xref: /dragonfly/sys/kern/vfs_bio.c (revision 9462167a)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  */
16 
17 /*
18  * this file contains a new buffer I/O scheme implementing a coherent
19  * VM object and buffer cache scheme.  Pains have been taken to make
20  * sure that the performance degradation associated with schemes such
21  * as this is not realized.
22  *
23  * Author:  John S. Dyson
24  * Significant help during the development and debugging phases
25  * had been provided by David Greenman, also of the FreeBSD core team.
26  *
27  * see man buf(9) for more info.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/conf.h>
34 #include <sys/devicestat.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/dsched.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 #include <vm/vm_pager.h>
57 #include <vm/swap_pager.h>
58 
59 #include <sys/buf2.h>
60 #include <sys/thread2.h>
61 #include <sys/spinlock2.h>
62 #include <sys/mplock2.h>
63 #include <vm/vm_page2.h>
64 
65 #include "opt_ddb.h"
66 #ifdef DDB
67 #include <ddb/ddb.h>
68 #endif
69 
70 /*
71  * Buffer queues.
72  */
73 enum bufq_type {
74 	BQUEUE_NONE,    	/* not on any queue */
75 	BQUEUE_LOCKED,  	/* locked buffers */
76 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
77 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
78 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
79 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
80 	BQUEUE_EMPTY,    	/* empty buffer headers */
81 
82 	BUFFER_QUEUES		/* number of buffer queues */
83 };
84 
85 typedef enum bufq_type bufq_type_t;
86 
87 #define BD_WAKE_SIZE	16384
88 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
89 
90 TAILQ_HEAD(bqueues, buf);
91 
92 struct bufpcpu {
93 	struct spinlock spin;
94 	struct bqueues bufqueues[BUFFER_QUEUES];
95 } __cachealign;
96 
97 struct bufpcpu bufpcpu[MAXCPU];
98 
99 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
100 
101 struct buf *buf;		/* buffer header pool */
102 
103 static void vfs_clean_pages(struct buf *bp);
104 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
105 #if 0
106 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
107 #endif
108 static void vfs_vmio_release(struct buf *bp);
109 static int flushbufqueues(struct buf *marker, bufq_type_t q);
110 static vm_page_t bio_page_alloc(struct buf *bp, vm_object_t obj,
111 				vm_pindex_t pg, int deficit);
112 
113 static void bd_signal(long totalspace);
114 static void buf_daemon(void);
115 static void buf_daemon_hw(void);
116 
117 /*
118  * bogus page -- for I/O to/from partially complete buffers
119  * this is a temporary solution to the problem, but it is not
120  * really that bad.  it would be better to split the buffer
121  * for input in the case of buffers partially already in memory,
122  * but the code is intricate enough already.
123  */
124 vm_page_t bogus_page;
125 
126 /*
127  * These are all static, but make the ones we export globals so we do
128  * not need to use compiler magic.
129  */
130 long bufspace;			/* locked by buffer_map */
131 long maxbufspace;
132 static long bufmallocspace;	/* atomic ops */
133 long maxbufmallocspace, lobufspace, hibufspace;
134 static long bufreusecnt, bufdefragcnt, buffreekvacnt;
135 static long lorunningspace;
136 static long hirunningspace;
137 static long dirtykvaspace;		/* atomic */
138 static long dirtybufspace;		/* atomic */
139 static long dirtybufcount;		/* atomic */
140 static long dirtybufspacehw;		/* atomic */
141 static long dirtybufcounthw;		/* atomic */
142 static long runningbufspace;		/* atomic */
143 static long runningbufcount;		/* atomic */
144 long lodirtybufspace;
145 long hidirtybufspace;
146 static int getnewbufcalls;
147 static int getnewbufrestarts;
148 static int recoverbufcalls;
149 static int needsbuffer;			/* atomic */
150 static int runningbufreq;		/* atomic */
151 static int bd_request;			/* atomic */
152 static int bd_request_hw;		/* atomic */
153 static u_int bd_wake_ary[BD_WAKE_SIZE];
154 static u_int bd_wake_index;
155 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
156 static int debug_commit;
157 static int debug_bufbio;
158 
159 static struct thread *bufdaemon_td;
160 static struct thread *bufdaemonhw_td;
161 static u_int lowmempgallocs;
162 static u_int lowmempgfails;
163 
164 /*
165  * Sysctls for operational control of the buffer cache.
166  */
167 SYSCTL_LONG(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
168 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
169 SYSCTL_LONG(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
170 	"High watermark used to trigger explicit flushing of dirty buffers");
171 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
172 	"Minimum amount of buffer space required for active I/O");
173 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
174 	"Maximum amount of buffer space to usable for active I/O");
175 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
176 	"Page allocations done during periods of very low free memory");
177 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0,
178 	"Page allocations which failed during periods of very low free memory");
179 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
180 	"Recycle pages to active or inactive queue transition pt 0-64");
181 /*
182  * Sysctls determining current state of the buffer cache.
183  */
184 SYSCTL_LONG(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
185 	"Total number of buffers in buffer cache");
186 SYSCTL_LONG(_vfs, OID_AUTO, dirtykvaspace, CTLFLAG_RD, &dirtykvaspace, 0,
187 	"KVA reserved by dirty buffers (all)");
188 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
189 	"Pending bytes of dirty buffers (all)");
190 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
191 	"Pending bytes of dirty buffers (heavy weight)");
192 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
193 	"Pending number of dirty buffers");
194 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
195 	"Pending number of dirty buffers (heavy weight)");
196 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
197 	"I/O bytes currently in progress due to asynchronous writes");
198 SYSCTL_LONG(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
199 	"I/O buffers currently in progress due to asynchronous writes");
200 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
201 	"Hard limit on maximum amount of memory usable for buffer space");
202 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
203 	"Soft limit on maximum amount of memory usable for buffer space");
204 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
205 	"Minimum amount of memory to reserve for system buffer space");
206 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
207 	"Amount of memory available for buffers");
208 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
209 	0, "Maximum amount of memory reserved for buffers using malloc");
210 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
211 	"Amount of memory left for buffers using malloc-scheme");
212 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
213 	"New buffer header acquisition requests");
214 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
215 	0, "New buffer header acquisition restarts");
216 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
217 	"Recover VM space in an emergency");
218 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
219 	"Buffer acquisition restarts due to fragmented buffer map");
220 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
221 	"Amount of time KVA space was deallocated in an arbitrary buffer");
222 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
223 	"Amount of time buffer re-use operations were successful");
224 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
225 SYSCTL_INT(_vfs, OID_AUTO, debug_bufbio, CTLFLAG_RW, &debug_bufbio, 0, "");
226 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
227 	"sizeof(struct buf)");
228 
229 char *buf_wmesg = BUF_WMESG;
230 
231 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
232 #define VFS_BIO_NEED_UNUSED02	0x02
233 #define VFS_BIO_NEED_UNUSED04	0x04
234 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
235 
236 /*
237  * bufspacewakeup:
238  *
239  *	Called when buffer space is potentially available for recovery.
240  *	getnewbuf() will block on this flag when it is unable to free
241  *	sufficient buffer space.  Buffer space becomes recoverable when
242  *	bp's get placed back in the queues.
243  */
244 static __inline void
245 bufspacewakeup(void)
246 {
247 	/*
248 	 * If someone is waiting for BUF space, wake them up.  Even
249 	 * though we haven't freed the kva space yet, the waiting
250 	 * process will be able to now.
251 	 */
252 	for (;;) {
253 		int flags = needsbuffer;
254 		cpu_ccfence();
255 		if ((flags & VFS_BIO_NEED_BUFSPACE) == 0)
256 			break;
257 		if (atomic_cmpset_int(&needsbuffer, flags,
258 				      flags & ~VFS_BIO_NEED_BUFSPACE)) {
259 			wakeup(&needsbuffer);
260 			break;
261 		}
262 		/* retry */
263 	}
264 }
265 
266 /*
267  * runningbufwakeup:
268  *
269  *	Accounting for I/O in progress.
270  *
271  */
272 static __inline void
273 runningbufwakeup(struct buf *bp)
274 {
275 	long totalspace;
276 	long limit;
277 	long flags;
278 
279 	if ((totalspace = bp->b_runningbufspace) != 0) {
280 		atomic_add_long(&runningbufspace, -totalspace);
281 		atomic_add_long(&runningbufcount, -1);
282 		bp->b_runningbufspace = 0;
283 
284 		/*
285 		 * see waitrunningbufspace() for limit test.
286 		 */
287 		limit = hirunningspace * 3 / 6;
288 		for (;;) {
289 			flags = runningbufreq;
290 			cpu_ccfence();
291 			if (flags == 0)
292 				break;
293 			if (atomic_cmpset_int(&runningbufreq, flags, 0)) {
294 				wakeup(&runningbufreq);
295 				break;
296 			}
297 			/* retry */
298 		}
299 		bd_signal(totalspace);
300 	}
301 }
302 
303 /*
304  * bufcountwakeup:
305  *
306  *	Called when a buffer has been added to one of the free queues to
307  *	account for the buffer and to wakeup anyone waiting for free buffers.
308  *	This typically occurs when large amounts of metadata are being handled
309  *	by the buffer cache ( else buffer space runs out first, usually ).
310  */
311 static __inline void
312 bufcountwakeup(void)
313 {
314 	long flags;
315 
316 	for (;;) {
317 		flags = needsbuffer;
318 		if (flags == 0)
319 			break;
320 		if (atomic_cmpset_int(&needsbuffer, flags,
321 				      (flags & ~VFS_BIO_NEED_ANY))) {
322 			wakeup(&needsbuffer);
323 			break;
324 		}
325 		/* retry */
326 	}
327 }
328 
329 /*
330  * waitrunningbufspace()
331  *
332  * If runningbufspace exceeds 4/6 hirunningspace we block until
333  * runningbufspace drops to 3/6 hirunningspace.  We also block if another
334  * thread blocked here in order to be fair, even if runningbufspace
335  * is now lower than the limit.
336  *
337  * The caller may be using this function to block in a tight loop, we
338  * must block while runningbufspace is greater than at least
339  * hirunningspace * 3 / 6.
340  */
341 void
342 waitrunningbufspace(void)
343 {
344 	long limit = hirunningspace * 4 / 6;
345 	long flags;
346 
347 	while (runningbufspace > limit || runningbufreq) {
348 		tsleep_interlock(&runningbufreq, 0);
349 		flags = atomic_fetchadd_int(&runningbufreq, 1);
350 		if (runningbufspace > limit || flags)
351 			tsleep(&runningbufreq, PINTERLOCKED, "wdrn1", hz);
352 	}
353 }
354 
355 /*
356  * buf_dirty_count_severe:
357  *
358  *	Return true if we have too many dirty buffers.
359  */
360 int
361 buf_dirty_count_severe(void)
362 {
363 	return (runningbufspace + dirtykvaspace >= hidirtybufspace ||
364 	        dirtybufcount >= nbuf / 2);
365 }
366 
367 /*
368  * Return true if the amount of running I/O is severe and BIOQ should
369  * start bursting.
370  */
371 int
372 buf_runningbufspace_severe(void)
373 {
374 	return (runningbufspace >= hirunningspace * 4 / 6);
375 }
376 
377 /*
378  * vfs_buf_test_cache:
379  *
380  * Called when a buffer is extended.  This function clears the B_CACHE
381  * bit if the newly extended portion of the buffer does not contain
382  * valid data.
383  *
384  * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
385  * cache buffers.  The VM pages remain dirty, as someone had mmap()'d
386  * them while a clean buffer was present.
387  */
388 static __inline__
389 void
390 vfs_buf_test_cache(struct buf *bp,
391 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
392 		  vm_page_t m)
393 {
394 	if (bp->b_flags & B_CACHE) {
395 		int base = (foff + off) & PAGE_MASK;
396 		if (vm_page_is_valid(m, base, size) == 0)
397 			bp->b_flags &= ~B_CACHE;
398 	}
399 }
400 
401 /*
402  * bd_speedup()
403  *
404  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
405  * low water mark.
406  */
407 static __inline__
408 void
409 bd_speedup(void)
410 {
411 	if (dirtykvaspace < lodirtybufspace && dirtybufcount < nbuf / 2)
412 		return;
413 
414 	if (bd_request == 0 &&
415 	    (dirtykvaspace > lodirtybufspace / 2 ||
416 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
417 		if (atomic_fetchadd_int(&bd_request, 1) == 0)
418 			wakeup(&bd_request);
419 	}
420 	if (bd_request_hw == 0 &&
421 	    (dirtykvaspace > lodirtybufspace / 2 ||
422 	     dirtybufcounthw >= nbuf / 2)) {
423 		if (atomic_fetchadd_int(&bd_request_hw, 1) == 0)
424 			wakeup(&bd_request_hw);
425 	}
426 }
427 
428 /*
429  * bd_heatup()
430  *
431  *	Get the buf_daemon heated up when the number of running and dirty
432  *	buffers exceeds the mid-point.
433  *
434  *	Return the total number of dirty bytes past the second mid point
435  *	as a measure of how much excess dirty data there is in the system.
436  */
437 long
438 bd_heatup(void)
439 {
440 	long mid1;
441 	long mid2;
442 	long totalspace;
443 
444 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
445 
446 	totalspace = runningbufspace + dirtykvaspace;
447 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
448 		bd_speedup();
449 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
450 		if (totalspace >= mid2)
451 			return(totalspace - mid2);
452 	}
453 	return(0);
454 }
455 
456 /*
457  * bd_wait()
458  *
459  *	Wait for the buffer cache to flush (totalspace) bytes worth of
460  *	buffers, then return.
461  *
462  *	Regardless this function blocks while the number of dirty buffers
463  *	exceeds hidirtybufspace.
464  */
465 void
466 bd_wait(long totalspace)
467 {
468 	u_int i;
469 	u_int j;
470 	u_int mi;
471 	int count;
472 
473 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
474 		return;
475 
476 	while (totalspace > 0) {
477 		bd_heatup();
478 
479 		/*
480 		 * Order is important.  Suppliers adjust bd_wake_index after
481 		 * updating runningbufspace/dirtykvaspace.  We want to fetch
482 		 * bd_wake_index before accessing.  Any error should thus
483 		 * be in our favor.
484 		 */
485 		i = atomic_fetchadd_int(&bd_wake_index, 0);
486 		if (totalspace > runningbufspace + dirtykvaspace)
487 			totalspace = runningbufspace + dirtykvaspace;
488 		count = totalspace / BKVASIZE;
489 		if (count >= BD_WAKE_SIZE / 2)
490 			count = BD_WAKE_SIZE / 2;
491 		i = i + count;
492 		mi = i & BD_WAKE_MASK;
493 
494 		/*
495 		 * This is not a strict interlock, so we play a bit loose
496 		 * with locking access to dirtybufspace*.  We have to re-check
497 		 * bd_wake_index to ensure that it hasn't passed us.
498 		 */
499 		tsleep_interlock(&bd_wake_ary[mi], 0);
500 		atomic_add_int(&bd_wake_ary[mi], 1);
501 		j = atomic_fetchadd_int(&bd_wake_index, 0);
502 		if ((int)(i - j) >= 0)
503 			tsleep(&bd_wake_ary[mi], PINTERLOCKED, "flstik", hz);
504 
505 		totalspace = runningbufspace + dirtykvaspace - hidirtybufspace;
506 	}
507 }
508 
509 /*
510  * bd_signal()
511  *
512  *	This function is called whenever runningbufspace or dirtykvaspace
513  *	is reduced.  Track threads waiting for run+dirty buffer I/O
514  *	complete.
515  */
516 static void
517 bd_signal(long totalspace)
518 {
519 	u_int i;
520 
521 	if (totalspace > 0) {
522 		if (totalspace > BKVASIZE * BD_WAKE_SIZE)
523 			totalspace = BKVASIZE * BD_WAKE_SIZE;
524 		while (totalspace > 0) {
525 			i = atomic_fetchadd_int(&bd_wake_index, 1);
526 			i &= BD_WAKE_MASK;
527 			if (atomic_readandclear_int(&bd_wake_ary[i]))
528 				wakeup(&bd_wake_ary[i]);
529 			totalspace -= BKVASIZE;
530 		}
531 	}
532 }
533 
534 /*
535  * BIO tracking support routines.
536  *
537  * Release a ref on a bio_track.  Wakeup requests are atomically released
538  * along with the last reference so bk_active will never wind up set to
539  * only 0x80000000.
540  */
541 static
542 void
543 bio_track_rel(struct bio_track *track)
544 {
545 	int	active;
546 	int	desired;
547 
548 	/*
549 	 * Shortcut
550 	 */
551 	active = track->bk_active;
552 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
553 		return;
554 
555 	/*
556 	 * Full-on.  Note that the wait flag is only atomically released on
557 	 * the 1->0 count transition.
558 	 *
559 	 * We check for a negative count transition using bit 30 since bit 31
560 	 * has a different meaning.
561 	 */
562 	for (;;) {
563 		desired = (active & 0x7FFFFFFF) - 1;
564 		if (desired)
565 			desired |= active & 0x80000000;
566 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
567 			if (desired & 0x40000000)
568 				panic("bio_track_rel: bad count: %p", track);
569 			if (active & 0x80000000)
570 				wakeup(track);
571 			break;
572 		}
573 		active = track->bk_active;
574 	}
575 }
576 
577 /*
578  * Wait for the tracking count to reach 0.
579  *
580  * Use atomic ops such that the wait flag is only set atomically when
581  * bk_active is non-zero.
582  */
583 int
584 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
585 {
586 	int	active;
587 	int	desired;
588 	int	error;
589 
590 	/*
591 	 * Shortcut
592 	 */
593 	if (track->bk_active == 0)
594 		return(0);
595 
596 	/*
597 	 * Full-on.  Note that the wait flag may only be atomically set if
598 	 * the active count is non-zero.
599 	 *
600 	 * NOTE: We cannot optimize active == desired since a wakeup could
601 	 *	 clear active prior to our tsleep_interlock().
602 	 */
603 	error = 0;
604 	while ((active = track->bk_active) != 0) {
605 		cpu_ccfence();
606 		desired = active | 0x80000000;
607 		tsleep_interlock(track, slp_flags);
608 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
609 			error = tsleep(track, slp_flags | PINTERLOCKED,
610 				       "trwait", slp_timo);
611 			if (error)
612 				break;
613 		}
614 	}
615 	return (error);
616 }
617 
618 /*
619  * bufinit:
620  *
621  *	Load time initialisation of the buffer cache, called from machine
622  *	dependant initialization code.
623  */
624 static
625 void
626 bufinit(void *dummy __unused)
627 {
628 	struct bufpcpu *pcpu;
629 	struct buf *bp;
630 	vm_offset_t bogus_offset;
631 	int i;
632 	int j;
633 	long n;
634 
635 	/* next, make a null set of free lists */
636 	for (i = 0; i < ncpus; ++i) {
637 		pcpu = &bufpcpu[i];
638 		spin_init(&pcpu->spin);
639 		for (j = 0; j < BUFFER_QUEUES; j++)
640 			TAILQ_INIT(&pcpu->bufqueues[j]);
641 	}
642 
643 	/* finally, initialize each buffer header and stick on empty q */
644 	i = 0;
645 	pcpu = &bufpcpu[i];
646 
647 	for (n = 0; n < nbuf; n++) {
648 		bp = &buf[n];
649 		bzero(bp, sizeof *bp);
650 		bp->b_flags = B_INVAL;	/* we're just an empty header */
651 		bp->b_cmd = BUF_CMD_DONE;
652 		bp->b_qindex = BQUEUE_EMPTY;
653 		bp->b_qcpu = i;
654 		initbufbio(bp);
655 		xio_init(&bp->b_xio);
656 		buf_dep_init(bp);
657 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
658 				  bp, b_freelist);
659 
660 		i = (i + 1) % ncpus;
661 		pcpu = &bufpcpu[i];
662 	}
663 
664 	/*
665 	 * maxbufspace is the absolute maximum amount of buffer space we are
666 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
667 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
668 	 * used by most other processes.  The differential is required to
669 	 * ensure that buf_daemon is able to run when other processes might
670 	 * be blocked waiting for buffer space.
671 	 *
672 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
673 	 * this may result in KVM fragmentation which is not handled optimally
674 	 * by the system.
675 	 */
676 	maxbufspace = nbuf * BKVASIZE;
677 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
678 	lobufspace = hibufspace - MAXBSIZE;
679 
680 	lorunningspace = 512 * 1024;
681 	/* hirunningspace -- see below */
682 
683 	/*
684 	 * Limit the amount of malloc memory since it is wired permanently
685 	 * into the kernel space.  Even though this is accounted for in
686 	 * the buffer allocation, we don't want the malloced region to grow
687 	 * uncontrolled.  The malloc scheme improves memory utilization
688 	 * significantly on average (small) directories.
689 	 */
690 	maxbufmallocspace = hibufspace / 20;
691 
692 	/*
693 	 * Reduce the chance of a deadlock occuring by limiting the number
694 	 * of delayed-write dirty buffers we allow to stack up.
695 	 *
696 	 * We don't want too much actually queued to the device at once
697 	 * (XXX this needs to be per-mount!), because the buffers will
698 	 * wind up locked for a very long period of time while the I/O
699 	 * drains.
700 	 */
701 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
702 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
703 	if (hirunningspace < 1024 * 1024)
704 		hirunningspace = 1024 * 1024;
705 
706 	dirtykvaspace = 0;
707 	dirtybufspace = 0;
708 	dirtybufspacehw = 0;
709 
710 	lodirtybufspace = hidirtybufspace / 2;
711 
712 	/*
713 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
714 	 * somewhat of a hack at the moment, we really need to limit ourselves
715 	 * based on the number of bytes of I/O in-transit that were initiated
716 	 * from buf_daemon.
717 	 */
718 
719 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
720 	vm_object_hold(&kernel_object);
721 	bogus_page = vm_page_alloc(&kernel_object,
722 				   (bogus_offset >> PAGE_SHIFT),
723 				   VM_ALLOC_NORMAL);
724 	vm_object_drop(&kernel_object);
725 	vmstats.v_wire_count++;
726 
727 }
728 
729 SYSINIT(do_bufinit, SI_BOOT2_MACHDEP, SI_ORDER_FIRST, bufinit, NULL);
730 
731 /*
732  * Initialize the embedded bio structures, typically used by
733  * deprecated code which tries to allocate its own struct bufs.
734  */
735 void
736 initbufbio(struct buf *bp)
737 {
738 	bp->b_bio1.bio_buf = bp;
739 	bp->b_bio1.bio_prev = NULL;
740 	bp->b_bio1.bio_offset = NOOFFSET;
741 	bp->b_bio1.bio_next = &bp->b_bio2;
742 	bp->b_bio1.bio_done = NULL;
743 	bp->b_bio1.bio_flags = 0;
744 
745 	bp->b_bio2.bio_buf = bp;
746 	bp->b_bio2.bio_prev = &bp->b_bio1;
747 	bp->b_bio2.bio_offset = NOOFFSET;
748 	bp->b_bio2.bio_next = NULL;
749 	bp->b_bio2.bio_done = NULL;
750 	bp->b_bio2.bio_flags = 0;
751 
752 	BUF_LOCKINIT(bp);
753 }
754 
755 /*
756  * Reinitialize the embedded bio structures as well as any additional
757  * translation cache layers.
758  */
759 void
760 reinitbufbio(struct buf *bp)
761 {
762 	struct bio *bio;
763 
764 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
765 		bio->bio_done = NULL;
766 		bio->bio_offset = NOOFFSET;
767 	}
768 }
769 
770 /*
771  * Undo the effects of an initbufbio().
772  */
773 void
774 uninitbufbio(struct buf *bp)
775 {
776 	dsched_exit_buf(bp);
777 	BUF_LOCKFREE(bp);
778 }
779 
780 /*
781  * Push another BIO layer onto an existing BIO and return it.  The new
782  * BIO layer may already exist, holding cached translation data.
783  */
784 struct bio *
785 push_bio(struct bio *bio)
786 {
787 	struct bio *nbio;
788 
789 	if ((nbio = bio->bio_next) == NULL) {
790 		int index = bio - &bio->bio_buf->b_bio_array[0];
791 		if (index >= NBUF_BIO - 1) {
792 			panic("push_bio: too many layers bp %p",
793 				bio->bio_buf);
794 		}
795 		nbio = &bio->bio_buf->b_bio_array[index + 1];
796 		bio->bio_next = nbio;
797 		nbio->bio_prev = bio;
798 		nbio->bio_buf = bio->bio_buf;
799 		nbio->bio_offset = NOOFFSET;
800 		nbio->bio_done = NULL;
801 		nbio->bio_next = NULL;
802 	}
803 	KKASSERT(nbio->bio_done == NULL);
804 	return(nbio);
805 }
806 
807 /*
808  * Pop a BIO translation layer, returning the previous layer.  The
809  * must have been previously pushed.
810  */
811 struct bio *
812 pop_bio(struct bio *bio)
813 {
814 	return(bio->bio_prev);
815 }
816 
817 void
818 clearbiocache(struct bio *bio)
819 {
820 	while (bio) {
821 		bio->bio_offset = NOOFFSET;
822 		bio = bio->bio_next;
823 	}
824 }
825 
826 /*
827  * bfreekva:
828  *
829  *	Free the KVA allocation for buffer 'bp'.
830  *
831  *	Must be called from a critical section as this is the only locking for
832  *	buffer_map.
833  *
834  *	Since this call frees up buffer space, we call bufspacewakeup().
835  */
836 static void
837 bfreekva(struct buf *bp)
838 {
839 	int count;
840 
841 	if (bp->b_kvasize) {
842 		++buffreekvacnt;
843 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
844 		vm_map_lock(&buffer_map);
845 		bufspace -= bp->b_kvasize;
846 		vm_map_delete(&buffer_map,
847 		    (vm_offset_t) bp->b_kvabase,
848 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
849 		    &count
850 		);
851 		vm_map_unlock(&buffer_map);
852 		vm_map_entry_release(count);
853 		bp->b_kvasize = 0;
854 		bp->b_kvabase = NULL;
855 		bufspacewakeup();
856 	}
857 }
858 
859 /*
860  * Remove the buffer from the appropriate free list.
861  * (caller must be locked)
862  */
863 static __inline void
864 _bremfree(struct buf *bp)
865 {
866 	struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
867 
868 	if (bp->b_qindex != BQUEUE_NONE) {
869 		KASSERT(BUF_REFCNTNB(bp) == 1,
870 			("bremfree: bp %p not locked",bp));
871 		TAILQ_REMOVE(&pcpu->bufqueues[bp->b_qindex], bp, b_freelist);
872 		bp->b_qindex = BQUEUE_NONE;
873 	} else {
874 		if (BUF_REFCNTNB(bp) <= 1)
875 			panic("bremfree: removing a buffer not on a queue");
876 	}
877 }
878 
879 /*
880  * bremfree() - must be called with a locked buffer
881  */
882 void
883 bremfree(struct buf *bp)
884 {
885 	struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
886 
887 	spin_lock(&pcpu->spin);
888 	_bremfree(bp);
889 	spin_unlock(&pcpu->spin);
890 }
891 
892 /*
893  * bremfree_locked - must be called with pcpu->spin locked
894  */
895 static void
896 bremfree_locked(struct buf *bp)
897 {
898 	_bremfree(bp);
899 }
900 
901 /*
902  * This version of bread issues any required I/O asyncnronously and
903  * makes a callback on completion.
904  *
905  * The callback must check whether BIO_DONE is set in the bio and issue
906  * the bpdone(bp, 0) if it isn't.  The callback is responsible for clearing
907  * BIO_DONE and disposing of the I/O (bqrelse()ing it).
908  */
909 void
910 breadcb(struct vnode *vp, off_t loffset, int size,
911 	void (*func)(struct bio *), void *arg)
912 {
913 	struct buf *bp;
914 
915 	bp = getblk(vp, loffset, size, 0, 0);
916 
917 	/* if not found in cache, do some I/O */
918 	if ((bp->b_flags & B_CACHE) == 0) {
919 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
920 		bp->b_cmd = BUF_CMD_READ;
921 		bp->b_bio1.bio_done = func;
922 		bp->b_bio1.bio_caller_info1.ptr = arg;
923 		vfs_busy_pages(vp, bp);
924 		BUF_KERNPROC(bp);
925 		vn_strategy(vp, &bp->b_bio1);
926 	} else if (func) {
927 		/*
928 		 * Since we are issuing the callback synchronously it cannot
929 		 * race the BIO_DONE, so no need for atomic ops here.
930 		 */
931 		/*bp->b_bio1.bio_done = func;*/
932 		bp->b_bio1.bio_caller_info1.ptr = arg;
933 		bp->b_bio1.bio_flags |= BIO_DONE;
934 		func(&bp->b_bio1);
935 	} else {
936 		bqrelse(bp);
937 	}
938 }
939 
940 /*
941  * breadnx() - Terminal function for bread() and breadn().
942  *
943  * This function will start asynchronous I/O on read-ahead blocks as well
944  * as satisfy the primary request.
945  *
946  * We must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE is
947  * set, the buffer is valid and we do not have to do anything.
948  */
949 int
950 breadnx(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
951 	int *rabsize, int cnt, struct buf **bpp)
952 {
953 	struct buf *bp, *rabp;
954 	int i;
955 	int rv = 0, readwait = 0;
956 
957 	if (*bpp)
958 		bp = *bpp;
959 	else
960 		*bpp = bp = getblk(vp, loffset, size, 0, 0);
961 
962 	/* if not found in cache, do some I/O */
963 	if ((bp->b_flags & B_CACHE) == 0) {
964 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
965 		bp->b_cmd = BUF_CMD_READ;
966 		bp->b_bio1.bio_done = biodone_sync;
967 		bp->b_bio1.bio_flags |= BIO_SYNC;
968 		vfs_busy_pages(vp, bp);
969 		vn_strategy(vp, &bp->b_bio1);
970 		++readwait;
971 	}
972 
973 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
974 		if (inmem(vp, *raoffset))
975 			continue;
976 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
977 
978 		if ((rabp->b_flags & B_CACHE) == 0) {
979 			rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
980 			rabp->b_cmd = BUF_CMD_READ;
981 			vfs_busy_pages(vp, rabp);
982 			BUF_KERNPROC(rabp);
983 			vn_strategy(vp, &rabp->b_bio1);
984 		} else {
985 			brelse(rabp);
986 		}
987 	}
988 	if (readwait)
989 		rv = biowait(&bp->b_bio1, "biord");
990 	return (rv);
991 }
992 
993 /*
994  * bwrite:
995  *
996  *	Synchronous write, waits for completion.
997  *
998  *	Write, release buffer on completion.  (Done by iodone
999  *	if async).  Do not bother writing anything if the buffer
1000  *	is invalid.
1001  *
1002  *	Note that we set B_CACHE here, indicating that buffer is
1003  *	fully valid and thus cacheable.  This is true even of NFS
1004  *	now so we set it generally.  This could be set either here
1005  *	or in biodone() since the I/O is synchronous.  We put it
1006  *	here.
1007  */
1008 int
1009 bwrite(struct buf *bp)
1010 {
1011 	int error;
1012 
1013 	if (bp->b_flags & B_INVAL) {
1014 		brelse(bp);
1015 		return (0);
1016 	}
1017 	if (BUF_REFCNTNB(bp) == 0)
1018 		panic("bwrite: buffer is not busy???");
1019 
1020 	/* Mark the buffer clean */
1021 	bundirty(bp);
1022 
1023 	bp->b_flags &= ~(B_ERROR | B_EINTR);
1024 	bp->b_flags |= B_CACHE;
1025 	bp->b_cmd = BUF_CMD_WRITE;
1026 	bp->b_bio1.bio_done = biodone_sync;
1027 	bp->b_bio1.bio_flags |= BIO_SYNC;
1028 	vfs_busy_pages(bp->b_vp, bp);
1029 
1030 	/*
1031 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1032 	 * valid for vnode-backed buffers.
1033 	 */
1034 	bsetrunningbufspace(bp, bp->b_bufsize);
1035 	vn_strategy(bp->b_vp, &bp->b_bio1);
1036 	error = biowait(&bp->b_bio1, "biows");
1037 	brelse(bp);
1038 
1039 	return (error);
1040 }
1041 
1042 /*
1043  * bawrite:
1044  *
1045  *	Asynchronous write.  Start output on a buffer, but do not wait for
1046  *	it to complete.  The buffer is released when the output completes.
1047  *
1048  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1049  *	B_INVAL buffers.  Not us.
1050  */
1051 void
1052 bawrite(struct buf *bp)
1053 {
1054 	if (bp->b_flags & B_INVAL) {
1055 		brelse(bp);
1056 		return;
1057 	}
1058 	if (BUF_REFCNTNB(bp) == 0)
1059 		panic("bwrite: buffer is not busy???");
1060 
1061 	/* Mark the buffer clean */
1062 	bundirty(bp);
1063 
1064 	bp->b_flags &= ~(B_ERROR | B_EINTR);
1065 	bp->b_flags |= B_CACHE;
1066 	bp->b_cmd = BUF_CMD_WRITE;
1067 	KKASSERT(bp->b_bio1.bio_done == NULL);
1068 	vfs_busy_pages(bp->b_vp, bp);
1069 
1070 	/*
1071 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1072 	 * valid for vnode-backed buffers.
1073 	 */
1074 	bsetrunningbufspace(bp, bp->b_bufsize);
1075 	BUF_KERNPROC(bp);
1076 	vn_strategy(bp->b_vp, &bp->b_bio1);
1077 }
1078 
1079 /*
1080  * bowrite:
1081  *
1082  *	Ordered write.  Start output on a buffer, and flag it so that the
1083  *	device will write it in the order it was queued.  The buffer is
1084  *	released when the output completes.  bwrite() ( or the VOP routine
1085  *	anyway ) is responsible for handling B_INVAL buffers.
1086  */
1087 int
1088 bowrite(struct buf *bp)
1089 {
1090 	bp->b_flags |= B_ORDERED;
1091 	bawrite(bp);
1092 	return (0);
1093 }
1094 
1095 /*
1096  * bdwrite:
1097  *
1098  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1099  *	anything if the buffer is marked invalid.
1100  *
1101  *	Note that since the buffer must be completely valid, we can safely
1102  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1103  *	biodone() in order to prevent getblk from writing the buffer
1104  *	out synchronously.
1105  */
1106 void
1107 bdwrite(struct buf *bp)
1108 {
1109 	if (BUF_REFCNTNB(bp) == 0)
1110 		panic("bdwrite: buffer is not busy");
1111 
1112 	if (bp->b_flags & B_INVAL) {
1113 		brelse(bp);
1114 		return;
1115 	}
1116 	bdirty(bp);
1117 
1118 	if (dsched_is_clear_buf_priv(bp))
1119 		dsched_new_buf(bp);
1120 
1121 	/*
1122 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1123 	 * true even of NFS now.
1124 	 */
1125 	bp->b_flags |= B_CACHE;
1126 
1127 	/*
1128 	 * This bmap keeps the system from needing to do the bmap later,
1129 	 * perhaps when the system is attempting to do a sync.  Since it
1130 	 * is likely that the indirect block -- or whatever other datastructure
1131 	 * that the filesystem needs is still in memory now, it is a good
1132 	 * thing to do this.  Note also, that if the pageout daemon is
1133 	 * requesting a sync -- there might not be enough memory to do
1134 	 * the bmap then...  So, this is important to do.
1135 	 */
1136 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1137 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1138 			 NULL, NULL, BUF_CMD_WRITE);
1139 	}
1140 
1141 	/*
1142 	 * Because the underlying pages may still be mapped and
1143 	 * writable trying to set the dirty buffer (b_dirtyoff/end)
1144 	 * range here will be inaccurate.
1145 	 *
1146 	 * However, we must still clean the pages to satisfy the
1147 	 * vnode_pager and pageout daemon, so theythink the pages
1148 	 * have been "cleaned".  What has really occured is that
1149 	 * they've been earmarked for later writing by the buffer
1150 	 * cache.
1151 	 *
1152 	 * So we get the b_dirtyoff/end update but will not actually
1153 	 * depend on it (NFS that is) until the pages are busied for
1154 	 * writing later on.
1155 	 */
1156 	vfs_clean_pages(bp);
1157 	bqrelse(bp);
1158 
1159 	/*
1160 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1161 	 * due to the softdep code.
1162 	 */
1163 }
1164 
1165 /*
1166  * Fake write - return pages to VM system as dirty, leave the buffer clean.
1167  * This is used by tmpfs.
1168  *
1169  * It is important for any VFS using this routine to NOT use it for
1170  * IO_SYNC or IO_ASYNC operations which occur when the system really
1171  * wants to flush VM pages to backing store.
1172  */
1173 void
1174 buwrite(struct buf *bp)
1175 {
1176 	vm_page_t m;
1177 	int i;
1178 
1179 	/*
1180 	 * Only works for VMIO buffers.  If the buffer is already
1181 	 * marked for delayed-write we can't avoid the bdwrite().
1182 	 */
1183 	if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1184 		bdwrite(bp);
1185 		return;
1186 	}
1187 
1188 	/*
1189 	 * Mark as needing a commit.
1190 	 */
1191 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1192 		m = bp->b_xio.xio_pages[i];
1193 		vm_page_need_commit(m);
1194 	}
1195 	bqrelse(bp);
1196 }
1197 
1198 /*
1199  * bdirty:
1200  *
1201  *	Turn buffer into delayed write request by marking it B_DELWRI.
1202  *	B_RELBUF and B_NOCACHE must be cleared.
1203  *
1204  *	We reassign the buffer to itself to properly update it in the
1205  *	dirty/clean lists.
1206  *
1207  *	Must be called from a critical section.
1208  *	The buffer must be on BQUEUE_NONE.
1209  */
1210 void
1211 bdirty(struct buf *bp)
1212 {
1213 	KASSERT(bp->b_qindex == BQUEUE_NONE,
1214 		("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1215 	if (bp->b_flags & B_NOCACHE) {
1216 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1217 		bp->b_flags &= ~B_NOCACHE;
1218 	}
1219 	if (bp->b_flags & B_INVAL) {
1220 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1221 	}
1222 	bp->b_flags &= ~B_RELBUF;
1223 
1224 	if ((bp->b_flags & B_DELWRI) == 0) {
1225 		lwkt_gettoken(&bp->b_vp->v_token);
1226 		bp->b_flags |= B_DELWRI;
1227 		reassignbuf(bp);
1228 		lwkt_reltoken(&bp->b_vp->v_token);
1229 
1230 		atomic_add_long(&dirtybufcount, 1);
1231 		atomic_add_long(&dirtykvaspace, bp->b_kvasize);
1232 		atomic_add_long(&dirtybufspace, bp->b_bufsize);
1233 		if (bp->b_flags & B_HEAVY) {
1234 			atomic_add_long(&dirtybufcounthw, 1);
1235 			atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1236 		}
1237 		bd_heatup();
1238 	}
1239 }
1240 
1241 /*
1242  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1243  * needs to be flushed with a different buf_daemon thread to avoid
1244  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1245  */
1246 void
1247 bheavy(struct buf *bp)
1248 {
1249 	if ((bp->b_flags & B_HEAVY) == 0) {
1250 		bp->b_flags |= B_HEAVY;
1251 		if (bp->b_flags & B_DELWRI) {
1252 			atomic_add_long(&dirtybufcounthw, 1);
1253 			atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1254 		}
1255 	}
1256 }
1257 
1258 /*
1259  * bundirty:
1260  *
1261  *	Clear B_DELWRI for buffer.
1262  *
1263  *	Must be called from a critical section.
1264  *
1265  *	The buffer is typically on BQUEUE_NONE but there is one case in
1266  *	brelse() that calls this function after placing the buffer on
1267  *	a different queue.
1268  */
1269 void
1270 bundirty(struct buf *bp)
1271 {
1272 	if (bp->b_flags & B_DELWRI) {
1273 		lwkt_gettoken(&bp->b_vp->v_token);
1274 		bp->b_flags &= ~B_DELWRI;
1275 		reassignbuf(bp);
1276 		lwkt_reltoken(&bp->b_vp->v_token);
1277 
1278 		atomic_add_long(&dirtybufcount, -1);
1279 		atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1280 		atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1281 		if (bp->b_flags & B_HEAVY) {
1282 			atomic_add_long(&dirtybufcounthw, -1);
1283 			atomic_add_long(&dirtybufspacehw, -bp->b_bufsize);
1284 		}
1285 		bd_signal(bp->b_bufsize);
1286 	}
1287 	/*
1288 	 * Since it is now being written, we can clear its deferred write flag.
1289 	 */
1290 	bp->b_flags &= ~B_DEFERRED;
1291 }
1292 
1293 /*
1294  * Set the b_runningbufspace field, used to track how much I/O is
1295  * in progress at any given moment.
1296  */
1297 void
1298 bsetrunningbufspace(struct buf *bp, int bytes)
1299 {
1300 	bp->b_runningbufspace = bytes;
1301 	if (bytes) {
1302 		atomic_add_long(&runningbufspace, bytes);
1303 		atomic_add_long(&runningbufcount, 1);
1304 	}
1305 }
1306 
1307 /*
1308  * brelse:
1309  *
1310  *	Release a busy buffer and, if requested, free its resources.  The
1311  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1312  *	to be accessed later as a cache entity or reused for other purposes.
1313  */
1314 void
1315 brelse(struct buf *bp)
1316 {
1317 	struct bufpcpu *pcpu;
1318 #ifdef INVARIANTS
1319 	int saved_flags = bp->b_flags;
1320 #endif
1321 
1322 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1323 		("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1324 
1325 	/*
1326 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1327 	 * its backing store.  Clear B_DELWRI.
1328 	 *
1329 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1330 	 * to destroy the buffer and backing store and (2) when the caller
1331 	 * wants to destroy the buffer and backing store after a write
1332 	 * completes.
1333 	 */
1334 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1335 		bundirty(bp);
1336 	}
1337 
1338 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1339 		/*
1340 		 * A re-dirtied buffer is only subject to destruction
1341 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1342 		 */
1343 		/* leave buffer intact */
1344 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1345 		   (bp->b_bufsize <= 0)) {
1346 		/*
1347 		 * Either a failed read or we were asked to free or not
1348 		 * cache the buffer.  This path is reached with B_DELWRI
1349 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1350 		 * backing store destruction.
1351 		 *
1352 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1353 		 * buffer cannot be immediately freed.
1354 		 */
1355 		bp->b_flags |= B_INVAL;
1356 		if (LIST_FIRST(&bp->b_dep) != NULL)
1357 			buf_deallocate(bp);
1358 		if (bp->b_flags & B_DELWRI) {
1359 			atomic_add_long(&dirtybufcount, -1);
1360 			atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1361 			atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1362 			if (bp->b_flags & B_HEAVY) {
1363 				atomic_add_long(&dirtybufcounthw, -1);
1364 				atomic_add_long(&dirtybufspacehw,
1365 						-bp->b_bufsize);
1366 			}
1367 			bd_signal(bp->b_bufsize);
1368 		}
1369 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1370 	}
1371 
1372 	/*
1373 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1374 	 * or if b_refs is non-zero.
1375 	 *
1376 	 * If vfs_vmio_release() is called with either bit set, the
1377 	 * underlying pages may wind up getting freed causing a previous
1378 	 * write (bdwrite()) to get 'lost' because pages associated with
1379 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1380 	 * B_LOCKED buffer may be mapped by the filesystem.
1381 	 *
1382 	 * If we want to release the buffer ourselves (rather then the
1383 	 * originator asking us to release it), give the originator a
1384 	 * chance to countermand the release by setting B_LOCKED.
1385 	 *
1386 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1387 	 * if B_DELWRI is set.
1388 	 *
1389 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1390 	 * on pages to return pages to the VM page queues.
1391 	 */
1392 	if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) {
1393 		bp->b_flags &= ~B_RELBUF;
1394 	} else if (vm_page_count_min(0)) {
1395 		if (LIST_FIRST(&bp->b_dep) != NULL)
1396 			buf_deallocate(bp);		/* can set B_LOCKED */
1397 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1398 			bp->b_flags &= ~B_RELBUF;
1399 		else
1400 			bp->b_flags |= B_RELBUF;
1401 	}
1402 
1403 	/*
1404 	 * Make sure b_cmd is clear.  It may have already been cleared by
1405 	 * biodone().
1406 	 *
1407 	 * At this point destroying the buffer is governed by the B_INVAL
1408 	 * or B_RELBUF flags.
1409 	 */
1410 	bp->b_cmd = BUF_CMD_DONE;
1411 	dsched_exit_buf(bp);
1412 
1413 	/*
1414 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1415 	 * after an I/O may have replaces some of the pages with bogus pages
1416 	 * in order to not destroy dirty pages in a fill-in read.
1417 	 *
1418 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1419 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1420 	 * B_INVAL may still be set, however.
1421 	 *
1422 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1423 	 * but not the backing store.   B_NOCACHE will destroy the backing
1424 	 * store.
1425 	 *
1426 	 * Note that dirty NFS buffers contain byte-granular write ranges
1427 	 * and should not be destroyed w/ B_INVAL even if the backing store
1428 	 * is left intact.
1429 	 */
1430 	if (bp->b_flags & B_VMIO) {
1431 		/*
1432 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1433 		 */
1434 		int i, j, resid;
1435 		vm_page_t m;
1436 		off_t foff;
1437 		vm_pindex_t poff;
1438 		vm_object_t obj;
1439 		struct vnode *vp;
1440 
1441 		vp = bp->b_vp;
1442 
1443 		/*
1444 		 * Get the base offset and length of the buffer.  Note that
1445 		 * in the VMIO case if the buffer block size is not
1446 		 * page-aligned then b_data pointer may not be page-aligned.
1447 		 * But our b_xio.xio_pages array *IS* page aligned.
1448 		 *
1449 		 * block sizes less then DEV_BSIZE (usually 512) are not
1450 		 * supported due to the page granularity bits (m->valid,
1451 		 * m->dirty, etc...).
1452 		 *
1453 		 * See man buf(9) for more information
1454 		 */
1455 
1456 		resid = bp->b_bufsize;
1457 		foff = bp->b_loffset;
1458 
1459 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1460 			m = bp->b_xio.xio_pages[i];
1461 			vm_page_flag_clear(m, PG_ZERO);
1462 			/*
1463 			 * If we hit a bogus page, fixup *all* of them
1464 			 * now.  Note that we left these pages wired
1465 			 * when we removed them so they had better exist,
1466 			 * and they cannot be ripped out from under us so
1467 			 * no critical section protection is necessary.
1468 			 */
1469 			if (m == bogus_page) {
1470 				obj = vp->v_object;
1471 				poff = OFF_TO_IDX(bp->b_loffset);
1472 
1473 				vm_object_hold(obj);
1474 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1475 					vm_page_t mtmp;
1476 
1477 					mtmp = bp->b_xio.xio_pages[j];
1478 					if (mtmp == bogus_page) {
1479 						mtmp = vm_page_lookup(obj, poff + j);
1480 						if (!mtmp) {
1481 							panic("brelse: page missing");
1482 						}
1483 						bp->b_xio.xio_pages[j] = mtmp;
1484 					}
1485 				}
1486 				bp->b_flags &= ~B_HASBOGUS;
1487 				vm_object_drop(obj);
1488 
1489 				if ((bp->b_flags & B_INVAL) == 0) {
1490 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1491 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1492 				}
1493 				m = bp->b_xio.xio_pages[i];
1494 			}
1495 
1496 			/*
1497 			 * Invalidate the backing store if B_NOCACHE is set
1498 			 * (e.g. used with vinvalbuf()).  If this is NFS
1499 			 * we impose a requirement that the block size be
1500 			 * a multiple of PAGE_SIZE and create a temporary
1501 			 * hack to basically invalidate the whole page.  The
1502 			 * problem is that NFS uses really odd buffer sizes
1503 			 * especially when tracking piecemeal writes and
1504 			 * it also vinvalbuf()'s a lot, which would result
1505 			 * in only partial page validation and invalidation
1506 			 * here.  If the file page is mmap()'d, however,
1507 			 * all the valid bits get set so after we invalidate
1508 			 * here we would end up with weird m->valid values
1509 			 * like 0xfc.  nfs_getpages() can't handle this so
1510 			 * we clear all the valid bits for the NFS case
1511 			 * instead of just some of them.
1512 			 *
1513 			 * The real bug is the VM system having to set m->valid
1514 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1515 			 * itself is an artifact of the whole 512-byte
1516 			 * granular mess that exists to support odd block
1517 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1518 			 * A complete rewrite is required.
1519 			 *
1520 			 * XXX
1521 			 */
1522 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1523 				int poffset = foff & PAGE_MASK;
1524 				int presid;
1525 
1526 				presid = PAGE_SIZE - poffset;
1527 				if (bp->b_vp->v_tag == VT_NFS &&
1528 				    bp->b_vp->v_type == VREG) {
1529 					; /* entire page */
1530 				} else if (presid > resid) {
1531 					presid = resid;
1532 				}
1533 				KASSERT(presid >= 0, ("brelse: extra page"));
1534 				vm_page_set_invalid(m, poffset, presid);
1535 
1536 				/*
1537 				 * Also make sure any swap cache is removed
1538 				 * as it is now stale (HAMMER in particular
1539 				 * uses B_NOCACHE to deal with buffer
1540 				 * aliasing).
1541 				 */
1542 				swap_pager_unswapped(m);
1543 			}
1544 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1545 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1546 		}
1547 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1548 			vfs_vmio_release(bp);
1549 	} else {
1550 		/*
1551 		 * Rundown for non-VMIO buffers.
1552 		 */
1553 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1554 			if (bp->b_bufsize)
1555 				allocbuf(bp, 0);
1556 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1557 			if (bp->b_vp)
1558 				brelvp(bp);
1559 		}
1560 	}
1561 
1562 	if (bp->b_qindex != BQUEUE_NONE)
1563 		panic("brelse: free buffer onto another queue???");
1564 	if (BUF_REFCNTNB(bp) > 1) {
1565 		/* Temporary panic to verify exclusive locking */
1566 		/* This panic goes away when we allow shared refs */
1567 		panic("brelse: multiple refs");
1568 		/* NOT REACHED */
1569 		return;
1570 	}
1571 
1572 	/*
1573 	 * Figure out the correct queue to place the cleaned up buffer on.
1574 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1575 	 * disassociated from their vnode.
1576 	 *
1577 	 * Return the buffer to its original pcpu area
1578 	 */
1579 	pcpu = &bufpcpu[bp->b_qcpu];
1580 	spin_lock(&pcpu->spin);
1581 
1582 	if (bp->b_flags & B_LOCKED) {
1583 		/*
1584 		 * Buffers that are locked are placed in the locked queue
1585 		 * immediately, regardless of their state.
1586 		 */
1587 		bp->b_qindex = BQUEUE_LOCKED;
1588 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1589 				  bp, b_freelist);
1590 	} else if (bp->b_bufsize == 0) {
1591 		/*
1592 		 * Buffers with no memory.  Due to conditionals near the top
1593 		 * of brelse() such buffers should probably already be
1594 		 * marked B_INVAL and disassociated from their vnode.
1595 		 */
1596 		bp->b_flags |= B_INVAL;
1597 		KASSERT(bp->b_vp == NULL,
1598 			("bp1 %p flags %08x/%08x vnode %p "
1599 			 "unexpectededly still associated!",
1600 			bp, saved_flags, bp->b_flags, bp->b_vp));
1601 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1602 		if (bp->b_kvasize) {
1603 			bp->b_qindex = BQUEUE_EMPTYKVA;
1604 		} else {
1605 			bp->b_qindex = BQUEUE_EMPTY;
1606 		}
1607 		TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1608 				  bp, b_freelist);
1609 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1610 		/*
1611 		 * Buffers with junk contents.   Again these buffers had better
1612 		 * already be disassociated from their vnode.
1613 		 */
1614 		KASSERT(bp->b_vp == NULL,
1615 			("bp2 %p flags %08x/%08x vnode %p unexpectededly "
1616 			 "still associated!",
1617 			bp, saved_flags, bp->b_flags, bp->b_vp));
1618 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1619 		bp->b_flags |= B_INVAL;
1620 		bp->b_qindex = BQUEUE_CLEAN;
1621 		TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1622 				  bp, b_freelist);
1623 	} else {
1624 		/*
1625 		 * Remaining buffers.  These buffers are still associated with
1626 		 * their vnode.
1627 		 */
1628 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1629 		case B_DELWRI:
1630 			bp->b_qindex = BQUEUE_DIRTY;
1631 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1632 					  bp, b_freelist);
1633 			break;
1634 		case B_DELWRI | B_HEAVY:
1635 			bp->b_qindex = BQUEUE_DIRTY_HW;
1636 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1637 					  bp, b_freelist);
1638 			break;
1639 		default:
1640 			/*
1641 			 * NOTE: Buffers are always placed at the end of the
1642 			 * queue.  If B_AGE is not set the buffer will cycle
1643 			 * through the queue twice.
1644 			 */
1645 			bp->b_qindex = BQUEUE_CLEAN;
1646 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1647 					  bp, b_freelist);
1648 			break;
1649 		}
1650 	}
1651 	spin_unlock(&pcpu->spin);
1652 
1653 	/*
1654 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1655 	 * on the correct queue but we have not yet unlocked it.
1656 	 */
1657 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1658 		bundirty(bp);
1659 
1660 	/*
1661 	 * The bp is on an appropriate queue unless locked.  If it is not
1662 	 * locked or dirty we can wakeup threads waiting for buffer space.
1663 	 *
1664 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1665 	 * if B_INVAL is set ).
1666 	 */
1667 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1668 		bufcountwakeup();
1669 
1670 	/*
1671 	 * Something we can maybe free or reuse
1672 	 */
1673 	if (bp->b_bufsize || bp->b_kvasize)
1674 		bufspacewakeup();
1675 
1676 	/*
1677 	 * Clean up temporary flags and unlock the buffer.
1678 	 */
1679 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1680 	BUF_UNLOCK(bp);
1681 }
1682 
1683 /*
1684  * bqrelse:
1685  *
1686  *	Release a buffer back to the appropriate queue but do not try to free
1687  *	it.  The buffer is expected to be used again soon.
1688  *
1689  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1690  *	biodone() to requeue an async I/O on completion.  It is also used when
1691  *	known good buffers need to be requeued but we think we may need the data
1692  *	again soon.
1693  *
1694  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1695  */
1696 void
1697 bqrelse(struct buf *bp)
1698 {
1699 	struct bufpcpu *pcpu;
1700 
1701 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1702 		("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1703 
1704 	if (bp->b_qindex != BQUEUE_NONE)
1705 		panic("bqrelse: free buffer onto another queue???");
1706 	if (BUF_REFCNTNB(bp) > 1) {
1707 		/* do not release to free list */
1708 		panic("bqrelse: multiple refs");
1709 		return;
1710 	}
1711 
1712 	buf_act_advance(bp);
1713 
1714 	pcpu = &bufpcpu[bp->b_qcpu];
1715 	spin_lock(&pcpu->spin);
1716 
1717 	if (bp->b_flags & B_LOCKED) {
1718 		/*
1719 		 * Locked buffers are released to the locked queue.  However,
1720 		 * if the buffer is dirty it will first go into the dirty
1721 		 * queue and later on after the I/O completes successfully it
1722 		 * will be released to the locked queue.
1723 		 */
1724 		bp->b_qindex = BQUEUE_LOCKED;
1725 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1726 				  bp, b_freelist);
1727 	} else if (bp->b_flags & B_DELWRI) {
1728 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1729 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1730 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1731 				  bp, b_freelist);
1732 	} else if (vm_page_count_min(0)) {
1733 		/*
1734 		 * We are too low on memory, we have to try to free the
1735 		 * buffer (most importantly: the wired pages making up its
1736 		 * backing store) *now*.
1737 		 */
1738 		spin_unlock(&pcpu->spin);
1739 		brelse(bp);
1740 		return;
1741 	} else {
1742 		bp->b_qindex = BQUEUE_CLEAN;
1743 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1744 				  bp, b_freelist);
1745 	}
1746 	spin_unlock(&pcpu->spin);
1747 
1748 	/*
1749 	 * We have now placed the buffer on the proper queue, but have yet
1750 	 * to unlock it.
1751 	 */
1752 	if ((bp->b_flags & B_LOCKED) == 0 &&
1753 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1754 		bufcountwakeup();
1755 	}
1756 
1757 	/*
1758 	 * Something we can maybe free or reuse.
1759 	 */
1760 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1761 		bufspacewakeup();
1762 
1763 	/*
1764 	 * Final cleanup and unlock.  Clear bits that are only used while a
1765 	 * buffer is actively locked.
1766 	 */
1767 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1768 	dsched_exit_buf(bp);
1769 	BUF_UNLOCK(bp);
1770 }
1771 
1772 /*
1773  * Hold a buffer, preventing it from being reused.  This will prevent
1774  * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1775  * operations.  If a B_INVAL operation occurs the buffer will remain held
1776  * but the underlying pages may get ripped out.
1777  *
1778  * These functions are typically used in VOP_READ/VOP_WRITE functions
1779  * to hold a buffer during a copyin or copyout, preventing deadlocks
1780  * or recursive lock panics when read()/write() is used over mmap()'d
1781  * space.
1782  *
1783  * NOTE: bqhold() requires that the buffer be locked at the time of the
1784  *	 hold.  bqdrop() has no requirements other than the buffer having
1785  *	 previously been held.
1786  */
1787 void
1788 bqhold(struct buf *bp)
1789 {
1790 	atomic_add_int(&bp->b_refs, 1);
1791 }
1792 
1793 void
1794 bqdrop(struct buf *bp)
1795 {
1796 	KKASSERT(bp->b_refs > 0);
1797 	atomic_add_int(&bp->b_refs, -1);
1798 }
1799 
1800 /*
1801  * Return backing pages held by the buffer 'bp' back to the VM system.
1802  * This routine is called when the bp is invalidated, released, or
1803  * reused.
1804  *
1805  * The KVA mapping (b_data) for the underlying pages is removed by
1806  * this function.
1807  *
1808  * WARNING! This routine is integral to the low memory critical path
1809  *          when a buffer is B_RELBUF'd.  If the system has a severe page
1810  *          deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE
1811  *          queues so they can be reused in the current pageout daemon
1812  *          pass.
1813  */
1814 static void
1815 vfs_vmio_release(struct buf *bp)
1816 {
1817 	int i;
1818 	vm_page_t m;
1819 
1820 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1821 		m = bp->b_xio.xio_pages[i];
1822 		bp->b_xio.xio_pages[i] = NULL;
1823 
1824 		/*
1825 		 * We need to own the page in order to safely unwire it.
1826 		 */
1827 		vm_page_busy_wait(m, FALSE, "vmiopg");
1828 
1829 		/*
1830 		 * The VFS is telling us this is not a meta-data buffer
1831 		 * even if it is backed by a block device.
1832 		 */
1833 		if (bp->b_flags & B_NOTMETA)
1834 			vm_page_flag_set(m, PG_NOTMETA);
1835 
1836 		/*
1837 		 * This is a very important bit of code.  We try to track
1838 		 * VM page use whether the pages are wired into the buffer
1839 		 * cache or not.  While wired into the buffer cache the
1840 		 * bp tracks the act_count.
1841 		 *
1842 		 * We can choose to place unwired pages on the inactive
1843 		 * queue (0) or active queue (1).  If we place too many
1844 		 * on the active queue the queue will cycle the act_count
1845 		 * on pages we'd like to keep, just from single-use pages
1846 		 * (such as when doing a tar-up or file scan).
1847 		 */
1848 		if (bp->b_act_count < vm_cycle_point)
1849 			vm_page_unwire(m, 0);
1850 		else
1851 			vm_page_unwire(m, 1);
1852 
1853 		/*
1854 		 * If the wire_count has dropped to 0 we may need to take
1855 		 * further action before unbusying the page.
1856 		 *
1857 		 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us.
1858 		 */
1859 		if (m->wire_count == 0) {
1860 			vm_page_flag_clear(m, PG_ZERO);
1861 
1862 			if (bp->b_flags & B_DIRECT) {
1863 				/*
1864 				 * Attempt to free the page if B_DIRECT is
1865 				 * set, the caller does not desire the page
1866 				 * to be cached.
1867 				 */
1868 				vm_page_wakeup(m);
1869 				vm_page_try_to_free(m);
1870 			} else if ((bp->b_flags & B_NOTMETA) ||
1871 				   vm_page_count_min(0)) {
1872 				/*
1873 				 * Attempt to move the page to PQ_CACHE
1874 				 * if B_NOTMETA is set.  This flag is set
1875 				 * by HAMMER to remove one of the two pages
1876 				 * present when double buffering is enabled.
1877 				 *
1878 				 * Attempt to move the page to PQ_CACHE
1879 				 * If we have a severe page deficit.  This
1880 				 * will cause buffer cache operations related
1881 				 * to pageouts to recycle the related pages
1882 				 * in order to avoid a low memory deadlock.
1883 				 */
1884 				m->act_count = bp->b_act_count;
1885 				vm_page_wakeup(m);
1886 				vm_page_try_to_cache(m);
1887 			} else {
1888 				/*
1889 				 * Nominal case, leave the page on the
1890 				 * queue the original unwiring placed it on
1891 				 * (active or inactive).
1892 				 */
1893 				m->act_count = bp->b_act_count;
1894 				vm_page_wakeup(m);
1895 			}
1896 		} else {
1897 			vm_page_wakeup(m);
1898 		}
1899 	}
1900 
1901 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data),
1902 		     bp->b_xio.xio_npages);
1903 	if (bp->b_bufsize) {
1904 		bufspacewakeup();
1905 		bp->b_bufsize = 0;
1906 	}
1907 	bp->b_xio.xio_npages = 0;
1908 	bp->b_flags &= ~B_VMIO;
1909 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1910 	if (bp->b_vp)
1911 		brelvp(bp);
1912 }
1913 
1914 /*
1915  * Find and initialize a new buffer header, freeing up existing buffers
1916  * in the bufqueues as necessary.  The new buffer is returned locked.
1917  *
1918  * Important:  B_INVAL is not set.  If the caller wishes to throw the
1919  * buffer away, the caller must set B_INVAL prior to calling brelse().
1920  *
1921  * We block if:
1922  *	We have insufficient buffer headers
1923  *	We have insufficient buffer space
1924  *	buffer_map is too fragmented ( space reservation fails )
1925  *	If we have to flush dirty buffers ( but we try to avoid this )
1926  *
1927  * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1928  * Instead we ask the buf daemon to do it for us.  We attempt to
1929  * avoid piecemeal wakeups of the pageout daemon.
1930  */
1931 struct buf *
1932 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1933 {
1934 	struct bufpcpu *pcpu;
1935 	struct buf *bp;
1936 	struct buf *nbp;
1937 	int defrag = 0;
1938 	int nqindex;
1939 	int nqcpu;
1940 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1941 	int maxloops = 200000;
1942 	int restart_reason = 0;
1943 	struct buf *restart_bp = NULL;
1944 	static int flushingbufs;
1945 
1946 	/*
1947 	 * We can't afford to block since we might be holding a vnode lock,
1948 	 * which may prevent system daemons from running.  We deal with
1949 	 * low-memory situations by proactively returning memory and running
1950 	 * async I/O rather then sync I/O.
1951 	 */
1952 
1953 	++getnewbufcalls;
1954 	--getnewbufrestarts;
1955 	nqcpu = mycpu->gd_cpuid;
1956 restart:
1957 	++getnewbufrestarts;
1958 
1959 	if (debug_bufbio && --maxloops == 0)
1960 		panic("getnewbuf, excessive loops on cpu %d restart %d (%p)",
1961 			mycpu->gd_cpuid, restart_reason, restart_bp);
1962 
1963 	/*
1964 	 * Setup for scan.  If we do not have enough free buffers,
1965 	 * we setup a degenerate case that immediately fails.  Note
1966 	 * that if we are specially marked process, we are allowed to
1967 	 * dip into our reserves.
1968 	 *
1969 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1970 	 *
1971 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1972 	 * However, there are a number of cases (defragging, reusing, ...)
1973 	 * where we cannot backup.
1974 	 */
1975 	pcpu = &bufpcpu[nqcpu];
1976 	nqindex = BQUEUE_EMPTYKVA;
1977 	spin_lock(&pcpu->spin);
1978 
1979 	nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_EMPTYKVA]);
1980 
1981 	if (nbp == NULL) {
1982 		/*
1983 		 * If no EMPTYKVA buffers and we are either
1984 		 * defragging or reusing, locate a CLEAN buffer
1985 		 * to free or reuse.  If bufspace useage is low
1986 		 * skip this step so we can allocate a new buffer.
1987 		 */
1988 		if (defrag || bufspace >= lobufspace) {
1989 			nqindex = BQUEUE_CLEAN;
1990 			nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN]);
1991 		}
1992 
1993 		/*
1994 		 * If we could not find or were not allowed to reuse a
1995 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1996 		 * buffer.  We can only use an EMPTY buffer if allocating
1997 		 * its KVA would not otherwise run us out of buffer space.
1998 		 */
1999 		if (nbp == NULL && defrag == 0 &&
2000 		    bufspace + maxsize < hibufspace) {
2001 			nqindex = BQUEUE_EMPTY;
2002 			nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_EMPTY]);
2003 		}
2004 	}
2005 
2006 	/*
2007 	 * Run scan, possibly freeing data and/or kva mappings on the fly
2008 	 * depending.
2009 	 *
2010 	 * WARNING! spin is held!
2011 	 */
2012 	while ((bp = nbp) != NULL) {
2013 		int qindex = nqindex;
2014 
2015 		nbp = TAILQ_NEXT(bp, b_freelist);
2016 
2017 		/*
2018 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2019 		 * cycles through the queue twice before being selected.
2020 		 */
2021 		if (qindex == BQUEUE_CLEAN &&
2022 		    (bp->b_flags & B_AGE) == 0 && nbp) {
2023 			bp->b_flags |= B_AGE;
2024 			TAILQ_REMOVE(&pcpu->bufqueues[qindex],
2025 				     bp, b_freelist);
2026 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[qindex],
2027 					  bp, b_freelist);
2028 			continue;
2029 		}
2030 
2031 		/*
2032 		 * Calculate next bp ( we can only use it if we do not block
2033 		 * or do other fancy things ).
2034 		 */
2035 		if (nbp == NULL) {
2036 			switch(qindex) {
2037 			case BQUEUE_EMPTY:
2038 				nqindex = BQUEUE_EMPTYKVA;
2039 				if ((nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_EMPTYKVA])))
2040 					break;
2041 				/* fall through */
2042 			case BQUEUE_EMPTYKVA:
2043 				nqindex = BQUEUE_CLEAN;
2044 				if ((nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN])))
2045 					break;
2046 				/* fall through */
2047 			case BQUEUE_CLEAN:
2048 				/*
2049 				 * nbp is NULL.
2050 				 */
2051 				break;
2052 			}
2053 		}
2054 
2055 		/*
2056 		 * Sanity Checks
2057 		 */
2058 		KASSERT(bp->b_qindex == qindex,
2059 			("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2060 
2061 		/*
2062 		 * Note: we no longer distinguish between VMIO and non-VMIO
2063 		 * buffers.
2064 		 */
2065 		KASSERT((bp->b_flags & B_DELWRI) == 0,
2066 			("delwri buffer %p found in queue %d", bp, qindex));
2067 
2068 		/*
2069 		 * Do not try to reuse a buffer with a non-zero b_refs.
2070 		 * This is an unsynchronized test.  A synchronized test
2071 		 * is also performed after we lock the buffer.
2072 		 */
2073 		if (bp->b_refs)
2074 			continue;
2075 
2076 		/*
2077 		 * If we are defragging then we need a buffer with
2078 		 * b_kvasize != 0.  XXX this situation should no longer
2079 		 * occur, if defrag is non-zero the buffer's b_kvasize
2080 		 * should also be non-zero at this point.  XXX
2081 		 */
2082 		if (defrag && bp->b_kvasize == 0) {
2083 			kprintf("Warning: defrag empty buffer %p\n", bp);
2084 			continue;
2085 		}
2086 
2087 		/*
2088 		 * Start freeing the bp.  This is somewhat involved.  nbp
2089 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
2090 		 * on the clean list must be disassociated from their
2091 		 * current vnode.  Buffers on the empty[kva] lists have
2092 		 * already been disassociated.
2093 		 *
2094 		 * b_refs is checked after locking along with queue changes.
2095 		 * We must check here to deal with zero->nonzero transitions
2096 		 * made by the owner of the buffer lock, which is used by
2097 		 * VFS's to hold the buffer while issuing an unlocked
2098 		 * uiomove()s.  We cannot invalidate the buffer's pages
2099 		 * for this case.  Once we successfully lock a buffer the
2100 		 * only 0->1 transitions of b_refs will occur via findblk().
2101 		 *
2102 		 * We must also check for queue changes after successful
2103 		 * locking as the current lock holder may dispose of the
2104 		 * buffer and change its queue.
2105 		 */
2106 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2107 			spin_unlock(&pcpu->spin);
2108 			tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100);
2109 			restart_reason = 1;
2110 			restart_bp = bp;
2111 			goto restart;
2112 		}
2113 		if (bp->b_qindex != qindex || bp->b_refs) {
2114 			spin_unlock(&pcpu->spin);
2115 			BUF_UNLOCK(bp);
2116 			restart_reason = 2;
2117 			restart_bp = bp;
2118 			goto restart;
2119 		}
2120 		bremfree_locked(bp);
2121 		spin_unlock(&pcpu->spin);
2122 
2123 		/*
2124 		 * Dependancies must be handled before we disassociate the
2125 		 * vnode.
2126 		 *
2127 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2128 		 * be immediately disassociated.  HAMMER then becomes
2129 		 * responsible for releasing the buffer.
2130 		 *
2131 		 * NOTE: spin is UNLOCKED now.
2132 		 */
2133 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2134 			buf_deallocate(bp);
2135 			if (bp->b_flags & B_LOCKED) {
2136 				bqrelse(bp);
2137 				restart_reason = 3;
2138 				restart_bp = bp;
2139 				goto restart;
2140 			}
2141 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2142 		}
2143 
2144 		if (qindex == BQUEUE_CLEAN) {
2145 			if (bp->b_flags & B_VMIO)
2146 				vfs_vmio_release(bp);
2147 			if (bp->b_vp)
2148 				brelvp(bp);
2149 		}
2150 
2151 		/*
2152 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2153 		 * the scan from this point on.
2154 		 *
2155 		 * Get the rest of the buffer freed up.  b_kva* is still
2156 		 * valid after this operation.
2157 		 */
2158 		KASSERT(bp->b_vp == NULL,
2159 			("bp3 %p flags %08x vnode %p qindex %d "
2160 			 "unexpectededly still associated!",
2161 			 bp, bp->b_flags, bp->b_vp, qindex));
2162 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2163 
2164 		/*
2165 		 * critical section protection is not required when
2166 		 * scrapping a buffer's contents because it is already
2167 		 * wired.
2168 		 */
2169 		if (bp->b_bufsize)
2170 			allocbuf(bp, 0);
2171 
2172 		bp->b_flags = B_BNOCLIP;
2173 		bp->b_cmd = BUF_CMD_DONE;
2174 		bp->b_vp = NULL;
2175 		bp->b_error = 0;
2176 		bp->b_resid = 0;
2177 		bp->b_bcount = 0;
2178 		bp->b_xio.xio_npages = 0;
2179 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2180 		bp->b_act_count = ACT_INIT;
2181 		reinitbufbio(bp);
2182 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2183 		buf_dep_init(bp);
2184 		if (blkflags & GETBLK_BHEAVY)
2185 			bp->b_flags |= B_HEAVY;
2186 
2187 		/*
2188 		 * If we are defragging then free the buffer.
2189 		 */
2190 		if (defrag) {
2191 			bp->b_flags |= B_INVAL;
2192 			bfreekva(bp);
2193 			brelse(bp);
2194 			defrag = 0;
2195 			restart_reason = 4;
2196 			restart_bp = bp;
2197 			goto restart;
2198 		}
2199 
2200 		/*
2201 		 * If we are overcomitted then recover the buffer and its
2202 		 * KVM space.  This occurs in rare situations when multiple
2203 		 * processes are blocked in getnewbuf() or allocbuf().
2204 		 *
2205 		 * On 64-bit systems BKVASIZE == MAXBSIZE and overcommit
2206 		 * should not be possible.
2207 		 */
2208 		if (bufspace >= hibufspace)
2209 			flushingbufs = 1;
2210 		if (BKVASIZE != MAXBSIZE) {
2211 			if (flushingbufs && bp->b_kvasize != 0) {
2212 				bp->b_flags |= B_INVAL;
2213 				bfreekva(bp);
2214 				brelse(bp);
2215 				restart_reason = 5;
2216 				restart_bp = bp;
2217 				goto restart;
2218 			}
2219 		}
2220 		if (bufspace < lobufspace)
2221 			flushingbufs = 0;
2222 
2223 		/*
2224 		 * b_refs can transition to a non-zero value while we hold
2225 		 * the buffer locked due to a findblk().  Our brelvp() above
2226 		 * interlocked any future possible transitions due to
2227 		 * findblk()s.
2228 		 *
2229 		 * If we find b_refs to be non-zero we can destroy the
2230 		 * buffer's contents but we cannot yet reuse the buffer.
2231 		 */
2232 		if (bp->b_refs) {
2233 			bp->b_flags |= B_INVAL;
2234 			if (BKVASIZE != MAXBSIZE)
2235 				bfreekva(bp);
2236 			brelse(bp);
2237 			restart_reason = 6;
2238 			restart_bp = bp;
2239 			goto restart;
2240 		}
2241 		break;
2242 		/* NOT REACHED, spin not held */
2243 	}
2244 
2245 	/*
2246 	 * If we exhausted our list, iterate other cpus.  If that fails,
2247 	 * sleep as appropriate.  We may have to wakeup various daemons
2248 	 * and write out some dirty buffers.
2249 	 *
2250 	 * Generally we are sleeping due to insufficient buffer space.
2251 	 *
2252 	 * NOTE: spin is held if bp is NULL, else it is not held.
2253 	 */
2254 	if (bp == NULL) {
2255 		int flags;
2256 		char *waitmsg;
2257 
2258 		spin_unlock(&pcpu->spin);
2259 
2260 		nqcpu = (nqcpu + 1) % ncpus;
2261 		if (nqcpu != mycpu->gd_cpuid) {
2262 			restart_reason = 7;
2263 			restart_bp = bp;
2264 			goto restart;
2265 		}
2266 
2267 		if (defrag) {
2268 			flags = VFS_BIO_NEED_BUFSPACE;
2269 			waitmsg = "nbufkv";
2270 		} else if (bufspace >= hibufspace) {
2271 			waitmsg = "nbufbs";
2272 			flags = VFS_BIO_NEED_BUFSPACE;
2273 		} else {
2274 			waitmsg = "newbuf";
2275 			flags = VFS_BIO_NEED_ANY;
2276 		}
2277 
2278 		bd_speedup();	/* heeeelp */
2279 		atomic_set_int(&needsbuffer, flags);
2280 		while (needsbuffer & flags) {
2281 			int value;
2282 
2283 			tsleep_interlock(&needsbuffer, 0);
2284 			value = atomic_fetchadd_int(&needsbuffer, 0);
2285 			if (value & flags) {
2286 				if (tsleep(&needsbuffer, PINTERLOCKED|slpflags,
2287 					   waitmsg, slptimeo)) {
2288 					return (NULL);
2289 				}
2290 			}
2291 		}
2292 	} else {
2293 		/*
2294 		 * We finally have a valid bp.  We aren't quite out of the
2295 		 * woods, we still have to reserve kva space.  In order
2296 		 * to keep fragmentation sane we only allocate kva in
2297 		 * BKVASIZE chunks.
2298 		 *
2299 		 * (spin is not held)
2300 		 */
2301 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2302 
2303 		if (maxsize != bp->b_kvasize) {
2304 			vm_offset_t addr = 0;
2305 			int count;
2306 
2307 			bfreekva(bp);
2308 
2309 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2310 			vm_map_lock(&buffer_map);
2311 
2312 			if (vm_map_findspace(&buffer_map,
2313 				    vm_map_min(&buffer_map), maxsize,
2314 				    maxsize, 0, &addr)) {
2315 				/*
2316 				 * Uh oh.  Buffer map is too fragmented.  We
2317 				 * must defragment the map.
2318 				 */
2319 				vm_map_unlock(&buffer_map);
2320 				vm_map_entry_release(count);
2321 				++bufdefragcnt;
2322 				defrag = 1;
2323 				bp->b_flags |= B_INVAL;
2324 				brelse(bp);
2325 				restart_reason = 8;
2326 				restart_bp = bp;
2327 				goto restart;
2328 			}
2329 			if (addr) {
2330 				vm_map_insert(&buffer_map, &count,
2331 					NULL, 0,
2332 					addr, addr + maxsize,
2333 					VM_MAPTYPE_NORMAL,
2334 					VM_PROT_ALL, VM_PROT_ALL,
2335 					MAP_NOFAULT);
2336 
2337 				bp->b_kvabase = (caddr_t) addr;
2338 				bp->b_kvasize = maxsize;
2339 				bufspace += bp->b_kvasize;
2340 				++bufreusecnt;
2341 			}
2342 			vm_map_unlock(&buffer_map);
2343 			vm_map_entry_release(count);
2344 		}
2345 		bp->b_data = bp->b_kvabase;
2346 	}
2347 	return(bp);
2348 }
2349 
2350 /*
2351  * buf_daemon:
2352  *
2353  *	Buffer flushing daemon.  Buffers are normally flushed by the
2354  *	update daemon but if it cannot keep up this process starts to
2355  *	take the load in an attempt to prevent getnewbuf() from blocking.
2356  *
2357  *	Once a flush is initiated it does not stop until the number
2358  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2359  *	waiting at the mid-point.
2360  */
2361 static struct kproc_desc buf_kp = {
2362 	"bufdaemon",
2363 	buf_daemon,
2364 	&bufdaemon_td
2365 };
2366 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2367 	kproc_start, &buf_kp)
2368 
2369 static struct kproc_desc bufhw_kp = {
2370 	"bufdaemon_hw",
2371 	buf_daemon_hw,
2372 	&bufdaemonhw_td
2373 };
2374 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2375 	kproc_start, &bufhw_kp)
2376 
2377 static void
2378 buf_daemon1(struct thread *td, int queue, int (*buf_limit_fn)(long),
2379 	    int *bd_req)
2380 {
2381 	long limit;
2382 	struct buf *marker;
2383 
2384 	marker = kmalloc(sizeof(*marker), M_BIOBUF, M_WAITOK | M_ZERO);
2385 	marker->b_flags |= B_MARKER;
2386 	marker->b_qindex = BQUEUE_NONE;
2387 	marker->b_qcpu = 0;
2388 
2389 	/*
2390 	 * This process needs to be suspended prior to shutdown sync.
2391 	 */
2392 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2393 			      td, SHUTDOWN_PRI_LAST);
2394 	curthread->td_flags |= TDF_SYSTHREAD;
2395 
2396 	/*
2397 	 * This process is allowed to take the buffer cache to the limit
2398 	 */
2399 	for (;;) {
2400 		kproc_suspend_loop();
2401 
2402 		/*
2403 		 * Do the flush as long as the number of dirty buffers
2404 		 * (including those running) exceeds lodirtybufspace.
2405 		 *
2406 		 * When flushing limit running I/O to hirunningspace
2407 		 * Do the flush.  Limit the amount of in-transit I/O we
2408 		 * allow to build up, otherwise we would completely saturate
2409 		 * the I/O system.  Wakeup any waiting processes before we
2410 		 * normally would so they can run in parallel with our drain.
2411 		 *
2412 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2413 		 * but because we split the operation into two threads we
2414 		 * have to cut it in half for each thread.
2415 		 */
2416 		waitrunningbufspace();
2417 		limit = lodirtybufspace / 2;
2418 		while (buf_limit_fn(limit)) {
2419 			if (flushbufqueues(marker, queue) == 0)
2420 				break;
2421 			if (runningbufspace < hirunningspace)
2422 				continue;
2423 			waitrunningbufspace();
2424 		}
2425 
2426 		/*
2427 		 * We reached our low water mark, reset the
2428 		 * request and sleep until we are needed again.
2429 		 * The sleep is just so the suspend code works.
2430 		 */
2431 		tsleep_interlock(bd_req, 0);
2432 		if (atomic_swap_int(bd_req, 0) == 0)
2433 			tsleep(bd_req, PINTERLOCKED, "psleep", hz);
2434 	}
2435 	/* NOT REACHED */
2436 	/*kfree(marker, M_BIOBUF);*/
2437 }
2438 
2439 static int
2440 buf_daemon_limit(long limit)
2441 {
2442 	return (runningbufspace + dirtykvaspace > limit ||
2443 		dirtybufcount - dirtybufcounthw >= nbuf / 2);
2444 }
2445 
2446 static int
2447 buf_daemon_hw_limit(long limit)
2448 {
2449 	return (runningbufspace + dirtykvaspace > limit ||
2450 		dirtybufcounthw >= nbuf / 2);
2451 }
2452 
2453 static void
2454 buf_daemon(void)
2455 {
2456 	buf_daemon1(bufdaemon_td, BQUEUE_DIRTY, buf_daemon_limit,
2457 		    &bd_request);
2458 }
2459 
2460 static void
2461 buf_daemon_hw(void)
2462 {
2463 	buf_daemon1(bufdaemonhw_td, BQUEUE_DIRTY_HW, buf_daemon_hw_limit,
2464 		    &bd_request_hw);
2465 }
2466 
2467 /*
2468  * flushbufqueues:
2469  *
2470  *	Try to flush a buffer in the dirty queue.  We must be careful to
2471  *	free up B_INVAL buffers instead of write them, which NFS is
2472  *	particularly sensitive to.
2473  *
2474  *	B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate
2475  *	that we really want to try to get the buffer out and reuse it
2476  *	due to the write load on the machine.
2477  *
2478  *	We must lock the buffer in order to check its validity before we
2479  *	can mess with its contents.  spin isn't enough.
2480  */
2481 static int
2482 flushbufqueues(struct buf *marker, bufq_type_t q)
2483 {
2484 	struct bufpcpu *pcpu;
2485 	struct buf *bp;
2486 	int r = 0;
2487 	int lcpu = marker->b_qcpu;
2488 
2489 	KKASSERT(marker->b_qindex == BQUEUE_NONE);
2490 	KKASSERT(marker->b_flags & B_MARKER);
2491 
2492 again:
2493 	/*
2494 	 * Spinlock needed to perform operations on the queue and may be
2495 	 * held through a non-blocking BUF_LOCK(), but cannot be held when
2496 	 * BUF_UNLOCK()ing or through any other major operation.
2497 	 */
2498 	pcpu = &bufpcpu[marker->b_qcpu];
2499 	spin_lock(&pcpu->spin);
2500 	marker->b_qindex = q;
2501 	TAILQ_INSERT_HEAD(&pcpu->bufqueues[q], marker, b_freelist);
2502 	bp = marker;
2503 
2504 	while ((bp = TAILQ_NEXT(bp, b_freelist)) != NULL) {
2505 		/*
2506 		 * NOTE: spinlock is always held at the top of the loop
2507 		 */
2508 		if (bp->b_flags & B_MARKER)
2509 			continue;
2510 		if ((bp->b_flags & B_DELWRI) == 0) {
2511 			kprintf("Unexpected clean buffer %p\n", bp);
2512 			continue;
2513 		}
2514 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
2515 			continue;
2516 		KKASSERT(bp->b_qcpu == marker->b_qcpu && bp->b_qindex == q);
2517 
2518 		/*
2519 		 * Once the buffer is locked we will have no choice but to
2520 		 * unlock the spinlock around a later BUF_UNLOCK and re-set
2521 		 * bp = marker when looping.  Move the marker now to make
2522 		 * things easier.
2523 		 */
2524 		TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2525 		TAILQ_INSERT_AFTER(&pcpu->bufqueues[q], bp, marker, b_freelist);
2526 
2527 		/*
2528 		 * Must recheck B_DELWRI after successfully locking
2529 		 * the buffer.
2530 		 */
2531 		if ((bp->b_flags & B_DELWRI) == 0) {
2532 			spin_unlock(&pcpu->spin);
2533 			BUF_UNLOCK(bp);
2534 			spin_lock(&pcpu->spin);
2535 			bp = marker;
2536 			continue;
2537 		}
2538 
2539 		/*
2540 		 * Remove the buffer from its queue.  We still own the
2541 		 * spinlock here.
2542 		 */
2543 		_bremfree(bp);
2544 
2545 		/*
2546 		 * Disposing of an invalid buffer counts as a flush op
2547 		 */
2548 		if (bp->b_flags & B_INVAL) {
2549 			spin_unlock(&pcpu->spin);
2550 			brelse(bp);
2551 			spin_lock(&pcpu->spin);
2552 			++r;
2553 			break;
2554 		}
2555 
2556 		/*
2557 		 * Release the spinlock for the more complex ops we
2558 		 * are now going to do.
2559 		 */
2560 		spin_unlock(&pcpu->spin);
2561 		lwkt_yield();
2562 
2563 		/*
2564 		 * This is a bit messy
2565 		 */
2566 		if (LIST_FIRST(&bp->b_dep) != NULL &&
2567 		    (bp->b_flags & B_DEFERRED) == 0 &&
2568 		    buf_countdeps(bp, 0)) {
2569 			spin_lock(&pcpu->spin);
2570 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[q], bp, b_freelist);
2571 			bp->b_qindex = q;
2572 			bp->b_flags |= B_DEFERRED;
2573 			spin_unlock(&pcpu->spin);
2574 			BUF_UNLOCK(bp);
2575 			spin_lock(&pcpu->spin);
2576 			bp = marker;
2577 			continue;
2578 		}
2579 
2580 		/*
2581 		 * spinlock not held here.
2582 		 *
2583 		 * If the buffer has a dependancy, buf_checkwrite() must
2584 		 * also return 0 for us to be able to initate the write.
2585 		 *
2586 		 * If the buffer is flagged B_ERROR it may be requeued
2587 		 * over and over again, we try to avoid a live lock.
2588 		 */
2589 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2590 			brelse(bp);
2591 		} else if (bp->b_flags & B_ERROR) {
2592 			tsleep(bp, 0, "bioer", 1);
2593 			bp->b_flags &= ~B_AGE;
2594 			cluster_awrite(bp);
2595 		} else {
2596 			bp->b_flags |= B_AGE;
2597 			cluster_awrite(bp);
2598 		}
2599 		spin_lock(&pcpu->spin);
2600 		++r;
2601 		break;
2602 	}
2603 
2604 	TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2605 	marker->b_qindex = BQUEUE_NONE;
2606 	spin_unlock(&pcpu->spin);
2607 
2608 	/*
2609 	 * Advance the marker to be fair.
2610 	 */
2611 	marker->b_qcpu = (marker->b_qcpu + 1) % ncpus;
2612 	if (bp == NULL) {
2613 		if (marker->b_qcpu != lcpu)
2614 			goto again;
2615 	}
2616 
2617 	return (r);
2618 }
2619 
2620 /*
2621  * inmem:
2622  *
2623  *	Returns true if no I/O is needed to access the associated VM object.
2624  *	This is like findblk except it also hunts around in the VM system for
2625  *	the data.
2626  *
2627  *	Note that we ignore vm_page_free() races from interrupts against our
2628  *	lookup, since if the caller is not protected our return value will not
2629  *	be any more valid then otherwise once we exit the critical section.
2630  */
2631 int
2632 inmem(struct vnode *vp, off_t loffset)
2633 {
2634 	vm_object_t obj;
2635 	vm_offset_t toff, tinc, size;
2636 	vm_page_t m;
2637 	int res = 1;
2638 
2639 	if (findblk(vp, loffset, FINDBLK_TEST))
2640 		return 1;
2641 	if (vp->v_mount == NULL)
2642 		return 0;
2643 	if ((obj = vp->v_object) == NULL)
2644 		return 0;
2645 
2646 	size = PAGE_SIZE;
2647 	if (size > vp->v_mount->mnt_stat.f_iosize)
2648 		size = vp->v_mount->mnt_stat.f_iosize;
2649 
2650 	vm_object_hold(obj);
2651 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2652 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2653 		if (m == NULL) {
2654 			res = 0;
2655 			break;
2656 		}
2657 		tinc = size;
2658 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2659 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2660 		if (vm_page_is_valid(m,
2661 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) {
2662 			res = 0;
2663 			break;
2664 		}
2665 	}
2666 	vm_object_drop(obj);
2667 	return (res);
2668 }
2669 
2670 /*
2671  * findblk:
2672  *
2673  *	Locate and return the specified buffer.  Unless flagged otherwise,
2674  *	a locked buffer will be returned if it exists or NULL if it does not.
2675  *
2676  *	findblk()'d buffers are still on the bufqueues and if you intend
2677  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2678  *	and possibly do other stuff to it.
2679  *
2680  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2681  *			  for locking the buffer and ensuring that it remains
2682  *			  the desired buffer after locking.
2683  *
2684  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2685  *			  to acquire the lock we return NULL, even if the
2686  *			  buffer exists.
2687  *
2688  *	FINDBLK_REF	- Returns the buffer ref'd, which prevents normal
2689  *			  reuse by getnewbuf() but does not prevent
2690  *			  disassociation (B_INVAL).  Used to avoid deadlocks
2691  *			  against random (vp,loffset)s due to reassignment.
2692  *
2693  *	(0)		- Lock the buffer blocking.
2694  */
2695 struct buf *
2696 findblk(struct vnode *vp, off_t loffset, int flags)
2697 {
2698 	struct buf *bp;
2699 	int lkflags;
2700 
2701 	lkflags = LK_EXCLUSIVE;
2702 	if (flags & FINDBLK_NBLOCK)
2703 		lkflags |= LK_NOWAIT;
2704 
2705 	for (;;) {
2706 		/*
2707 		 * Lookup.  Ref the buf while holding v_token to prevent
2708 		 * reuse (but does not prevent diassociation).
2709 		 */
2710 		lwkt_gettoken_shared(&vp->v_token);
2711 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2712 		if (bp == NULL) {
2713 			lwkt_reltoken(&vp->v_token);
2714 			return(NULL);
2715 		}
2716 		bqhold(bp);
2717 		lwkt_reltoken(&vp->v_token);
2718 
2719 		/*
2720 		 * If testing only break and return bp, do not lock.
2721 		 */
2722 		if (flags & FINDBLK_TEST)
2723 			break;
2724 
2725 		/*
2726 		 * Lock the buffer, return an error if the lock fails.
2727 		 * (only FINDBLK_NBLOCK can cause the lock to fail).
2728 		 */
2729 		if (BUF_LOCK(bp, lkflags)) {
2730 			atomic_subtract_int(&bp->b_refs, 1);
2731 			/* bp = NULL; not needed */
2732 			return(NULL);
2733 		}
2734 
2735 		/*
2736 		 * Revalidate the locked buf before allowing it to be
2737 		 * returned.
2738 		 */
2739 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2740 			break;
2741 		atomic_subtract_int(&bp->b_refs, 1);
2742 		BUF_UNLOCK(bp);
2743 	}
2744 
2745 	/*
2746 	 * Success
2747 	 */
2748 	if ((flags & FINDBLK_REF) == 0)
2749 		atomic_subtract_int(&bp->b_refs, 1);
2750 	return(bp);
2751 }
2752 
2753 /*
2754  * getcacheblk:
2755  *
2756  *	Similar to getblk() except only returns the buffer if it is
2757  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2758  *	is returned.  NULL is also returned if GETBLK_NOWAIT is set
2759  *	and the getblk() would block.
2760  *
2761  *	If B_RAM is set the buffer might be just fine, but we return
2762  *	NULL anyway because we want the code to fall through to the
2763  *	cluster read.  Otherwise read-ahead breaks.
2764  *
2765  *	If blksize is 0 the buffer cache buffer must already be fully
2766  *	cached.
2767  *
2768  *	If blksize is non-zero getblk() will be used, allowing a buffer
2769  *	to be reinstantiated from its VM backing store.  The buffer must
2770  *	still be fully cached after reinstantiation to be returned.
2771  */
2772 struct buf *
2773 getcacheblk(struct vnode *vp, off_t loffset, int blksize, int blkflags)
2774 {
2775 	struct buf *bp;
2776 	int fndflags = (blkflags & GETBLK_NOWAIT) ? FINDBLK_NBLOCK : 0;
2777 
2778 	if (blksize) {
2779 		bp = getblk(vp, loffset, blksize, blkflags, 0);
2780 		if (bp) {
2781 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2782 			    B_CACHE) {
2783 				bp->b_flags &= ~B_AGE;
2784 			} else {
2785 				brelse(bp);
2786 				bp = NULL;
2787 			}
2788 		}
2789 	} else {
2790 		bp = findblk(vp, loffset, fndflags);
2791 		if (bp) {
2792 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2793 			    B_CACHE) {
2794 				bp->b_flags &= ~B_AGE;
2795 				bremfree(bp);
2796 			} else {
2797 				BUF_UNLOCK(bp);
2798 				bp = NULL;
2799 			}
2800 		}
2801 	}
2802 	return (bp);
2803 }
2804 
2805 /*
2806  * getblk:
2807  *
2808  *	Get a block given a specified block and offset into a file/device.
2809  * 	B_INVAL may or may not be set on return.  The caller should clear
2810  *	B_INVAL prior to initiating a READ.
2811  *
2812  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2813  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2814  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2815  *	without doing any of those things the system will likely believe
2816  *	the buffer to be valid (especially if it is not B_VMIO), and the
2817  *	next getblk() will return the buffer with B_CACHE set.
2818  *
2819  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2820  *	an existing buffer.
2821  *
2822  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2823  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2824  *	and then cleared based on the backing VM.  If the previous buffer is
2825  *	non-0-sized but invalid, B_CACHE will be cleared.
2826  *
2827  *	If getblk() must create a new buffer, the new buffer is returned with
2828  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2829  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2830  *	backing VM.
2831  *
2832  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2833  *	B_CACHE bit is clear.
2834  *
2835  *	What this means, basically, is that the caller should use B_CACHE to
2836  *	determine whether the buffer is fully valid or not and should clear
2837  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2838  *	the buffer by loading its data area with something, the caller needs
2839  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2840  *	the caller should set B_CACHE ( as an optimization ), else the caller
2841  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2842  *	a write attempt or if it was a successfull read.  If the caller
2843  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2844  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2845  *
2846  *	getblk flags:
2847  *
2848  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2849  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2850  */
2851 struct buf *
2852 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2853 {
2854 	struct buf *bp;
2855 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2856 	int error;
2857 	int lkflags;
2858 
2859 	if (size > MAXBSIZE)
2860 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2861 	if (vp->v_object == NULL)
2862 		panic("getblk: vnode %p has no object!", vp);
2863 
2864 loop:
2865 	if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2866 		/*
2867 		 * The buffer was found in the cache, but we need to lock it.
2868 		 * We must acquire a ref on the bp to prevent reuse, but
2869 		 * this will not prevent disassociation (brelvp()) so we
2870 		 * must recheck (vp,loffset) after acquiring the lock.
2871 		 *
2872 		 * Without the ref the buffer could potentially be reused
2873 		 * before we acquire the lock and create a deadlock
2874 		 * situation between the thread trying to reuse the buffer
2875 		 * and us due to the fact that we would wind up blocking
2876 		 * on a random (vp,loffset).
2877 		 */
2878 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2879 			if (blkflags & GETBLK_NOWAIT) {
2880 				bqdrop(bp);
2881 				return(NULL);
2882 			}
2883 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2884 			if (blkflags & GETBLK_PCATCH)
2885 				lkflags |= LK_PCATCH;
2886 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2887 			if (error) {
2888 				bqdrop(bp);
2889 				if (error == ENOLCK)
2890 					goto loop;
2891 				return (NULL);
2892 			}
2893 			/* buffer may have changed on us */
2894 		}
2895 		bqdrop(bp);
2896 
2897 		/*
2898 		 * Once the buffer has been locked, make sure we didn't race
2899 		 * a buffer recyclement.  Buffers that are no longer hashed
2900 		 * will have b_vp == NULL, so this takes care of that check
2901 		 * as well.
2902 		 */
2903 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2904 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2905 				"was recycled\n",
2906 				bp, vp, (long long)loffset);
2907 			BUF_UNLOCK(bp);
2908 			goto loop;
2909 		}
2910 
2911 		/*
2912 		 * If SZMATCH any pre-existing buffer must be of the requested
2913 		 * size or NULL is returned.  The caller absolutely does not
2914 		 * want getblk() to bwrite() the buffer on a size mismatch.
2915 		 */
2916 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2917 			BUF_UNLOCK(bp);
2918 			return(NULL);
2919 		}
2920 
2921 		/*
2922 		 * All vnode-based buffers must be backed by a VM object.
2923 		 */
2924 		KKASSERT(bp->b_flags & B_VMIO);
2925 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2926 		bp->b_flags &= ~B_AGE;
2927 
2928 		/*
2929 		 * Make sure that B_INVAL buffers do not have a cached
2930 		 * block number translation.
2931 		 */
2932 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2933 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2934 				" did not have cleared bio_offset cache\n",
2935 				bp, vp, (long long)loffset);
2936 			clearbiocache(&bp->b_bio2);
2937 		}
2938 
2939 		/*
2940 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2941 		 * invalid.
2942 		 */
2943 		if (bp->b_flags & B_INVAL)
2944 			bp->b_flags &= ~B_CACHE;
2945 		bremfree(bp);
2946 
2947 		/*
2948 		 * Any size inconsistancy with a dirty buffer or a buffer
2949 		 * with a softupdates dependancy must be resolved.  Resizing
2950 		 * the buffer in such circumstances can lead to problems.
2951 		 *
2952 		 * Dirty or dependant buffers are written synchronously.
2953 		 * Other types of buffers are simply released and
2954 		 * reconstituted as they may be backed by valid, dirty VM
2955 		 * pages (but not marked B_DELWRI).
2956 		 *
2957 		 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2958 		 * and may be left over from a prior truncation (and thus
2959 		 * no longer represent the actual EOF point), so we
2960 		 * definitely do not want to B_NOCACHE the backing store.
2961 		 */
2962 		if (size != bp->b_bcount) {
2963 			if (bp->b_flags & B_DELWRI) {
2964 				bp->b_flags |= B_RELBUF;
2965 				bwrite(bp);
2966 			} else if (LIST_FIRST(&bp->b_dep)) {
2967 				bp->b_flags |= B_RELBUF;
2968 				bwrite(bp);
2969 			} else {
2970 				bp->b_flags |= B_RELBUF;
2971 				brelse(bp);
2972 			}
2973 			goto loop;
2974 		}
2975 		KKASSERT(size <= bp->b_kvasize);
2976 		KASSERT(bp->b_loffset != NOOFFSET,
2977 			("getblk: no buffer offset"));
2978 
2979 		/*
2980 		 * A buffer with B_DELWRI set and B_CACHE clear must
2981 		 * be committed before we can return the buffer in
2982 		 * order to prevent the caller from issuing a read
2983 		 * ( due to B_CACHE not being set ) and overwriting
2984 		 * it.
2985 		 *
2986 		 * Most callers, including NFS and FFS, need this to
2987 		 * operate properly either because they assume they
2988 		 * can issue a read if B_CACHE is not set, or because
2989 		 * ( for example ) an uncached B_DELWRI might loop due
2990 		 * to softupdates re-dirtying the buffer.  In the latter
2991 		 * case, B_CACHE is set after the first write completes,
2992 		 * preventing further loops.
2993 		 *
2994 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2995 		 * above while extending the buffer, we cannot allow the
2996 		 * buffer to remain with B_CACHE set after the write
2997 		 * completes or it will represent a corrupt state.  To
2998 		 * deal with this we set B_NOCACHE to scrap the buffer
2999 		 * after the write.
3000 		 *
3001 		 * XXX Should this be B_RELBUF instead of B_NOCACHE?
3002 		 *     I'm not even sure this state is still possible
3003 		 *     now that getblk() writes out any dirty buffers
3004 		 *     on size changes.
3005 		 *
3006 		 * We might be able to do something fancy, like setting
3007 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3008 		 * so the below call doesn't set B_CACHE, but that gets real
3009 		 * confusing.  This is much easier.
3010 		 */
3011 
3012 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3013 			kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
3014 				"and CACHE clear, b_flags %08x\n",
3015 				bp, (uintmax_t)bp->b_loffset, bp->b_flags);
3016 			bp->b_flags |= B_NOCACHE;
3017 			bwrite(bp);
3018 			goto loop;
3019 		}
3020 	} else {
3021 		/*
3022 		 * Buffer is not in-core, create new buffer.  The buffer
3023 		 * returned by getnewbuf() is locked.  Note that the returned
3024 		 * buffer is also considered valid (not marked B_INVAL).
3025 		 *
3026 		 * Calculating the offset for the I/O requires figuring out
3027 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
3028 		 * the mount's f_iosize otherwise.  If the vnode does not
3029 		 * have an associated mount we assume that the passed size is
3030 		 * the block size.
3031 		 *
3032 		 * Note that vn_isdisk() cannot be used here since it may
3033 		 * return a failure for numerous reasons.   Note that the
3034 		 * buffer size may be larger then the block size (the caller
3035 		 * will use block numbers with the proper multiple).  Beware
3036 		 * of using any v_* fields which are part of unions.  In
3037 		 * particular, in DragonFly the mount point overloading
3038 		 * mechanism uses the namecache only and the underlying
3039 		 * directory vnode is not a special case.
3040 		 */
3041 		int bsize, maxsize;
3042 
3043 		if (vp->v_type == VBLK || vp->v_type == VCHR)
3044 			bsize = DEV_BSIZE;
3045 		else if (vp->v_mount)
3046 			bsize = vp->v_mount->mnt_stat.f_iosize;
3047 		else
3048 			bsize = size;
3049 
3050 		maxsize = size + (loffset & PAGE_MASK);
3051 		maxsize = imax(maxsize, bsize);
3052 
3053 		bp = getnewbuf(blkflags, slptimeo, size, maxsize);
3054 		if (bp == NULL) {
3055 			if (slpflags || slptimeo)
3056 				return NULL;
3057 			goto loop;
3058 		}
3059 
3060 		/*
3061 		 * Atomically insert the buffer into the hash, so that it can
3062 		 * be found by findblk().
3063 		 *
3064 		 * If bgetvp() returns non-zero a collision occured, and the
3065 		 * bp will not be associated with the vnode.
3066 		 *
3067 		 * Make sure the translation layer has been cleared.
3068 		 */
3069 		bp->b_loffset = loffset;
3070 		bp->b_bio2.bio_offset = NOOFFSET;
3071 		/* bp->b_bio2.bio_next = NULL; */
3072 
3073 		if (bgetvp(vp, bp, size)) {
3074 			bp->b_flags |= B_INVAL;
3075 			brelse(bp);
3076 			goto loop;
3077 		}
3078 
3079 		/*
3080 		 * All vnode-based buffers must be backed by a VM object.
3081 		 */
3082 		KKASSERT(vp->v_object != NULL);
3083 		bp->b_flags |= B_VMIO;
3084 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3085 
3086 		allocbuf(bp, size);
3087 	}
3088 	KKASSERT(dsched_is_clear_buf_priv(bp));
3089 	return (bp);
3090 }
3091 
3092 /*
3093  * regetblk(bp)
3094  *
3095  * Reacquire a buffer that was previously released to the locked queue,
3096  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3097  * set B_LOCKED (which handles the acquisition race).
3098  *
3099  * To this end, either B_LOCKED must be set or the dependancy list must be
3100  * non-empty.
3101  */
3102 void
3103 regetblk(struct buf *bp)
3104 {
3105 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3106 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3107 	bremfree(bp);
3108 }
3109 
3110 /*
3111  * geteblk:
3112  *
3113  *	Get an empty, disassociated buffer of given size.  The buffer is
3114  *	initially set to B_INVAL.
3115  *
3116  *	critical section protection is not required for the allocbuf()
3117  *	call because races are impossible here.
3118  */
3119 struct buf *
3120 geteblk(int size)
3121 {
3122 	struct buf *bp;
3123 	int maxsize;
3124 
3125 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3126 
3127 	while ((bp = getnewbuf(0, 0, size, maxsize)) == NULL)
3128 		;
3129 	allocbuf(bp, size);
3130 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3131 	KKASSERT(dsched_is_clear_buf_priv(bp));
3132 	return (bp);
3133 }
3134 
3135 
3136 /*
3137  * allocbuf:
3138  *
3139  *	This code constitutes the buffer memory from either anonymous system
3140  *	memory (in the case of non-VMIO operations) or from an associated
3141  *	VM object (in the case of VMIO operations).  This code is able to
3142  *	resize a buffer up or down.
3143  *
3144  *	Note that this code is tricky, and has many complications to resolve
3145  *	deadlock or inconsistant data situations.  Tread lightly!!!
3146  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
3147  *	the caller.  Calling this code willy nilly can result in the loss of
3148  *	data.
3149  *
3150  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3151  *	B_CACHE for the non-VMIO case.
3152  *
3153  *	This routine does not need to be called from a critical section but you
3154  *	must own the buffer.
3155  */
3156 int
3157 allocbuf(struct buf *bp, int size)
3158 {
3159 	int newbsize, mbsize;
3160 	int i;
3161 
3162 	if (BUF_REFCNT(bp) == 0)
3163 		panic("allocbuf: buffer not busy");
3164 
3165 	if (bp->b_kvasize < size)
3166 		panic("allocbuf: buffer too small");
3167 
3168 	if ((bp->b_flags & B_VMIO) == 0) {
3169 		caddr_t origbuf;
3170 		int origbufsize;
3171 		/*
3172 		 * Just get anonymous memory from the kernel.  Don't
3173 		 * mess with B_CACHE.
3174 		 */
3175 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3176 		if (bp->b_flags & B_MALLOC)
3177 			newbsize = mbsize;
3178 		else
3179 			newbsize = round_page(size);
3180 
3181 		if (newbsize < bp->b_bufsize) {
3182 			/*
3183 			 * Malloced buffers are not shrunk
3184 			 */
3185 			if (bp->b_flags & B_MALLOC) {
3186 				if (newbsize) {
3187 					bp->b_bcount = size;
3188 				} else {
3189 					kfree(bp->b_data, M_BIOBUF);
3190 					if (bp->b_bufsize) {
3191 						atomic_subtract_long(&bufmallocspace, bp->b_bufsize);
3192 						bufspacewakeup();
3193 						bp->b_bufsize = 0;
3194 					}
3195 					bp->b_data = bp->b_kvabase;
3196 					bp->b_bcount = 0;
3197 					bp->b_flags &= ~B_MALLOC;
3198 				}
3199 				return 1;
3200 			}
3201 			vm_hold_free_pages(
3202 			    bp,
3203 			    (vm_offset_t) bp->b_data + newbsize,
3204 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3205 		} else if (newbsize > bp->b_bufsize) {
3206 			/*
3207 			 * We only use malloced memory on the first allocation.
3208 			 * and revert to page-allocated memory when the buffer
3209 			 * grows.
3210 			 */
3211 			if ((bufmallocspace < maxbufmallocspace) &&
3212 				(bp->b_bufsize == 0) &&
3213 				(mbsize <= PAGE_SIZE/2)) {
3214 
3215 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3216 				bp->b_bufsize = mbsize;
3217 				bp->b_bcount = size;
3218 				bp->b_flags |= B_MALLOC;
3219 				atomic_add_long(&bufmallocspace, mbsize);
3220 				return 1;
3221 			}
3222 			origbuf = NULL;
3223 			origbufsize = 0;
3224 			/*
3225 			 * If the buffer is growing on its other-than-first
3226 			 * allocation, then we revert to the page-allocation
3227 			 * scheme.
3228 			 */
3229 			if (bp->b_flags & B_MALLOC) {
3230 				origbuf = bp->b_data;
3231 				origbufsize = bp->b_bufsize;
3232 				bp->b_data = bp->b_kvabase;
3233 				if (bp->b_bufsize) {
3234 					atomic_subtract_long(&bufmallocspace,
3235 							     bp->b_bufsize);
3236 					bufspacewakeup();
3237 					bp->b_bufsize = 0;
3238 				}
3239 				bp->b_flags &= ~B_MALLOC;
3240 				newbsize = round_page(newbsize);
3241 			}
3242 			vm_hold_load_pages(
3243 			    bp,
3244 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3245 			    (vm_offset_t) bp->b_data + newbsize);
3246 			if (origbuf) {
3247 				bcopy(origbuf, bp->b_data, origbufsize);
3248 				kfree(origbuf, M_BIOBUF);
3249 			}
3250 		}
3251 	} else {
3252 		vm_page_t m;
3253 		int desiredpages;
3254 
3255 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3256 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3257 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3258 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3259 
3260 		if (bp->b_flags & B_MALLOC)
3261 			panic("allocbuf: VMIO buffer can't be malloced");
3262 		/*
3263 		 * Set B_CACHE initially if buffer is 0 length or will become
3264 		 * 0-length.
3265 		 */
3266 		if (size == 0 || bp->b_bufsize == 0)
3267 			bp->b_flags |= B_CACHE;
3268 
3269 		if (newbsize < bp->b_bufsize) {
3270 			/*
3271 			 * DEV_BSIZE aligned new buffer size is less then the
3272 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3273 			 * if we have to remove any pages.
3274 			 */
3275 			if (desiredpages < bp->b_xio.xio_npages) {
3276 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3277 					/*
3278 					 * the page is not freed here -- it
3279 					 * is the responsibility of
3280 					 * vnode_pager_setsize
3281 					 */
3282 					m = bp->b_xio.xio_pages[i];
3283 					KASSERT(m != bogus_page,
3284 					    ("allocbuf: bogus page found"));
3285 					vm_page_busy_wait(m, TRUE, "biodep");
3286 					bp->b_xio.xio_pages[i] = NULL;
3287 					vm_page_unwire(m, 0);
3288 					vm_page_wakeup(m);
3289 				}
3290 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3291 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3292 				bp->b_xio.xio_npages = desiredpages;
3293 			}
3294 		} else if (size > bp->b_bcount) {
3295 			/*
3296 			 * We are growing the buffer, possibly in a
3297 			 * byte-granular fashion.
3298 			 */
3299 			struct vnode *vp;
3300 			vm_object_t obj;
3301 			vm_offset_t toff;
3302 			vm_offset_t tinc;
3303 
3304 			/*
3305 			 * Step 1, bring in the VM pages from the object,
3306 			 * allocating them if necessary.  We must clear
3307 			 * B_CACHE if these pages are not valid for the
3308 			 * range covered by the buffer.
3309 			 *
3310 			 * critical section protection is required to protect
3311 			 * against interrupts unbusying and freeing pages
3312 			 * between our vm_page_lookup() and our
3313 			 * busycheck/wiring call.
3314 			 */
3315 			vp = bp->b_vp;
3316 			obj = vp->v_object;
3317 
3318 			vm_object_hold(obj);
3319 			while (bp->b_xio.xio_npages < desiredpages) {
3320 				vm_page_t m;
3321 				vm_pindex_t pi;
3322 				int error;
3323 
3324 				pi = OFF_TO_IDX(bp->b_loffset) +
3325 				     bp->b_xio.xio_npages;
3326 
3327 				/*
3328 				 * Blocking on m->busy might lead to a
3329 				 * deadlock:
3330 				 *
3331 				 *  vm_fault->getpages->cluster_read->allocbuf
3332 				 */
3333 				m = vm_page_lookup_busy_try(obj, pi, FALSE,
3334 							    &error);
3335 				if (error) {
3336 					vm_page_sleep_busy(m, FALSE, "pgtblk");
3337 					continue;
3338 				}
3339 				if (m == NULL) {
3340 					/*
3341 					 * note: must allocate system pages
3342 					 * since blocking here could intefere
3343 					 * with paging I/O, no matter which
3344 					 * process we are.
3345 					 */
3346 					m = bio_page_alloc(bp, obj, pi, desiredpages - bp->b_xio.xio_npages);
3347 					if (m) {
3348 						vm_page_wire(m);
3349 						vm_page_flag_clear(m, PG_ZERO);
3350 						vm_page_wakeup(m);
3351 						bp->b_flags &= ~B_CACHE;
3352 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3353 						++bp->b_xio.xio_npages;
3354 					}
3355 					continue;
3356 				}
3357 
3358 				/*
3359 				 * We found a page and were able to busy it.
3360 				 */
3361 				vm_page_flag_clear(m, PG_ZERO);
3362 				vm_page_wire(m);
3363 				vm_page_wakeup(m);
3364 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3365 				++bp->b_xio.xio_npages;
3366 				if (bp->b_act_count < m->act_count)
3367 					bp->b_act_count = m->act_count;
3368 			}
3369 			vm_object_drop(obj);
3370 
3371 			/*
3372 			 * Step 2.  We've loaded the pages into the buffer,
3373 			 * we have to figure out if we can still have B_CACHE
3374 			 * set.  Note that B_CACHE is set according to the
3375 			 * byte-granular range ( bcount and size ), not the
3376 			 * aligned range ( newbsize ).
3377 			 *
3378 			 * The VM test is against m->valid, which is DEV_BSIZE
3379 			 * aligned.  Needless to say, the validity of the data
3380 			 * needs to also be DEV_BSIZE aligned.  Note that this
3381 			 * fails with NFS if the server or some other client
3382 			 * extends the file's EOF.  If our buffer is resized,
3383 			 * B_CACHE may remain set! XXX
3384 			 */
3385 
3386 			toff = bp->b_bcount;
3387 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3388 
3389 			while ((bp->b_flags & B_CACHE) && toff < size) {
3390 				vm_pindex_t pi;
3391 
3392 				if (tinc > (size - toff))
3393 					tinc = size - toff;
3394 
3395 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3396 				    PAGE_SHIFT;
3397 
3398 				vfs_buf_test_cache(
3399 				    bp,
3400 				    bp->b_loffset,
3401 				    toff,
3402 				    tinc,
3403 				    bp->b_xio.xio_pages[pi]
3404 				);
3405 				toff += tinc;
3406 				tinc = PAGE_SIZE;
3407 			}
3408 
3409 			/*
3410 			 * Step 3, fixup the KVM pmap.  Remember that
3411 			 * bp->b_data is relative to bp->b_loffset, but
3412 			 * bp->b_loffset may be offset into the first page.
3413 			 */
3414 
3415 			bp->b_data = (caddr_t)
3416 			    trunc_page((vm_offset_t)bp->b_data);
3417 			pmap_qenter(
3418 			    (vm_offset_t)bp->b_data,
3419 			    bp->b_xio.xio_pages,
3420 			    bp->b_xio.xio_npages
3421 			);
3422 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3423 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3424 		}
3425 	}
3426 
3427 	/* adjust space use on already-dirty buffer */
3428 	if (bp->b_flags & B_DELWRI) {
3429 		/* dirtykvaspace unchanged */
3430 		atomic_add_long(&dirtybufspace, newbsize - bp->b_bufsize);
3431 		if (bp->b_flags & B_HEAVY) {
3432 			atomic_add_long(&dirtybufspacehw,
3433 					newbsize - bp->b_bufsize);
3434 		}
3435 	}
3436 	if (newbsize < bp->b_bufsize)
3437 		bufspacewakeup();
3438 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3439 	bp->b_bcount = size;		/* requested buffer size	*/
3440 	return 1;
3441 }
3442 
3443 /*
3444  * biowait:
3445  *
3446  *	Wait for buffer I/O completion, returning error status. B_EINTR
3447  *	is converted into an EINTR error but not cleared (since a chain
3448  *	of biowait() calls may occur).
3449  *
3450  *	On return bpdone() will have been called but the buffer will remain
3451  *	locked and will not have been brelse()'d.
3452  *
3453  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3454  *	likely still in progress on return.
3455  *
3456  *	NOTE!  This operation is on a BIO, not a BUF.
3457  *
3458  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3459  */
3460 static __inline int
3461 _biowait(struct bio *bio, const char *wmesg, int to)
3462 {
3463 	struct buf *bp = bio->bio_buf;
3464 	u_int32_t flags;
3465 	u_int32_t nflags;
3466 	int error;
3467 
3468 	KKASSERT(bio == &bp->b_bio1);
3469 	for (;;) {
3470 		flags = bio->bio_flags;
3471 		if (flags & BIO_DONE)
3472 			break;
3473 		nflags = flags | BIO_WANT;
3474 		tsleep_interlock(bio, 0);
3475 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3476 			if (wmesg)
3477 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3478 			else if (bp->b_cmd == BUF_CMD_READ)
3479 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3480 			else
3481 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3482 			if (error) {
3483 				kprintf("tsleep error biowait %d\n", error);
3484 				return (error);
3485 			}
3486 		}
3487 	}
3488 
3489 	/*
3490 	 * Finish up.
3491 	 */
3492 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3493 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3494 	if (bp->b_flags & B_EINTR)
3495 		return (EINTR);
3496 	if (bp->b_flags & B_ERROR)
3497 		return (bp->b_error ? bp->b_error : EIO);
3498 	return (0);
3499 }
3500 
3501 int
3502 biowait(struct bio *bio, const char *wmesg)
3503 {
3504 	return(_biowait(bio, wmesg, 0));
3505 }
3506 
3507 int
3508 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3509 {
3510 	return(_biowait(bio, wmesg, to));
3511 }
3512 
3513 /*
3514  * This associates a tracking count with an I/O.  vn_strategy() and
3515  * dev_dstrategy() do this automatically but there are a few cases
3516  * where a vnode or device layer is bypassed when a block translation
3517  * is cached.  In such cases bio_start_transaction() may be called on
3518  * the bypassed layers so the system gets an I/O in progress indication
3519  * for those higher layers.
3520  */
3521 void
3522 bio_start_transaction(struct bio *bio, struct bio_track *track)
3523 {
3524 	bio->bio_track = track;
3525 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3526 		dsched_new_buf(bio->bio_buf);
3527 	bio_track_ref(track);
3528 }
3529 
3530 /*
3531  * Initiate I/O on a vnode.
3532  *
3533  * SWAPCACHE OPERATION:
3534  *
3535  *	Real buffer cache buffers have a non-NULL bp->b_vp.  Unfortunately
3536  *	devfs also uses b_vp for fake buffers so we also have to check
3537  *	that B_PAGING is 0.  In this case the passed 'vp' is probably the
3538  *	underlying block device.  The swap assignments are related to the
3539  *	buffer cache buffer's b_vp, not the passed vp.
3540  *
3541  *	The passed vp == bp->b_vp only in the case where the strategy call
3542  *	is made on the vp itself for its own buffers (a regular file or
3543  *	block device vp).  The filesystem usually then re-calls vn_strategy()
3544  *	after translating the request to an underlying device.
3545  *
3546  *	Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3547  *	underlying buffer cache buffers.
3548  *
3549  *	We can only deal with page-aligned buffers at the moment, because
3550  *	we can't tell what the real dirty state for pages straddling a buffer
3551  *	are.
3552  *
3553  *	In order to call swap_pager_strategy() we must provide the VM object
3554  *	and base offset for the underlying buffer cache pages so it can find
3555  *	the swap blocks.
3556  */
3557 void
3558 vn_strategy(struct vnode *vp, struct bio *bio)
3559 {
3560 	struct bio_track *track;
3561 	struct buf *bp = bio->bio_buf;
3562 
3563 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3564 
3565 	/*
3566 	 * Set when an I/O is issued on the bp.  Cleared by consumers
3567 	 * (aka HAMMER), allowing the consumer to determine if I/O had
3568 	 * actually occurred.
3569 	 */
3570 	bp->b_flags |= B_IODEBUG;
3571 
3572 	/*
3573 	 * Handle the swap cache intercept.
3574 	 */
3575 	if (vn_cache_strategy(vp, bio))
3576 		return;
3577 
3578 	/*
3579 	 * Otherwise do the operation through the filesystem
3580 	 */
3581         if (bp->b_cmd == BUF_CMD_READ)
3582                 track = &vp->v_track_read;
3583         else
3584                 track = &vp->v_track_write;
3585 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3586 	bio->bio_track = track;
3587 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3588 		dsched_new_buf(bio->bio_buf);
3589 	bio_track_ref(track);
3590         vop_strategy(*vp->v_ops, vp, bio);
3591 }
3592 
3593 static void vn_cache_strategy_callback(struct bio *bio);
3594 
3595 int
3596 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3597 {
3598 	struct buf *bp = bio->bio_buf;
3599 	struct bio *nbio;
3600 	vm_object_t object;
3601 	vm_page_t m;
3602 	int i;
3603 
3604 	/*
3605 	 * Is this buffer cache buffer suitable for reading from
3606 	 * the swap cache?
3607 	 */
3608 	if (vm_swapcache_read_enable == 0 ||
3609 	    bp->b_cmd != BUF_CMD_READ ||
3610 	    ((bp->b_flags & B_CLUSTER) == 0 &&
3611 	     (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3612 	    ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3613 	    (bp->b_bcount & PAGE_MASK) != 0) {
3614 		return(0);
3615 	}
3616 
3617 	/*
3618 	 * Figure out the original VM object (it will match the underlying
3619 	 * VM pages).  Note that swap cached data uses page indices relative
3620 	 * to that object, not relative to bio->bio_offset.
3621 	 */
3622 	if (bp->b_flags & B_CLUSTER)
3623 		object = vp->v_object;
3624 	else
3625 		object = bp->b_vp->v_object;
3626 
3627 	/*
3628 	 * In order to be able to use the swap cache all underlying VM
3629 	 * pages must be marked as such, and we can't have any bogus pages.
3630 	 */
3631 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3632 		m = bp->b_xio.xio_pages[i];
3633 		if ((m->flags & PG_SWAPPED) == 0)
3634 			break;
3635 		if (m == bogus_page)
3636 			break;
3637 	}
3638 
3639 	/*
3640 	 * If we are good then issue the I/O using swap_pager_strategy().
3641 	 *
3642 	 * We can only do this if the buffer actually supports object-backed
3643 	 * I/O.  If it doesn't npages will be 0.
3644 	 */
3645 	if (i && i == bp->b_xio.xio_npages) {
3646 		m = bp->b_xio.xio_pages[0];
3647 		nbio = push_bio(bio);
3648 		nbio->bio_done = vn_cache_strategy_callback;
3649 		nbio->bio_offset = ptoa(m->pindex);
3650 		KKASSERT(m->object == object);
3651 		swap_pager_strategy(object, nbio);
3652 		return(1);
3653 	}
3654 	return(0);
3655 }
3656 
3657 /*
3658  * This is a bit of a hack but since the vn_cache_strategy() function can
3659  * override a VFS's strategy function we must make sure that the bio, which
3660  * is probably bio2, doesn't leak an unexpected offset value back to the
3661  * filesystem.  The filesystem (e.g. UFS) might otherwise assume that the
3662  * bio went through its own file strategy function and the the bio2 offset
3663  * is a cached disk offset when, in fact, it isn't.
3664  */
3665 static void
3666 vn_cache_strategy_callback(struct bio *bio)
3667 {
3668 	bio->bio_offset = NOOFFSET;
3669 	biodone(pop_bio(bio));
3670 }
3671 
3672 /*
3673  * bpdone:
3674  *
3675  *	Finish I/O on a buffer after all BIOs have been processed.
3676  *	Called when the bio chain is exhausted or by biowait.  If called
3677  *	by biowait, elseit is typically 0.
3678  *
3679  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3680  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3681  *	assuming B_INVAL is clear.
3682  *
3683  *	For the VMIO case, we set B_CACHE if the op was a read and no
3684  *	read error occured, or if the op was a write.  B_CACHE is never
3685  *	set if the buffer is invalid or otherwise uncacheable.
3686  *
3687  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3688  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3689  *	in the biodone routine.
3690  */
3691 void
3692 bpdone(struct buf *bp, int elseit)
3693 {
3694 	buf_cmd_t cmd;
3695 
3696 	KASSERT(BUF_REFCNTNB(bp) > 0,
3697 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3698 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3699 		("biodone: bp %p already done!", bp));
3700 
3701 	/*
3702 	 * No more BIOs are left.  All completion functions have been dealt
3703 	 * with, now we clean up the buffer.
3704 	 */
3705 	cmd = bp->b_cmd;
3706 	bp->b_cmd = BUF_CMD_DONE;
3707 
3708 	/*
3709 	 * Only reads and writes are processed past this point.
3710 	 */
3711 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3712 		if (cmd == BUF_CMD_FREEBLKS)
3713 			bp->b_flags |= B_NOCACHE;
3714 		if (elseit)
3715 			brelse(bp);
3716 		return;
3717 	}
3718 
3719 	/*
3720 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3721 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3722 	 */
3723 	if (LIST_FIRST(&bp->b_dep) != NULL)
3724 		buf_complete(bp);
3725 
3726 	/*
3727 	 * A failed write must re-dirty the buffer unless B_INVAL
3728 	 * was set.  Only applicable to normal buffers (with VPs).
3729 	 * vinum buffers may not have a vp.
3730 	 */
3731 	if (cmd == BUF_CMD_WRITE &&
3732 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3733 		bp->b_flags &= ~B_NOCACHE;
3734 		if (bp->b_vp)
3735 			bdirty(bp);
3736 	}
3737 
3738 	if (bp->b_flags & B_VMIO) {
3739 		int i;
3740 		vm_ooffset_t foff;
3741 		vm_page_t m;
3742 		vm_object_t obj;
3743 		int iosize;
3744 		struct vnode *vp = bp->b_vp;
3745 
3746 		obj = vp->v_object;
3747 
3748 #if defined(VFS_BIO_DEBUG)
3749 		if (vp->v_auxrefs == 0)
3750 			panic("biodone: zero vnode hold count");
3751 		if ((vp->v_flag & VOBJBUF) == 0)
3752 			panic("biodone: vnode is not setup for merged cache");
3753 #endif
3754 
3755 		foff = bp->b_loffset;
3756 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3757 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3758 
3759 #if defined(VFS_BIO_DEBUG)
3760 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3761 			kprintf("biodone: paging in progress(%d) < "
3762 				"bp->b_xio.xio_npages(%d)\n",
3763 				obj->paging_in_progress,
3764 				bp->b_xio.xio_npages);
3765 		}
3766 #endif
3767 
3768 		/*
3769 		 * Set B_CACHE if the op was a normal read and no error
3770 		 * occured.  B_CACHE is set for writes in the b*write()
3771 		 * routines.
3772 		 */
3773 		iosize = bp->b_bcount - bp->b_resid;
3774 		if (cmd == BUF_CMD_READ &&
3775 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3776 			bp->b_flags |= B_CACHE;
3777 		}
3778 
3779 		vm_object_hold(obj);
3780 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3781 			int bogusflag = 0;
3782 			int resid;
3783 
3784 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3785 			if (resid > iosize)
3786 				resid = iosize;
3787 
3788 			/*
3789 			 * cleanup bogus pages, restoring the originals.  Since
3790 			 * the originals should still be wired, we don't have
3791 			 * to worry about interrupt/freeing races destroying
3792 			 * the VM object association.
3793 			 */
3794 			m = bp->b_xio.xio_pages[i];
3795 			if (m == bogus_page) {
3796 				bogusflag = 1;
3797 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3798 				if (m == NULL)
3799 					panic("biodone: page disappeared");
3800 				bp->b_xio.xio_pages[i] = m;
3801 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3802 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3803 			}
3804 #if defined(VFS_BIO_DEBUG)
3805 			if (OFF_TO_IDX(foff) != m->pindex) {
3806 				kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3807 					"mismatch\n",
3808 					(unsigned long)foff, (long)m->pindex);
3809 			}
3810 #endif
3811 
3812 			/*
3813 			 * In the write case, the valid and clean bits are
3814 			 * already changed correctly (see bdwrite()), so we
3815 			 * only need to do this here in the read case.
3816 			 */
3817 			vm_page_busy_wait(m, FALSE, "bpdpgw");
3818 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3819 				vfs_clean_one_page(bp, i, m);
3820 			}
3821 			vm_page_flag_clear(m, PG_ZERO);
3822 
3823 			/*
3824 			 * when debugging new filesystems or buffer I/O
3825 			 * methods, this is the most common error that pops
3826 			 * up.  if you see this, you have not set the page
3827 			 * busy flag correctly!!!
3828 			 */
3829 			if (m->busy == 0) {
3830 				kprintf("biodone: page busy < 0, "
3831 				    "pindex: %d, foff: 0x(%x,%x), "
3832 				    "resid: %d, index: %d\n",
3833 				    (int) m->pindex, (int)(foff >> 32),
3834 						(int) foff & 0xffffffff, resid, i);
3835 				if (!vn_isdisk(vp, NULL))
3836 					kprintf(" iosize: %ld, loffset: %lld, "
3837 						"flags: 0x%08x, npages: %d\n",
3838 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3839 					    (long long)bp->b_loffset,
3840 					    bp->b_flags, bp->b_xio.xio_npages);
3841 				else
3842 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3843 					    (long long)bp->b_loffset,
3844 					    bp->b_flags, bp->b_xio.xio_npages);
3845 				kprintf(" valid: 0x%x, dirty: 0x%x, "
3846 					"wired: %d\n",
3847 					m->valid, m->dirty,
3848 					m->wire_count);
3849 				panic("biodone: page busy < 0");
3850 			}
3851 			vm_page_io_finish(m);
3852 			vm_page_wakeup(m);
3853 			vm_object_pip_wakeup(obj);
3854 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3855 			iosize -= resid;
3856 		}
3857 		bp->b_flags &= ~B_HASBOGUS;
3858 		vm_object_drop(obj);
3859 	}
3860 
3861 	/*
3862 	 * Finish up by releasing the buffer.  There are no more synchronous
3863 	 * or asynchronous completions, those were handled by bio_done
3864 	 * callbacks.
3865 	 */
3866 	if (elseit) {
3867 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3868 			brelse(bp);
3869 		else
3870 			bqrelse(bp);
3871 	}
3872 }
3873 
3874 /*
3875  * Normal biodone.
3876  */
3877 void
3878 biodone(struct bio *bio)
3879 {
3880 	struct buf *bp = bio->bio_buf;
3881 
3882 	runningbufwakeup(bp);
3883 
3884 	/*
3885 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3886 	 */
3887 	while (bio) {
3888 		biodone_t *done_func;
3889 		struct bio_track *track;
3890 
3891 		/*
3892 		 * BIO tracking.  Most but not all BIOs are tracked.
3893 		 */
3894 		if ((track = bio->bio_track) != NULL) {
3895 			bio_track_rel(track);
3896 			bio->bio_track = NULL;
3897 		}
3898 
3899 		/*
3900 		 * A bio_done function terminates the loop.  The function
3901 		 * will be responsible for any further chaining and/or
3902 		 * buffer management.
3903 		 *
3904 		 * WARNING!  The done function can deallocate the buffer!
3905 		 */
3906 		if ((done_func = bio->bio_done) != NULL) {
3907 			bio->bio_done = NULL;
3908 			done_func(bio);
3909 			return;
3910 		}
3911 		bio = bio->bio_prev;
3912 	}
3913 
3914 	/*
3915 	 * If we've run out of bio's do normal [a]synchronous completion.
3916 	 */
3917 	bpdone(bp, 1);
3918 }
3919 
3920 /*
3921  * Synchronous biodone - this terminates a synchronous BIO.
3922  *
3923  * bpdone() is called with elseit=FALSE, leaving the buffer completed
3924  * but still locked.  The caller must brelse() the buffer after waiting
3925  * for completion.
3926  */
3927 void
3928 biodone_sync(struct bio *bio)
3929 {
3930 	struct buf *bp = bio->bio_buf;
3931 	int flags;
3932 	int nflags;
3933 
3934 	KKASSERT(bio == &bp->b_bio1);
3935 	bpdone(bp, 0);
3936 
3937 	for (;;) {
3938 		flags = bio->bio_flags;
3939 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
3940 
3941 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3942 			if (flags & BIO_WANT)
3943 				wakeup(bio);
3944 			break;
3945 		}
3946 	}
3947 }
3948 
3949 /*
3950  * vfs_unbusy_pages:
3951  *
3952  *	This routine is called in lieu of iodone in the case of
3953  *	incomplete I/O.  This keeps the busy status for pages
3954  *	consistant.
3955  */
3956 void
3957 vfs_unbusy_pages(struct buf *bp)
3958 {
3959 	int i;
3960 
3961 	runningbufwakeup(bp);
3962 
3963 	if (bp->b_flags & B_VMIO) {
3964 		struct vnode *vp = bp->b_vp;
3965 		vm_object_t obj;
3966 
3967 		obj = vp->v_object;
3968 		vm_object_hold(obj);
3969 
3970 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3971 			vm_page_t m = bp->b_xio.xio_pages[i];
3972 
3973 			/*
3974 			 * When restoring bogus changes the original pages
3975 			 * should still be wired, so we are in no danger of
3976 			 * losing the object association and do not need
3977 			 * critical section protection particularly.
3978 			 */
3979 			if (m == bogus_page) {
3980 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3981 				if (!m) {
3982 					panic("vfs_unbusy_pages: page missing");
3983 				}
3984 				bp->b_xio.xio_pages[i] = m;
3985 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3986 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3987 			}
3988 			vm_page_busy_wait(m, FALSE, "bpdpgw");
3989 			vm_page_flag_clear(m, PG_ZERO);
3990 			vm_page_io_finish(m);
3991 			vm_page_wakeup(m);
3992 			vm_object_pip_wakeup(obj);
3993 		}
3994 		bp->b_flags &= ~B_HASBOGUS;
3995 		vm_object_drop(obj);
3996 	}
3997 }
3998 
3999 /*
4000  * vfs_busy_pages:
4001  *
4002  *	This routine is called before a device strategy routine.
4003  *	It is used to tell the VM system that paging I/O is in
4004  *	progress, and treat the pages associated with the buffer
4005  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
4006  *	flag is handled to make sure that the object doesn't become
4007  *	inconsistant.
4008  *
4009  *	Since I/O has not been initiated yet, certain buffer flags
4010  *	such as B_ERROR or B_INVAL may be in an inconsistant state
4011  *	and should be ignored.
4012  */
4013 void
4014 vfs_busy_pages(struct vnode *vp, struct buf *bp)
4015 {
4016 	int i, bogus;
4017 	struct lwp *lp = curthread->td_lwp;
4018 
4019 	/*
4020 	 * The buffer's I/O command must already be set.  If reading,
4021 	 * B_CACHE must be 0 (double check against callers only doing
4022 	 * I/O when B_CACHE is 0).
4023 	 */
4024 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4025 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
4026 
4027 	if (bp->b_flags & B_VMIO) {
4028 		vm_object_t obj;
4029 
4030 		obj = vp->v_object;
4031 		KASSERT(bp->b_loffset != NOOFFSET,
4032 			("vfs_busy_pages: no buffer offset"));
4033 
4034 		/*
4035 		 * Busy all the pages.  We have to busy them all at once
4036 		 * to avoid deadlocks.
4037 		 */
4038 retry:
4039 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4040 			vm_page_t m = bp->b_xio.xio_pages[i];
4041 
4042 			if (vm_page_busy_try(m, FALSE)) {
4043 				vm_page_sleep_busy(m, FALSE, "vbpage");
4044 				while (--i >= 0)
4045 					vm_page_wakeup(bp->b_xio.xio_pages[i]);
4046 				goto retry;
4047 			}
4048 		}
4049 
4050 		/*
4051 		 * Setup for I/O, soft-busy the page right now because
4052 		 * the next loop may block.
4053 		 */
4054 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4055 			vm_page_t m = bp->b_xio.xio_pages[i];
4056 
4057 			vm_page_flag_clear(m, PG_ZERO);
4058 			if ((bp->b_flags & B_CLUSTER) == 0) {
4059 				vm_object_pip_add(obj, 1);
4060 				vm_page_io_start(m);
4061 			}
4062 		}
4063 
4064 		/*
4065 		 * Adjust protections for I/O and do bogus-page mapping.
4066 		 * Assume that vm_page_protect() can block (it can block
4067 		 * if VM_PROT_NONE, don't take any chances regardless).
4068 		 *
4069 		 * In particular note that for writes we must incorporate
4070 		 * page dirtyness from the VM system into the buffer's
4071 		 * dirty range.
4072 		 *
4073 		 * For reads we theoretically must incorporate page dirtyness
4074 		 * from the VM system to determine if the page needs bogus
4075 		 * replacement, but we shortcut the test by simply checking
4076 		 * that all m->valid bits are set, indicating that the page
4077 		 * is fully valid and does not need to be re-read.  For any
4078 		 * VM system dirtyness the page will also be fully valid
4079 		 * since it was mapped at one point.
4080 		 */
4081 		bogus = 0;
4082 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4083 			vm_page_t m = bp->b_xio.xio_pages[i];
4084 
4085 			vm_page_flag_clear(m, PG_ZERO);	/* XXX */
4086 			if (bp->b_cmd == BUF_CMD_WRITE) {
4087 				/*
4088 				 * When readying a vnode-backed buffer for
4089 				 * a write we must zero-fill any invalid
4090 				 * portions of the backing VM pages, mark
4091 				 * it valid and clear related dirty bits.
4092 				 *
4093 				 * vfs_clean_one_page() incorporates any
4094 				 * VM dirtyness and updates the b_dirtyoff
4095 				 * range (after we've made the page RO).
4096 				 *
4097 				 * It is also expected that the pmap modified
4098 				 * bit has already been cleared by the
4099 				 * vm_page_protect().  We may not be able
4100 				 * to clear all dirty bits for a page if it
4101 				 * was also memory mapped (NFS).
4102 				 *
4103 				 * Finally be sure to unassign any swap-cache
4104 				 * backing store as it is now stale.
4105 				 */
4106 				vm_page_protect(m, VM_PROT_READ);
4107 				vfs_clean_one_page(bp, i, m);
4108 				swap_pager_unswapped(m);
4109 			} else if (m->valid == VM_PAGE_BITS_ALL) {
4110 				/*
4111 				 * When readying a vnode-backed buffer for
4112 				 * read we must replace any dirty pages with
4113 				 * a bogus page so dirty data is not destroyed
4114 				 * when filling gaps.
4115 				 *
4116 				 * To avoid testing whether the page is
4117 				 * dirty we instead test that the page was
4118 				 * at some point mapped (m->valid fully
4119 				 * valid) with the understanding that
4120 				 * this also covers the dirty case.
4121 				 */
4122 				bp->b_xio.xio_pages[i] = bogus_page;
4123 				bp->b_flags |= B_HASBOGUS;
4124 				bogus++;
4125 			} else if (m->valid & m->dirty) {
4126 				/*
4127 				 * This case should not occur as partial
4128 				 * dirtyment can only happen if the buffer
4129 				 * is B_CACHE, and this code is not entered
4130 				 * if the buffer is B_CACHE.
4131 				 */
4132 				kprintf("Warning: vfs_busy_pages - page not "
4133 					"fully valid! loff=%jx bpf=%08x "
4134 					"idx=%d val=%02x dir=%02x\n",
4135 					(uintmax_t)bp->b_loffset, bp->b_flags,
4136 					i, m->valid, m->dirty);
4137 				vm_page_protect(m, VM_PROT_NONE);
4138 			} else {
4139 				/*
4140 				 * The page is not valid and can be made
4141 				 * part of the read.
4142 				 */
4143 				vm_page_protect(m, VM_PROT_NONE);
4144 			}
4145 			vm_page_wakeup(m);
4146 		}
4147 		if (bogus) {
4148 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4149 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4150 		}
4151 	}
4152 
4153 	/*
4154 	 * This is the easiest place to put the process accounting for the I/O
4155 	 * for now.
4156 	 */
4157 	if (lp != NULL) {
4158 		if (bp->b_cmd == BUF_CMD_READ)
4159 			lp->lwp_ru.ru_inblock++;
4160 		else
4161 			lp->lwp_ru.ru_oublock++;
4162 	}
4163 }
4164 
4165 /*
4166  * Tell the VM system that the pages associated with this buffer
4167  * are clean.  This is used for delayed writes where the data is
4168  * going to go to disk eventually without additional VM intevention.
4169  *
4170  * NOTE: While we only really need to clean through to b_bcount, we
4171  *	 just go ahead and clean through to b_bufsize.
4172  */
4173 static void
4174 vfs_clean_pages(struct buf *bp)
4175 {
4176 	vm_page_t m;
4177 	int i;
4178 
4179 	if ((bp->b_flags & B_VMIO) == 0)
4180 		return;
4181 
4182 	KASSERT(bp->b_loffset != NOOFFSET,
4183 		("vfs_clean_pages: no buffer offset"));
4184 
4185 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
4186 		m = bp->b_xio.xio_pages[i];
4187 		vfs_clean_one_page(bp, i, m);
4188 	}
4189 }
4190 
4191 /*
4192  * vfs_clean_one_page:
4193  *
4194  *	Set the valid bits and clear the dirty bits in a page within a
4195  *	buffer.  The range is restricted to the buffer's size and the
4196  *	buffer's logical offset might index into the first page.
4197  *
4198  *	The caller has busied or soft-busied the page and it is not mapped,
4199  *	test and incorporate the dirty bits into b_dirtyoff/end before
4200  *	clearing them.  Note that we need to clear the pmap modified bits
4201  *	after determining the the page was dirty, vm_page_set_validclean()
4202  *	does not do it for us.
4203  *
4204  *	This routine is typically called after a read completes (dirty should
4205  *	be zero in that case as we are not called on bogus-replace pages),
4206  *	or before a write is initiated.
4207  */
4208 static void
4209 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4210 {
4211 	int bcount;
4212 	int xoff;
4213 	int soff;
4214 	int eoff;
4215 
4216 	/*
4217 	 * Calculate offset range within the page but relative to buffer's
4218 	 * loffset.  loffset might be offset into the first page.
4219 	 */
4220 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4221 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4222 
4223 	if (pageno == 0) {
4224 		soff = xoff;
4225 		eoff = PAGE_SIZE;
4226 	} else {
4227 		soff = (pageno << PAGE_SHIFT);
4228 		eoff = soff + PAGE_SIZE;
4229 	}
4230 	if (eoff > bcount)
4231 		eoff = bcount;
4232 	if (soff >= eoff)
4233 		return;
4234 
4235 	/*
4236 	 * Test dirty bits and adjust b_dirtyoff/end.
4237 	 *
4238 	 * If dirty pages are incorporated into the bp any prior
4239 	 * B_NEEDCOMMIT state (NFS) must be cleared because the
4240 	 * caller has not taken into account the new dirty data.
4241 	 *
4242 	 * If the page was memory mapped the dirty bits might go beyond the
4243 	 * end of the buffer, but we can't really make the assumption that
4244 	 * a file EOF straddles the buffer (even though this is the case for
4245 	 * NFS if B_NEEDCOMMIT is also set).  So for the purposes of clearing
4246 	 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4247 	 * This also saves some console spam.
4248 	 *
4249 	 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4250 	 * NFS can handle huge commits but not huge writes.
4251 	 */
4252 	vm_page_test_dirty(m);
4253 	if (m->dirty) {
4254 		if ((bp->b_flags & B_NEEDCOMMIT) &&
4255 		    (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4256 			if (debug_commit)
4257 				kprintf("Warning: vfs_clean_one_page: bp %p "
4258 				    "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4259 				    " cmd %d vd %02x/%02x x/s/e %d %d %d "
4260 				    "doff/end %d %d\n",
4261 				    bp, (uintmax_t)bp->b_loffset, bp->b_bcount,
4262 				    bp->b_flags, bp->b_cmd,
4263 				    m->valid, m->dirty, xoff, soff, eoff,
4264 				    bp->b_dirtyoff, bp->b_dirtyend);
4265 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4266 			if (debug_commit)
4267 				print_backtrace(-1);
4268 		}
4269 		/*
4270 		 * Only clear the pmap modified bits if ALL the dirty bits
4271 		 * are set, otherwise the system might mis-clear portions
4272 		 * of a page.
4273 		 */
4274 		if (m->dirty == VM_PAGE_BITS_ALL &&
4275 		    (bp->b_flags & B_NEEDCOMMIT) == 0) {
4276 			pmap_clear_modify(m);
4277 		}
4278 		if (bp->b_dirtyoff > soff - xoff)
4279 			bp->b_dirtyoff = soff - xoff;
4280 		if (bp->b_dirtyend < eoff - xoff)
4281 			bp->b_dirtyend = eoff - xoff;
4282 	}
4283 
4284 	/*
4285 	 * Set related valid bits, clear related dirty bits.
4286 	 * Does not mess with the pmap modified bit.
4287 	 *
4288 	 * WARNING!  We cannot just clear all of m->dirty here as the
4289 	 *	     buffer cache buffers may use a DEV_BSIZE'd aligned
4290 	 *	     block size, or have an odd size (e.g. NFS at file EOF).
4291 	 *	     The putpages code can clear m->dirty to 0.
4292 	 *
4293 	 *	     If a VOP_WRITE generates a buffer cache buffer which
4294 	 *	     covers the same space as mapped writable pages the
4295 	 *	     buffer flush might not be able to clear all the dirty
4296 	 *	     bits and still require a putpages from the VM system
4297 	 *	     to finish it off.
4298 	 *
4299 	 * WARNING!  vm_page_set_validclean() currently assumes vm_token
4300 	 *	     is held.  The page might not be busied (bdwrite() case).
4301 	 *	     XXX remove this comment once we've validated that this
4302 	 *	     is no longer an issue.
4303 	 */
4304 	vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4305 }
4306 
4307 #if 0
4308 /*
4309  * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4310  * The page data is assumed to be valid (there is no zeroing here).
4311  */
4312 static void
4313 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4314 {
4315 	int bcount;
4316 	int xoff;
4317 	int soff;
4318 	int eoff;
4319 
4320 	/*
4321 	 * Calculate offset range within the page but relative to buffer's
4322 	 * loffset.  loffset might be offset into the first page.
4323 	 */
4324 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4325 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4326 
4327 	if (pageno == 0) {
4328 		soff = xoff;
4329 		eoff = PAGE_SIZE;
4330 	} else {
4331 		soff = (pageno << PAGE_SHIFT);
4332 		eoff = soff + PAGE_SIZE;
4333 	}
4334 	if (eoff > bcount)
4335 		eoff = bcount;
4336 	if (soff >= eoff)
4337 		return;
4338 	vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4339 }
4340 #endif
4341 
4342 /*
4343  * vfs_bio_clrbuf:
4344  *
4345  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
4346  *	to clear B_ERROR and B_INVAL.
4347  *
4348  *	Note that while we only theoretically need to clear through b_bcount,
4349  *	we go ahead and clear through b_bufsize.
4350  */
4351 
4352 void
4353 vfs_bio_clrbuf(struct buf *bp)
4354 {
4355 	int i, mask = 0;
4356 	caddr_t sa, ea;
4357 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4358 		bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4359 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4360 		    (bp->b_loffset & PAGE_MASK) == 0) {
4361 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4362 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4363 				bp->b_resid = 0;
4364 				return;
4365 			}
4366 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
4367 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
4368 				bzero(bp->b_data, bp->b_bufsize);
4369 				bp->b_xio.xio_pages[0]->valid |= mask;
4370 				bp->b_resid = 0;
4371 				return;
4372 			}
4373 		}
4374 		sa = bp->b_data;
4375 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4376 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4377 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4378 			ea = (caddr_t)(vm_offset_t)ulmin(
4379 			    (u_long)(vm_offset_t)ea,
4380 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4381 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4382 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4383 				continue;
4384 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4385 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
4386 					bzero(sa, ea - sa);
4387 				}
4388 			} else {
4389 				for (; sa < ea; sa += DEV_BSIZE, j++) {
4390 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
4391 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
4392 						bzero(sa, DEV_BSIZE);
4393 				}
4394 			}
4395 			bp->b_xio.xio_pages[i]->valid |= mask;
4396 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4397 		}
4398 		bp->b_resid = 0;
4399 	} else {
4400 		clrbuf(bp);
4401 	}
4402 }
4403 
4404 /*
4405  * vm_hold_load_pages:
4406  *
4407  *	Load pages into the buffer's address space.  The pages are
4408  *	allocated from the kernel object in order to reduce interference
4409  *	with the any VM paging I/O activity.  The range of loaded
4410  *	pages will be wired.
4411  *
4412  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
4413  *	retrieve the full range (to - from) of pages.
4414  */
4415 void
4416 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4417 {
4418 	vm_offset_t pg;
4419 	vm_page_t p;
4420 	int index;
4421 
4422 	to = round_page(to);
4423 	from = round_page(from);
4424 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4425 
4426 	pg = from;
4427 	while (pg < to) {
4428 		/*
4429 		 * Note: must allocate system pages since blocking here
4430 		 * could intefere with paging I/O, no matter which
4431 		 * process we are.
4432 		 */
4433 		vm_object_hold(&kernel_object);
4434 		p = bio_page_alloc(bp, &kernel_object, pg >> PAGE_SHIFT,
4435 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4436 		vm_object_drop(&kernel_object);
4437 		if (p) {
4438 			vm_page_wire(p);
4439 			p->valid = VM_PAGE_BITS_ALL;
4440 			vm_page_flag_clear(p, PG_ZERO);
4441 			pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4442 			bp->b_xio.xio_pages[index] = p;
4443 			vm_page_wakeup(p);
4444 
4445 			pg += PAGE_SIZE;
4446 			++index;
4447 		}
4448 	}
4449 	bp->b_xio.xio_npages = index;
4450 }
4451 
4452 /*
4453  * Allocate a page for a buffer cache buffer.
4454  *
4455  * If NULL is returned the caller is expected to retry (typically check if
4456  * the page already exists on retry before trying to allocate one).
4457  *
4458  * NOTE! Low-memory handling is dealt with in b[q]relse(), not here.  This
4459  *	 function will use the system reserve with the hope that the page
4460  *	 allocations can be returned to PQ_CACHE/PQ_FREE when the caller
4461  *	 is done with the buffer.
4462  *
4463  * NOTE! However, TMPFS is a special case because flushing a dirty buffer
4464  *	 to TMPFS doesn't clean the page.  For TMPFS, only the pagedaemon
4465  *	 is capable of retiring pages (to swap).  For TMPFS we don't dig
4466  *	 into the system reserve because doing so could stall out pretty
4467  *	 much every process running on the system.
4468  */
4469 static
4470 vm_page_t
4471 bio_page_alloc(struct buf *bp, vm_object_t obj, vm_pindex_t pg, int deficit)
4472 {
4473 	int vmflags = VM_ALLOC_NORMAL | VM_ALLOC_NULL_OK;
4474 	vm_page_t p;
4475 
4476 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj));
4477 
4478 	/*
4479 	 * Try a normal allocation first.
4480 	 */
4481 	p = vm_page_alloc(obj, pg, vmflags);
4482 	if (p)
4483 		return(p);
4484 	if (vm_page_lookup(obj, pg))
4485 		return(NULL);
4486 	vm_pageout_deficit += deficit;
4487 
4488 	/*
4489 	 * Try again, digging into the system reserve.
4490 	 *
4491 	 * Trying to recover pages from the buffer cache here can deadlock
4492 	 * against other threads trying to busy underlying pages so we
4493 	 * depend on the code in brelse() and bqrelse() to free/cache the
4494 	 * underlying buffer cache pages when memory is low.
4495 	 */
4496 	if (curthread->td_flags & TDF_SYSTHREAD)
4497 		vmflags |= VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT;
4498 	else if (bp->b_vp && bp->b_vp->v_tag == VT_TMPFS)
4499 		vmflags |= 0;
4500 	else
4501 		vmflags |= VM_ALLOC_SYSTEM;
4502 
4503 	/*recoverbufpages();*/
4504 	p = vm_page_alloc(obj, pg, vmflags);
4505 	if (p)
4506 		return(p);
4507 	if (vm_page_lookup(obj, pg))
4508 		return(NULL);
4509 
4510 	/*
4511 	 * Wait for memory to free up and try again
4512 	 */
4513 	if (vm_page_count_severe())
4514 		++lowmempgallocs;
4515 	vm_wait(hz / 20 + 1);
4516 
4517 	p = vm_page_alloc(obj, pg, vmflags);
4518 	if (p)
4519 		return(p);
4520 	if (vm_page_lookup(obj, pg))
4521 		return(NULL);
4522 
4523 	/*
4524 	 * Ok, now we are really in trouble.
4525 	 */
4526 	{
4527 		static struct krate biokrate = { .freq = 1 };
4528 		krateprintf(&biokrate,
4529 			    "Warning: bio_page_alloc: memory exhausted "
4530 			    "during bufcache page allocation from %s\n",
4531 			    curthread->td_comm);
4532 	}
4533 	if (curthread->td_flags & TDF_SYSTHREAD)
4534 		vm_wait(hz / 20 + 1);
4535 	else
4536 		vm_wait(hz / 2 + 1);
4537 	return (NULL);
4538 }
4539 
4540 /*
4541  * vm_hold_free_pages:
4542  *
4543  *	Return pages associated with the buffer back to the VM system.
4544  *
4545  *	The range of pages underlying the buffer's address space will
4546  *	be unmapped and un-wired.
4547  */
4548 void
4549 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4550 {
4551 	vm_offset_t pg;
4552 	vm_page_t p;
4553 	int index, newnpages;
4554 
4555 	from = round_page(from);
4556 	to = round_page(to);
4557 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4558 	newnpages = index;
4559 
4560 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4561 		p = bp->b_xio.xio_pages[index];
4562 		if (p && (index < bp->b_xio.xio_npages)) {
4563 			if (p->busy) {
4564 				kprintf("vm_hold_free_pages: doffset: %lld, "
4565 					"loffset: %lld\n",
4566 					(long long)bp->b_bio2.bio_offset,
4567 					(long long)bp->b_loffset);
4568 			}
4569 			bp->b_xio.xio_pages[index] = NULL;
4570 			pmap_kremove(pg);
4571 			vm_page_busy_wait(p, FALSE, "vmhldpg");
4572 			vm_page_unwire(p, 0);
4573 			vm_page_free(p);
4574 		}
4575 	}
4576 	bp->b_xio.xio_npages = newnpages;
4577 }
4578 
4579 /*
4580  * vmapbuf:
4581  *
4582  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
4583  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4584  *	initialized.
4585  */
4586 int
4587 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4588 {
4589 	caddr_t addr;
4590 	vm_offset_t va;
4591 	vm_page_t m;
4592 	int vmprot;
4593 	int error;
4594 	int pidx;
4595 	int i;
4596 
4597 	/*
4598 	 * bp had better have a command and it better be a pbuf.
4599 	 */
4600 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4601 	KKASSERT(bp->b_flags & B_PAGING);
4602 	KKASSERT(bp->b_kvabase);
4603 
4604 	if (bytes < 0)
4605 		return (-1);
4606 
4607 	/*
4608 	 * Map the user data into KVM.  Mappings have to be page-aligned.
4609 	 */
4610 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
4611 	pidx = 0;
4612 
4613 	vmprot = VM_PROT_READ;
4614 	if (bp->b_cmd == BUF_CMD_READ)
4615 		vmprot |= VM_PROT_WRITE;
4616 
4617 	while (addr < udata + bytes) {
4618 		/*
4619 		 * Do the vm_fault if needed; do the copy-on-write thing
4620 		 * when reading stuff off device into memory.
4621 		 *
4622 		 * vm_fault_page*() returns a held VM page.
4623 		 */
4624 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4625 		va = trunc_page(va);
4626 
4627 		m = vm_fault_page_quick(va, vmprot, &error);
4628 		if (m == NULL) {
4629 			for (i = 0; i < pidx; ++i) {
4630 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
4631 			    bp->b_xio.xio_pages[i] = NULL;
4632 			}
4633 			return(-1);
4634 		}
4635 		bp->b_xio.xio_pages[pidx] = m;
4636 		addr += PAGE_SIZE;
4637 		++pidx;
4638 	}
4639 
4640 	/*
4641 	 * Map the page array and set the buffer fields to point to
4642 	 * the mapped data buffer.
4643 	 */
4644 	if (pidx > btoc(MAXPHYS))
4645 		panic("vmapbuf: mapped more than MAXPHYS");
4646 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4647 
4648 	bp->b_xio.xio_npages = pidx;
4649 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4650 	bp->b_bcount = bytes;
4651 	bp->b_bufsize = bytes;
4652 	return(0);
4653 }
4654 
4655 /*
4656  * vunmapbuf:
4657  *
4658  *	Free the io map PTEs associated with this IO operation.
4659  *	We also invalidate the TLB entries and restore the original b_addr.
4660  */
4661 void
4662 vunmapbuf(struct buf *bp)
4663 {
4664 	int pidx;
4665 	int npages;
4666 
4667 	KKASSERT(bp->b_flags & B_PAGING);
4668 
4669 	npages = bp->b_xio.xio_npages;
4670 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4671 	for (pidx = 0; pidx < npages; ++pidx) {
4672 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4673 		bp->b_xio.xio_pages[pidx] = NULL;
4674 	}
4675 	bp->b_xio.xio_npages = 0;
4676 	bp->b_data = bp->b_kvabase;
4677 }
4678 
4679 /*
4680  * Scan all buffers in the system and issue the callback.
4681  */
4682 int
4683 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4684 {
4685 	int count = 0;
4686 	int error;
4687 	long n;
4688 
4689 	for (n = 0; n < nbuf; ++n) {
4690 		if ((error = callback(&buf[n], info)) < 0) {
4691 			count = error;
4692 			break;
4693 		}
4694 		count += error;
4695 	}
4696 	return (count);
4697 }
4698 
4699 /*
4700  * nestiobuf_iodone: biodone callback for nested buffers and propagate
4701  * completion to the master buffer.
4702  */
4703 static void
4704 nestiobuf_iodone(struct bio *bio)
4705 {
4706 	struct bio *mbio;
4707 	struct buf *mbp, *bp;
4708 	struct devstat *stats;
4709 	int error;
4710 	int donebytes;
4711 
4712 	bp = bio->bio_buf;
4713 	mbio = bio->bio_caller_info1.ptr;
4714 	stats = bio->bio_caller_info2.ptr;
4715 	mbp = mbio->bio_buf;
4716 
4717 	KKASSERT(bp->b_bcount <= bp->b_bufsize);
4718 	KKASSERT(mbp != bp);
4719 
4720 	error = bp->b_error;
4721 	if (bp->b_error == 0 &&
4722 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4723 		/*
4724 		 * Not all got transfered, raise an error. We have no way to
4725 		 * propagate these conditions to mbp.
4726 		 */
4727 		error = EIO;
4728 	}
4729 
4730 	donebytes = bp->b_bufsize;
4731 
4732 	relpbuf(bp, NULL);
4733 
4734 	nestiobuf_done(mbio, donebytes, error, stats);
4735 }
4736 
4737 void
4738 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats)
4739 {
4740 	struct buf *mbp;
4741 
4742 	mbp = mbio->bio_buf;
4743 
4744 	KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4745 
4746 	/*
4747 	 * If an error occured, propagate it to the master buffer.
4748 	 *
4749 	 * Several biodone()s may wind up running concurrently so
4750 	 * use an atomic op to adjust b_flags.
4751 	 */
4752 	if (error) {
4753 		mbp->b_error = error;
4754 		atomic_set_int(&mbp->b_flags, B_ERROR);
4755 	}
4756 
4757 	/*
4758 	 * Decrement the operations in progress counter and terminate the
4759 	 * I/O if this was the last bit.
4760 	 */
4761 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4762 		mbp->b_resid = 0;
4763 		if (stats)
4764 			devstat_end_transaction_buf(stats, mbp);
4765 		biodone(mbio);
4766 	}
4767 }
4768 
4769 /*
4770  * Initialize a nestiobuf for use.  Set an initial count of 1 to prevent
4771  * the mbio from being biodone()'d while we are still adding sub-bios to
4772  * it.
4773  */
4774 void
4775 nestiobuf_init(struct bio *bio)
4776 {
4777 	bio->bio_driver_info = (void *)1;
4778 }
4779 
4780 /*
4781  * The BIOs added to the nestedio have already been started, remove the
4782  * count that placeheld our mbio and biodone() it if the count would
4783  * transition to 0.
4784  */
4785 void
4786 nestiobuf_start(struct bio *mbio)
4787 {
4788 	struct buf *mbp = mbio->bio_buf;
4789 
4790 	/*
4791 	 * Decrement the operations in progress counter and terminate the
4792 	 * I/O if this was the last bit.
4793 	 */
4794 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4795 		if (mbp->b_flags & B_ERROR)
4796 			mbp->b_resid = mbp->b_bcount;
4797 		else
4798 			mbp->b_resid = 0;
4799 		biodone(mbio);
4800 	}
4801 }
4802 
4803 /*
4804  * Set an intermediate error prior to calling nestiobuf_start()
4805  */
4806 void
4807 nestiobuf_error(struct bio *mbio, int error)
4808 {
4809 	struct buf *mbp = mbio->bio_buf;
4810 
4811 	if (error) {
4812 		mbp->b_error = error;
4813 		atomic_set_int(&mbp->b_flags, B_ERROR);
4814 	}
4815 }
4816 
4817 /*
4818  * nestiobuf_add: setup a "nested" buffer.
4819  *
4820  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4821  * => 'bp' should be a buffer allocated by getiobuf.
4822  * => 'offset' is a byte offset in the master buffer.
4823  * => 'size' is a size in bytes of this nested buffer.
4824  */
4825 void
4826 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats)
4827 {
4828 	struct buf *mbp = mbio->bio_buf;
4829 	struct vnode *vp = mbp->b_vp;
4830 
4831 	KKASSERT(mbp->b_bcount >= offset + size);
4832 
4833 	atomic_add_int((int *)&mbio->bio_driver_info, 1);
4834 
4835 	/* kernel needs to own the lock for it to be released in biodone */
4836 	BUF_KERNPROC(bp);
4837 	bp->b_vp = vp;
4838 	bp->b_cmd = mbp->b_cmd;
4839 	bp->b_bio1.bio_done = nestiobuf_iodone;
4840 	bp->b_data = (char *)mbp->b_data + offset;
4841 	bp->b_resid = bp->b_bcount = size;
4842 	bp->b_bufsize = bp->b_bcount;
4843 
4844 	bp->b_bio1.bio_track = NULL;
4845 	bp->b_bio1.bio_caller_info1.ptr = mbio;
4846 	bp->b_bio1.bio_caller_info2.ptr = stats;
4847 }
4848 
4849 #ifdef DDB
4850 
4851 DB_SHOW_COMMAND(buffer, db_show_buffer)
4852 {
4853 	/* get args */
4854 	struct buf *bp = (struct buf *)addr;
4855 
4856 	if (!have_addr) {
4857 		db_printf("usage: show buffer <addr>\n");
4858 		return;
4859 	}
4860 
4861 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4862 	db_printf("b_cmd = %d\n", bp->b_cmd);
4863 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4864 		  "b_resid = %d\n, b_data = %p, "
4865 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4866 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4867 		  bp->b_data,
4868 		  (long long)bp->b_bio2.bio_offset,
4869 		  (long long)(bp->b_bio2.bio_next ?
4870 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4871 	if (bp->b_xio.xio_npages) {
4872 		int i;
4873 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4874 			bp->b_xio.xio_npages);
4875 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4876 			vm_page_t m;
4877 			m = bp->b_xio.xio_pages[i];
4878 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4879 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4880 			if ((i + 1) < bp->b_xio.xio_npages)
4881 				db_printf(",");
4882 		}
4883 		db_printf("\n");
4884 	}
4885 }
4886 #endif /* DDB */
4887