xref: /dragonfly/sys/kern/vfs_bio.c (revision d22a69a4)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  */
16 
17 /*
18  * this file contains a new buffer I/O scheme implementing a coherent
19  * VM object and buffer cache scheme.  Pains have been taken to make
20  * sure that the performance degradation associated with schemes such
21  * as this is not realized.
22  *
23  * Author:  John S. Dyson
24  * Significant help during the development and debugging phases
25  * had been provided by David Greenman, also of the FreeBSD core team.
26  *
27  * see man buf(9) for more info.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/conf.h>
34 #include <sys/devicestat.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/dsched.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 #include <vm/vm_pager.h>
57 #include <vm/swap_pager.h>
58 
59 #include <sys/buf2.h>
60 #include <sys/thread2.h>
61 #include <sys/spinlock2.h>
62 #include <sys/mplock2.h>
63 #include <vm/vm_page2.h>
64 
65 #include "opt_ddb.h"
66 #ifdef DDB
67 #include <ddb/ddb.h>
68 #endif
69 
70 /*
71  * Buffer queues.
72  */
73 enum bufq_type {
74 	BQUEUE_NONE,    	/* not on any queue */
75 	BQUEUE_LOCKED,  	/* locked buffers */
76 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
77 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
78 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
79 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
80 	BQUEUE_EMPTY,    	/* empty buffer headers */
81 
82 	BUFFER_QUEUES		/* number of buffer queues */
83 };
84 
85 typedef enum bufq_type bufq_type_t;
86 
87 #define BD_WAKE_SIZE	16384
88 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
89 
90 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
91 static struct spinlock bufqspin = SPINLOCK_INITIALIZER(&bufqspin);
92 static struct spinlock bufcspin = SPINLOCK_INITIALIZER(&bufcspin);
93 
94 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
95 
96 struct buf *buf;		/* buffer header pool */
97 
98 static void vfs_clean_pages(struct buf *bp);
99 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
100 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
101 static void vfs_vmio_release(struct buf *bp);
102 static int flushbufqueues(bufq_type_t q);
103 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
104 
105 static void bd_signal(int totalspace);
106 static void buf_daemon(void);
107 static void buf_daemon_hw(void);
108 
109 /*
110  * bogus page -- for I/O to/from partially complete buffers
111  * this is a temporary solution to the problem, but it is not
112  * really that bad.  it would be better to split the buffer
113  * for input in the case of buffers partially already in memory,
114  * but the code is intricate enough already.
115  */
116 vm_page_t bogus_page;
117 
118 /*
119  * These are all static, but make the ones we export globals so we do
120  * not need to use compiler magic.
121  */
122 int bufspace;			/* locked by buffer_map */
123 int maxbufspace;
124 static int bufmallocspace;	/* atomic ops */
125 int maxbufmallocspace, lobufspace, hibufspace;
126 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
127 static int lorunningspace;
128 static int hirunningspace;
129 static int runningbufreq;		/* locked by bufcspin */
130 static int dirtybufspace;		/* locked by bufcspin */
131 static int dirtybufcount;		/* locked by bufcspin */
132 static int dirtybufspacehw;		/* locked by bufcspin */
133 static int dirtybufcounthw;		/* locked by bufcspin */
134 static int runningbufspace;		/* locked by bufcspin */
135 static int runningbufcount;		/* locked by bufcspin */
136 int lodirtybufspace;
137 int hidirtybufspace;
138 static int getnewbufcalls;
139 static int getnewbufrestarts;
140 static int recoverbufcalls;
141 static int needsbuffer;		/* locked by bufcspin */
142 static int bd_request;		/* locked by bufcspin */
143 static int bd_request_hw;	/* locked by bufcspin */
144 static u_int bd_wake_ary[BD_WAKE_SIZE];
145 static u_int bd_wake_index;
146 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
147 static int debug_commit;
148 
149 static struct thread *bufdaemon_td;
150 static struct thread *bufdaemonhw_td;
151 static u_int lowmempgallocs;
152 static u_int lowmempgfails;
153 
154 /*
155  * Sysctls for operational control of the buffer cache.
156  */
157 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
158 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
159 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
160 	"High watermark used to trigger explicit flushing of dirty buffers");
161 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
162 	"Minimum amount of buffer space required for active I/O");
163 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
164 	"Maximum amount of buffer space to usable for active I/O");
165 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
166 	"Page allocations done during periods of very low free memory");
167 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0,
168 	"Page allocations which failed during periods of very low free memory");
169 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
170 	"Recycle pages to active or inactive queue transition pt 0-64");
171 /*
172  * Sysctls determining current state of the buffer cache.
173  */
174 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
175 	"Total number of buffers in buffer cache");
176 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
177 	"Pending bytes of dirty buffers (all)");
178 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
179 	"Pending bytes of dirty buffers (heavy weight)");
180 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
181 	"Pending number of dirty buffers");
182 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
183 	"Pending number of dirty buffers (heavy weight)");
184 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
185 	"I/O bytes currently in progress due to asynchronous writes");
186 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
187 	"I/O buffers currently in progress due to asynchronous writes");
188 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
189 	"Hard limit on maximum amount of memory usable for buffer space");
190 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
191 	"Soft limit on maximum amount of memory usable for buffer space");
192 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
193 	"Minimum amount of memory to reserve for system buffer space");
194 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
195 	"Amount of memory available for buffers");
196 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
197 	0, "Maximum amount of memory reserved for buffers using malloc");
198 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
199 	"Amount of memory left for buffers using malloc-scheme");
200 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
201 	"New buffer header acquisition requests");
202 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
203 	0, "New buffer header acquisition restarts");
204 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
205 	"Recover VM space in an emergency");
206 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
207 	"Buffer acquisition restarts due to fragmented buffer map");
208 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
209 	"Amount of time KVA space was deallocated in an arbitrary buffer");
210 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
211 	"Amount of time buffer re-use operations were successful");
212 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
213 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
214 	"sizeof(struct buf)");
215 
216 char *buf_wmesg = BUF_WMESG;
217 
218 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
219 #define VFS_BIO_NEED_UNUSED02	0x02
220 #define VFS_BIO_NEED_UNUSED04	0x04
221 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
222 
223 /*
224  * bufspacewakeup:
225  *
226  *	Called when buffer space is potentially available for recovery.
227  *	getnewbuf() will block on this flag when it is unable to free
228  *	sufficient buffer space.  Buffer space becomes recoverable when
229  *	bp's get placed back in the queues.
230  */
231 static __inline void
232 bufspacewakeup(void)
233 {
234 	/*
235 	 * If someone is waiting for BUF space, wake them up.  Even
236 	 * though we haven't freed the kva space yet, the waiting
237 	 * process will be able to now.
238 	 */
239 	spin_lock(&bufcspin);
240 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
241 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
242 		spin_unlock(&bufcspin);
243 		wakeup(&needsbuffer);
244 	} else {
245 		spin_unlock(&bufcspin);
246 	}
247 }
248 
249 /*
250  * runningbufwakeup:
251  *
252  *	Accounting for I/O in progress.
253  *
254  */
255 static __inline void
256 runningbufwakeup(struct buf *bp)
257 {
258 	int totalspace;
259 	int limit;
260 
261 	if ((totalspace = bp->b_runningbufspace) != 0) {
262 		spin_lock(&bufcspin);
263 		runningbufspace -= totalspace;
264 		--runningbufcount;
265 		bp->b_runningbufspace = 0;
266 
267 		/*
268 		 * see waitrunningbufspace() for limit test.
269 		 */
270 		limit = hirunningspace * 3 / 6;
271 		if (runningbufreq && runningbufspace <= limit) {
272 			runningbufreq = 0;
273 			spin_unlock(&bufcspin);
274 			wakeup(&runningbufreq);
275 		} else {
276 			spin_unlock(&bufcspin);
277 		}
278 		bd_signal(totalspace);
279 	}
280 }
281 
282 /*
283  * bufcountwakeup:
284  *
285  *	Called when a buffer has been added to one of the free queues to
286  *	account for the buffer and to wakeup anyone waiting for free buffers.
287  *	This typically occurs when large amounts of metadata are being handled
288  *	by the buffer cache ( else buffer space runs out first, usually ).
289  *
290  * MPSAFE
291  */
292 static __inline void
293 bufcountwakeup(void)
294 {
295 	spin_lock(&bufcspin);
296 	if (needsbuffer) {
297 		needsbuffer &= ~VFS_BIO_NEED_ANY;
298 		spin_unlock(&bufcspin);
299 		wakeup(&needsbuffer);
300 	} else {
301 		spin_unlock(&bufcspin);
302 	}
303 }
304 
305 /*
306  * waitrunningbufspace()
307  *
308  * If runningbufspace exceeds 4/6 hirunningspace we block until
309  * runningbufspace drops to 3/6 hirunningspace.  We also block if another
310  * thread blocked here in order to be fair, even if runningbufspace
311  * is now lower than the limit.
312  *
313  * The caller may be using this function to block in a tight loop, we
314  * must block while runningbufspace is greater than at least
315  * hirunningspace * 3 / 6.
316  */
317 void
318 waitrunningbufspace(void)
319 {
320 	int limit = hirunningspace * 4 / 6;
321 
322 	if (runningbufspace > limit || runningbufreq) {
323 		spin_lock(&bufcspin);
324 		while (runningbufspace > limit || runningbufreq) {
325 			runningbufreq = 1;
326 			ssleep(&runningbufreq, &bufcspin, 0, "wdrn1", 0);
327 		}
328 		spin_unlock(&bufcspin);
329 	}
330 }
331 
332 /*
333  * buf_dirty_count_severe:
334  *
335  *	Return true if we have too many dirty buffers.
336  */
337 int
338 buf_dirty_count_severe(void)
339 {
340 	return (runningbufspace + dirtybufspace >= hidirtybufspace ||
341 	        dirtybufcount >= nbuf / 2);
342 }
343 
344 /*
345  * Return true if the amount of running I/O is severe and BIOQ should
346  * start bursting.
347  */
348 int
349 buf_runningbufspace_severe(void)
350 {
351 	return (runningbufspace >= hirunningspace * 4 / 6);
352 }
353 
354 /*
355  * vfs_buf_test_cache:
356  *
357  * Called when a buffer is extended.  This function clears the B_CACHE
358  * bit if the newly extended portion of the buffer does not contain
359  * valid data.
360  *
361  * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
362  * cache buffers.  The VM pages remain dirty, as someone had mmap()'d
363  * them while a clean buffer was present.
364  */
365 static __inline__
366 void
367 vfs_buf_test_cache(struct buf *bp,
368 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
369 		  vm_page_t m)
370 {
371 	if (bp->b_flags & B_CACHE) {
372 		int base = (foff + off) & PAGE_MASK;
373 		if (vm_page_is_valid(m, base, size) == 0)
374 			bp->b_flags &= ~B_CACHE;
375 	}
376 }
377 
378 /*
379  * bd_speedup()
380  *
381  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
382  * low water mark.
383  *
384  * MPSAFE
385  */
386 static __inline__
387 void
388 bd_speedup(void)
389 {
390 	if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
391 		return;
392 
393 	if (bd_request == 0 &&
394 	    (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
395 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
396 		spin_lock(&bufcspin);
397 		bd_request = 1;
398 		spin_unlock(&bufcspin);
399 		wakeup(&bd_request);
400 	}
401 	if (bd_request_hw == 0 &&
402 	    (dirtybufspacehw > lodirtybufspace / 2 ||
403 	     dirtybufcounthw >= nbuf / 2)) {
404 		spin_lock(&bufcspin);
405 		bd_request_hw = 1;
406 		spin_unlock(&bufcspin);
407 		wakeup(&bd_request_hw);
408 	}
409 }
410 
411 /*
412  * bd_heatup()
413  *
414  *	Get the buf_daemon heated up when the number of running and dirty
415  *	buffers exceeds the mid-point.
416  *
417  *	Return the total number of dirty bytes past the second mid point
418  *	as a measure of how much excess dirty data there is in the system.
419  *
420  * MPSAFE
421  */
422 int
423 bd_heatup(void)
424 {
425 	int mid1;
426 	int mid2;
427 	int totalspace;
428 
429 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
430 
431 	totalspace = runningbufspace + dirtybufspace;
432 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
433 		bd_speedup();
434 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
435 		if (totalspace >= mid2)
436 			return(totalspace - mid2);
437 	}
438 	return(0);
439 }
440 
441 /*
442  * bd_wait()
443  *
444  *	Wait for the buffer cache to flush (totalspace) bytes worth of
445  *	buffers, then return.
446  *
447  *	Regardless this function blocks while the number of dirty buffers
448  *	exceeds hidirtybufspace.
449  *
450  * MPSAFE
451  */
452 void
453 bd_wait(int totalspace)
454 {
455 	u_int i;
456 	int count;
457 
458 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
459 		return;
460 
461 	while (totalspace > 0) {
462 		bd_heatup();
463 		if (totalspace > runningbufspace + dirtybufspace)
464 			totalspace = runningbufspace + dirtybufspace;
465 		count = totalspace / BKVASIZE;
466 		if (count >= BD_WAKE_SIZE)
467 			count = BD_WAKE_SIZE - 1;
468 
469 		spin_lock(&bufcspin);
470 		i = (bd_wake_index + count) & BD_WAKE_MASK;
471 		++bd_wake_ary[i];
472 
473 		/*
474 		 * This is not a strict interlock, so we play a bit loose
475 		 * with locking access to dirtybufspace*
476 		 */
477 		tsleep_interlock(&bd_wake_ary[i], 0);
478 		spin_unlock(&bufcspin);
479 		tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz);
480 
481 		totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
482 	}
483 }
484 
485 /*
486  * bd_signal()
487  *
488  *	This function is called whenever runningbufspace or dirtybufspace
489  *	is reduced.  Track threads waiting for run+dirty buffer I/O
490  *	complete.
491  *
492  * MPSAFE
493  */
494 static void
495 bd_signal(int totalspace)
496 {
497 	u_int i;
498 
499 	if (totalspace > 0) {
500 		if (totalspace > BKVASIZE * BD_WAKE_SIZE)
501 			totalspace = BKVASIZE * BD_WAKE_SIZE;
502 		spin_lock(&bufcspin);
503 		while (totalspace > 0) {
504 			i = bd_wake_index++;
505 			i &= BD_WAKE_MASK;
506 			if (bd_wake_ary[i]) {
507 				bd_wake_ary[i] = 0;
508 				spin_unlock(&bufcspin);
509 				wakeup(&bd_wake_ary[i]);
510 				spin_lock(&bufcspin);
511 			}
512 			totalspace -= BKVASIZE;
513 		}
514 		spin_unlock(&bufcspin);
515 	}
516 }
517 
518 /*
519  * BIO tracking support routines.
520  *
521  * Release a ref on a bio_track.  Wakeup requests are atomically released
522  * along with the last reference so bk_active will never wind up set to
523  * only 0x80000000.
524  *
525  * MPSAFE
526  */
527 static
528 void
529 bio_track_rel(struct bio_track *track)
530 {
531 	int	active;
532 	int	desired;
533 
534 	/*
535 	 * Shortcut
536 	 */
537 	active = track->bk_active;
538 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
539 		return;
540 
541 	/*
542 	 * Full-on.  Note that the wait flag is only atomically released on
543 	 * the 1->0 count transition.
544 	 *
545 	 * We check for a negative count transition using bit 30 since bit 31
546 	 * has a different meaning.
547 	 */
548 	for (;;) {
549 		desired = (active & 0x7FFFFFFF) - 1;
550 		if (desired)
551 			desired |= active & 0x80000000;
552 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
553 			if (desired & 0x40000000)
554 				panic("bio_track_rel: bad count: %p\n", track);
555 			if (active & 0x80000000)
556 				wakeup(track);
557 			break;
558 		}
559 		active = track->bk_active;
560 	}
561 }
562 
563 /*
564  * Wait for the tracking count to reach 0.
565  *
566  * Use atomic ops such that the wait flag is only set atomically when
567  * bk_active is non-zero.
568  *
569  * MPSAFE
570  */
571 int
572 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
573 {
574 	int	active;
575 	int	desired;
576 	int	error;
577 
578 	/*
579 	 * Shortcut
580 	 */
581 	if (track->bk_active == 0)
582 		return(0);
583 
584 	/*
585 	 * Full-on.  Note that the wait flag may only be atomically set if
586 	 * the active count is non-zero.
587 	 *
588 	 * NOTE: We cannot optimize active == desired since a wakeup could
589 	 *	 clear active prior to our tsleep_interlock().
590 	 */
591 	error = 0;
592 	while ((active = track->bk_active) != 0) {
593 		cpu_ccfence();
594 		desired = active | 0x80000000;
595 		tsleep_interlock(track, slp_flags);
596 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
597 			error = tsleep(track, slp_flags | PINTERLOCKED,
598 				       "trwait", slp_timo);
599 			if (error)
600 				break;
601 		}
602 	}
603 	return (error);
604 }
605 
606 /*
607  * bufinit:
608  *
609  *	Load time initialisation of the buffer cache, called from machine
610  *	dependant initialization code.
611  */
612 void
613 bufinit(void)
614 {
615 	struct buf *bp;
616 	vm_offset_t bogus_offset;
617 	int i;
618 
619 	/* next, make a null set of free lists */
620 	for (i = 0; i < BUFFER_QUEUES; i++)
621 		TAILQ_INIT(&bufqueues[i]);
622 
623 	/* finally, initialize each buffer header and stick on empty q */
624 	for (i = 0; i < nbuf; i++) {
625 		bp = &buf[i];
626 		bzero(bp, sizeof *bp);
627 		bp->b_flags = B_INVAL;	/* we're just an empty header */
628 		bp->b_cmd = BUF_CMD_DONE;
629 		bp->b_qindex = BQUEUE_EMPTY;
630 		initbufbio(bp);
631 		xio_init(&bp->b_xio);
632 		buf_dep_init(bp);
633 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
634 	}
635 
636 	/*
637 	 * maxbufspace is the absolute maximum amount of buffer space we are
638 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
639 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
640 	 * used by most other processes.  The differential is required to
641 	 * ensure that buf_daemon is able to run when other processes might
642 	 * be blocked waiting for buffer space.
643 	 *
644 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
645 	 * this may result in KVM fragmentation which is not handled optimally
646 	 * by the system.
647 	 */
648 	maxbufspace = nbuf * BKVASIZE;
649 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
650 	lobufspace = hibufspace - MAXBSIZE;
651 
652 	lorunningspace = 512 * 1024;
653 	/* hirunningspace -- see below */
654 
655 	/*
656 	 * Limit the amount of malloc memory since it is wired permanently
657 	 * into the kernel space.  Even though this is accounted for in
658 	 * the buffer allocation, we don't want the malloced region to grow
659 	 * uncontrolled.  The malloc scheme improves memory utilization
660 	 * significantly on average (small) directories.
661 	 */
662 	maxbufmallocspace = hibufspace / 20;
663 
664 	/*
665 	 * Reduce the chance of a deadlock occuring by limiting the number
666 	 * of delayed-write dirty buffers we allow to stack up.
667 	 *
668 	 * We don't want too much actually queued to the device at once
669 	 * (XXX this needs to be per-mount!), because the buffers will
670 	 * wind up locked for a very long period of time while the I/O
671 	 * drains.
672 	 */
673 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
674 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
675 	if (hirunningspace < 1024 * 1024)
676 		hirunningspace = 1024 * 1024;
677 
678 	dirtybufspace = 0;
679 	dirtybufspacehw = 0;
680 
681 	lodirtybufspace = hidirtybufspace / 2;
682 
683 	/*
684 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
685 	 * somewhat of a hack at the moment, we really need to limit ourselves
686 	 * based on the number of bytes of I/O in-transit that were initiated
687 	 * from buf_daemon.
688 	 */
689 
690 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
691 	vm_object_hold(&kernel_object);
692 	bogus_page = vm_page_alloc(&kernel_object,
693 				   (bogus_offset >> PAGE_SHIFT),
694 				   VM_ALLOC_NORMAL);
695 	vm_object_drop(&kernel_object);
696 	vmstats.v_wire_count++;
697 
698 }
699 
700 /*
701  * Initialize the embedded bio structures, typically used by
702  * deprecated code which tries to allocate its own struct bufs.
703  */
704 void
705 initbufbio(struct buf *bp)
706 {
707 	bp->b_bio1.bio_buf = bp;
708 	bp->b_bio1.bio_prev = NULL;
709 	bp->b_bio1.bio_offset = NOOFFSET;
710 	bp->b_bio1.bio_next = &bp->b_bio2;
711 	bp->b_bio1.bio_done = NULL;
712 	bp->b_bio1.bio_flags = 0;
713 
714 	bp->b_bio2.bio_buf = bp;
715 	bp->b_bio2.bio_prev = &bp->b_bio1;
716 	bp->b_bio2.bio_offset = NOOFFSET;
717 	bp->b_bio2.bio_next = NULL;
718 	bp->b_bio2.bio_done = NULL;
719 	bp->b_bio2.bio_flags = 0;
720 
721 	BUF_LOCKINIT(bp);
722 }
723 
724 /*
725  * Reinitialize the embedded bio structures as well as any additional
726  * translation cache layers.
727  */
728 void
729 reinitbufbio(struct buf *bp)
730 {
731 	struct bio *bio;
732 
733 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
734 		bio->bio_done = NULL;
735 		bio->bio_offset = NOOFFSET;
736 	}
737 }
738 
739 /*
740  * Undo the effects of an initbufbio().
741  */
742 void
743 uninitbufbio(struct buf *bp)
744 {
745 	dsched_exit_buf(bp);
746 	BUF_LOCKFREE(bp);
747 }
748 
749 /*
750  * Push another BIO layer onto an existing BIO and return it.  The new
751  * BIO layer may already exist, holding cached translation data.
752  */
753 struct bio *
754 push_bio(struct bio *bio)
755 {
756 	struct bio *nbio;
757 
758 	if ((nbio = bio->bio_next) == NULL) {
759 		int index = bio - &bio->bio_buf->b_bio_array[0];
760 		if (index >= NBUF_BIO - 1) {
761 			panic("push_bio: too many layers bp %p\n",
762 				bio->bio_buf);
763 		}
764 		nbio = &bio->bio_buf->b_bio_array[index + 1];
765 		bio->bio_next = nbio;
766 		nbio->bio_prev = bio;
767 		nbio->bio_buf = bio->bio_buf;
768 		nbio->bio_offset = NOOFFSET;
769 		nbio->bio_done = NULL;
770 		nbio->bio_next = NULL;
771 	}
772 	KKASSERT(nbio->bio_done == NULL);
773 	return(nbio);
774 }
775 
776 /*
777  * Pop a BIO translation layer, returning the previous layer.  The
778  * must have been previously pushed.
779  */
780 struct bio *
781 pop_bio(struct bio *bio)
782 {
783 	return(bio->bio_prev);
784 }
785 
786 void
787 clearbiocache(struct bio *bio)
788 {
789 	while (bio) {
790 		bio->bio_offset = NOOFFSET;
791 		bio = bio->bio_next;
792 	}
793 }
794 
795 /*
796  * bfreekva:
797  *
798  *	Free the KVA allocation for buffer 'bp'.
799  *
800  *	Must be called from a critical section as this is the only locking for
801  *	buffer_map.
802  *
803  *	Since this call frees up buffer space, we call bufspacewakeup().
804  *
805  * MPALMOSTSAFE
806  */
807 static void
808 bfreekva(struct buf *bp)
809 {
810 	int count;
811 
812 	if (bp->b_kvasize) {
813 		++buffreekvacnt;
814 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
815 		vm_map_lock(&buffer_map);
816 		bufspace -= bp->b_kvasize;
817 		vm_map_delete(&buffer_map,
818 		    (vm_offset_t) bp->b_kvabase,
819 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
820 		    &count
821 		);
822 		vm_map_unlock(&buffer_map);
823 		vm_map_entry_release(count);
824 		bp->b_kvasize = 0;
825 		bp->b_kvabase = NULL;
826 		bufspacewakeup();
827 	}
828 }
829 
830 /*
831  * bremfree:
832  *
833  *	Remove the buffer from the appropriate free list.
834  */
835 static __inline void
836 _bremfree(struct buf *bp)
837 {
838 	if (bp->b_qindex != BQUEUE_NONE) {
839 		KASSERT(BUF_REFCNTNB(bp) == 1,
840 				("bremfree: bp %p not locked",bp));
841 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
842 		bp->b_qindex = BQUEUE_NONE;
843 	} else {
844 		if (BUF_REFCNTNB(bp) <= 1)
845 			panic("bremfree: removing a buffer not on a queue");
846 	}
847 }
848 
849 void
850 bremfree(struct buf *bp)
851 {
852 	spin_lock(&bufqspin);
853 	_bremfree(bp);
854 	spin_unlock(&bufqspin);
855 }
856 
857 static void
858 bremfree_locked(struct buf *bp)
859 {
860 	_bremfree(bp);
861 }
862 
863 /*
864  * bread:
865  *
866  *	Get a buffer with the specified data.  Look in the cache first.  We
867  *	must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
868  *	is set, the buffer is valid and we do not have to do anything ( see
869  *	getblk() ).
870  *
871  */
872 int
873 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
874 {
875 	return (breadn(vp, loffset, size, NULL, NULL, 0, bpp));
876 }
877 
878 /*
879  * This version of bread issues any required I/O asyncnronously and
880  * makes a callback on completion.
881  *
882  * The callback must check whether BIO_DONE is set in the bio and issue
883  * the bpdone(bp, 0) if it isn't.  The callback is responsible for clearing
884  * BIO_DONE and disposing of the I/O (bqrelse()ing it).
885  */
886 void
887 breadcb(struct vnode *vp, off_t loffset, int size,
888 	void (*func)(struct bio *), void *arg)
889 {
890 	struct buf *bp;
891 
892 	bp = getblk(vp, loffset, size, 0, 0);
893 
894 	/* if not found in cache, do some I/O */
895 	if ((bp->b_flags & B_CACHE) == 0) {
896 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
897 		bp->b_cmd = BUF_CMD_READ;
898 		bp->b_bio1.bio_done = func;
899 		bp->b_bio1.bio_caller_info1.ptr = arg;
900 		vfs_busy_pages(vp, bp);
901 		BUF_KERNPROC(bp);
902 		vn_strategy(vp, &bp->b_bio1);
903 	} else if (func) {
904 		/*
905 		 * Since we are issuing the callback synchronously it cannot
906 		 * race the BIO_DONE, so no need for atomic ops here.
907 		 */
908 		/*bp->b_bio1.bio_done = func;*/
909 		bp->b_bio1.bio_caller_info1.ptr = arg;
910 		bp->b_bio1.bio_flags |= BIO_DONE;
911 		func(&bp->b_bio1);
912 	} else {
913 		bqrelse(bp);
914 	}
915 }
916 
917 /*
918  * breadn:
919  *
920  *	Operates like bread, but also starts asynchronous I/O on
921  *	read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
922  *	to initiating I/O . If B_CACHE is set, the buffer is valid
923  *	and we do not have to do anything.
924  *
925  */
926 int
927 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
928 	int *rabsize, int cnt, struct buf **bpp)
929 {
930 	struct buf *bp, *rabp;
931 	int i;
932 	int rv = 0, readwait = 0;
933 
934 	*bpp = bp = getblk(vp, loffset, size, 0, 0);
935 
936 	/* if not found in cache, do some I/O */
937 	if ((bp->b_flags & B_CACHE) == 0) {
938 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
939 		bp->b_cmd = BUF_CMD_READ;
940 		bp->b_bio1.bio_done = biodone_sync;
941 		bp->b_bio1.bio_flags |= BIO_SYNC;
942 		vfs_busy_pages(vp, bp);
943 		vn_strategy(vp, &bp->b_bio1);
944 		++readwait;
945 	}
946 
947 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
948 		if (inmem(vp, *raoffset))
949 			continue;
950 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
951 
952 		if ((rabp->b_flags & B_CACHE) == 0) {
953 			rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
954 			rabp->b_cmd = BUF_CMD_READ;
955 			vfs_busy_pages(vp, rabp);
956 			BUF_KERNPROC(rabp);
957 			vn_strategy(vp, &rabp->b_bio1);
958 		} else {
959 			brelse(rabp);
960 		}
961 	}
962 	if (readwait)
963 		rv = biowait(&bp->b_bio1, "biord");
964 	return (rv);
965 }
966 
967 /*
968  * bwrite:
969  *
970  *	Synchronous write, waits for completion.
971  *
972  *	Write, release buffer on completion.  (Done by iodone
973  *	if async).  Do not bother writing anything if the buffer
974  *	is invalid.
975  *
976  *	Note that we set B_CACHE here, indicating that buffer is
977  *	fully valid and thus cacheable.  This is true even of NFS
978  *	now so we set it generally.  This could be set either here
979  *	or in biodone() since the I/O is synchronous.  We put it
980  *	here.
981  */
982 int
983 bwrite(struct buf *bp)
984 {
985 	int error;
986 
987 	if (bp->b_flags & B_INVAL) {
988 		brelse(bp);
989 		return (0);
990 	}
991 	if (BUF_REFCNTNB(bp) == 0)
992 		panic("bwrite: buffer is not busy???");
993 
994 	/* Mark the buffer clean */
995 	bundirty(bp);
996 
997 	bp->b_flags &= ~(B_ERROR | B_EINTR);
998 	bp->b_flags |= B_CACHE;
999 	bp->b_cmd = BUF_CMD_WRITE;
1000 	bp->b_bio1.bio_done = biodone_sync;
1001 	bp->b_bio1.bio_flags |= BIO_SYNC;
1002 	vfs_busy_pages(bp->b_vp, bp);
1003 
1004 	/*
1005 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1006 	 * valid for vnode-backed buffers.
1007 	 */
1008 	bsetrunningbufspace(bp, bp->b_bufsize);
1009 	vn_strategy(bp->b_vp, &bp->b_bio1);
1010 	error = biowait(&bp->b_bio1, "biows");
1011 	brelse(bp);
1012 
1013 	return (error);
1014 }
1015 
1016 /*
1017  * bawrite:
1018  *
1019  *	Asynchronous write.  Start output on a buffer, but do not wait for
1020  *	it to complete.  The buffer is released when the output completes.
1021  *
1022  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1023  *	B_INVAL buffers.  Not us.
1024  */
1025 void
1026 bawrite(struct buf *bp)
1027 {
1028 	if (bp->b_flags & B_INVAL) {
1029 		brelse(bp);
1030 		return;
1031 	}
1032 	if (BUF_REFCNTNB(bp) == 0)
1033 		panic("bwrite: buffer is not busy???");
1034 
1035 	/* Mark the buffer clean */
1036 	bundirty(bp);
1037 
1038 	bp->b_flags &= ~(B_ERROR | B_EINTR);
1039 	bp->b_flags |= B_CACHE;
1040 	bp->b_cmd = BUF_CMD_WRITE;
1041 	KKASSERT(bp->b_bio1.bio_done == NULL);
1042 	vfs_busy_pages(bp->b_vp, bp);
1043 
1044 	/*
1045 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1046 	 * valid for vnode-backed buffers.
1047 	 */
1048 	bsetrunningbufspace(bp, bp->b_bufsize);
1049 	BUF_KERNPROC(bp);
1050 	vn_strategy(bp->b_vp, &bp->b_bio1);
1051 }
1052 
1053 /*
1054  * bowrite:
1055  *
1056  *	Ordered write.  Start output on a buffer, and flag it so that the
1057  *	device will write it in the order it was queued.  The buffer is
1058  *	released when the output completes.  bwrite() ( or the VOP routine
1059  *	anyway ) is responsible for handling B_INVAL buffers.
1060  */
1061 int
1062 bowrite(struct buf *bp)
1063 {
1064 	bp->b_flags |= B_ORDERED;
1065 	bawrite(bp);
1066 	return (0);
1067 }
1068 
1069 /*
1070  * bdwrite:
1071  *
1072  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1073  *	anything if the buffer is marked invalid.
1074  *
1075  *	Note that since the buffer must be completely valid, we can safely
1076  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1077  *	biodone() in order to prevent getblk from writing the buffer
1078  *	out synchronously.
1079  */
1080 void
1081 bdwrite(struct buf *bp)
1082 {
1083 	if (BUF_REFCNTNB(bp) == 0)
1084 		panic("bdwrite: buffer is not busy");
1085 
1086 	if (bp->b_flags & B_INVAL) {
1087 		brelse(bp);
1088 		return;
1089 	}
1090 	bdirty(bp);
1091 
1092 	if (dsched_is_clear_buf_priv(bp))
1093 		dsched_new_buf(bp);
1094 
1095 	/*
1096 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1097 	 * true even of NFS now.
1098 	 */
1099 	bp->b_flags |= B_CACHE;
1100 
1101 	/*
1102 	 * This bmap keeps the system from needing to do the bmap later,
1103 	 * perhaps when the system is attempting to do a sync.  Since it
1104 	 * is likely that the indirect block -- or whatever other datastructure
1105 	 * that the filesystem needs is still in memory now, it is a good
1106 	 * thing to do this.  Note also, that if the pageout daemon is
1107 	 * requesting a sync -- there might not be enough memory to do
1108 	 * the bmap then...  So, this is important to do.
1109 	 */
1110 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1111 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1112 			 NULL, NULL, BUF_CMD_WRITE);
1113 	}
1114 
1115 	/*
1116 	 * Because the underlying pages may still be mapped and
1117 	 * writable trying to set the dirty buffer (b_dirtyoff/end)
1118 	 * range here will be inaccurate.
1119 	 *
1120 	 * However, we must still clean the pages to satisfy the
1121 	 * vnode_pager and pageout daemon, so theythink the pages
1122 	 * have been "cleaned".  What has really occured is that
1123 	 * they've been earmarked for later writing by the buffer
1124 	 * cache.
1125 	 *
1126 	 * So we get the b_dirtyoff/end update but will not actually
1127 	 * depend on it (NFS that is) until the pages are busied for
1128 	 * writing later on.
1129 	 */
1130 	vfs_clean_pages(bp);
1131 	bqrelse(bp);
1132 
1133 	/*
1134 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1135 	 * due to the softdep code.
1136 	 */
1137 }
1138 
1139 /*
1140  * Fake write - return pages to VM system as dirty, leave the buffer clean.
1141  * This is used by tmpfs.
1142  *
1143  * It is important for any VFS using this routine to NOT use it for
1144  * IO_SYNC or IO_ASYNC operations which occur when the system really
1145  * wants to flush VM pages to backing store.
1146  */
1147 void
1148 buwrite(struct buf *bp)
1149 {
1150 	vm_page_t m;
1151 	int i;
1152 
1153 	/*
1154 	 * Only works for VMIO buffers.  If the buffer is already
1155 	 * marked for delayed-write we can't avoid the bdwrite().
1156 	 */
1157 	if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1158 		bdwrite(bp);
1159 		return;
1160 	}
1161 
1162 	/*
1163 	 * Set valid & dirty.
1164 	 */
1165 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1166 		m = bp->b_xio.xio_pages[i];
1167 		vfs_dirty_one_page(bp, i, m);
1168 	}
1169 	bqrelse(bp);
1170 }
1171 
1172 /*
1173  * bdirty:
1174  *
1175  *	Turn buffer into delayed write request by marking it B_DELWRI.
1176  *	B_RELBUF and B_NOCACHE must be cleared.
1177  *
1178  *	We reassign the buffer to itself to properly update it in the
1179  *	dirty/clean lists.
1180  *
1181  *	Must be called from a critical section.
1182  *	The buffer must be on BQUEUE_NONE.
1183  */
1184 void
1185 bdirty(struct buf *bp)
1186 {
1187 	KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1188 	if (bp->b_flags & B_NOCACHE) {
1189 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1190 		bp->b_flags &= ~B_NOCACHE;
1191 	}
1192 	if (bp->b_flags & B_INVAL) {
1193 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1194 	}
1195 	bp->b_flags &= ~B_RELBUF;
1196 
1197 	if ((bp->b_flags & B_DELWRI) == 0) {
1198 		lwkt_gettoken(&bp->b_vp->v_token);
1199 		bp->b_flags |= B_DELWRI;
1200 		reassignbuf(bp);
1201 		lwkt_reltoken(&bp->b_vp->v_token);
1202 
1203 		spin_lock(&bufcspin);
1204 		++dirtybufcount;
1205 		dirtybufspace += bp->b_bufsize;
1206 		if (bp->b_flags & B_HEAVY) {
1207 			++dirtybufcounthw;
1208 			dirtybufspacehw += bp->b_bufsize;
1209 		}
1210 		spin_unlock(&bufcspin);
1211 
1212 		bd_heatup();
1213 	}
1214 }
1215 
1216 /*
1217  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1218  * needs to be flushed with a different buf_daemon thread to avoid
1219  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1220  */
1221 void
1222 bheavy(struct buf *bp)
1223 {
1224 	if ((bp->b_flags & B_HEAVY) == 0) {
1225 		bp->b_flags |= B_HEAVY;
1226 		if (bp->b_flags & B_DELWRI) {
1227 			spin_lock(&bufcspin);
1228 			++dirtybufcounthw;
1229 			dirtybufspacehw += bp->b_bufsize;
1230 			spin_unlock(&bufcspin);
1231 		}
1232 	}
1233 }
1234 
1235 /*
1236  * bundirty:
1237  *
1238  *	Clear B_DELWRI for buffer.
1239  *
1240  *	Must be called from a critical section.
1241  *
1242  *	The buffer is typically on BQUEUE_NONE but there is one case in
1243  *	brelse() that calls this function after placing the buffer on
1244  *	a different queue.
1245  *
1246  * MPSAFE
1247  */
1248 void
1249 bundirty(struct buf *bp)
1250 {
1251 	if (bp->b_flags & B_DELWRI) {
1252 		lwkt_gettoken(&bp->b_vp->v_token);
1253 		bp->b_flags &= ~B_DELWRI;
1254 		reassignbuf(bp);
1255 		lwkt_reltoken(&bp->b_vp->v_token);
1256 
1257 		spin_lock(&bufcspin);
1258 		--dirtybufcount;
1259 		dirtybufspace -= bp->b_bufsize;
1260 		if (bp->b_flags & B_HEAVY) {
1261 			--dirtybufcounthw;
1262 			dirtybufspacehw -= bp->b_bufsize;
1263 		}
1264 		spin_unlock(&bufcspin);
1265 
1266 		bd_signal(bp->b_bufsize);
1267 	}
1268 	/*
1269 	 * Since it is now being written, we can clear its deferred write flag.
1270 	 */
1271 	bp->b_flags &= ~B_DEFERRED;
1272 }
1273 
1274 /*
1275  * Set the b_runningbufspace field, used to track how much I/O is
1276  * in progress at any given moment.
1277  */
1278 void
1279 bsetrunningbufspace(struct buf *bp, int bytes)
1280 {
1281 	bp->b_runningbufspace = bytes;
1282 	if (bytes) {
1283 		spin_lock(&bufcspin);
1284 		runningbufspace += bytes;
1285 		++runningbufcount;
1286 		spin_unlock(&bufcspin);
1287 	}
1288 }
1289 
1290 /*
1291  * brelse:
1292  *
1293  *	Release a busy buffer and, if requested, free its resources.  The
1294  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1295  *	to be accessed later as a cache entity or reused for other purposes.
1296  *
1297  * MPALMOSTSAFE
1298  */
1299 void
1300 brelse(struct buf *bp)
1301 {
1302 #ifdef INVARIANTS
1303 	int saved_flags = bp->b_flags;
1304 #endif
1305 
1306 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1307 
1308 	/*
1309 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1310 	 * its backing store.  Clear B_DELWRI.
1311 	 *
1312 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1313 	 * to destroy the buffer and backing store and (2) when the caller
1314 	 * wants to destroy the buffer and backing store after a write
1315 	 * completes.
1316 	 */
1317 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1318 		bundirty(bp);
1319 	}
1320 
1321 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1322 		/*
1323 		 * A re-dirtied buffer is only subject to destruction
1324 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1325 		 */
1326 		/* leave buffer intact */
1327 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1328 		   (bp->b_bufsize <= 0)) {
1329 		/*
1330 		 * Either a failed read or we were asked to free or not
1331 		 * cache the buffer.  This path is reached with B_DELWRI
1332 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1333 		 * backing store destruction.
1334 		 *
1335 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1336 		 * buffer cannot be immediately freed.
1337 		 */
1338 		bp->b_flags |= B_INVAL;
1339 		if (LIST_FIRST(&bp->b_dep) != NULL)
1340 			buf_deallocate(bp);
1341 		if (bp->b_flags & B_DELWRI) {
1342 			spin_lock(&bufcspin);
1343 			--dirtybufcount;
1344 			dirtybufspace -= bp->b_bufsize;
1345 			if (bp->b_flags & B_HEAVY) {
1346 				--dirtybufcounthw;
1347 				dirtybufspacehw -= bp->b_bufsize;
1348 			}
1349 			spin_unlock(&bufcspin);
1350 
1351 			bd_signal(bp->b_bufsize);
1352 		}
1353 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1354 	}
1355 
1356 	/*
1357 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1358 	 * or if b_refs is non-zero.
1359 	 *
1360 	 * If vfs_vmio_release() is called with either bit set, the
1361 	 * underlying pages may wind up getting freed causing a previous
1362 	 * write (bdwrite()) to get 'lost' because pages associated with
1363 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1364 	 * B_LOCKED buffer may be mapped by the filesystem.
1365 	 *
1366 	 * If we want to release the buffer ourselves (rather then the
1367 	 * originator asking us to release it), give the originator a
1368 	 * chance to countermand the release by setting B_LOCKED.
1369 	 *
1370 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1371 	 * if B_DELWRI is set.
1372 	 *
1373 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1374 	 * on pages to return pages to the VM page queues.
1375 	 */
1376 	if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) {
1377 		bp->b_flags &= ~B_RELBUF;
1378 	} else if (vm_page_count_severe()) {
1379 		if (LIST_FIRST(&bp->b_dep) != NULL)
1380 			buf_deallocate(bp);		/* can set B_LOCKED */
1381 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1382 			bp->b_flags &= ~B_RELBUF;
1383 		else
1384 			bp->b_flags |= B_RELBUF;
1385 	}
1386 
1387 	/*
1388 	 * Make sure b_cmd is clear.  It may have already been cleared by
1389 	 * biodone().
1390 	 *
1391 	 * At this point destroying the buffer is governed by the B_INVAL
1392 	 * or B_RELBUF flags.
1393 	 */
1394 	bp->b_cmd = BUF_CMD_DONE;
1395 	dsched_exit_buf(bp);
1396 
1397 	/*
1398 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1399 	 * after an I/O may have replaces some of the pages with bogus pages
1400 	 * in order to not destroy dirty pages in a fill-in read.
1401 	 *
1402 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1403 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1404 	 * B_INVAL may still be set, however.
1405 	 *
1406 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1407 	 * but not the backing store.   B_NOCACHE will destroy the backing
1408 	 * store.
1409 	 *
1410 	 * Note that dirty NFS buffers contain byte-granular write ranges
1411 	 * and should not be destroyed w/ B_INVAL even if the backing store
1412 	 * is left intact.
1413 	 */
1414 	if (bp->b_flags & B_VMIO) {
1415 		/*
1416 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1417 		 */
1418 		int i, j, resid;
1419 		vm_page_t m;
1420 		off_t foff;
1421 		vm_pindex_t poff;
1422 		vm_object_t obj;
1423 		struct vnode *vp;
1424 
1425 		vp = bp->b_vp;
1426 
1427 		/*
1428 		 * Get the base offset and length of the buffer.  Note that
1429 		 * in the VMIO case if the buffer block size is not
1430 		 * page-aligned then b_data pointer may not be page-aligned.
1431 		 * But our b_xio.xio_pages array *IS* page aligned.
1432 		 *
1433 		 * block sizes less then DEV_BSIZE (usually 512) are not
1434 		 * supported due to the page granularity bits (m->valid,
1435 		 * m->dirty, etc...).
1436 		 *
1437 		 * See man buf(9) for more information
1438 		 */
1439 
1440 		resid = bp->b_bufsize;
1441 		foff = bp->b_loffset;
1442 
1443 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1444 			m = bp->b_xio.xio_pages[i];
1445 			vm_page_flag_clear(m, PG_ZERO);
1446 			/*
1447 			 * If we hit a bogus page, fixup *all* of them
1448 			 * now.  Note that we left these pages wired
1449 			 * when we removed them so they had better exist,
1450 			 * and they cannot be ripped out from under us so
1451 			 * no critical section protection is necessary.
1452 			 */
1453 			if (m == bogus_page) {
1454 				obj = vp->v_object;
1455 				poff = OFF_TO_IDX(bp->b_loffset);
1456 
1457 				vm_object_hold(obj);
1458 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1459 					vm_page_t mtmp;
1460 
1461 					mtmp = bp->b_xio.xio_pages[j];
1462 					if (mtmp == bogus_page) {
1463 						mtmp = vm_page_lookup(obj, poff + j);
1464 						if (!mtmp) {
1465 							panic("brelse: page missing");
1466 						}
1467 						bp->b_xio.xio_pages[j] = mtmp;
1468 					}
1469 				}
1470 				bp->b_flags &= ~B_HASBOGUS;
1471 				vm_object_drop(obj);
1472 
1473 				if ((bp->b_flags & B_INVAL) == 0) {
1474 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1475 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1476 				}
1477 				m = bp->b_xio.xio_pages[i];
1478 			}
1479 
1480 			/*
1481 			 * Invalidate the backing store if B_NOCACHE is set
1482 			 * (e.g. used with vinvalbuf()).  If this is NFS
1483 			 * we impose a requirement that the block size be
1484 			 * a multiple of PAGE_SIZE and create a temporary
1485 			 * hack to basically invalidate the whole page.  The
1486 			 * problem is that NFS uses really odd buffer sizes
1487 			 * especially when tracking piecemeal writes and
1488 			 * it also vinvalbuf()'s a lot, which would result
1489 			 * in only partial page validation and invalidation
1490 			 * here.  If the file page is mmap()'d, however,
1491 			 * all the valid bits get set so after we invalidate
1492 			 * here we would end up with weird m->valid values
1493 			 * like 0xfc.  nfs_getpages() can't handle this so
1494 			 * we clear all the valid bits for the NFS case
1495 			 * instead of just some of them.
1496 			 *
1497 			 * The real bug is the VM system having to set m->valid
1498 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1499 			 * itself is an artifact of the whole 512-byte
1500 			 * granular mess that exists to support odd block
1501 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1502 			 * A complete rewrite is required.
1503 			 *
1504 			 * XXX
1505 			 */
1506 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1507 				int poffset = foff & PAGE_MASK;
1508 				int presid;
1509 
1510 				presid = PAGE_SIZE - poffset;
1511 				if (bp->b_vp->v_tag == VT_NFS &&
1512 				    bp->b_vp->v_type == VREG) {
1513 					; /* entire page */
1514 				} else if (presid > resid) {
1515 					presid = resid;
1516 				}
1517 				KASSERT(presid >= 0, ("brelse: extra page"));
1518 				vm_page_set_invalid(m, poffset, presid);
1519 
1520 				/*
1521 				 * Also make sure any swap cache is removed
1522 				 * as it is now stale (HAMMER in particular
1523 				 * uses B_NOCACHE to deal with buffer
1524 				 * aliasing).
1525 				 */
1526 				swap_pager_unswapped(m);
1527 			}
1528 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1529 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1530 		}
1531 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1532 			vfs_vmio_release(bp);
1533 	} else {
1534 		/*
1535 		 * Rundown for non-VMIO buffers.
1536 		 */
1537 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1538 			if (bp->b_bufsize)
1539 				allocbuf(bp, 0);
1540 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1541 			if (bp->b_vp)
1542 				brelvp(bp);
1543 		}
1544 	}
1545 
1546 	if (bp->b_qindex != BQUEUE_NONE)
1547 		panic("brelse: free buffer onto another queue???");
1548 	if (BUF_REFCNTNB(bp) > 1) {
1549 		/* Temporary panic to verify exclusive locking */
1550 		/* This panic goes away when we allow shared refs */
1551 		panic("brelse: multiple refs");
1552 		/* NOT REACHED */
1553 		return;
1554 	}
1555 
1556 	/*
1557 	 * Figure out the correct queue to place the cleaned up buffer on.
1558 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1559 	 * disassociated from their vnode.
1560 	 */
1561 	spin_lock(&bufqspin);
1562 	if (bp->b_flags & B_LOCKED) {
1563 		/*
1564 		 * Buffers that are locked are placed in the locked queue
1565 		 * immediately, regardless of their state.
1566 		 */
1567 		bp->b_qindex = BQUEUE_LOCKED;
1568 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1569 	} else if (bp->b_bufsize == 0) {
1570 		/*
1571 		 * Buffers with no memory.  Due to conditionals near the top
1572 		 * of brelse() such buffers should probably already be
1573 		 * marked B_INVAL and disassociated from their vnode.
1574 		 */
1575 		bp->b_flags |= B_INVAL;
1576 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1577 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1578 		if (bp->b_kvasize) {
1579 			bp->b_qindex = BQUEUE_EMPTYKVA;
1580 		} else {
1581 			bp->b_qindex = BQUEUE_EMPTY;
1582 		}
1583 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1584 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1585 		/*
1586 		 * Buffers with junk contents.   Again these buffers had better
1587 		 * already be disassociated from their vnode.
1588 		 */
1589 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1590 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1591 		bp->b_flags |= B_INVAL;
1592 		bp->b_qindex = BQUEUE_CLEAN;
1593 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1594 	} else {
1595 		/*
1596 		 * Remaining buffers.  These buffers are still associated with
1597 		 * their vnode.
1598 		 */
1599 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1600 		case B_DELWRI:
1601 		    bp->b_qindex = BQUEUE_DIRTY;
1602 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1603 		    break;
1604 		case B_DELWRI | B_HEAVY:
1605 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1606 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1607 				      b_freelist);
1608 		    break;
1609 		default:
1610 		    /*
1611 		     * NOTE: Buffers are always placed at the end of the
1612 		     * queue.  If B_AGE is not set the buffer will cycle
1613 		     * through the queue twice.
1614 		     */
1615 		    bp->b_qindex = BQUEUE_CLEAN;
1616 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1617 		    break;
1618 		}
1619 	}
1620 	spin_unlock(&bufqspin);
1621 
1622 	/*
1623 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1624 	 * on the correct queue.
1625 	 */
1626 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1627 		bundirty(bp);
1628 
1629 	/*
1630 	 * The bp is on an appropriate queue unless locked.  If it is not
1631 	 * locked or dirty we can wakeup threads waiting for buffer space.
1632 	 *
1633 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1634 	 * if B_INVAL is set ).
1635 	 */
1636 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1637 		bufcountwakeup();
1638 
1639 	/*
1640 	 * Something we can maybe free or reuse
1641 	 */
1642 	if (bp->b_bufsize || bp->b_kvasize)
1643 		bufspacewakeup();
1644 
1645 	/*
1646 	 * Clean up temporary flags and unlock the buffer.
1647 	 */
1648 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1649 	BUF_UNLOCK(bp);
1650 }
1651 
1652 /*
1653  * bqrelse:
1654  *
1655  *	Release a buffer back to the appropriate queue but do not try to free
1656  *	it.  The buffer is expected to be used again soon.
1657  *
1658  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1659  *	biodone() to requeue an async I/O on completion.  It is also used when
1660  *	known good buffers need to be requeued but we think we may need the data
1661  *	again soon.
1662  *
1663  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1664  *
1665  * MPSAFE
1666  */
1667 void
1668 bqrelse(struct buf *bp)
1669 {
1670 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1671 
1672 	if (bp->b_qindex != BQUEUE_NONE)
1673 		panic("bqrelse: free buffer onto another queue???");
1674 	if (BUF_REFCNTNB(bp) > 1) {
1675 		/* do not release to free list */
1676 		panic("bqrelse: multiple refs");
1677 		return;
1678 	}
1679 
1680 	buf_act_advance(bp);
1681 
1682 	spin_lock(&bufqspin);
1683 	if (bp->b_flags & B_LOCKED) {
1684 		/*
1685 		 * Locked buffers are released to the locked queue.  However,
1686 		 * if the buffer is dirty it will first go into the dirty
1687 		 * queue and later on after the I/O completes successfully it
1688 		 * will be released to the locked queue.
1689 		 */
1690 		bp->b_qindex = BQUEUE_LOCKED;
1691 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1692 	} else if (bp->b_flags & B_DELWRI) {
1693 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1694 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1695 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1696 	} else if (vm_page_count_severe()) {
1697 		/*
1698 		 * We are too low on memory, we have to try to free the
1699 		 * buffer (most importantly: the wired pages making up its
1700 		 * backing store) *now*.
1701 		 */
1702 		spin_unlock(&bufqspin);
1703 		brelse(bp);
1704 		return;
1705 	} else {
1706 		bp->b_qindex = BQUEUE_CLEAN;
1707 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1708 	}
1709 	spin_unlock(&bufqspin);
1710 
1711 	if ((bp->b_flags & B_LOCKED) == 0 &&
1712 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1713 		bufcountwakeup();
1714 	}
1715 
1716 	/*
1717 	 * Something we can maybe free or reuse.
1718 	 */
1719 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1720 		bufspacewakeup();
1721 
1722 	/*
1723 	 * Final cleanup and unlock.  Clear bits that are only used while a
1724 	 * buffer is actively locked.
1725 	 */
1726 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1727 	dsched_exit_buf(bp);
1728 	BUF_UNLOCK(bp);
1729 }
1730 
1731 /*
1732  * Hold a buffer, preventing it from being reused.  This will prevent
1733  * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1734  * operations.  If a B_INVAL operation occurs the buffer will remain held
1735  * but the underlying pages may get ripped out.
1736  *
1737  * These functions are typically used in VOP_READ/VOP_WRITE functions
1738  * to hold a buffer during a copyin or copyout, preventing deadlocks
1739  * or recursive lock panics when read()/write() is used over mmap()'d
1740  * space.
1741  *
1742  * NOTE: bqhold() requires that the buffer be locked at the time of the
1743  *	 hold.  bqdrop() has no requirements other than the buffer having
1744  *	 previously been held.
1745  */
1746 void
1747 bqhold(struct buf *bp)
1748 {
1749 	atomic_add_int(&bp->b_refs, 1);
1750 }
1751 
1752 void
1753 bqdrop(struct buf *bp)
1754 {
1755 	KKASSERT(bp->b_refs > 0);
1756 	atomic_add_int(&bp->b_refs, -1);
1757 }
1758 
1759 /*
1760  * vfs_vmio_release:
1761  *
1762  *	Return backing pages held by the buffer 'bp' back to the VM system
1763  *	if possible.  The pages are freed if they are no longer valid or
1764  *	attempt to free if it was used for direct I/O otherwise they are
1765  *	sent to the page cache.
1766  *
1767  *	Pages that were marked busy are left alone and skipped.
1768  *
1769  *	The KVA mapping (b_data) for the underlying pages is removed by
1770  *	this function.
1771  */
1772 static void
1773 vfs_vmio_release(struct buf *bp)
1774 {
1775 	int i;
1776 	vm_page_t m;
1777 
1778 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1779 		m = bp->b_xio.xio_pages[i];
1780 		bp->b_xio.xio_pages[i] = NULL;
1781 
1782 		vm_page_busy_wait(m, FALSE, "vmiopg");
1783 
1784 		/*
1785 		 * The VFS is telling us this is not a meta-data buffer
1786 		 * even if it is backed by a block device.
1787 		 */
1788 		if (bp->b_flags & B_NOTMETA)
1789 			vm_page_flag_set(m, PG_NOTMETA);
1790 
1791 		/*
1792 		 * This is a very important bit of code.  We try to track
1793 		 * VM page use whether the pages are wired into the buffer
1794 		 * cache or not.  While wired into the buffer cache the
1795 		 * bp tracks the act_count.
1796 		 *
1797 		 * We can choose to place unwired pages on the inactive
1798 		 * queue (0) or active queue (1).  If we place too many
1799 		 * on the active queue the queue will cycle the act_count
1800 		 * on pages we'd like to keep, just from single-use pages
1801 		 * (such as when doing a tar-up or file scan).
1802 		 */
1803 		if (bp->b_act_count < vm_cycle_point)
1804 			vm_page_unwire(m, 0);
1805 		else
1806 			vm_page_unwire(m, 1);
1807 
1808 		/*
1809 		 * We don't mess with busy pages, it is the responsibility
1810 		 * of the process that busied the pages to deal with them.
1811 		 *
1812 		 * However, the caller may have marked the page invalid and
1813 		 * we must still make sure the page is no longer mapped.
1814 		 */
1815 		if ((m->flags & PG_BUSY) || (m->busy != 0)) {
1816 			vm_page_protect(m, VM_PROT_NONE);
1817 			vm_page_wakeup(m);
1818 			continue;
1819 		}
1820 
1821 		if (m->wire_count == 0) {
1822 			vm_page_flag_clear(m, PG_ZERO);
1823 			/*
1824 			 * Might as well free the page if we can and it has
1825 			 * no valid data.  We also free the page if the
1826 			 * buffer was used for direct I/O.
1827 			 */
1828 #if 0
1829 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1830 					m->hold_count == 0) {
1831 				vm_page_protect(m, VM_PROT_NONE);
1832 				vm_page_free(m);
1833 			} else
1834 #endif
1835 			/*
1836 			 * Cache the page if we are really low on free
1837 			 * pages.
1838 			 *
1839 			 * Also bypass the active and inactive queues
1840 			 * if B_NOTMETA is set.  This flag is set by HAMMER
1841 			 * on a regular file buffer when double buffering
1842 			 * is enabled or on a block device buffer representing
1843 			 * file data when double buffering is not enabled.
1844 			 * The flag prevents two copies of the same data from
1845 			 * being cached for long periods of time.
1846 			 */
1847 			if (bp->b_flags & B_DIRECT) {
1848 				vm_page_wakeup(m);
1849 				vm_page_try_to_free(m);
1850 			} else if ((bp->b_flags & B_NOTMETA) ||
1851 				   vm_page_count_severe()) {
1852 				m->act_count = bp->b_act_count;
1853 				vm_page_wakeup(m);
1854 				vm_page_try_to_cache(m);
1855 			} else {
1856 				m->act_count = bp->b_act_count;
1857 				vm_page_wakeup(m);
1858 			}
1859 		} else {
1860 			vm_page_wakeup(m);
1861 		}
1862 	}
1863 
1864 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data),
1865 		     bp->b_xio.xio_npages);
1866 	if (bp->b_bufsize) {
1867 		bufspacewakeup();
1868 		bp->b_bufsize = 0;
1869 	}
1870 	bp->b_xio.xio_npages = 0;
1871 	bp->b_flags &= ~B_VMIO;
1872 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1873 	if (bp->b_vp)
1874 		brelvp(bp);
1875 }
1876 
1877 /*
1878  * vfs_bio_awrite:
1879  *
1880  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1881  *	This is much better then the old way of writing only one buffer at
1882  *	a time.  Note that we may not be presented with the buffers in the
1883  *	correct order, so we search for the cluster in both directions.
1884  *
1885  *	The buffer is locked on call.
1886  */
1887 int
1888 vfs_bio_awrite(struct buf *bp)
1889 {
1890 	int i;
1891 	int j;
1892 	off_t loffset = bp->b_loffset;
1893 	struct vnode *vp = bp->b_vp;
1894 	int nbytes;
1895 	struct buf *bpa;
1896 	int nwritten;
1897 	int size;
1898 
1899 	/*
1900 	 * right now we support clustered writing only to regular files.  If
1901 	 * we find a clusterable block we could be in the middle of a cluster
1902 	 * rather then at the beginning.
1903 	 *
1904 	 * NOTE: b_bio1 contains the logical loffset and is aliased
1905 	 * to b_loffset.  b_bio2 contains the translated block number.
1906 	 */
1907 	if ((vp->v_type == VREG) &&
1908 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1909 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1910 
1911 		size = vp->v_mount->mnt_stat.f_iosize;
1912 
1913 		for (i = size; i < MAXPHYS; i += size) {
1914 			if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) &&
1915 			    BUF_REFCNT(bpa) == 0 &&
1916 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1917 			    (B_DELWRI | B_CLUSTEROK)) &&
1918 			    (bpa->b_bufsize == size)) {
1919 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1920 				    (bpa->b_bio2.bio_offset !=
1921 				     bp->b_bio2.bio_offset + i))
1922 					break;
1923 			} else {
1924 				break;
1925 			}
1926 		}
1927 		for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1928 			if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) &&
1929 			    BUF_REFCNT(bpa) == 0 &&
1930 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1931 			    (B_DELWRI | B_CLUSTEROK)) &&
1932 			    (bpa->b_bufsize == size)) {
1933 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1934 				    (bpa->b_bio2.bio_offset !=
1935 				     bp->b_bio2.bio_offset - j))
1936 					break;
1937 			} else {
1938 				break;
1939 			}
1940 		}
1941 		j -= size;
1942 		nbytes = (i + j);
1943 
1944 		/*
1945 		 * this is a possible cluster write
1946 		 */
1947 		if (nbytes != size) {
1948 			BUF_UNLOCK(bp);
1949 			nwritten = cluster_wbuild(vp, size,
1950 						  loffset - j, nbytes);
1951 			return nwritten;
1952 		}
1953 	}
1954 
1955 	/*
1956 	 * default (old) behavior, writing out only one block
1957 	 *
1958 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1959 	 */
1960 	nwritten = bp->b_bufsize;
1961 	bremfree(bp);
1962 	bawrite(bp);
1963 
1964 	return nwritten;
1965 }
1966 
1967 /*
1968  * getnewbuf:
1969  *
1970  *	Find and initialize a new buffer header, freeing up existing buffers
1971  *	in the bufqueues as necessary.  The new buffer is returned locked.
1972  *
1973  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1974  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1975  *
1976  *	We block if:
1977  *		We have insufficient buffer headers
1978  *		We have insufficient buffer space
1979  *		buffer_map is too fragmented ( space reservation fails )
1980  *		If we have to flush dirty buffers ( but we try to avoid this )
1981  *
1982  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1983  *	Instead we ask the buf daemon to do it for us.  We attempt to
1984  *	avoid piecemeal wakeups of the pageout daemon.
1985  *
1986  * MPALMOSTSAFE
1987  */
1988 struct buf *
1989 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1990 {
1991 	struct buf *bp;
1992 	struct buf *nbp;
1993 	int defrag = 0;
1994 	int nqindex;
1995 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1996 	static int flushingbufs;
1997 
1998 	/*
1999 	 * We can't afford to block since we might be holding a vnode lock,
2000 	 * which may prevent system daemons from running.  We deal with
2001 	 * low-memory situations by proactively returning memory and running
2002 	 * async I/O rather then sync I/O.
2003 	 */
2004 
2005 	++getnewbufcalls;
2006 	--getnewbufrestarts;
2007 restart:
2008 	++getnewbufrestarts;
2009 
2010 	/*
2011 	 * Setup for scan.  If we do not have enough free buffers,
2012 	 * we setup a degenerate case that immediately fails.  Note
2013 	 * that if we are specially marked process, we are allowed to
2014 	 * dip into our reserves.
2015 	 *
2016 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
2017 	 *
2018 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
2019 	 * However, there are a number of cases (defragging, reusing, ...)
2020 	 * where we cannot backup.
2021 	 */
2022 	nqindex = BQUEUE_EMPTYKVA;
2023 	spin_lock(&bufqspin);
2024 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
2025 
2026 	if (nbp == NULL) {
2027 		/*
2028 		 * If no EMPTYKVA buffers and we are either
2029 		 * defragging or reusing, locate a CLEAN buffer
2030 		 * to free or reuse.  If bufspace useage is low
2031 		 * skip this step so we can allocate a new buffer.
2032 		 */
2033 		if (defrag || bufspace >= lobufspace) {
2034 			nqindex = BQUEUE_CLEAN;
2035 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2036 		}
2037 
2038 		/*
2039 		 * If we could not find or were not allowed to reuse a
2040 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
2041 		 * buffer.  We can only use an EMPTY buffer if allocating
2042 		 * its KVA would not otherwise run us out of buffer space.
2043 		 */
2044 		if (nbp == NULL && defrag == 0 &&
2045 		    bufspace + maxsize < hibufspace) {
2046 			nqindex = BQUEUE_EMPTY;
2047 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
2048 		}
2049 	}
2050 
2051 	/*
2052 	 * Run scan, possibly freeing data and/or kva mappings on the fly
2053 	 * depending.
2054 	 *
2055 	 * WARNING!  bufqspin is held!
2056 	 */
2057 	while ((bp = nbp) != NULL) {
2058 		int qindex = nqindex;
2059 
2060 		nbp = TAILQ_NEXT(bp, b_freelist);
2061 
2062 		/*
2063 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2064 		 * cycles through the queue twice before being selected.
2065 		 */
2066 		if (qindex == BQUEUE_CLEAN &&
2067 		    (bp->b_flags & B_AGE) == 0 && nbp) {
2068 			bp->b_flags |= B_AGE;
2069 			TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
2070 			TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
2071 			continue;
2072 		}
2073 
2074 		/*
2075 		 * Calculate next bp ( we can only use it if we do not block
2076 		 * or do other fancy things ).
2077 		 */
2078 		if (nbp == NULL) {
2079 			switch(qindex) {
2080 			case BQUEUE_EMPTY:
2081 				nqindex = BQUEUE_EMPTYKVA;
2082 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
2083 					break;
2084 				/* fall through */
2085 			case BQUEUE_EMPTYKVA:
2086 				nqindex = BQUEUE_CLEAN;
2087 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
2088 					break;
2089 				/* fall through */
2090 			case BQUEUE_CLEAN:
2091 				/*
2092 				 * nbp is NULL.
2093 				 */
2094 				break;
2095 			}
2096 		}
2097 
2098 		/*
2099 		 * Sanity Checks
2100 		 */
2101 		KASSERT(bp->b_qindex == qindex,
2102 			("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2103 
2104 		/*
2105 		 * Note: we no longer distinguish between VMIO and non-VMIO
2106 		 * buffers.
2107 		 */
2108 		KASSERT((bp->b_flags & B_DELWRI) == 0,
2109 			("delwri buffer %p found in queue %d", bp, qindex));
2110 
2111 		/*
2112 		 * Do not try to reuse a buffer with a non-zero b_refs.
2113 		 * This is an unsynchronized test.  A synchronized test
2114 		 * is also performed after we lock the buffer.
2115 		 */
2116 		if (bp->b_refs)
2117 			continue;
2118 
2119 		/*
2120 		 * If we are defragging then we need a buffer with
2121 		 * b_kvasize != 0.  XXX this situation should no longer
2122 		 * occur, if defrag is non-zero the buffer's b_kvasize
2123 		 * should also be non-zero at this point.  XXX
2124 		 */
2125 		if (defrag && bp->b_kvasize == 0) {
2126 			kprintf("Warning: defrag empty buffer %p\n", bp);
2127 			continue;
2128 		}
2129 
2130 		/*
2131 		 * Start freeing the bp.  This is somewhat involved.  nbp
2132 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
2133 		 * on the clean list must be disassociated from their
2134 		 * current vnode.  Buffers on the empty[kva] lists have
2135 		 * already been disassociated.
2136 		 *
2137 		 * b_refs is checked after locking along with queue changes.
2138 		 * We must check here to deal with zero->nonzero transitions
2139 		 * made by the owner of the buffer lock, which is used by
2140 		 * VFS's to hold the buffer while issuing an unlocked
2141 		 * uiomove()s.  We cannot invalidate the buffer's pages
2142 		 * for this case.  Once we successfully lock a buffer the
2143 		 * only 0->1 transitions of b_refs will occur via findblk().
2144 		 *
2145 		 * We must also check for queue changes after successful
2146 		 * locking as the current lock holder may dispose of the
2147 		 * buffer and change its queue.
2148 		 */
2149 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2150 			spin_unlock(&bufqspin);
2151 			tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100);
2152 			goto restart;
2153 		}
2154 		if (bp->b_qindex != qindex || bp->b_refs) {
2155 			spin_unlock(&bufqspin);
2156 			BUF_UNLOCK(bp);
2157 			goto restart;
2158 		}
2159 		bremfree_locked(bp);
2160 		spin_unlock(&bufqspin);
2161 
2162 		/*
2163 		 * Dependancies must be handled before we disassociate the
2164 		 * vnode.
2165 		 *
2166 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2167 		 * be immediately disassociated.  HAMMER then becomes
2168 		 * responsible for releasing the buffer.
2169 		 *
2170 		 * NOTE: bufqspin is UNLOCKED now.
2171 		 */
2172 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2173 			buf_deallocate(bp);
2174 			if (bp->b_flags & B_LOCKED) {
2175 				bqrelse(bp);
2176 				goto restart;
2177 			}
2178 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2179 		}
2180 
2181 		if (qindex == BQUEUE_CLEAN) {
2182 			if (bp->b_flags & B_VMIO)
2183 				vfs_vmio_release(bp);
2184 			if (bp->b_vp)
2185 				brelvp(bp);
2186 		}
2187 
2188 		/*
2189 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2190 		 * the scan from this point on.
2191 		 *
2192 		 * Get the rest of the buffer freed up.  b_kva* is still
2193 		 * valid after this operation.
2194 		 */
2195 		KASSERT(bp->b_vp == NULL,
2196 			("bp3 %p flags %08x vnode %p qindex %d "
2197 			 "unexpectededly still associated!",
2198 			 bp, bp->b_flags, bp->b_vp, qindex));
2199 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2200 
2201 		/*
2202 		 * critical section protection is not required when
2203 		 * scrapping a buffer's contents because it is already
2204 		 * wired.
2205 		 */
2206 		if (bp->b_bufsize)
2207 			allocbuf(bp, 0);
2208 
2209 		bp->b_flags = B_BNOCLIP;
2210 		bp->b_cmd = BUF_CMD_DONE;
2211 		bp->b_vp = NULL;
2212 		bp->b_error = 0;
2213 		bp->b_resid = 0;
2214 		bp->b_bcount = 0;
2215 		bp->b_xio.xio_npages = 0;
2216 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2217 		bp->b_act_count = ACT_INIT;
2218 		reinitbufbio(bp);
2219 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2220 		buf_dep_init(bp);
2221 		if (blkflags & GETBLK_BHEAVY)
2222 			bp->b_flags |= B_HEAVY;
2223 
2224 		/*
2225 		 * If we are defragging then free the buffer.
2226 		 */
2227 		if (defrag) {
2228 			bp->b_flags |= B_INVAL;
2229 			bfreekva(bp);
2230 			brelse(bp);
2231 			defrag = 0;
2232 			goto restart;
2233 		}
2234 
2235 		/*
2236 		 * If we are overcomitted then recover the buffer and its
2237 		 * KVM space.  This occurs in rare situations when multiple
2238 		 * processes are blocked in getnewbuf() or allocbuf().
2239 		 */
2240 		if (bufspace >= hibufspace)
2241 			flushingbufs = 1;
2242 		if (flushingbufs && bp->b_kvasize != 0) {
2243 			bp->b_flags |= B_INVAL;
2244 			bfreekva(bp);
2245 			brelse(bp);
2246 			goto restart;
2247 		}
2248 		if (bufspace < lobufspace)
2249 			flushingbufs = 0;
2250 
2251 		/*
2252 		 * b_refs can transition to a non-zero value while we hold
2253 		 * the buffer locked due to a findblk().  Our brelvp() above
2254 		 * interlocked any future possible transitions due to
2255 		 * findblk()s.
2256 		 *
2257 		 * If we find b_refs to be non-zero we can destroy the
2258 		 * buffer's contents but we cannot yet reuse the buffer.
2259 		 */
2260 		if (bp->b_refs) {
2261 			bp->b_flags |= B_INVAL;
2262 			bfreekva(bp);
2263 			brelse(bp);
2264 			goto restart;
2265 		}
2266 		break;
2267 		/* NOT REACHED, bufqspin not held */
2268 	}
2269 
2270 	/*
2271 	 * If we exhausted our list, sleep as appropriate.  We may have to
2272 	 * wakeup various daemons and write out some dirty buffers.
2273 	 *
2274 	 * Generally we are sleeping due to insufficient buffer space.
2275 	 *
2276 	 * NOTE: bufqspin is held if bp is NULL, else it is not held.
2277 	 */
2278 	if (bp == NULL) {
2279 		int flags;
2280 		char *waitmsg;
2281 
2282 		spin_unlock(&bufqspin);
2283 		if (defrag) {
2284 			flags = VFS_BIO_NEED_BUFSPACE;
2285 			waitmsg = "nbufkv";
2286 		} else if (bufspace >= hibufspace) {
2287 			waitmsg = "nbufbs";
2288 			flags = VFS_BIO_NEED_BUFSPACE;
2289 		} else {
2290 			waitmsg = "newbuf";
2291 			flags = VFS_BIO_NEED_ANY;
2292 		}
2293 
2294 		bd_speedup();	/* heeeelp */
2295 		spin_lock(&bufcspin);
2296 		needsbuffer |= flags;
2297 		while (needsbuffer & flags) {
2298 			if (ssleep(&needsbuffer, &bufcspin,
2299 				   slpflags, waitmsg, slptimeo)) {
2300 				spin_unlock(&bufcspin);
2301 				return (NULL);
2302 			}
2303 		}
2304 		spin_unlock(&bufcspin);
2305 	} else {
2306 		/*
2307 		 * We finally have a valid bp.  We aren't quite out of the
2308 		 * woods, we still have to reserve kva space.  In order
2309 		 * to keep fragmentation sane we only allocate kva in
2310 		 * BKVASIZE chunks.
2311 		 *
2312 		 * (bufqspin is not held)
2313 		 */
2314 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2315 
2316 		if (maxsize != bp->b_kvasize) {
2317 			vm_offset_t addr = 0;
2318 			int count;
2319 
2320 			bfreekva(bp);
2321 
2322 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2323 			vm_map_lock(&buffer_map);
2324 
2325 			if (vm_map_findspace(&buffer_map,
2326 				    vm_map_min(&buffer_map), maxsize,
2327 				    maxsize, 0, &addr)) {
2328 				/*
2329 				 * Uh oh.  Buffer map is too fragmented.  We
2330 				 * must defragment the map.
2331 				 */
2332 				vm_map_unlock(&buffer_map);
2333 				vm_map_entry_release(count);
2334 				++bufdefragcnt;
2335 				defrag = 1;
2336 				bp->b_flags |= B_INVAL;
2337 				brelse(bp);
2338 				goto restart;
2339 			}
2340 			if (addr) {
2341 				vm_map_insert(&buffer_map, &count,
2342 					NULL, 0,
2343 					addr, addr + maxsize,
2344 					VM_MAPTYPE_NORMAL,
2345 					VM_PROT_ALL, VM_PROT_ALL,
2346 					MAP_NOFAULT);
2347 
2348 				bp->b_kvabase = (caddr_t) addr;
2349 				bp->b_kvasize = maxsize;
2350 				bufspace += bp->b_kvasize;
2351 				++bufreusecnt;
2352 			}
2353 			vm_map_unlock(&buffer_map);
2354 			vm_map_entry_release(count);
2355 		}
2356 		bp->b_data = bp->b_kvabase;
2357 	}
2358 	return(bp);
2359 }
2360 
2361 /*
2362  * This routine is called in an emergency to recover VM pages from the
2363  * buffer cache by cashing in clean buffers.  The idea is to recover
2364  * enough pages to be able to satisfy a stuck bio_page_alloc().
2365  *
2366  * MPSAFE
2367  */
2368 static int
2369 recoverbufpages(void)
2370 {
2371 	struct buf *bp;
2372 	int bytes = 0;
2373 
2374 	++recoverbufcalls;
2375 
2376 	spin_lock(&bufqspin);
2377 	while (bytes < MAXBSIZE) {
2378 		bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2379 		if (bp == NULL)
2380 			break;
2381 
2382 		/*
2383 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2384 		 * cycles through the queue twice before being selected.
2385 		 */
2386 		if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2387 			bp->b_flags |= B_AGE;
2388 			TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2389 			TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2390 					  bp, b_freelist);
2391 			continue;
2392 		}
2393 
2394 		/*
2395 		 * Sanity Checks
2396 		 */
2397 		KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2398 		KKASSERT((bp->b_flags & B_DELWRI) == 0);
2399 
2400 		/*
2401 		 * Start freeing the bp.  This is somewhat involved.
2402 		 *
2403 		 * Buffers on the clean list must be disassociated from
2404 		 * their current vnode
2405 		 */
2406 
2407 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2408 			kprintf("recoverbufpages: warning, locked buf %p, "
2409 				"race corrected\n",
2410 				bp);
2411 			ssleep(&bd_request, &bufqspin, 0, "gnbxxx", hz / 100);
2412 			continue;
2413 		}
2414 		if (bp->b_qindex != BQUEUE_CLEAN) {
2415 			kprintf("recoverbufpages: warning, BUF_LOCK blocked "
2416 				"unexpectedly on buf %p index %d, race "
2417 				"corrected\n",
2418 				bp, bp->b_qindex);
2419 			BUF_UNLOCK(bp);
2420 			continue;
2421 		}
2422 		bremfree_locked(bp);
2423 		spin_unlock(&bufqspin);
2424 
2425 		/*
2426 		 * Dependancies must be handled before we disassociate the
2427 		 * vnode.
2428 		 *
2429 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2430 		 * be immediately disassociated.  HAMMER then becomes
2431 		 * responsible for releasing the buffer.
2432 		 */
2433 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2434 			buf_deallocate(bp);
2435 			if (bp->b_flags & B_LOCKED) {
2436 				bqrelse(bp);
2437 				spin_lock(&bufqspin);
2438 				continue;
2439 			}
2440 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2441 		}
2442 
2443 		bytes += bp->b_bufsize;
2444 
2445 		if (bp->b_flags & B_VMIO) {
2446 			bp->b_flags |= B_DIRECT;    /* try to free pages */
2447 			vfs_vmio_release(bp);
2448 		}
2449 		if (bp->b_vp)
2450 			brelvp(bp);
2451 
2452 		KKASSERT(bp->b_vp == NULL);
2453 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2454 
2455 		/*
2456 		 * critical section protection is not required when
2457 		 * scrapping a buffer's contents because it is already
2458 		 * wired.
2459 		 */
2460 		if (bp->b_bufsize)
2461 			allocbuf(bp, 0);
2462 
2463 		bp->b_flags = B_BNOCLIP;
2464 		bp->b_cmd = BUF_CMD_DONE;
2465 		bp->b_vp = NULL;
2466 		bp->b_error = 0;
2467 		bp->b_resid = 0;
2468 		bp->b_bcount = 0;
2469 		bp->b_xio.xio_npages = 0;
2470 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2471 		reinitbufbio(bp);
2472 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2473 		buf_dep_init(bp);
2474 		bp->b_flags |= B_INVAL;
2475 		/* bfreekva(bp); */
2476 		brelse(bp);
2477 		spin_lock(&bufqspin);
2478 	}
2479 	spin_unlock(&bufqspin);
2480 	return(bytes);
2481 }
2482 
2483 /*
2484  * buf_daemon:
2485  *
2486  *	Buffer flushing daemon.  Buffers are normally flushed by the
2487  *	update daemon but if it cannot keep up this process starts to
2488  *	take the load in an attempt to prevent getnewbuf() from blocking.
2489  *
2490  *	Once a flush is initiated it does not stop until the number
2491  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2492  *	waiting at the mid-point.
2493  */
2494 
2495 static struct kproc_desc buf_kp = {
2496 	"bufdaemon",
2497 	buf_daemon,
2498 	&bufdaemon_td
2499 };
2500 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2501 	kproc_start, &buf_kp)
2502 
2503 static struct kproc_desc bufhw_kp = {
2504 	"bufdaemon_hw",
2505 	buf_daemon_hw,
2506 	&bufdaemonhw_td
2507 };
2508 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2509 	kproc_start, &bufhw_kp)
2510 
2511 /*
2512  * MPSAFE thread
2513  */
2514 static void
2515 buf_daemon(void)
2516 {
2517 	int limit;
2518 
2519 	/*
2520 	 * This process needs to be suspended prior to shutdown sync.
2521 	 */
2522 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2523 			      bufdaemon_td, SHUTDOWN_PRI_LAST);
2524 	curthread->td_flags |= TDF_SYSTHREAD;
2525 
2526 	/*
2527 	 * This process is allowed to take the buffer cache to the limit
2528 	 */
2529 	for (;;) {
2530 		kproc_suspend_loop();
2531 
2532 		/*
2533 		 * Do the flush as long as the number of dirty buffers
2534 		 * (including those running) exceeds lodirtybufspace.
2535 		 *
2536 		 * When flushing limit running I/O to hirunningspace
2537 		 * Do the flush.  Limit the amount of in-transit I/O we
2538 		 * allow to build up, otherwise we would completely saturate
2539 		 * the I/O system.  Wakeup any waiting processes before we
2540 		 * normally would so they can run in parallel with our drain.
2541 		 *
2542 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2543 		 * but because we split the operation into two threads we
2544 		 * have to cut it in half for each thread.
2545 		 */
2546 		waitrunningbufspace();
2547 		limit = lodirtybufspace / 2;
2548 		while (runningbufspace + dirtybufspace > limit ||
2549 		       dirtybufcount - dirtybufcounthw >= nbuf / 2) {
2550 			if (flushbufqueues(BQUEUE_DIRTY) == 0)
2551 				break;
2552 			if (runningbufspace < hirunningspace)
2553 				continue;
2554 			waitrunningbufspace();
2555 		}
2556 
2557 		/*
2558 		 * We reached our low water mark, reset the
2559 		 * request and sleep until we are needed again.
2560 		 * The sleep is just so the suspend code works.
2561 		 */
2562 		spin_lock(&bufcspin);
2563 		if (bd_request == 0)
2564 			ssleep(&bd_request, &bufcspin, 0, "psleep", hz);
2565 		bd_request = 0;
2566 		spin_unlock(&bufcspin);
2567 	}
2568 }
2569 
2570 /*
2571  * MPSAFE thread
2572  */
2573 static void
2574 buf_daemon_hw(void)
2575 {
2576 	int limit;
2577 
2578 	/*
2579 	 * This process needs to be suspended prior to shutdown sync.
2580 	 */
2581 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2582 			      bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2583 	curthread->td_flags |= TDF_SYSTHREAD;
2584 
2585 	/*
2586 	 * This process is allowed to take the buffer cache to the limit
2587 	 */
2588 	for (;;) {
2589 		kproc_suspend_loop();
2590 
2591 		/*
2592 		 * Do the flush.  Limit the amount of in-transit I/O we
2593 		 * allow to build up, otherwise we would completely saturate
2594 		 * the I/O system.  Wakeup any waiting processes before we
2595 		 * normally would so they can run in parallel with our drain.
2596 		 *
2597 		 * Once we decide to flush push the queued I/O up to
2598 		 * hirunningspace in order to trigger bursting by the bioq
2599 		 * subsystem.
2600 		 *
2601 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2602 		 * but because we split the operation into two threads we
2603 		 * have to cut it in half for each thread.
2604 		 */
2605 		waitrunningbufspace();
2606 		limit = lodirtybufspace / 2;
2607 		while (runningbufspace + dirtybufspacehw > limit ||
2608 		       dirtybufcounthw >= nbuf / 2) {
2609 			if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2610 				break;
2611 			if (runningbufspace < hirunningspace)
2612 				continue;
2613 			waitrunningbufspace();
2614 		}
2615 
2616 		/*
2617 		 * We reached our low water mark, reset the
2618 		 * request and sleep until we are needed again.
2619 		 * The sleep is just so the suspend code works.
2620 		 */
2621 		spin_lock(&bufcspin);
2622 		if (bd_request_hw == 0)
2623 			ssleep(&bd_request_hw, &bufcspin, 0, "psleep", hz);
2624 		bd_request_hw = 0;
2625 		spin_unlock(&bufcspin);
2626 	}
2627 }
2628 
2629 /*
2630  * flushbufqueues:
2631  *
2632  *	Try to flush a buffer in the dirty queue.  We must be careful to
2633  *	free up B_INVAL buffers instead of write them, which NFS is
2634  *	particularly sensitive to.
2635  *
2636  *	B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate
2637  *	that we really want to try to get the buffer out and reuse it
2638  *	due to the write load on the machine.
2639  *
2640  *	We must lock the buffer in order to check its validity before we
2641  *	can mess with its contents.  bufqspin isn't enough.
2642  */
2643 static int
2644 flushbufqueues(bufq_type_t q)
2645 {
2646 	struct buf *bp;
2647 	int r = 0;
2648 	int spun;
2649 
2650 	spin_lock(&bufqspin);
2651 	spun = 1;
2652 
2653 	bp = TAILQ_FIRST(&bufqueues[q]);
2654 	while (bp) {
2655 		if ((bp->b_flags & B_DELWRI) == 0) {
2656 			kprintf("Unexpected clean buffer %p\n", bp);
2657 			bp = TAILQ_NEXT(bp, b_freelist);
2658 			continue;
2659 		}
2660 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2661 			bp = TAILQ_NEXT(bp, b_freelist);
2662 			continue;
2663 		}
2664 		KKASSERT(bp->b_qindex == q);
2665 
2666 		/*
2667 		 * Must recheck B_DELWRI after successfully locking
2668 		 * the buffer.
2669 		 */
2670 		if ((bp->b_flags & B_DELWRI) == 0) {
2671 			BUF_UNLOCK(bp);
2672 			bp = TAILQ_NEXT(bp, b_freelist);
2673 			continue;
2674 		}
2675 
2676 		if (bp->b_flags & B_INVAL) {
2677 			_bremfree(bp);
2678 			spin_unlock(&bufqspin);
2679 			spun = 0;
2680 			brelse(bp);
2681 			++r;
2682 			break;
2683 		}
2684 
2685 		spin_unlock(&bufqspin);
2686 		lwkt_yield();
2687 		spun = 0;
2688 
2689 		if (LIST_FIRST(&bp->b_dep) != NULL &&
2690 		    (bp->b_flags & B_DEFERRED) == 0 &&
2691 		    buf_countdeps(bp, 0)) {
2692 			spin_lock(&bufqspin);
2693 			spun = 1;
2694 			TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2695 			TAILQ_INSERT_TAIL(&bufqueues[q], bp, b_freelist);
2696 			bp->b_flags |= B_DEFERRED;
2697 			BUF_UNLOCK(bp);
2698 			bp = TAILQ_FIRST(&bufqueues[q]);
2699 			continue;
2700 		}
2701 
2702 		/*
2703 		 * If the buffer has a dependancy, buf_checkwrite() must
2704 		 * also return 0 for us to be able to initate the write.
2705 		 *
2706 		 * If the buffer is flagged B_ERROR it may be requeued
2707 		 * over and over again, we try to avoid a live lock.
2708 		 *
2709 		 * NOTE: buf_checkwrite is MPSAFE.
2710 		 */
2711 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2712 			bremfree(bp);
2713 			brelse(bp);
2714 		} else if (bp->b_flags & B_ERROR) {
2715 			tsleep(bp, 0, "bioer", 1);
2716 			bp->b_flags &= ~B_AGE;
2717 			vfs_bio_awrite(bp);
2718 		} else {
2719 			bp->b_flags |= B_AGE;
2720 			vfs_bio_awrite(bp);
2721 		}
2722 		++r;
2723 		break;
2724 	}
2725 	if (spun)
2726 		spin_unlock(&bufqspin);
2727 	return (r);
2728 }
2729 
2730 /*
2731  * inmem:
2732  *
2733  *	Returns true if no I/O is needed to access the associated VM object.
2734  *	This is like findblk except it also hunts around in the VM system for
2735  *	the data.
2736  *
2737  *	Note that we ignore vm_page_free() races from interrupts against our
2738  *	lookup, since if the caller is not protected our return value will not
2739  *	be any more valid then otherwise once we exit the critical section.
2740  */
2741 int
2742 inmem(struct vnode *vp, off_t loffset)
2743 {
2744 	vm_object_t obj;
2745 	vm_offset_t toff, tinc, size;
2746 	vm_page_t m;
2747 	int res = 1;
2748 
2749 	if (findblk(vp, loffset, FINDBLK_TEST))
2750 		return 1;
2751 	if (vp->v_mount == NULL)
2752 		return 0;
2753 	if ((obj = vp->v_object) == NULL)
2754 		return 0;
2755 
2756 	size = PAGE_SIZE;
2757 	if (size > vp->v_mount->mnt_stat.f_iosize)
2758 		size = vp->v_mount->mnt_stat.f_iosize;
2759 
2760 	vm_object_hold(obj);
2761 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2762 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2763 		if (m == NULL) {
2764 			res = 0;
2765 			break;
2766 		}
2767 		tinc = size;
2768 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2769 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2770 		if (vm_page_is_valid(m,
2771 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) {
2772 			res = 0;
2773 			break;
2774 		}
2775 	}
2776 	vm_object_drop(obj);
2777 	return (res);
2778 }
2779 
2780 /*
2781  * findblk:
2782  *
2783  *	Locate and return the specified buffer.  Unless flagged otherwise,
2784  *	a locked buffer will be returned if it exists or NULL if it does not.
2785  *
2786  *	findblk()'d buffers are still on the bufqueues and if you intend
2787  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2788  *	and possibly do other stuff to it.
2789  *
2790  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2791  *			  for locking the buffer and ensuring that it remains
2792  *			  the desired buffer after locking.
2793  *
2794  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2795  *			  to acquire the lock we return NULL, even if the
2796  *			  buffer exists.
2797  *
2798  *	FINDBLK_REF	- Returns the buffer ref'd, which prevents normal
2799  *			  reuse by getnewbuf() but does not prevent
2800  *			  disassociation (B_INVAL).  Used to avoid deadlocks
2801  *			  against random (vp,loffset)s due to reassignment.
2802  *
2803  *	(0)		- Lock the buffer blocking.
2804  *
2805  * MPSAFE
2806  */
2807 struct buf *
2808 findblk(struct vnode *vp, off_t loffset, int flags)
2809 {
2810 	struct buf *bp;
2811 	int lkflags;
2812 
2813 	lkflags = LK_EXCLUSIVE;
2814 	if (flags & FINDBLK_NBLOCK)
2815 		lkflags |= LK_NOWAIT;
2816 
2817 	for (;;) {
2818 		/*
2819 		 * Lookup.  Ref the buf while holding v_token to prevent
2820 		 * reuse (but does not prevent diassociation).
2821 		 */
2822 		lwkt_gettoken(&vp->v_token);
2823 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2824 		if (bp == NULL) {
2825 			lwkt_reltoken(&vp->v_token);
2826 			return(NULL);
2827 		}
2828 		bqhold(bp);
2829 		lwkt_reltoken(&vp->v_token);
2830 
2831 		/*
2832 		 * If testing only break and return bp, do not lock.
2833 		 */
2834 		if (flags & FINDBLK_TEST)
2835 			break;
2836 
2837 		/*
2838 		 * Lock the buffer, return an error if the lock fails.
2839 		 * (only FINDBLK_NBLOCK can cause the lock to fail).
2840 		 */
2841 		if (BUF_LOCK(bp, lkflags)) {
2842 			atomic_subtract_int(&bp->b_refs, 1);
2843 			/* bp = NULL; not needed */
2844 			return(NULL);
2845 		}
2846 
2847 		/*
2848 		 * Revalidate the locked buf before allowing it to be
2849 		 * returned.
2850 		 */
2851 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2852 			break;
2853 		atomic_subtract_int(&bp->b_refs, 1);
2854 		BUF_UNLOCK(bp);
2855 	}
2856 
2857 	/*
2858 	 * Success
2859 	 */
2860 	if ((flags & FINDBLK_REF) == 0)
2861 		atomic_subtract_int(&bp->b_refs, 1);
2862 	return(bp);
2863 }
2864 
2865 /*
2866  * getcacheblk:
2867  *
2868  *	Similar to getblk() except only returns the buffer if it is
2869  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2870  *	is returned.
2871  *
2872  *	If B_RAM is set the buffer might be just fine, but we return
2873  *	NULL anyway because we want the code to fall through to the
2874  *	cluster read.  Otherwise read-ahead breaks.
2875  *
2876  *	If blksize is 0 the buffer cache buffer must already be fully
2877  *	cached.
2878  *
2879  *	If blksize is non-zero getblk() will be used, allowing a buffer
2880  *	to be reinstantiated from its VM backing store.  The buffer must
2881  *	still be fully cached after reinstantiation to be returned.
2882  */
2883 struct buf *
2884 getcacheblk(struct vnode *vp, off_t loffset, int blksize)
2885 {
2886 	struct buf *bp;
2887 
2888 	if (blksize) {
2889 		bp = getblk(vp, loffset, blksize, 0, 0);
2890 		if (bp) {
2891 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2892 			    B_CACHE) {
2893 				bp->b_flags &= ~B_AGE;
2894 			} else {
2895 				brelse(bp);
2896 				bp = NULL;
2897 			}
2898 		}
2899 	} else {
2900 		bp = findblk(vp, loffset, 0);
2901 		if (bp) {
2902 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2903 			    B_CACHE) {
2904 				bp->b_flags &= ~B_AGE;
2905 				bremfree(bp);
2906 			} else {
2907 				BUF_UNLOCK(bp);
2908 				bp = NULL;
2909 			}
2910 		}
2911 	}
2912 	return (bp);
2913 }
2914 
2915 /*
2916  * getblk:
2917  *
2918  *	Get a block given a specified block and offset into a file/device.
2919  * 	B_INVAL may or may not be set on return.  The caller should clear
2920  *	B_INVAL prior to initiating a READ.
2921  *
2922  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2923  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2924  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2925  *	without doing any of those things the system will likely believe
2926  *	the buffer to be valid (especially if it is not B_VMIO), and the
2927  *	next getblk() will return the buffer with B_CACHE set.
2928  *
2929  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2930  *	an existing buffer.
2931  *
2932  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2933  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2934  *	and then cleared based on the backing VM.  If the previous buffer is
2935  *	non-0-sized but invalid, B_CACHE will be cleared.
2936  *
2937  *	If getblk() must create a new buffer, the new buffer is returned with
2938  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2939  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2940  *	backing VM.
2941  *
2942  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2943  *	B_CACHE bit is clear.
2944  *
2945  *	What this means, basically, is that the caller should use B_CACHE to
2946  *	determine whether the buffer is fully valid or not and should clear
2947  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2948  *	the buffer by loading its data area with something, the caller needs
2949  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2950  *	the caller should set B_CACHE ( as an optimization ), else the caller
2951  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2952  *	a write attempt or if it was a successfull read.  If the caller
2953  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2954  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2955  *
2956  *	getblk flags:
2957  *
2958  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2959  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2960  *
2961  * MPALMOSTSAFE
2962  */
2963 struct buf *
2964 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2965 {
2966 	struct buf *bp;
2967 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2968 	int error;
2969 	int lkflags;
2970 
2971 	if (size > MAXBSIZE)
2972 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2973 	if (vp->v_object == NULL)
2974 		panic("getblk: vnode %p has no object!", vp);
2975 
2976 loop:
2977 	if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2978 		/*
2979 		 * The buffer was found in the cache, but we need to lock it.
2980 		 * We must acquire a ref on the bp to prevent reuse, but
2981 		 * this will not prevent disassociation (brelvp()) so we
2982 		 * must recheck (vp,loffset) after acquiring the lock.
2983 		 *
2984 		 * Without the ref the buffer could potentially be reused
2985 		 * before we acquire the lock and create a deadlock
2986 		 * situation between the thread trying to reuse the buffer
2987 		 * and us due to the fact that we would wind up blocking
2988 		 * on a random (vp,loffset).
2989 		 */
2990 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2991 			if (blkflags & GETBLK_NOWAIT) {
2992 				bqdrop(bp);
2993 				return(NULL);
2994 			}
2995 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2996 			if (blkflags & GETBLK_PCATCH)
2997 				lkflags |= LK_PCATCH;
2998 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2999 			if (error) {
3000 				bqdrop(bp);
3001 				if (error == ENOLCK)
3002 					goto loop;
3003 				return (NULL);
3004 			}
3005 			/* buffer may have changed on us */
3006 		}
3007 		bqdrop(bp);
3008 
3009 		/*
3010 		 * Once the buffer has been locked, make sure we didn't race
3011 		 * a buffer recyclement.  Buffers that are no longer hashed
3012 		 * will have b_vp == NULL, so this takes care of that check
3013 		 * as well.
3014 		 */
3015 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
3016 			kprintf("Warning buffer %p (vp %p loffset %lld) "
3017 				"was recycled\n",
3018 				bp, vp, (long long)loffset);
3019 			BUF_UNLOCK(bp);
3020 			goto loop;
3021 		}
3022 
3023 		/*
3024 		 * If SZMATCH any pre-existing buffer must be of the requested
3025 		 * size or NULL is returned.  The caller absolutely does not
3026 		 * want getblk() to bwrite() the buffer on a size mismatch.
3027 		 */
3028 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
3029 			BUF_UNLOCK(bp);
3030 			return(NULL);
3031 		}
3032 
3033 		/*
3034 		 * All vnode-based buffers must be backed by a VM object.
3035 		 */
3036 		KKASSERT(bp->b_flags & B_VMIO);
3037 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3038 		bp->b_flags &= ~B_AGE;
3039 
3040 		/*
3041 		 * Make sure that B_INVAL buffers do not have a cached
3042 		 * block number translation.
3043 		 */
3044 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
3045 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
3046 				" did not have cleared bio_offset cache\n",
3047 				bp, vp, (long long)loffset);
3048 			clearbiocache(&bp->b_bio2);
3049 		}
3050 
3051 		/*
3052 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
3053 		 * invalid.
3054 		 */
3055 		if (bp->b_flags & B_INVAL)
3056 			bp->b_flags &= ~B_CACHE;
3057 		bremfree(bp);
3058 
3059 		/*
3060 		 * Any size inconsistancy with a dirty buffer or a buffer
3061 		 * with a softupdates dependancy must be resolved.  Resizing
3062 		 * the buffer in such circumstances can lead to problems.
3063 		 *
3064 		 * Dirty or dependant buffers are written synchronously.
3065 		 * Other types of buffers are simply released and
3066 		 * reconstituted as they may be backed by valid, dirty VM
3067 		 * pages (but not marked B_DELWRI).
3068 		 *
3069 		 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
3070 		 * and may be left over from a prior truncation (and thus
3071 		 * no longer represent the actual EOF point), so we
3072 		 * definitely do not want to B_NOCACHE the backing store.
3073 		 */
3074 		if (size != bp->b_bcount) {
3075 			if (bp->b_flags & B_DELWRI) {
3076 				bp->b_flags |= B_RELBUF;
3077 				bwrite(bp);
3078 			} else if (LIST_FIRST(&bp->b_dep)) {
3079 				bp->b_flags |= B_RELBUF;
3080 				bwrite(bp);
3081 			} else {
3082 				bp->b_flags |= B_RELBUF;
3083 				brelse(bp);
3084 			}
3085 			goto loop;
3086 		}
3087 		KKASSERT(size <= bp->b_kvasize);
3088 		KASSERT(bp->b_loffset != NOOFFSET,
3089 			("getblk: no buffer offset"));
3090 
3091 		/*
3092 		 * A buffer with B_DELWRI set and B_CACHE clear must
3093 		 * be committed before we can return the buffer in
3094 		 * order to prevent the caller from issuing a read
3095 		 * ( due to B_CACHE not being set ) and overwriting
3096 		 * it.
3097 		 *
3098 		 * Most callers, including NFS and FFS, need this to
3099 		 * operate properly either because they assume they
3100 		 * can issue a read if B_CACHE is not set, or because
3101 		 * ( for example ) an uncached B_DELWRI might loop due
3102 		 * to softupdates re-dirtying the buffer.  In the latter
3103 		 * case, B_CACHE is set after the first write completes,
3104 		 * preventing further loops.
3105 		 *
3106 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3107 		 * above while extending the buffer, we cannot allow the
3108 		 * buffer to remain with B_CACHE set after the write
3109 		 * completes or it will represent a corrupt state.  To
3110 		 * deal with this we set B_NOCACHE to scrap the buffer
3111 		 * after the write.
3112 		 *
3113 		 * XXX Should this be B_RELBUF instead of B_NOCACHE?
3114 		 *     I'm not even sure this state is still possible
3115 		 *     now that getblk() writes out any dirty buffers
3116 		 *     on size changes.
3117 		 *
3118 		 * We might be able to do something fancy, like setting
3119 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3120 		 * so the below call doesn't set B_CACHE, but that gets real
3121 		 * confusing.  This is much easier.
3122 		 */
3123 
3124 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3125 			kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
3126 				"and CACHE clear, b_flags %08x\n",
3127 				bp, (intmax_t)bp->b_loffset, bp->b_flags);
3128 			bp->b_flags |= B_NOCACHE;
3129 			bwrite(bp);
3130 			goto loop;
3131 		}
3132 	} else {
3133 		/*
3134 		 * Buffer is not in-core, create new buffer.  The buffer
3135 		 * returned by getnewbuf() is locked.  Note that the returned
3136 		 * buffer is also considered valid (not marked B_INVAL).
3137 		 *
3138 		 * Calculating the offset for the I/O requires figuring out
3139 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
3140 		 * the mount's f_iosize otherwise.  If the vnode does not
3141 		 * have an associated mount we assume that the passed size is
3142 		 * the block size.
3143 		 *
3144 		 * Note that vn_isdisk() cannot be used here since it may
3145 		 * return a failure for numerous reasons.   Note that the
3146 		 * buffer size may be larger then the block size (the caller
3147 		 * will use block numbers with the proper multiple).  Beware
3148 		 * of using any v_* fields which are part of unions.  In
3149 		 * particular, in DragonFly the mount point overloading
3150 		 * mechanism uses the namecache only and the underlying
3151 		 * directory vnode is not a special case.
3152 		 */
3153 		int bsize, maxsize;
3154 
3155 		if (vp->v_type == VBLK || vp->v_type == VCHR)
3156 			bsize = DEV_BSIZE;
3157 		else if (vp->v_mount)
3158 			bsize = vp->v_mount->mnt_stat.f_iosize;
3159 		else
3160 			bsize = size;
3161 
3162 		maxsize = size + (loffset & PAGE_MASK);
3163 		maxsize = imax(maxsize, bsize);
3164 
3165 		bp = getnewbuf(blkflags, slptimeo, size, maxsize);
3166 		if (bp == NULL) {
3167 			if (slpflags || slptimeo)
3168 				return NULL;
3169 			goto loop;
3170 		}
3171 
3172 		/*
3173 		 * Atomically insert the buffer into the hash, so that it can
3174 		 * be found by findblk().
3175 		 *
3176 		 * If bgetvp() returns non-zero a collision occured, and the
3177 		 * bp will not be associated with the vnode.
3178 		 *
3179 		 * Make sure the translation layer has been cleared.
3180 		 */
3181 		bp->b_loffset = loffset;
3182 		bp->b_bio2.bio_offset = NOOFFSET;
3183 		/* bp->b_bio2.bio_next = NULL; */
3184 
3185 		if (bgetvp(vp, bp, size)) {
3186 			bp->b_flags |= B_INVAL;
3187 			brelse(bp);
3188 			goto loop;
3189 		}
3190 
3191 		/*
3192 		 * All vnode-based buffers must be backed by a VM object.
3193 		 */
3194 		KKASSERT(vp->v_object != NULL);
3195 		bp->b_flags |= B_VMIO;
3196 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3197 
3198 		allocbuf(bp, size);
3199 	}
3200 	KKASSERT(dsched_is_clear_buf_priv(bp));
3201 	return (bp);
3202 }
3203 
3204 /*
3205  * regetblk(bp)
3206  *
3207  * Reacquire a buffer that was previously released to the locked queue,
3208  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3209  * set B_LOCKED (which handles the acquisition race).
3210  *
3211  * To this end, either B_LOCKED must be set or the dependancy list must be
3212  * non-empty.
3213  *
3214  * MPSAFE
3215  */
3216 void
3217 regetblk(struct buf *bp)
3218 {
3219 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3220 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3221 	bremfree(bp);
3222 }
3223 
3224 /*
3225  * geteblk:
3226  *
3227  *	Get an empty, disassociated buffer of given size.  The buffer is
3228  *	initially set to B_INVAL.
3229  *
3230  *	critical section protection is not required for the allocbuf()
3231  *	call because races are impossible here.
3232  *
3233  * MPALMOSTSAFE
3234  */
3235 struct buf *
3236 geteblk(int size)
3237 {
3238 	struct buf *bp;
3239 	int maxsize;
3240 
3241 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3242 
3243 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
3244 		;
3245 	allocbuf(bp, size);
3246 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3247 	KKASSERT(dsched_is_clear_buf_priv(bp));
3248 	return (bp);
3249 }
3250 
3251 
3252 /*
3253  * allocbuf:
3254  *
3255  *	This code constitutes the buffer memory from either anonymous system
3256  *	memory (in the case of non-VMIO operations) or from an associated
3257  *	VM object (in the case of VMIO operations).  This code is able to
3258  *	resize a buffer up or down.
3259  *
3260  *	Note that this code is tricky, and has many complications to resolve
3261  *	deadlock or inconsistant data situations.  Tread lightly!!!
3262  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
3263  *	the caller.  Calling this code willy nilly can result in the loss of
3264  *	data.
3265  *
3266  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3267  *	B_CACHE for the non-VMIO case.
3268  *
3269  *	This routine does not need to be called from a critical section but you
3270  *	must own the buffer.
3271  *
3272  * MPSAFE
3273  */
3274 int
3275 allocbuf(struct buf *bp, int size)
3276 {
3277 	int newbsize, mbsize;
3278 	int i;
3279 
3280 	if (BUF_REFCNT(bp) == 0)
3281 		panic("allocbuf: buffer not busy");
3282 
3283 	if (bp->b_kvasize < size)
3284 		panic("allocbuf: buffer too small");
3285 
3286 	if ((bp->b_flags & B_VMIO) == 0) {
3287 		caddr_t origbuf;
3288 		int origbufsize;
3289 		/*
3290 		 * Just get anonymous memory from the kernel.  Don't
3291 		 * mess with B_CACHE.
3292 		 */
3293 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3294 		if (bp->b_flags & B_MALLOC)
3295 			newbsize = mbsize;
3296 		else
3297 			newbsize = round_page(size);
3298 
3299 		if (newbsize < bp->b_bufsize) {
3300 			/*
3301 			 * Malloced buffers are not shrunk
3302 			 */
3303 			if (bp->b_flags & B_MALLOC) {
3304 				if (newbsize) {
3305 					bp->b_bcount = size;
3306 				} else {
3307 					kfree(bp->b_data, M_BIOBUF);
3308 					if (bp->b_bufsize) {
3309 						atomic_subtract_int(&bufmallocspace, bp->b_bufsize);
3310 						bufspacewakeup();
3311 						bp->b_bufsize = 0;
3312 					}
3313 					bp->b_data = bp->b_kvabase;
3314 					bp->b_bcount = 0;
3315 					bp->b_flags &= ~B_MALLOC;
3316 				}
3317 				return 1;
3318 			}
3319 			vm_hold_free_pages(
3320 			    bp,
3321 			    (vm_offset_t) bp->b_data + newbsize,
3322 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3323 		} else if (newbsize > bp->b_bufsize) {
3324 			/*
3325 			 * We only use malloced memory on the first allocation.
3326 			 * and revert to page-allocated memory when the buffer
3327 			 * grows.
3328 			 */
3329 			if ((bufmallocspace < maxbufmallocspace) &&
3330 				(bp->b_bufsize == 0) &&
3331 				(mbsize <= PAGE_SIZE/2)) {
3332 
3333 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3334 				bp->b_bufsize = mbsize;
3335 				bp->b_bcount = size;
3336 				bp->b_flags |= B_MALLOC;
3337 				atomic_add_int(&bufmallocspace, mbsize);
3338 				return 1;
3339 			}
3340 			origbuf = NULL;
3341 			origbufsize = 0;
3342 			/*
3343 			 * If the buffer is growing on its other-than-first
3344 			 * allocation, then we revert to the page-allocation
3345 			 * scheme.
3346 			 */
3347 			if (bp->b_flags & B_MALLOC) {
3348 				origbuf = bp->b_data;
3349 				origbufsize = bp->b_bufsize;
3350 				bp->b_data = bp->b_kvabase;
3351 				if (bp->b_bufsize) {
3352 					atomic_subtract_int(&bufmallocspace,
3353 							    bp->b_bufsize);
3354 					bufspacewakeup();
3355 					bp->b_bufsize = 0;
3356 				}
3357 				bp->b_flags &= ~B_MALLOC;
3358 				newbsize = round_page(newbsize);
3359 			}
3360 			vm_hold_load_pages(
3361 			    bp,
3362 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3363 			    (vm_offset_t) bp->b_data + newbsize);
3364 			if (origbuf) {
3365 				bcopy(origbuf, bp->b_data, origbufsize);
3366 				kfree(origbuf, M_BIOBUF);
3367 			}
3368 		}
3369 	} else {
3370 		vm_page_t m;
3371 		int desiredpages;
3372 
3373 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3374 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3375 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3376 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3377 
3378 		if (bp->b_flags & B_MALLOC)
3379 			panic("allocbuf: VMIO buffer can't be malloced");
3380 		/*
3381 		 * Set B_CACHE initially if buffer is 0 length or will become
3382 		 * 0-length.
3383 		 */
3384 		if (size == 0 || bp->b_bufsize == 0)
3385 			bp->b_flags |= B_CACHE;
3386 
3387 		if (newbsize < bp->b_bufsize) {
3388 			/*
3389 			 * DEV_BSIZE aligned new buffer size is less then the
3390 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3391 			 * if we have to remove any pages.
3392 			 */
3393 			if (desiredpages < bp->b_xio.xio_npages) {
3394 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3395 					/*
3396 					 * the page is not freed here -- it
3397 					 * is the responsibility of
3398 					 * vnode_pager_setsize
3399 					 */
3400 					m = bp->b_xio.xio_pages[i];
3401 					KASSERT(m != bogus_page,
3402 					    ("allocbuf: bogus page found"));
3403 					vm_page_busy_wait(m, TRUE, "biodep");
3404 					bp->b_xio.xio_pages[i] = NULL;
3405 					vm_page_unwire(m, 0);
3406 					vm_page_wakeup(m);
3407 				}
3408 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3409 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3410 				bp->b_xio.xio_npages = desiredpages;
3411 			}
3412 		} else if (size > bp->b_bcount) {
3413 			/*
3414 			 * We are growing the buffer, possibly in a
3415 			 * byte-granular fashion.
3416 			 */
3417 			struct vnode *vp;
3418 			vm_object_t obj;
3419 			vm_offset_t toff;
3420 			vm_offset_t tinc;
3421 
3422 			/*
3423 			 * Step 1, bring in the VM pages from the object,
3424 			 * allocating them if necessary.  We must clear
3425 			 * B_CACHE if these pages are not valid for the
3426 			 * range covered by the buffer.
3427 			 *
3428 			 * critical section protection is required to protect
3429 			 * against interrupts unbusying and freeing pages
3430 			 * between our vm_page_lookup() and our
3431 			 * busycheck/wiring call.
3432 			 */
3433 			vp = bp->b_vp;
3434 			obj = vp->v_object;
3435 
3436 			vm_object_hold(obj);
3437 			while (bp->b_xio.xio_npages < desiredpages) {
3438 				vm_page_t m;
3439 				vm_pindex_t pi;
3440 				int error;
3441 
3442 				pi = OFF_TO_IDX(bp->b_loffset) +
3443 				     bp->b_xio.xio_npages;
3444 
3445 				/*
3446 				 * Blocking on m->busy might lead to a
3447 				 * deadlock:
3448 				 *
3449 				 *  vm_fault->getpages->cluster_read->allocbuf
3450 				 */
3451 				m = vm_page_lookup_busy_try(obj, pi, FALSE,
3452 							    &error);
3453 				if (error) {
3454 					vm_page_sleep_busy(m, FALSE, "pgtblk");
3455 					continue;
3456 				}
3457 				if (m == NULL) {
3458 					/*
3459 					 * note: must allocate system pages
3460 					 * since blocking here could intefere
3461 					 * with paging I/O, no matter which
3462 					 * process we are.
3463 					 */
3464 					m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
3465 					if (m) {
3466 						vm_page_wire(m);
3467 						vm_page_flag_clear(m, PG_ZERO);
3468 						vm_page_wakeup(m);
3469 						bp->b_flags &= ~B_CACHE;
3470 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3471 						++bp->b_xio.xio_npages;
3472 					}
3473 					continue;
3474 				}
3475 
3476 				/*
3477 				 * We found a page and were able to busy it.
3478 				 */
3479 				vm_page_flag_clear(m, PG_ZERO);
3480 				vm_page_wire(m);
3481 				vm_page_wakeup(m);
3482 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3483 				++bp->b_xio.xio_npages;
3484 				if (bp->b_act_count < m->act_count)
3485 					bp->b_act_count = m->act_count;
3486 			}
3487 			vm_object_drop(obj);
3488 
3489 			/*
3490 			 * Step 2.  We've loaded the pages into the buffer,
3491 			 * we have to figure out if we can still have B_CACHE
3492 			 * set.  Note that B_CACHE is set according to the
3493 			 * byte-granular range ( bcount and size ), not the
3494 			 * aligned range ( newbsize ).
3495 			 *
3496 			 * The VM test is against m->valid, which is DEV_BSIZE
3497 			 * aligned.  Needless to say, the validity of the data
3498 			 * needs to also be DEV_BSIZE aligned.  Note that this
3499 			 * fails with NFS if the server or some other client
3500 			 * extends the file's EOF.  If our buffer is resized,
3501 			 * B_CACHE may remain set! XXX
3502 			 */
3503 
3504 			toff = bp->b_bcount;
3505 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3506 
3507 			while ((bp->b_flags & B_CACHE) && toff < size) {
3508 				vm_pindex_t pi;
3509 
3510 				if (tinc > (size - toff))
3511 					tinc = size - toff;
3512 
3513 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3514 				    PAGE_SHIFT;
3515 
3516 				vfs_buf_test_cache(
3517 				    bp,
3518 				    bp->b_loffset,
3519 				    toff,
3520 				    tinc,
3521 				    bp->b_xio.xio_pages[pi]
3522 				);
3523 				toff += tinc;
3524 				tinc = PAGE_SIZE;
3525 			}
3526 
3527 			/*
3528 			 * Step 3, fixup the KVM pmap.  Remember that
3529 			 * bp->b_data is relative to bp->b_loffset, but
3530 			 * bp->b_loffset may be offset into the first page.
3531 			 */
3532 
3533 			bp->b_data = (caddr_t)
3534 			    trunc_page((vm_offset_t)bp->b_data);
3535 			pmap_qenter(
3536 			    (vm_offset_t)bp->b_data,
3537 			    bp->b_xio.xio_pages,
3538 			    bp->b_xio.xio_npages
3539 			);
3540 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3541 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3542 		}
3543 	}
3544 
3545 	/* adjust space use on already-dirty buffer */
3546 	if (bp->b_flags & B_DELWRI) {
3547 		spin_lock(&bufcspin);
3548 		dirtybufspace += newbsize - bp->b_bufsize;
3549 		if (bp->b_flags & B_HEAVY)
3550 			dirtybufspacehw += newbsize - bp->b_bufsize;
3551 		spin_unlock(&bufcspin);
3552 	}
3553 	if (newbsize < bp->b_bufsize)
3554 		bufspacewakeup();
3555 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3556 	bp->b_bcount = size;		/* requested buffer size	*/
3557 	return 1;
3558 }
3559 
3560 /*
3561  * biowait:
3562  *
3563  *	Wait for buffer I/O completion, returning error status. B_EINTR
3564  *	is converted into an EINTR error but not cleared (since a chain
3565  *	of biowait() calls may occur).
3566  *
3567  *	On return bpdone() will have been called but the buffer will remain
3568  *	locked and will not have been brelse()'d.
3569  *
3570  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3571  *	likely still in progress on return.
3572  *
3573  *	NOTE!  This operation is on a BIO, not a BUF.
3574  *
3575  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3576  *
3577  * MPSAFE
3578  */
3579 static __inline int
3580 _biowait(struct bio *bio, const char *wmesg, int to)
3581 {
3582 	struct buf *bp = bio->bio_buf;
3583 	u_int32_t flags;
3584 	u_int32_t nflags;
3585 	int error;
3586 
3587 	KKASSERT(bio == &bp->b_bio1);
3588 	for (;;) {
3589 		flags = bio->bio_flags;
3590 		if (flags & BIO_DONE)
3591 			break;
3592 		nflags = flags | BIO_WANT;
3593 		tsleep_interlock(bio, 0);
3594 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3595 			if (wmesg)
3596 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3597 			else if (bp->b_cmd == BUF_CMD_READ)
3598 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3599 			else
3600 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3601 			if (error) {
3602 				kprintf("tsleep error biowait %d\n", error);
3603 				return (error);
3604 			}
3605 		}
3606 	}
3607 
3608 	/*
3609 	 * Finish up.
3610 	 */
3611 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3612 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3613 	if (bp->b_flags & B_EINTR)
3614 		return (EINTR);
3615 	if (bp->b_flags & B_ERROR)
3616 		return (bp->b_error ? bp->b_error : EIO);
3617 	return (0);
3618 }
3619 
3620 int
3621 biowait(struct bio *bio, const char *wmesg)
3622 {
3623 	return(_biowait(bio, wmesg, 0));
3624 }
3625 
3626 int
3627 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3628 {
3629 	return(_biowait(bio, wmesg, to));
3630 }
3631 
3632 /*
3633  * This associates a tracking count with an I/O.  vn_strategy() and
3634  * dev_dstrategy() do this automatically but there are a few cases
3635  * where a vnode or device layer is bypassed when a block translation
3636  * is cached.  In such cases bio_start_transaction() may be called on
3637  * the bypassed layers so the system gets an I/O in progress indication
3638  * for those higher layers.
3639  */
3640 void
3641 bio_start_transaction(struct bio *bio, struct bio_track *track)
3642 {
3643 	bio->bio_track = track;
3644 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3645 		dsched_new_buf(bio->bio_buf);
3646 	bio_track_ref(track);
3647 }
3648 
3649 /*
3650  * Initiate I/O on a vnode.
3651  *
3652  * SWAPCACHE OPERATION:
3653  *
3654  *	Real buffer cache buffers have a non-NULL bp->b_vp.  Unfortunately
3655  *	devfs also uses b_vp for fake buffers so we also have to check
3656  *	that B_PAGING is 0.  In this case the passed 'vp' is probably the
3657  *	underlying block device.  The swap assignments are related to the
3658  *	buffer cache buffer's b_vp, not the passed vp.
3659  *
3660  *	The passed vp == bp->b_vp only in the case where the strategy call
3661  *	is made on the vp itself for its own buffers (a regular file or
3662  *	block device vp).  The filesystem usually then re-calls vn_strategy()
3663  *	after translating the request to an underlying device.
3664  *
3665  *	Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3666  *	underlying buffer cache buffers.
3667  *
3668  *	We can only deal with page-aligned buffers at the moment, because
3669  *	we can't tell what the real dirty state for pages straddling a buffer
3670  *	are.
3671  *
3672  *	In order to call swap_pager_strategy() we must provide the VM object
3673  *	and base offset for the underlying buffer cache pages so it can find
3674  *	the swap blocks.
3675  */
3676 void
3677 vn_strategy(struct vnode *vp, struct bio *bio)
3678 {
3679 	struct bio_track *track;
3680 	struct buf *bp = bio->bio_buf;
3681 
3682 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3683 
3684 	/*
3685 	 * Set when an I/O is issued on the bp.  Cleared by consumers
3686 	 * (aka HAMMER), allowing the consumer to determine if I/O had
3687 	 * actually occurred.
3688 	 */
3689 	bp->b_flags |= B_IODEBUG;
3690 
3691 	/*
3692 	 * Handle the swap cache intercept.
3693 	 */
3694 	if (vn_cache_strategy(vp, bio))
3695 		return;
3696 
3697 	/*
3698 	 * Otherwise do the operation through the filesystem
3699 	 */
3700         if (bp->b_cmd == BUF_CMD_READ)
3701                 track = &vp->v_track_read;
3702         else
3703                 track = &vp->v_track_write;
3704 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3705 	bio->bio_track = track;
3706 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3707 		dsched_new_buf(bio->bio_buf);
3708 	bio_track_ref(track);
3709         vop_strategy(*vp->v_ops, vp, bio);
3710 }
3711 
3712 static void vn_cache_strategy_callback(struct bio *bio);
3713 
3714 int
3715 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3716 {
3717 	struct buf *bp = bio->bio_buf;
3718 	struct bio *nbio;
3719 	vm_object_t object;
3720 	vm_page_t m;
3721 	int i;
3722 
3723 	/*
3724 	 * Is this buffer cache buffer suitable for reading from
3725 	 * the swap cache?
3726 	 */
3727 	if (vm_swapcache_read_enable == 0 ||
3728 	    bp->b_cmd != BUF_CMD_READ ||
3729 	    ((bp->b_flags & B_CLUSTER) == 0 &&
3730 	     (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3731 	    ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3732 	    (bp->b_bcount & PAGE_MASK) != 0) {
3733 		return(0);
3734 	}
3735 
3736 	/*
3737 	 * Figure out the original VM object (it will match the underlying
3738 	 * VM pages).  Note that swap cached data uses page indices relative
3739 	 * to that object, not relative to bio->bio_offset.
3740 	 */
3741 	if (bp->b_flags & B_CLUSTER)
3742 		object = vp->v_object;
3743 	else
3744 		object = bp->b_vp->v_object;
3745 
3746 	/*
3747 	 * In order to be able to use the swap cache all underlying VM
3748 	 * pages must be marked as such, and we can't have any bogus pages.
3749 	 */
3750 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3751 		m = bp->b_xio.xio_pages[i];
3752 		if ((m->flags & PG_SWAPPED) == 0)
3753 			break;
3754 		if (m == bogus_page)
3755 			break;
3756 	}
3757 
3758 	/*
3759 	 * If we are good then issue the I/O using swap_pager_strategy().
3760 	 *
3761 	 * We can only do this if the buffer actually supports object-backed
3762 	 * I/O.  If it doesn't npages will be 0.
3763 	 */
3764 	if (i && i == bp->b_xio.xio_npages) {
3765 		m = bp->b_xio.xio_pages[0];
3766 		nbio = push_bio(bio);
3767 		nbio->bio_done = vn_cache_strategy_callback;
3768 		nbio->bio_offset = ptoa(m->pindex);
3769 		KKASSERT(m->object == object);
3770 		swap_pager_strategy(object, nbio);
3771 		return(1);
3772 	}
3773 	return(0);
3774 }
3775 
3776 /*
3777  * This is a bit of a hack but since the vn_cache_strategy() function can
3778  * override a VFS's strategy function we must make sure that the bio, which
3779  * is probably bio2, doesn't leak an unexpected offset value back to the
3780  * filesystem.  The filesystem (e.g. UFS) might otherwise assume that the
3781  * bio went through its own file strategy function and the the bio2 offset
3782  * is a cached disk offset when, in fact, it isn't.
3783  */
3784 static void
3785 vn_cache_strategy_callback(struct bio *bio)
3786 {
3787 	bio->bio_offset = NOOFFSET;
3788 	biodone(pop_bio(bio));
3789 }
3790 
3791 /*
3792  * bpdone:
3793  *
3794  *	Finish I/O on a buffer after all BIOs have been processed.
3795  *	Called when the bio chain is exhausted or by biowait.  If called
3796  *	by biowait, elseit is typically 0.
3797  *
3798  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3799  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3800  *	assuming B_INVAL is clear.
3801  *
3802  *	For the VMIO case, we set B_CACHE if the op was a read and no
3803  *	read error occured, or if the op was a write.  B_CACHE is never
3804  *	set if the buffer is invalid or otherwise uncacheable.
3805  *
3806  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3807  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3808  *	in the biodone routine.
3809  */
3810 void
3811 bpdone(struct buf *bp, int elseit)
3812 {
3813 	buf_cmd_t cmd;
3814 
3815 	KASSERT(BUF_REFCNTNB(bp) > 0,
3816 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3817 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3818 		("biodone: bp %p already done!", bp));
3819 
3820 	/*
3821 	 * No more BIOs are left.  All completion functions have been dealt
3822 	 * with, now we clean up the buffer.
3823 	 */
3824 	cmd = bp->b_cmd;
3825 	bp->b_cmd = BUF_CMD_DONE;
3826 
3827 	/*
3828 	 * Only reads and writes are processed past this point.
3829 	 */
3830 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3831 		if (cmd == BUF_CMD_FREEBLKS)
3832 			bp->b_flags |= B_NOCACHE;
3833 		if (elseit)
3834 			brelse(bp);
3835 		return;
3836 	}
3837 
3838 	/*
3839 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3840 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3841 	 */
3842 	if (LIST_FIRST(&bp->b_dep) != NULL)
3843 		buf_complete(bp);	/* MPSAFE */
3844 
3845 	/*
3846 	 * A failed write must re-dirty the buffer unless B_INVAL
3847 	 * was set.  Only applicable to normal buffers (with VPs).
3848 	 * vinum buffers may not have a vp.
3849 	 */
3850 	if (cmd == BUF_CMD_WRITE &&
3851 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3852 		bp->b_flags &= ~B_NOCACHE;
3853 		if (bp->b_vp)
3854 			bdirty(bp);
3855 	}
3856 
3857 	if (bp->b_flags & B_VMIO) {
3858 		int i;
3859 		vm_ooffset_t foff;
3860 		vm_page_t m;
3861 		vm_object_t obj;
3862 		int iosize;
3863 		struct vnode *vp = bp->b_vp;
3864 
3865 		obj = vp->v_object;
3866 
3867 #if defined(VFS_BIO_DEBUG)
3868 		if (vp->v_auxrefs == 0)
3869 			panic("biodone: zero vnode hold count");
3870 		if ((vp->v_flag & VOBJBUF) == 0)
3871 			panic("biodone: vnode is not setup for merged cache");
3872 #endif
3873 
3874 		foff = bp->b_loffset;
3875 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3876 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3877 
3878 #if defined(VFS_BIO_DEBUG)
3879 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3880 			kprintf("biodone: paging in progress(%d) < "
3881 				"bp->b_xio.xio_npages(%d)\n",
3882 				obj->paging_in_progress,
3883 				bp->b_xio.xio_npages);
3884 		}
3885 #endif
3886 
3887 		/*
3888 		 * Set B_CACHE if the op was a normal read and no error
3889 		 * occured.  B_CACHE is set for writes in the b*write()
3890 		 * routines.
3891 		 */
3892 		iosize = bp->b_bcount - bp->b_resid;
3893 		if (cmd == BUF_CMD_READ &&
3894 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3895 			bp->b_flags |= B_CACHE;
3896 		}
3897 
3898 		vm_object_hold(obj);
3899 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3900 			int bogusflag = 0;
3901 			int resid;
3902 
3903 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3904 			if (resid > iosize)
3905 				resid = iosize;
3906 
3907 			/*
3908 			 * cleanup bogus pages, restoring the originals.  Since
3909 			 * the originals should still be wired, we don't have
3910 			 * to worry about interrupt/freeing races destroying
3911 			 * the VM object association.
3912 			 */
3913 			m = bp->b_xio.xio_pages[i];
3914 			if (m == bogus_page) {
3915 				bogusflag = 1;
3916 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3917 				if (m == NULL)
3918 					panic("biodone: page disappeared");
3919 				bp->b_xio.xio_pages[i] = m;
3920 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3921 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3922 			}
3923 #if defined(VFS_BIO_DEBUG)
3924 			if (OFF_TO_IDX(foff) != m->pindex) {
3925 				kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3926 					"mismatch\n",
3927 					(unsigned long)foff, (long)m->pindex);
3928 			}
3929 #endif
3930 
3931 			/*
3932 			 * In the write case, the valid and clean bits are
3933 			 * already changed correctly (see bdwrite()), so we
3934 			 * only need to do this here in the read case.
3935 			 */
3936 			vm_page_busy_wait(m, FALSE, "bpdpgw");
3937 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3938 				vfs_clean_one_page(bp, i, m);
3939 			}
3940 			vm_page_flag_clear(m, PG_ZERO);
3941 
3942 			/*
3943 			 * when debugging new filesystems or buffer I/O
3944 			 * methods, this is the most common error that pops
3945 			 * up.  if you see this, you have not set the page
3946 			 * busy flag correctly!!!
3947 			 */
3948 			if (m->busy == 0) {
3949 				kprintf("biodone: page busy < 0, "
3950 				    "pindex: %d, foff: 0x(%x,%x), "
3951 				    "resid: %d, index: %d\n",
3952 				    (int) m->pindex, (int)(foff >> 32),
3953 						(int) foff & 0xffffffff, resid, i);
3954 				if (!vn_isdisk(vp, NULL))
3955 					kprintf(" iosize: %ld, loffset: %lld, "
3956 						"flags: 0x%08x, npages: %d\n",
3957 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3958 					    (long long)bp->b_loffset,
3959 					    bp->b_flags, bp->b_xio.xio_npages);
3960 				else
3961 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3962 					    (long long)bp->b_loffset,
3963 					    bp->b_flags, bp->b_xio.xio_npages);
3964 				kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3965 				    m->valid, m->dirty, m->wire_count);
3966 				panic("biodone: page busy < 0");
3967 			}
3968 			vm_page_io_finish(m);
3969 			vm_page_wakeup(m);
3970 			vm_object_pip_wakeup(obj);
3971 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3972 			iosize -= resid;
3973 		}
3974 		bp->b_flags &= ~B_HASBOGUS;
3975 		vm_object_drop(obj);
3976 	}
3977 
3978 	/*
3979 	 * Finish up by releasing the buffer.  There are no more synchronous
3980 	 * or asynchronous completions, those were handled by bio_done
3981 	 * callbacks.
3982 	 */
3983 	if (elseit) {
3984 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3985 			brelse(bp);
3986 		else
3987 			bqrelse(bp);
3988 	}
3989 }
3990 
3991 /*
3992  * Normal biodone.
3993  */
3994 void
3995 biodone(struct bio *bio)
3996 {
3997 	struct buf *bp = bio->bio_buf;
3998 
3999 	runningbufwakeup(bp);
4000 
4001 	/*
4002 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
4003 	 */
4004 	while (bio) {
4005 		biodone_t *done_func;
4006 		struct bio_track *track;
4007 
4008 		/*
4009 		 * BIO tracking.  Most but not all BIOs are tracked.
4010 		 */
4011 		if ((track = bio->bio_track) != NULL) {
4012 			bio_track_rel(track);
4013 			bio->bio_track = NULL;
4014 		}
4015 
4016 		/*
4017 		 * A bio_done function terminates the loop.  The function
4018 		 * will be responsible for any further chaining and/or
4019 		 * buffer management.
4020 		 *
4021 		 * WARNING!  The done function can deallocate the buffer!
4022 		 */
4023 		if ((done_func = bio->bio_done) != NULL) {
4024 			bio->bio_done = NULL;
4025 			done_func(bio);
4026 			return;
4027 		}
4028 		bio = bio->bio_prev;
4029 	}
4030 
4031 	/*
4032 	 * If we've run out of bio's do normal [a]synchronous completion.
4033 	 */
4034 	bpdone(bp, 1);
4035 }
4036 
4037 /*
4038  * Synchronous biodone - this terminates a synchronous BIO.
4039  *
4040  * bpdone() is called with elseit=FALSE, leaving the buffer completed
4041  * but still locked.  The caller must brelse() the buffer after waiting
4042  * for completion.
4043  */
4044 void
4045 biodone_sync(struct bio *bio)
4046 {
4047 	struct buf *bp = bio->bio_buf;
4048 	int flags;
4049 	int nflags;
4050 
4051 	KKASSERT(bio == &bp->b_bio1);
4052 	bpdone(bp, 0);
4053 
4054 	for (;;) {
4055 		flags = bio->bio_flags;
4056 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
4057 
4058 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
4059 			if (flags & BIO_WANT)
4060 				wakeup(bio);
4061 			break;
4062 		}
4063 	}
4064 }
4065 
4066 /*
4067  * vfs_unbusy_pages:
4068  *
4069  *	This routine is called in lieu of iodone in the case of
4070  *	incomplete I/O.  This keeps the busy status for pages
4071  *	consistant.
4072  */
4073 void
4074 vfs_unbusy_pages(struct buf *bp)
4075 {
4076 	int i;
4077 
4078 	runningbufwakeup(bp);
4079 
4080 	if (bp->b_flags & B_VMIO) {
4081 		struct vnode *vp = bp->b_vp;
4082 		vm_object_t obj;
4083 
4084 		obj = vp->v_object;
4085 		vm_object_hold(obj);
4086 
4087 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4088 			vm_page_t m = bp->b_xio.xio_pages[i];
4089 
4090 			/*
4091 			 * When restoring bogus changes the original pages
4092 			 * should still be wired, so we are in no danger of
4093 			 * losing the object association and do not need
4094 			 * critical section protection particularly.
4095 			 */
4096 			if (m == bogus_page) {
4097 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
4098 				if (!m) {
4099 					panic("vfs_unbusy_pages: page missing");
4100 				}
4101 				bp->b_xio.xio_pages[i] = m;
4102 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4103 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4104 			}
4105 			vm_page_busy_wait(m, FALSE, "bpdpgw");
4106 			vm_page_flag_clear(m, PG_ZERO);
4107 			vm_page_io_finish(m);
4108 			vm_page_wakeup(m);
4109 			vm_object_pip_wakeup(obj);
4110 		}
4111 		bp->b_flags &= ~B_HASBOGUS;
4112 		vm_object_drop(obj);
4113 	}
4114 }
4115 
4116 /*
4117  * vfs_busy_pages:
4118  *
4119  *	This routine is called before a device strategy routine.
4120  *	It is used to tell the VM system that paging I/O is in
4121  *	progress, and treat the pages associated with the buffer
4122  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
4123  *	flag is handled to make sure that the object doesn't become
4124  *	inconsistant.
4125  *
4126  *	Since I/O has not been initiated yet, certain buffer flags
4127  *	such as B_ERROR or B_INVAL may be in an inconsistant state
4128  *	and should be ignored.
4129  *
4130  * MPSAFE
4131  */
4132 void
4133 vfs_busy_pages(struct vnode *vp, struct buf *bp)
4134 {
4135 	int i, bogus;
4136 	struct lwp *lp = curthread->td_lwp;
4137 
4138 	/*
4139 	 * The buffer's I/O command must already be set.  If reading,
4140 	 * B_CACHE must be 0 (double check against callers only doing
4141 	 * I/O when B_CACHE is 0).
4142 	 */
4143 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4144 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
4145 
4146 	if (bp->b_flags & B_VMIO) {
4147 		vm_object_t obj;
4148 
4149 		obj = vp->v_object;
4150 		KASSERT(bp->b_loffset != NOOFFSET,
4151 			("vfs_busy_pages: no buffer offset"));
4152 
4153 		/*
4154 		 * Busy all the pages.  We have to busy them all at once
4155 		 * to avoid deadlocks.
4156 		 */
4157 retry:
4158 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4159 			vm_page_t m = bp->b_xio.xio_pages[i];
4160 
4161 			if (vm_page_busy_try(m, FALSE)) {
4162 				vm_page_sleep_busy(m, FALSE, "vbpage");
4163 				while (--i >= 0)
4164 					vm_page_wakeup(bp->b_xio.xio_pages[i]);
4165 				goto retry;
4166 			}
4167 		}
4168 
4169 		/*
4170 		 * Setup for I/O, soft-busy the page right now because
4171 		 * the next loop may block.
4172 		 */
4173 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4174 			vm_page_t m = bp->b_xio.xio_pages[i];
4175 
4176 			vm_page_flag_clear(m, PG_ZERO);
4177 			if ((bp->b_flags & B_CLUSTER) == 0) {
4178 				vm_object_pip_add(obj, 1);
4179 				vm_page_io_start(m);
4180 			}
4181 		}
4182 
4183 		/*
4184 		 * Adjust protections for I/O and do bogus-page mapping.
4185 		 * Assume that vm_page_protect() can block (it can block
4186 		 * if VM_PROT_NONE, don't take any chances regardless).
4187 		 *
4188 		 * In particular note that for writes we must incorporate
4189 		 * page dirtyness from the VM system into the buffer's
4190 		 * dirty range.
4191 		 *
4192 		 * For reads we theoretically must incorporate page dirtyness
4193 		 * from the VM system to determine if the page needs bogus
4194 		 * replacement, but we shortcut the test by simply checking
4195 		 * that all m->valid bits are set, indicating that the page
4196 		 * is fully valid and does not need to be re-read.  For any
4197 		 * VM system dirtyness the page will also be fully valid
4198 		 * since it was mapped at one point.
4199 		 */
4200 		bogus = 0;
4201 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4202 			vm_page_t m = bp->b_xio.xio_pages[i];
4203 
4204 			vm_page_flag_clear(m, PG_ZERO);	/* XXX */
4205 			if (bp->b_cmd == BUF_CMD_WRITE) {
4206 				/*
4207 				 * When readying a vnode-backed buffer for
4208 				 * a write we must zero-fill any invalid
4209 				 * portions of the backing VM pages, mark
4210 				 * it valid and clear related dirty bits.
4211 				 *
4212 				 * vfs_clean_one_page() incorporates any
4213 				 * VM dirtyness and updates the b_dirtyoff
4214 				 * range (after we've made the page RO).
4215 				 *
4216 				 * It is also expected that the pmap modified
4217 				 * bit has already been cleared by the
4218 				 * vm_page_protect().  We may not be able
4219 				 * to clear all dirty bits for a page if it
4220 				 * was also memory mapped (NFS).
4221 				 *
4222 				 * Finally be sure to unassign any swap-cache
4223 				 * backing store as it is now stale.
4224 				 */
4225 				vm_page_protect(m, VM_PROT_READ);
4226 				vfs_clean_one_page(bp, i, m);
4227 				swap_pager_unswapped(m);
4228 			} else if (m->valid == VM_PAGE_BITS_ALL) {
4229 				/*
4230 				 * When readying a vnode-backed buffer for
4231 				 * read we must replace any dirty pages with
4232 				 * a bogus page so dirty data is not destroyed
4233 				 * when filling gaps.
4234 				 *
4235 				 * To avoid testing whether the page is
4236 				 * dirty we instead test that the page was
4237 				 * at some point mapped (m->valid fully
4238 				 * valid) with the understanding that
4239 				 * this also covers the dirty case.
4240 				 */
4241 				bp->b_xio.xio_pages[i] = bogus_page;
4242 				bp->b_flags |= B_HASBOGUS;
4243 				bogus++;
4244 			} else if (m->valid & m->dirty) {
4245 				/*
4246 				 * This case should not occur as partial
4247 				 * dirtyment can only happen if the buffer
4248 				 * is B_CACHE, and this code is not entered
4249 				 * if the buffer is B_CACHE.
4250 				 */
4251 				kprintf("Warning: vfs_busy_pages - page not "
4252 					"fully valid! loff=%jx bpf=%08x "
4253 					"idx=%d val=%02x dir=%02x\n",
4254 					(intmax_t)bp->b_loffset, bp->b_flags,
4255 					i, m->valid, m->dirty);
4256 				vm_page_protect(m, VM_PROT_NONE);
4257 			} else {
4258 				/*
4259 				 * The page is not valid and can be made
4260 				 * part of the read.
4261 				 */
4262 				vm_page_protect(m, VM_PROT_NONE);
4263 			}
4264 			vm_page_wakeup(m);
4265 		}
4266 		if (bogus) {
4267 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4268 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4269 		}
4270 	}
4271 
4272 	/*
4273 	 * This is the easiest place to put the process accounting for the I/O
4274 	 * for now.
4275 	 */
4276 	if (lp != NULL) {
4277 		if (bp->b_cmd == BUF_CMD_READ)
4278 			lp->lwp_ru.ru_inblock++;
4279 		else
4280 			lp->lwp_ru.ru_oublock++;
4281 	}
4282 }
4283 
4284 /*
4285  * Tell the VM system that the pages associated with this buffer
4286  * are clean.  This is used for delayed writes where the data is
4287  * going to go to disk eventually without additional VM intevention.
4288  *
4289  * NOTE: While we only really need to clean through to b_bcount, we
4290  *	 just go ahead and clean through to b_bufsize.
4291  */
4292 static void
4293 vfs_clean_pages(struct buf *bp)
4294 {
4295 	vm_page_t m;
4296 	int i;
4297 
4298 	if ((bp->b_flags & B_VMIO) == 0)
4299 		return;
4300 
4301 	KASSERT(bp->b_loffset != NOOFFSET,
4302 		("vfs_clean_pages: no buffer offset"));
4303 
4304 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
4305 		m = bp->b_xio.xio_pages[i];
4306 		vfs_clean_one_page(bp, i, m);
4307 	}
4308 }
4309 
4310 /*
4311  * vfs_clean_one_page:
4312  *
4313  *	Set the valid bits and clear the dirty bits in a page within a
4314  *	buffer.  The range is restricted to the buffer's size and the
4315  *	buffer's logical offset might index into the first page.
4316  *
4317  *	The caller has busied or soft-busied the page and it is not mapped,
4318  *	test and incorporate the dirty bits into b_dirtyoff/end before
4319  *	clearing them.  Note that we need to clear the pmap modified bits
4320  *	after determining the the page was dirty, vm_page_set_validclean()
4321  *	does not do it for us.
4322  *
4323  *	This routine is typically called after a read completes (dirty should
4324  *	be zero in that case as we are not called on bogus-replace pages),
4325  *	or before a write is initiated.
4326  */
4327 static void
4328 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4329 {
4330 	int bcount;
4331 	int xoff;
4332 	int soff;
4333 	int eoff;
4334 
4335 	/*
4336 	 * Calculate offset range within the page but relative to buffer's
4337 	 * loffset.  loffset might be offset into the first page.
4338 	 */
4339 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4340 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4341 
4342 	if (pageno == 0) {
4343 		soff = xoff;
4344 		eoff = PAGE_SIZE;
4345 	} else {
4346 		soff = (pageno << PAGE_SHIFT);
4347 		eoff = soff + PAGE_SIZE;
4348 	}
4349 	if (eoff > bcount)
4350 		eoff = bcount;
4351 	if (soff >= eoff)
4352 		return;
4353 
4354 	/*
4355 	 * Test dirty bits and adjust b_dirtyoff/end.
4356 	 *
4357 	 * If dirty pages are incorporated into the bp any prior
4358 	 * B_NEEDCOMMIT state (NFS) must be cleared because the
4359 	 * caller has not taken into account the new dirty data.
4360 	 *
4361 	 * If the page was memory mapped the dirty bits might go beyond the
4362 	 * end of the buffer, but we can't really make the assumption that
4363 	 * a file EOF straddles the buffer (even though this is the case for
4364 	 * NFS if B_NEEDCOMMIT is also set).  So for the purposes of clearing
4365 	 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4366 	 * This also saves some console spam.
4367 	 *
4368 	 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4369 	 * NFS can handle huge commits but not huge writes.
4370 	 */
4371 	vm_page_test_dirty(m);
4372 	if (m->dirty) {
4373 		if ((bp->b_flags & B_NEEDCOMMIT) &&
4374 		    (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4375 			if (debug_commit)
4376 			kprintf("Warning: vfs_clean_one_page: bp %p "
4377 				"loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4378 				" cmd %d vd %02x/%02x x/s/e %d %d %d "
4379 				"doff/end %d %d\n",
4380 				bp, (intmax_t)bp->b_loffset, bp->b_bcount,
4381 				bp->b_flags, bp->b_cmd,
4382 				m->valid, m->dirty, xoff, soff, eoff,
4383 				bp->b_dirtyoff, bp->b_dirtyend);
4384 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4385 			if (debug_commit)
4386 				print_backtrace(-1);
4387 		}
4388 		/*
4389 		 * Only clear the pmap modified bits if ALL the dirty bits
4390 		 * are set, otherwise the system might mis-clear portions
4391 		 * of a page.
4392 		 */
4393 		if (m->dirty == VM_PAGE_BITS_ALL &&
4394 		    (bp->b_flags & B_NEEDCOMMIT) == 0) {
4395 			pmap_clear_modify(m);
4396 		}
4397 		if (bp->b_dirtyoff > soff - xoff)
4398 			bp->b_dirtyoff = soff - xoff;
4399 		if (bp->b_dirtyend < eoff - xoff)
4400 			bp->b_dirtyend = eoff - xoff;
4401 	}
4402 
4403 	/*
4404 	 * Set related valid bits, clear related dirty bits.
4405 	 * Does not mess with the pmap modified bit.
4406 	 *
4407 	 * WARNING!  We cannot just clear all of m->dirty here as the
4408 	 *	     buffer cache buffers may use a DEV_BSIZE'd aligned
4409 	 *	     block size, or have an odd size (e.g. NFS at file EOF).
4410 	 *	     The putpages code can clear m->dirty to 0.
4411 	 *
4412 	 *	     If a VOP_WRITE generates a buffer cache buffer which
4413 	 *	     covers the same space as mapped writable pages the
4414 	 *	     buffer flush might not be able to clear all the dirty
4415 	 *	     bits and still require a putpages from the VM system
4416 	 *	     to finish it off.
4417 	 *
4418 	 * WARNING!  vm_page_set_validclean() currently assumes vm_token
4419 	 *	     is held.  The page might not be busied (bdwrite() case).
4420 	 *	     XXX remove this comment once we've validated that this
4421 	 *	     is no longer an issue.
4422 	 */
4423 	vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4424 }
4425 
4426 /*
4427  * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4428  * The page data is assumed to be valid (there is no zeroing here).
4429  */
4430 static void
4431 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4432 {
4433 	int bcount;
4434 	int xoff;
4435 	int soff;
4436 	int eoff;
4437 
4438 	/*
4439 	 * Calculate offset range within the page but relative to buffer's
4440 	 * loffset.  loffset might be offset into the first page.
4441 	 */
4442 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4443 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4444 
4445 	if (pageno == 0) {
4446 		soff = xoff;
4447 		eoff = PAGE_SIZE;
4448 	} else {
4449 		soff = (pageno << PAGE_SHIFT);
4450 		eoff = soff + PAGE_SIZE;
4451 	}
4452 	if (eoff > bcount)
4453 		eoff = bcount;
4454 	if (soff >= eoff)
4455 		return;
4456 	vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4457 }
4458 
4459 /*
4460  * vfs_bio_clrbuf:
4461  *
4462  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
4463  *	to clear B_ERROR and B_INVAL.
4464  *
4465  *	Note that while we only theoretically need to clear through b_bcount,
4466  *	we go ahead and clear through b_bufsize.
4467  */
4468 
4469 void
4470 vfs_bio_clrbuf(struct buf *bp)
4471 {
4472 	int i, mask = 0;
4473 	caddr_t sa, ea;
4474 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4475 		bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4476 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4477 		    (bp->b_loffset & PAGE_MASK) == 0) {
4478 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4479 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4480 				bp->b_resid = 0;
4481 				return;
4482 			}
4483 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
4484 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
4485 				bzero(bp->b_data, bp->b_bufsize);
4486 				bp->b_xio.xio_pages[0]->valid |= mask;
4487 				bp->b_resid = 0;
4488 				return;
4489 			}
4490 		}
4491 		sa = bp->b_data;
4492 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4493 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4494 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4495 			ea = (caddr_t)(vm_offset_t)ulmin(
4496 			    (u_long)(vm_offset_t)ea,
4497 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4498 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4499 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4500 				continue;
4501 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4502 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
4503 					bzero(sa, ea - sa);
4504 				}
4505 			} else {
4506 				for (; sa < ea; sa += DEV_BSIZE, j++) {
4507 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
4508 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
4509 						bzero(sa, DEV_BSIZE);
4510 				}
4511 			}
4512 			bp->b_xio.xio_pages[i]->valid |= mask;
4513 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4514 		}
4515 		bp->b_resid = 0;
4516 	} else {
4517 		clrbuf(bp);
4518 	}
4519 }
4520 
4521 /*
4522  * vm_hold_load_pages:
4523  *
4524  *	Load pages into the buffer's address space.  The pages are
4525  *	allocated from the kernel object in order to reduce interference
4526  *	with the any VM paging I/O activity.  The range of loaded
4527  *	pages will be wired.
4528  *
4529  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
4530  *	retrieve the full range (to - from) of pages.
4531  *
4532  * MPSAFE
4533  */
4534 void
4535 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4536 {
4537 	vm_offset_t pg;
4538 	vm_page_t p;
4539 	int index;
4540 
4541 	to = round_page(to);
4542 	from = round_page(from);
4543 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4544 
4545 	pg = from;
4546 	while (pg < to) {
4547 		/*
4548 		 * Note: must allocate system pages since blocking here
4549 		 * could intefere with paging I/O, no matter which
4550 		 * process we are.
4551 		 */
4552 		vm_object_hold(&kernel_object);
4553 		p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
4554 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4555 		vm_object_drop(&kernel_object);
4556 		if (p) {
4557 			vm_page_wire(p);
4558 			p->valid = VM_PAGE_BITS_ALL;
4559 			vm_page_flag_clear(p, PG_ZERO);
4560 			pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4561 			bp->b_xio.xio_pages[index] = p;
4562 			vm_page_wakeup(p);
4563 
4564 			pg += PAGE_SIZE;
4565 			++index;
4566 		}
4567 	}
4568 	bp->b_xio.xio_npages = index;
4569 }
4570 
4571 /*
4572  * Allocate pages for a buffer cache buffer.
4573  *
4574  * Under extremely severe memory conditions even allocating out of the
4575  * system reserve can fail.  If this occurs we must allocate out of the
4576  * interrupt reserve to avoid a deadlock with the pageout daemon.
4577  *
4578  * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf).
4579  * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock
4580  * against the pageout daemon if pages are not freed from other sources.
4581  *
4582  * If NULL is returned the caller is expected to retry (typically check if
4583  * the page already exists on retry before trying to allocate one).
4584  */
4585 static
4586 vm_page_t
4587 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
4588 {
4589 	vm_page_t p;
4590 
4591 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj));
4592 
4593 	/*
4594 	 * Try a normal allocation, allow use of system reserve.
4595 	 */
4596 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
4597 				   VM_ALLOC_NULL_OK);
4598 	if (p)
4599 		return(p);
4600 
4601 	/*
4602 	 * The normal allocation failed and we clearly have a page
4603 	 * deficit.  Try to reclaim some clean VM pages directly
4604 	 * from the buffer cache.
4605 	 */
4606 	vm_pageout_deficit += deficit;
4607 	recoverbufpages();
4608 
4609 	/*
4610 	 * We may have blocked, the caller will know what to do if the
4611 	 * page now exists.
4612 	 */
4613 	if (vm_page_lookup(obj, pg)) {
4614 		return(NULL);
4615 	}
4616 
4617 	/*
4618 	 * Only system threads can use the interrupt reserve
4619 	 */
4620 	if ((curthread->td_flags & TDF_SYSTHREAD) == 0) {
4621 		vm_wait(hz);
4622 		return(NULL);
4623 	}
4624 
4625 
4626 	/*
4627 	 * Allocate and allow use of the interrupt reserve.
4628 	 *
4629 	 * If after all that we still can't allocate a VM page we are
4630 	 * in real trouble, but we slog on anyway hoping that the system
4631 	 * won't deadlock.
4632 	 */
4633 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
4634 				   VM_ALLOC_INTERRUPT | VM_ALLOC_NULL_OK);
4635 	if (p) {
4636 		if (vm_page_count_severe()) {
4637 			++lowmempgallocs;
4638 			vm_wait(hz / 20 + 1);
4639 		}
4640 	} else if (vm_page_lookup(obj, pg) == NULL) {
4641 		kprintf("bio_page_alloc: Memory exhausted during bufcache "
4642 			"page allocation\n");
4643 		++lowmempgfails;
4644 		vm_wait(hz);
4645 	}
4646 	return(p);
4647 }
4648 
4649 /*
4650  * vm_hold_free_pages:
4651  *
4652  *	Return pages associated with the buffer back to the VM system.
4653  *
4654  *	The range of pages underlying the buffer's address space will
4655  *	be unmapped and un-wired.
4656  *
4657  * MPSAFE
4658  */
4659 void
4660 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4661 {
4662 	vm_offset_t pg;
4663 	vm_page_t p;
4664 	int index, newnpages;
4665 
4666 	from = round_page(from);
4667 	to = round_page(to);
4668 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4669 	newnpages = index;
4670 
4671 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4672 		p = bp->b_xio.xio_pages[index];
4673 		if (p && (index < bp->b_xio.xio_npages)) {
4674 			if (p->busy) {
4675 				kprintf("vm_hold_free_pages: doffset: %lld, "
4676 					"loffset: %lld\n",
4677 					(long long)bp->b_bio2.bio_offset,
4678 					(long long)bp->b_loffset);
4679 			}
4680 			bp->b_xio.xio_pages[index] = NULL;
4681 			pmap_kremove(pg);
4682 			vm_page_busy_wait(p, FALSE, "vmhldpg");
4683 			vm_page_unwire(p, 0);
4684 			vm_page_free(p);
4685 		}
4686 	}
4687 	bp->b_xio.xio_npages = newnpages;
4688 }
4689 
4690 /*
4691  * vmapbuf:
4692  *
4693  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
4694  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4695  *	initialized.
4696  */
4697 int
4698 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4699 {
4700 	caddr_t addr;
4701 	vm_offset_t va;
4702 	vm_page_t m;
4703 	int vmprot;
4704 	int error;
4705 	int pidx;
4706 	int i;
4707 
4708 	/*
4709 	 * bp had better have a command and it better be a pbuf.
4710 	 */
4711 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4712 	KKASSERT(bp->b_flags & B_PAGING);
4713 	KKASSERT(bp->b_kvabase);
4714 
4715 	if (bytes < 0)
4716 		return (-1);
4717 
4718 	/*
4719 	 * Map the user data into KVM.  Mappings have to be page-aligned.
4720 	 */
4721 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
4722 	pidx = 0;
4723 
4724 	vmprot = VM_PROT_READ;
4725 	if (bp->b_cmd == BUF_CMD_READ)
4726 		vmprot |= VM_PROT_WRITE;
4727 
4728 	while (addr < udata + bytes) {
4729 		/*
4730 		 * Do the vm_fault if needed; do the copy-on-write thing
4731 		 * when reading stuff off device into memory.
4732 		 *
4733 		 * vm_fault_page*() returns a held VM page.
4734 		 */
4735 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4736 		va = trunc_page(va);
4737 
4738 		m = vm_fault_page_quick(va, vmprot, &error);
4739 		if (m == NULL) {
4740 			for (i = 0; i < pidx; ++i) {
4741 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
4742 			    bp->b_xio.xio_pages[i] = NULL;
4743 			}
4744 			return(-1);
4745 		}
4746 		bp->b_xio.xio_pages[pidx] = m;
4747 		addr += PAGE_SIZE;
4748 		++pidx;
4749 	}
4750 
4751 	/*
4752 	 * Map the page array and set the buffer fields to point to
4753 	 * the mapped data buffer.
4754 	 */
4755 	if (pidx > btoc(MAXPHYS))
4756 		panic("vmapbuf: mapped more than MAXPHYS");
4757 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4758 
4759 	bp->b_xio.xio_npages = pidx;
4760 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4761 	bp->b_bcount = bytes;
4762 	bp->b_bufsize = bytes;
4763 	return(0);
4764 }
4765 
4766 /*
4767  * vunmapbuf:
4768  *
4769  *	Free the io map PTEs associated with this IO operation.
4770  *	We also invalidate the TLB entries and restore the original b_addr.
4771  */
4772 void
4773 vunmapbuf(struct buf *bp)
4774 {
4775 	int pidx;
4776 	int npages;
4777 
4778 	KKASSERT(bp->b_flags & B_PAGING);
4779 
4780 	npages = bp->b_xio.xio_npages;
4781 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4782 	for (pidx = 0; pidx < npages; ++pidx) {
4783 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4784 		bp->b_xio.xio_pages[pidx] = NULL;
4785 	}
4786 	bp->b_xio.xio_npages = 0;
4787 	bp->b_data = bp->b_kvabase;
4788 }
4789 
4790 /*
4791  * Scan all buffers in the system and issue the callback.
4792  */
4793 int
4794 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4795 {
4796 	int count = 0;
4797 	int error;
4798 	int n;
4799 
4800 	for (n = 0; n < nbuf; ++n) {
4801 		if ((error = callback(&buf[n], info)) < 0) {
4802 			count = error;
4803 			break;
4804 		}
4805 		count += error;
4806 	}
4807 	return (count);
4808 }
4809 
4810 /*
4811  * nestiobuf_iodone: biodone callback for nested buffers and propagate
4812  * completion to the master buffer.
4813  */
4814 static void
4815 nestiobuf_iodone(struct bio *bio)
4816 {
4817 	struct bio *mbio;
4818 	struct buf *mbp, *bp;
4819 	struct devstat *stats;
4820 	int error;
4821 	int donebytes;
4822 
4823 	bp = bio->bio_buf;
4824 	mbio = bio->bio_caller_info1.ptr;
4825 	stats = bio->bio_caller_info2.ptr;
4826 	mbp = mbio->bio_buf;
4827 
4828 	KKASSERT(bp->b_bcount <= bp->b_bufsize);
4829 	KKASSERT(mbp != bp);
4830 
4831 	error = bp->b_error;
4832 	if (bp->b_error == 0 &&
4833 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4834 		/*
4835 		 * Not all got transfered, raise an error. We have no way to
4836 		 * propagate these conditions to mbp.
4837 		 */
4838 		error = EIO;
4839 	}
4840 
4841 	donebytes = bp->b_bufsize;
4842 
4843 	relpbuf(bp, NULL);
4844 
4845 	nestiobuf_done(mbio, donebytes, error, stats);
4846 }
4847 
4848 void
4849 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats)
4850 {
4851 	struct buf *mbp;
4852 
4853 	mbp = mbio->bio_buf;
4854 
4855 	KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4856 
4857 	/*
4858 	 * If an error occured, propagate it to the master buffer.
4859 	 *
4860 	 * Several biodone()s may wind up running concurrently so
4861 	 * use an atomic op to adjust b_flags.
4862 	 */
4863 	if (error) {
4864 		mbp->b_error = error;
4865 		atomic_set_int(&mbp->b_flags, B_ERROR);
4866 	}
4867 
4868 	/*
4869 	 * Decrement the operations in progress counter and terminate the
4870 	 * I/O if this was the last bit.
4871 	 */
4872 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4873 		mbp->b_resid = 0;
4874 		if (stats)
4875 			devstat_end_transaction_buf(stats, mbp);
4876 		biodone(mbio);
4877 	}
4878 }
4879 
4880 /*
4881  * Initialize a nestiobuf for use.  Set an initial count of 1 to prevent
4882  * the mbio from being biodone()'d while we are still adding sub-bios to
4883  * it.
4884  */
4885 void
4886 nestiobuf_init(struct bio *bio)
4887 {
4888 	bio->bio_driver_info = (void *)1;
4889 }
4890 
4891 /*
4892  * The BIOs added to the nestedio have already been started, remove the
4893  * count that placeheld our mbio and biodone() it if the count would
4894  * transition to 0.
4895  */
4896 void
4897 nestiobuf_start(struct bio *mbio)
4898 {
4899 	struct buf *mbp = mbio->bio_buf;
4900 
4901 	/*
4902 	 * Decrement the operations in progress counter and terminate the
4903 	 * I/O if this was the last bit.
4904 	 */
4905 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4906 		if (mbp->b_flags & B_ERROR)
4907 			mbp->b_resid = mbp->b_bcount;
4908 		else
4909 			mbp->b_resid = 0;
4910 		biodone(mbio);
4911 	}
4912 }
4913 
4914 /*
4915  * Set an intermediate error prior to calling nestiobuf_start()
4916  */
4917 void
4918 nestiobuf_error(struct bio *mbio, int error)
4919 {
4920 	struct buf *mbp = mbio->bio_buf;
4921 
4922 	if (error) {
4923 		mbp->b_error = error;
4924 		atomic_set_int(&mbp->b_flags, B_ERROR);
4925 	}
4926 }
4927 
4928 /*
4929  * nestiobuf_add: setup a "nested" buffer.
4930  *
4931  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4932  * => 'bp' should be a buffer allocated by getiobuf.
4933  * => 'offset' is a byte offset in the master buffer.
4934  * => 'size' is a size in bytes of this nested buffer.
4935  */
4936 void
4937 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats)
4938 {
4939 	struct buf *mbp = mbio->bio_buf;
4940 	struct vnode *vp = mbp->b_vp;
4941 
4942 	KKASSERT(mbp->b_bcount >= offset + size);
4943 
4944 	atomic_add_int((int *)&mbio->bio_driver_info, 1);
4945 
4946 	/* kernel needs to own the lock for it to be released in biodone */
4947 	BUF_KERNPROC(bp);
4948 	bp->b_vp = vp;
4949 	bp->b_cmd = mbp->b_cmd;
4950 	bp->b_bio1.bio_done = nestiobuf_iodone;
4951 	bp->b_data = (char *)mbp->b_data + offset;
4952 	bp->b_resid = bp->b_bcount = size;
4953 	bp->b_bufsize = bp->b_bcount;
4954 
4955 	bp->b_bio1.bio_track = NULL;
4956 	bp->b_bio1.bio_caller_info1.ptr = mbio;
4957 	bp->b_bio1.bio_caller_info2.ptr = stats;
4958 }
4959 
4960 /*
4961  * print out statistics from the current status of the buffer pool
4962  * this can be toggeled by the system control option debug.syncprt
4963  */
4964 #ifdef DEBUG
4965 void
4966 vfs_bufstats(void)
4967 {
4968         int i, j, count;
4969         struct buf *bp;
4970         struct bqueues *dp;
4971         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4972         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4973 
4974         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4975                 count = 0;
4976                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4977                         counts[j] = 0;
4978 
4979 		spin_lock(&bufqspin);
4980                 TAILQ_FOREACH(bp, dp, b_freelist) {
4981                         counts[bp->b_bufsize/PAGE_SIZE]++;
4982                         count++;
4983                 }
4984 		spin_unlock(&bufqspin);
4985 
4986                 kprintf("%s: total-%d", bname[i], count);
4987                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4988                         if (counts[j] != 0)
4989                                 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4990                 kprintf("\n");
4991         }
4992 }
4993 #endif
4994 
4995 #ifdef DDB
4996 
4997 DB_SHOW_COMMAND(buffer, db_show_buffer)
4998 {
4999 	/* get args */
5000 	struct buf *bp = (struct buf *)addr;
5001 
5002 	if (!have_addr) {
5003 		db_printf("usage: show buffer <addr>\n");
5004 		return;
5005 	}
5006 
5007 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
5008 	db_printf("b_cmd = %d\n", bp->b_cmd);
5009 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
5010 		  "b_resid = %d\n, b_data = %p, "
5011 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
5012 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
5013 		  bp->b_data,
5014 		  (long long)bp->b_bio2.bio_offset,
5015 		  (long long)(bp->b_bio2.bio_next ?
5016 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
5017 	if (bp->b_xio.xio_npages) {
5018 		int i;
5019 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
5020 			bp->b_xio.xio_npages);
5021 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
5022 			vm_page_t m;
5023 			m = bp->b_xio.xio_pages[i];
5024 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
5025 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
5026 			if ((i + 1) < bp->b_xio.xio_npages)
5027 				db_printf(",");
5028 		}
5029 		db_printf("\n");
5030 	}
5031 }
5032 #endif /* DDB */
5033