrement the operations in progress counter and terminate the
4493 	 * I/O if this was the last bit.
4494 	 */
4495 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4496 		mbp->b_resid = 0;
4497 		if (stats)
4498 			devstat_end_transaction_buf(stats, mbp);
4499 		biodone(mbio);
4500 	}
4501 }
4502 
4503 /*
4504  * Initialize a nestiobuf for use.  Set an initial count of 1 to prevent
4505  * the mbio from being biodone()'d while we are still adding sub-bios to
4506  * it.
4507  */
4508 void
4509 nestiobuf_init(struct bio *bio)
4510 {
4511 	bio->bio_driver_info = (void *)1;
4512 }
4513 
4514 /*
4515  * The BIOs added to the nestedio have already been started, remove the
4516  * count that placeheld our mbio and biodone() it if the count would
4517  * transition to 0.
4518  */
4519 void
4520 nestiobuf_start(struct bio *mbio)
4521 {
4522 	struct buf *mbp = mbio->bio_buf;
4523 
4524 	/*
4525 	 * Decrement the operations in progress counter and terminate the
4526 	 * I/O if this was the last bit.
4527 	 */
4528 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4529 		if (mbp->b_flags & B_ERROR)
4530 			mbp->b_resid = mbp->b_bcount;
4531 		else
4532 			mbp->b_resid = 0;
4533 		biodone(mbio);
4534 	}
4535 }
4536 
4537 /*
4538  * Set an intermediate error prior to calling nestiobuf_start()
4539  */
4540 void
4541 nestiobuf_error(struct bio *mbio, int error)
4542 {
4543 	struct buf *mbp = mbio->bio_buf;
4544 
4545 	if (error) {
4546 		mbp->b_error = error;
4547 		atomic_set_int(&mbp->b_flags, B_ERROR);
4548 	}
4549 }
4550 
4551 /*
4552  * nestiobuf_add: setup a "nested" buffer.
4553  *
4554  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4555  * => 'bp' should be a buffer allocated by getiobuf.
4556  * => 'offset' is a byte offset in the master buffer.
4557  * => 'size' is a size in bytes of this nested buffer.
4558  */
4559 void
4560 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats)
4561 {
4562 	struct buf *mbp = mbio->bio_buf;
4563 	struct vnode *vp = mbp->b_vp;
4564 
4565 	KKASSERT(mbp->b_bcount >= offset + size);
4566 
4567 	atomic_add_int((int *)&mbio->bio_driver_info, 1);
4568 
4569 	/* kernel needs to own the lock for it to be released in biodone */
4570 	BUF_KERNPROC(bp);
4571 	bp->b_vp = vp;
4572 	bp->b_cmd = mbp->b_cmd;
4573 	bp->b_bio1.bio_done = nestiobuf_iodone;
4574 	bp->b_data = (char *)mbp->b_data + offset;
4575 	bp->b_resid = bp->b_bcount = size;
4576 	bp->b_bufsize = bp->b_bcount;
4577 
4578 	bp->b_bio1.bio_track = NULL;
4579 	bp->b_bio1.bio_caller_info1.ptr = mbio;
4580 	bp->b_bio1.bio_caller_info2.ptr = stats;
4581 }
4582 
4583 #ifdef DDB
4584 
4585 DB_SHOW_COMMAND(buffer, db_show_buffer)
4586 {
4587 	/* get args */
4588 	struct buf *bp = (struct buf *)addr;
4589 
4590 	if (!have_addr) {
4591 		db_printf("usage: show buffer <addr>\n");
4592 		return;
4593 	}
4594 
4595 	db_printf("b_flags = 0x%pb%i\n", PRINT_BUF_FLAGS, bp->b_flags);
4596 	db_printf("b_cmd = %d\n", bp->b_cmd);
4597 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4598 		  "b_resid = %d\n, b_data = %p, "
4599 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4600 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4601 		  bp->b_data,
4602 		  (long long)bp->b_bio2.bio_offset,
4603 		  (long long)(bp->b_bio2.bio_next ?
4604 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4605 	if (bp->b_xio.xio_npages) {
4606 		int i;
4607 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4608 			bp->b_xio.xio_npages);
4609 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4610 			vm_page_t m;
4611 			m = bp->b_xio.xio_pages[i];
4612 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4613 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4614 			if ((i + 1) < bp->b_xio.xio_npages)
4615 				db_printf(",");
4616 		}
4617 		db_printf("\n");
4618 	}
4619 }
4620 #endif /* DDB */
4621