xref: /dragonfly/sys/kern/vfs_bio.c (revision d0d42ea0)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  */
16 
17 /*
18  * this file contains a new buffer I/O scheme implementing a coherent
19  * VM object and buffer cache scheme.  Pains have been taken to make
20  * sure that the performance degradation associated with schemes such
21  * as this is not realized.
22  *
23  * Author:  John S. Dyson
24  * Significant help during the development and debugging phases
25  * had been provided by David Greenman, also of the FreeBSD core team.
26  *
27  * see man buf(9) for more info.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/conf.h>
34 #include <sys/devicestat.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/dsched.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 #include <vm/vm_pager.h>
57 #include <vm/swap_pager.h>
58 
59 #include <sys/buf2.h>
60 #include <sys/thread2.h>
61 #include <sys/spinlock2.h>
62 #include <sys/mplock2.h>
63 #include <vm/vm_page2.h>
64 
65 #include "opt_ddb.h"
66 #ifdef DDB
67 #include <ddb/ddb.h>
68 #endif
69 
70 /*
71  * Buffer queues.
72  */
73 enum bufq_type {
74 	BQUEUE_NONE,    	/* not on any queue */
75 	BQUEUE_LOCKED,  	/* locked buffers */
76 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
77 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
78 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
79 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
80 	BQUEUE_EMPTY,    	/* empty buffer headers */
81 
82 	BUFFER_QUEUES		/* number of buffer queues */
83 };
84 
85 typedef enum bufq_type bufq_type_t;
86 
87 #define BD_WAKE_SIZE	16384
88 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
89 
90 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
91 static struct spinlock bufqspin = SPINLOCK_INITIALIZER(&bufqspin);
92 static struct spinlock bufcspin = SPINLOCK_INITIALIZER(&bufcspin);
93 
94 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
95 
96 struct buf *buf;		/* buffer header pool */
97 
98 static void vfs_clean_pages(struct buf *bp);
99 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
100 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
101 static void vfs_vmio_release(struct buf *bp);
102 static int flushbufqueues(bufq_type_t q);
103 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
104 
105 static void bd_signal(int totalspace);
106 static void buf_daemon(void);
107 static void buf_daemon_hw(void);
108 
109 /*
110  * bogus page -- for I/O to/from partially complete buffers
111  * this is a temporary solution to the problem, but it is not
112  * really that bad.  it would be better to split the buffer
113  * for input in the case of buffers partially already in memory,
114  * but the code is intricate enough already.
115  */
116 vm_page_t bogus_page;
117 
118 /*
119  * These are all static, but make the ones we export globals so we do
120  * not need to use compiler magic.
121  */
122 long bufspace;			/* locked by buffer_map */
123 long maxbufspace;
124 static long bufmallocspace;	/* atomic ops */
125 long maxbufmallocspace, lobufspace, hibufspace;
126 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
127 static long lorunningspace;
128 static long hirunningspace;
129 static int runningbufreq;		/* locked by bufcspin */
130 static long dirtybufspace;		/* locked by bufcspin */
131 static int dirtybufcount;		/* locked by bufcspin */
132 static long dirtybufspacehw;		/* locked by bufcspin */
133 static int dirtybufcounthw;		/* locked by bufcspin */
134 static long runningbufspace;		/* locked by bufcspin */
135 static int runningbufcount;		/* locked by bufcspin */
136 long lodirtybufspace;
137 long hidirtybufspace;
138 static int getnewbufcalls;
139 static int getnewbufrestarts;
140 static int recoverbufcalls;
141 static int needsbuffer;		/* locked by bufcspin */
142 static int bd_request;		/* locked by bufcspin */
143 static int bd_request_hw;	/* locked by bufcspin */
144 static u_int bd_wake_ary[BD_WAKE_SIZE];
145 static u_int bd_wake_index;
146 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
147 static int debug_commit;
148 
149 static struct thread *bufdaemon_td;
150 static struct thread *bufdaemonhw_td;
151 static u_int lowmempgallocs;
152 static u_int lowmempgfails;
153 
154 /*
155  * Sysctls for operational control of the buffer cache.
156  */
157 SYSCTL_LONG(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
158 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
159 SYSCTL_LONG(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
160 	"High watermark used to trigger explicit flushing of dirty buffers");
161 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
162 	"Minimum amount of buffer space required for active I/O");
163 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
164 	"Maximum amount of buffer space to usable for active I/O");
165 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
166 	"Page allocations done during periods of very low free memory");
167 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0,
168 	"Page allocations which failed during periods of very low free memory");
169 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
170 	"Recycle pages to active or inactive queue transition pt 0-64");
171 /*
172  * Sysctls determining current state of the buffer cache.
173  */
174 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
175 	"Total number of buffers in buffer cache");
176 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
177 	"Pending bytes of dirty buffers (all)");
178 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
179 	"Pending bytes of dirty buffers (heavy weight)");
180 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
181 	"Pending number of dirty buffers");
182 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
183 	"Pending number of dirty buffers (heavy weight)");
184 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
185 	"I/O bytes currently in progress due to asynchronous writes");
186 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
187 	"I/O buffers currently in progress due to asynchronous writes");
188 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
189 	"Hard limit on maximum amount of memory usable for buffer space");
190 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
191 	"Soft limit on maximum amount of memory usable for buffer space");
192 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
193 	"Minimum amount of memory to reserve for system buffer space");
194 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
195 	"Amount of memory available for buffers");
196 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
197 	0, "Maximum amount of memory reserved for buffers using malloc");
198 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
199 	"Amount of memory left for buffers using malloc-scheme");
200 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
201 	"New buffer header acquisition requests");
202 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
203 	0, "New buffer header acquisition restarts");
204 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
205 	"Recover VM space in an emergency");
206 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
207 	"Buffer acquisition restarts due to fragmented buffer map");
208 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
209 	"Amount of time KVA space was deallocated in an arbitrary buffer");
210 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
211 	"Amount of time buffer re-use operations were successful");
212 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
213 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
214 	"sizeof(struct buf)");
215 
216 char *buf_wmesg = BUF_WMESG;
217 
218 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
219 #define VFS_BIO_NEED_UNUSED02	0x02
220 #define VFS_BIO_NEED_UNUSED04	0x04
221 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
222 
223 /*
224  * bufspacewakeup:
225  *
226  *	Called when buffer space is potentially available for recovery.
227  *	getnewbuf() will block on this flag when it is unable to free
228  *	sufficient buffer space.  Buffer space becomes recoverable when
229  *	bp's get placed back in the queues.
230  */
231 static __inline void
232 bufspacewakeup(void)
233 {
234 	/*
235 	 * If someone is waiting for BUF space, wake them up.  Even
236 	 * though we haven't freed the kva space yet, the waiting
237 	 * process will be able to now.
238 	 */
239 	spin_lock(&bufcspin);
240 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
241 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
242 		spin_unlock(&bufcspin);
243 		wakeup(&needsbuffer);
244 	} else {
245 		spin_unlock(&bufcspin);
246 	}
247 }
248 
249 /*
250  * runningbufwakeup:
251  *
252  *	Accounting for I/O in progress.
253  *
254  */
255 static __inline void
256 runningbufwakeup(struct buf *bp)
257 {
258 	long totalspace;
259 	long limit;
260 
261 	if ((totalspace = bp->b_runningbufspace) != 0) {
262 		spin_lock(&bufcspin);
263 		runningbufspace -= totalspace;
264 		--runningbufcount;
265 		bp->b_runningbufspace = 0;
266 
267 		/*
268 		 * see waitrunningbufspace() for limit test.
269 		 */
270 		limit = hirunningspace * 3 / 6;
271 		if (runningbufreq && runningbufspace <= limit) {
272 			runningbufreq = 0;
273 			spin_unlock(&bufcspin);
274 			wakeup(&runningbufreq);
275 		} else {
276 			spin_unlock(&bufcspin);
277 		}
278 		bd_signal(totalspace);
279 	}
280 }
281 
282 /*
283  * bufcountwakeup:
284  *
285  *	Called when a buffer has been added to one of the free queues to
286  *	account for the buffer and to wakeup anyone waiting for free buffers.
287  *	This typically occurs when large amounts of metadata are being handled
288  *	by the buffer cache ( else buffer space runs out first, usually ).
289  *
290  * MPSAFE
291  */
292 static __inline void
293 bufcountwakeup(void)
294 {
295 	spin_lock(&bufcspin);
296 	if (needsbuffer) {
297 		needsbuffer &= ~VFS_BIO_NEED_ANY;
298 		spin_unlock(&bufcspin);
299 		wakeup(&needsbuffer);
300 	} else {
301 		spin_unlock(&bufcspin);
302 	}
303 }
304 
305 /*
306  * waitrunningbufspace()
307  *
308  * If runningbufspace exceeds 4/6 hirunningspace we block until
309  * runningbufspace drops to 3/6 hirunningspace.  We also block if another
310  * thread blocked here in order to be fair, even if runningbufspace
311  * is now lower than the limit.
312  *
313  * The caller may be using this function to block in a tight loop, we
314  * must block while runningbufspace is greater than at least
315  * hirunningspace * 3 / 6.
316  */
317 void
318 waitrunningbufspace(void)
319 {
320 	long limit = hirunningspace * 4 / 6;
321 
322 	if (runningbufspace > limit || runningbufreq) {
323 		spin_lock(&bufcspin);
324 		while (runningbufspace > limit || runningbufreq) {
325 			runningbufreq = 1;
326 			ssleep(&runningbufreq, &bufcspin, 0, "wdrn1", 0);
327 		}
328 		spin_unlock(&bufcspin);
329 	}
330 }
331 
332 /*
333  * buf_dirty_count_severe:
334  *
335  *	Return true if we have too many dirty buffers.
336  */
337 int
338 buf_dirty_count_severe(void)
339 {
340 	return (runningbufspace + dirtybufspace >= hidirtybufspace ||
341 	        dirtybufcount >= nbuf / 2);
342 }
343 
344 /*
345  * Return true if the amount of running I/O is severe and BIOQ should
346  * start bursting.
347  */
348 int
349 buf_runningbufspace_severe(void)
350 {
351 	return (runningbufspace >= hirunningspace * 4 / 6);
352 }
353 
354 /*
355  * vfs_buf_test_cache:
356  *
357  * Called when a buffer is extended.  This function clears the B_CACHE
358  * bit if the newly extended portion of the buffer does not contain
359  * valid data.
360  *
361  * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
362  * cache buffers.  The VM pages remain dirty, as someone had mmap()'d
363  * them while a clean buffer was present.
364  */
365 static __inline__
366 void
367 vfs_buf_test_cache(struct buf *bp,
368 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
369 		  vm_page_t m)
370 {
371 	if (bp->b_flags & B_CACHE) {
372 		int base = (foff + off) & PAGE_MASK;
373 		if (vm_page_is_valid(m, base, size) == 0)
374 			bp->b_flags &= ~B_CACHE;
375 	}
376 }
377 
378 /*
379  * bd_speedup()
380  *
381  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
382  * low water mark.
383  *
384  * MPSAFE
385  */
386 static __inline__
387 void
388 bd_speedup(void)
389 {
390 	if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
391 		return;
392 
393 	if (bd_request == 0 &&
394 	    (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
395 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
396 		spin_lock(&bufcspin);
397 		bd_request = 1;
398 		spin_unlock(&bufcspin);
399 		wakeup(&bd_request);
400 	}
401 	if (bd_request_hw == 0 &&
402 	    (dirtybufspacehw > lodirtybufspace / 2 ||
403 	     dirtybufcounthw >= nbuf / 2)) {
404 		spin_lock(&bufcspin);
405 		bd_request_hw = 1;
406 		spin_unlock(&bufcspin);
407 		wakeup(&bd_request_hw);
408 	}
409 }
410 
411 /*
412  * bd_heatup()
413  *
414  *	Get the buf_daemon heated up when the number of running and dirty
415  *	buffers exceeds the mid-point.
416  *
417  *	Return the total number of dirty bytes past the second mid point
418  *	as a measure of how much excess dirty data there is in the system.
419  *
420  * MPSAFE
421  */
422 int
423 bd_heatup(void)
424 {
425 	long mid1;
426 	long mid2;
427 	long totalspace;
428 
429 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
430 
431 	totalspace = runningbufspace + dirtybufspace;
432 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
433 		bd_speedup();
434 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
435 		if (totalspace >= mid2)
436 			return(totalspace - mid2);
437 	}
438 	return(0);
439 }
440 
441 /*
442  * bd_wait()
443  *
444  *	Wait for the buffer cache to flush (totalspace) bytes worth of
445  *	buffers, then return.
446  *
447  *	Regardless this function blocks while the number of dirty buffers
448  *	exceeds hidirtybufspace.
449  *
450  * MPSAFE
451  */
452 void
453 bd_wait(int totalspace)
454 {
455 	u_int i;
456 	int count;
457 
458 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
459 		return;
460 
461 	while (totalspace > 0) {
462 		bd_heatup();
463 		if (totalspace > runningbufspace + dirtybufspace)
464 			totalspace = runningbufspace + dirtybufspace;
465 		count = totalspace / BKVASIZE;
466 		if (count >= BD_WAKE_SIZE)
467 			count = BD_WAKE_SIZE - 1;
468 
469 		spin_lock(&bufcspin);
470 		i = (bd_wake_index + count) & BD_WAKE_MASK;
471 		++bd_wake_ary[i];
472 
473 		/*
474 		 * This is not a strict interlock, so we play a bit loose
475 		 * with locking access to dirtybufspace*
476 		 */
477 		tsleep_interlock(&bd_wake_ary[i], 0);
478 		spin_unlock(&bufcspin);
479 		tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz);
480 
481 		totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
482 	}
483 }
484 
485 /*
486  * bd_signal()
487  *
488  *	This function is called whenever runningbufspace or dirtybufspace
489  *	is reduced.  Track threads waiting for run+dirty buffer I/O
490  *	complete.
491  *
492  * MPSAFE
493  */
494 static void
495 bd_signal(int totalspace)
496 {
497 	u_int i;
498 
499 	if (totalspace > 0) {
500 		if (totalspace > BKVASIZE * BD_WAKE_SIZE)
501 			totalspace = BKVASIZE * BD_WAKE_SIZE;
502 		spin_lock(&bufcspin);
503 		while (totalspace > 0) {
504 			i = bd_wake_index++;
505 			i &= BD_WAKE_MASK;
506 			if (bd_wake_ary[i]) {
507 				bd_wake_ary[i] = 0;
508 				spin_unlock(&bufcspin);
509 				wakeup(&bd_wake_ary[i]);
510 				spin_lock(&bufcspin);
511 			}
512 			totalspace -= BKVASIZE;
513 		}
514 		spin_unlock(&bufcspin);
515 	}
516 }
517 
518 /*
519  * BIO tracking support routines.
520  *
521  * Release a ref on a bio_track.  Wakeup requests are atomically released
522  * along with the last reference so bk_active will never wind up set to
523  * only 0x80000000.
524  *
525  * MPSAFE
526  */
527 static
528 void
529 bio_track_rel(struct bio_track *track)
530 {
531 	int	active;
532 	int	desired;
533 
534 	/*
535 	 * Shortcut
536 	 */
537 	active = track->bk_active;
538 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
539 		return;
540 
541 	/*
542 	 * Full-on.  Note that the wait flag is only atomically released on
543 	 * the 1->0 count transition.
544 	 *
545 	 * We check for a negative count transition using bit 30 since bit 31
546 	 * has a different meaning.
547 	 */
548 	for (;;) {
549 		desired = (active & 0x7FFFFFFF) - 1;
550 		if (desired)
551 			desired |= active & 0x80000000;
552 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
553 			if (desired & 0x40000000)
554 				panic("bio_track_rel: bad count: %p\n", track);
555 			if (active & 0x80000000)
556 				wakeup(track);
557 			break;
558 		}
559 		active = track->bk_active;
560 	}
561 }
562 
563 /*
564  * Wait for the tracking count to reach 0.
565  *
566  * Use atomic ops such that the wait flag is only set atomically when
567  * bk_active is non-zero.
568  *
569  * MPSAFE
570  */
571 int
572 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
573 {
574 	int	active;
575 	int	desired;
576 	int	error;
577 
578 	/*
579 	 * Shortcut
580 	 */
581 	if (track->bk_active == 0)
582 		return(0);
583 
584 	/*
585 	 * Full-on.  Note that the wait flag may only be atomically set if
586 	 * the active count is non-zero.
587 	 *
588 	 * NOTE: We cannot optimize active == desired since a wakeup could
589 	 *	 clear active prior to our tsleep_interlock().
590 	 */
591 	error = 0;
592 	while ((active = track->bk_active) != 0) {
593 		cpu_ccfence();
594 		desired = active | 0x80000000;
595 		tsleep_interlock(track, slp_flags);
596 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
597 			error = tsleep(track, slp_flags | PINTERLOCKED,
598 				       "trwait", slp_timo);
599 			if (error)
600 				break;
601 		}
602 	}
603 	return (error);
604 }
605 
606 /*
607  * bufinit:
608  *
609  *	Load time initialisation of the buffer cache, called from machine
610  *	dependant initialization code.
611  */
612 void
613 bufinit(void)
614 {
615 	struct buf *bp;
616 	vm_offset_t bogus_offset;
617 	int i;
618 
619 	/* next, make a null set of free lists */
620 	for (i = 0; i < BUFFER_QUEUES; i++)
621 		TAILQ_INIT(&bufqueues[i]);
622 
623 	/* finally, initialize each buffer header and stick on empty q */
624 	for (i = 0; i < nbuf; i++) {
625 		bp = &buf[i];
626 		bzero(bp, sizeof *bp);
627 		bp->b_flags = B_INVAL;	/* we're just an empty header */
628 		bp->b_cmd = BUF_CMD_DONE;
629 		bp->b_qindex = BQUEUE_EMPTY;
630 		initbufbio(bp);
631 		xio_init(&bp->b_xio);
632 		buf_dep_init(bp);
633 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
634 	}
635 
636 	/*
637 	 * maxbufspace is the absolute maximum amount of buffer space we are
638 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
639 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
640 	 * used by most other processes.  The differential is required to
641 	 * ensure that buf_daemon is able to run when other processes might
642 	 * be blocked waiting for buffer space.
643 	 *
644 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
645 	 * this may result in KVM fragmentation which is not handled optimally
646 	 * by the system.
647 	 */
648 	maxbufspace = (long)nbuf * BKVASIZE;
649 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
650 	lobufspace = hibufspace - MAXBSIZE;
651 
652 	lorunningspace = 512 * 1024;
653 	/* hirunningspace -- see below */
654 
655 	/*
656 	 * Limit the amount of malloc memory since it is wired permanently
657 	 * into the kernel space.  Even though this is accounted for in
658 	 * the buffer allocation, we don't want the malloced region to grow
659 	 * uncontrolled.  The malloc scheme improves memory utilization
660 	 * significantly on average (small) directories.
661 	 */
662 	maxbufmallocspace = hibufspace / 20;
663 
664 	/*
665 	 * Reduce the chance of a deadlock occuring by limiting the number
666 	 * of delayed-write dirty buffers we allow to stack up.
667 	 *
668 	 * We don't want too much actually queued to the device at once
669 	 * (XXX this needs to be per-mount!), because the buffers will
670 	 * wind up locked for a very long period of time while the I/O
671 	 * drains.
672 	 */
673 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
674 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
675 	if (hirunningspace < 1024 * 1024)
676 		hirunningspace = 1024 * 1024;
677 
678 	dirtybufspace = 0;
679 	dirtybufspacehw = 0;
680 
681 	lodirtybufspace = hidirtybufspace / 2;
682 
683 	/*
684 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
685 	 * somewhat of a hack at the moment, we really need to limit ourselves
686 	 * based on the number of bytes of I/O in-transit that were initiated
687 	 * from buf_daemon.
688 	 */
689 
690 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
691 	vm_object_hold(&kernel_object);
692 	bogus_page = vm_page_alloc(&kernel_object,
693 				   (bogus_offset >> PAGE_SHIFT),
694 				   VM_ALLOC_NORMAL);
695 	vm_object_drop(&kernel_object);
696 	vmstats.v_wire_count++;
697 
698 }
699 
700 /*
701  * Initialize the embedded bio structures, typically used by
702  * deprecated code which tries to allocate its own struct bufs.
703  */
704 void
705 initbufbio(struct buf *bp)
706 {
707 	bp->b_bio1.bio_buf = bp;
708 	bp->b_bio1.bio_prev = NULL;
709 	bp->b_bio1.bio_offset = NOOFFSET;
710 	bp->b_bio1.bio_next = &bp->b_bio2;
711 	bp->b_bio1.bio_done = NULL;
712 	bp->b_bio1.bio_flags = 0;
713 
714 	bp->b_bio2.bio_buf = bp;
715 	bp->b_bio2.bio_prev = &bp->b_bio1;
716 	bp->b_bio2.bio_offset = NOOFFSET;
717 	bp->b_bio2.bio_next = NULL;
718 	bp->b_bio2.bio_done = NULL;
719 	bp->b_bio2.bio_flags = 0;
720 
721 	BUF_LOCKINIT(bp);
722 }
723 
724 /*
725  * Reinitialize the embedded bio structures as well as any additional
726  * translation cache layers.
727  */
728 void
729 reinitbufbio(struct buf *bp)
730 {
731 	struct bio *bio;
732 
733 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
734 		bio->bio_done = NULL;
735 		bio->bio_offset = NOOFFSET;
736 	}
737 }
738 
739 /*
740  * Undo the effects of an initbufbio().
741  */
742 void
743 uninitbufbio(struct buf *bp)
744 {
745 	dsched_exit_buf(bp);
746 	BUF_LOCKFREE(bp);
747 }
748 
749 /*
750  * Push another BIO layer onto an existing BIO and return it.  The new
751  * BIO layer may already exist, holding cached translation data.
752  */
753 struct bio *
754 push_bio(struct bio *bio)
755 {
756 	struct bio *nbio;
757 
758 	if ((nbio = bio->bio_next) == NULL) {
759 		int index = bio - &bio->bio_buf->b_bio_array[0];
760 		if (index >= NBUF_BIO - 1) {
761 			panic("push_bio: too many layers bp %p\n",
762 				bio->bio_buf);
763 		}
764 		nbio = &bio->bio_buf->b_bio_array[index + 1];
765 		bio->bio_next = nbio;
766 		nbio->bio_prev = bio;
767 		nbio->bio_buf = bio->bio_buf;
768 		nbio->bio_offset = NOOFFSET;
769 		nbio->bio_done = NULL;
770 		nbio->bio_next = NULL;
771 	}
772 	KKASSERT(nbio->bio_done == NULL);
773 	return(nbio);
774 }
775 
776 /*
777  * Pop a BIO translation layer, returning the previous layer.  The
778  * must have been previously pushed.
779  */
780 struct bio *
781 pop_bio(struct bio *bio)
782 {
783 	return(bio->bio_prev);
784 }
785 
786 void
787 clearbiocache(struct bio *bio)
788 {
789 	while (bio) {
790 		bio->bio_offset = NOOFFSET;
791 		bio = bio->bio_next;
792 	}
793 }
794 
795 /*
796  * bfreekva:
797  *
798  *	Free the KVA allocation for buffer 'bp'.
799  *
800  *	Must be called from a critical section as this is the only locking for
801  *	buffer_map.
802  *
803  *	Since this call frees up buffer space, we call bufspacewakeup().
804  *
805  * MPALMOSTSAFE
806  */
807 static void
808 bfreekva(struct buf *bp)
809 {
810 	int count;
811 
812 	if (bp->b_kvasize) {
813 		++buffreekvacnt;
814 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
815 		vm_map_lock(&buffer_map);
816 		bufspace -= bp->b_kvasize;
817 		vm_map_delete(&buffer_map,
818 		    (vm_offset_t) bp->b_kvabase,
819 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
820 		    &count
821 		);
822 		vm_map_unlock(&buffer_map);
823 		vm_map_entry_release(count);
824 		bp->b_kvasize = 0;
825 		bp->b_kvabase = NULL;
826 		bufspacewakeup();
827 	}
828 }
829 
830 /*
831  * bremfree:
832  *
833  *	Remove the buffer from the appropriate free list.
834  */
835 static __inline void
836 _bremfree(struct buf *bp)
837 {
838 	if (bp->b_qindex != BQUEUE_NONE) {
839 		KASSERT(BUF_REFCNTNB(bp) == 1,
840 				("bremfree: bp %p not locked",bp));
841 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
842 		bp->b_qindex = BQUEUE_NONE;
843 	} else {
844 		if (BUF_REFCNTNB(bp) <= 1)
845 			panic("bremfree: removing a buffer not on a queue");
846 	}
847 }
848 
849 void
850 bremfree(struct buf *bp)
851 {
852 	spin_lock(&bufqspin);
853 	_bremfree(bp);
854 	spin_unlock(&bufqspin);
855 }
856 
857 static void
858 bremfree_locked(struct buf *bp)
859 {
860 	_bremfree(bp);
861 }
862 
863 /*
864  * This version of bread issues any required I/O asyncnronously and
865  * makes a callback on completion.
866  *
867  * The callback must check whether BIO_DONE is set in the bio and issue
868  * the bpdone(bp, 0) if it isn't.  The callback is responsible for clearing
869  * BIO_DONE and disposing of the I/O (bqrelse()ing it).
870  */
871 void
872 breadcb(struct vnode *vp, off_t loffset, int size,
873 	void (*func)(struct bio *), void *arg)
874 {
875 	struct buf *bp;
876 
877 	bp = getblk(vp, loffset, size, 0, 0);
878 
879 	/* if not found in cache, do some I/O */
880 	if ((bp->b_flags & B_CACHE) == 0) {
881 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
882 		bp->b_cmd = BUF_CMD_READ;
883 		bp->b_bio1.bio_done = func;
884 		bp->b_bio1.bio_caller_info1.ptr = arg;
885 		vfs_busy_pages(vp, bp);
886 		BUF_KERNPROC(bp);
887 		vn_strategy(vp, &bp->b_bio1);
888 	} else if (func) {
889 		/*
890 		 * Since we are issuing the callback synchronously it cannot
891 		 * race the BIO_DONE, so no need for atomic ops here.
892 		 */
893 		/*bp->b_bio1.bio_done = func;*/
894 		bp->b_bio1.bio_caller_info1.ptr = arg;
895 		bp->b_bio1.bio_flags |= BIO_DONE;
896 		func(&bp->b_bio1);
897 	} else {
898 		bqrelse(bp);
899 	}
900 }
901 
902 /*
903  * breadnx() - Terminal function for bread() and breadn().
904  *
905  * This function will start asynchronous I/O on read-ahead blocks as well
906  * as satisfy the primary request.
907  *
908  * We must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE is
909  * set, the buffer is valid and we do not have to do anything.
910  */
911 int
912 breadnx(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
913 	int *rabsize, int cnt, struct buf **bpp)
914 {
915 	struct buf *bp, *rabp;
916 	int i;
917 	int rv = 0, readwait = 0;
918 
919 	if (*bpp)
920 		bp = *bpp;
921 	else
922 		*bpp = bp = getblk(vp, loffset, size, 0, 0);
923 
924 	/* if not found in cache, do some I/O */
925 	if ((bp->b_flags & B_CACHE) == 0) {
926 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
927 		bp->b_cmd = BUF_CMD_READ;
928 		bp->b_bio1.bio_done = biodone_sync;
929 		bp->b_bio1.bio_flags |= BIO_SYNC;
930 		vfs_busy_pages(vp, bp);
931 		vn_strategy(vp, &bp->b_bio1);
932 		++readwait;
933 	}
934 
935 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
936 		if (inmem(vp, *raoffset))
937 			continue;
938 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
939 
940 		if ((rabp->b_flags & B_CACHE) == 0) {
941 			rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
942 			rabp->b_cmd = BUF_CMD_READ;
943 			vfs_busy_pages(vp, rabp);
944 			BUF_KERNPROC(rabp);
945 			vn_strategy(vp, &rabp->b_bio1);
946 		} else {
947 			brelse(rabp);
948 		}
949 	}
950 	if (readwait)
951 		rv = biowait(&bp->b_bio1, "biord");
952 	return (rv);
953 }
954 
955 /*
956  * bwrite:
957  *
958  *	Synchronous write, waits for completion.
959  *
960  *	Write, release buffer on completion.  (Done by iodone
961  *	if async).  Do not bother writing anything if the buffer
962  *	is invalid.
963  *
964  *	Note that we set B_CACHE here, indicating that buffer is
965  *	fully valid and thus cacheable.  This is true even of NFS
966  *	now so we set it generally.  This could be set either here
967  *	or in biodone() since the I/O is synchronous.  We put it
968  *	here.
969  */
970 int
971 bwrite(struct buf *bp)
972 {
973 	int error;
974 
975 	if (bp->b_flags & B_INVAL) {
976 		brelse(bp);
977 		return (0);
978 	}
979 	if (BUF_REFCNTNB(bp) == 0)
980 		panic("bwrite: buffer is not busy???");
981 
982 	/* Mark the buffer clean */
983 	bundirty(bp);
984 
985 	bp->b_flags &= ~(B_ERROR | B_EINTR);
986 	bp->b_flags |= B_CACHE;
987 	bp->b_cmd = BUF_CMD_WRITE;
988 	bp->b_bio1.bio_done = biodone_sync;
989 	bp->b_bio1.bio_flags |= BIO_SYNC;
990 	vfs_busy_pages(bp->b_vp, bp);
991 
992 	/*
993 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
994 	 * valid for vnode-backed buffers.
995 	 */
996 	bsetrunningbufspace(bp, bp->b_bufsize);
997 	vn_strategy(bp->b_vp, &bp->b_bio1);
998 	error = biowait(&bp->b_bio1, "biows");
999 	brelse(bp);
1000 
1001 	return (error);
1002 }
1003 
1004 /*
1005  * bawrite:
1006  *
1007  *	Asynchronous write.  Start output on a buffer, but do not wait for
1008  *	it to complete.  The buffer is released when the output completes.
1009  *
1010  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1011  *	B_INVAL buffers.  Not us.
1012  */
1013 void
1014 bawrite(struct buf *bp)
1015 {
1016 	if (bp->b_flags & B_INVAL) {
1017 		brelse(bp);
1018 		return;
1019 	}
1020 	if (BUF_REFCNTNB(bp) == 0)
1021 		panic("bwrite: buffer is not busy???");
1022 
1023 	/* Mark the buffer clean */
1024 	bundirty(bp);
1025 
1026 	bp->b_flags &= ~(B_ERROR | B_EINTR);
1027 	bp->b_flags |= B_CACHE;
1028 	bp->b_cmd = BUF_CMD_WRITE;
1029 	KKASSERT(bp->b_bio1.bio_done == NULL);
1030 	vfs_busy_pages(bp->b_vp, bp);
1031 
1032 	/*
1033 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1034 	 * valid for vnode-backed buffers.
1035 	 */
1036 	bsetrunningbufspace(bp, bp->b_bufsize);
1037 	BUF_KERNPROC(bp);
1038 	vn_strategy(bp->b_vp, &bp->b_bio1);
1039 }
1040 
1041 /*
1042  * bowrite:
1043  *
1044  *	Ordered write.  Start output on a buffer, and flag it so that the
1045  *	device will write it in the order it was queued.  The buffer is
1046  *	released when the output completes.  bwrite() ( or the VOP routine
1047  *	anyway ) is responsible for handling B_INVAL buffers.
1048  */
1049 int
1050 bowrite(struct buf *bp)
1051 {
1052 	bp->b_flags |= B_ORDERED;
1053 	bawrite(bp);
1054 	return (0);
1055 }
1056 
1057 /*
1058  * bdwrite:
1059  *
1060  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1061  *	anything if the buffer is marked invalid.
1062  *
1063  *	Note that since the buffer must be completely valid, we can safely
1064  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1065  *	biodone() in order to prevent getblk from writing the buffer
1066  *	out synchronously.
1067  */
1068 void
1069 bdwrite(struct buf *bp)
1070 {
1071 	if (BUF_REFCNTNB(bp) == 0)
1072 		panic("bdwrite: buffer is not busy");
1073 
1074 	if (bp->b_flags & B_INVAL) {
1075 		brelse(bp);
1076 		return;
1077 	}
1078 	bdirty(bp);
1079 
1080 	if (dsched_is_clear_buf_priv(bp))
1081 		dsched_new_buf(bp);
1082 
1083 	/*
1084 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1085 	 * true even of NFS now.
1086 	 */
1087 	bp->b_flags |= B_CACHE;
1088 
1089 	/*
1090 	 * This bmap keeps the system from needing to do the bmap later,
1091 	 * perhaps when the system is attempting to do a sync.  Since it
1092 	 * is likely that the indirect block -- or whatever other datastructure
1093 	 * that the filesystem needs is still in memory now, it is a good
1094 	 * thing to do this.  Note also, that if the pageout daemon is
1095 	 * requesting a sync -- there might not be enough memory to do
1096 	 * the bmap then...  So, this is important to do.
1097 	 */
1098 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1099 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1100 			 NULL, NULL, BUF_CMD_WRITE);
1101 	}
1102 
1103 	/*
1104 	 * Because the underlying pages may still be mapped and
1105 	 * writable trying to set the dirty buffer (b_dirtyoff/end)
1106 	 * range here will be inaccurate.
1107 	 *
1108 	 * However, we must still clean the pages to satisfy the
1109 	 * vnode_pager and pageout daemon, so theythink the pages
1110 	 * have been "cleaned".  What has really occured is that
1111 	 * they've been earmarked for later writing by the buffer
1112 	 * cache.
1113 	 *
1114 	 * So we get the b_dirtyoff/end update but will not actually
1115 	 * depend on it (NFS that is) until the pages are busied for
1116 	 * writing later on.
1117 	 */
1118 	vfs_clean_pages(bp);
1119 	bqrelse(bp);
1120 
1121 	/*
1122 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1123 	 * due to the softdep code.
1124 	 */
1125 }
1126 
1127 /*
1128  * Fake write - return pages to VM system as dirty, leave the buffer clean.
1129  * This is used by tmpfs.
1130  *
1131  * It is important for any VFS using this routine to NOT use it for
1132  * IO_SYNC or IO_ASYNC operations which occur when the system really
1133  * wants to flush VM pages to backing store.
1134  */
1135 void
1136 buwrite(struct buf *bp)
1137 {
1138 	vm_page_t m;
1139 	int i;
1140 
1141 	/*
1142 	 * Only works for VMIO buffers.  If the buffer is already
1143 	 * marked for delayed-write we can't avoid the bdwrite().
1144 	 */
1145 	if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1146 		bdwrite(bp);
1147 		return;
1148 	}
1149 
1150 	/*
1151 	 * Set valid & dirty.
1152 	 */
1153 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1154 		m = bp->b_xio.xio_pages[i];
1155 		vfs_dirty_one_page(bp, i, m);
1156 	}
1157 	bqrelse(bp);
1158 }
1159 
1160 /*
1161  * bdirty:
1162  *
1163  *	Turn buffer into delayed write request by marking it B_DELWRI.
1164  *	B_RELBUF and B_NOCACHE must be cleared.
1165  *
1166  *	We reassign the buffer to itself to properly update it in the
1167  *	dirty/clean lists.
1168  *
1169  *	Must be called from a critical section.
1170  *	The buffer must be on BQUEUE_NONE.
1171  */
1172 void
1173 bdirty(struct buf *bp)
1174 {
1175 	KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1176 	if (bp->b_flags & B_NOCACHE) {
1177 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1178 		bp->b_flags &= ~B_NOCACHE;
1179 	}
1180 	if (bp->b_flags & B_INVAL) {
1181 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1182 	}
1183 	bp->b_flags &= ~B_RELBUF;
1184 
1185 	if ((bp->b_flags & B_DELWRI) == 0) {
1186 		lwkt_gettoken(&bp->b_vp->v_token);
1187 		bp->b_flags |= B_DELWRI;
1188 		reassignbuf(bp);
1189 		lwkt_reltoken(&bp->b_vp->v_token);
1190 
1191 		spin_lock(&bufcspin);
1192 		++dirtybufcount;
1193 		dirtybufspace += bp->b_bufsize;
1194 		if (bp->b_flags & B_HEAVY) {
1195 			++dirtybufcounthw;
1196 			dirtybufspacehw += bp->b_bufsize;
1197 		}
1198 		spin_unlock(&bufcspin);
1199 
1200 		bd_heatup();
1201 	}
1202 }
1203 
1204 /*
1205  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1206  * needs to be flushed with a different buf_daemon thread to avoid
1207  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1208  */
1209 void
1210 bheavy(struct buf *bp)
1211 {
1212 	if ((bp->b_flags & B_HEAVY) == 0) {
1213 		bp->b_flags |= B_HEAVY;
1214 		if (bp->b_flags & B_DELWRI) {
1215 			spin_lock(&bufcspin);
1216 			++dirtybufcounthw;
1217 			dirtybufspacehw += bp->b_bufsize;
1218 			spin_unlock(&bufcspin);
1219 		}
1220 	}
1221 }
1222 
1223 /*
1224  * bundirty:
1225  *
1226  *	Clear B_DELWRI for buffer.
1227  *
1228  *	Must be called from a critical section.
1229  *
1230  *	The buffer is typically on BQUEUE_NONE but there is one case in
1231  *	brelse() that calls this function after placing the buffer on
1232  *	a different queue.
1233  *
1234  * MPSAFE
1235  */
1236 void
1237 bundirty(struct buf *bp)
1238 {
1239 	if (bp->b_flags & B_DELWRI) {
1240 		lwkt_gettoken(&bp->b_vp->v_token);
1241 		bp->b_flags &= ~B_DELWRI;
1242 		reassignbuf(bp);
1243 		lwkt_reltoken(&bp->b_vp->v_token);
1244 
1245 		spin_lock(&bufcspin);
1246 		--dirtybufcount;
1247 		dirtybufspace -= bp->b_bufsize;
1248 		if (bp->b_flags & B_HEAVY) {
1249 			--dirtybufcounthw;
1250 			dirtybufspacehw -= bp->b_bufsize;
1251 		}
1252 		spin_unlock(&bufcspin);
1253 
1254 		bd_signal(bp->b_bufsize);
1255 	}
1256 	/*
1257 	 * Since it is now being written, we can clear its deferred write flag.
1258 	 */
1259 	bp->b_flags &= ~B_DEFERRED;
1260 }
1261 
1262 /*
1263  * Set the b_runningbufspace field, used to track how much I/O is
1264  * in progress at any given moment.
1265  */
1266 void
1267 bsetrunningbufspace(struct buf *bp, int bytes)
1268 {
1269 	bp->b_runningbufspace = bytes;
1270 	if (bytes) {
1271 		spin_lock(&bufcspin);
1272 		runningbufspace += bytes;
1273 		++runningbufcount;
1274 		spin_unlock(&bufcspin);
1275 	}
1276 }
1277 
1278 /*
1279  * brelse:
1280  *
1281  *	Release a busy buffer and, if requested, free its resources.  The
1282  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1283  *	to be accessed later as a cache entity or reused for other purposes.
1284  *
1285  * MPALMOSTSAFE
1286  */
1287 void
1288 brelse(struct buf *bp)
1289 {
1290 #ifdef INVARIANTS
1291 	int saved_flags = bp->b_flags;
1292 #endif
1293 
1294 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1295 
1296 	/*
1297 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1298 	 * its backing store.  Clear B_DELWRI.
1299 	 *
1300 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1301 	 * to destroy the buffer and backing store and (2) when the caller
1302 	 * wants to destroy the buffer and backing store after a write
1303 	 * completes.
1304 	 */
1305 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1306 		bundirty(bp);
1307 	}
1308 
1309 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1310 		/*
1311 		 * A re-dirtied buffer is only subject to destruction
1312 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1313 		 */
1314 		/* leave buffer intact */
1315 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1316 		   (bp->b_bufsize <= 0)) {
1317 		/*
1318 		 * Either a failed read or we were asked to free or not
1319 		 * cache the buffer.  This path is reached with B_DELWRI
1320 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1321 		 * backing store destruction.
1322 		 *
1323 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1324 		 * buffer cannot be immediately freed.
1325 		 */
1326 		bp->b_flags |= B_INVAL;
1327 		if (LIST_FIRST(&bp->b_dep) != NULL)
1328 			buf_deallocate(bp);
1329 		if (bp->b_flags & B_DELWRI) {
1330 			spin_lock(&bufcspin);
1331 			--dirtybufcount;
1332 			dirtybufspace -= bp->b_bufsize;
1333 			if (bp->b_flags & B_HEAVY) {
1334 				--dirtybufcounthw;
1335 				dirtybufspacehw -= bp->b_bufsize;
1336 			}
1337 			spin_unlock(&bufcspin);
1338 
1339 			bd_signal(bp->b_bufsize);
1340 		}
1341 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1342 	}
1343 
1344 	/*
1345 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1346 	 * or if b_refs is non-zero.
1347 	 *
1348 	 * If vfs_vmio_release() is called with either bit set, the
1349 	 * underlying pages may wind up getting freed causing a previous
1350 	 * write (bdwrite()) to get 'lost' because pages associated with
1351 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1352 	 * B_LOCKED buffer may be mapped by the filesystem.
1353 	 *
1354 	 * If we want to release the buffer ourselves (rather then the
1355 	 * originator asking us to release it), give the originator a
1356 	 * chance to countermand the release by setting B_LOCKED.
1357 	 *
1358 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1359 	 * if B_DELWRI is set.
1360 	 *
1361 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1362 	 * on pages to return pages to the VM page queues.
1363 	 */
1364 	if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) {
1365 		bp->b_flags &= ~B_RELBUF;
1366 	} else if (vm_page_count_severe()) {
1367 		if (LIST_FIRST(&bp->b_dep) != NULL)
1368 			buf_deallocate(bp);		/* can set B_LOCKED */
1369 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1370 			bp->b_flags &= ~B_RELBUF;
1371 		else
1372 			bp->b_flags |= B_RELBUF;
1373 	}
1374 
1375 	/*
1376 	 * Make sure b_cmd is clear.  It may have already been cleared by
1377 	 * biodone().
1378 	 *
1379 	 * At this point destroying the buffer is governed by the B_INVAL
1380 	 * or B_RELBUF flags.
1381 	 */
1382 	bp->b_cmd = BUF_CMD_DONE;
1383 	dsched_exit_buf(bp);
1384 
1385 	/*
1386 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1387 	 * after an I/O may have replaces some of the pages with bogus pages
1388 	 * in order to not destroy dirty pages in a fill-in read.
1389 	 *
1390 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1391 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1392 	 * B_INVAL may still be set, however.
1393 	 *
1394 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1395 	 * but not the backing store.   B_NOCACHE will destroy the backing
1396 	 * store.
1397 	 *
1398 	 * Note that dirty NFS buffers contain byte-granular write ranges
1399 	 * and should not be destroyed w/ B_INVAL even if the backing store
1400 	 * is left intact.
1401 	 */
1402 	if (bp->b_flags & B_VMIO) {
1403 		/*
1404 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1405 		 */
1406 		int i, j, resid;
1407 		vm_page_t m;
1408 		off_t foff;
1409 		vm_pindex_t poff;
1410 		vm_object_t obj;
1411 		struct vnode *vp;
1412 
1413 		vp = bp->b_vp;
1414 
1415 		/*
1416 		 * Get the base offset and length of the buffer.  Note that
1417 		 * in the VMIO case if the buffer block size is not
1418 		 * page-aligned then b_data pointer may not be page-aligned.
1419 		 * But our b_xio.xio_pages array *IS* page aligned.
1420 		 *
1421 		 * block sizes less then DEV_BSIZE (usually 512) are not
1422 		 * supported due to the page granularity bits (m->valid,
1423 		 * m->dirty, etc...).
1424 		 *
1425 		 * See man buf(9) for more information
1426 		 */
1427 
1428 		resid = bp->b_bufsize;
1429 		foff = bp->b_loffset;
1430 
1431 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1432 			m = bp->b_xio.xio_pages[i];
1433 			vm_page_flag_clear(m, PG_ZERO);
1434 			/*
1435 			 * If we hit a bogus page, fixup *all* of them
1436 			 * now.  Note that we left these pages wired
1437 			 * when we removed them so they had better exist,
1438 			 * and they cannot be ripped out from under us so
1439 			 * no critical section protection is necessary.
1440 			 */
1441 			if (m == bogus_page) {
1442 				obj = vp->v_object;
1443 				poff = OFF_TO_IDX(bp->b_loffset);
1444 
1445 				vm_object_hold(obj);
1446 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1447 					vm_page_t mtmp;
1448 
1449 					mtmp = bp->b_xio.xio_pages[j];
1450 					if (mtmp == bogus_page) {
1451 						mtmp = vm_page_lookup(obj, poff + j);
1452 						if (!mtmp) {
1453 							panic("brelse: page missing");
1454 						}
1455 						bp->b_xio.xio_pages[j] = mtmp;
1456 					}
1457 				}
1458 				bp->b_flags &= ~B_HASBOGUS;
1459 				vm_object_drop(obj);
1460 
1461 				if ((bp->b_flags & B_INVAL) == 0) {
1462 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1463 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1464 				}
1465 				m = bp->b_xio.xio_pages[i];
1466 			}
1467 
1468 			/*
1469 			 * Invalidate the backing store if B_NOCACHE is set
1470 			 * (e.g. used with vinvalbuf()).  If this is NFS
1471 			 * we impose a requirement that the block size be
1472 			 * a multiple of PAGE_SIZE and create a temporary
1473 			 * hack to basically invalidate the whole page.  The
1474 			 * problem is that NFS uses really odd buffer sizes
1475 			 * especially when tracking piecemeal writes and
1476 			 * it also vinvalbuf()'s a lot, which would result
1477 			 * in only partial page validation and invalidation
1478 			 * here.  If the file page is mmap()'d, however,
1479 			 * all the valid bits get set so after we invalidate
1480 			 * here we would end up with weird m->valid values
1481 			 * like 0xfc.  nfs_getpages() can't handle this so
1482 			 * we clear all the valid bits for the NFS case
1483 			 * instead of just some of them.
1484 			 *
1485 			 * The real bug is the VM system having to set m->valid
1486 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1487 			 * itself is an artifact of the whole 512-byte
1488 			 * granular mess that exists to support odd block
1489 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1490 			 * A complete rewrite is required.
1491 			 *
1492 			 * XXX
1493 			 */
1494 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1495 				int poffset = foff & PAGE_MASK;
1496 				int presid;
1497 
1498 				presid = PAGE_SIZE - poffset;
1499 				if (bp->b_vp->v_tag == VT_NFS &&
1500 				    bp->b_vp->v_type == VREG) {
1501 					; /* entire page */
1502 				} else if (presid > resid) {
1503 					presid = resid;
1504 				}
1505 				KASSERT(presid >= 0, ("brelse: extra page"));
1506 				vm_page_set_invalid(m, poffset, presid);
1507 
1508 				/*
1509 				 * Also make sure any swap cache is removed
1510 				 * as it is now stale (HAMMER in particular
1511 				 * uses B_NOCACHE to deal with buffer
1512 				 * aliasing).
1513 				 */
1514 				swap_pager_unswapped(m);
1515 			}
1516 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1517 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1518 		}
1519 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1520 			vfs_vmio_release(bp);
1521 	} else {
1522 		/*
1523 		 * Rundown for non-VMIO buffers.
1524 		 */
1525 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1526 			if (bp->b_bufsize)
1527 				allocbuf(bp, 0);
1528 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1529 			if (bp->b_vp)
1530 				brelvp(bp);
1531 		}
1532 	}
1533 
1534 	if (bp->b_qindex != BQUEUE_NONE)
1535 		panic("brelse: free buffer onto another queue???");
1536 	if (BUF_REFCNTNB(bp) > 1) {
1537 		/* Temporary panic to verify exclusive locking */
1538 		/* This panic goes away when we allow shared refs */
1539 		panic("brelse: multiple refs");
1540 		/* NOT REACHED */
1541 		return;
1542 	}
1543 
1544 	/*
1545 	 * Figure out the correct queue to place the cleaned up buffer on.
1546 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1547 	 * disassociated from their vnode.
1548 	 */
1549 	spin_lock(&bufqspin);
1550 	if (bp->b_flags & B_LOCKED) {
1551 		/*
1552 		 * Buffers that are locked are placed in the locked queue
1553 		 * immediately, regardless of their state.
1554 		 */
1555 		bp->b_qindex = BQUEUE_LOCKED;
1556 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1557 	} else if (bp->b_bufsize == 0) {
1558 		/*
1559 		 * Buffers with no memory.  Due to conditionals near the top
1560 		 * of brelse() such buffers should probably already be
1561 		 * marked B_INVAL and disassociated from their vnode.
1562 		 */
1563 		bp->b_flags |= B_INVAL;
1564 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1565 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1566 		if (bp->b_kvasize) {
1567 			bp->b_qindex = BQUEUE_EMPTYKVA;
1568 		} else {
1569 			bp->b_qindex = BQUEUE_EMPTY;
1570 		}
1571 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1572 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1573 		/*
1574 		 * Buffers with junk contents.   Again these buffers had better
1575 		 * already be disassociated from their vnode.
1576 		 */
1577 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1578 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1579 		bp->b_flags |= B_INVAL;
1580 		bp->b_qindex = BQUEUE_CLEAN;
1581 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1582 	} else {
1583 		/*
1584 		 * Remaining buffers.  These buffers are still associated with
1585 		 * their vnode.
1586 		 */
1587 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1588 		case B_DELWRI:
1589 		    bp->b_qindex = BQUEUE_DIRTY;
1590 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1591 		    break;
1592 		case B_DELWRI | B_HEAVY:
1593 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1594 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1595 				      b_freelist);
1596 		    break;
1597 		default:
1598 		    /*
1599 		     * NOTE: Buffers are always placed at the end of the
1600 		     * queue.  If B_AGE is not set the buffer will cycle
1601 		     * through the queue twice.
1602 		     */
1603 		    bp->b_qindex = BQUEUE_CLEAN;
1604 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1605 		    break;
1606 		}
1607 	}
1608 	spin_unlock(&bufqspin);
1609 
1610 	/*
1611 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1612 	 * on the correct queue.
1613 	 */
1614 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1615 		bundirty(bp);
1616 
1617 	/*
1618 	 * The bp is on an appropriate queue unless locked.  If it is not
1619 	 * locked or dirty we can wakeup threads waiting for buffer space.
1620 	 *
1621 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1622 	 * if B_INVAL is set ).
1623 	 */
1624 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1625 		bufcountwakeup();
1626 
1627 	/*
1628 	 * Something we can maybe free or reuse
1629 	 */
1630 	if (bp->b_bufsize || bp->b_kvasize)
1631 		bufspacewakeup();
1632 
1633 	/*
1634 	 * Clean up temporary flags and unlock the buffer.
1635 	 */
1636 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1637 	BUF_UNLOCK(bp);
1638 }
1639 
1640 /*
1641  * bqrelse:
1642  *
1643  *	Release a buffer back to the appropriate queue but do not try to free
1644  *	it.  The buffer is expected to be used again soon.
1645  *
1646  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1647  *	biodone() to requeue an async I/O on completion.  It is also used when
1648  *	known good buffers need to be requeued but we think we may need the data
1649  *	again soon.
1650  *
1651  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1652  *
1653  * MPSAFE
1654  */
1655 void
1656 bqrelse(struct buf *bp)
1657 {
1658 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1659 
1660 	if (bp->b_qindex != BQUEUE_NONE)
1661 		panic("bqrelse: free buffer onto another queue???");
1662 	if (BUF_REFCNTNB(bp) > 1) {
1663 		/* do not release to free list */
1664 		panic("bqrelse: multiple refs");
1665 		return;
1666 	}
1667 
1668 	buf_act_advance(bp);
1669 
1670 	spin_lock(&bufqspin);
1671 	if (bp->b_flags & B_LOCKED) {
1672 		/*
1673 		 * Locked buffers are released to the locked queue.  However,
1674 		 * if the buffer is dirty it will first go into the dirty
1675 		 * queue and later on after the I/O completes successfully it
1676 		 * will be released to the locked queue.
1677 		 */
1678 		bp->b_qindex = BQUEUE_LOCKED;
1679 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1680 	} else if (bp->b_flags & B_DELWRI) {
1681 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1682 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1683 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1684 	} else if (vm_page_count_severe()) {
1685 		/*
1686 		 * We are too low on memory, we have to try to free the
1687 		 * buffer (most importantly: the wired pages making up its
1688 		 * backing store) *now*.
1689 		 */
1690 		spin_unlock(&bufqspin);
1691 		brelse(bp);
1692 		return;
1693 	} else {
1694 		bp->b_qindex = BQUEUE_CLEAN;
1695 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1696 	}
1697 	spin_unlock(&bufqspin);
1698 
1699 	if ((bp->b_flags & B_LOCKED) == 0 &&
1700 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1701 		bufcountwakeup();
1702 	}
1703 
1704 	/*
1705 	 * Something we can maybe free or reuse.
1706 	 */
1707 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1708 		bufspacewakeup();
1709 
1710 	/*
1711 	 * Final cleanup and unlock.  Clear bits that are only used while a
1712 	 * buffer is actively locked.
1713 	 */
1714 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1715 	dsched_exit_buf(bp);
1716 	BUF_UNLOCK(bp);
1717 }
1718 
1719 /*
1720  * Hold a buffer, preventing it from being reused.  This will prevent
1721  * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1722  * operations.  If a B_INVAL operation occurs the buffer will remain held
1723  * but the underlying pages may get ripped out.
1724  *
1725  * These functions are typically used in VOP_READ/VOP_WRITE functions
1726  * to hold a buffer during a copyin or copyout, preventing deadlocks
1727  * or recursive lock panics when read()/write() is used over mmap()'d
1728  * space.
1729  *
1730  * NOTE: bqhold() requires that the buffer be locked at the time of the
1731  *	 hold.  bqdrop() has no requirements other than the buffer having
1732  *	 previously been held.
1733  */
1734 void
1735 bqhold(struct buf *bp)
1736 {
1737 	atomic_add_int(&bp->b_refs, 1);
1738 }
1739 
1740 void
1741 bqdrop(struct buf *bp)
1742 {
1743 	KKASSERT(bp->b_refs > 0);
1744 	atomic_add_int(&bp->b_refs, -1);
1745 }
1746 
1747 /*
1748  * vfs_vmio_release:
1749  *
1750  *	Return backing pages held by the buffer 'bp' back to the VM system
1751  *	if possible.  The pages are freed if they are no longer valid or
1752  *	attempt to free if it was used for direct I/O otherwise they are
1753  *	sent to the page cache.
1754  *
1755  *	Pages that were marked busy are left alone and skipped.
1756  *
1757  *	The KVA mapping (b_data) for the underlying pages is removed by
1758  *	this function.
1759  */
1760 static void
1761 vfs_vmio_release(struct buf *bp)
1762 {
1763 	int i;
1764 	vm_page_t m;
1765 
1766 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1767 		m = bp->b_xio.xio_pages[i];
1768 		bp->b_xio.xio_pages[i] = NULL;
1769 
1770 		vm_page_busy_wait(m, FALSE, "vmiopg");
1771 
1772 		/*
1773 		 * The VFS is telling us this is not a meta-data buffer
1774 		 * even if it is backed by a block device.
1775 		 */
1776 		if (bp->b_flags & B_NOTMETA)
1777 			vm_page_flag_set(m, PG_NOTMETA);
1778 
1779 		/*
1780 		 * This is a very important bit of code.  We try to track
1781 		 * VM page use whether the pages are wired into the buffer
1782 		 * cache or not.  While wired into the buffer cache the
1783 		 * bp tracks the act_count.
1784 		 *
1785 		 * We can choose to place unwired pages on the inactive
1786 		 * queue (0) or active queue (1).  If we place too many
1787 		 * on the active queue the queue will cycle the act_count
1788 		 * on pages we'd like to keep, just from single-use pages
1789 		 * (such as when doing a tar-up or file scan).
1790 		 */
1791 		if (bp->b_act_count < vm_cycle_point)
1792 			vm_page_unwire(m, 0);
1793 		else
1794 			vm_page_unwire(m, 1);
1795 
1796 		/*
1797 		 * We don't mess with busy pages, it is the responsibility
1798 		 * of the process that busied the pages to deal with them.
1799 		 *
1800 		 * However, the caller may have marked the page invalid and
1801 		 * we must still make sure the page is no longer mapped.
1802 		 */
1803 		if ((m->flags & PG_BUSY) || (m->busy != 0)) {
1804 			vm_page_protect(m, VM_PROT_NONE);
1805 			vm_page_wakeup(m);
1806 			continue;
1807 		}
1808 
1809 		if (m->wire_count == 0) {
1810 			vm_page_flag_clear(m, PG_ZERO);
1811 			/*
1812 			 * Might as well free the page if we can and it has
1813 			 * no valid data.  We also free the page if the
1814 			 * buffer was used for direct I/O.
1815 			 */
1816 #if 0
1817 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1818 					m->hold_count == 0) {
1819 				vm_page_protect(m, VM_PROT_NONE);
1820 				vm_page_free(m);
1821 			} else
1822 #endif
1823 			/*
1824 			 * Cache the page if we are really low on free
1825 			 * pages.
1826 			 *
1827 			 * Also bypass the active and inactive queues
1828 			 * if B_NOTMETA is set.  This flag is set by HAMMER
1829 			 * on a regular file buffer when double buffering
1830 			 * is enabled or on a block device buffer representing
1831 			 * file data when double buffering is not enabled.
1832 			 * The flag prevents two copies of the same data from
1833 			 * being cached for long periods of time.
1834 			 */
1835 			if (bp->b_flags & B_DIRECT) {
1836 				vm_page_wakeup(m);
1837 				vm_page_try_to_free(m);
1838 			} else if ((bp->b_flags & B_NOTMETA) ||
1839 				   vm_page_count_severe()) {
1840 				m->act_count = bp->b_act_count;
1841 				vm_page_wakeup(m);
1842 				vm_page_try_to_cache(m);
1843 			} else {
1844 				m->act_count = bp->b_act_count;
1845 				vm_page_wakeup(m);
1846 			}
1847 		} else {
1848 			vm_page_wakeup(m);
1849 		}
1850 	}
1851 
1852 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data),
1853 		     bp->b_xio.xio_npages);
1854 	if (bp->b_bufsize) {
1855 		bufspacewakeup();
1856 		bp->b_bufsize = 0;
1857 	}
1858 	bp->b_xio.xio_npages = 0;
1859 	bp->b_flags &= ~B_VMIO;
1860 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1861 	if (bp->b_vp)
1862 		brelvp(bp);
1863 }
1864 
1865 /*
1866  * vfs_bio_awrite:
1867  *
1868  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1869  *	This is much better then the old way of writing only one buffer at
1870  *	a time.  Note that we may not be presented with the buffers in the
1871  *	correct order, so we search for the cluster in both directions.
1872  *
1873  *	The buffer is locked on call.
1874  */
1875 int
1876 vfs_bio_awrite(struct buf *bp)
1877 {
1878 	int i;
1879 	int j;
1880 	off_t loffset = bp->b_loffset;
1881 	struct vnode *vp = bp->b_vp;
1882 	int nbytes;
1883 	struct buf *bpa;
1884 	int nwritten;
1885 	int size;
1886 
1887 	/*
1888 	 * right now we support clustered writing only to regular files.  If
1889 	 * we find a clusterable block we could be in the middle of a cluster
1890 	 * rather then at the beginning.
1891 	 *
1892 	 * NOTE: b_bio1 contains the logical loffset and is aliased
1893 	 * to b_loffset.  b_bio2 contains the translated block number.
1894 	 */
1895 	if ((vp->v_type == VREG) &&
1896 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1897 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1898 
1899 		size = vp->v_mount->mnt_stat.f_iosize;
1900 
1901 		for (i = size; i < MAXPHYS; i += size) {
1902 			if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) &&
1903 			    BUF_REFCNT(bpa) == 0 &&
1904 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1905 			    (B_DELWRI | B_CLUSTEROK)) &&
1906 			    (bpa->b_bufsize == size)) {
1907 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1908 				    (bpa->b_bio2.bio_offset !=
1909 				     bp->b_bio2.bio_offset + i))
1910 					break;
1911 			} else {
1912 				break;
1913 			}
1914 		}
1915 		for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1916 			if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) &&
1917 			    BUF_REFCNT(bpa) == 0 &&
1918 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1919 			    (B_DELWRI | B_CLUSTEROK)) &&
1920 			    (bpa->b_bufsize == size)) {
1921 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1922 				    (bpa->b_bio2.bio_offset !=
1923 				     bp->b_bio2.bio_offset - j))
1924 					break;
1925 			} else {
1926 				break;
1927 			}
1928 		}
1929 		j -= size;
1930 		nbytes = (i + j);
1931 
1932 		/*
1933 		 * this is a possible cluster write
1934 		 */
1935 		if (nbytes != size) {
1936 			BUF_UNLOCK(bp);
1937 			nwritten = cluster_wbuild(vp, size,
1938 						  loffset - j, nbytes);
1939 			return nwritten;
1940 		}
1941 	}
1942 
1943 	/*
1944 	 * default (old) behavior, writing out only one block
1945 	 *
1946 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1947 	 */
1948 	nwritten = bp->b_bufsize;
1949 	bremfree(bp);
1950 	bawrite(bp);
1951 
1952 	return nwritten;
1953 }
1954 
1955 /*
1956  * getnewbuf:
1957  *
1958  *	Find and initialize a new buffer header, freeing up existing buffers
1959  *	in the bufqueues as necessary.  The new buffer is returned locked.
1960  *
1961  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1962  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1963  *
1964  *	We block if:
1965  *		We have insufficient buffer headers
1966  *		We have insufficient buffer space
1967  *		buffer_map is too fragmented ( space reservation fails )
1968  *		If we have to flush dirty buffers ( but we try to avoid this )
1969  *
1970  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1971  *	Instead we ask the buf daemon to do it for us.  We attempt to
1972  *	avoid piecemeal wakeups of the pageout daemon.
1973  *
1974  * MPALMOSTSAFE
1975  */
1976 struct buf *
1977 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1978 {
1979 	struct buf *bp;
1980 	struct buf *nbp;
1981 	int defrag = 0;
1982 	int nqindex;
1983 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1984 	static int flushingbufs;
1985 
1986 	/*
1987 	 * We can't afford to block since we might be holding a vnode lock,
1988 	 * which may prevent system daemons from running.  We deal with
1989 	 * low-memory situations by proactively returning memory and running
1990 	 * async I/O rather then sync I/O.
1991 	 */
1992 
1993 	++getnewbufcalls;
1994 	--getnewbufrestarts;
1995 restart:
1996 	++getnewbufrestarts;
1997 
1998 	/*
1999 	 * Setup for scan.  If we do not have enough free buffers,
2000 	 * we setup a degenerate case that immediately fails.  Note
2001 	 * that if we are specially marked process, we are allowed to
2002 	 * dip into our reserves.
2003 	 *
2004 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
2005 	 *
2006 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
2007 	 * However, there are a number of cases (defragging, reusing, ...)
2008 	 * where we cannot backup.
2009 	 */
2010 	nqindex = BQUEUE_EMPTYKVA;
2011 	spin_lock(&bufqspin);
2012 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
2013 
2014 	if (nbp == NULL) {
2015 		/*
2016 		 * If no EMPTYKVA buffers and we are either
2017 		 * defragging or reusing, locate a CLEAN buffer
2018 		 * to free or reuse.  If bufspace useage is low
2019 		 * skip this step so we can allocate a new buffer.
2020 		 */
2021 		if (defrag || bufspace >= lobufspace) {
2022 			nqindex = BQUEUE_CLEAN;
2023 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2024 		}
2025 
2026 		/*
2027 		 * If we could not find or were not allowed to reuse a
2028 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
2029 		 * buffer.  We can only use an EMPTY buffer if allocating
2030 		 * its KVA would not otherwise run us out of buffer space.
2031 		 */
2032 		if (nbp == NULL && defrag == 0 &&
2033 		    bufspace + maxsize < hibufspace) {
2034 			nqindex = BQUEUE_EMPTY;
2035 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
2036 		}
2037 	}
2038 
2039 	/*
2040 	 * Run scan, possibly freeing data and/or kva mappings on the fly
2041 	 * depending.
2042 	 *
2043 	 * WARNING!  bufqspin is held!
2044 	 */
2045 	while ((bp = nbp) != NULL) {
2046 		int qindex = nqindex;
2047 
2048 		nbp = TAILQ_NEXT(bp, b_freelist);
2049 
2050 		/*
2051 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2052 		 * cycles through the queue twice before being selected.
2053 		 */
2054 		if (qindex == BQUEUE_CLEAN &&
2055 		    (bp->b_flags & B_AGE) == 0 && nbp) {
2056 			bp->b_flags |= B_AGE;
2057 			TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
2058 			TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
2059 			continue;
2060 		}
2061 
2062 		/*
2063 		 * Calculate next bp ( we can only use it if we do not block
2064 		 * or do other fancy things ).
2065 		 */
2066 		if (nbp == NULL) {
2067 			switch(qindex) {
2068 			case BQUEUE_EMPTY:
2069 				nqindex = BQUEUE_EMPTYKVA;
2070 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
2071 					break;
2072 				/* fall through */
2073 			case BQUEUE_EMPTYKVA:
2074 				nqindex = BQUEUE_CLEAN;
2075 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
2076 					break;
2077 				/* fall through */
2078 			case BQUEUE_CLEAN:
2079 				/*
2080 				 * nbp is NULL.
2081 				 */
2082 				break;
2083 			}
2084 		}
2085 
2086 		/*
2087 		 * Sanity Checks
2088 		 */
2089 		KASSERT(bp->b_qindex == qindex,
2090 			("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2091 
2092 		/*
2093 		 * Note: we no longer distinguish between VMIO and non-VMIO
2094 		 * buffers.
2095 		 */
2096 		KASSERT((bp->b_flags & B_DELWRI) == 0,
2097 			("delwri buffer %p found in queue %d", bp, qindex));
2098 
2099 		/*
2100 		 * Do not try to reuse a buffer with a non-zero b_refs.
2101 		 * This is an unsynchronized test.  A synchronized test
2102 		 * is also performed after we lock the buffer.
2103 		 */
2104 		if (bp->b_refs)
2105 			continue;
2106 
2107 		/*
2108 		 * If we are defragging then we need a buffer with
2109 		 * b_kvasize != 0.  XXX this situation should no longer
2110 		 * occur, if defrag is non-zero the buffer's b_kvasize
2111 		 * should also be non-zero at this point.  XXX
2112 		 */
2113 		if (defrag && bp->b_kvasize == 0) {
2114 			kprintf("Warning: defrag empty buffer %p\n", bp);
2115 			continue;
2116 		}
2117 
2118 		/*
2119 		 * Start freeing the bp.  This is somewhat involved.  nbp
2120 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
2121 		 * on the clean list must be disassociated from their
2122 		 * current vnode.  Buffers on the empty[kva] lists have
2123 		 * already been disassociated.
2124 		 *
2125 		 * b_refs is checked after locking along with queue changes.
2126 		 * We must check here to deal with zero->nonzero transitions
2127 		 * made by the owner of the buffer lock, which is used by
2128 		 * VFS's to hold the buffer while issuing an unlocked
2129 		 * uiomove()s.  We cannot invalidate the buffer's pages
2130 		 * for this case.  Once we successfully lock a buffer the
2131 		 * only 0->1 transitions of b_refs will occur via findblk().
2132 		 *
2133 		 * We must also check for queue changes after successful
2134 		 * locking as the current lock holder may dispose of the
2135 		 * buffer and change its queue.
2136 		 */
2137 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2138 			spin_unlock(&bufqspin);
2139 			tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100);
2140 			goto restart;
2141 		}
2142 		if (bp->b_qindex != qindex || bp->b_refs) {
2143 			spin_unlock(&bufqspin);
2144 			BUF_UNLOCK(bp);
2145 			goto restart;
2146 		}
2147 		bremfree_locked(bp);
2148 		spin_unlock(&bufqspin);
2149 
2150 		/*
2151 		 * Dependancies must be handled before we disassociate the
2152 		 * vnode.
2153 		 *
2154 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2155 		 * be immediately disassociated.  HAMMER then becomes
2156 		 * responsible for releasing the buffer.
2157 		 *
2158 		 * NOTE: bufqspin is UNLOCKED now.
2159 		 */
2160 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2161 			buf_deallocate(bp);
2162 			if (bp->b_flags & B_LOCKED) {
2163 				bqrelse(bp);
2164 				goto restart;
2165 			}
2166 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2167 		}
2168 
2169 		if (qindex == BQUEUE_CLEAN) {
2170 			if (bp->b_flags & B_VMIO)
2171 				vfs_vmio_release(bp);
2172 			if (bp->b_vp)
2173 				brelvp(bp);
2174 		}
2175 
2176 		/*
2177 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2178 		 * the scan from this point on.
2179 		 *
2180 		 * Get the rest of the buffer freed up.  b_kva* is still
2181 		 * valid after this operation.
2182 		 */
2183 		KASSERT(bp->b_vp == NULL,
2184 			("bp3 %p flags %08x vnode %p qindex %d "
2185 			 "unexpectededly still associated!",
2186 			 bp, bp->b_flags, bp->b_vp, qindex));
2187 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2188 
2189 		/*
2190 		 * critical section protection is not required when
2191 		 * scrapping a buffer's contents because it is already
2192 		 * wired.
2193 		 */
2194 		if (bp->b_bufsize)
2195 			allocbuf(bp, 0);
2196 
2197 		bp->b_flags = B_BNOCLIP;
2198 		bp->b_cmd = BUF_CMD_DONE;
2199 		bp->b_vp = NULL;
2200 		bp->b_error = 0;
2201 		bp->b_resid = 0;
2202 		bp->b_bcount = 0;
2203 		bp->b_xio.xio_npages = 0;
2204 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2205 		bp->b_act_count = ACT_INIT;
2206 		reinitbufbio(bp);
2207 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2208 		buf_dep_init(bp);
2209 		if (blkflags & GETBLK_BHEAVY)
2210 			bp->b_flags |= B_HEAVY;
2211 
2212 		/*
2213 		 * If we are defragging then free the buffer.
2214 		 */
2215 		if (defrag) {
2216 			bp->b_flags |= B_INVAL;
2217 			bfreekva(bp);
2218 			brelse(bp);
2219 			defrag = 0;
2220 			goto restart;
2221 		}
2222 
2223 		/*
2224 		 * If we are overcomitted then recover the buffer and its
2225 		 * KVM space.  This occurs in rare situations when multiple
2226 		 * processes are blocked in getnewbuf() or allocbuf().
2227 		 */
2228 		if (bufspace >= hibufspace)
2229 			flushingbufs = 1;
2230 		if (flushingbufs && bp->b_kvasize != 0) {
2231 			bp->b_flags |= B_INVAL;
2232 			bfreekva(bp);
2233 			brelse(bp);
2234 			goto restart;
2235 		}
2236 		if (bufspace < lobufspace)
2237 			flushingbufs = 0;
2238 
2239 		/*
2240 		 * b_refs can transition to a non-zero value while we hold
2241 		 * the buffer locked due to a findblk().  Our brelvp() above
2242 		 * interlocked any future possible transitions due to
2243 		 * findblk()s.
2244 		 *
2245 		 * If we find b_refs to be non-zero we can destroy the
2246 		 * buffer's contents but we cannot yet reuse the buffer.
2247 		 */
2248 		if (bp->b_refs) {
2249 			bp->b_flags |= B_INVAL;
2250 			bfreekva(bp);
2251 			brelse(bp);
2252 			goto restart;
2253 		}
2254 		break;
2255 		/* NOT REACHED, bufqspin not held */
2256 	}
2257 
2258 	/*
2259 	 * If we exhausted our list, sleep as appropriate.  We may have to
2260 	 * wakeup various daemons and write out some dirty buffers.
2261 	 *
2262 	 * Generally we are sleeping due to insufficient buffer space.
2263 	 *
2264 	 * NOTE: bufqspin is held if bp is NULL, else it is not held.
2265 	 */
2266 	if (bp == NULL) {
2267 		int flags;
2268 		char *waitmsg;
2269 
2270 		spin_unlock(&bufqspin);
2271 		if (defrag) {
2272 			flags = VFS_BIO_NEED_BUFSPACE;
2273 			waitmsg = "nbufkv";
2274 		} else if (bufspace >= hibufspace) {
2275 			waitmsg = "nbufbs";
2276 			flags = VFS_BIO_NEED_BUFSPACE;
2277 		} else {
2278 			waitmsg = "newbuf";
2279 			flags = VFS_BIO_NEED_ANY;
2280 		}
2281 
2282 		bd_speedup();	/* heeeelp */
2283 		spin_lock(&bufcspin);
2284 		needsbuffer |= flags;
2285 		while (needsbuffer & flags) {
2286 			if (ssleep(&needsbuffer, &bufcspin,
2287 				   slpflags, waitmsg, slptimeo)) {
2288 				spin_unlock(&bufcspin);
2289 				return (NULL);
2290 			}
2291 		}
2292 		spin_unlock(&bufcspin);
2293 	} else {
2294 		/*
2295 		 * We finally have a valid bp.  We aren't quite out of the
2296 		 * woods, we still have to reserve kva space.  In order
2297 		 * to keep fragmentation sane we only allocate kva in
2298 		 * BKVASIZE chunks.
2299 		 *
2300 		 * (bufqspin is not held)
2301 		 */
2302 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2303 
2304 		if (maxsize != bp->b_kvasize) {
2305 			vm_offset_t addr = 0;
2306 			int count;
2307 
2308 			bfreekva(bp);
2309 
2310 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2311 			vm_map_lock(&buffer_map);
2312 
2313 			if (vm_map_findspace(&buffer_map,
2314 				    vm_map_min(&buffer_map), maxsize,
2315 				    maxsize, 0, &addr)) {
2316 				/*
2317 				 * Uh oh.  Buffer map is too fragmented.  We
2318 				 * must defragment the map.
2319 				 */
2320 				vm_map_unlock(&buffer_map);
2321 				vm_map_entry_release(count);
2322 				++bufdefragcnt;
2323 				defrag = 1;
2324 				bp->b_flags |= B_INVAL;
2325 				brelse(bp);
2326 				goto restart;
2327 			}
2328 			if (addr) {
2329 				vm_map_insert(&buffer_map, &count,
2330 					NULL, 0,
2331 					addr, addr + maxsize,
2332 					VM_MAPTYPE_NORMAL,
2333 					VM_PROT_ALL, VM_PROT_ALL,
2334 					MAP_NOFAULT);
2335 
2336 				bp->b_kvabase = (caddr_t) addr;
2337 				bp->b_kvasize = maxsize;
2338 				bufspace += bp->b_kvasize;
2339 				++bufreusecnt;
2340 			}
2341 			vm_map_unlock(&buffer_map);
2342 			vm_map_entry_release(count);
2343 		}
2344 		bp->b_data = bp->b_kvabase;
2345 	}
2346 	return(bp);
2347 }
2348 
2349 /*
2350  * This routine is called in an emergency to recover VM pages from the
2351  * buffer cache by cashing in clean buffers.  The idea is to recover
2352  * enough pages to be able to satisfy a stuck bio_page_alloc().
2353  *
2354  * MPSAFE
2355  */
2356 static int
2357 recoverbufpages(void)
2358 {
2359 	struct buf *bp;
2360 	int bytes = 0;
2361 
2362 	++recoverbufcalls;
2363 
2364 	spin_lock(&bufqspin);
2365 	while (bytes < MAXBSIZE) {
2366 		bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2367 		if (bp == NULL)
2368 			break;
2369 
2370 		/*
2371 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2372 		 * cycles through the queue twice before being selected.
2373 		 */
2374 		if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2375 			bp->b_flags |= B_AGE;
2376 			TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2377 			TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2378 					  bp, b_freelist);
2379 			continue;
2380 		}
2381 
2382 		/*
2383 		 * Sanity Checks
2384 		 */
2385 		KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2386 		KKASSERT((bp->b_flags & B_DELWRI) == 0);
2387 
2388 		/*
2389 		 * Start freeing the bp.  This is somewhat involved.
2390 		 *
2391 		 * Buffers on the clean list must be disassociated from
2392 		 * their current vnode
2393 		 */
2394 
2395 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2396 			kprintf("recoverbufpages: warning, locked buf %p, "
2397 				"race corrected\n",
2398 				bp);
2399 			ssleep(&bd_request, &bufqspin, 0, "gnbxxx", hz / 100);
2400 			continue;
2401 		}
2402 		if (bp->b_qindex != BQUEUE_CLEAN) {
2403 			kprintf("recoverbufpages: warning, BUF_LOCK blocked "
2404 				"unexpectedly on buf %p index %d, race "
2405 				"corrected\n",
2406 				bp, bp->b_qindex);
2407 			BUF_UNLOCK(bp);
2408 			continue;
2409 		}
2410 		bremfree_locked(bp);
2411 		spin_unlock(&bufqspin);
2412 
2413 		/*
2414 		 * Dependancies must be handled before we disassociate the
2415 		 * vnode.
2416 		 *
2417 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2418 		 * be immediately disassociated.  HAMMER then becomes
2419 		 * responsible for releasing the buffer.
2420 		 */
2421 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2422 			buf_deallocate(bp);
2423 			if (bp->b_flags & B_LOCKED) {
2424 				bqrelse(bp);
2425 				spin_lock(&bufqspin);
2426 				continue;
2427 			}
2428 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2429 		}
2430 
2431 		bytes += bp->b_bufsize;
2432 
2433 		if (bp->b_flags & B_VMIO) {
2434 			bp->b_flags |= B_DIRECT;    /* try to free pages */
2435 			vfs_vmio_release(bp);
2436 		}
2437 		if (bp->b_vp)
2438 			brelvp(bp);
2439 
2440 		KKASSERT(bp->b_vp == NULL);
2441 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2442 
2443 		/*
2444 		 * critical section protection is not required when
2445 		 * scrapping a buffer's contents because it is already
2446 		 * wired.
2447 		 */
2448 		if (bp->b_bufsize)
2449 			allocbuf(bp, 0);
2450 
2451 		bp->b_flags = B_BNOCLIP;
2452 		bp->b_cmd = BUF_CMD_DONE;
2453 		bp->b_vp = NULL;
2454 		bp->b_error = 0;
2455 		bp->b_resid = 0;
2456 		bp->b_bcount = 0;
2457 		bp->b_xio.xio_npages = 0;
2458 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2459 		reinitbufbio(bp);
2460 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2461 		buf_dep_init(bp);
2462 		bp->b_flags |= B_INVAL;
2463 		/* bfreekva(bp); */
2464 		brelse(bp);
2465 		spin_lock(&bufqspin);
2466 	}
2467 	spin_unlock(&bufqspin);
2468 	return(bytes);
2469 }
2470 
2471 /*
2472  * buf_daemon:
2473  *
2474  *	Buffer flushing daemon.  Buffers are normally flushed by the
2475  *	update daemon but if it cannot keep up this process starts to
2476  *	take the load in an attempt to prevent getnewbuf() from blocking.
2477  *
2478  *	Once a flush is initiated it does not stop until the number
2479  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2480  *	waiting at the mid-point.
2481  */
2482 
2483 static struct kproc_desc buf_kp = {
2484 	"bufdaemon",
2485 	buf_daemon,
2486 	&bufdaemon_td
2487 };
2488 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2489 	kproc_start, &buf_kp)
2490 
2491 static struct kproc_desc bufhw_kp = {
2492 	"bufdaemon_hw",
2493 	buf_daemon_hw,
2494 	&bufdaemonhw_td
2495 };
2496 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2497 	kproc_start, &bufhw_kp)
2498 
2499 /*
2500  * MPSAFE thread
2501  */
2502 static void
2503 buf_daemon(void)
2504 {
2505 	long limit;
2506 
2507 	/*
2508 	 * This process needs to be suspended prior to shutdown sync.
2509 	 */
2510 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2511 			      bufdaemon_td, SHUTDOWN_PRI_LAST);
2512 	curthread->td_flags |= TDF_SYSTHREAD;
2513 
2514 	/*
2515 	 * This process is allowed to take the buffer cache to the limit
2516 	 */
2517 	for (;;) {
2518 		kproc_suspend_loop();
2519 
2520 		/*
2521 		 * Do the flush as long as the number of dirty buffers
2522 		 * (including those running) exceeds lodirtybufspace.
2523 		 *
2524 		 * When flushing limit running I/O to hirunningspace
2525 		 * Do the flush.  Limit the amount of in-transit I/O we
2526 		 * allow to build up, otherwise we would completely saturate
2527 		 * the I/O system.  Wakeup any waiting processes before we
2528 		 * normally would so they can run in parallel with our drain.
2529 		 *
2530 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2531 		 * but because we split the operation into two threads we
2532 		 * have to cut it in half for each thread.
2533 		 */
2534 		waitrunningbufspace();
2535 		limit = lodirtybufspace / 2;
2536 		while (runningbufspace + dirtybufspace > limit ||
2537 		       dirtybufcount - dirtybufcounthw >= nbuf / 2) {
2538 			if (flushbufqueues(BQUEUE_DIRTY) == 0)
2539 				break;
2540 			if (runningbufspace < hirunningspace)
2541 				continue;
2542 			waitrunningbufspace();
2543 		}
2544 
2545 		/*
2546 		 * We reached our low water mark, reset the
2547 		 * request and sleep until we are needed again.
2548 		 * The sleep is just so the suspend code works.
2549 		 */
2550 		spin_lock(&bufcspin);
2551 		if (bd_request == 0)
2552 			ssleep(&bd_request, &bufcspin, 0, "psleep", hz);
2553 		bd_request = 0;
2554 		spin_unlock(&bufcspin);
2555 	}
2556 }
2557 
2558 /*
2559  * MPSAFE thread
2560  */
2561 static void
2562 buf_daemon_hw(void)
2563 {
2564 	long limit;
2565 
2566 	/*
2567 	 * This process needs to be suspended prior to shutdown sync.
2568 	 */
2569 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2570 			      bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2571 	curthread->td_flags |= TDF_SYSTHREAD;
2572 
2573 	/*
2574 	 * This process is allowed to take the buffer cache to the limit
2575 	 */
2576 	for (;;) {
2577 		kproc_suspend_loop();
2578 
2579 		/*
2580 		 * Do the flush.  Limit the amount of in-transit I/O we
2581 		 * allow to build up, otherwise we would completely saturate
2582 		 * the I/O system.  Wakeup any waiting processes before we
2583 		 * normally would so they can run in parallel with our drain.
2584 		 *
2585 		 * Once we decide to flush push the queued I/O up to
2586 		 * hirunningspace in order to trigger bursting by the bioq
2587 		 * subsystem.
2588 		 *
2589 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2590 		 * but because we split the operation into two threads we
2591 		 * have to cut it in half for each thread.
2592 		 */
2593 		waitrunningbufspace();
2594 		limit = lodirtybufspace / 2;
2595 		while (runningbufspace + dirtybufspacehw > limit ||
2596 		       dirtybufcounthw >= nbuf / 2) {
2597 			if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2598 				break;
2599 			if (runningbufspace < hirunningspace)
2600 				continue;
2601 			waitrunningbufspace();
2602 		}
2603 
2604 		/*
2605 		 * We reached our low water mark, reset the
2606 		 * request and sleep until we are needed again.
2607 		 * The sleep is just so the suspend code works.
2608 		 */
2609 		spin_lock(&bufcspin);
2610 		if (bd_request_hw == 0)
2611 			ssleep(&bd_request_hw, &bufcspin, 0, "psleep", hz);
2612 		bd_request_hw = 0;
2613 		spin_unlock(&bufcspin);
2614 	}
2615 }
2616 
2617 /*
2618  * flushbufqueues:
2619  *
2620  *	Try to flush a buffer in the dirty queue.  We must be careful to
2621  *	free up B_INVAL buffers instead of write them, which NFS is
2622  *	particularly sensitive to.
2623  *
2624  *	B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate
2625  *	that we really want to try to get the buffer out and reuse it
2626  *	due to the write load on the machine.
2627  *
2628  *	We must lock the buffer in order to check its validity before we
2629  *	can mess with its contents.  bufqspin isn't enough.
2630  */
2631 static int
2632 flushbufqueues(bufq_type_t q)
2633 {
2634 	struct buf *bp;
2635 	int r = 0;
2636 	int spun;
2637 
2638 	spin_lock(&bufqspin);
2639 	spun = 1;
2640 
2641 	bp = TAILQ_FIRST(&bufqueues[q]);
2642 	while (bp) {
2643 		if ((bp->b_flags & B_DELWRI) == 0) {
2644 			kprintf("Unexpected clean buffer %p\n", bp);
2645 			bp = TAILQ_NEXT(bp, b_freelist);
2646 			continue;
2647 		}
2648 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2649 			bp = TAILQ_NEXT(bp, b_freelist);
2650 			continue;
2651 		}
2652 		KKASSERT(bp->b_qindex == q);
2653 
2654 		/*
2655 		 * Must recheck B_DELWRI after successfully locking
2656 		 * the buffer.
2657 		 */
2658 		if ((bp->b_flags & B_DELWRI) == 0) {
2659 			BUF_UNLOCK(bp);
2660 			bp = TAILQ_NEXT(bp, b_freelist);
2661 			continue;
2662 		}
2663 
2664 		if (bp->b_flags & B_INVAL) {
2665 			_bremfree(bp);
2666 			spin_unlock(&bufqspin);
2667 			spun = 0;
2668 			brelse(bp);
2669 			++r;
2670 			break;
2671 		}
2672 
2673 		spin_unlock(&bufqspin);
2674 		lwkt_yield();
2675 		spun = 0;
2676 
2677 		if (LIST_FIRST(&bp->b_dep) != NULL &&
2678 		    (bp->b_flags & B_DEFERRED) == 0 &&
2679 		    buf_countdeps(bp, 0)) {
2680 			spin_lock(&bufqspin);
2681 			spun = 1;
2682 			TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2683 			TAILQ_INSERT_TAIL(&bufqueues[q], bp, b_freelist);
2684 			bp->b_flags |= B_DEFERRED;
2685 			BUF_UNLOCK(bp);
2686 			bp = TAILQ_FIRST(&bufqueues[q]);
2687 			continue;
2688 		}
2689 
2690 		/*
2691 		 * If the buffer has a dependancy, buf_checkwrite() must
2692 		 * also return 0 for us to be able to initate the write.
2693 		 *
2694 		 * If the buffer is flagged B_ERROR it may be requeued
2695 		 * over and over again, we try to avoid a live lock.
2696 		 *
2697 		 * NOTE: buf_checkwrite is MPSAFE.
2698 		 */
2699 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2700 			bremfree(bp);
2701 			brelse(bp);
2702 		} else if (bp->b_flags & B_ERROR) {
2703 			tsleep(bp, 0, "bioer", 1);
2704 			bp->b_flags &= ~B_AGE;
2705 			vfs_bio_awrite(bp);
2706 		} else {
2707 			bp->b_flags |= B_AGE;
2708 			vfs_bio_awrite(bp);
2709 		}
2710 		++r;
2711 		break;
2712 	}
2713 	if (spun)
2714 		spin_unlock(&bufqspin);
2715 	return (r);
2716 }
2717 
2718 /*
2719  * inmem:
2720  *
2721  *	Returns true if no I/O is needed to access the associated VM object.
2722  *	This is like findblk except it also hunts around in the VM system for
2723  *	the data.
2724  *
2725  *	Note that we ignore vm_page_free() races from interrupts against our
2726  *	lookup, since if the caller is not protected our return value will not
2727  *	be any more valid then otherwise once we exit the critical section.
2728  */
2729 int
2730 inmem(struct vnode *vp, off_t loffset)
2731 {
2732 	vm_object_t obj;
2733 	vm_offset_t toff, tinc, size;
2734 	vm_page_t m;
2735 	int res = 1;
2736 
2737 	if (findblk(vp, loffset, FINDBLK_TEST))
2738 		return 1;
2739 	if (vp->v_mount == NULL)
2740 		return 0;
2741 	if ((obj = vp->v_object) == NULL)
2742 		return 0;
2743 
2744 	size = PAGE_SIZE;
2745 	if (size > vp->v_mount->mnt_stat.f_iosize)
2746 		size = vp->v_mount->mnt_stat.f_iosize;
2747 
2748 	vm_object_hold(obj);
2749 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2750 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2751 		if (m == NULL) {
2752 			res = 0;
2753 			break;
2754 		}
2755 		tinc = size;
2756 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2757 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2758 		if (vm_page_is_valid(m,
2759 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) {
2760 			res = 0;
2761 			break;
2762 		}
2763 	}
2764 	vm_object_drop(obj);
2765 	return (res);
2766 }
2767 
2768 /*
2769  * findblk:
2770  *
2771  *	Locate and return the specified buffer.  Unless flagged otherwise,
2772  *	a locked buffer will be returned if it exists or NULL if it does not.
2773  *
2774  *	findblk()'d buffers are still on the bufqueues and if you intend
2775  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2776  *	and possibly do other stuff to it.
2777  *
2778  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2779  *			  for locking the buffer and ensuring that it remains
2780  *			  the desired buffer after locking.
2781  *
2782  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2783  *			  to acquire the lock we return NULL, even if the
2784  *			  buffer exists.
2785  *
2786  *	FINDBLK_REF	- Returns the buffer ref'd, which prevents normal
2787  *			  reuse by getnewbuf() but does not prevent
2788  *			  disassociation (B_INVAL).  Used to avoid deadlocks
2789  *			  against random (vp,loffset)s due to reassignment.
2790  *
2791  *	(0)		- Lock the buffer blocking.
2792  *
2793  * MPSAFE
2794  */
2795 struct buf *
2796 findblk(struct vnode *vp, off_t loffset, int flags)
2797 {
2798 	struct buf *bp;
2799 	int lkflags;
2800 
2801 	lkflags = LK_EXCLUSIVE;
2802 	if (flags & FINDBLK_NBLOCK)
2803 		lkflags |= LK_NOWAIT;
2804 
2805 	for (;;) {
2806 		/*
2807 		 * Lookup.  Ref the buf while holding v_token to prevent
2808 		 * reuse (but does not prevent diassociation).
2809 		 */
2810 		lwkt_gettoken_shared(&vp->v_token);
2811 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2812 		if (bp == NULL) {
2813 			lwkt_reltoken(&vp->v_token);
2814 			return(NULL);
2815 		}
2816 		bqhold(bp);
2817 		lwkt_reltoken(&vp->v_token);
2818 
2819 		/*
2820 		 * If testing only break and return bp, do not lock.
2821 		 */
2822 		if (flags & FINDBLK_TEST)
2823 			break;
2824 
2825 		/*
2826 		 * Lock the buffer, return an error if the lock fails.
2827 		 * (only FINDBLK_NBLOCK can cause the lock to fail).
2828 		 */
2829 		if (BUF_LOCK(bp, lkflags)) {
2830 			atomic_subtract_int(&bp->b_refs, 1);
2831 			/* bp = NULL; not needed */
2832 			return(NULL);
2833 		}
2834 
2835 		/*
2836 		 * Revalidate the locked buf before allowing it to be
2837 		 * returned.
2838 		 */
2839 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2840 			break;
2841 		atomic_subtract_int(&bp->b_refs, 1);
2842 		BUF_UNLOCK(bp);
2843 	}
2844 
2845 	/*
2846 	 * Success
2847 	 */
2848 	if ((flags & FINDBLK_REF) == 0)
2849 		atomic_subtract_int(&bp->b_refs, 1);
2850 	return(bp);
2851 }
2852 
2853 /*
2854  * getcacheblk:
2855  *
2856  *	Similar to getblk() except only returns the buffer if it is
2857  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2858  *	is returned.
2859  *
2860  *	If B_RAM is set the buffer might be just fine, but we return
2861  *	NULL anyway because we want the code to fall through to the
2862  *	cluster read.  Otherwise read-ahead breaks.
2863  *
2864  *	If blksize is 0 the buffer cache buffer must already be fully
2865  *	cached.
2866  *
2867  *	If blksize is non-zero getblk() will be used, allowing a buffer
2868  *	to be reinstantiated from its VM backing store.  The buffer must
2869  *	still be fully cached after reinstantiation to be returned.
2870  */
2871 struct buf *
2872 getcacheblk(struct vnode *vp, off_t loffset, int blksize)
2873 {
2874 	struct buf *bp;
2875 
2876 	if (blksize) {
2877 		bp = getblk(vp, loffset, blksize, 0, 0);
2878 		if (bp) {
2879 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2880 			    B_CACHE) {
2881 				bp->b_flags &= ~B_AGE;
2882 			} else {
2883 				brelse(bp);
2884 				bp = NULL;
2885 			}
2886 		}
2887 	} else {
2888 		bp = findblk(vp, loffset, 0);
2889 		if (bp) {
2890 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2891 			    B_CACHE) {
2892 				bp->b_flags &= ~B_AGE;
2893 				bremfree(bp);
2894 			} else {
2895 				BUF_UNLOCK(bp);
2896 				bp = NULL;
2897 			}
2898 		}
2899 	}
2900 	return (bp);
2901 }
2902 
2903 /*
2904  * getblk:
2905  *
2906  *	Get a block given a specified block and offset into a file/device.
2907  * 	B_INVAL may or may not be set on return.  The caller should clear
2908  *	B_INVAL prior to initiating a READ.
2909  *
2910  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2911  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2912  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2913  *	without doing any of those things the system will likely believe
2914  *	the buffer to be valid (especially if it is not B_VMIO), and the
2915  *	next getblk() will return the buffer with B_CACHE set.
2916  *
2917  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2918  *	an existing buffer.
2919  *
2920  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2921  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2922  *	and then cleared based on the backing VM.  If the previous buffer is
2923  *	non-0-sized but invalid, B_CACHE will be cleared.
2924  *
2925  *	If getblk() must create a new buffer, the new buffer is returned with
2926  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2927  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2928  *	backing VM.
2929  *
2930  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2931  *	B_CACHE bit is clear.
2932  *
2933  *	What this means, basically, is that the caller should use B_CACHE to
2934  *	determine whether the buffer is fully valid or not and should clear
2935  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2936  *	the buffer by loading its data area with something, the caller needs
2937  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2938  *	the caller should set B_CACHE ( as an optimization ), else the caller
2939  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2940  *	a write attempt or if it was a successfull read.  If the caller
2941  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2942  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2943  *
2944  *	getblk flags:
2945  *
2946  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2947  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2948  *
2949  * MPALMOSTSAFE
2950  */
2951 struct buf *
2952 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2953 {
2954 	struct buf *bp;
2955 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2956 	int error;
2957 	int lkflags;
2958 
2959 	if (size > MAXBSIZE)
2960 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2961 	if (vp->v_object == NULL)
2962 		panic("getblk: vnode %p has no object!", vp);
2963 
2964 loop:
2965 	if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2966 		/*
2967 		 * The buffer was found in the cache, but we need to lock it.
2968 		 * We must acquire a ref on the bp to prevent reuse, but
2969 		 * this will not prevent disassociation (brelvp()) so we
2970 		 * must recheck (vp,loffset) after acquiring the lock.
2971 		 *
2972 		 * Without the ref the buffer could potentially be reused
2973 		 * before we acquire the lock and create a deadlock
2974 		 * situation between the thread trying to reuse the buffer
2975 		 * and us due to the fact that we would wind up blocking
2976 		 * on a random (vp,loffset).
2977 		 */
2978 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2979 			if (blkflags & GETBLK_NOWAIT) {
2980 				bqdrop(bp);
2981 				return(NULL);
2982 			}
2983 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2984 			if (blkflags & GETBLK_PCATCH)
2985 				lkflags |= LK_PCATCH;
2986 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2987 			if (error) {
2988 				bqdrop(bp);
2989 				if (error == ENOLCK)
2990 					goto loop;
2991 				return (NULL);
2992 			}
2993 			/* buffer may have changed on us */
2994 		}
2995 		bqdrop(bp);
2996 
2997 		/*
2998 		 * Once the buffer has been locked, make sure we didn't race
2999 		 * a buffer recyclement.  Buffers that are no longer hashed
3000 		 * will have b_vp == NULL, so this takes care of that check
3001 		 * as well.
3002 		 */
3003 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
3004 			kprintf("Warning buffer %p (vp %p loffset %lld) "
3005 				"was recycled\n",
3006 				bp, vp, (long long)loffset);
3007 			BUF_UNLOCK(bp);
3008 			goto loop;
3009 		}
3010 
3011 		/*
3012 		 * If SZMATCH any pre-existing buffer must be of the requested
3013 		 * size or NULL is returned.  The caller absolutely does not
3014 		 * want getblk() to bwrite() the buffer on a size mismatch.
3015 		 */
3016 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
3017 			BUF_UNLOCK(bp);
3018 			return(NULL);
3019 		}
3020 
3021 		/*
3022 		 * All vnode-based buffers must be backed by a VM object.
3023 		 */
3024 		KKASSERT(bp->b_flags & B_VMIO);
3025 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3026 		bp->b_flags &= ~B_AGE;
3027 
3028 		/*
3029 		 * Make sure that B_INVAL buffers do not have a cached
3030 		 * block number translation.
3031 		 */
3032 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
3033 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
3034 				" did not have cleared bio_offset cache\n",
3035 				bp, vp, (long long)loffset);
3036 			clearbiocache(&bp->b_bio2);
3037 		}
3038 
3039 		/*
3040 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
3041 		 * invalid.
3042 		 */
3043 		if (bp->b_flags & B_INVAL)
3044 			bp->b_flags &= ~B_CACHE;
3045 		bremfree(bp);
3046 
3047 		/*
3048 		 * Any size inconsistancy with a dirty buffer or a buffer
3049 		 * with a softupdates dependancy must be resolved.  Resizing
3050 		 * the buffer in such circumstances can lead to problems.
3051 		 *
3052 		 * Dirty or dependant buffers are written synchronously.
3053 		 * Other types of buffers are simply released and
3054 		 * reconstituted as they may be backed by valid, dirty VM
3055 		 * pages (but not marked B_DELWRI).
3056 		 *
3057 		 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
3058 		 * and may be left over from a prior truncation (and thus
3059 		 * no longer represent the actual EOF point), so we
3060 		 * definitely do not want to B_NOCACHE the backing store.
3061 		 */
3062 		if (size != bp->b_bcount) {
3063 			if (bp->b_flags & B_DELWRI) {
3064 				bp->b_flags |= B_RELBUF;
3065 				bwrite(bp);
3066 			} else if (LIST_FIRST(&bp->b_dep)) {
3067 				bp->b_flags |= B_RELBUF;
3068 				bwrite(bp);
3069 			} else {
3070 				bp->b_flags |= B_RELBUF;
3071 				brelse(bp);
3072 			}
3073 			goto loop;
3074 		}
3075 		KKASSERT(size <= bp->b_kvasize);
3076 		KASSERT(bp->b_loffset != NOOFFSET,
3077 			("getblk: no buffer offset"));
3078 
3079 		/*
3080 		 * A buffer with B_DELWRI set and B_CACHE clear must
3081 		 * be committed before we can return the buffer in
3082 		 * order to prevent the caller from issuing a read
3083 		 * ( due to B_CACHE not being set ) and overwriting
3084 		 * it.
3085 		 *
3086 		 * Most callers, including NFS and FFS, need this to
3087 		 * operate properly either because they assume they
3088 		 * can issue a read if B_CACHE is not set, or because
3089 		 * ( for example ) an uncached B_DELWRI might loop due
3090 		 * to softupdates re-dirtying the buffer.  In the latter
3091 		 * case, B_CACHE is set after the first write completes,
3092 		 * preventing further loops.
3093 		 *
3094 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3095 		 * above while extending the buffer, we cannot allow the
3096 		 * buffer to remain with B_CACHE set after the write
3097 		 * completes or it will represent a corrupt state.  To
3098 		 * deal with this we set B_NOCACHE to scrap the buffer
3099 		 * after the write.
3100 		 *
3101 		 * XXX Should this be B_RELBUF instead of B_NOCACHE?
3102 		 *     I'm not even sure this state is still possible
3103 		 *     now that getblk() writes out any dirty buffers
3104 		 *     on size changes.
3105 		 *
3106 		 * We might be able to do something fancy, like setting
3107 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3108 		 * so the below call doesn't set B_CACHE, but that gets real
3109 		 * confusing.  This is much easier.
3110 		 */
3111 
3112 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3113 			kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
3114 				"and CACHE clear, b_flags %08x\n",
3115 				bp, (intmax_t)bp->b_loffset, bp->b_flags);
3116 			bp->b_flags |= B_NOCACHE;
3117 			bwrite(bp);
3118 			goto loop;
3119 		}
3120 	} else {
3121 		/*
3122 		 * Buffer is not in-core, create new buffer.  The buffer
3123 		 * returned by getnewbuf() is locked.  Note that the returned
3124 		 * buffer is also considered valid (not marked B_INVAL).
3125 		 *
3126 		 * Calculating the offset for the I/O requires figuring out
3127 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
3128 		 * the mount's f_iosize otherwise.  If the vnode does not
3129 		 * have an associated mount we assume that the passed size is
3130 		 * the block size.
3131 		 *
3132 		 * Note that vn_isdisk() cannot be used here since it may
3133 		 * return a failure for numerous reasons.   Note that the
3134 		 * buffer size may be larger then the block size (the caller
3135 		 * will use block numbers with the proper multiple).  Beware
3136 		 * of using any v_* fields which are part of unions.  In
3137 		 * particular, in DragonFly the mount point overloading
3138 		 * mechanism uses the namecache only and the underlying
3139 		 * directory vnode is not a special case.
3140 		 */
3141 		int bsize, maxsize;
3142 
3143 		if (vp->v_type == VBLK || vp->v_type == VCHR)
3144 			bsize = DEV_BSIZE;
3145 		else if (vp->v_mount)
3146 			bsize = vp->v_mount->mnt_stat.f_iosize;
3147 		else
3148 			bsize = size;
3149 
3150 		maxsize = size + (loffset & PAGE_MASK);
3151 		maxsize = imax(maxsize, bsize);
3152 
3153 		bp = getnewbuf(blkflags, slptimeo, size, maxsize);
3154 		if (bp == NULL) {
3155 			if (slpflags || slptimeo)
3156 				return NULL;
3157 			goto loop;
3158 		}
3159 
3160 		/*
3161 		 * Atomically insert the buffer into the hash, so that it can
3162 		 * be found by findblk().
3163 		 *
3164 		 * If bgetvp() returns non-zero a collision occured, and the
3165 		 * bp will not be associated with the vnode.
3166 		 *
3167 		 * Make sure the translation layer has been cleared.
3168 		 */
3169 		bp->b_loffset = loffset;
3170 		bp->b_bio2.bio_offset = NOOFFSET;
3171 		/* bp->b_bio2.bio_next = NULL; */
3172 
3173 		if (bgetvp(vp, bp, size)) {
3174 			bp->b_flags |= B_INVAL;
3175 			brelse(bp);
3176 			goto loop;
3177 		}
3178 
3179 		/*
3180 		 * All vnode-based buffers must be backed by a VM object.
3181 		 */
3182 		KKASSERT(vp->v_object != NULL);
3183 		bp->b_flags |= B_VMIO;
3184 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3185 
3186 		allocbuf(bp, size);
3187 	}
3188 	KKASSERT(dsched_is_clear_buf_priv(bp));
3189 	return (bp);
3190 }
3191 
3192 /*
3193  * regetblk(bp)
3194  *
3195  * Reacquire a buffer that was previously released to the locked queue,
3196  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3197  * set B_LOCKED (which handles the acquisition race).
3198  *
3199  * To this end, either B_LOCKED must be set or the dependancy list must be
3200  * non-empty.
3201  *
3202  * MPSAFE
3203  */
3204 void
3205 regetblk(struct buf *bp)
3206 {
3207 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3208 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3209 	bremfree(bp);
3210 }
3211 
3212 /*
3213  * geteblk:
3214  *
3215  *	Get an empty, disassociated buffer of given size.  The buffer is
3216  *	initially set to B_INVAL.
3217  *
3218  *	critical section protection is not required for the allocbuf()
3219  *	call because races are impossible here.
3220  *
3221  * MPALMOSTSAFE
3222  */
3223 struct buf *
3224 geteblk(int size)
3225 {
3226 	struct buf *bp;
3227 	int maxsize;
3228 
3229 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3230 
3231 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
3232 		;
3233 	allocbuf(bp, size);
3234 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3235 	KKASSERT(dsched_is_clear_buf_priv(bp));
3236 	return (bp);
3237 }
3238 
3239 
3240 /*
3241  * allocbuf:
3242  *
3243  *	This code constitutes the buffer memory from either anonymous system
3244  *	memory (in the case of non-VMIO operations) or from an associated
3245  *	VM object (in the case of VMIO operations).  This code is able to
3246  *	resize a buffer up or down.
3247  *
3248  *	Note that this code is tricky, and has many complications to resolve
3249  *	deadlock or inconsistant data situations.  Tread lightly!!!
3250  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
3251  *	the caller.  Calling this code willy nilly can result in the loss of
3252  *	data.
3253  *
3254  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3255  *	B_CACHE for the non-VMIO case.
3256  *
3257  *	This routine does not need to be called from a critical section but you
3258  *	must own the buffer.
3259  *
3260  * MPSAFE
3261  */
3262 int
3263 allocbuf(struct buf *bp, int size)
3264 {
3265 	int newbsize, mbsize;
3266 	int i;
3267 
3268 	if (BUF_REFCNT(bp) == 0)
3269 		panic("allocbuf: buffer not busy");
3270 
3271 	if (bp->b_kvasize < size)
3272 		panic("allocbuf: buffer too small");
3273 
3274 	if ((bp->b_flags & B_VMIO) == 0) {
3275 		caddr_t origbuf;
3276 		int origbufsize;
3277 		/*
3278 		 * Just get anonymous memory from the kernel.  Don't
3279 		 * mess with B_CACHE.
3280 		 */
3281 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3282 		if (bp->b_flags & B_MALLOC)
3283 			newbsize = mbsize;
3284 		else
3285 			newbsize = round_page(size);
3286 
3287 		if (newbsize < bp->b_bufsize) {
3288 			/*
3289 			 * Malloced buffers are not shrunk
3290 			 */
3291 			if (bp->b_flags & B_MALLOC) {
3292 				if (newbsize) {
3293 					bp->b_bcount = size;
3294 				} else {
3295 					kfree(bp->b_data, M_BIOBUF);
3296 					if (bp->b_bufsize) {
3297 						atomic_subtract_long(&bufmallocspace, bp->b_bufsize);
3298 						bufspacewakeup();
3299 						bp->b_bufsize = 0;
3300 					}
3301 					bp->b_data = bp->b_kvabase;
3302 					bp->b_bcount = 0;
3303 					bp->b_flags &= ~B_MALLOC;
3304 				}
3305 				return 1;
3306 			}
3307 			vm_hold_free_pages(
3308 			    bp,
3309 			    (vm_offset_t) bp->b_data + newbsize,
3310 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3311 		} else if (newbsize > bp->b_bufsize) {
3312 			/*
3313 			 * We only use malloced memory on the first allocation.
3314 			 * and revert to page-allocated memory when the buffer
3315 			 * grows.
3316 			 */
3317 			if ((bufmallocspace < maxbufmallocspace) &&
3318 				(bp->b_bufsize == 0) &&
3319 				(mbsize <= PAGE_SIZE/2)) {
3320 
3321 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3322 				bp->b_bufsize = mbsize;
3323 				bp->b_bcount = size;
3324 				bp->b_flags |= B_MALLOC;
3325 				atomic_add_long(&bufmallocspace, mbsize);
3326 				return 1;
3327 			}
3328 			origbuf = NULL;
3329 			origbufsize = 0;
3330 			/*
3331 			 * If the buffer is growing on its other-than-first
3332 			 * allocation, then we revert to the page-allocation
3333 			 * scheme.
3334 			 */
3335 			if (bp->b_flags & B_MALLOC) {
3336 				origbuf = bp->b_data;
3337 				origbufsize = bp->b_bufsize;
3338 				bp->b_data = bp->b_kvabase;
3339 				if (bp->b_bufsize) {
3340 					atomic_subtract_long(&bufmallocspace,
3341 							     bp->b_bufsize);
3342 					bufspacewakeup();
3343 					bp->b_bufsize = 0;
3344 				}
3345 				bp->b_flags &= ~B_MALLOC;
3346 				newbsize = round_page(newbsize);
3347 			}
3348 			vm_hold_load_pages(
3349 			    bp,
3350 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3351 			    (vm_offset_t) bp->b_data + newbsize);
3352 			if (origbuf) {
3353 				bcopy(origbuf, bp->b_data, origbufsize);
3354 				kfree(origbuf, M_BIOBUF);
3355 			}
3356 		}
3357 	} else {
3358 		vm_page_t m;
3359 		int desiredpages;
3360 
3361 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3362 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3363 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3364 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3365 
3366 		if (bp->b_flags & B_MALLOC)
3367 			panic("allocbuf: VMIO buffer can't be malloced");
3368 		/*
3369 		 * Set B_CACHE initially if buffer is 0 length or will become
3370 		 * 0-length.
3371 		 */
3372 		if (size == 0 || bp->b_bufsize == 0)
3373 			bp->b_flags |= B_CACHE;
3374 
3375 		if (newbsize < bp->b_bufsize) {
3376 			/*
3377 			 * DEV_BSIZE aligned new buffer size is less then the
3378 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3379 			 * if we have to remove any pages.
3380 			 */
3381 			if (desiredpages < bp->b_xio.xio_npages) {
3382 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3383 					/*
3384 					 * the page is not freed here -- it
3385 					 * is the responsibility of
3386 					 * vnode_pager_setsize
3387 					 */
3388 					m = bp->b_xio.xio_pages[i];
3389 					KASSERT(m != bogus_page,
3390 					    ("allocbuf: bogus page found"));
3391 					vm_page_busy_wait(m, TRUE, "biodep");
3392 					bp->b_xio.xio_pages[i] = NULL;
3393 					vm_page_unwire(m, 0);
3394 					vm_page_wakeup(m);
3395 				}
3396 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3397 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3398 				bp->b_xio.xio_npages = desiredpages;
3399 			}
3400 		} else if (size > bp->b_bcount) {
3401 			/*
3402 			 * We are growing the buffer, possibly in a
3403 			 * byte-granular fashion.
3404 			 */
3405 			struct vnode *vp;
3406 			vm_object_t obj;
3407 			vm_offset_t toff;
3408 			vm_offset_t tinc;
3409 
3410 			/*
3411 			 * Step 1, bring in the VM pages from the object,
3412 			 * allocating them if necessary.  We must clear
3413 			 * B_CACHE if these pages are not valid for the
3414 			 * range covered by the buffer.
3415 			 *
3416 			 * critical section protection is required to protect
3417 			 * against interrupts unbusying and freeing pages
3418 			 * between our vm_page_lookup() and our
3419 			 * busycheck/wiring call.
3420 			 */
3421 			vp = bp->b_vp;
3422 			obj = vp->v_object;
3423 
3424 			vm_object_hold(obj);
3425 			while (bp->b_xio.xio_npages < desiredpages) {
3426 				vm_page_t m;
3427 				vm_pindex_t pi;
3428 				int error;
3429 
3430 				pi = OFF_TO_IDX(bp->b_loffset) +
3431 				     bp->b_xio.xio_npages;
3432 
3433 				/*
3434 				 * Blocking on m->busy might lead to a
3435 				 * deadlock:
3436 				 *
3437 				 *  vm_fault->getpages->cluster_read->allocbuf
3438 				 */
3439 				m = vm_page_lookup_busy_try(obj, pi, FALSE,
3440 							    &error);
3441 				if (error) {
3442 					vm_page_sleep_busy(m, FALSE, "pgtblk");
3443 					continue;
3444 				}
3445 				if (m == NULL) {
3446 					/*
3447 					 * note: must allocate system pages
3448 					 * since blocking here could intefere
3449 					 * with paging I/O, no matter which
3450 					 * process we are.
3451 					 */
3452 					m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
3453 					if (m) {
3454 						vm_page_wire(m);
3455 						vm_page_flag_clear(m, PG_ZERO);
3456 						vm_page_wakeup(m);
3457 						bp->b_flags &= ~B_CACHE;
3458 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3459 						++bp->b_xio.xio_npages;
3460 					}
3461 					continue;
3462 				}
3463 
3464 				/*
3465 				 * We found a page and were able to busy it.
3466 				 */
3467 				vm_page_flag_clear(m, PG_ZERO);
3468 				vm_page_wire(m);
3469 				vm_page_wakeup(m);
3470 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3471 				++bp->b_xio.xio_npages;
3472 				if (bp->b_act_count < m->act_count)
3473 					bp->b_act_count = m->act_count;
3474 			}
3475 			vm_object_drop(obj);
3476 
3477 			/*
3478 			 * Step 2.  We've loaded the pages into the buffer,
3479 			 * we have to figure out if we can still have B_CACHE
3480 			 * set.  Note that B_CACHE is set according to the
3481 			 * byte-granular range ( bcount and size ), not the
3482 			 * aligned range ( newbsize ).
3483 			 *
3484 			 * The VM test is against m->valid, which is DEV_BSIZE
3485 			 * aligned.  Needless to say, the validity of the data
3486 			 * needs to also be DEV_BSIZE aligned.  Note that this
3487 			 * fails with NFS if the server or some other client
3488 			 * extends the file's EOF.  If our buffer is resized,
3489 			 * B_CACHE may remain set! XXX
3490 			 */
3491 
3492 			toff = bp->b_bcount;
3493 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3494 
3495 			while ((bp->b_flags & B_CACHE) && toff < size) {
3496 				vm_pindex_t pi;
3497 
3498 				if (tinc > (size - toff))
3499 					tinc = size - toff;
3500 
3501 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3502 				    PAGE_SHIFT;
3503 
3504 				vfs_buf_test_cache(
3505 				    bp,
3506 				    bp->b_loffset,
3507 				    toff,
3508 				    tinc,
3509 				    bp->b_xio.xio_pages[pi]
3510 				);
3511 				toff += tinc;
3512 				tinc = PAGE_SIZE;
3513 			}
3514 
3515 			/*
3516 			 * Step 3, fixup the KVM pmap.  Remember that
3517 			 * bp->b_data is relative to bp->b_loffset, but
3518 			 * bp->b_loffset may be offset into the first page.
3519 			 */
3520 
3521 			bp->b_data = (caddr_t)
3522 			    trunc_page((vm_offset_t)bp->b_data);
3523 			pmap_qenter(
3524 			    (vm_offset_t)bp->b_data,
3525 			    bp->b_xio.xio_pages,
3526 			    bp->b_xio.xio_npages
3527 			);
3528 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3529 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3530 		}
3531 	}
3532 
3533 	/* adjust space use on already-dirty buffer */
3534 	if (bp->b_flags & B_DELWRI) {
3535 		spin_lock(&bufcspin);
3536 		dirtybufspace += newbsize - bp->b_bufsize;
3537 		if (bp->b_flags & B_HEAVY)
3538 			dirtybufspacehw += newbsize - bp->b_bufsize;
3539 		spin_unlock(&bufcspin);
3540 	}
3541 	if (newbsize < bp->b_bufsize)
3542 		bufspacewakeup();
3543 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3544 	bp->b_bcount = size;		/* requested buffer size	*/
3545 	return 1;
3546 }
3547 
3548 /*
3549  * biowait:
3550  *
3551  *	Wait for buffer I/O completion, returning error status. B_EINTR
3552  *	is converted into an EINTR error but not cleared (since a chain
3553  *	of biowait() calls may occur).
3554  *
3555  *	On return bpdone() will have been called but the buffer will remain
3556  *	locked and will not have been brelse()'d.
3557  *
3558  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3559  *	likely still in progress on return.
3560  *
3561  *	NOTE!  This operation is on a BIO, not a BUF.
3562  *
3563  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3564  *
3565  * MPSAFE
3566  */
3567 static __inline int
3568 _biowait(struct bio *bio, const char *wmesg, int to)
3569 {
3570 	struct buf *bp = bio->bio_buf;
3571 	u_int32_t flags;
3572 	u_int32_t nflags;
3573 	int error;
3574 
3575 	KKASSERT(bio == &bp->b_bio1);
3576 	for (;;) {
3577 		flags = bio->bio_flags;
3578 		if (flags & BIO_DONE)
3579 			break;
3580 		nflags = flags | BIO_WANT;
3581 		tsleep_interlock(bio, 0);
3582 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3583 			if (wmesg)
3584 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3585 			else if (bp->b_cmd == BUF_CMD_READ)
3586 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3587 			else
3588 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3589 			if (error) {
3590 				kprintf("tsleep error biowait %d\n", error);
3591 				return (error);
3592 			}
3593 		}
3594 	}
3595 
3596 	/*
3597 	 * Finish up.
3598 	 */
3599 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3600 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3601 	if (bp->b_flags & B_EINTR)
3602 		return (EINTR);
3603 	if (bp->b_flags & B_ERROR)
3604 		return (bp->b_error ? bp->b_error : EIO);
3605 	return (0);
3606 }
3607 
3608 int
3609 biowait(struct bio *bio, const char *wmesg)
3610 {
3611 	return(_biowait(bio, wmesg, 0));
3612 }
3613 
3614 int
3615 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3616 {
3617 	return(_biowait(bio, wmesg, to));
3618 }
3619 
3620 /*
3621  * This associates a tracking count with an I/O.  vn_strategy() and
3622  * dev_dstrategy() do this automatically but there are a few cases
3623  * where a vnode or device layer is bypassed when a block translation
3624  * is cached.  In such cases bio_start_transaction() may be called on
3625  * the bypassed layers so the system gets an I/O in progress indication
3626  * for those higher layers.
3627  */
3628 void
3629 bio_start_transaction(struct bio *bio, struct bio_track *track)
3630 {
3631 	bio->bio_track = track;
3632 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3633 		dsched_new_buf(bio->bio_buf);
3634 	bio_track_ref(track);
3635 }
3636 
3637 /*
3638  * Initiate I/O on a vnode.
3639  *
3640  * SWAPCACHE OPERATION:
3641  *
3642  *	Real buffer cache buffers have a non-NULL bp->b_vp.  Unfortunately
3643  *	devfs also uses b_vp for fake buffers so we also have to check
3644  *	that B_PAGING is 0.  In this case the passed 'vp' is probably the
3645  *	underlying block device.  The swap assignments are related to the
3646  *	buffer cache buffer's b_vp, not the passed vp.
3647  *
3648  *	The passed vp == bp->b_vp only in the case where the strategy call
3649  *	is made on the vp itself for its own buffers (a regular file or
3650  *	block device vp).  The filesystem usually then re-calls vn_strategy()
3651  *	after translating the request to an underlying device.
3652  *
3653  *	Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3654  *	underlying buffer cache buffers.
3655  *
3656  *	We can only deal with page-aligned buffers at the moment, because
3657  *	we can't tell what the real dirty state for pages straddling a buffer
3658  *	are.
3659  *
3660  *	In order to call swap_pager_strategy() we must provide the VM object
3661  *	and base offset for the underlying buffer cache pages so it can find
3662  *	the swap blocks.
3663  */
3664 void
3665 vn_strategy(struct vnode *vp, struct bio *bio)
3666 {
3667 	struct bio_track *track;
3668 	struct buf *bp = bio->bio_buf;
3669 
3670 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3671 
3672 	/*
3673 	 * Set when an I/O is issued on the bp.  Cleared by consumers
3674 	 * (aka HAMMER), allowing the consumer to determine if I/O had
3675 	 * actually occurred.
3676 	 */
3677 	bp->b_flags |= B_IODEBUG;
3678 
3679 	/*
3680 	 * Handle the swap cache intercept.
3681 	 */
3682 	if (vn_cache_strategy(vp, bio))
3683 		return;
3684 
3685 	/*
3686 	 * Otherwise do the operation through the filesystem
3687 	 */
3688         if (bp->b_cmd == BUF_CMD_READ)
3689                 track = &vp->v_track_read;
3690         else
3691                 track = &vp->v_track_write;
3692 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3693 	bio->bio_track = track;
3694 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3695 		dsched_new_buf(bio->bio_buf);
3696 	bio_track_ref(track);
3697         vop_strategy(*vp->v_ops, vp, bio);
3698 }
3699 
3700 static void vn_cache_strategy_callback(struct bio *bio);
3701 
3702 int
3703 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3704 {
3705 	struct buf *bp = bio->bio_buf;
3706 	struct bio *nbio;
3707 	vm_object_t object;
3708 	vm_page_t m;
3709 	int i;
3710 
3711 	/*
3712 	 * Is this buffer cache buffer suitable for reading from
3713 	 * the swap cache?
3714 	 */
3715 	if (vm_swapcache_read_enable == 0 ||
3716 	    bp->b_cmd != BUF_CMD_READ ||
3717 	    ((bp->b_flags & B_CLUSTER) == 0 &&
3718 	     (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3719 	    ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3720 	    (bp->b_bcount & PAGE_MASK) != 0) {
3721 		return(0);
3722 	}
3723 
3724 	/*
3725 	 * Figure out the original VM object (it will match the underlying
3726 	 * VM pages).  Note that swap cached data uses page indices relative
3727 	 * to that object, not relative to bio->bio_offset.
3728 	 */
3729 	if (bp->b_flags & B_CLUSTER)
3730 		object = vp->v_object;
3731 	else
3732 		object = bp->b_vp->v_object;
3733 
3734 	/*
3735 	 * In order to be able to use the swap cache all underlying VM
3736 	 * pages must be marked as such, and we can't have any bogus pages.
3737 	 */
3738 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3739 		m = bp->b_xio.xio_pages[i];
3740 		if ((m->flags & PG_SWAPPED) == 0)
3741 			break;
3742 		if (m == bogus_page)
3743 			break;
3744 	}
3745 
3746 	/*
3747 	 * If we are good then issue the I/O using swap_pager_strategy().
3748 	 *
3749 	 * We can only do this if the buffer actually supports object-backed
3750 	 * I/O.  If it doesn't npages will be 0.
3751 	 */
3752 	if (i && i == bp->b_xio.xio_npages) {
3753 		m = bp->b_xio.xio_pages[0];
3754 		nbio = push_bio(bio);
3755 		nbio->bio_done = vn_cache_strategy_callback;
3756 		nbio->bio_offset = ptoa(m->pindex);
3757 		KKASSERT(m->object == object);
3758 		swap_pager_strategy(object, nbio);
3759 		return(1);
3760 	}
3761 	return(0);
3762 }
3763 
3764 /*
3765  * This is a bit of a hack but since the vn_cache_strategy() function can
3766  * override a VFS's strategy function we must make sure that the bio, which
3767  * is probably bio2, doesn't leak an unexpected offset value back to the
3768  * filesystem.  The filesystem (e.g. UFS) might otherwise assume that the
3769  * bio went through its own file strategy function and the the bio2 offset
3770  * is a cached disk offset when, in fact, it isn't.
3771  */
3772 static void
3773 vn_cache_strategy_callback(struct bio *bio)
3774 {
3775 	bio->bio_offset = NOOFFSET;
3776 	biodone(pop_bio(bio));
3777 }
3778 
3779 /*
3780  * bpdone:
3781  *
3782  *	Finish I/O on a buffer after all BIOs have been processed.
3783  *	Called when the bio chain is exhausted or by biowait.  If called
3784  *	by biowait, elseit is typically 0.
3785  *
3786  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3787  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3788  *	assuming B_INVAL is clear.
3789  *
3790  *	For the VMIO case, we set B_CACHE if the op was a read and no
3791  *	read error occured, or if the op was a write.  B_CACHE is never
3792  *	set if the buffer is invalid or otherwise uncacheable.
3793  *
3794  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3795  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3796  *	in the biodone routine.
3797  */
3798 void
3799 bpdone(struct buf *bp, int elseit)
3800 {
3801 	buf_cmd_t cmd;
3802 
3803 	KASSERT(BUF_REFCNTNB(bp) > 0,
3804 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3805 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3806 		("biodone: bp %p already done!", bp));
3807 
3808 	/*
3809 	 * No more BIOs are left.  All completion functions have been dealt
3810 	 * with, now we clean up the buffer.
3811 	 */
3812 	cmd = bp->b_cmd;
3813 	bp->b_cmd = BUF_CMD_DONE;
3814 
3815 	/*
3816 	 * Only reads and writes are processed past this point.
3817 	 */
3818 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3819 		if (cmd == BUF_CMD_FREEBLKS)
3820 			bp->b_flags |= B_NOCACHE;
3821 		if (elseit)
3822 			brelse(bp);
3823 		return;
3824 	}
3825 
3826 	/*
3827 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3828 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3829 	 */
3830 	if (LIST_FIRST(&bp->b_dep) != NULL)
3831 		buf_complete(bp);	/* MPSAFE */
3832 
3833 	/*
3834 	 * A failed write must re-dirty the buffer unless B_INVAL
3835 	 * was set.  Only applicable to normal buffers (with VPs).
3836 	 * vinum buffers may not have a vp.
3837 	 */
3838 	if (cmd == BUF_CMD_WRITE &&
3839 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3840 		bp->b_flags &= ~B_NOCACHE;
3841 		if (bp->b_vp)
3842 			bdirty(bp);
3843 	}
3844 
3845 	if (bp->b_flags & B_VMIO) {
3846 		int i;
3847 		vm_ooffset_t foff;
3848 		vm_page_t m;
3849 		vm_object_t obj;
3850 		int iosize;
3851 		struct vnode *vp = bp->b_vp;
3852 
3853 		obj = vp->v_object;
3854 
3855 #if defined(VFS_BIO_DEBUG)
3856 		if (vp->v_auxrefs == 0)
3857 			panic("biodone: zero vnode hold count");
3858 		if ((vp->v_flag & VOBJBUF) == 0)
3859 			panic("biodone: vnode is not setup for merged cache");
3860 #endif
3861 
3862 		foff = bp->b_loffset;
3863 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3864 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3865 
3866 #if defined(VFS_BIO_DEBUG)
3867 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3868 			kprintf("biodone: paging in progress(%d) < "
3869 				"bp->b_xio.xio_npages(%d)\n",
3870 				obj->paging_in_progress,
3871 				bp->b_xio.xio_npages);
3872 		}
3873 #endif
3874 
3875 		/*
3876 		 * Set B_CACHE if the op was a normal read and no error
3877 		 * occured.  B_CACHE is set for writes in the b*write()
3878 		 * routines.
3879 		 */
3880 		iosize = bp->b_bcount - bp->b_resid;
3881 		if (cmd == BUF_CMD_READ &&
3882 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3883 			bp->b_flags |= B_CACHE;
3884 		}
3885 
3886 		vm_object_hold(obj);
3887 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3888 			int bogusflag = 0;
3889 			int resid;
3890 
3891 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3892 			if (resid > iosize)
3893 				resid = iosize;
3894 
3895 			/*
3896 			 * cleanup bogus pages, restoring the originals.  Since
3897 			 * the originals should still be wired, we don't have
3898 			 * to worry about interrupt/freeing races destroying
3899 			 * the VM object association.
3900 			 */
3901 			m = bp->b_xio.xio_pages[i];
3902 			if (m == bogus_page) {
3903 				bogusflag = 1;
3904 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3905 				if (m == NULL)
3906 					panic("biodone: page disappeared");
3907 				bp->b_xio.xio_pages[i] = m;
3908 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3909 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3910 			}
3911 #if defined(VFS_BIO_DEBUG)
3912 			if (OFF_TO_IDX(foff) != m->pindex) {
3913 				kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3914 					"mismatch\n",
3915 					(unsigned long)foff, (long)m->pindex);
3916 			}
3917 #endif
3918 
3919 			/*
3920 			 * In the write case, the valid and clean bits are
3921 			 * already changed correctly (see bdwrite()), so we
3922 			 * only need to do this here in the read case.
3923 			 */
3924 			vm_page_busy_wait(m, FALSE, "bpdpgw");
3925 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3926 				vfs_clean_one_page(bp, i, m);
3927 			}
3928 			vm_page_flag_clear(m, PG_ZERO);
3929 
3930 			/*
3931 			 * when debugging new filesystems or buffer I/O
3932 			 * methods, this is the most common error that pops
3933 			 * up.  if you see this, you have not set the page
3934 			 * busy flag correctly!!!
3935 			 */
3936 			if (m->busy == 0) {
3937 				kprintf("biodone: page busy < 0, "
3938 				    "pindex: %d, foff: 0x(%x,%x), "
3939 				    "resid: %d, index: %d\n",
3940 				    (int) m->pindex, (int)(foff >> 32),
3941 						(int) foff & 0xffffffff, resid, i);
3942 				if (!vn_isdisk(vp, NULL))
3943 					kprintf(" iosize: %ld, loffset: %lld, "
3944 						"flags: 0x%08x, npages: %d\n",
3945 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3946 					    (long long)bp->b_loffset,
3947 					    bp->b_flags, bp->b_xio.xio_npages);
3948 				else
3949 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3950 					    (long long)bp->b_loffset,
3951 					    bp->b_flags, bp->b_xio.xio_npages);
3952 				kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3953 				    m->valid, m->dirty, m->wire_count);
3954 				panic("biodone: page busy < 0");
3955 			}
3956 			vm_page_io_finish(m);
3957 			vm_page_wakeup(m);
3958 			vm_object_pip_wakeup(obj);
3959 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3960 			iosize -= resid;
3961 		}
3962 		bp->b_flags &= ~B_HASBOGUS;
3963 		vm_object_drop(obj);
3964 	}
3965 
3966 	/*
3967 	 * Finish up by releasing the buffer.  There are no more synchronous
3968 	 * or asynchronous completions, those were handled by bio_done
3969 	 * callbacks.
3970 	 */
3971 	if (elseit) {
3972 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3973 			brelse(bp);
3974 		else
3975 			bqrelse(bp);
3976 	}
3977 }
3978 
3979 /*
3980  * Normal biodone.
3981  */
3982 void
3983 biodone(struct bio *bio)
3984 {
3985 	struct buf *bp = bio->bio_buf;
3986 
3987 	runningbufwakeup(bp);
3988 
3989 	/*
3990 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3991 	 */
3992 	while (bio) {
3993 		biodone_t *done_func;
3994 		struct bio_track *track;
3995 
3996 		/*
3997 		 * BIO tracking.  Most but not all BIOs are tracked.
3998 		 */
3999 		if ((track = bio->bio_track) != NULL) {
4000 			bio_track_rel(track);
4001 			bio->bio_track = NULL;
4002 		}
4003 
4004 		/*
4005 		 * A bio_done function terminates the loop.  The function
4006 		 * will be responsible for any further chaining and/or
4007 		 * buffer management.
4008 		 *
4009 		 * WARNING!  The done function can deallocate the buffer!
4010 		 */
4011 		if ((done_func = bio->bio_done) != NULL) {
4012 			bio->bio_done = NULL;
4013 			done_func(bio);
4014 			return;
4015 		}
4016 		bio = bio->bio_prev;
4017 	}
4018 
4019 	/*
4020 	 * If we've run out of bio's do normal [a]synchronous completion.
4021 	 */
4022 	bpdone(bp, 1);
4023 }
4024 
4025 /*
4026  * Synchronous biodone - this terminates a synchronous BIO.
4027  *
4028  * bpdone() is called with elseit=FALSE, leaving the buffer completed
4029  * but still locked.  The caller must brelse() the buffer after waiting
4030  * for completion.
4031  */
4032 void
4033 biodone_sync(struct bio *bio)
4034 {
4035 	struct buf *bp = bio->bio_buf;
4036 	int flags;
4037 	int nflags;
4038 
4039 	KKASSERT(bio == &bp->b_bio1);
4040 	bpdone(bp, 0);
4041 
4042 	for (;;) {
4043 		flags = bio->bio_flags;
4044 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
4045 
4046 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
4047 			if (flags & BIO_WANT)
4048 				wakeup(bio);
4049 			break;
4050 		}
4051 	}
4052 }
4053 
4054 /*
4055  * vfs_unbusy_pages:
4056  *
4057  *	This routine is called in lieu of iodone in the case of
4058  *	incomplete I/O.  This keeps the busy status for pages
4059  *	consistant.
4060  */
4061 void
4062 vfs_unbusy_pages(struct buf *bp)
4063 {
4064 	int i;
4065 
4066 	runningbufwakeup(bp);
4067 
4068 	if (bp->b_flags & B_VMIO) {
4069 		struct vnode *vp = bp->b_vp;
4070 		vm_object_t obj;
4071 
4072 		obj = vp->v_object;
4073 		vm_object_hold(obj);
4074 
4075 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4076 			vm_page_t m = bp->b_xio.xio_pages[i];
4077 
4078 			/*
4079 			 * When restoring bogus changes the original pages
4080 			 * should still be wired, so we are in no danger of
4081 			 * losing the object association and do not need
4082 			 * critical section protection particularly.
4083 			 */
4084 			if (m == bogus_page) {
4085 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
4086 				if (!m) {
4087 					panic("vfs_unbusy_pages: page missing");
4088 				}
4089 				bp->b_xio.xio_pages[i] = m;
4090 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4091 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4092 			}
4093 			vm_page_busy_wait(m, FALSE, "bpdpgw");
4094 			vm_page_flag_clear(m, PG_ZERO);
4095 			vm_page_io_finish(m);
4096 			vm_page_wakeup(m);
4097 			vm_object_pip_wakeup(obj);
4098 		}
4099 		bp->b_flags &= ~B_HASBOGUS;
4100 		vm_object_drop(obj);
4101 	}
4102 }
4103 
4104 /*
4105  * vfs_busy_pages:
4106  *
4107  *	This routine is called before a device strategy routine.
4108  *	It is used to tell the VM system that paging I/O is in
4109  *	progress, and treat the pages associated with the buffer
4110  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
4111  *	flag is handled to make sure that the object doesn't become
4112  *	inconsistant.
4113  *
4114  *	Since I/O has not been initiated yet, certain buffer flags
4115  *	such as B_ERROR or B_INVAL may be in an inconsistant state
4116  *	and should be ignored.
4117  *
4118  * MPSAFE
4119  */
4120 void
4121 vfs_busy_pages(struct vnode *vp, struct buf *bp)
4122 {
4123 	int i, bogus;
4124 	struct lwp *lp = curthread->td_lwp;
4125 
4126 	/*
4127 	 * The buffer's I/O command must already be set.  If reading,
4128 	 * B_CACHE must be 0 (double check against callers only doing
4129 	 * I/O when B_CACHE is 0).
4130 	 */
4131 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4132 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
4133 
4134 	if (bp->b_flags & B_VMIO) {
4135 		vm_object_t obj;
4136 
4137 		obj = vp->v_object;
4138 		KASSERT(bp->b_loffset != NOOFFSET,
4139 			("vfs_busy_pages: no buffer offset"));
4140 
4141 		/*
4142 		 * Busy all the pages.  We have to busy them all at once
4143 		 * to avoid deadlocks.
4144 		 */
4145 retry:
4146 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4147 			vm_page_t m = bp->b_xio.xio_pages[i];
4148 
4149 			if (vm_page_busy_try(m, FALSE)) {
4150 				vm_page_sleep_busy(m, FALSE, "vbpage");
4151 				while (--i >= 0)
4152 					vm_page_wakeup(bp->b_xio.xio_pages[i]);
4153 				goto retry;
4154 			}
4155 		}
4156 
4157 		/*
4158 		 * Setup for I/O, soft-busy the page right now because
4159 		 * the next loop may block.
4160 		 */
4161 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4162 			vm_page_t m = bp->b_xio.xio_pages[i];
4163 
4164 			vm_page_flag_clear(m, PG_ZERO);
4165 			if ((bp->b_flags & B_CLUSTER) == 0) {
4166 				vm_object_pip_add(obj, 1);
4167 				vm_page_io_start(m);
4168 			}
4169 		}
4170 
4171 		/*
4172 		 * Adjust protections for I/O and do bogus-page mapping.
4173 		 * Assume that vm_page_protect() can block (it can block
4174 		 * if VM_PROT_NONE, don't take any chances regardless).
4175 		 *
4176 		 * In particular note that for writes we must incorporate
4177 		 * page dirtyness from the VM system into the buffer's
4178 		 * dirty range.
4179 		 *
4180 		 * For reads we theoretically must incorporate page dirtyness
4181 		 * from the VM system to determine if the page needs bogus
4182 		 * replacement, but we shortcut the test by simply checking
4183 		 * that all m->valid bits are set, indicating that the page
4184 		 * is fully valid and does not need to be re-read.  For any
4185 		 * VM system dirtyness the page will also be fully valid
4186 		 * since it was mapped at one point.
4187 		 */
4188 		bogus = 0;
4189 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4190 			vm_page_t m = bp->b_xio.xio_pages[i];
4191 
4192 			vm_page_flag_clear(m, PG_ZERO);	/* XXX */
4193 			if (bp->b_cmd == BUF_CMD_WRITE) {
4194 				/*
4195 				 * When readying a vnode-backed buffer for
4196 				 * a write we must zero-fill any invalid
4197 				 * portions of the backing VM pages, mark
4198 				 * it valid and clear related dirty bits.
4199 				 *
4200 				 * vfs_clean_one_page() incorporates any
4201 				 * VM dirtyness and updates the b_dirtyoff
4202 				 * range (after we've made the page RO).
4203 				 *
4204 				 * It is also expected that the pmap modified
4205 				 * bit has already been cleared by the
4206 				 * vm_page_protect().  We may not be able
4207 				 * to clear all dirty bits for a page if it
4208 				 * was also memory mapped (NFS).
4209 				 *
4210 				 * Finally be sure to unassign any swap-cache
4211 				 * backing store as it is now stale.
4212 				 */
4213 				vm_page_protect(m, VM_PROT_READ);
4214 				vfs_clean_one_page(bp, i, m);
4215 				swap_pager_unswapped(m);
4216 			} else if (m->valid == VM_PAGE_BITS_ALL) {
4217 				/*
4218 				 * When readying a vnode-backed buffer for
4219 				 * read we must replace any dirty pages with
4220 				 * a bogus page so dirty data is not destroyed
4221 				 * when filling gaps.
4222 				 *
4223 				 * To avoid testing whether the page is
4224 				 * dirty we instead test that the page was
4225 				 * at some point mapped (m->valid fully
4226 				 * valid) with the understanding that
4227 				 * this also covers the dirty case.
4228 				 */
4229 				bp->b_xio.xio_pages[i] = bogus_page;
4230 				bp->b_flags |= B_HASBOGUS;
4231 				bogus++;
4232 			} else if (m->valid & m->dirty) {
4233 				/*
4234 				 * This case should not occur as partial
4235 				 * dirtyment can only happen if the buffer
4236 				 * is B_CACHE, and this code is not entered
4237 				 * if the buffer is B_CACHE.
4238 				 */
4239 				kprintf("Warning: vfs_busy_pages - page not "
4240 					"fully valid! loff=%jx bpf=%08x "
4241 					"idx=%d val=%02x dir=%02x\n",
4242 					(intmax_t)bp->b_loffset, bp->b_flags,
4243 					i, m->valid, m->dirty);
4244 				vm_page_protect(m, VM_PROT_NONE);
4245 			} else {
4246 				/*
4247 				 * The page is not valid and can be made
4248 				 * part of the read.
4249 				 */
4250 				vm_page_protect(m, VM_PROT_NONE);
4251 			}
4252 			vm_page_wakeup(m);
4253 		}
4254 		if (bogus) {
4255 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4256 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4257 		}
4258 	}
4259 
4260 	/*
4261 	 * This is the easiest place to put the process accounting for the I/O
4262 	 * for now.
4263 	 */
4264 	if (lp != NULL) {
4265 		if (bp->b_cmd == BUF_CMD_READ)
4266 			lp->lwp_ru.ru_inblock++;
4267 		else
4268 			lp->lwp_ru.ru_oublock++;
4269 	}
4270 }
4271 
4272 /*
4273  * Tell the VM system that the pages associated with this buffer
4274  * are clean.  This is used for delayed writes where the data is
4275  * going to go to disk eventually without additional VM intevention.
4276  *
4277  * NOTE: While we only really need to clean through to b_bcount, we
4278  *	 just go ahead and clean through to b_bufsize.
4279  */
4280 static void
4281 vfs_clean_pages(struct buf *bp)
4282 {
4283 	vm_page_t m;
4284 	int i;
4285 
4286 	if ((bp->b_flags & B_VMIO) == 0)
4287 		return;
4288 
4289 	KASSERT(bp->b_loffset != NOOFFSET,
4290 		("vfs_clean_pages: no buffer offset"));
4291 
4292 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
4293 		m = bp->b_xio.xio_pages[i];
4294 		vfs_clean_one_page(bp, i, m);
4295 	}
4296 }
4297 
4298 /*
4299  * vfs_clean_one_page:
4300  *
4301  *	Set the valid bits and clear the dirty bits in a page within a
4302  *	buffer.  The range is restricted to the buffer's size and the
4303  *	buffer's logical offset might index into the first page.
4304  *
4305  *	The caller has busied or soft-busied the page and it is not mapped,
4306  *	test and incorporate the dirty bits into b_dirtyoff/end before
4307  *	clearing them.  Note that we need to clear the pmap modified bits
4308  *	after determining the the page was dirty, vm_page_set_validclean()
4309  *	does not do it for us.
4310  *
4311  *	This routine is typically called after a read completes (dirty should
4312  *	be zero in that case as we are not called on bogus-replace pages),
4313  *	or before a write is initiated.
4314  */
4315 static void
4316 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4317 {
4318 	int bcount;
4319 	int xoff;
4320 	int soff;
4321 	int eoff;
4322 
4323 	/*
4324 	 * Calculate offset range within the page but relative to buffer's
4325 	 * loffset.  loffset might be offset into the first page.
4326 	 */
4327 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4328 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4329 
4330 	if (pageno == 0) {
4331 		soff = xoff;
4332 		eoff = PAGE_SIZE;
4333 	} else {
4334 		soff = (pageno << PAGE_SHIFT);
4335 		eoff = soff + PAGE_SIZE;
4336 	}
4337 	if (eoff > bcount)
4338 		eoff = bcount;
4339 	if (soff >= eoff)
4340 		return;
4341 
4342 	/*
4343 	 * Test dirty bits and adjust b_dirtyoff/end.
4344 	 *
4345 	 * If dirty pages are incorporated into the bp any prior
4346 	 * B_NEEDCOMMIT state (NFS) must be cleared because the
4347 	 * caller has not taken into account the new dirty data.
4348 	 *
4349 	 * If the page was memory mapped the dirty bits might go beyond the
4350 	 * end of the buffer, but we can't really make the assumption that
4351 	 * a file EOF straddles the buffer (even though this is the case for
4352 	 * NFS if B_NEEDCOMMIT is also set).  So for the purposes of clearing
4353 	 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4354 	 * This also saves some console spam.
4355 	 *
4356 	 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4357 	 * NFS can handle huge commits but not huge writes.
4358 	 */
4359 	vm_page_test_dirty(m);
4360 	if (m->dirty) {
4361 		if ((bp->b_flags & B_NEEDCOMMIT) &&
4362 		    (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4363 			if (debug_commit)
4364 			kprintf("Warning: vfs_clean_one_page: bp %p "
4365 				"loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4366 				" cmd %d vd %02x/%02x x/s/e %d %d %d "
4367 				"doff/end %d %d\n",
4368 				bp, (intmax_t)bp->b_loffset, bp->b_bcount,
4369 				bp->b_flags, bp->b_cmd,
4370 				m->valid, m->dirty, xoff, soff, eoff,
4371 				bp->b_dirtyoff, bp->b_dirtyend);
4372 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4373 			if (debug_commit)
4374 				print_backtrace(-1);
4375 		}
4376 		/*
4377 		 * Only clear the pmap modified bits if ALL the dirty bits
4378 		 * are set, otherwise the system might mis-clear portions
4379 		 * of a page.
4380 		 */
4381 		if (m->dirty == VM_PAGE_BITS_ALL &&
4382 		    (bp->b_flags & B_NEEDCOMMIT) == 0) {
4383 			pmap_clear_modify(m);
4384 		}
4385 		if (bp->b_dirtyoff > soff - xoff)
4386 			bp->b_dirtyoff = soff - xoff;
4387 		if (bp->b_dirtyend < eoff - xoff)
4388 			bp->b_dirtyend = eoff - xoff;
4389 	}
4390 
4391 	/*
4392 	 * Set related valid bits, clear related dirty bits.
4393 	 * Does not mess with the pmap modified bit.
4394 	 *
4395 	 * WARNING!  We cannot just clear all of m->dirty here as the
4396 	 *	     buffer cache buffers may use a DEV_BSIZE'd aligned
4397 	 *	     block size, or have an odd size (e.g. NFS at file EOF).
4398 	 *	     The putpages code can clear m->dirty to 0.
4399 	 *
4400 	 *	     If a VOP_WRITE generates a buffer cache buffer which
4401 	 *	     covers the same space as mapped writable pages the
4402 	 *	     buffer flush might not be able to clear all the dirty
4403 	 *	     bits and still require a putpages from the VM system
4404 	 *	     to finish it off.
4405 	 *
4406 	 * WARNING!  vm_page_set_validclean() currently assumes vm_token
4407 	 *	     is held.  The page might not be busied (bdwrite() case).
4408 	 *	     XXX remove this comment once we've validated that this
4409 	 *	     is no longer an issue.
4410 	 */
4411 	vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4412 }
4413 
4414 /*
4415  * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4416  * The page data is assumed to be valid (there is no zeroing here).
4417  */
4418 static void
4419 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4420 {
4421 	int bcount;
4422 	int xoff;
4423 	int soff;
4424 	int eoff;
4425 
4426 	/*
4427 	 * Calculate offset range within the page but relative to buffer's
4428 	 * loffset.  loffset might be offset into the first page.
4429 	 */
4430 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4431 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4432 
4433 	if (pageno == 0) {
4434 		soff = xoff;
4435 		eoff = PAGE_SIZE;
4436 	} else {
4437 		soff = (pageno << PAGE_SHIFT);
4438 		eoff = soff + PAGE_SIZE;
4439 	}
4440 	if (eoff > bcount)
4441 		eoff = bcount;
4442 	if (soff >= eoff)
4443 		return;
4444 	vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4445 }
4446 
4447 /*
4448  * vfs_bio_clrbuf:
4449  *
4450  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
4451  *	to clear B_ERROR and B_INVAL.
4452  *
4453  *	Note that while we only theoretically need to clear through b_bcount,
4454  *	we go ahead and clear through b_bufsize.
4455  */
4456 
4457 void
4458 vfs_bio_clrbuf(struct buf *bp)
4459 {
4460 	int i, mask = 0;
4461 	caddr_t sa, ea;
4462 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4463 		bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4464 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4465 		    (bp->b_loffset & PAGE_MASK) == 0) {
4466 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4467 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4468 				bp->b_resid = 0;
4469 				return;
4470 			}
4471 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
4472 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
4473 				bzero(bp->b_data, bp->b_bufsize);
4474 				bp->b_xio.xio_pages[0]->valid |= mask;
4475 				bp->b_resid = 0;
4476 				return;
4477 			}
4478 		}
4479 		sa = bp->b_data;
4480 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4481 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4482 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4483 			ea = (caddr_t)(vm_offset_t)ulmin(
4484 			    (u_long)(vm_offset_t)ea,
4485 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4486 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4487 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4488 				continue;
4489 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4490 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
4491 					bzero(sa, ea - sa);
4492 				}
4493 			} else {
4494 				for (; sa < ea; sa += DEV_BSIZE, j++) {
4495 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
4496 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
4497 						bzero(sa, DEV_BSIZE);
4498 				}
4499 			}
4500 			bp->b_xio.xio_pages[i]->valid |= mask;
4501 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4502 		}
4503 		bp->b_resid = 0;
4504 	} else {
4505 		clrbuf(bp);
4506 	}
4507 }
4508 
4509 /*
4510  * vm_hold_load_pages:
4511  *
4512  *	Load pages into the buffer's address space.  The pages are
4513  *	allocated from the kernel object in order to reduce interference
4514  *	with the any VM paging I/O activity.  The range of loaded
4515  *	pages will be wired.
4516  *
4517  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
4518  *	retrieve the full range (to - from) of pages.
4519  *
4520  * MPSAFE
4521  */
4522 void
4523 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4524 {
4525 	vm_offset_t pg;
4526 	vm_page_t p;
4527 	int index;
4528 
4529 	to = round_page(to);
4530 	from = round_page(from);
4531 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4532 
4533 	pg = from;
4534 	while (pg < to) {
4535 		/*
4536 		 * Note: must allocate system pages since blocking here
4537 		 * could intefere with paging I/O, no matter which
4538 		 * process we are.
4539 		 */
4540 		vm_object_hold(&kernel_object);
4541 		p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
4542 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4543 		vm_object_drop(&kernel_object);
4544 		if (p) {
4545 			vm_page_wire(p);
4546 			p->valid = VM_PAGE_BITS_ALL;
4547 			vm_page_flag_clear(p, PG_ZERO);
4548 			pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4549 			bp->b_xio.xio_pages[index] = p;
4550 			vm_page_wakeup(p);
4551 
4552 			pg += PAGE_SIZE;
4553 			++index;
4554 		}
4555 	}
4556 	bp->b_xio.xio_npages = index;
4557 }
4558 
4559 /*
4560  * Allocate pages for a buffer cache buffer.
4561  *
4562  * Under extremely severe memory conditions even allocating out of the
4563  * system reserve can fail.  If this occurs we must allocate out of the
4564  * interrupt reserve to avoid a deadlock with the pageout daemon.
4565  *
4566  * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf).
4567  * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock
4568  * against the pageout daemon if pages are not freed from other sources.
4569  *
4570  * If NULL is returned the caller is expected to retry (typically check if
4571  * the page already exists on retry before trying to allocate one).
4572  */
4573 static
4574 vm_page_t
4575 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
4576 {
4577 	vm_page_t p;
4578 
4579 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj));
4580 
4581 	/*
4582 	 * Try a normal allocation, allow use of system reserve.
4583 	 */
4584 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
4585 				   VM_ALLOC_NULL_OK);
4586 	if (p)
4587 		return(p);
4588 
4589 	/*
4590 	 * The normal allocation failed and we clearly have a page
4591 	 * deficit.  Try to reclaim some clean VM pages directly
4592 	 * from the buffer cache.
4593 	 */
4594 	vm_pageout_deficit += deficit;
4595 	recoverbufpages();
4596 
4597 	/*
4598 	 * We may have blocked, the caller will know what to do if the
4599 	 * page now exists.
4600 	 */
4601 	if (vm_page_lookup(obj, pg)) {
4602 		return(NULL);
4603 	}
4604 
4605 	/*
4606 	 * Only system threads can use the interrupt reserve
4607 	 */
4608 	if ((curthread->td_flags & TDF_SYSTHREAD) == 0) {
4609 		vm_wait(hz);
4610 		return(NULL);
4611 	}
4612 
4613 
4614 	/*
4615 	 * Allocate and allow use of the interrupt reserve.
4616 	 *
4617 	 * If after all that we still can't allocate a VM page we are
4618 	 * in real trouble, but we slog on anyway hoping that the system
4619 	 * won't deadlock.
4620 	 */
4621 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
4622 				   VM_ALLOC_INTERRUPT | VM_ALLOC_NULL_OK);
4623 	if (p) {
4624 		if (vm_page_count_severe()) {
4625 			++lowmempgallocs;
4626 			vm_wait(hz / 20 + 1);
4627 		}
4628 	} else if (vm_page_lookup(obj, pg) == NULL) {
4629 		kprintf("bio_page_alloc: Memory exhausted during bufcache "
4630 			"page allocation\n");
4631 		++lowmempgfails;
4632 		vm_wait(hz);
4633 	}
4634 	return(p);
4635 }
4636 
4637 /*
4638  * vm_hold_free_pages:
4639  *
4640  *	Return pages associated with the buffer back to the VM system.
4641  *
4642  *	The range of pages underlying the buffer's address space will
4643  *	be unmapped and un-wired.
4644  *
4645  * MPSAFE
4646  */
4647 void
4648 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4649 {
4650 	vm_offset_t pg;
4651 	vm_page_t p;
4652 	int index, newnpages;
4653 
4654 	from = round_page(from);
4655 	to = round_page(to);
4656 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4657 	newnpages = index;
4658 
4659 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4660 		p = bp->b_xio.xio_pages[index];
4661 		if (p && (index < bp->b_xio.xio_npages)) {
4662 			if (p->busy) {
4663 				kprintf("vm_hold_free_pages: doffset: %lld, "
4664 					"loffset: %lld\n",
4665 					(long long)bp->b_bio2.bio_offset,
4666 					(long long)bp->b_loffset);
4667 			}
4668 			bp->b_xio.xio_pages[index] = NULL;
4669 			pmap_kremove(pg);
4670 			vm_page_busy_wait(p, FALSE, "vmhldpg");
4671 			vm_page_unwire(p, 0);
4672 			vm_page_free(p);
4673 		}
4674 	}
4675 	bp->b_xio.xio_npages = newnpages;
4676 }
4677 
4678 /*
4679  * vmapbuf:
4680  *
4681  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
4682  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4683  *	initialized.
4684  */
4685 int
4686 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4687 {
4688 	caddr_t addr;
4689 	vm_offset_t va;
4690 	vm_page_t m;
4691 	int vmprot;
4692 	int error;
4693 	int pidx;
4694 	int i;
4695 
4696 	/*
4697 	 * bp had better have a command and it better be a pbuf.
4698 	 */
4699 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4700 	KKASSERT(bp->b_flags & B_PAGING);
4701 	KKASSERT(bp->b_kvabase);
4702 
4703 	if (bytes < 0)
4704 		return (-1);
4705 
4706 	/*
4707 	 * Map the user data into KVM.  Mappings have to be page-aligned.
4708 	 */
4709 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
4710 	pidx = 0;
4711 
4712 	vmprot = VM_PROT_READ;
4713 	if (bp->b_cmd == BUF_CMD_READ)
4714 		vmprot |= VM_PROT_WRITE;
4715 
4716 	while (addr < udata + bytes) {
4717 		/*
4718 		 * Do the vm_fault if needed; do the copy-on-write thing
4719 		 * when reading stuff off device into memory.
4720 		 *
4721 		 * vm_fault_page*() returns a held VM page.
4722 		 */
4723 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4724 		va = trunc_page(va);
4725 
4726 		m = vm_fault_page_quick(va, vmprot, &error);
4727 		if (m == NULL) {
4728 			for (i = 0; i < pidx; ++i) {
4729 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
4730 			    bp->b_xio.xio_pages[i] = NULL;
4731 			}
4732 			return(-1);
4733 		}
4734 		bp->b_xio.xio_pages[pidx] = m;
4735 		addr += PAGE_SIZE;
4736 		++pidx;
4737 	}
4738 
4739 	/*
4740 	 * Map the page array and set the buffer fields to point to
4741 	 * the mapped data buffer.
4742 	 */
4743 	if (pidx > btoc(MAXPHYS))
4744 		panic("vmapbuf: mapped more than MAXPHYS");
4745 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4746 
4747 	bp->b_xio.xio_npages = pidx;
4748 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4749 	bp->b_bcount = bytes;
4750 	bp->b_bufsize = bytes;
4751 	return(0);
4752 }
4753 
4754 /*
4755  * vunmapbuf:
4756  *
4757  *	Free the io map PTEs associated with this IO operation.
4758  *	We also invalidate the TLB entries and restore the original b_addr.
4759  */
4760 void
4761 vunmapbuf(struct buf *bp)
4762 {
4763 	int pidx;
4764 	int npages;
4765 
4766 	KKASSERT(bp->b_flags & B_PAGING);
4767 
4768 	npages = bp->b_xio.xio_npages;
4769 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4770 	for (pidx = 0; pidx < npages; ++pidx) {
4771 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4772 		bp->b_xio.xio_pages[pidx] = NULL;
4773 	}
4774 	bp->b_xio.xio_npages = 0;
4775 	bp->b_data = bp->b_kvabase;
4776 }
4777 
4778 /*
4779  * Scan all buffers in the system and issue the callback.
4780  */
4781 int
4782 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4783 {
4784 	int count = 0;
4785 	int error;
4786 	int n;
4787 
4788 	for (n = 0; n < nbuf; ++n) {
4789 		if ((error = callback(&buf[n], info)) < 0) {
4790 			count = error;
4791 			break;
4792 		}
4793 		count += error;
4794 	}
4795 	return (count);
4796 }
4797 
4798 /*
4799  * nestiobuf_iodone: biodone callback for nested buffers and propagate
4800  * completion to the master buffer.
4801  */
4802 static void
4803 nestiobuf_iodone(struct bio *bio)
4804 {
4805 	struct bio *mbio;
4806 	struct buf *mbp, *bp;
4807 	struct devstat *stats;
4808 	int error;
4809 	int donebytes;
4810 
4811 	bp = bio->bio_buf;
4812 	mbio = bio->bio_caller_info1.ptr;
4813 	stats = bio->bio_caller_info2.ptr;
4814 	mbp = mbio->bio_buf;
4815 
4816 	KKASSERT(bp->b_bcount <= bp->b_bufsize);
4817 	KKASSERT(mbp != bp);
4818 
4819 	error = bp->b_error;
4820 	if (bp->b_error == 0 &&
4821 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4822 		/*
4823 		 * Not all got transfered, raise an error. We have no way to
4824 		 * propagate these conditions to mbp.
4825 		 */
4826 		error = EIO;
4827 	}
4828 
4829 	donebytes = bp->b_bufsize;
4830 
4831 	relpbuf(bp, NULL);
4832 
4833 	nestiobuf_done(mbio, donebytes, error, stats);
4834 }
4835 
4836 void
4837 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats)
4838 {
4839 	struct buf *mbp;
4840 
4841 	mbp = mbio->bio_buf;
4842 
4843 	KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4844 
4845 	/*
4846 	 * If an error occured, propagate it to the master buffer.
4847 	 *
4848 	 * Several biodone()s may wind up running concurrently so
4849 	 * use an atomic op to adjust b_flags.
4850 	 */
4851 	if (error) {
4852 		mbp->b_error = error;
4853 		atomic_set_int(&mbp->b_flags, B_ERROR);
4854 	}
4855 
4856 	/*
4857 	 * Decrement the operations in progress counter and terminate the
4858 	 * I/O if this was the last bit.
4859 	 */
4860 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4861 		mbp->b_resid = 0;
4862 		if (stats)
4863 			devstat_end_transaction_buf(stats, mbp);
4864 		biodone(mbio);
4865 	}
4866 }
4867 
4868 /*
4869  * Initialize a nestiobuf for use.  Set an initial count of 1 to prevent
4870  * the mbio from being biodone()'d while we are still adding sub-bios to
4871  * it.
4872  */
4873 void
4874 nestiobuf_init(struct bio *bio)
4875 {
4876 	bio->bio_driver_info = (void *)1;
4877 }
4878 
4879 /*
4880  * The BIOs added to the nestedio have already been started, remove the
4881  * count that placeheld our mbio and biodone() it if the count would
4882  * transition to 0.
4883  */
4884 void
4885 nestiobuf_start(struct bio *mbio)
4886 {
4887 	struct buf *mbp = mbio->bio_buf;
4888 
4889 	/*
4890 	 * Decrement the operations in progress counter and terminate the
4891 	 * I/O if this was the last bit.
4892 	 */
4893 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4894 		if (mbp->b_flags & B_ERROR)
4895 			mbp->b_resid = mbp->b_bcount;
4896 		else
4897 			mbp->b_resid = 0;
4898 		biodone(mbio);
4899 	}
4900 }
4901 
4902 /*
4903  * Set an intermediate error prior to calling nestiobuf_start()
4904  */
4905 void
4906 nestiobuf_error(struct bio *mbio, int error)
4907 {
4908 	struct buf *mbp = mbio->bio_buf;
4909 
4910 	if (error) {
4911 		mbp->b_error = error;
4912 		atomic_set_int(&mbp->b_flags, B_ERROR);
4913 	}
4914 }
4915 
4916 /*
4917  * nestiobuf_add: setup a "nested" buffer.
4918  *
4919  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4920  * => 'bp' should be a buffer allocated by getiobuf.
4921  * => 'offset' is a byte offset in the master buffer.
4922  * => 'size' is a size in bytes of this nested buffer.
4923  */
4924 void
4925 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats)
4926 {
4927 	struct buf *mbp = mbio->bio_buf;
4928 	struct vnode *vp = mbp->b_vp;
4929 
4930 	KKASSERT(mbp->b_bcount >= offset + size);
4931 
4932 	atomic_add_int((int *)&mbio->bio_driver_info, 1);
4933 
4934 	/* kernel needs to own the lock for it to be released in biodone */
4935 	BUF_KERNPROC(bp);
4936 	bp->b_vp = vp;
4937 	bp->b_cmd = mbp->b_cmd;
4938 	bp->b_bio1.bio_done = nestiobuf_iodone;
4939 	bp->b_data = (char *)mbp->b_data + offset;
4940 	bp->b_resid = bp->b_bcount = size;
4941 	bp->b_bufsize = bp->b_bcount;
4942 
4943 	bp->b_bio1.bio_track = NULL;
4944 	bp->b_bio1.bio_caller_info1.ptr = mbio;
4945 	bp->b_bio1.bio_caller_info2.ptr = stats;
4946 }
4947 
4948 /*
4949  * print out statistics from the current status of the buffer pool
4950  * this can be toggeled by the system control option debug.syncprt
4951  */
4952 #ifdef DEBUG
4953 void
4954 vfs_bufstats(void)
4955 {
4956         int i, j, count;
4957         struct buf *bp;
4958         struct bqueues *dp;
4959         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4960         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4961 
4962         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4963                 count = 0;
4964                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4965                         counts[j] = 0;
4966 
4967 		spin_lock(&bufqspin);
4968                 TAILQ_FOREACH(bp, dp, b_freelist) {
4969                         counts[bp->b_bufsize/PAGE_SIZE]++;
4970                         count++;
4971                 }
4972 		spin_unlock(&bufqspin);
4973 
4974                 kprintf("%s: total-%d", bname[i], count);
4975                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4976                         if (counts[j] != 0)
4977                                 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4978                 kprintf("\n");
4979         }
4980 }
4981 #endif
4982 
4983 #ifdef DDB
4984 
4985 DB_SHOW_COMMAND(buffer, db_show_buffer)
4986 {
4987 	/* get args */
4988 	struct buf *bp = (struct buf *)addr;
4989 
4990 	if (!have_addr) {
4991 		db_printf("usage: show buffer <addr>\n");
4992 		return;
4993 	}
4994 
4995 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4996 	db_printf("b_cmd = %d\n", bp->b_cmd);
4997 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4998 		  "b_resid = %d\n, b_data = %p, "
4999 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
5000 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
5001 		  bp->b_data,
5002 		  (long long)bp->b_bio2.bio_offset,
5003 		  (long long)(bp->b_bio2.bio_next ?
5004 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
5005 	if (bp->b_xio.xio_npages) {
5006 		int i;
5007 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
5008 			bp->b_xio.xio_npages);
5009 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
5010 			vm_page_t m;
5011 			m = bp->b_xio.xio_pages[i];
5012 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
5013 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
5014 			if ((i + 1) < bp->b_xio.xio_npages)
5015 				db_printf(",");
5016 		}
5017 		db_printf("\n");
5018 	}
5019 }
5020 #endif /* DDB */
5021