xref: /dragonfly/sys/kern/vfs_bio.c (revision b29f78b5)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  */
16 
17 /*
18  * this file contains a new buffer I/O scheme implementing a coherent
19  * VM object and buffer cache scheme.  Pains have been taken to make
20  * sure that the performance degradation associated with schemes such
21  * as this is not realized.
22  *
23  * Author:  John S. Dyson
24  * Significant help during the development and debugging phases
25  * had been provided by David Greenman, also of the FreeBSD core team.
26  *
27  * see man buf(9) for more info.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/conf.h>
34 #include <sys/devicestat.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/dsched.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 #include <vm/vm_pager.h>
57 #include <vm/swap_pager.h>
58 
59 #include <sys/buf2.h>
60 #include <sys/thread2.h>
61 #include <sys/spinlock2.h>
62 #include <sys/mplock2.h>
63 #include <vm/vm_page2.h>
64 
65 #include "opt_ddb.h"
66 #ifdef DDB
67 #include <ddb/ddb.h>
68 #endif
69 
70 /*
71  * Buffer queues.
72  */
73 enum bufq_type {
74 	BQUEUE_NONE,    	/* not on any queue */
75 	BQUEUE_LOCKED,  	/* locked buffers */
76 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
77 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
78 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
79 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
80 	BQUEUE_EMPTY,    	/* empty buffer headers */
81 
82 	BUFFER_QUEUES		/* number of buffer queues */
83 };
84 
85 typedef enum bufq_type bufq_type_t;
86 
87 #define BD_WAKE_SIZE	16384
88 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
89 
90 TAILQ_HEAD(bqueues, buf);
91 
92 struct bufpcpu {
93 	struct spinlock spin;
94 	struct bqueues bufqueues[BUFFER_QUEUES];
95 } __cachealign;
96 
97 struct bufpcpu bufpcpu[MAXCPU];
98 
99 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
100 
101 struct buf *buf;		/* buffer header pool */
102 
103 static void vfs_clean_pages(struct buf *bp);
104 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
105 #if 0
106 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
107 #endif
108 static void vfs_vmio_release(struct buf *bp);
109 static int flushbufqueues(struct buf *marker, bufq_type_t q);
110 static vm_page_t bio_page_alloc(struct buf *bp, vm_object_t obj,
111 				vm_pindex_t pg, int deficit);
112 
113 static void bd_signal(long totalspace);
114 static void buf_daemon(void);
115 static void buf_daemon_hw(void);
116 
117 /*
118  * bogus page -- for I/O to/from partially complete buffers
119  * this is a temporary solution to the problem, but it is not
120  * really that bad.  it would be better to split the buffer
121  * for input in the case of buffers partially already in memory,
122  * but the code is intricate enough already.
123  */
124 vm_page_t bogus_page;
125 
126 /*
127  * These are all static, but make the ones we export globals so we do
128  * not need to use compiler magic.
129  */
130 long bufspace;			/* locked by buffer_map */
131 long maxbufspace;
132 static long bufmallocspace;	/* atomic ops */
133 long maxbufmallocspace, lobufspace, hibufspace;
134 static long bufreusecnt, bufdefragcnt, buffreekvacnt;
135 static long lorunningspace;
136 static long hirunningspace;
137 static long dirtykvaspace;		/* atomic */
138 long dirtybufspace;			/* atomic (global for systat) */
139 static long dirtybufcount;		/* atomic */
140 static long dirtybufspacehw;		/* atomic */
141 static long dirtybufcounthw;		/* atomic */
142 static long runningbufspace;		/* atomic */
143 static long runningbufcount;		/* atomic */
144 long lodirtybufspace;
145 long hidirtybufspace;
146 static int getnewbufcalls;
147 static int getnewbufrestarts;
148 static int recoverbufcalls;
149 static int needsbuffer;			/* atomic */
150 static int runningbufreq;		/* atomic */
151 static int bd_request;			/* atomic */
152 static int bd_request_hw;		/* atomic */
153 static u_int bd_wake_ary[BD_WAKE_SIZE];
154 static u_int bd_wake_index;
155 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
156 static int debug_commit;
157 static int debug_bufbio;
158 
159 static struct thread *bufdaemon_td;
160 static struct thread *bufdaemonhw_td;
161 static u_int lowmempgallocs;
162 static u_int lowmempgfails;
163 
164 /*
165  * Sysctls for operational control of the buffer cache.
166  */
167 SYSCTL_LONG(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
168 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
169 SYSCTL_LONG(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
170 	"High watermark used to trigger explicit flushing of dirty buffers");
171 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
172 	"Minimum amount of buffer space required for active I/O");
173 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
174 	"Maximum amount of buffer space to usable for active I/O");
175 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
176 	"Page allocations done during periods of very low free memory");
177 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0,
178 	"Page allocations which failed during periods of very low free memory");
179 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
180 	"Recycle pages to active or inactive queue transition pt 0-64");
181 /*
182  * Sysctls determining current state of the buffer cache.
183  */
184 SYSCTL_LONG(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
185 	"Total number of buffers in buffer cache");
186 SYSCTL_LONG(_vfs, OID_AUTO, dirtykvaspace, CTLFLAG_RD, &dirtykvaspace, 0,
187 	"KVA reserved by dirty buffers (all)");
188 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
189 	"Pending bytes of dirty buffers (all)");
190 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
191 	"Pending bytes of dirty buffers (heavy weight)");
192 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
193 	"Pending number of dirty buffers");
194 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
195 	"Pending number of dirty buffers (heavy weight)");
196 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
197 	"I/O bytes currently in progress due to asynchronous writes");
198 SYSCTL_LONG(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
199 	"I/O buffers currently in progress due to asynchronous writes");
200 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
201 	"Hard limit on maximum amount of memory usable for buffer space");
202 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
203 	"Soft limit on maximum amount of memory usable for buffer space");
204 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
205 	"Minimum amount of memory to reserve for system buffer space");
206 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
207 	"Amount of memory available for buffers");
208 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
209 	0, "Maximum amount of memory reserved for buffers using malloc");
210 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
211 	"Amount of memory left for buffers using malloc-scheme");
212 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
213 	"New buffer header acquisition requests");
214 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
215 	0, "New buffer header acquisition restarts");
216 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
217 	"Recover VM space in an emergency");
218 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
219 	"Buffer acquisition restarts due to fragmented buffer map");
220 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
221 	"Amount of time KVA space was deallocated in an arbitrary buffer");
222 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
223 	"Amount of time buffer re-use operations were successful");
224 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
225 SYSCTL_INT(_vfs, OID_AUTO, debug_bufbio, CTLFLAG_RW, &debug_bufbio, 0, "");
226 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
227 	"sizeof(struct buf)");
228 
229 char *buf_wmesg = BUF_WMESG;
230 
231 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
232 #define VFS_BIO_NEED_UNUSED02	0x02
233 #define VFS_BIO_NEED_UNUSED04	0x04
234 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
235 
236 /*
237  * bufspacewakeup:
238  *
239  *	Called when buffer space is potentially available for recovery.
240  *	getnewbuf() will block on this flag when it is unable to free
241  *	sufficient buffer space.  Buffer space becomes recoverable when
242  *	bp's get placed back in the queues.
243  */
244 static __inline void
245 bufspacewakeup(void)
246 {
247 	/*
248 	 * If someone is waiting for BUF space, wake them up.  Even
249 	 * though we haven't freed the kva space yet, the waiting
250 	 * process will be able to now.
251 	 */
252 	for (;;) {
253 		int flags = needsbuffer;
254 		cpu_ccfence();
255 		if ((flags & VFS_BIO_NEED_BUFSPACE) == 0)
256 			break;
257 		if (atomic_cmpset_int(&needsbuffer, flags,
258 				      flags & ~VFS_BIO_NEED_BUFSPACE)) {
259 			wakeup(&needsbuffer);
260 			break;
261 		}
262 		/* retry */
263 	}
264 }
265 
266 /*
267  * runningbufwakeup:
268  *
269  *	Accounting for I/O in progress.
270  *
271  */
272 static __inline void
273 runningbufwakeup(struct buf *bp)
274 {
275 	long totalspace;
276 	long flags;
277 
278 	if ((totalspace = bp->b_runningbufspace) != 0) {
279 		atomic_add_long(&runningbufspace, -totalspace);
280 		atomic_add_long(&runningbufcount, -1);
281 		bp->b_runningbufspace = 0;
282 
283 		/*
284 		 * see waitrunningbufspace() for limit test.
285 		 */
286 		for (;;) {
287 			flags = runningbufreq;
288 			cpu_ccfence();
289 			if (flags == 0)
290 				break;
291 			if (atomic_cmpset_int(&runningbufreq, flags, 0)) {
292 				wakeup(&runningbufreq);
293 				break;
294 			}
295 			/* retry */
296 		}
297 		bd_signal(totalspace);
298 	}
299 }
300 
301 /*
302  * bufcountwakeup:
303  *
304  *	Called when a buffer has been added to one of the free queues to
305  *	account for the buffer and to wakeup anyone waiting for free buffers.
306  *	This typically occurs when large amounts of metadata are being handled
307  *	by the buffer cache ( else buffer space runs out first, usually ).
308  */
309 static __inline void
310 bufcountwakeup(void)
311 {
312 	long flags;
313 
314 	for (;;) {
315 		flags = needsbuffer;
316 		if (flags == 0)
317 			break;
318 		if (atomic_cmpset_int(&needsbuffer, flags,
319 				      (flags & ~VFS_BIO_NEED_ANY))) {
320 			wakeup(&needsbuffer);
321 			break;
322 		}
323 		/* retry */
324 	}
325 }
326 
327 /*
328  * waitrunningbufspace()
329  *
330  * If runningbufspace exceeds 4/6 hirunningspace we block until
331  * runningbufspace drops to 3/6 hirunningspace.  We also block if another
332  * thread blocked here in order to be fair, even if runningbufspace
333  * is now lower than the limit.
334  *
335  * The caller may be using this function to block in a tight loop, we
336  * must block while runningbufspace is greater than at least
337  * hirunningspace * 3 / 6.
338  */
339 void
340 waitrunningbufspace(void)
341 {
342 	long limit = hirunningspace * 4 / 6;
343 	long flags;
344 
345 	while (runningbufspace > limit || runningbufreq) {
346 		tsleep_interlock(&runningbufreq, 0);
347 		flags = atomic_fetchadd_int(&runningbufreq, 1);
348 		if (runningbufspace > limit || flags)
349 			tsleep(&runningbufreq, PINTERLOCKED, "wdrn1", hz);
350 	}
351 }
352 
353 /*
354  * buf_dirty_count_severe:
355  *
356  *	Return true if we have too many dirty buffers.
357  */
358 int
359 buf_dirty_count_severe(void)
360 {
361 	return (runningbufspace + dirtykvaspace >= hidirtybufspace ||
362 	        dirtybufcount >= nbuf / 2);
363 }
364 
365 /*
366  * Return true if the amount of running I/O is severe and BIOQ should
367  * start bursting.
368  */
369 int
370 buf_runningbufspace_severe(void)
371 {
372 	return (runningbufspace >= hirunningspace * 4 / 6);
373 }
374 
375 /*
376  * vfs_buf_test_cache:
377  *
378  * Called when a buffer is extended.  This function clears the B_CACHE
379  * bit if the newly extended portion of the buffer does not contain
380  * valid data.
381  *
382  * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
383  * cache buffers.  The VM pages remain dirty, as someone had mmap()'d
384  * them while a clean buffer was present.
385  */
386 static __inline__
387 void
388 vfs_buf_test_cache(struct buf *bp,
389 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
390 		  vm_page_t m)
391 {
392 	if (bp->b_flags & B_CACHE) {
393 		int base = (foff + off) & PAGE_MASK;
394 		if (vm_page_is_valid(m, base, size) == 0)
395 			bp->b_flags &= ~B_CACHE;
396 	}
397 }
398 
399 /*
400  * bd_speedup()
401  *
402  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
403  * low water mark.
404  */
405 static __inline__
406 void
407 bd_speedup(void)
408 {
409 	if (dirtykvaspace < lodirtybufspace && dirtybufcount < nbuf / 2)
410 		return;
411 
412 	if (bd_request == 0 &&
413 	    (dirtykvaspace > lodirtybufspace / 2 ||
414 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
415 		if (atomic_fetchadd_int(&bd_request, 1) == 0)
416 			wakeup(&bd_request);
417 	}
418 	if (bd_request_hw == 0 &&
419 	    (dirtykvaspace > lodirtybufspace / 2 ||
420 	     dirtybufcounthw >= nbuf / 2)) {
421 		if (atomic_fetchadd_int(&bd_request_hw, 1) == 0)
422 			wakeup(&bd_request_hw);
423 	}
424 }
425 
426 /*
427  * bd_heatup()
428  *
429  *	Get the buf_daemon heated up when the number of running and dirty
430  *	buffers exceeds the mid-point.
431  *
432  *	Return the total number of dirty bytes past the second mid point
433  *	as a measure of how much excess dirty data there is in the system.
434  */
435 long
436 bd_heatup(void)
437 {
438 	long mid1;
439 	long mid2;
440 	long totalspace;
441 
442 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
443 
444 	totalspace = runningbufspace + dirtykvaspace;
445 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
446 		bd_speedup();
447 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
448 		if (totalspace >= mid2)
449 			return(totalspace - mid2);
450 	}
451 	return(0);
452 }
453 
454 /*
455  * bd_wait()
456  *
457  *	Wait for the buffer cache to flush (totalspace) bytes worth of
458  *	buffers, then return.
459  *
460  *	Regardless this function blocks while the number of dirty buffers
461  *	exceeds hidirtybufspace.
462  */
463 void
464 bd_wait(long totalspace)
465 {
466 	u_int i;
467 	u_int j;
468 	u_int mi;
469 	int count;
470 
471 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
472 		return;
473 
474 	while (totalspace > 0) {
475 		bd_heatup();
476 
477 		/*
478 		 * Order is important.  Suppliers adjust bd_wake_index after
479 		 * updating runningbufspace/dirtykvaspace.  We want to fetch
480 		 * bd_wake_index before accessing.  Any error should thus
481 		 * be in our favor.
482 		 */
483 		i = atomic_fetchadd_int(&bd_wake_index, 0);
484 		if (totalspace > runningbufspace + dirtykvaspace)
485 			totalspace = runningbufspace + dirtykvaspace;
486 		count = totalspace / BKVASIZE;
487 		if (count >= BD_WAKE_SIZE / 2)
488 			count = BD_WAKE_SIZE / 2;
489 		i = i + count;
490 		mi = i & BD_WAKE_MASK;
491 
492 		/*
493 		 * This is not a strict interlock, so we play a bit loose
494 		 * with locking access to dirtybufspace*.  We have to re-check
495 		 * bd_wake_index to ensure that it hasn't passed us.
496 		 */
497 		tsleep_interlock(&bd_wake_ary[mi], 0);
498 		atomic_add_int(&bd_wake_ary[mi], 1);
499 		j = atomic_fetchadd_int(&bd_wake_index, 0);
500 		if ((int)(i - j) >= 0)
501 			tsleep(&bd_wake_ary[mi], PINTERLOCKED, "flstik", hz);
502 
503 		totalspace = runningbufspace + dirtykvaspace - hidirtybufspace;
504 	}
505 }
506 
507 /*
508  * bd_signal()
509  *
510  *	This function is called whenever runningbufspace or dirtykvaspace
511  *	is reduced.  Track threads waiting for run+dirty buffer I/O
512  *	complete.
513  */
514 static void
515 bd_signal(long totalspace)
516 {
517 	u_int i;
518 
519 	if (totalspace > 0) {
520 		if (totalspace > BKVASIZE * BD_WAKE_SIZE)
521 			totalspace = BKVASIZE * BD_WAKE_SIZE;
522 		while (totalspace > 0) {
523 			i = atomic_fetchadd_int(&bd_wake_index, 1);
524 			i &= BD_WAKE_MASK;
525 			if (atomic_readandclear_int(&bd_wake_ary[i]))
526 				wakeup(&bd_wake_ary[i]);
527 			totalspace -= BKVASIZE;
528 		}
529 	}
530 }
531 
532 /*
533  * BIO tracking support routines.
534  *
535  * Release a ref on a bio_track.  Wakeup requests are atomically released
536  * along with the last reference so bk_active will never wind up set to
537  * only 0x80000000.
538  */
539 static
540 void
541 bio_track_rel(struct bio_track *track)
542 {
543 	int	active;
544 	int	desired;
545 
546 	/*
547 	 * Shortcut
548 	 */
549 	active = track->bk_active;
550 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
551 		return;
552 
553 	/*
554 	 * Full-on.  Note that the wait flag is only atomically released on
555 	 * the 1->0 count transition.
556 	 *
557 	 * We check for a negative count transition using bit 30 since bit 31
558 	 * has a different meaning.
559 	 */
560 	for (;;) {
561 		desired = (active & 0x7FFFFFFF) - 1;
562 		if (desired)
563 			desired |= active & 0x80000000;
564 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
565 			if (desired & 0x40000000)
566 				panic("bio_track_rel: bad count: %p", track);
567 			if (active & 0x80000000)
568 				wakeup(track);
569 			break;
570 		}
571 		active = track->bk_active;
572 	}
573 }
574 
575 /*
576  * Wait for the tracking count to reach 0.
577  *
578  * Use atomic ops such that the wait flag is only set atomically when
579  * bk_active is non-zero.
580  */
581 int
582 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
583 {
584 	int	active;
585 	int	desired;
586 	int	error;
587 
588 	/*
589 	 * Shortcut
590 	 */
591 	if (track->bk_active == 0)
592 		return(0);
593 
594 	/*
595 	 * Full-on.  Note that the wait flag may only be atomically set if
596 	 * the active count is non-zero.
597 	 *
598 	 * NOTE: We cannot optimize active == desired since a wakeup could
599 	 *	 clear active prior to our tsleep_interlock().
600 	 */
601 	error = 0;
602 	while ((active = track->bk_active) != 0) {
603 		cpu_ccfence();
604 		desired = active | 0x80000000;
605 		tsleep_interlock(track, slp_flags);
606 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
607 			error = tsleep(track, slp_flags | PINTERLOCKED,
608 				       "trwait", slp_timo);
609 			if (error)
610 				break;
611 		}
612 	}
613 	return (error);
614 }
615 
616 /*
617  * bufinit:
618  *
619  *	Load time initialisation of the buffer cache, called from machine
620  *	dependant initialization code.
621  */
622 static
623 void
624 bufinit(void *dummy __unused)
625 {
626 	struct bufpcpu *pcpu;
627 	struct buf *bp;
628 	vm_offset_t bogus_offset;
629 	int i;
630 	int j;
631 	long n;
632 
633 	/* next, make a null set of free lists */
634 	for (i = 0; i < ncpus; ++i) {
635 		pcpu = &bufpcpu[i];
636 		spin_init(&pcpu->spin, "bufinit");
637 		for (j = 0; j < BUFFER_QUEUES; j++)
638 			TAILQ_INIT(&pcpu->bufqueues[j]);
639 	}
640 
641 	/* finally, initialize each buffer header and stick on empty q */
642 	i = 0;
643 	pcpu = &bufpcpu[i];
644 
645 	for (n = 0; n < nbuf; n++) {
646 		bp = &buf[n];
647 		bzero(bp, sizeof *bp);
648 		bp->b_flags = B_INVAL;	/* we're just an empty header */
649 		bp->b_cmd = BUF_CMD_DONE;
650 		bp->b_qindex = BQUEUE_EMPTY;
651 		bp->b_qcpu = i;
652 		initbufbio(bp);
653 		xio_init(&bp->b_xio);
654 		buf_dep_init(bp);
655 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
656 				  bp, b_freelist);
657 
658 		i = (i + 1) % ncpus;
659 		pcpu = &bufpcpu[i];
660 	}
661 
662 	/*
663 	 * maxbufspace is the absolute maximum amount of buffer space we are
664 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
665 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
666 	 * used by most other processes.  The differential is required to
667 	 * ensure that buf_daemon is able to run when other processes might
668 	 * be blocked waiting for buffer space.
669 	 *
670 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
671 	 * this may result in KVM fragmentation which is not handled optimally
672 	 * by the system.
673 	 */
674 	maxbufspace = nbuf * BKVASIZE;
675 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
676 	lobufspace = hibufspace - MAXBSIZE;
677 
678 	lorunningspace = 512 * 1024;
679 	/* hirunningspace -- see below */
680 
681 	/*
682 	 * Limit the amount of malloc memory since it is wired permanently
683 	 * into the kernel space.  Even though this is accounted for in
684 	 * the buffer allocation, we don't want the malloced region to grow
685 	 * uncontrolled.  The malloc scheme improves memory utilization
686 	 * significantly on average (small) directories.
687 	 */
688 	maxbufmallocspace = hibufspace / 20;
689 
690 	/*
691 	 * Reduce the chance of a deadlock occuring by limiting the number
692 	 * of delayed-write dirty buffers we allow to stack up.
693 	 *
694 	 * We don't want too much actually queued to the device at once
695 	 * (XXX this needs to be per-mount!), because the buffers will
696 	 * wind up locked for a very long period of time while the I/O
697 	 * drains.
698 	 */
699 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
700 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
701 	if (hirunningspace < 1024 * 1024)
702 		hirunningspace = 1024 * 1024;
703 
704 	dirtykvaspace = 0;
705 	dirtybufspace = 0;
706 	dirtybufspacehw = 0;
707 
708 	lodirtybufspace = hidirtybufspace / 2;
709 
710 	/*
711 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
712 	 * somewhat of a hack at the moment, we really need to limit ourselves
713 	 * based on the number of bytes of I/O in-transit that were initiated
714 	 * from buf_daemon.
715 	 */
716 
717 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
718 	vm_object_hold(&kernel_object);
719 	bogus_page = vm_page_alloc(&kernel_object,
720 				   (bogus_offset >> PAGE_SHIFT),
721 				   VM_ALLOC_NORMAL);
722 	vm_object_drop(&kernel_object);
723 	vmstats.v_wire_count++;
724 
725 }
726 
727 SYSINIT(do_bufinit, SI_BOOT2_MACHDEP, SI_ORDER_FIRST, bufinit, NULL);
728 
729 /*
730  * Initialize the embedded bio structures, typically used by
731  * deprecated code which tries to allocate its own struct bufs.
732  */
733 void
734 initbufbio(struct buf *bp)
735 {
736 	bp->b_bio1.bio_buf = bp;
737 	bp->b_bio1.bio_prev = NULL;
738 	bp->b_bio1.bio_offset = NOOFFSET;
739 	bp->b_bio1.bio_next = &bp->b_bio2;
740 	bp->b_bio1.bio_done = NULL;
741 	bp->b_bio1.bio_flags = 0;
742 
743 	bp->b_bio2.bio_buf = bp;
744 	bp->b_bio2.bio_prev = &bp->b_bio1;
745 	bp->b_bio2.bio_offset = NOOFFSET;
746 	bp->b_bio2.bio_next = NULL;
747 	bp->b_bio2.bio_done = NULL;
748 	bp->b_bio2.bio_flags = 0;
749 
750 	BUF_LOCKINIT(bp);
751 }
752 
753 /*
754  * Reinitialize the embedded bio structures as well as any additional
755  * translation cache layers.
756  */
757 void
758 reinitbufbio(struct buf *bp)
759 {
760 	struct bio *bio;
761 
762 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
763 		bio->bio_done = NULL;
764 		bio->bio_offset = NOOFFSET;
765 	}
766 }
767 
768 /*
769  * Undo the effects of an initbufbio().
770  */
771 void
772 uninitbufbio(struct buf *bp)
773 {
774 	dsched_exit_buf(bp);
775 	BUF_LOCKFREE(bp);
776 }
777 
778 /*
779  * Push another BIO layer onto an existing BIO and return it.  The new
780  * BIO layer may already exist, holding cached translation data.
781  */
782 struct bio *
783 push_bio(struct bio *bio)
784 {
785 	struct bio *nbio;
786 
787 	if ((nbio = bio->bio_next) == NULL) {
788 		int index = bio - &bio->bio_buf->b_bio_array[0];
789 		if (index >= NBUF_BIO - 1) {
790 			panic("push_bio: too many layers bp %p",
791 				bio->bio_buf);
792 		}
793 		nbio = &bio->bio_buf->b_bio_array[index + 1];
794 		bio->bio_next = nbio;
795 		nbio->bio_prev = bio;
796 		nbio->bio_buf = bio->bio_buf;
797 		nbio->bio_offset = NOOFFSET;
798 		nbio->bio_done = NULL;
799 		nbio->bio_next = NULL;
800 	}
801 	KKASSERT(nbio->bio_done == NULL);
802 	return(nbio);
803 }
804 
805 /*
806  * Pop a BIO translation layer, returning the previous layer.  The
807  * must have been previously pushed.
808  */
809 struct bio *
810 pop_bio(struct bio *bio)
811 {
812 	return(bio->bio_prev);
813 }
814 
815 void
816 clearbiocache(struct bio *bio)
817 {
818 	while (bio) {
819 		bio->bio_offset = NOOFFSET;
820 		bio = bio->bio_next;
821 	}
822 }
823 
824 /*
825  * bfreekva:
826  *
827  *	Free the KVA allocation for buffer 'bp'.
828  *
829  *	Must be called from a critical section as this is the only locking for
830  *	buffer_map.
831  *
832  *	Since this call frees up buffer space, we call bufspacewakeup().
833  */
834 static void
835 bfreekva(struct buf *bp)
836 {
837 	int count;
838 
839 	if (bp->b_kvasize) {
840 		++buffreekvacnt;
841 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
842 		vm_map_lock(&buffer_map);
843 		bufspace -= bp->b_kvasize;
844 		vm_map_delete(&buffer_map,
845 		    (vm_offset_t) bp->b_kvabase,
846 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
847 		    &count
848 		);
849 		vm_map_unlock(&buffer_map);
850 		vm_map_entry_release(count);
851 		bp->b_kvasize = 0;
852 		bp->b_kvabase = NULL;
853 		bufspacewakeup();
854 	}
855 }
856 
857 /*
858  * Remove the buffer from the appropriate free list.
859  * (caller must be locked)
860  */
861 static __inline void
862 _bremfree(struct buf *bp)
863 {
864 	struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
865 
866 	if (bp->b_qindex != BQUEUE_NONE) {
867 		KASSERT(BUF_REFCNTNB(bp) == 1,
868 			("bremfree: bp %p not locked",bp));
869 		TAILQ_REMOVE(&pcpu->bufqueues[bp->b_qindex], bp, b_freelist);
870 		bp->b_qindex = BQUEUE_NONE;
871 	} else {
872 		if (BUF_REFCNTNB(bp) <= 1)
873 			panic("bremfree: removing a buffer not on a queue");
874 	}
875 }
876 
877 /*
878  * bremfree() - must be called with a locked buffer
879  */
880 void
881 bremfree(struct buf *bp)
882 {
883 	struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
884 
885 	spin_lock(&pcpu->spin);
886 	_bremfree(bp);
887 	spin_unlock(&pcpu->spin);
888 }
889 
890 /*
891  * bremfree_locked - must be called with pcpu->spin locked
892  */
893 static void
894 bremfree_locked(struct buf *bp)
895 {
896 	_bremfree(bp);
897 }
898 
899 /*
900  * This version of bread issues any required I/O asyncnronously and
901  * makes a callback on completion.
902  *
903  * The callback must check whether BIO_DONE is set in the bio and issue
904  * the bpdone(bp, 0) if it isn't.  The callback is responsible for clearing
905  * BIO_DONE and disposing of the I/O (bqrelse()ing it).
906  */
907 void
908 breadcb(struct vnode *vp, off_t loffset, int size,
909 	void (*func)(struct bio *), void *arg)
910 {
911 	struct buf *bp;
912 
913 	bp = getblk(vp, loffset, size, 0, 0);
914 
915 	/* if not found in cache, do some I/O */
916 	if ((bp->b_flags & B_CACHE) == 0) {
917 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
918 		bp->b_cmd = BUF_CMD_READ;
919 		bp->b_bio1.bio_done = func;
920 		bp->b_bio1.bio_caller_info1.ptr = arg;
921 		vfs_busy_pages(vp, bp);
922 		BUF_KERNPROC(bp);
923 		vn_strategy(vp, &bp->b_bio1);
924 	} else if (func) {
925 		/*
926 		 * Since we are issuing the callback synchronously it cannot
927 		 * race the BIO_DONE, so no need for atomic ops here.
928 		 */
929 		/*bp->b_bio1.bio_done = func;*/
930 		bp->b_bio1.bio_caller_info1.ptr = arg;
931 		bp->b_bio1.bio_flags |= BIO_DONE;
932 		func(&bp->b_bio1);
933 	} else {
934 		bqrelse(bp);
935 	}
936 }
937 
938 /*
939  * breadnx() - Terminal function for bread() and breadn().
940  *
941  * This function will start asynchronous I/O on read-ahead blocks as well
942  * as satisfy the primary request.
943  *
944  * We must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE is
945  * set, the buffer is valid and we do not have to do anything.
946  */
947 int
948 breadnx(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
949 	int *rabsize, int cnt, struct buf **bpp)
950 {
951 	struct buf *bp, *rabp;
952 	int i;
953 	int rv = 0, readwait = 0;
954 
955 	if (*bpp)
956 		bp = *bpp;
957 	else
958 		*bpp = bp = getblk(vp, loffset, size, 0, 0);
959 
960 	/* if not found in cache, do some I/O */
961 	if ((bp->b_flags & B_CACHE) == 0) {
962 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
963 		bp->b_cmd = BUF_CMD_READ;
964 		bp->b_bio1.bio_done = biodone_sync;
965 		bp->b_bio1.bio_flags |= BIO_SYNC;
966 		vfs_busy_pages(vp, bp);
967 		vn_strategy(vp, &bp->b_bio1);
968 		++readwait;
969 	}
970 
971 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
972 		if (inmem(vp, *raoffset))
973 			continue;
974 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
975 
976 		if ((rabp->b_flags & B_CACHE) == 0) {
977 			rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
978 			rabp->b_cmd = BUF_CMD_READ;
979 			vfs_busy_pages(vp, rabp);
980 			BUF_KERNPROC(rabp);
981 			vn_strategy(vp, &rabp->b_bio1);
982 		} else {
983 			brelse(rabp);
984 		}
985 	}
986 	if (readwait)
987 		rv = biowait(&bp->b_bio1, "biord");
988 	return (rv);
989 }
990 
991 /*
992  * bwrite:
993  *
994  *	Synchronous write, waits for completion.
995  *
996  *	Write, release buffer on completion.  (Done by iodone
997  *	if async).  Do not bother writing anything if the buffer
998  *	is invalid.
999  *
1000  *	Note that we set B_CACHE here, indicating that buffer is
1001  *	fully valid and thus cacheable.  This is true even of NFS
1002  *	now so we set it generally.  This could be set either here
1003  *	or in biodone() since the I/O is synchronous.  We put it
1004  *	here.
1005  */
1006 int
1007 bwrite(struct buf *bp)
1008 {
1009 	int error;
1010 
1011 	if (bp->b_flags & B_INVAL) {
1012 		brelse(bp);
1013 		return (0);
1014 	}
1015 	if (BUF_REFCNTNB(bp) == 0)
1016 		panic("bwrite: buffer is not busy???");
1017 
1018 	/* Mark the buffer clean */
1019 	bundirty(bp);
1020 
1021 	bp->b_flags &= ~(B_ERROR | B_EINTR);
1022 	bp->b_flags |= B_CACHE;
1023 	bp->b_cmd = BUF_CMD_WRITE;
1024 	bp->b_bio1.bio_done = biodone_sync;
1025 	bp->b_bio1.bio_flags |= BIO_SYNC;
1026 	vfs_busy_pages(bp->b_vp, bp);
1027 
1028 	/*
1029 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1030 	 * valid for vnode-backed buffers.
1031 	 */
1032 	bsetrunningbufspace(bp, bp->b_bufsize);
1033 	vn_strategy(bp->b_vp, &bp->b_bio1);
1034 	error = biowait(&bp->b_bio1, "biows");
1035 	brelse(bp);
1036 
1037 	return (error);
1038 }
1039 
1040 /*
1041  * bawrite:
1042  *
1043  *	Asynchronous write.  Start output on a buffer, but do not wait for
1044  *	it to complete.  The buffer is released when the output completes.
1045  *
1046  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1047  *	B_INVAL buffers.  Not us.
1048  */
1049 void
1050 bawrite(struct buf *bp)
1051 {
1052 	if (bp->b_flags & B_INVAL) {
1053 		brelse(bp);
1054 		return;
1055 	}
1056 	if (BUF_REFCNTNB(bp) == 0)
1057 		panic("bwrite: buffer is not busy???");
1058 
1059 	/* Mark the buffer clean */
1060 	bundirty(bp);
1061 
1062 	bp->b_flags &= ~(B_ERROR | B_EINTR);
1063 	bp->b_flags |= B_CACHE;
1064 	bp->b_cmd = BUF_CMD_WRITE;
1065 	KKASSERT(bp->b_bio1.bio_done == NULL);
1066 	vfs_busy_pages(bp->b_vp, bp);
1067 
1068 	/*
1069 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1070 	 * valid for vnode-backed buffers.
1071 	 */
1072 	bsetrunningbufspace(bp, bp->b_bufsize);
1073 	BUF_KERNPROC(bp);
1074 	vn_strategy(bp->b_vp, &bp->b_bio1);
1075 }
1076 
1077 /*
1078  * bowrite:
1079  *
1080  *	Ordered write.  Start output on a buffer, and flag it so that the
1081  *	device will write it in the order it was queued.  The buffer is
1082  *	released when the output completes.  bwrite() ( or the VOP routine
1083  *	anyway ) is responsible for handling B_INVAL buffers.
1084  */
1085 int
1086 bowrite(struct buf *bp)
1087 {
1088 	bp->b_flags |= B_ORDERED;
1089 	bawrite(bp);
1090 	return (0);
1091 }
1092 
1093 /*
1094  * bdwrite:
1095  *
1096  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1097  *	anything if the buffer is marked invalid.
1098  *
1099  *	Note that since the buffer must be completely valid, we can safely
1100  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1101  *	biodone() in order to prevent getblk from writing the buffer
1102  *	out synchronously.
1103  */
1104 void
1105 bdwrite(struct buf *bp)
1106 {
1107 	if (BUF_REFCNTNB(bp) == 0)
1108 		panic("bdwrite: buffer is not busy");
1109 
1110 	if (bp->b_flags & B_INVAL) {
1111 		brelse(bp);
1112 		return;
1113 	}
1114 	bdirty(bp);
1115 
1116 	if (dsched_is_clear_buf_priv(bp))
1117 		dsched_new_buf(bp);
1118 
1119 	/*
1120 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1121 	 * true even of NFS now.
1122 	 */
1123 	bp->b_flags |= B_CACHE;
1124 
1125 	/*
1126 	 * This bmap keeps the system from needing to do the bmap later,
1127 	 * perhaps when the system is attempting to do a sync.  Since it
1128 	 * is likely that the indirect block -- or whatever other datastructure
1129 	 * that the filesystem needs is still in memory now, it is a good
1130 	 * thing to do this.  Note also, that if the pageout daemon is
1131 	 * requesting a sync -- there might not be enough memory to do
1132 	 * the bmap then...  So, this is important to do.
1133 	 */
1134 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1135 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1136 			 NULL, NULL, BUF_CMD_WRITE);
1137 	}
1138 
1139 	/*
1140 	 * Because the underlying pages may still be mapped and
1141 	 * writable trying to set the dirty buffer (b_dirtyoff/end)
1142 	 * range here will be inaccurate.
1143 	 *
1144 	 * However, we must still clean the pages to satisfy the
1145 	 * vnode_pager and pageout daemon, so theythink the pages
1146 	 * have been "cleaned".  What has really occured is that
1147 	 * they've been earmarked for later writing by the buffer
1148 	 * cache.
1149 	 *
1150 	 * So we get the b_dirtyoff/end update but will not actually
1151 	 * depend on it (NFS that is) until the pages are busied for
1152 	 * writing later on.
1153 	 */
1154 	vfs_clean_pages(bp);
1155 	bqrelse(bp);
1156 
1157 	/*
1158 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1159 	 * due to the softdep code.
1160 	 */
1161 }
1162 
1163 /*
1164  * Fake write - return pages to VM system as dirty, leave the buffer clean.
1165  * This is used by tmpfs.
1166  *
1167  * It is important for any VFS using this routine to NOT use it for
1168  * IO_SYNC or IO_ASYNC operations which occur when the system really
1169  * wants to flush VM pages to backing store.
1170  */
1171 void
1172 buwrite(struct buf *bp)
1173 {
1174 	vm_page_t m;
1175 	int i;
1176 
1177 	/*
1178 	 * Only works for VMIO buffers.  If the buffer is already
1179 	 * marked for delayed-write we can't avoid the bdwrite().
1180 	 */
1181 	if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1182 		bdwrite(bp);
1183 		return;
1184 	}
1185 
1186 	/*
1187 	 * Mark as needing a commit.
1188 	 */
1189 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1190 		m = bp->b_xio.xio_pages[i];
1191 		vm_page_need_commit(m);
1192 	}
1193 	bqrelse(bp);
1194 }
1195 
1196 /*
1197  * bdirty:
1198  *
1199  *	Turn buffer into delayed write request by marking it B_DELWRI.
1200  *	B_RELBUF and B_NOCACHE must be cleared.
1201  *
1202  *	We reassign the buffer to itself to properly update it in the
1203  *	dirty/clean lists.
1204  *
1205  *	Must be called from a critical section.
1206  *	The buffer must be on BQUEUE_NONE.
1207  */
1208 void
1209 bdirty(struct buf *bp)
1210 {
1211 	KASSERT(bp->b_qindex == BQUEUE_NONE,
1212 		("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1213 	if (bp->b_flags & B_NOCACHE) {
1214 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1215 		bp->b_flags &= ~B_NOCACHE;
1216 	}
1217 	if (bp->b_flags & B_INVAL) {
1218 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1219 	}
1220 	bp->b_flags &= ~B_RELBUF;
1221 
1222 	if ((bp->b_flags & B_DELWRI) == 0) {
1223 		lwkt_gettoken(&bp->b_vp->v_token);
1224 		bp->b_flags |= B_DELWRI;
1225 		reassignbuf(bp);
1226 		lwkt_reltoken(&bp->b_vp->v_token);
1227 
1228 		atomic_add_long(&dirtybufcount, 1);
1229 		atomic_add_long(&dirtykvaspace, bp->b_kvasize);
1230 		atomic_add_long(&dirtybufspace, bp->b_bufsize);
1231 		if (bp->b_flags & B_HEAVY) {
1232 			atomic_add_long(&dirtybufcounthw, 1);
1233 			atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1234 		}
1235 		bd_heatup();
1236 	}
1237 }
1238 
1239 /*
1240  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1241  * needs to be flushed with a different buf_daemon thread to avoid
1242  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1243  */
1244 void
1245 bheavy(struct buf *bp)
1246 {
1247 	if ((bp->b_flags & B_HEAVY) == 0) {
1248 		bp->b_flags |= B_HEAVY;
1249 		if (bp->b_flags & B_DELWRI) {
1250 			atomic_add_long(&dirtybufcounthw, 1);
1251 			atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1252 		}
1253 	}
1254 }
1255 
1256 /*
1257  * bundirty:
1258  *
1259  *	Clear B_DELWRI for buffer.
1260  *
1261  *	Must be called from a critical section.
1262  *
1263  *	The buffer is typically on BQUEUE_NONE but there is one case in
1264  *	brelse() that calls this function after placing the buffer on
1265  *	a different queue.
1266  */
1267 void
1268 bundirty(struct buf *bp)
1269 {
1270 	if (bp->b_flags & B_DELWRI) {
1271 		lwkt_gettoken(&bp->b_vp->v_token);
1272 		bp->b_flags &= ~B_DELWRI;
1273 		reassignbuf(bp);
1274 		lwkt_reltoken(&bp->b_vp->v_token);
1275 
1276 		atomic_add_long(&dirtybufcount, -1);
1277 		atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1278 		atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1279 		if (bp->b_flags & B_HEAVY) {
1280 			atomic_add_long(&dirtybufcounthw, -1);
1281 			atomic_add_long(&dirtybufspacehw, -bp->b_bufsize);
1282 		}
1283 		bd_signal(bp->b_bufsize);
1284 	}
1285 	/*
1286 	 * Since it is now being written, we can clear its deferred write flag.
1287 	 */
1288 	bp->b_flags &= ~B_DEFERRED;
1289 }
1290 
1291 /*
1292  * Set the b_runningbufspace field, used to track how much I/O is
1293  * in progress at any given moment.
1294  */
1295 void
1296 bsetrunningbufspace(struct buf *bp, int bytes)
1297 {
1298 	bp->b_runningbufspace = bytes;
1299 	if (bytes) {
1300 		atomic_add_long(&runningbufspace, bytes);
1301 		atomic_add_long(&runningbufcount, 1);
1302 	}
1303 }
1304 
1305 /*
1306  * brelse:
1307  *
1308  *	Release a busy buffer and, if requested, free its resources.  The
1309  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1310  *	to be accessed later as a cache entity or reused for other purposes.
1311  */
1312 void
1313 brelse(struct buf *bp)
1314 {
1315 	struct bufpcpu *pcpu;
1316 #ifdef INVARIANTS
1317 	int saved_flags = bp->b_flags;
1318 #endif
1319 
1320 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1321 		("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1322 
1323 	/*
1324 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1325 	 * its backing store.  Clear B_DELWRI.
1326 	 *
1327 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1328 	 * to destroy the buffer and backing store and (2) when the caller
1329 	 * wants to destroy the buffer and backing store after a write
1330 	 * completes.
1331 	 */
1332 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1333 		bundirty(bp);
1334 	}
1335 
1336 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1337 		/*
1338 		 * A re-dirtied buffer is only subject to destruction
1339 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1340 		 */
1341 		/* leave buffer intact */
1342 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1343 		   (bp->b_bufsize <= 0)) {
1344 		/*
1345 		 * Either a failed read or we were asked to free or not
1346 		 * cache the buffer.  This path is reached with B_DELWRI
1347 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1348 		 * backing store destruction.
1349 		 *
1350 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1351 		 * buffer cannot be immediately freed.
1352 		 */
1353 		bp->b_flags |= B_INVAL;
1354 		if (LIST_FIRST(&bp->b_dep) != NULL)
1355 			buf_deallocate(bp);
1356 		if (bp->b_flags & B_DELWRI) {
1357 			atomic_add_long(&dirtybufcount, -1);
1358 			atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1359 			atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1360 			if (bp->b_flags & B_HEAVY) {
1361 				atomic_add_long(&dirtybufcounthw, -1);
1362 				atomic_add_long(&dirtybufspacehw,
1363 						-bp->b_bufsize);
1364 			}
1365 			bd_signal(bp->b_bufsize);
1366 		}
1367 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1368 	}
1369 
1370 	/*
1371 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1372 	 * or if b_refs is non-zero.
1373 	 *
1374 	 * If vfs_vmio_release() is called with either bit set, the
1375 	 * underlying pages may wind up getting freed causing a previous
1376 	 * write (bdwrite()) to get 'lost' because pages associated with
1377 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1378 	 * B_LOCKED buffer may be mapped by the filesystem.
1379 	 *
1380 	 * If we want to release the buffer ourselves (rather then the
1381 	 * originator asking us to release it), give the originator a
1382 	 * chance to countermand the release by setting B_LOCKED.
1383 	 *
1384 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1385 	 * if B_DELWRI is set.
1386 	 *
1387 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1388 	 * on pages to return pages to the VM page queues.
1389 	 */
1390 	if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) {
1391 		bp->b_flags &= ~B_RELBUF;
1392 	} else if (vm_page_count_min(0)) {
1393 		if (LIST_FIRST(&bp->b_dep) != NULL)
1394 			buf_deallocate(bp);		/* can set B_LOCKED */
1395 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1396 			bp->b_flags &= ~B_RELBUF;
1397 		else
1398 			bp->b_flags |= B_RELBUF;
1399 	}
1400 
1401 	/*
1402 	 * Make sure b_cmd is clear.  It may have already been cleared by
1403 	 * biodone().
1404 	 *
1405 	 * At this point destroying the buffer is governed by the B_INVAL
1406 	 * or B_RELBUF flags.
1407 	 */
1408 	bp->b_cmd = BUF_CMD_DONE;
1409 	dsched_exit_buf(bp);
1410 
1411 	/*
1412 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1413 	 * after an I/O may have replaces some of the pages with bogus pages
1414 	 * in order to not destroy dirty pages in a fill-in read.
1415 	 *
1416 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1417 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1418 	 * B_INVAL may still be set, however.
1419 	 *
1420 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1421 	 * but not the backing store.   B_NOCACHE will destroy the backing
1422 	 * store.
1423 	 *
1424 	 * Note that dirty NFS buffers contain byte-granular write ranges
1425 	 * and should not be destroyed w/ B_INVAL even if the backing store
1426 	 * is left intact.
1427 	 */
1428 	if (bp->b_flags & B_VMIO) {
1429 		/*
1430 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1431 		 */
1432 		int i, j, resid;
1433 		vm_page_t m;
1434 		off_t foff;
1435 		vm_pindex_t poff;
1436 		vm_object_t obj;
1437 		struct vnode *vp;
1438 
1439 		vp = bp->b_vp;
1440 
1441 		/*
1442 		 * Get the base offset and length of the buffer.  Note that
1443 		 * in the VMIO case if the buffer block size is not
1444 		 * page-aligned then b_data pointer may not be page-aligned.
1445 		 * But our b_xio.xio_pages array *IS* page aligned.
1446 		 *
1447 		 * block sizes less then DEV_BSIZE (usually 512) are not
1448 		 * supported due to the page granularity bits (m->valid,
1449 		 * m->dirty, etc...).
1450 		 *
1451 		 * See man buf(9) for more information
1452 		 */
1453 
1454 		resid = bp->b_bufsize;
1455 		foff = bp->b_loffset;
1456 
1457 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1458 			m = bp->b_xio.xio_pages[i];
1459 			vm_page_flag_clear(m, PG_ZERO);
1460 			/*
1461 			 * If we hit a bogus page, fixup *all* of them
1462 			 * now.  Note that we left these pages wired
1463 			 * when we removed them so they had better exist,
1464 			 * and they cannot be ripped out from under us so
1465 			 * no critical section protection is necessary.
1466 			 */
1467 			if (m == bogus_page) {
1468 				obj = vp->v_object;
1469 				poff = OFF_TO_IDX(bp->b_loffset);
1470 
1471 				vm_object_hold(obj);
1472 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1473 					vm_page_t mtmp;
1474 
1475 					mtmp = bp->b_xio.xio_pages[j];
1476 					if (mtmp == bogus_page) {
1477 						mtmp = vm_page_lookup(obj, poff + j);
1478 						if (!mtmp) {
1479 							panic("brelse: page missing");
1480 						}
1481 						bp->b_xio.xio_pages[j] = mtmp;
1482 					}
1483 				}
1484 				bp->b_flags &= ~B_HASBOGUS;
1485 				vm_object_drop(obj);
1486 
1487 				if ((bp->b_flags & B_INVAL) == 0) {
1488 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1489 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1490 				}
1491 				m = bp->b_xio.xio_pages[i];
1492 			}
1493 
1494 			/*
1495 			 * Invalidate the backing store if B_NOCACHE is set
1496 			 * (e.g. used with vinvalbuf()).  If this is NFS
1497 			 * we impose a requirement that the block size be
1498 			 * a multiple of PAGE_SIZE and create a temporary
1499 			 * hack to basically invalidate the whole page.  The
1500 			 * problem is that NFS uses really odd buffer sizes
1501 			 * especially when tracking piecemeal writes and
1502 			 * it also vinvalbuf()'s a lot, which would result
1503 			 * in only partial page validation and invalidation
1504 			 * here.  If the file page is mmap()'d, however,
1505 			 * all the valid bits get set so after we invalidate
1506 			 * here we would end up with weird m->valid values
1507 			 * like 0xfc.  nfs_getpages() can't handle this so
1508 			 * we clear all the valid bits for the NFS case
1509 			 * instead of just some of them.
1510 			 *
1511 			 * The real bug is the VM system having to set m->valid
1512 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1513 			 * itself is an artifact of the whole 512-byte
1514 			 * granular mess that exists to support odd block
1515 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1516 			 * A complete rewrite is required.
1517 			 *
1518 			 * XXX
1519 			 */
1520 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1521 				int poffset = foff & PAGE_MASK;
1522 				int presid;
1523 
1524 				presid = PAGE_SIZE - poffset;
1525 				if (bp->b_vp->v_tag == VT_NFS &&
1526 				    bp->b_vp->v_type == VREG) {
1527 					; /* entire page */
1528 				} else if (presid > resid) {
1529 					presid = resid;
1530 				}
1531 				KASSERT(presid >= 0, ("brelse: extra page"));
1532 				vm_page_set_invalid(m, poffset, presid);
1533 
1534 				/*
1535 				 * Also make sure any swap cache is removed
1536 				 * as it is now stale (HAMMER in particular
1537 				 * uses B_NOCACHE to deal with buffer
1538 				 * aliasing).
1539 				 */
1540 				swap_pager_unswapped(m);
1541 			}
1542 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1543 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1544 		}
1545 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1546 			vfs_vmio_release(bp);
1547 	} else {
1548 		/*
1549 		 * Rundown for non-VMIO buffers.
1550 		 */
1551 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1552 			if (bp->b_bufsize)
1553 				allocbuf(bp, 0);
1554 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1555 			if (bp->b_vp)
1556 				brelvp(bp);
1557 		}
1558 	}
1559 
1560 	if (bp->b_qindex != BQUEUE_NONE)
1561 		panic("brelse: free buffer onto another queue???");
1562 	if (BUF_REFCNTNB(bp) > 1) {
1563 		/* Temporary panic to verify exclusive locking */
1564 		/* This panic goes away when we allow shared refs */
1565 		panic("brelse: multiple refs");
1566 		/* NOT REACHED */
1567 		return;
1568 	}
1569 
1570 	/*
1571 	 * Figure out the correct queue to place the cleaned up buffer on.
1572 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1573 	 * disassociated from their vnode.
1574 	 *
1575 	 * Return the buffer to its original pcpu area
1576 	 */
1577 	pcpu = &bufpcpu[bp->b_qcpu];
1578 	spin_lock(&pcpu->spin);
1579 
1580 	if (bp->b_flags & B_LOCKED) {
1581 		/*
1582 		 * Buffers that are locked are placed in the locked queue
1583 		 * immediately, regardless of their state.
1584 		 */
1585 		bp->b_qindex = BQUEUE_LOCKED;
1586 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1587 				  bp, b_freelist);
1588 	} else if (bp->b_bufsize == 0) {
1589 		/*
1590 		 * Buffers with no memory.  Due to conditionals near the top
1591 		 * of brelse() such buffers should probably already be
1592 		 * marked B_INVAL and disassociated from their vnode.
1593 		 */
1594 		bp->b_flags |= B_INVAL;
1595 		KASSERT(bp->b_vp == NULL,
1596 			("bp1 %p flags %08x/%08x vnode %p "
1597 			 "unexpectededly still associated!",
1598 			bp, saved_flags, bp->b_flags, bp->b_vp));
1599 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1600 		if (bp->b_kvasize) {
1601 			bp->b_qindex = BQUEUE_EMPTYKVA;
1602 		} else {
1603 			bp->b_qindex = BQUEUE_EMPTY;
1604 		}
1605 		TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1606 				  bp, b_freelist);
1607 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1608 		/*
1609 		 * Buffers with junk contents.   Again these buffers had better
1610 		 * already be disassociated from their vnode.
1611 		 */
1612 		KASSERT(bp->b_vp == NULL,
1613 			("bp2 %p flags %08x/%08x vnode %p unexpectededly "
1614 			 "still associated!",
1615 			bp, saved_flags, bp->b_flags, bp->b_vp));
1616 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1617 		bp->b_flags |= B_INVAL;
1618 		bp->b_qindex = BQUEUE_CLEAN;
1619 		TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1620 				  bp, b_freelist);
1621 	} else {
1622 		/*
1623 		 * Remaining buffers.  These buffers are still associated with
1624 		 * their vnode.
1625 		 */
1626 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1627 		case B_DELWRI:
1628 			bp->b_qindex = BQUEUE_DIRTY;
1629 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1630 					  bp, b_freelist);
1631 			break;
1632 		case B_DELWRI | B_HEAVY:
1633 			bp->b_qindex = BQUEUE_DIRTY_HW;
1634 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1635 					  bp, b_freelist);
1636 			break;
1637 		default:
1638 			/*
1639 			 * NOTE: Buffers are always placed at the end of the
1640 			 * queue.  If B_AGE is not set the buffer will cycle
1641 			 * through the queue twice.
1642 			 */
1643 			bp->b_qindex = BQUEUE_CLEAN;
1644 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1645 					  bp, b_freelist);
1646 			break;
1647 		}
1648 	}
1649 	spin_unlock(&pcpu->spin);
1650 
1651 	/*
1652 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1653 	 * on the correct queue but we have not yet unlocked it.
1654 	 */
1655 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1656 		bundirty(bp);
1657 
1658 	/*
1659 	 * The bp is on an appropriate queue unless locked.  If it is not
1660 	 * locked or dirty we can wakeup threads waiting for buffer space.
1661 	 *
1662 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1663 	 * if B_INVAL is set ).
1664 	 */
1665 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1666 		bufcountwakeup();
1667 
1668 	/*
1669 	 * Something we can maybe free or reuse
1670 	 */
1671 	if (bp->b_bufsize || bp->b_kvasize)
1672 		bufspacewakeup();
1673 
1674 	/*
1675 	 * Clean up temporary flags and unlock the buffer.
1676 	 */
1677 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1678 	BUF_UNLOCK(bp);
1679 }
1680 
1681 /*
1682  * bqrelse:
1683  *
1684  *	Release a buffer back to the appropriate queue but do not try to free
1685  *	it.  The buffer is expected to be used again soon.
1686  *
1687  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1688  *	biodone() to requeue an async I/O on completion.  It is also used when
1689  *	known good buffers need to be requeued but we think we may need the data
1690  *	again soon.
1691  *
1692  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1693  */
1694 void
1695 bqrelse(struct buf *bp)
1696 {
1697 	struct bufpcpu *pcpu;
1698 
1699 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1700 		("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1701 
1702 	if (bp->b_qindex != BQUEUE_NONE)
1703 		panic("bqrelse: free buffer onto another queue???");
1704 	if (BUF_REFCNTNB(bp) > 1) {
1705 		/* do not release to free list */
1706 		panic("bqrelse: multiple refs");
1707 		return;
1708 	}
1709 
1710 	buf_act_advance(bp);
1711 
1712 	pcpu = &bufpcpu[bp->b_qcpu];
1713 	spin_lock(&pcpu->spin);
1714 
1715 	if (bp->b_flags & B_LOCKED) {
1716 		/*
1717 		 * Locked buffers are released to the locked queue.  However,
1718 		 * if the buffer is dirty it will first go into the dirty
1719 		 * queue and later on after the I/O completes successfully it
1720 		 * will be released to the locked queue.
1721 		 */
1722 		bp->b_qindex = BQUEUE_LOCKED;
1723 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1724 				  bp, b_freelist);
1725 	} else if (bp->b_flags & B_DELWRI) {
1726 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1727 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1728 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1729 				  bp, b_freelist);
1730 	} else if (vm_page_count_min(0)) {
1731 		/*
1732 		 * We are too low on memory, we have to try to free the
1733 		 * buffer (most importantly: the wired pages making up its
1734 		 * backing store) *now*.
1735 		 */
1736 		spin_unlock(&pcpu->spin);
1737 		brelse(bp);
1738 		return;
1739 	} else {
1740 		bp->b_qindex = BQUEUE_CLEAN;
1741 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1742 				  bp, b_freelist);
1743 	}
1744 	spin_unlock(&pcpu->spin);
1745 
1746 	/*
1747 	 * We have now placed the buffer on the proper queue, but have yet
1748 	 * to unlock it.
1749 	 */
1750 	if ((bp->b_flags & B_LOCKED) == 0 &&
1751 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1752 		bufcountwakeup();
1753 	}
1754 
1755 	/*
1756 	 * Something we can maybe free or reuse.
1757 	 */
1758 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1759 		bufspacewakeup();
1760 
1761 	/*
1762 	 * Final cleanup and unlock.  Clear bits that are only used while a
1763 	 * buffer is actively locked.
1764 	 */
1765 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1766 	dsched_exit_buf(bp);
1767 	BUF_UNLOCK(bp);
1768 }
1769 
1770 /*
1771  * Hold a buffer, preventing it from being reused.  This will prevent
1772  * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1773  * operations.  If a B_INVAL operation occurs the buffer will remain held
1774  * but the underlying pages may get ripped out.
1775  *
1776  * These functions are typically used in VOP_READ/VOP_WRITE functions
1777  * to hold a buffer during a copyin or copyout, preventing deadlocks
1778  * or recursive lock panics when read()/write() is used over mmap()'d
1779  * space.
1780  *
1781  * NOTE: bqhold() requires that the buffer be locked at the time of the
1782  *	 hold.  bqdrop() has no requirements other than the buffer having
1783  *	 previously been held.
1784  */
1785 void
1786 bqhold(struct buf *bp)
1787 {
1788 	atomic_add_int(&bp->b_refs, 1);
1789 }
1790 
1791 void
1792 bqdrop(struct buf *bp)
1793 {
1794 	KKASSERT(bp->b_refs > 0);
1795 	atomic_add_int(&bp->b_refs, -1);
1796 }
1797 
1798 /*
1799  * Return backing pages held by the buffer 'bp' back to the VM system.
1800  * This routine is called when the bp is invalidated, released, or
1801  * reused.
1802  *
1803  * The KVA mapping (b_data) for the underlying pages is removed by
1804  * this function.
1805  *
1806  * WARNING! This routine is integral to the low memory critical path
1807  *          when a buffer is B_RELBUF'd.  If the system has a severe page
1808  *          deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE
1809  *          queues so they can be reused in the current pageout daemon
1810  *          pass.
1811  */
1812 static void
1813 vfs_vmio_release(struct buf *bp)
1814 {
1815 	int i;
1816 	vm_page_t m;
1817 
1818 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1819 		m = bp->b_xio.xio_pages[i];
1820 		bp->b_xio.xio_pages[i] = NULL;
1821 
1822 		/*
1823 		 * We need to own the page in order to safely unwire it.
1824 		 */
1825 		vm_page_busy_wait(m, FALSE, "vmiopg");
1826 
1827 		/*
1828 		 * The VFS is telling us this is not a meta-data buffer
1829 		 * even if it is backed by a block device.
1830 		 */
1831 		if (bp->b_flags & B_NOTMETA)
1832 			vm_page_flag_set(m, PG_NOTMETA);
1833 
1834 		/*
1835 		 * This is a very important bit of code.  We try to track
1836 		 * VM page use whether the pages are wired into the buffer
1837 		 * cache or not.  While wired into the buffer cache the
1838 		 * bp tracks the act_count.
1839 		 *
1840 		 * We can choose to place unwired pages on the inactive
1841 		 * queue (0) or active queue (1).  If we place too many
1842 		 * on the active queue the queue will cycle the act_count
1843 		 * on pages we'd like to keep, just from single-use pages
1844 		 * (such as when doing a tar-up or file scan).
1845 		 */
1846 		if (bp->b_act_count < vm_cycle_point)
1847 			vm_page_unwire(m, 0);
1848 		else
1849 			vm_page_unwire(m, 1);
1850 
1851 		/*
1852 		 * If the wire_count has dropped to 0 we may need to take
1853 		 * further action before unbusying the page.
1854 		 *
1855 		 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us.
1856 		 */
1857 		if (m->wire_count == 0) {
1858 			vm_page_flag_clear(m, PG_ZERO);
1859 
1860 			if (bp->b_flags & B_DIRECT) {
1861 				/*
1862 				 * Attempt to free the page if B_DIRECT is
1863 				 * set, the caller does not desire the page
1864 				 * to be cached.
1865 				 */
1866 				vm_page_wakeup(m);
1867 				vm_page_try_to_free(m);
1868 			} else if ((bp->b_flags & B_NOTMETA) ||
1869 				   vm_page_count_min(0)) {
1870 				/*
1871 				 * Attempt to move the page to PQ_CACHE
1872 				 * if B_NOTMETA is set.  This flag is set
1873 				 * by HAMMER to remove one of the two pages
1874 				 * present when double buffering is enabled.
1875 				 *
1876 				 * Attempt to move the page to PQ_CACHE
1877 				 * If we have a severe page deficit.  This
1878 				 * will cause buffer cache operations related
1879 				 * to pageouts to recycle the related pages
1880 				 * in order to avoid a low memory deadlock.
1881 				 */
1882 				m->act_count = bp->b_act_count;
1883 				vm_page_wakeup(m);
1884 				vm_page_try_to_cache(m);
1885 			} else {
1886 				/*
1887 				 * Nominal case, leave the page on the
1888 				 * queue the original unwiring placed it on
1889 				 * (active or inactive).
1890 				 */
1891 				m->act_count = bp->b_act_count;
1892 				vm_page_wakeup(m);
1893 			}
1894 		} else {
1895 			vm_page_wakeup(m);
1896 		}
1897 	}
1898 
1899 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data),
1900 		     bp->b_xio.xio_npages);
1901 	if (bp->b_bufsize) {
1902 		bufspacewakeup();
1903 		bp->b_bufsize = 0;
1904 	}
1905 	bp->b_xio.xio_npages = 0;
1906 	bp->b_flags &= ~B_VMIO;
1907 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1908 	if (bp->b_vp)
1909 		brelvp(bp);
1910 }
1911 
1912 /*
1913  * Find and initialize a new buffer header, freeing up existing buffers
1914  * in the bufqueues as necessary.  The new buffer is returned locked.
1915  *
1916  * Important:  B_INVAL is not set.  If the caller wishes to throw the
1917  * buffer away, the caller must set B_INVAL prior to calling brelse().
1918  *
1919  * We block if:
1920  *	We have insufficient buffer headers
1921  *	We have insufficient buffer space
1922  *	buffer_map is too fragmented ( space reservation fails )
1923  *	If we have to flush dirty buffers ( but we try to avoid this )
1924  *
1925  * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1926  * Instead we ask the buf daemon to do it for us.  We attempt to
1927  * avoid piecemeal wakeups of the pageout daemon.
1928  */
1929 struct buf *
1930 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1931 {
1932 	struct bufpcpu *pcpu;
1933 	struct buf *bp;
1934 	struct buf *nbp;
1935 	int defrag = 0;
1936 	int nqindex;
1937 	int nqcpu;
1938 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1939 	int maxloops = 200000;
1940 	int restart_reason = 0;
1941 	struct buf *restart_bp = NULL;
1942 	static int flushingbufs;
1943 
1944 	/*
1945 	 * We can't afford to block since we might be holding a vnode lock,
1946 	 * which may prevent system daemons from running.  We deal with
1947 	 * low-memory situations by proactively returning memory and running
1948 	 * async I/O rather then sync I/O.
1949 	 */
1950 
1951 	++getnewbufcalls;
1952 	--getnewbufrestarts;
1953 	nqcpu = mycpu->gd_cpuid;
1954 restart:
1955 	++getnewbufrestarts;
1956 
1957 	if (debug_bufbio && --maxloops == 0)
1958 		panic("getnewbuf, excessive loops on cpu %d restart %d (%p)",
1959 			mycpu->gd_cpuid, restart_reason, restart_bp);
1960 
1961 	/*
1962 	 * Setup for scan.  If we do not have enough free buffers,
1963 	 * we setup a degenerate case that immediately fails.  Note
1964 	 * that if we are specially marked process, we are allowed to
1965 	 * dip into our reserves.
1966 	 *
1967 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1968 	 *
1969 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1970 	 * However, there are a number of cases (defragging, reusing, ...)
1971 	 * where we cannot backup.
1972 	 */
1973 	pcpu = &bufpcpu[nqcpu];
1974 	nqindex = BQUEUE_EMPTYKVA;
1975 	spin_lock(&pcpu->spin);
1976 
1977 	nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_EMPTYKVA]);
1978 
1979 	if (nbp == NULL) {
1980 		/*
1981 		 * If no EMPTYKVA buffers and we are either
1982 		 * defragging or reusing, locate a CLEAN buffer
1983 		 * to free or reuse.  If bufspace useage is low
1984 		 * skip this step so we can allocate a new buffer.
1985 		 */
1986 		if (defrag || bufspace >= lobufspace) {
1987 			nqindex = BQUEUE_CLEAN;
1988 			nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN]);
1989 		}
1990 
1991 		/*
1992 		 * If we could not find or were not allowed to reuse a
1993 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1994 		 * buffer.  We can only use an EMPTY buffer if allocating
1995 		 * its KVA would not otherwise run us out of buffer space.
1996 		 */
1997 		if (nbp == NULL && defrag == 0 &&
1998 		    bufspace + maxsize < hibufspace) {
1999 			nqindex = BQUEUE_EMPTY;
2000 			nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_EMPTY]);
2001 		}
2002 	}
2003 
2004 	/*
2005 	 * Run scan, possibly freeing data and/or kva mappings on the fly
2006 	 * depending.
2007 	 *
2008 	 * WARNING! spin is held!
2009 	 */
2010 	while ((bp = nbp) != NULL) {
2011 		int qindex = nqindex;
2012 
2013 		nbp = TAILQ_NEXT(bp, b_freelist);
2014 
2015 		/*
2016 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2017 		 * cycles through the queue twice before being selected.
2018 		 */
2019 		if (qindex == BQUEUE_CLEAN &&
2020 		    (bp->b_flags & B_AGE) == 0 && nbp) {
2021 			bp->b_flags |= B_AGE;
2022 			TAILQ_REMOVE(&pcpu->bufqueues[qindex],
2023 				     bp, b_freelist);
2024 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[qindex],
2025 					  bp, b_freelist);
2026 			continue;
2027 		}
2028 
2029 		/*
2030 		 * Calculate next bp ( we can only use it if we do not block
2031 		 * or do other fancy things ).
2032 		 */
2033 		if (nbp == NULL) {
2034 			switch(qindex) {
2035 			case BQUEUE_EMPTY:
2036 				nqindex = BQUEUE_EMPTYKVA;
2037 				if ((nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_EMPTYKVA])))
2038 					break;
2039 				/* fall through */
2040 			case BQUEUE_EMPTYKVA:
2041 				nqindex = BQUEUE_CLEAN;
2042 				if ((nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN])))
2043 					break;
2044 				/* fall through */
2045 			case BQUEUE_CLEAN:
2046 				/*
2047 				 * nbp is NULL.
2048 				 */
2049 				break;
2050 			}
2051 		}
2052 
2053 		/*
2054 		 * Sanity Checks
2055 		 */
2056 		KASSERT(bp->b_qindex == qindex,
2057 			("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2058 
2059 		/*
2060 		 * Note: we no longer distinguish between VMIO and non-VMIO
2061 		 * buffers.
2062 		 */
2063 		KASSERT((bp->b_flags & B_DELWRI) == 0,
2064 			("delwri buffer %p found in queue %d", bp, qindex));
2065 
2066 		/*
2067 		 * Do not try to reuse a buffer with a non-zero b_refs.
2068 		 * This is an unsynchronized test.  A synchronized test
2069 		 * is also performed after we lock the buffer.
2070 		 */
2071 		if (bp->b_refs)
2072 			continue;
2073 
2074 		/*
2075 		 * If we are defragging then we need a buffer with
2076 		 * b_kvasize != 0.  XXX this situation should no longer
2077 		 * occur, if defrag is non-zero the buffer's b_kvasize
2078 		 * should also be non-zero at this point.  XXX
2079 		 */
2080 		if (defrag && bp->b_kvasize == 0) {
2081 			kprintf("Warning: defrag empty buffer %p\n", bp);
2082 			continue;
2083 		}
2084 
2085 		/*
2086 		 * Start freeing the bp.  This is somewhat involved.  nbp
2087 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
2088 		 * on the clean list must be disassociated from their
2089 		 * current vnode.  Buffers on the empty[kva] lists have
2090 		 * already been disassociated.
2091 		 *
2092 		 * b_refs is checked after locking along with queue changes.
2093 		 * We must check here to deal with zero->nonzero transitions
2094 		 * made by the owner of the buffer lock, which is used by
2095 		 * VFS's to hold the buffer while issuing an unlocked
2096 		 * uiomove()s.  We cannot invalidate the buffer's pages
2097 		 * for this case.  Once we successfully lock a buffer the
2098 		 * only 0->1 transitions of b_refs will occur via findblk().
2099 		 *
2100 		 * We must also check for queue changes after successful
2101 		 * locking as the current lock holder may dispose of the
2102 		 * buffer and change its queue.
2103 		 */
2104 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2105 			spin_unlock(&pcpu->spin);
2106 			tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100);
2107 			restart_reason = 1;
2108 			restart_bp = bp;
2109 			goto restart;
2110 		}
2111 		if (bp->b_qindex != qindex || bp->b_refs) {
2112 			spin_unlock(&pcpu->spin);
2113 			BUF_UNLOCK(bp);
2114 			restart_reason = 2;
2115 			restart_bp = bp;
2116 			goto restart;
2117 		}
2118 		bremfree_locked(bp);
2119 		spin_unlock(&pcpu->spin);
2120 
2121 		/*
2122 		 * Dependancies must be handled before we disassociate the
2123 		 * vnode.
2124 		 *
2125 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2126 		 * be immediately disassociated.  HAMMER then becomes
2127 		 * responsible for releasing the buffer.
2128 		 *
2129 		 * NOTE: spin is UNLOCKED now.
2130 		 */
2131 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2132 			buf_deallocate(bp);
2133 			if (bp->b_flags & B_LOCKED) {
2134 				bqrelse(bp);
2135 				restart_reason = 3;
2136 				restart_bp = bp;
2137 				goto restart;
2138 			}
2139 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2140 		}
2141 
2142 		if (qindex == BQUEUE_CLEAN) {
2143 			if (bp->b_flags & B_VMIO)
2144 				vfs_vmio_release(bp);
2145 			if (bp->b_vp)
2146 				brelvp(bp);
2147 		}
2148 
2149 		/*
2150 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2151 		 * the scan from this point on.
2152 		 *
2153 		 * Get the rest of the buffer freed up.  b_kva* is still
2154 		 * valid after this operation.
2155 		 */
2156 		KASSERT(bp->b_vp == NULL,
2157 			("bp3 %p flags %08x vnode %p qindex %d "
2158 			 "unexpectededly still associated!",
2159 			 bp, bp->b_flags, bp->b_vp, qindex));
2160 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2161 
2162 		/*
2163 		 * critical section protection is not required when
2164 		 * scrapping a buffer's contents because it is already
2165 		 * wired.
2166 		 */
2167 		if (bp->b_bufsize)
2168 			allocbuf(bp, 0);
2169 
2170                 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN | B_HASHED)) {
2171 			kprintf("getnewbuf: caught bug vp queue "
2172 				"%p/%08x qidx %d\n",
2173 				bp, bp->b_flags, qindex);
2174 			brelvp(bp);
2175 		}
2176 		bp->b_flags = B_BNOCLIP;
2177 		bp->b_cmd = BUF_CMD_DONE;
2178 		bp->b_vp = NULL;
2179 		bp->b_error = 0;
2180 		bp->b_resid = 0;
2181 		bp->b_bcount = 0;
2182 		bp->b_xio.xio_npages = 0;
2183 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2184 		bp->b_act_count = ACT_INIT;
2185 		reinitbufbio(bp);
2186 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2187 		buf_dep_init(bp);
2188 		if (blkflags & GETBLK_BHEAVY)
2189 			bp->b_flags |= B_HEAVY;
2190 
2191 		/*
2192 		 * If we are defragging then free the buffer.
2193 		 */
2194 		if (defrag) {
2195 			bp->b_flags |= B_INVAL;
2196 			bfreekva(bp);
2197 			brelse(bp);
2198 			defrag = 0;
2199 			restart_reason = 4;
2200 			restart_bp = bp;
2201 			goto restart;
2202 		}
2203 
2204 		/*
2205 		 * If we are overcomitted then recover the buffer and its
2206 		 * KVM space.  This occurs in rare situations when multiple
2207 		 * processes are blocked in getnewbuf() or allocbuf().
2208 		 *
2209 		 * On 64-bit systems BKVASIZE == MAXBSIZE and overcommit
2210 		 * should not be possible.
2211 		 */
2212 		if (bufspace >= hibufspace)
2213 			flushingbufs = 1;
2214 		if (BKVASIZE != MAXBSIZE) {
2215 			if (flushingbufs && bp->b_kvasize != 0) {
2216 				bp->b_flags |= B_INVAL;
2217 				bfreekva(bp);
2218 				brelse(bp);
2219 				restart_reason = 5;
2220 				restart_bp = bp;
2221 				goto restart;
2222 			}
2223 		}
2224 		if (bufspace < lobufspace)
2225 			flushingbufs = 0;
2226 
2227 		/*
2228 		 * b_refs can transition to a non-zero value while we hold
2229 		 * the buffer locked due to a findblk().  Our brelvp() above
2230 		 * interlocked any future possible transitions due to
2231 		 * findblk()s.
2232 		 *
2233 		 * If we find b_refs to be non-zero we can destroy the
2234 		 * buffer's contents but we cannot yet reuse the buffer.
2235 		 */
2236 		if (bp->b_refs) {
2237 			bp->b_flags |= B_INVAL;
2238 			if (BKVASIZE != MAXBSIZE)
2239 				bfreekva(bp);
2240 			brelse(bp);
2241 			restart_reason = 6;
2242 			restart_bp = bp;
2243 			goto restart;
2244 		}
2245 		break;
2246 		/* NOT REACHED, spin not held */
2247 	}
2248 
2249 	/*
2250 	 * If we exhausted our list, iterate other cpus.  If that fails,
2251 	 * sleep as appropriate.  We may have to wakeup various daemons
2252 	 * and write out some dirty buffers.
2253 	 *
2254 	 * Generally we are sleeping due to insufficient buffer space.
2255 	 *
2256 	 * NOTE: spin is held if bp is NULL, else it is not held.
2257 	 */
2258 	if (bp == NULL) {
2259 		int flags;
2260 		char *waitmsg;
2261 
2262 		spin_unlock(&pcpu->spin);
2263 
2264 		nqcpu = (nqcpu + 1) % ncpus;
2265 		if (nqcpu != mycpu->gd_cpuid) {
2266 			restart_reason = 7;
2267 			restart_bp = bp;
2268 			goto restart;
2269 		}
2270 
2271 		if (defrag) {
2272 			flags = VFS_BIO_NEED_BUFSPACE;
2273 			waitmsg = "nbufkv";
2274 		} else if (bufspace >= hibufspace) {
2275 			waitmsg = "nbufbs";
2276 			flags = VFS_BIO_NEED_BUFSPACE;
2277 		} else {
2278 			waitmsg = "newbuf";
2279 			flags = VFS_BIO_NEED_ANY;
2280 		}
2281 
2282 		bd_speedup();	/* heeeelp */
2283 		atomic_set_int(&needsbuffer, flags);
2284 		while (needsbuffer & flags) {
2285 			int value;
2286 
2287 			tsleep_interlock(&needsbuffer, 0);
2288 			value = atomic_fetchadd_int(&needsbuffer, 0);
2289 			if (value & flags) {
2290 				if (tsleep(&needsbuffer, PINTERLOCKED|slpflags,
2291 					   waitmsg, slptimeo)) {
2292 					return (NULL);
2293 				}
2294 			}
2295 		}
2296 	} else {
2297 		/*
2298 		 * We finally have a valid bp.  We aren't quite out of the
2299 		 * woods, we still have to reserve kva space.  In order
2300 		 * to keep fragmentation sane we only allocate kva in
2301 		 * BKVASIZE chunks.
2302 		 *
2303 		 * (spin is not held)
2304 		 */
2305 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2306 
2307 		if (maxsize != bp->b_kvasize) {
2308 			vm_offset_t addr = 0;
2309 			int count;
2310 
2311 			bfreekva(bp);
2312 
2313 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2314 			vm_map_lock(&buffer_map);
2315 
2316 			if (vm_map_findspace(&buffer_map,
2317 				    vm_map_min(&buffer_map), maxsize,
2318 				    maxsize, 0, &addr)) {
2319 				/*
2320 				 * Uh oh.  Buffer map is too fragmented.  We
2321 				 * must defragment the map.
2322 				 */
2323 				vm_map_unlock(&buffer_map);
2324 				vm_map_entry_release(count);
2325 				++bufdefragcnt;
2326 				defrag = 1;
2327 				bp->b_flags |= B_INVAL;
2328 				brelse(bp);
2329 				restart_reason = 8;
2330 				restart_bp = bp;
2331 				goto restart;
2332 			}
2333 			if (addr) {
2334 				vm_map_insert(&buffer_map, &count,
2335 					NULL, NULL,
2336 					0, addr, addr + maxsize,
2337 					VM_MAPTYPE_NORMAL,
2338 					VM_PROT_ALL, VM_PROT_ALL,
2339 					MAP_NOFAULT);
2340 
2341 				bp->b_kvabase = (caddr_t) addr;
2342 				bp->b_kvasize = maxsize;
2343 				bufspace += bp->b_kvasize;
2344 				++bufreusecnt;
2345 			}
2346 			vm_map_unlock(&buffer_map);
2347 			vm_map_entry_release(count);
2348 		}
2349 		bp->b_data = bp->b_kvabase;
2350 	}
2351 	return(bp);
2352 }
2353 
2354 /*
2355  * buf_daemon:
2356  *
2357  *	Buffer flushing daemon.  Buffers are normally flushed by the
2358  *	update daemon but if it cannot keep up this process starts to
2359  *	take the load in an attempt to prevent getnewbuf() from blocking.
2360  *
2361  *	Once a flush is initiated it does not stop until the number
2362  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2363  *	waiting at the mid-point.
2364  */
2365 static struct kproc_desc buf_kp = {
2366 	"bufdaemon",
2367 	buf_daemon,
2368 	&bufdaemon_td
2369 };
2370 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2371 	kproc_start, &buf_kp)
2372 
2373 static struct kproc_desc bufhw_kp = {
2374 	"bufdaemon_hw",
2375 	buf_daemon_hw,
2376 	&bufdaemonhw_td
2377 };
2378 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2379 	kproc_start, &bufhw_kp)
2380 
2381 static void
2382 buf_daemon1(struct thread *td, int queue, int (*buf_limit_fn)(long),
2383 	    int *bd_req)
2384 {
2385 	long limit;
2386 	struct buf *marker;
2387 
2388 	marker = kmalloc(sizeof(*marker), M_BIOBUF, M_WAITOK | M_ZERO);
2389 	marker->b_flags |= B_MARKER;
2390 	marker->b_qindex = BQUEUE_NONE;
2391 	marker->b_qcpu = 0;
2392 
2393 	/*
2394 	 * This process needs to be suspended prior to shutdown sync.
2395 	 */
2396 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2397 			      td, SHUTDOWN_PRI_LAST);
2398 	curthread->td_flags |= TDF_SYSTHREAD;
2399 
2400 	/*
2401 	 * This process is allowed to take the buffer cache to the limit
2402 	 */
2403 	for (;;) {
2404 		kproc_suspend_loop();
2405 
2406 		/*
2407 		 * Do the flush as long as the number of dirty buffers
2408 		 * (including those running) exceeds lodirtybufspace.
2409 		 *
2410 		 * When flushing limit running I/O to hirunningspace
2411 		 * Do the flush.  Limit the amount of in-transit I/O we
2412 		 * allow to build up, otherwise we would completely saturate
2413 		 * the I/O system.  Wakeup any waiting processes before we
2414 		 * normally would so they can run in parallel with our drain.
2415 		 *
2416 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2417 		 * but because we split the operation into two threads we
2418 		 * have to cut it in half for each thread.
2419 		 */
2420 		waitrunningbufspace();
2421 		limit = lodirtybufspace / 2;
2422 		while (buf_limit_fn(limit)) {
2423 			if (flushbufqueues(marker, queue) == 0)
2424 				break;
2425 			if (runningbufspace < hirunningspace)
2426 				continue;
2427 			waitrunningbufspace();
2428 		}
2429 
2430 		/*
2431 		 * We reached our low water mark, reset the
2432 		 * request and sleep until we are needed again.
2433 		 * The sleep is just so the suspend code works.
2434 		 */
2435 		tsleep_interlock(bd_req, 0);
2436 		if (atomic_swap_int(bd_req, 0) == 0)
2437 			tsleep(bd_req, PINTERLOCKED, "psleep", hz);
2438 	}
2439 	/* NOT REACHED */
2440 	/*kfree(marker, M_BIOBUF);*/
2441 }
2442 
2443 static int
2444 buf_daemon_limit(long limit)
2445 {
2446 	return (runningbufspace + dirtykvaspace > limit ||
2447 		dirtybufcount - dirtybufcounthw >= nbuf / 2);
2448 }
2449 
2450 static int
2451 buf_daemon_hw_limit(long limit)
2452 {
2453 	return (runningbufspace + dirtykvaspace > limit ||
2454 		dirtybufcounthw >= nbuf / 2);
2455 }
2456 
2457 static void
2458 buf_daemon(void)
2459 {
2460 	buf_daemon1(bufdaemon_td, BQUEUE_DIRTY, buf_daemon_limit,
2461 		    &bd_request);
2462 }
2463 
2464 static void
2465 buf_daemon_hw(void)
2466 {
2467 	buf_daemon1(bufdaemonhw_td, BQUEUE_DIRTY_HW, buf_daemon_hw_limit,
2468 		    &bd_request_hw);
2469 }
2470 
2471 /*
2472  * flushbufqueues:
2473  *
2474  *	Try to flush a buffer in the dirty queue.  We must be careful to
2475  *	free up B_INVAL buffers instead of write them, which NFS is
2476  *	particularly sensitive to.
2477  *
2478  *	B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate
2479  *	that we really want to try to get the buffer out and reuse it
2480  *	due to the write load on the machine.
2481  *
2482  *	We must lock the buffer in order to check its validity before we
2483  *	can mess with its contents.  spin isn't enough.
2484  */
2485 static int
2486 flushbufqueues(struct buf *marker, bufq_type_t q)
2487 {
2488 	struct bufpcpu *pcpu;
2489 	struct buf *bp;
2490 	int r = 0;
2491 	int lcpu = marker->b_qcpu;
2492 
2493 	KKASSERT(marker->b_qindex == BQUEUE_NONE);
2494 	KKASSERT(marker->b_flags & B_MARKER);
2495 
2496 again:
2497 	/*
2498 	 * Spinlock needed to perform operations on the queue and may be
2499 	 * held through a non-blocking BUF_LOCK(), but cannot be held when
2500 	 * BUF_UNLOCK()ing or through any other major operation.
2501 	 */
2502 	pcpu = &bufpcpu[marker->b_qcpu];
2503 	spin_lock(&pcpu->spin);
2504 	marker->b_qindex = q;
2505 	TAILQ_INSERT_HEAD(&pcpu->bufqueues[q], marker, b_freelist);
2506 	bp = marker;
2507 
2508 	while ((bp = TAILQ_NEXT(bp, b_freelist)) != NULL) {
2509 		/*
2510 		 * NOTE: spinlock is always held at the top of the loop
2511 		 */
2512 		if (bp->b_flags & B_MARKER)
2513 			continue;
2514 		if ((bp->b_flags & B_DELWRI) == 0) {
2515 			kprintf("Unexpected clean buffer %p\n", bp);
2516 			continue;
2517 		}
2518 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
2519 			continue;
2520 		KKASSERT(bp->b_qcpu == marker->b_qcpu && bp->b_qindex == q);
2521 
2522 		/*
2523 		 * Once the buffer is locked we will have no choice but to
2524 		 * unlock the spinlock around a later BUF_UNLOCK and re-set
2525 		 * bp = marker when looping.  Move the marker now to make
2526 		 * things easier.
2527 		 */
2528 		TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2529 		TAILQ_INSERT_AFTER(&pcpu->bufqueues[q], bp, marker, b_freelist);
2530 
2531 		/*
2532 		 * Must recheck B_DELWRI after successfully locking
2533 		 * the buffer.
2534 		 */
2535 		if ((bp->b_flags & B_DELWRI) == 0) {
2536 			spin_unlock(&pcpu->spin);
2537 			BUF_UNLOCK(bp);
2538 			spin_lock(&pcpu->spin);
2539 			bp = marker;
2540 			continue;
2541 		}
2542 
2543 		/*
2544 		 * Remove the buffer from its queue.  We still own the
2545 		 * spinlock here.
2546 		 */
2547 		_bremfree(bp);
2548 
2549 		/*
2550 		 * Disposing of an invalid buffer counts as a flush op
2551 		 */
2552 		if (bp->b_flags & B_INVAL) {
2553 			spin_unlock(&pcpu->spin);
2554 			brelse(bp);
2555 			spin_lock(&pcpu->spin);
2556 			++r;
2557 			break;
2558 		}
2559 
2560 		/*
2561 		 * Release the spinlock for the more complex ops we
2562 		 * are now going to do.
2563 		 */
2564 		spin_unlock(&pcpu->spin);
2565 		lwkt_yield();
2566 
2567 		/*
2568 		 * This is a bit messy
2569 		 */
2570 		if (LIST_FIRST(&bp->b_dep) != NULL &&
2571 		    (bp->b_flags & B_DEFERRED) == 0 &&
2572 		    buf_countdeps(bp, 0)) {
2573 			spin_lock(&pcpu->spin);
2574 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[q], bp, b_freelist);
2575 			bp->b_qindex = q;
2576 			bp->b_flags |= B_DEFERRED;
2577 			spin_unlock(&pcpu->spin);
2578 			BUF_UNLOCK(bp);
2579 			spin_lock(&pcpu->spin);
2580 			bp = marker;
2581 			continue;
2582 		}
2583 
2584 		/*
2585 		 * spinlock not held here.
2586 		 *
2587 		 * If the buffer has a dependancy, buf_checkwrite() must
2588 		 * also return 0 for us to be able to initate the write.
2589 		 *
2590 		 * If the buffer is flagged B_ERROR it may be requeued
2591 		 * over and over again, we try to avoid a live lock.
2592 		 */
2593 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2594 			brelse(bp);
2595 		} else if (bp->b_flags & B_ERROR) {
2596 			tsleep(bp, 0, "bioer", 1);
2597 			bp->b_flags &= ~B_AGE;
2598 			cluster_awrite(bp);
2599 		} else {
2600 			bp->b_flags |= B_AGE;
2601 			cluster_awrite(bp);
2602 		}
2603 		spin_lock(&pcpu->spin);
2604 		++r;
2605 		break;
2606 	}
2607 
2608 	TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2609 	marker->b_qindex = BQUEUE_NONE;
2610 	spin_unlock(&pcpu->spin);
2611 
2612 	/*
2613 	 * Advance the marker to be fair.
2614 	 */
2615 	marker->b_qcpu = (marker->b_qcpu + 1) % ncpus;
2616 	if (bp == NULL) {
2617 		if (marker->b_qcpu != lcpu)
2618 			goto again;
2619 	}
2620 
2621 	return (r);
2622 }
2623 
2624 /*
2625  * inmem:
2626  *
2627  *	Returns true if no I/O is needed to access the associated VM object.
2628  *	This is like findblk except it also hunts around in the VM system for
2629  *	the data.
2630  *
2631  *	Note that we ignore vm_page_free() races from interrupts against our
2632  *	lookup, since if the caller is not protected our return value will not
2633  *	be any more valid then otherwise once we exit the critical section.
2634  */
2635 int
2636 inmem(struct vnode *vp, off_t loffset)
2637 {
2638 	vm_object_t obj;
2639 	vm_offset_t toff, tinc, size;
2640 	vm_page_t m;
2641 	int res = 1;
2642 
2643 	if (findblk(vp, loffset, FINDBLK_TEST))
2644 		return 1;
2645 	if (vp->v_mount == NULL)
2646 		return 0;
2647 	if ((obj = vp->v_object) == NULL)
2648 		return 0;
2649 
2650 	size = PAGE_SIZE;
2651 	if (size > vp->v_mount->mnt_stat.f_iosize)
2652 		size = vp->v_mount->mnt_stat.f_iosize;
2653 
2654 	vm_object_hold(obj);
2655 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2656 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2657 		if (m == NULL) {
2658 			res = 0;
2659 			break;
2660 		}
2661 		tinc = size;
2662 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2663 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2664 		if (vm_page_is_valid(m,
2665 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) {
2666 			res = 0;
2667 			break;
2668 		}
2669 	}
2670 	vm_object_drop(obj);
2671 	return (res);
2672 }
2673 
2674 /*
2675  * findblk:
2676  *
2677  *	Locate and return the specified buffer.  Unless flagged otherwise,
2678  *	a locked buffer will be returned if it exists or NULL if it does not.
2679  *
2680  *	findblk()'d buffers are still on the bufqueues and if you intend
2681  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2682  *	and possibly do other stuff to it.
2683  *
2684  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2685  *			  for locking the buffer and ensuring that it remains
2686  *			  the desired buffer after locking.
2687  *
2688  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2689  *			  to acquire the lock we return NULL, even if the
2690  *			  buffer exists.
2691  *
2692  *	FINDBLK_REF	- Returns the buffer ref'd, which prevents normal
2693  *			  reuse by getnewbuf() but does not prevent
2694  *			  disassociation (B_INVAL).  Used to avoid deadlocks
2695  *			  against random (vp,loffset)s due to reassignment.
2696  *
2697  *	(0)		- Lock the buffer blocking.
2698  */
2699 struct buf *
2700 findblk(struct vnode *vp, off_t loffset, int flags)
2701 {
2702 	struct buf *bp;
2703 	int lkflags;
2704 
2705 	lkflags = LK_EXCLUSIVE;
2706 	if (flags & FINDBLK_NBLOCK)
2707 		lkflags |= LK_NOWAIT;
2708 
2709 	for (;;) {
2710 		/*
2711 		 * Lookup.  Ref the buf while holding v_token to prevent
2712 		 * reuse (but does not prevent diassociation).
2713 		 */
2714 		lwkt_gettoken_shared(&vp->v_token);
2715 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2716 		if (bp == NULL) {
2717 			lwkt_reltoken(&vp->v_token);
2718 			return(NULL);
2719 		}
2720 		bqhold(bp);
2721 		lwkt_reltoken(&vp->v_token);
2722 
2723 		/*
2724 		 * If testing only break and return bp, do not lock.
2725 		 */
2726 		if (flags & FINDBLK_TEST)
2727 			break;
2728 
2729 		/*
2730 		 * Lock the buffer, return an error if the lock fails.
2731 		 * (only FINDBLK_NBLOCK can cause the lock to fail).
2732 		 */
2733 		if (BUF_LOCK(bp, lkflags)) {
2734 			atomic_subtract_int(&bp->b_refs, 1);
2735 			/* bp = NULL; not needed */
2736 			return(NULL);
2737 		}
2738 
2739 		/*
2740 		 * Revalidate the locked buf before allowing it to be
2741 		 * returned.
2742 		 */
2743 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2744 			break;
2745 		atomic_subtract_int(&bp->b_refs, 1);
2746 		BUF_UNLOCK(bp);
2747 	}
2748 
2749 	/*
2750 	 * Success
2751 	 */
2752 	if ((flags & FINDBLK_REF) == 0)
2753 		atomic_subtract_int(&bp->b_refs, 1);
2754 	return(bp);
2755 }
2756 
2757 /*
2758  * getcacheblk:
2759  *
2760  *	Similar to getblk() except only returns the buffer if it is
2761  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2762  *	is returned.  NULL is also returned if GETBLK_NOWAIT is set
2763  *	and the getblk() would block.
2764  *
2765  *	If B_RAM is set the buffer might be just fine, but we return
2766  *	NULL anyway because we want the code to fall through to the
2767  *	cluster read.  Otherwise read-ahead breaks.
2768  *
2769  *	If blksize is 0 the buffer cache buffer must already be fully
2770  *	cached.
2771  *
2772  *	If blksize is non-zero getblk() will be used, allowing a buffer
2773  *	to be reinstantiated from its VM backing store.  The buffer must
2774  *	still be fully cached after reinstantiation to be returned.
2775  */
2776 struct buf *
2777 getcacheblk(struct vnode *vp, off_t loffset, int blksize, int blkflags)
2778 {
2779 	struct buf *bp;
2780 	int fndflags = (blkflags & GETBLK_NOWAIT) ? FINDBLK_NBLOCK : 0;
2781 
2782 	if (blksize) {
2783 		bp = getblk(vp, loffset, blksize, blkflags, 0);
2784 		if (bp) {
2785 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2786 			    B_CACHE) {
2787 				bp->b_flags &= ~B_AGE;
2788 			} else {
2789 				brelse(bp);
2790 				bp = NULL;
2791 			}
2792 		}
2793 	} else {
2794 		bp = findblk(vp, loffset, fndflags);
2795 		if (bp) {
2796 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2797 			    B_CACHE) {
2798 				bp->b_flags &= ~B_AGE;
2799 				bremfree(bp);
2800 			} else {
2801 				BUF_UNLOCK(bp);
2802 				bp = NULL;
2803 			}
2804 		}
2805 	}
2806 	return (bp);
2807 }
2808 
2809 /*
2810  * getblk:
2811  *
2812  *	Get a block given a specified block and offset into a file/device.
2813  * 	B_INVAL may or may not be set on return.  The caller should clear
2814  *	B_INVAL prior to initiating a READ.
2815  *
2816  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2817  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2818  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2819  *	without doing any of those things the system will likely believe
2820  *	the buffer to be valid (especially if it is not B_VMIO), and the
2821  *	next getblk() will return the buffer with B_CACHE set.
2822  *
2823  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2824  *	an existing buffer.
2825  *
2826  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2827  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2828  *	and then cleared based on the backing VM.  If the previous buffer is
2829  *	non-0-sized but invalid, B_CACHE will be cleared.
2830  *
2831  *	If getblk() must create a new buffer, the new buffer is returned with
2832  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2833  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2834  *	backing VM.
2835  *
2836  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2837  *	B_CACHE bit is clear.
2838  *
2839  *	What this means, basically, is that the caller should use B_CACHE to
2840  *	determine whether the buffer is fully valid or not and should clear
2841  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2842  *	the buffer by loading its data area with something, the caller needs
2843  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2844  *	the caller should set B_CACHE ( as an optimization ), else the caller
2845  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2846  *	a write attempt or if it was a successfull read.  If the caller
2847  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2848  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2849  *
2850  *	getblk flags:
2851  *
2852  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2853  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2854  */
2855 struct buf *
2856 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2857 {
2858 	struct buf *bp;
2859 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2860 	int error;
2861 	int lkflags;
2862 
2863 	if (size > MAXBSIZE)
2864 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2865 	if (vp->v_object == NULL)
2866 		panic("getblk: vnode %p has no object!", vp);
2867 
2868 loop:
2869 	if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2870 		/*
2871 		 * The buffer was found in the cache, but we need to lock it.
2872 		 * We must acquire a ref on the bp to prevent reuse, but
2873 		 * this will not prevent disassociation (brelvp()) so we
2874 		 * must recheck (vp,loffset) after acquiring the lock.
2875 		 *
2876 		 * Without the ref the buffer could potentially be reused
2877 		 * before we acquire the lock and create a deadlock
2878 		 * situation between the thread trying to reuse the buffer
2879 		 * and us due to the fact that we would wind up blocking
2880 		 * on a random (vp,loffset).
2881 		 */
2882 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2883 			if (blkflags & GETBLK_NOWAIT) {
2884 				bqdrop(bp);
2885 				return(NULL);
2886 			}
2887 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2888 			if (blkflags & GETBLK_PCATCH)
2889 				lkflags |= LK_PCATCH;
2890 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2891 			if (error) {
2892 				bqdrop(bp);
2893 				if (error == ENOLCK)
2894 					goto loop;
2895 				return (NULL);
2896 			}
2897 			/* buffer may have changed on us */
2898 		}
2899 		bqdrop(bp);
2900 
2901 		/*
2902 		 * Once the buffer has been locked, make sure we didn't race
2903 		 * a buffer recyclement.  Buffers that are no longer hashed
2904 		 * will have b_vp == NULL, so this takes care of that check
2905 		 * as well.
2906 		 */
2907 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2908 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2909 				"was recycled\n",
2910 				bp, vp, (long long)loffset);
2911 			BUF_UNLOCK(bp);
2912 			goto loop;
2913 		}
2914 
2915 		/*
2916 		 * If SZMATCH any pre-existing buffer must be of the requested
2917 		 * size or NULL is returned.  The caller absolutely does not
2918 		 * want getblk() to bwrite() the buffer on a size mismatch.
2919 		 */
2920 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2921 			BUF_UNLOCK(bp);
2922 			return(NULL);
2923 		}
2924 
2925 		/*
2926 		 * All vnode-based buffers must be backed by a VM object.
2927 		 */
2928 		KKASSERT(bp->b_flags & B_VMIO);
2929 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2930 		bp->b_flags &= ~B_AGE;
2931 
2932 		/*
2933 		 * Make sure that B_INVAL buffers do not have a cached
2934 		 * block number translation.
2935 		 */
2936 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2937 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2938 				" did not have cleared bio_offset cache\n",
2939 				bp, vp, (long long)loffset);
2940 			clearbiocache(&bp->b_bio2);
2941 		}
2942 
2943 		/*
2944 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2945 		 * invalid.
2946 		 */
2947 		if (bp->b_flags & B_INVAL)
2948 			bp->b_flags &= ~B_CACHE;
2949 		bremfree(bp);
2950 
2951 		/*
2952 		 * Any size inconsistancy with a dirty buffer or a buffer
2953 		 * with a softupdates dependancy must be resolved.  Resizing
2954 		 * the buffer in such circumstances can lead to problems.
2955 		 *
2956 		 * Dirty or dependant buffers are written synchronously.
2957 		 * Other types of buffers are simply released and
2958 		 * reconstituted as they may be backed by valid, dirty VM
2959 		 * pages (but not marked B_DELWRI).
2960 		 *
2961 		 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2962 		 * and may be left over from a prior truncation (and thus
2963 		 * no longer represent the actual EOF point), so we
2964 		 * definitely do not want to B_NOCACHE the backing store.
2965 		 */
2966 		if (size != bp->b_bcount) {
2967 			if (bp->b_flags & B_DELWRI) {
2968 				bp->b_flags |= B_RELBUF;
2969 				bwrite(bp);
2970 			} else if (LIST_FIRST(&bp->b_dep)) {
2971 				bp->b_flags |= B_RELBUF;
2972 				bwrite(bp);
2973 			} else {
2974 				bp->b_flags |= B_RELBUF;
2975 				brelse(bp);
2976 			}
2977 			goto loop;
2978 		}
2979 		KKASSERT(size <= bp->b_kvasize);
2980 		KASSERT(bp->b_loffset != NOOFFSET,
2981 			("getblk: no buffer offset"));
2982 
2983 		/*
2984 		 * A buffer with B_DELWRI set and B_CACHE clear must
2985 		 * be committed before we can return the buffer in
2986 		 * order to prevent the caller from issuing a read
2987 		 * ( due to B_CACHE not being set ) and overwriting
2988 		 * it.
2989 		 *
2990 		 * Most callers, including NFS and FFS, need this to
2991 		 * operate properly either because they assume they
2992 		 * can issue a read if B_CACHE is not set, or because
2993 		 * ( for example ) an uncached B_DELWRI might loop due
2994 		 * to softupdates re-dirtying the buffer.  In the latter
2995 		 * case, B_CACHE is set after the first write completes,
2996 		 * preventing further loops.
2997 		 *
2998 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2999 		 * above while extending the buffer, we cannot allow the
3000 		 * buffer to remain with B_CACHE set after the write
3001 		 * completes or it will represent a corrupt state.  To
3002 		 * deal with this we set B_NOCACHE to scrap the buffer
3003 		 * after the write.
3004 		 *
3005 		 * XXX Should this be B_RELBUF instead of B_NOCACHE?
3006 		 *     I'm not even sure this state is still possible
3007 		 *     now that getblk() writes out any dirty buffers
3008 		 *     on size changes.
3009 		 *
3010 		 * We might be able to do something fancy, like setting
3011 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3012 		 * so the below call doesn't set B_CACHE, but that gets real
3013 		 * confusing.  This is much easier.
3014 		 */
3015 
3016 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3017 			kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
3018 				"and CACHE clear, b_flags %08x\n",
3019 				bp, (uintmax_t)bp->b_loffset, bp->b_flags);
3020 			bp->b_flags |= B_NOCACHE;
3021 			bwrite(bp);
3022 			goto loop;
3023 		}
3024 	} else {
3025 		/*
3026 		 * Buffer is not in-core, create new buffer.  The buffer
3027 		 * returned by getnewbuf() is locked.  Note that the returned
3028 		 * buffer is also considered valid (not marked B_INVAL).
3029 		 *
3030 		 * Calculating the offset for the I/O requires figuring out
3031 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
3032 		 * the mount's f_iosize otherwise.  If the vnode does not
3033 		 * have an associated mount we assume that the passed size is
3034 		 * the block size.
3035 		 *
3036 		 * Note that vn_isdisk() cannot be used here since it may
3037 		 * return a failure for numerous reasons.   Note that the
3038 		 * buffer size may be larger then the block size (the caller
3039 		 * will use block numbers with the proper multiple).  Beware
3040 		 * of using any v_* fields which are part of unions.  In
3041 		 * particular, in DragonFly the mount point overloading
3042 		 * mechanism uses the namecache only and the underlying
3043 		 * directory vnode is not a special case.
3044 		 */
3045 		int bsize, maxsize;
3046 
3047 		if (vp->v_type == VBLK || vp->v_type == VCHR)
3048 			bsize = DEV_BSIZE;
3049 		else if (vp->v_mount)
3050 			bsize = vp->v_mount->mnt_stat.f_iosize;
3051 		else
3052 			bsize = size;
3053 
3054 		maxsize = size + (loffset & PAGE_MASK);
3055 		maxsize = imax(maxsize, bsize);
3056 
3057 		bp = getnewbuf(blkflags, slptimeo, size, maxsize);
3058 		if (bp == NULL) {
3059 			if (slpflags || slptimeo)
3060 				return NULL;
3061 			goto loop;
3062 		}
3063 
3064 		/*
3065 		 * Atomically insert the buffer into the hash, so that it can
3066 		 * be found by findblk().
3067 		 *
3068 		 * If bgetvp() returns non-zero a collision occured, and the
3069 		 * bp will not be associated with the vnode.
3070 		 *
3071 		 * Make sure the translation layer has been cleared.
3072 		 */
3073 		bp->b_loffset = loffset;
3074 		bp->b_bio2.bio_offset = NOOFFSET;
3075 		/* bp->b_bio2.bio_next = NULL; */
3076 
3077 		if (bgetvp(vp, bp, size)) {
3078 			bp->b_flags |= B_INVAL;
3079 			brelse(bp);
3080 			goto loop;
3081 		}
3082 
3083 		/*
3084 		 * All vnode-based buffers must be backed by a VM object.
3085 		 */
3086 		KKASSERT(vp->v_object != NULL);
3087 		bp->b_flags |= B_VMIO;
3088 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3089 
3090 		allocbuf(bp, size);
3091 	}
3092 	KKASSERT(dsched_is_clear_buf_priv(bp));
3093 	return (bp);
3094 }
3095 
3096 /*
3097  * regetblk(bp)
3098  *
3099  * Reacquire a buffer that was previously released to the locked queue,
3100  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3101  * set B_LOCKED (which handles the acquisition race).
3102  *
3103  * To this end, either B_LOCKED must be set or the dependancy list must be
3104  * non-empty.
3105  */
3106 void
3107 regetblk(struct buf *bp)
3108 {
3109 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3110 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3111 	bremfree(bp);
3112 }
3113 
3114 /*
3115  * geteblk:
3116  *
3117  *	Get an empty, disassociated buffer of given size.  The buffer is
3118  *	initially set to B_INVAL.
3119  *
3120  *	critical section protection is not required for the allocbuf()
3121  *	call because races are impossible here.
3122  */
3123 struct buf *
3124 geteblk(int size)
3125 {
3126 	struct buf *bp;
3127 	int maxsize;
3128 
3129 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3130 
3131 	while ((bp = getnewbuf(0, 0, size, maxsize)) == NULL)
3132 		;
3133 	allocbuf(bp, size);
3134 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3135 	KKASSERT(dsched_is_clear_buf_priv(bp));
3136 	return (bp);
3137 }
3138 
3139 
3140 /*
3141  * allocbuf:
3142  *
3143  *	This code constitutes the buffer memory from either anonymous system
3144  *	memory (in the case of non-VMIO operations) or from an associated
3145  *	VM object (in the case of VMIO operations).  This code is able to
3146  *	resize a buffer up or down.
3147  *
3148  *	Note that this code is tricky, and has many complications to resolve
3149  *	deadlock or inconsistant data situations.  Tread lightly!!!
3150  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
3151  *	the caller.  Calling this code willy nilly can result in the loss of
3152  *	data.
3153  *
3154  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3155  *	B_CACHE for the non-VMIO case.
3156  *
3157  *	This routine does not need to be called from a critical section but you
3158  *	must own the buffer.
3159  */
3160 int
3161 allocbuf(struct buf *bp, int size)
3162 {
3163 	int newbsize, mbsize;
3164 	int i;
3165 
3166 	if (BUF_REFCNT(bp) == 0)
3167 		panic("allocbuf: buffer not busy");
3168 
3169 	if (bp->b_kvasize < size)
3170 		panic("allocbuf: buffer too small");
3171 
3172 	if ((bp->b_flags & B_VMIO) == 0) {
3173 		caddr_t origbuf;
3174 		int origbufsize;
3175 		/*
3176 		 * Just get anonymous memory from the kernel.  Don't
3177 		 * mess with B_CACHE.
3178 		 */
3179 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3180 		if (bp->b_flags & B_MALLOC)
3181 			newbsize = mbsize;
3182 		else
3183 			newbsize = round_page(size);
3184 
3185 		if (newbsize < bp->b_bufsize) {
3186 			/*
3187 			 * Malloced buffers are not shrunk
3188 			 */
3189 			if (bp->b_flags & B_MALLOC) {
3190 				if (newbsize) {
3191 					bp->b_bcount = size;
3192 				} else {
3193 					kfree(bp->b_data, M_BIOBUF);
3194 					if (bp->b_bufsize) {
3195 						atomic_subtract_long(&bufmallocspace, bp->b_bufsize);
3196 						bufspacewakeup();
3197 						bp->b_bufsize = 0;
3198 					}
3199 					bp->b_data = bp->b_kvabase;
3200 					bp->b_bcount = 0;
3201 					bp->b_flags &= ~B_MALLOC;
3202 				}
3203 				return 1;
3204 			}
3205 			vm_hold_free_pages(
3206 			    bp,
3207 			    (vm_offset_t) bp->b_data + newbsize,
3208 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3209 		} else if (newbsize > bp->b_bufsize) {
3210 			/*
3211 			 * We only use malloced memory on the first allocation.
3212 			 * and revert to page-allocated memory when the buffer
3213 			 * grows.
3214 			 */
3215 			if ((bufmallocspace < maxbufmallocspace) &&
3216 				(bp->b_bufsize == 0) &&
3217 				(mbsize <= PAGE_SIZE/2)) {
3218 
3219 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3220 				bp->b_bufsize = mbsize;
3221 				bp->b_bcount = size;
3222 				bp->b_flags |= B_MALLOC;
3223 				atomic_add_long(&bufmallocspace, mbsize);
3224 				return 1;
3225 			}
3226 			origbuf = NULL;
3227 			origbufsize = 0;
3228 			/*
3229 			 * If the buffer is growing on its other-than-first
3230 			 * allocation, then we revert to the page-allocation
3231 			 * scheme.
3232 			 */
3233 			if (bp->b_flags & B_MALLOC) {
3234 				origbuf = bp->b_data;
3235 				origbufsize = bp->b_bufsize;
3236 				bp->b_data = bp->b_kvabase;
3237 				if (bp->b_bufsize) {
3238 					atomic_subtract_long(&bufmallocspace,
3239 							     bp->b_bufsize);
3240 					bufspacewakeup();
3241 					bp->b_bufsize = 0;
3242 				}
3243 				bp->b_flags &= ~B_MALLOC;
3244 				newbsize = round_page(newbsize);
3245 			}
3246 			vm_hold_load_pages(
3247 			    bp,
3248 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3249 			    (vm_offset_t) bp->b_data + newbsize);
3250 			if (origbuf) {
3251 				bcopy(origbuf, bp->b_data, origbufsize);
3252 				kfree(origbuf, M_BIOBUF);
3253 			}
3254 		}
3255 	} else {
3256 		vm_page_t m;
3257 		int desiredpages;
3258 
3259 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3260 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3261 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3262 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3263 
3264 		if (bp->b_flags & B_MALLOC)
3265 			panic("allocbuf: VMIO buffer can't be malloced");
3266 		/*
3267 		 * Set B_CACHE initially if buffer is 0 length or will become
3268 		 * 0-length.
3269 		 */
3270 		if (size == 0 || bp->b_bufsize == 0)
3271 			bp->b_flags |= B_CACHE;
3272 
3273 		if (newbsize < bp->b_bufsize) {
3274 			/*
3275 			 * DEV_BSIZE aligned new buffer size is less then the
3276 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3277 			 * if we have to remove any pages.
3278 			 */
3279 			if (desiredpages < bp->b_xio.xio_npages) {
3280 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3281 					/*
3282 					 * the page is not freed here -- it
3283 					 * is the responsibility of
3284 					 * vnode_pager_setsize
3285 					 */
3286 					m = bp->b_xio.xio_pages[i];
3287 					KASSERT(m != bogus_page,
3288 					    ("allocbuf: bogus page found"));
3289 					vm_page_busy_wait(m, TRUE, "biodep");
3290 					bp->b_xio.xio_pages[i] = NULL;
3291 					vm_page_unwire(m, 0);
3292 					vm_page_wakeup(m);
3293 				}
3294 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3295 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3296 				bp->b_xio.xio_npages = desiredpages;
3297 			}
3298 		} else if (size > bp->b_bcount) {
3299 			/*
3300 			 * We are growing the buffer, possibly in a
3301 			 * byte-granular fashion.
3302 			 */
3303 			struct vnode *vp;
3304 			vm_object_t obj;
3305 			vm_offset_t toff;
3306 			vm_offset_t tinc;
3307 
3308 			/*
3309 			 * Step 1, bring in the VM pages from the object,
3310 			 * allocating them if necessary.  We must clear
3311 			 * B_CACHE if these pages are not valid for the
3312 			 * range covered by the buffer.
3313 			 *
3314 			 * critical section protection is required to protect
3315 			 * against interrupts unbusying and freeing pages
3316 			 * between our vm_page_lookup() and our
3317 			 * busycheck/wiring call.
3318 			 */
3319 			vp = bp->b_vp;
3320 			obj = vp->v_object;
3321 
3322 			vm_object_hold(obj);
3323 			while (bp->b_xio.xio_npages < desiredpages) {
3324 				vm_page_t m;
3325 				vm_pindex_t pi;
3326 				int error;
3327 
3328 				pi = OFF_TO_IDX(bp->b_loffset) +
3329 				     bp->b_xio.xio_npages;
3330 
3331 				/*
3332 				 * Blocking on m->busy might lead to a
3333 				 * deadlock:
3334 				 *
3335 				 *  vm_fault->getpages->cluster_read->allocbuf
3336 				 */
3337 				m = vm_page_lookup_busy_try(obj, pi, FALSE,
3338 							    &error);
3339 				if (error) {
3340 					vm_page_sleep_busy(m, FALSE, "pgtblk");
3341 					continue;
3342 				}
3343 				if (m == NULL) {
3344 					/*
3345 					 * note: must allocate system pages
3346 					 * since blocking here could intefere
3347 					 * with paging I/O, no matter which
3348 					 * process we are.
3349 					 */
3350 					m = bio_page_alloc(bp, obj, pi, desiredpages - bp->b_xio.xio_npages);
3351 					if (m) {
3352 						vm_page_wire(m);
3353 						vm_page_flag_clear(m, PG_ZERO);
3354 						vm_page_wakeup(m);
3355 						bp->b_flags &= ~B_CACHE;
3356 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3357 						++bp->b_xio.xio_npages;
3358 					}
3359 					continue;
3360 				}
3361 
3362 				/*
3363 				 * We found a page and were able to busy it.
3364 				 */
3365 				vm_page_flag_clear(m, PG_ZERO);
3366 				vm_page_wire(m);
3367 				vm_page_wakeup(m);
3368 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3369 				++bp->b_xio.xio_npages;
3370 				if (bp->b_act_count < m->act_count)
3371 					bp->b_act_count = m->act_count;
3372 			}
3373 			vm_object_drop(obj);
3374 
3375 			/*
3376 			 * Step 2.  We've loaded the pages into the buffer,
3377 			 * we have to figure out if we can still have B_CACHE
3378 			 * set.  Note that B_CACHE is set according to the
3379 			 * byte-granular range ( bcount and size ), not the
3380 			 * aligned range ( newbsize ).
3381 			 *
3382 			 * The VM test is against m->valid, which is DEV_BSIZE
3383 			 * aligned.  Needless to say, the validity of the data
3384 			 * needs to also be DEV_BSIZE aligned.  Note that this
3385 			 * fails with NFS if the server or some other client
3386 			 * extends the file's EOF.  If our buffer is resized,
3387 			 * B_CACHE may remain set! XXX
3388 			 */
3389 
3390 			toff = bp->b_bcount;
3391 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3392 
3393 			while ((bp->b_flags & B_CACHE) && toff < size) {
3394 				vm_pindex_t pi;
3395 
3396 				if (tinc > (size - toff))
3397 					tinc = size - toff;
3398 
3399 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3400 				    PAGE_SHIFT;
3401 
3402 				vfs_buf_test_cache(
3403 				    bp,
3404 				    bp->b_loffset,
3405 				    toff,
3406 				    tinc,
3407 				    bp->b_xio.xio_pages[pi]
3408 				);
3409 				toff += tinc;
3410 				tinc = PAGE_SIZE;
3411 			}
3412 
3413 			/*
3414 			 * Step 3, fixup the KVM pmap.  Remember that
3415 			 * bp->b_data is relative to bp->b_loffset, but
3416 			 * bp->b_loffset may be offset into the first page.
3417 			 */
3418 
3419 			bp->b_data = (caddr_t)
3420 			    trunc_page((vm_offset_t)bp->b_data);
3421 			pmap_qenter(
3422 			    (vm_offset_t)bp->b_data,
3423 			    bp->b_xio.xio_pages,
3424 			    bp->b_xio.xio_npages
3425 			);
3426 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3427 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3428 		}
3429 	}
3430 
3431 	/* adjust space use on already-dirty buffer */
3432 	if (bp->b_flags & B_DELWRI) {
3433 		/* dirtykvaspace unchanged */
3434 		atomic_add_long(&dirtybufspace, newbsize - bp->b_bufsize);
3435 		if (bp->b_flags & B_HEAVY) {
3436 			atomic_add_long(&dirtybufspacehw,
3437 					newbsize - bp->b_bufsize);
3438 		}
3439 	}
3440 	if (newbsize < bp->b_bufsize)
3441 		bufspacewakeup();
3442 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3443 	bp->b_bcount = size;		/* requested buffer size	*/
3444 	return 1;
3445 }
3446 
3447 /*
3448  * biowait:
3449  *
3450  *	Wait for buffer I/O completion, returning error status. B_EINTR
3451  *	is converted into an EINTR error but not cleared (since a chain
3452  *	of biowait() calls may occur).
3453  *
3454  *	On return bpdone() will have been called but the buffer will remain
3455  *	locked and will not have been brelse()'d.
3456  *
3457  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3458  *	likely still in progress on return.
3459  *
3460  *	NOTE!  This operation is on a BIO, not a BUF.
3461  *
3462  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3463  */
3464 static __inline int
3465 _biowait(struct bio *bio, const char *wmesg, int to)
3466 {
3467 	struct buf *bp = bio->bio_buf;
3468 	u_int32_t flags;
3469 	u_int32_t nflags;
3470 	int error;
3471 
3472 	KKASSERT(bio == &bp->b_bio1);
3473 	for (;;) {
3474 		flags = bio->bio_flags;
3475 		if (flags & BIO_DONE)
3476 			break;
3477 		nflags = flags | BIO_WANT;
3478 		tsleep_interlock(bio, 0);
3479 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3480 			if (wmesg)
3481 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3482 			else if (bp->b_cmd == BUF_CMD_READ)
3483 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3484 			else
3485 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3486 			if (error) {
3487 				kprintf("tsleep error biowait %d\n", error);
3488 				return (error);
3489 			}
3490 		}
3491 	}
3492 
3493 	/*
3494 	 * Finish up.
3495 	 */
3496 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3497 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3498 	if (bp->b_flags & B_EINTR)
3499 		return (EINTR);
3500 	if (bp->b_flags & B_ERROR)
3501 		return (bp->b_error ? bp->b_error : EIO);
3502 	return (0);
3503 }
3504 
3505 int
3506 biowait(struct bio *bio, const char *wmesg)
3507 {
3508 	return(_biowait(bio, wmesg, 0));
3509 }
3510 
3511 int
3512 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3513 {
3514 	return(_biowait(bio, wmesg, to));
3515 }
3516 
3517 /*
3518  * This associates a tracking count with an I/O.  vn_strategy() and
3519  * dev_dstrategy() do this automatically but there are a few cases
3520  * where a vnode or device layer is bypassed when a block translation
3521  * is cached.  In such cases bio_start_transaction() may be called on
3522  * the bypassed layers so the system gets an I/O in progress indication
3523  * for those higher layers.
3524  */
3525 void
3526 bio_start_transaction(struct bio *bio, struct bio_track *track)
3527 {
3528 	bio->bio_track = track;
3529 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3530 		dsched_new_buf(bio->bio_buf);
3531 	bio_track_ref(track);
3532 }
3533 
3534 /*
3535  * Initiate I/O on a vnode.
3536  *
3537  * SWAPCACHE OPERATION:
3538  *
3539  *	Real buffer cache buffers have a non-NULL bp->b_vp.  Unfortunately
3540  *	devfs also uses b_vp for fake buffers so we also have to check
3541  *	that B_PAGING is 0.  In this case the passed 'vp' is probably the
3542  *	underlying block device.  The swap assignments are related to the
3543  *	buffer cache buffer's b_vp, not the passed vp.
3544  *
3545  *	The passed vp == bp->b_vp only in the case where the strategy call
3546  *	is made on the vp itself for its own buffers (a regular file or
3547  *	block device vp).  The filesystem usually then re-calls vn_strategy()
3548  *	after translating the request to an underlying device.
3549  *
3550  *	Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3551  *	underlying buffer cache buffers.
3552  *
3553  *	We can only deal with page-aligned buffers at the moment, because
3554  *	we can't tell what the real dirty state for pages straddling a buffer
3555  *	are.
3556  *
3557  *	In order to call swap_pager_strategy() we must provide the VM object
3558  *	and base offset for the underlying buffer cache pages so it can find
3559  *	the swap blocks.
3560  */
3561 void
3562 vn_strategy(struct vnode *vp, struct bio *bio)
3563 {
3564 	struct bio_track *track;
3565 	struct buf *bp = bio->bio_buf;
3566 
3567 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3568 
3569 	/*
3570 	 * Set when an I/O is issued on the bp.  Cleared by consumers
3571 	 * (aka HAMMER), allowing the consumer to determine if I/O had
3572 	 * actually occurred.
3573 	 */
3574 	bp->b_flags |= B_IODEBUG;
3575 
3576 	/*
3577 	 * Handle the swap cache intercept.
3578 	 */
3579 	if (vn_cache_strategy(vp, bio))
3580 		return;
3581 
3582 	/*
3583 	 * Otherwise do the operation through the filesystem
3584 	 */
3585         if (bp->b_cmd == BUF_CMD_READ)
3586                 track = &vp->v_track_read;
3587         else
3588                 track = &vp->v_track_write;
3589 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3590 	bio->bio_track = track;
3591 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3592 		dsched_new_buf(bio->bio_buf);
3593 	bio_track_ref(track);
3594         vop_strategy(*vp->v_ops, vp, bio);
3595 }
3596 
3597 static void vn_cache_strategy_callback(struct bio *bio);
3598 
3599 int
3600 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3601 {
3602 	struct buf *bp = bio->bio_buf;
3603 	struct bio *nbio;
3604 	vm_object_t object;
3605 	vm_page_t m;
3606 	int i;
3607 
3608 	/*
3609 	 * Is this buffer cache buffer suitable for reading from
3610 	 * the swap cache?
3611 	 */
3612 	if (vm_swapcache_read_enable == 0 ||
3613 	    bp->b_cmd != BUF_CMD_READ ||
3614 	    ((bp->b_flags & B_CLUSTER) == 0 &&
3615 	     (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3616 	    ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3617 	    (bp->b_bcount & PAGE_MASK) != 0) {
3618 		return(0);
3619 	}
3620 
3621 	/*
3622 	 * Figure out the original VM object (it will match the underlying
3623 	 * VM pages).  Note that swap cached data uses page indices relative
3624 	 * to that object, not relative to bio->bio_offset.
3625 	 */
3626 	if (bp->b_flags & B_CLUSTER)
3627 		object = vp->v_object;
3628 	else
3629 		object = bp->b_vp->v_object;
3630 
3631 	/*
3632 	 * In order to be able to use the swap cache all underlying VM
3633 	 * pages must be marked as such, and we can't have any bogus pages.
3634 	 */
3635 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3636 		m = bp->b_xio.xio_pages[i];
3637 		if ((m->flags & PG_SWAPPED) == 0)
3638 			break;
3639 		if (m == bogus_page)
3640 			break;
3641 	}
3642 
3643 	/*
3644 	 * If we are good then issue the I/O using swap_pager_strategy().
3645 	 *
3646 	 * We can only do this if the buffer actually supports object-backed
3647 	 * I/O.  If it doesn't npages will be 0.
3648 	 */
3649 	if (i && i == bp->b_xio.xio_npages) {
3650 		m = bp->b_xio.xio_pages[0];
3651 		nbio = push_bio(bio);
3652 		nbio->bio_done = vn_cache_strategy_callback;
3653 		nbio->bio_offset = ptoa(m->pindex);
3654 		KKASSERT(m->object == object);
3655 		swap_pager_strategy(object, nbio);
3656 		return(1);
3657 	}
3658 	return(0);
3659 }
3660 
3661 /*
3662  * This is a bit of a hack but since the vn_cache_strategy() function can
3663  * override a VFS's strategy function we must make sure that the bio, which
3664  * is probably bio2, doesn't leak an unexpected offset value back to the
3665  * filesystem.  The filesystem (e.g. UFS) might otherwise assume that the
3666  * bio went through its own file strategy function and the the bio2 offset
3667  * is a cached disk offset when, in fact, it isn't.
3668  */
3669 static void
3670 vn_cache_strategy_callback(struct bio *bio)
3671 {
3672 	bio->bio_offset = NOOFFSET;
3673 	biodone(pop_bio(bio));
3674 }
3675 
3676 /*
3677  * bpdone:
3678  *
3679  *	Finish I/O on a buffer after all BIOs have been processed.
3680  *	Called when the bio chain is exhausted or by biowait.  If called
3681  *	by biowait, elseit is typically 0.
3682  *
3683  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3684  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3685  *	assuming B_INVAL is clear.
3686  *
3687  *	For the VMIO case, we set B_CACHE if the op was a read and no
3688  *	read error occured, or if the op was a write.  B_CACHE is never
3689  *	set if the buffer is invalid or otherwise uncacheable.
3690  *
3691  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3692  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3693  *	in the biodone routine.
3694  */
3695 void
3696 bpdone(struct buf *bp, int elseit)
3697 {
3698 	buf_cmd_t cmd;
3699 
3700 	KASSERT(BUF_REFCNTNB(bp) > 0,
3701 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3702 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3703 		("biodone: bp %p already done!", bp));
3704 
3705 	/*
3706 	 * No more BIOs are left.  All completion functions have been dealt
3707 	 * with, now we clean up the buffer.
3708 	 */
3709 	cmd = bp->b_cmd;
3710 	bp->b_cmd = BUF_CMD_DONE;
3711 
3712 	/*
3713 	 * Only reads and writes are processed past this point.
3714 	 */
3715 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3716 		if (cmd == BUF_CMD_FREEBLKS)
3717 			bp->b_flags |= B_NOCACHE;
3718 		if (elseit)
3719 			brelse(bp);
3720 		return;
3721 	}
3722 
3723 	/*
3724 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3725 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3726 	 */
3727 	if (LIST_FIRST(&bp->b_dep) != NULL)
3728 		buf_complete(bp);
3729 
3730 	/*
3731 	 * A failed write must re-dirty the buffer unless B_INVAL
3732 	 * was set.  Only applicable to normal buffers (with VPs).
3733 	 * vinum buffers may not have a vp.
3734 	 */
3735 	if (cmd == BUF_CMD_WRITE &&
3736 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3737 		bp->b_flags &= ~B_NOCACHE;
3738 		if (bp->b_vp)
3739 			bdirty(bp);
3740 	}
3741 
3742 	if (bp->b_flags & B_VMIO) {
3743 		int i;
3744 		vm_ooffset_t foff;
3745 		vm_page_t m;
3746 		vm_object_t obj;
3747 		int iosize;
3748 		struct vnode *vp = bp->b_vp;
3749 
3750 		obj = vp->v_object;
3751 
3752 #if defined(VFS_BIO_DEBUG)
3753 		if (vp->v_auxrefs == 0)
3754 			panic("biodone: zero vnode hold count");
3755 		if ((vp->v_flag & VOBJBUF) == 0)
3756 			panic("biodone: vnode is not setup for merged cache");
3757 #endif
3758 
3759 		foff = bp->b_loffset;
3760 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3761 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3762 
3763 #if defined(VFS_BIO_DEBUG)
3764 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3765 			kprintf("biodone: paging in progress(%d) < "
3766 				"bp->b_xio.xio_npages(%d)\n",
3767 				obj->paging_in_progress,
3768 				bp->b_xio.xio_npages);
3769 		}
3770 #endif
3771 
3772 		/*
3773 		 * Set B_CACHE if the op was a normal read and no error
3774 		 * occured.  B_CACHE is set for writes in the b*write()
3775 		 * routines.
3776 		 */
3777 		iosize = bp->b_bcount - bp->b_resid;
3778 		if (cmd == BUF_CMD_READ &&
3779 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3780 			bp->b_flags |= B_CACHE;
3781 		}
3782 
3783 		vm_object_hold(obj);
3784 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3785 			int bogusflag = 0;
3786 			int resid;
3787 
3788 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3789 			if (resid > iosize)
3790 				resid = iosize;
3791 
3792 			/*
3793 			 * cleanup bogus pages, restoring the originals.  Since
3794 			 * the originals should still be wired, we don't have
3795 			 * to worry about interrupt/freeing races destroying
3796 			 * the VM object association.
3797 			 */
3798 			m = bp->b_xio.xio_pages[i];
3799 			if (m == bogus_page) {
3800 				bogusflag = 1;
3801 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3802 				if (m == NULL)
3803 					panic("biodone: page disappeared");
3804 				bp->b_xio.xio_pages[i] = m;
3805 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3806 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3807 			}
3808 #if defined(VFS_BIO_DEBUG)
3809 			if (OFF_TO_IDX(foff) != m->pindex) {
3810 				kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3811 					"mismatch\n",
3812 					(unsigned long)foff, (long)m->pindex);
3813 			}
3814 #endif
3815 
3816 			/*
3817 			 * In the write case, the valid and clean bits are
3818 			 * already changed correctly (see bdwrite()), so we
3819 			 * only need to do this here in the read case.
3820 			 */
3821 			vm_page_busy_wait(m, FALSE, "bpdpgw");
3822 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3823 				vfs_clean_one_page(bp, i, m);
3824 			}
3825 			vm_page_flag_clear(m, PG_ZERO);
3826 
3827 			/*
3828 			 * when debugging new filesystems or buffer I/O
3829 			 * methods, this is the most common error that pops
3830 			 * up.  if you see this, you have not set the page
3831 			 * busy flag correctly!!!
3832 			 */
3833 			if (m->busy == 0) {
3834 				kprintf("biodone: page busy < 0, "
3835 				    "pindex: %d, foff: 0x(%x,%x), "
3836 				    "resid: %d, index: %d\n",
3837 				    (int) m->pindex, (int)(foff >> 32),
3838 						(int) foff & 0xffffffff, resid, i);
3839 				if (!vn_isdisk(vp, NULL))
3840 					kprintf(" iosize: %ld, loffset: %lld, "
3841 						"flags: 0x%08x, npages: %d\n",
3842 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3843 					    (long long)bp->b_loffset,
3844 					    bp->b_flags, bp->b_xio.xio_npages);
3845 				else
3846 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3847 					    (long long)bp->b_loffset,
3848 					    bp->b_flags, bp->b_xio.xio_npages);
3849 				kprintf(" valid: 0x%x, dirty: 0x%x, "
3850 					"wired: %d\n",
3851 					m->valid, m->dirty,
3852 					m->wire_count);
3853 				panic("biodone: page busy < 0");
3854 			}
3855 			vm_page_io_finish(m);
3856 			vm_page_wakeup(m);
3857 			vm_object_pip_wakeup(obj);
3858 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3859 			iosize -= resid;
3860 		}
3861 		bp->b_flags &= ~B_HASBOGUS;
3862 		vm_object_drop(obj);
3863 	}
3864 
3865 	/*
3866 	 * Finish up by releasing the buffer.  There are no more synchronous
3867 	 * or asynchronous completions, those were handled by bio_done
3868 	 * callbacks.
3869 	 */
3870 	if (elseit) {
3871 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3872 			brelse(bp);
3873 		else
3874 			bqrelse(bp);
3875 	}
3876 }
3877 
3878 /*
3879  * Normal biodone.
3880  */
3881 void
3882 biodone(struct bio *bio)
3883 {
3884 	struct buf *bp = bio->bio_buf;
3885 
3886 	runningbufwakeup(bp);
3887 
3888 	/*
3889 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3890 	 */
3891 	while (bio) {
3892 		biodone_t *done_func;
3893 		struct bio_track *track;
3894 
3895 		/*
3896 		 * BIO tracking.  Most but not all BIOs are tracked.
3897 		 */
3898 		if ((track = bio->bio_track) != NULL) {
3899 			bio_track_rel(track);
3900 			bio->bio_track = NULL;
3901 		}
3902 
3903 		/*
3904 		 * A bio_done function terminates the loop.  The function
3905 		 * will be responsible for any further chaining and/or
3906 		 * buffer management.
3907 		 *
3908 		 * WARNING!  The done function can deallocate the buffer!
3909 		 */
3910 		if ((done_func = bio->bio_done) != NULL) {
3911 			bio->bio_done = NULL;
3912 			done_func(bio);
3913 			return;
3914 		}
3915 		bio = bio->bio_prev;
3916 	}
3917 
3918 	/*
3919 	 * If we've run out of bio's do normal [a]synchronous completion.
3920 	 */
3921 	bpdone(bp, 1);
3922 }
3923 
3924 /*
3925  * Synchronous biodone - this terminates a synchronous BIO.
3926  *
3927  * bpdone() is called with elseit=FALSE, leaving the buffer completed
3928  * but still locked.  The caller must brelse() the buffer after waiting
3929  * for completion.
3930  */
3931 void
3932 biodone_sync(struct bio *bio)
3933 {
3934 	struct buf *bp = bio->bio_buf;
3935 	int flags;
3936 	int nflags;
3937 
3938 	KKASSERT(bio == &bp->b_bio1);
3939 	bpdone(bp, 0);
3940 
3941 	for (;;) {
3942 		flags = bio->bio_flags;
3943 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
3944 
3945 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3946 			if (flags & BIO_WANT)
3947 				wakeup(bio);
3948 			break;
3949 		}
3950 	}
3951 }
3952 
3953 /*
3954  * vfs_unbusy_pages:
3955  *
3956  *	This routine is called in lieu of iodone in the case of
3957  *	incomplete I/O.  This keeps the busy status for pages
3958  *	consistant.
3959  */
3960 void
3961 vfs_unbusy_pages(struct buf *bp)
3962 {
3963 	int i;
3964 
3965 	runningbufwakeup(bp);
3966 
3967 	if (bp->b_flags & B_VMIO) {
3968 		struct vnode *vp = bp->b_vp;
3969 		vm_object_t obj;
3970 
3971 		obj = vp->v_object;
3972 		vm_object_hold(obj);
3973 
3974 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3975 			vm_page_t m = bp->b_xio.xio_pages[i];
3976 
3977 			/*
3978 			 * When restoring bogus changes the original pages
3979 			 * should still be wired, so we are in no danger of
3980 			 * losing the object association and do not need
3981 			 * critical section protection particularly.
3982 			 */
3983 			if (m == bogus_page) {
3984 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3985 				if (!m) {
3986 					panic("vfs_unbusy_pages: page missing");
3987 				}
3988 				bp->b_xio.xio_pages[i] = m;
3989 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3990 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3991 			}
3992 			vm_page_busy_wait(m, FALSE, "bpdpgw");
3993 			vm_page_flag_clear(m, PG_ZERO);
3994 			vm_page_io_finish(m);
3995 			vm_page_wakeup(m);
3996 			vm_object_pip_wakeup(obj);
3997 		}
3998 		bp->b_flags &= ~B_HASBOGUS;
3999 		vm_object_drop(obj);
4000 	}
4001 }
4002 
4003 /*
4004  * vfs_busy_pages:
4005  *
4006  *	This routine is called before a device strategy routine.
4007  *	It is used to tell the VM system that paging I/O is in
4008  *	progress, and treat the pages associated with the buffer
4009  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
4010  *	flag is handled to make sure that the object doesn't become
4011  *	inconsistant.
4012  *
4013  *	Since I/O has not been initiated yet, certain buffer flags
4014  *	such as B_ERROR or B_INVAL may be in an inconsistant state
4015  *	and should be ignored.
4016  */
4017 void
4018 vfs_busy_pages(struct vnode *vp, struct buf *bp)
4019 {
4020 	int i, bogus;
4021 	struct lwp *lp = curthread->td_lwp;
4022 
4023 	/*
4024 	 * The buffer's I/O command must already be set.  If reading,
4025 	 * B_CACHE must be 0 (double check against callers only doing
4026 	 * I/O when B_CACHE is 0).
4027 	 */
4028 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4029 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
4030 
4031 	if (bp->b_flags & B_VMIO) {
4032 		vm_object_t obj;
4033 
4034 		obj = vp->v_object;
4035 		KASSERT(bp->b_loffset != NOOFFSET,
4036 			("vfs_busy_pages: no buffer offset"));
4037 
4038 		/*
4039 		 * Busy all the pages.  We have to busy them all at once
4040 		 * to avoid deadlocks.
4041 		 */
4042 retry:
4043 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4044 			vm_page_t m = bp->b_xio.xio_pages[i];
4045 
4046 			if (vm_page_busy_try(m, FALSE)) {
4047 				vm_page_sleep_busy(m, FALSE, "vbpage");
4048 				while (--i >= 0)
4049 					vm_page_wakeup(bp->b_xio.xio_pages[i]);
4050 				goto retry;
4051 			}
4052 		}
4053 
4054 		/*
4055 		 * Setup for I/O, soft-busy the page right now because
4056 		 * the next loop may block.
4057 		 */
4058 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4059 			vm_page_t m = bp->b_xio.xio_pages[i];
4060 
4061 			vm_page_flag_clear(m, PG_ZERO);
4062 			if ((bp->b_flags & B_CLUSTER) == 0) {
4063 				vm_object_pip_add(obj, 1);
4064 				vm_page_io_start(m);
4065 			}
4066 		}
4067 
4068 		/*
4069 		 * Adjust protections for I/O and do bogus-page mapping.
4070 		 * Assume that vm_page_protect() can block (it can block
4071 		 * if VM_PROT_NONE, don't take any chances regardless).
4072 		 *
4073 		 * In particular note that for writes we must incorporate
4074 		 * page dirtyness from the VM system into the buffer's
4075 		 * dirty range.
4076 		 *
4077 		 * For reads we theoretically must incorporate page dirtyness
4078 		 * from the VM system to determine if the page needs bogus
4079 		 * replacement, but we shortcut the test by simply checking
4080 		 * that all m->valid bits are set, indicating that the page
4081 		 * is fully valid and does not need to be re-read.  For any
4082 		 * VM system dirtyness the page will also be fully valid
4083 		 * since it was mapped at one point.
4084 		 */
4085 		bogus = 0;
4086 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4087 			vm_page_t m = bp->b_xio.xio_pages[i];
4088 
4089 			vm_page_flag_clear(m, PG_ZERO);	/* XXX */
4090 			if (bp->b_cmd == BUF_CMD_WRITE) {
4091 				/*
4092 				 * When readying a vnode-backed buffer for
4093 				 * a write we must zero-fill any invalid
4094 				 * portions of the backing VM pages, mark
4095 				 * it valid and clear related dirty bits.
4096 				 *
4097 				 * vfs_clean_one_page() incorporates any
4098 				 * VM dirtyness and updates the b_dirtyoff
4099 				 * range (after we've made the page RO).
4100 				 *
4101 				 * It is also expected that the pmap modified
4102 				 * bit has already been cleared by the
4103 				 * vm_page_protect().  We may not be able
4104 				 * to clear all dirty bits for a page if it
4105 				 * was also memory mapped (NFS).
4106 				 *
4107 				 * Finally be sure to unassign any swap-cache
4108 				 * backing store as it is now stale.
4109 				 */
4110 				vm_page_protect(m, VM_PROT_READ);
4111 				vfs_clean_one_page(bp, i, m);
4112 				swap_pager_unswapped(m);
4113 			} else if (m->valid == VM_PAGE_BITS_ALL) {
4114 				/*
4115 				 * When readying a vnode-backed buffer for
4116 				 * read we must replace any dirty pages with
4117 				 * a bogus page so dirty data is not destroyed
4118 				 * when filling gaps.
4119 				 *
4120 				 * To avoid testing whether the page is
4121 				 * dirty we instead test that the page was
4122 				 * at some point mapped (m->valid fully
4123 				 * valid) with the understanding that
4124 				 * this also covers the dirty case.
4125 				 */
4126 				bp->b_xio.xio_pages[i] = bogus_page;
4127 				bp->b_flags |= B_HASBOGUS;
4128 				bogus++;
4129 			} else if (m->valid & m->dirty) {
4130 				/*
4131 				 * This case should not occur as partial
4132 				 * dirtyment can only happen if the buffer
4133 				 * is B_CACHE, and this code is not entered
4134 				 * if the buffer is B_CACHE.
4135 				 */
4136 				kprintf("Warning: vfs_busy_pages - page not "
4137 					"fully valid! loff=%jx bpf=%08x "
4138 					"idx=%d val=%02x dir=%02x\n",
4139 					(uintmax_t)bp->b_loffset, bp->b_flags,
4140 					i, m->valid, m->dirty);
4141 				vm_page_protect(m, VM_PROT_NONE);
4142 			} else {
4143 				/*
4144 				 * The page is not valid and can be made
4145 				 * part of the read.
4146 				 */
4147 				vm_page_protect(m, VM_PROT_NONE);
4148 			}
4149 			vm_page_wakeup(m);
4150 		}
4151 		if (bogus) {
4152 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4153 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4154 		}
4155 	}
4156 
4157 	/*
4158 	 * This is the easiest place to put the process accounting for the I/O
4159 	 * for now.
4160 	 */
4161 	if (lp != NULL) {
4162 		if (bp->b_cmd == BUF_CMD_READ)
4163 			lp->lwp_ru.ru_inblock++;
4164 		else
4165 			lp->lwp_ru.ru_oublock++;
4166 	}
4167 }
4168 
4169 /*
4170  * Tell the VM system that the pages associated with this buffer
4171  * are clean.  This is used for delayed writes where the data is
4172  * going to go to disk eventually without additional VM intevention.
4173  *
4174  * NOTE: While we only really need to clean through to b_bcount, we
4175  *	 just go ahead and clean through to b_bufsize.
4176  */
4177 static void
4178 vfs_clean_pages(struct buf *bp)
4179 {
4180 	vm_page_t m;
4181 	int i;
4182 
4183 	if ((bp->b_flags & B_VMIO) == 0)
4184 		return;
4185 
4186 	KASSERT(bp->b_loffset != NOOFFSET,
4187 		("vfs_clean_pages: no buffer offset"));
4188 
4189 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
4190 		m = bp->b_xio.xio_pages[i];
4191 		vfs_clean_one_page(bp, i, m);
4192 	}
4193 }
4194 
4195 /*
4196  * vfs_clean_one_page:
4197  *
4198  *	Set the valid bits and clear the dirty bits in a page within a
4199  *	buffer.  The range is restricted to the buffer's size and the
4200  *	buffer's logical offset might index into the first page.
4201  *
4202  *	The caller has busied or soft-busied the page and it is not mapped,
4203  *	test and incorporate the dirty bits into b_dirtyoff/end before
4204  *	clearing them.  Note that we need to clear the pmap modified bits
4205  *	after determining the the page was dirty, vm_page_set_validclean()
4206  *	does not do it for us.
4207  *
4208  *	This routine is typically called after a read completes (dirty should
4209  *	be zero in that case as we are not called on bogus-replace pages),
4210  *	or before a write is initiated.
4211  */
4212 static void
4213 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4214 {
4215 	int bcount;
4216 	int xoff;
4217 	int soff;
4218 	int eoff;
4219 
4220 	/*
4221 	 * Calculate offset range within the page but relative to buffer's
4222 	 * loffset.  loffset might be offset into the first page.
4223 	 */
4224 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4225 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4226 
4227 	if (pageno == 0) {
4228 		soff = xoff;
4229 		eoff = PAGE_SIZE;
4230 	} else {
4231 		soff = (pageno << PAGE_SHIFT);
4232 		eoff = soff + PAGE_SIZE;
4233 	}
4234 	if (eoff > bcount)
4235 		eoff = bcount;
4236 	if (soff >= eoff)
4237 		return;
4238 
4239 	/*
4240 	 * Test dirty bits and adjust b_dirtyoff/end.
4241 	 *
4242 	 * If dirty pages are incorporated into the bp any prior
4243 	 * B_NEEDCOMMIT state (NFS) must be cleared because the
4244 	 * caller has not taken into account the new dirty data.
4245 	 *
4246 	 * If the page was memory mapped the dirty bits might go beyond the
4247 	 * end of the buffer, but we can't really make the assumption that
4248 	 * a file EOF straddles the buffer (even though this is the case for
4249 	 * NFS if B_NEEDCOMMIT is also set).  So for the purposes of clearing
4250 	 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4251 	 * This also saves some console spam.
4252 	 *
4253 	 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4254 	 * NFS can handle huge commits but not huge writes.
4255 	 */
4256 	vm_page_test_dirty(m);
4257 	if (m->dirty) {
4258 		if ((bp->b_flags & B_NEEDCOMMIT) &&
4259 		    (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4260 			if (debug_commit)
4261 				kprintf("Warning: vfs_clean_one_page: bp %p "
4262 				    "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4263 				    " cmd %d vd %02x/%02x x/s/e %d %d %d "
4264 				    "doff/end %d %d\n",
4265 				    bp, (uintmax_t)bp->b_loffset, bp->b_bcount,
4266 				    bp->b_flags, bp->b_cmd,
4267 				    m->valid, m->dirty, xoff, soff, eoff,
4268 				    bp->b_dirtyoff, bp->b_dirtyend);
4269 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4270 			if (debug_commit)
4271 				print_backtrace(-1);
4272 		}
4273 		/*
4274 		 * Only clear the pmap modified bits if ALL the dirty bits
4275 		 * are set, otherwise the system might mis-clear portions
4276 		 * of a page.
4277 		 */
4278 		if (m->dirty == VM_PAGE_BITS_ALL &&
4279 		    (bp->b_flags & B_NEEDCOMMIT) == 0) {
4280 			pmap_clear_modify(m);
4281 		}
4282 		if (bp->b_dirtyoff > soff - xoff)
4283 			bp->b_dirtyoff = soff - xoff;
4284 		if (bp->b_dirtyend < eoff - xoff)
4285 			bp->b_dirtyend = eoff - xoff;
4286 	}
4287 
4288 	/*
4289 	 * Set related valid bits, clear related dirty bits.
4290 	 * Does not mess with the pmap modified bit.
4291 	 *
4292 	 * WARNING!  We cannot just clear all of m->dirty here as the
4293 	 *	     buffer cache buffers may use a DEV_BSIZE'd aligned
4294 	 *	     block size, or have an odd size (e.g. NFS at file EOF).
4295 	 *	     The putpages code can clear m->dirty to 0.
4296 	 *
4297 	 *	     If a VOP_WRITE generates a buffer cache buffer which
4298 	 *	     covers the same space as mapped writable pages the
4299 	 *	     buffer flush might not be able to clear all the dirty
4300 	 *	     bits and still require a putpages from the VM system
4301 	 *	     to finish it off.
4302 	 *
4303 	 * WARNING!  vm_page_set_validclean() currently assumes vm_token
4304 	 *	     is held.  The page might not be busied (bdwrite() case).
4305 	 *	     XXX remove this comment once we've validated that this
4306 	 *	     is no longer an issue.
4307 	 */
4308 	vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4309 }
4310 
4311 #if 0
4312 /*
4313  * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4314  * The page data is assumed to be valid (there is no zeroing here).
4315  */
4316 static void
4317 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4318 {
4319 	int bcount;
4320 	int xoff;
4321 	int soff;
4322 	int eoff;
4323 
4324 	/*
4325 	 * Calculate offset range within the page but relative to buffer's
4326 	 * loffset.  loffset might be offset into the first page.
4327 	 */
4328 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4329 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4330 
4331 	if (pageno == 0) {
4332 		soff = xoff;
4333 		eoff = PAGE_SIZE;
4334 	} else {
4335 		soff = (pageno << PAGE_SHIFT);
4336 		eoff = soff + PAGE_SIZE;
4337 	}
4338 	if (eoff > bcount)
4339 		eoff = bcount;
4340 	if (soff >= eoff)
4341 		return;
4342 	vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4343 }
4344 #endif
4345 
4346 /*
4347  * vfs_bio_clrbuf:
4348  *
4349  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
4350  *	to clear B_ERROR and B_INVAL.
4351  *
4352  *	Note that while we only theoretically need to clear through b_bcount,
4353  *	we go ahead and clear through b_bufsize.
4354  */
4355 
4356 void
4357 vfs_bio_clrbuf(struct buf *bp)
4358 {
4359 	int i, mask = 0;
4360 	caddr_t sa, ea;
4361 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4362 		bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4363 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4364 		    (bp->b_loffset & PAGE_MASK) == 0) {
4365 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4366 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4367 				bp->b_resid = 0;
4368 				return;
4369 			}
4370 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
4371 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
4372 				bzero(bp->b_data, bp->b_bufsize);
4373 				bp->b_xio.xio_pages[0]->valid |= mask;
4374 				bp->b_resid = 0;
4375 				return;
4376 			}
4377 		}
4378 		sa = bp->b_data;
4379 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4380 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4381 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4382 			ea = (caddr_t)(vm_offset_t)ulmin(
4383 			    (u_long)(vm_offset_t)ea,
4384 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4385 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4386 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4387 				continue;
4388 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4389 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
4390 					bzero(sa, ea - sa);
4391 				}
4392 			} else {
4393 				for (; sa < ea; sa += DEV_BSIZE, j++) {
4394 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
4395 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
4396 						bzero(sa, DEV_BSIZE);
4397 				}
4398 			}
4399 			bp->b_xio.xio_pages[i]->valid |= mask;
4400 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4401 		}
4402 		bp->b_resid = 0;
4403 	} else {
4404 		clrbuf(bp);
4405 	}
4406 }
4407 
4408 /*
4409  * vm_hold_load_pages:
4410  *
4411  *	Load pages into the buffer's address space.  The pages are
4412  *	allocated from the kernel object in order to reduce interference
4413  *	with the any VM paging I/O activity.  The range of loaded
4414  *	pages will be wired.
4415  *
4416  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
4417  *	retrieve the full range (to - from) of pages.
4418  */
4419 void
4420 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4421 {
4422 	vm_offset_t pg;
4423 	vm_page_t p;
4424 	int index;
4425 
4426 	to = round_page(to);
4427 	from = round_page(from);
4428 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4429 
4430 	pg = from;
4431 	while (pg < to) {
4432 		/*
4433 		 * Note: must allocate system pages since blocking here
4434 		 * could intefere with paging I/O, no matter which
4435 		 * process we are.
4436 		 */
4437 		vm_object_hold(&kernel_object);
4438 		p = bio_page_alloc(bp, &kernel_object, pg >> PAGE_SHIFT,
4439 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4440 		vm_object_drop(&kernel_object);
4441 		if (p) {
4442 			vm_page_wire(p);
4443 			p->valid = VM_PAGE_BITS_ALL;
4444 			vm_page_flag_clear(p, PG_ZERO);
4445 			pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4446 			bp->b_xio.xio_pages[index] = p;
4447 			vm_page_wakeup(p);
4448 
4449 			pg += PAGE_SIZE;
4450 			++index;
4451 		}
4452 	}
4453 	bp->b_xio.xio_npages = index;
4454 }
4455 
4456 /*
4457  * Allocate a page for a buffer cache buffer.
4458  *
4459  * If NULL is returned the caller is expected to retry (typically check if
4460  * the page already exists on retry before trying to allocate one).
4461  *
4462  * NOTE! Low-memory handling is dealt with in b[q]relse(), not here.  This
4463  *	 function will use the system reserve with the hope that the page
4464  *	 allocations can be returned to PQ_CACHE/PQ_FREE when the caller
4465  *	 is done with the buffer.
4466  *
4467  * NOTE! However, TMPFS is a special case because flushing a dirty buffer
4468  *	 to TMPFS doesn't clean the page.  For TMPFS, only the pagedaemon
4469  *	 is capable of retiring pages (to swap).  For TMPFS we don't dig
4470  *	 into the system reserve because doing so could stall out pretty
4471  *	 much every process running on the system.
4472  */
4473 static
4474 vm_page_t
4475 bio_page_alloc(struct buf *bp, vm_object_t obj, vm_pindex_t pg, int deficit)
4476 {
4477 	int vmflags = VM_ALLOC_NORMAL | VM_ALLOC_NULL_OK;
4478 	vm_page_t p;
4479 
4480 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj));
4481 
4482 	/*
4483 	 * Try a normal allocation first.
4484 	 */
4485 	p = vm_page_alloc(obj, pg, vmflags);
4486 	if (p)
4487 		return(p);
4488 	if (vm_page_lookup(obj, pg))
4489 		return(NULL);
4490 	vm_pageout_deficit += deficit;
4491 
4492 	/*
4493 	 * Try again, digging into the system reserve.
4494 	 *
4495 	 * Trying to recover pages from the buffer cache here can deadlock
4496 	 * against other threads trying to busy underlying pages so we
4497 	 * depend on the code in brelse() and bqrelse() to free/cache the
4498 	 * underlying buffer cache pages when memory is low.
4499 	 */
4500 	if (curthread->td_flags & TDF_SYSTHREAD)
4501 		vmflags |= VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT;
4502 	else if (bp->b_vp && bp->b_vp->v_tag == VT_TMPFS)
4503 		vmflags |= 0;
4504 	else
4505 		vmflags |= VM_ALLOC_SYSTEM;
4506 
4507 	/*recoverbufpages();*/
4508 	p = vm_page_alloc(obj, pg, vmflags);
4509 	if (p)
4510 		return(p);
4511 	if (vm_page_lookup(obj, pg))
4512 		return(NULL);
4513 
4514 	/*
4515 	 * Wait for memory to free up and try again
4516 	 */
4517 	if (vm_page_count_severe())
4518 		++lowmempgallocs;
4519 	vm_wait(hz / 20 + 1);
4520 
4521 	p = vm_page_alloc(obj, pg, vmflags);
4522 	if (p)
4523 		return(p);
4524 	if (vm_page_lookup(obj, pg))
4525 		return(NULL);
4526 
4527 	/*
4528 	 * Ok, now we are really in trouble.
4529 	 */
4530 	{
4531 		static struct krate biokrate = { .freq = 1 };
4532 		krateprintf(&biokrate,
4533 			    "Warning: bio_page_alloc: memory exhausted "
4534 			    "during bufcache page allocation from %s\n",
4535 			    curthread->td_comm);
4536 	}
4537 	if (curthread->td_flags & TDF_SYSTHREAD)
4538 		vm_wait(hz / 20 + 1);
4539 	else
4540 		vm_wait(hz / 2 + 1);
4541 	return (NULL);
4542 }
4543 
4544 /*
4545  * vm_hold_free_pages:
4546  *
4547  *	Return pages associated with the buffer back to the VM system.
4548  *
4549  *	The range of pages underlying the buffer's address space will
4550  *	be unmapped and un-wired.
4551  */
4552 void
4553 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4554 {
4555 	vm_offset_t pg;
4556 	vm_page_t p;
4557 	int index, newnpages;
4558 
4559 	from = round_page(from);
4560 	to = round_page(to);
4561 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4562 	newnpages = index;
4563 
4564 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4565 		p = bp->b_xio.xio_pages[index];
4566 		if (p && (index < bp->b_xio.xio_npages)) {
4567 			if (p->busy) {
4568 				kprintf("vm_hold_free_pages: doffset: %lld, "
4569 					"loffset: %lld\n",
4570 					(long long)bp->b_bio2.bio_offset,
4571 					(long long)bp->b_loffset);
4572 			}
4573 			bp->b_xio.xio_pages[index] = NULL;
4574 			pmap_kremove(pg);
4575 			vm_page_busy_wait(p, FALSE, "vmhldpg");
4576 			vm_page_unwire(p, 0);
4577 			vm_page_free(p);
4578 		}
4579 	}
4580 	bp->b_xio.xio_npages = newnpages;
4581 }
4582 
4583 /*
4584  * vmapbuf:
4585  *
4586  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
4587  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4588  *	initialized.
4589  */
4590 int
4591 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4592 {
4593 	caddr_t addr;
4594 	vm_offset_t va;
4595 	vm_page_t m;
4596 	int vmprot;
4597 	int error;
4598 	int pidx;
4599 	int i;
4600 
4601 	/*
4602 	 * bp had better have a command and it better be a pbuf.
4603 	 */
4604 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4605 	KKASSERT(bp->b_flags & B_PAGING);
4606 	KKASSERT(bp->b_kvabase);
4607 
4608 	if (bytes < 0)
4609 		return (-1);
4610 
4611 	/*
4612 	 * Map the user data into KVM.  Mappings have to be page-aligned.
4613 	 */
4614 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
4615 	pidx = 0;
4616 
4617 	vmprot = VM_PROT_READ;
4618 	if (bp->b_cmd == BUF_CMD_READ)
4619 		vmprot |= VM_PROT_WRITE;
4620 
4621 	while (addr < udata + bytes) {
4622 		/*
4623 		 * Do the vm_fault if needed; do the copy-on-write thing
4624 		 * when reading stuff off device into memory.
4625 		 *
4626 		 * vm_fault_page*() returns a held VM page.
4627 		 */
4628 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4629 		va = trunc_page(va);
4630 
4631 		m = vm_fault_page_quick(va, vmprot, &error);
4632 		if (m == NULL) {
4633 			for (i = 0; i < pidx; ++i) {
4634 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
4635 			    bp->b_xio.xio_pages[i] = NULL;
4636 			}
4637 			return(-1);
4638 		}
4639 		bp->b_xio.xio_pages[pidx] = m;
4640 		addr += PAGE_SIZE;
4641 		++pidx;
4642 	}
4643 
4644 	/*
4645 	 * Map the page array and set the buffer fields to point to
4646 	 * the mapped data buffer.
4647 	 */
4648 	if (pidx > btoc(MAXPHYS))
4649 		panic("vmapbuf: mapped more than MAXPHYS");
4650 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4651 
4652 	bp->b_xio.xio_npages = pidx;
4653 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4654 	bp->b_bcount = bytes;
4655 	bp->b_bufsize = bytes;
4656 	return(0);
4657 }
4658 
4659 /*
4660  * vunmapbuf:
4661  *
4662  *	Free the io map PTEs associated with this IO operation.
4663  *	We also invalidate the TLB entries and restore the original b_addr.
4664  */
4665 void
4666 vunmapbuf(struct buf *bp)
4667 {
4668 	int pidx;
4669 	int npages;
4670 
4671 	KKASSERT(bp->b_flags & B_PAGING);
4672 
4673 	npages = bp->b_xio.xio_npages;
4674 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4675 	for (pidx = 0; pidx < npages; ++pidx) {
4676 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4677 		bp->b_xio.xio_pages[pidx] = NULL;
4678 	}
4679 	bp->b_xio.xio_npages = 0;
4680 	bp->b_data = bp->b_kvabase;
4681 }
4682 
4683 /*
4684  * Scan all buffers in the system and issue the callback.
4685  */
4686 int
4687 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4688 {
4689 	int count = 0;
4690 	int error;
4691 	long n;
4692 
4693 	for (n = 0; n < nbuf; ++n) {
4694 		if ((error = callback(&buf[n], info)) < 0) {
4695 			count = error;
4696 			break;
4697 		}
4698 		count += error;
4699 	}
4700 	return (count);
4701 }
4702 
4703 /*
4704  * nestiobuf_iodone: biodone callback for nested buffers and propagate
4705  * completion to the master buffer.
4706  */
4707 static void
4708 nestiobuf_iodone(struct bio *bio)
4709 {
4710 	struct bio *mbio;
4711 	struct buf *mbp, *bp;
4712 	struct devstat *stats;
4713 	int error;
4714 	int donebytes;
4715 
4716 	bp = bio->bio_buf;
4717 	mbio = bio->bio_caller_info1.ptr;
4718 	stats = bio->bio_caller_info2.ptr;
4719 	mbp = mbio->bio_buf;
4720 
4721 	KKASSERT(bp->b_bcount <= bp->b_bufsize);
4722 	KKASSERT(mbp != bp);
4723 
4724 	error = bp->b_error;
4725 	if (bp->b_error == 0 &&
4726 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4727 		/*
4728 		 * Not all got transfered, raise an error. We have no way to
4729 		 * propagate these conditions to mbp.
4730 		 */
4731 		error = EIO;
4732 	}
4733 
4734 	donebytes = bp->b_bufsize;
4735 
4736 	relpbuf(bp, NULL);
4737 
4738 	nestiobuf_done(mbio, donebytes, error, stats);
4739 }
4740 
4741 void
4742 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats)
4743 {
4744 	struct buf *mbp;
4745 
4746 	mbp = mbio->bio_buf;
4747 
4748 	KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4749 
4750 	/*
4751 	 * If an error occured, propagate it to the master buffer.
4752 	 *
4753 	 * Several biodone()s may wind up running concurrently so
4754 	 * use an atomic op to adjust b_flags.
4755 	 */
4756 	if (error) {
4757 		mbp->b_error = error;
4758 		atomic_set_int(&mbp->b_flags, B_ERROR);
4759 	}
4760 
4761 	/*
4762 	 * Decrement the operations in progress counter and terminate the
4763 	 * I/O if this was the last bit.
4764 	 */
4765 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4766 		mbp->b_resid = 0;
4767 		if (stats)
4768 			devstat_end_transaction_buf(stats, mbp);
4769 		biodone(mbio);
4770 	}
4771 }
4772 
4773 /*
4774  * Initialize a nestiobuf for use.  Set an initial count of 1 to prevent
4775  * the mbio from being biodone()'d while we are still adding sub-bios to
4776  * it.
4777  */
4778 void
4779 nestiobuf_init(struct bio *bio)
4780 {
4781 	bio->bio_driver_info = (void *)1;
4782 }
4783 
4784 /*
4785  * The BIOs added to the nestedio have already been started, remove the
4786  * count that placeheld our mbio and biodone() it if the count would
4787  * transition to 0.
4788  */
4789 void
4790 nestiobuf_start(struct bio *mbio)
4791 {
4792 	struct buf *mbp = mbio->bio_buf;
4793 
4794 	/*
4795 	 * Decrement the operations in progress counter and terminate the
4796 	 * I/O if this was the last bit.
4797 	 */
4798 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4799 		if (mbp->b_flags & B_ERROR)
4800 			mbp->b_resid = mbp->b_bcount;
4801 		else
4802 			mbp->b_resid = 0;
4803 		biodone(mbio);
4804 	}
4805 }
4806 
4807 /*
4808  * Set an intermediate error prior to calling nestiobuf_start()
4809  */
4810 void
4811 nestiobuf_error(struct bio *mbio, int error)
4812 {
4813 	struct buf *mbp = mbio->bio_buf;
4814 
4815 	if (error) {
4816 		mbp->b_error = error;
4817 		atomic_set_int(&mbp->b_flags, B_ERROR);
4818 	}
4819 }
4820 
4821 /*
4822  * nestiobuf_add: setup a "nested" buffer.
4823  *
4824  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4825  * => 'bp' should be a buffer allocated by getiobuf.
4826  * => 'offset' is a byte offset in the master buffer.
4827  * => 'size' is a size in bytes of this nested buffer.
4828  */
4829 void
4830 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats)
4831 {
4832 	struct buf *mbp = mbio->bio_buf;
4833 	struct vnode *vp = mbp->b_vp;
4834 
4835 	KKASSERT(mbp->b_bcount >= offset + size);
4836 
4837 	atomic_add_int((int *)&mbio->bio_driver_info, 1);
4838 
4839 	/* kernel needs to own the lock for it to be released in biodone */
4840 	BUF_KERNPROC(bp);
4841 	bp->b_vp = vp;
4842 	bp->b_cmd = mbp->b_cmd;
4843 	bp->b_bio1.bio_done = nestiobuf_iodone;
4844 	bp->b_data = (char *)mbp->b_data + offset;
4845 	bp->b_resid = bp->b_bcount = size;
4846 	bp->b_bufsize = bp->b_bcount;
4847 
4848 	bp->b_bio1.bio_track = NULL;
4849 	bp->b_bio1.bio_caller_info1.ptr = mbio;
4850 	bp->b_bio1.bio_caller_info2.ptr = stats;
4851 }
4852 
4853 #ifdef DDB
4854 
4855 DB_SHOW_COMMAND(buffer, db_show_buffer)
4856 {
4857 	/* get args */
4858 	struct buf *bp = (struct buf *)addr;
4859 
4860 	if (!have_addr) {
4861 		db_printf("usage: show buffer <addr>\n");
4862 		return;
4863 	}
4864 
4865 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4866 	db_printf("b_cmd = %d\n", bp->b_cmd);
4867 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4868 		  "b_resid = %d\n, b_data = %p, "
4869 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4870 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4871 		  bp->b_data,
4872 		  (long long)bp->b_bio2.bio_offset,
4873 		  (long long)(bp->b_bio2.bio_next ?
4874 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4875 	if (bp->b_xio.xio_npages) {
4876 		int i;
4877 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4878 			bp->b_xio.xio_npages);
4879 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4880 			vm_page_t m;
4881 			m = bp->b_xio.xio_pages[i];
4882 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4883 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4884 			if ((i + 1) < bp->b_xio.xio_npages)
4885 				db_printf(",");
4886 		}
4887 		db_printf("\n");
4888 	}
4889 }
4890 #endif /* DDB */
4891