xref: /dragonfly/sys/kern/vfs_bio.c (revision dcd37f7d)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/dsched.h>
48 #include <sys/proc.h>
49 #include <vm/vm.h>
50 #include <vm/vm_param.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_pageout.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_map.h>
57 #include <vm/vm_pager.h>
58 #include <vm/swap_pager.h>
59 
60 #include <sys/buf2.h>
61 #include <sys/thread2.h>
62 #include <sys/spinlock2.h>
63 #include <sys/mplock2.h>
64 #include <vm/vm_page2.h>
65 
66 #include "opt_ddb.h"
67 #ifdef DDB
68 #include <ddb/ddb.h>
69 #endif
70 
71 /*
72  * Buffer queues.
73  */
74 enum bufq_type {
75 	BQUEUE_NONE,    	/* not on any queue */
76 	BQUEUE_LOCKED,  	/* locked buffers */
77 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
78 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
79 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
80 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
81 	BQUEUE_EMPTY,    	/* empty buffer headers */
82 
83 	BUFFER_QUEUES		/* number of buffer queues */
84 };
85 
86 typedef enum bufq_type bufq_type_t;
87 
88 #define BD_WAKE_SIZE	16384
89 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
90 
91 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
92 struct spinlock	bufspin = SPINLOCK_INITIALIZER(&bufspin);
93 
94 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
95 
96 struct buf *buf;		/* buffer header pool */
97 
98 static void vfs_clean_pages(struct buf *bp);
99 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
100 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
101 static void vfs_vmio_release(struct buf *bp);
102 static int flushbufqueues(bufq_type_t q);
103 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
104 
105 static void bd_signal(int totalspace);
106 static void buf_daemon(void);
107 static void buf_daemon_hw(void);
108 
109 /*
110  * bogus page -- for I/O to/from partially complete buffers
111  * this is a temporary solution to the problem, but it is not
112  * really that bad.  it would be better to split the buffer
113  * for input in the case of buffers partially already in memory,
114  * but the code is intricate enough already.
115  */
116 vm_page_t bogus_page;
117 
118 /*
119  * These are all static, but make the ones we export globals so we do
120  * not need to use compiler magic.
121  */
122 int bufspace, maxbufspace,
123 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
124 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
125 static int lorunningspace, hirunningspace, runningbufreq;
126 int dirtybufspace, dirtybufspacehw, lodirtybufspace, hidirtybufspace;
127 int dirtybufcount, dirtybufcounthw;
128 int runningbufspace, runningbufcount;
129 static int getnewbufcalls;
130 static int getnewbufrestarts;
131 static int recoverbufcalls;
132 static int needsbuffer;		/* locked by needsbuffer_spin */
133 static int bd_request;		/* locked by needsbuffer_spin */
134 static int bd_request_hw;	/* locked by needsbuffer_spin */
135 static u_int bd_wake_ary[BD_WAKE_SIZE];
136 static u_int bd_wake_index;
137 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
138 static struct spinlock needsbuffer_spin;
139 static int debug_commit;
140 
141 static struct thread *bufdaemon_td;
142 static struct thread *bufdaemonhw_td;
143 
144 
145 /*
146  * Sysctls for operational control of the buffer cache.
147  */
148 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
149 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
150 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
151 	"High watermark used to trigger explicit flushing of dirty buffers");
152 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
153 	"Minimum amount of buffer space required for active I/O");
154 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
155 	"Maximum amount of buffer space to usable for active I/O");
156 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
157 	"Recycle pages to active or inactive queue transition pt 0-64");
158 /*
159  * Sysctls determining current state of the buffer cache.
160  */
161 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
162 	"Total number of buffers in buffer cache");
163 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
164 	"Pending bytes of dirty buffers (all)");
165 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
166 	"Pending bytes of dirty buffers (heavy weight)");
167 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
168 	"Pending number of dirty buffers");
169 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
170 	"Pending number of dirty buffers (heavy weight)");
171 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
172 	"I/O bytes currently in progress due to asynchronous writes");
173 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
174 	"I/O buffers currently in progress due to asynchronous writes");
175 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
176 	"Hard limit on maximum amount of memory usable for buffer space");
177 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
178 	"Soft limit on maximum amount of memory usable for buffer space");
179 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
180 	"Minimum amount of memory to reserve for system buffer space");
181 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
182 	"Amount of memory available for buffers");
183 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
184 	0, "Maximum amount of memory reserved for buffers using malloc");
185 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
186 	"Amount of memory left for buffers using malloc-scheme");
187 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
188 	"New buffer header acquisition requests");
189 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
190 	0, "New buffer header acquisition restarts");
191 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
192 	"Recover VM space in an emergency");
193 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
194 	"Buffer acquisition restarts due to fragmented buffer map");
195 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
196 	"Amount of time KVA space was deallocated in an arbitrary buffer");
197 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
198 	"Amount of time buffer re-use operations were successful");
199 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
200 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
201 	"sizeof(struct buf)");
202 
203 char *buf_wmesg = BUF_WMESG;
204 
205 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
206 #define VFS_BIO_NEED_UNUSED02	0x02
207 #define VFS_BIO_NEED_UNUSED04	0x04
208 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
209 
210 /*
211  * bufspacewakeup:
212  *
213  *	Called when buffer space is potentially available for recovery.
214  *	getnewbuf() will block on this flag when it is unable to free
215  *	sufficient buffer space.  Buffer space becomes recoverable when
216  *	bp's get placed back in the queues.
217  */
218 
219 static __inline void
220 bufspacewakeup(void)
221 {
222 	/*
223 	 * If someone is waiting for BUF space, wake them up.  Even
224 	 * though we haven't freed the kva space yet, the waiting
225 	 * process will be able to now.
226 	 */
227 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
228 		spin_lock_wr(&needsbuffer_spin);
229 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
230 		spin_unlock_wr(&needsbuffer_spin);
231 		wakeup(&needsbuffer);
232 	}
233 }
234 
235 /*
236  * runningbufwakeup:
237  *
238  *	Accounting for I/O in progress.
239  *
240  */
241 static __inline void
242 runningbufwakeup(struct buf *bp)
243 {
244 	int totalspace;
245 	int limit;
246 
247 	if ((totalspace = bp->b_runningbufspace) != 0) {
248 		atomic_subtract_int(&runningbufspace, totalspace);
249 		atomic_subtract_int(&runningbufcount, 1);
250 		bp->b_runningbufspace = 0;
251 
252 		/*
253 		 * see waitrunningbufspace() for limit test.
254 		 */
255 		limit = hirunningspace * 2 / 3;
256 		if (runningbufreq && runningbufspace <= limit) {
257 			runningbufreq = 0;
258 			wakeup(&runningbufreq);
259 		}
260 		bd_signal(totalspace);
261 	}
262 }
263 
264 /*
265  * bufcountwakeup:
266  *
267  *	Called when a buffer has been added to one of the free queues to
268  *	account for the buffer and to wakeup anyone waiting for free buffers.
269  *	This typically occurs when large amounts of metadata are being handled
270  *	by the buffer cache ( else buffer space runs out first, usually ).
271  *
272  * MPSAFE
273  */
274 static __inline void
275 bufcountwakeup(void)
276 {
277 	if (needsbuffer) {
278 		spin_lock_wr(&needsbuffer_spin);
279 		needsbuffer &= ~VFS_BIO_NEED_ANY;
280 		spin_unlock_wr(&needsbuffer_spin);
281 		wakeup(&needsbuffer);
282 	}
283 }
284 
285 /*
286  * waitrunningbufspace()
287  *
288  * Wait for the amount of running I/O to drop to hirunningspace * 2 / 3.
289  * This is the point where write bursting stops so we don't want to wait
290  * for the running amount to drop below it (at least if we still want bioq
291  * to burst writes).
292  *
293  * The caller may be using this function to block in a tight loop, we
294  * must block while runningbufspace is greater then or equal to
295  * hirunningspace * 2 / 3.
296  *
297  * And even with that it may not be enough, due to the presence of
298  * B_LOCKED dirty buffers, so also wait for at least one running buffer
299  * to complete.
300  */
301 static __inline void
302 waitrunningbufspace(void)
303 {
304 	int limit = hirunningspace * 2 / 3;
305 
306 	crit_enter();
307 	if (runningbufspace > limit) {
308 		while (runningbufspace > limit) {
309 			++runningbufreq;
310 			tsleep(&runningbufreq, 0, "wdrn1", 0);
311 		}
312 	} else if (runningbufspace) {
313 		++runningbufreq;
314 		tsleep(&runningbufreq, 0, "wdrn2", 1);
315 	}
316 	crit_exit();
317 }
318 
319 /*
320  * buf_dirty_count_severe:
321  *
322  *	Return true if we have too many dirty buffers.
323  */
324 int
325 buf_dirty_count_severe(void)
326 {
327 	return (runningbufspace + dirtybufspace >= hidirtybufspace ||
328 	        dirtybufcount >= nbuf / 2);
329 }
330 
331 /*
332  * Return true if the amount of running I/O is severe and BIOQ should
333  * start bursting.
334  */
335 int
336 buf_runningbufspace_severe(void)
337 {
338 	return (runningbufspace >= hirunningspace * 2 / 3);
339 }
340 
341 /*
342  * vfs_buf_test_cache:
343  *
344  * Called when a buffer is extended.  This function clears the B_CACHE
345  * bit if the newly extended portion of the buffer does not contain
346  * valid data.
347  *
348  * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
349  * cache buffers.  The VM pages remain dirty, as someone had mmap()'d
350  * them while a clean buffer was present.
351  */
352 static __inline__
353 void
354 vfs_buf_test_cache(struct buf *bp,
355 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
356 		  vm_page_t m)
357 {
358 	if (bp->b_flags & B_CACHE) {
359 		int base = (foff + off) & PAGE_MASK;
360 		if (vm_page_is_valid(m, base, size) == 0)
361 			bp->b_flags &= ~B_CACHE;
362 	}
363 }
364 
365 /*
366  * bd_speedup()
367  *
368  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
369  * low water mark.
370  *
371  * MPSAFE
372  */
373 static __inline__
374 void
375 bd_speedup(void)
376 {
377 	if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
378 		return;
379 
380 	if (bd_request == 0 &&
381 	    (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
382 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
383 		spin_lock_wr(&needsbuffer_spin);
384 		bd_request = 1;
385 		spin_unlock_wr(&needsbuffer_spin);
386 		wakeup(&bd_request);
387 	}
388 	if (bd_request_hw == 0 &&
389 	    (dirtybufspacehw > lodirtybufspace / 2 ||
390 	     dirtybufcounthw >= nbuf / 2)) {
391 		spin_lock_wr(&needsbuffer_spin);
392 		bd_request_hw = 1;
393 		spin_unlock_wr(&needsbuffer_spin);
394 		wakeup(&bd_request_hw);
395 	}
396 }
397 
398 /*
399  * bd_heatup()
400  *
401  *	Get the buf_daemon heated up when the number of running and dirty
402  *	buffers exceeds the mid-point.
403  *
404  *	Return the total number of dirty bytes past the second mid point
405  *	as a measure of how much excess dirty data there is in the system.
406  *
407  * MPSAFE
408  */
409 int
410 bd_heatup(void)
411 {
412 	int mid1;
413 	int mid2;
414 	int totalspace;
415 
416 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
417 
418 	totalspace = runningbufspace + dirtybufspace;
419 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
420 		bd_speedup();
421 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
422 		if (totalspace >= mid2)
423 			return(totalspace - mid2);
424 	}
425 	return(0);
426 }
427 
428 /*
429  * bd_wait()
430  *
431  *	Wait for the buffer cache to flush (totalspace) bytes worth of
432  *	buffers, then return.
433  *
434  *	Regardless this function blocks while the number of dirty buffers
435  *	exceeds hidirtybufspace.
436  *
437  * MPSAFE
438  */
439 void
440 bd_wait(int totalspace)
441 {
442 	u_int i;
443 	int count;
444 
445 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
446 		return;
447 
448 	while (totalspace > 0) {
449 		bd_heatup();
450 		if (totalspace > runningbufspace + dirtybufspace)
451 			totalspace = runningbufspace + dirtybufspace;
452 		count = totalspace / BKVASIZE;
453 		if (count >= BD_WAKE_SIZE)
454 			count = BD_WAKE_SIZE - 1;
455 
456 		spin_lock_wr(&needsbuffer_spin);
457 		i = (bd_wake_index + count) & BD_WAKE_MASK;
458 		++bd_wake_ary[i];
459 		tsleep_interlock(&bd_wake_ary[i], 0);
460 		spin_unlock_wr(&needsbuffer_spin);
461 		tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz);
462 
463 		totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
464 	}
465 }
466 
467 /*
468  * bd_signal()
469  *
470  *	This function is called whenever runningbufspace or dirtybufspace
471  *	is reduced.  Track threads waiting for run+dirty buffer I/O
472  *	complete.
473  *
474  * MPSAFE
475  */
476 static void
477 bd_signal(int totalspace)
478 {
479 	u_int i;
480 
481 	if (totalspace > 0) {
482 		if (totalspace > BKVASIZE * BD_WAKE_SIZE)
483 			totalspace = BKVASIZE * BD_WAKE_SIZE;
484 		spin_lock_wr(&needsbuffer_spin);
485 		while (totalspace > 0) {
486 			i = bd_wake_index++;
487 			i &= BD_WAKE_MASK;
488 			if (bd_wake_ary[i]) {
489 				bd_wake_ary[i] = 0;
490 				spin_unlock_wr(&needsbuffer_spin);
491 				wakeup(&bd_wake_ary[i]);
492 				spin_lock_wr(&needsbuffer_spin);
493 			}
494 			totalspace -= BKVASIZE;
495 		}
496 		spin_unlock_wr(&needsbuffer_spin);
497 	}
498 }
499 
500 /*
501  * BIO tracking support routines.
502  *
503  * Release a ref on a bio_track.  Wakeup requests are atomically released
504  * along with the last reference so bk_active will never wind up set to
505  * only 0x80000000.
506  *
507  * MPSAFE
508  */
509 static
510 void
511 bio_track_rel(struct bio_track *track)
512 {
513 	int	active;
514 	int	desired;
515 
516 	/*
517 	 * Shortcut
518 	 */
519 	active = track->bk_active;
520 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
521 		return;
522 
523 	/*
524 	 * Full-on.  Note that the wait flag is only atomically released on
525 	 * the 1->0 count transition.
526 	 *
527 	 * We check for a negative count transition using bit 30 since bit 31
528 	 * has a different meaning.
529 	 */
530 	for (;;) {
531 		desired = (active & 0x7FFFFFFF) - 1;
532 		if (desired)
533 			desired |= active & 0x80000000;
534 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
535 			if (desired & 0x40000000)
536 				panic("bio_track_rel: bad count: %p\n", track);
537 			if (active & 0x80000000)
538 				wakeup(track);
539 			break;
540 		}
541 		active = track->bk_active;
542 	}
543 }
544 
545 /*
546  * Wait for the tracking count to reach 0.
547  *
548  * Use atomic ops such that the wait flag is only set atomically when
549  * bk_active is non-zero.
550  *
551  * MPSAFE
552  */
553 int
554 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
555 {
556 	int	active;
557 	int	desired;
558 	int	error;
559 
560 	/*
561 	 * Shortcut
562 	 */
563 	if (track->bk_active == 0)
564 		return(0);
565 
566 	/*
567 	 * Full-on.  Note that the wait flag may only be atomically set if
568 	 * the active count is non-zero.
569 	 */
570 	error = 0;
571 	while ((active = track->bk_active) != 0) {
572 		desired = active | 0x80000000;
573 		tsleep_interlock(track, slp_flags);
574 		if (active == desired ||
575 		    atomic_cmpset_int(&track->bk_active, active, desired)) {
576 			error = tsleep(track, slp_flags | PINTERLOCKED,
577 				       "iowait", slp_timo);
578 			if (error)
579 				break;
580 		}
581 	}
582 	return (error);
583 }
584 
585 /*
586  * bufinit:
587  *
588  *	Load time initialisation of the buffer cache, called from machine
589  *	dependant initialization code.
590  */
591 void
592 bufinit(void)
593 {
594 	struct buf *bp;
595 	vm_offset_t bogus_offset;
596 	int i;
597 
598 	spin_init(&needsbuffer_spin);
599 
600 	/* next, make a null set of free lists */
601 	for (i = 0; i < BUFFER_QUEUES; i++)
602 		TAILQ_INIT(&bufqueues[i]);
603 
604 	/* finally, initialize each buffer header and stick on empty q */
605 	for (i = 0; i < nbuf; i++) {
606 		bp = &buf[i];
607 		bzero(bp, sizeof *bp);
608 		bp->b_flags = B_INVAL;	/* we're just an empty header */
609 		bp->b_cmd = BUF_CMD_DONE;
610 		bp->b_qindex = BQUEUE_EMPTY;
611 		initbufbio(bp);
612 		xio_init(&bp->b_xio);
613 		buf_dep_init(bp);
614 		BUF_LOCKINIT(bp);
615 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
616 	}
617 
618 	/*
619 	 * maxbufspace is the absolute maximum amount of buffer space we are
620 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
621 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
622 	 * used by most other processes.  The differential is required to
623 	 * ensure that buf_daemon is able to run when other processes might
624 	 * be blocked waiting for buffer space.
625 	 *
626 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
627 	 * this may result in KVM fragmentation which is not handled optimally
628 	 * by the system.
629 	 */
630 	maxbufspace = nbuf * BKVASIZE;
631 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
632 	lobufspace = hibufspace - MAXBSIZE;
633 
634 	lorunningspace = 512 * 1024;
635 	/* hirunningspace -- see below */
636 
637 	/*
638 	 * Limit the amount of malloc memory since it is wired permanently
639 	 * into the kernel space.  Even though this is accounted for in
640 	 * the buffer allocation, we don't want the malloced region to grow
641 	 * uncontrolled.  The malloc scheme improves memory utilization
642 	 * significantly on average (small) directories.
643 	 */
644 	maxbufmallocspace = hibufspace / 20;
645 
646 	/*
647 	 * Reduce the chance of a deadlock occuring by limiting the number
648 	 * of delayed-write dirty buffers we allow to stack up.
649 	 *
650 	 * We don't want too much actually queued to the device at once
651 	 * (XXX this needs to be per-mount!), because the buffers will
652 	 * wind up locked for a very long period of time while the I/O
653 	 * drains.
654 	 */
655 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
656 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
657 	if (hirunningspace < 1024 * 1024)
658 		hirunningspace = 1024 * 1024;
659 
660 	dirtybufspace = 0;
661 	dirtybufspacehw = 0;
662 
663 	lodirtybufspace = hidirtybufspace / 2;
664 
665 	/*
666 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
667 	 * somewhat of a hack at the moment, we really need to limit ourselves
668 	 * based on the number of bytes of I/O in-transit that were initiated
669 	 * from buf_daemon.
670 	 */
671 
672 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
673 	bogus_page = vm_page_alloc(&kernel_object,
674 				   (bogus_offset >> PAGE_SHIFT),
675 				   VM_ALLOC_NORMAL);
676 	vmstats.v_wire_count++;
677 
678 }
679 
680 /*
681  * Initialize the embedded bio structures
682  */
683 void
684 initbufbio(struct buf *bp)
685 {
686 	bp->b_bio1.bio_buf = bp;
687 	bp->b_bio1.bio_prev = NULL;
688 	bp->b_bio1.bio_offset = NOOFFSET;
689 	bp->b_bio1.bio_next = &bp->b_bio2;
690 	bp->b_bio1.bio_done = NULL;
691 	bp->b_bio1.bio_flags = 0;
692 
693 	bp->b_bio2.bio_buf = bp;
694 	bp->b_bio2.bio_prev = &bp->b_bio1;
695 	bp->b_bio2.bio_offset = NOOFFSET;
696 	bp->b_bio2.bio_next = NULL;
697 	bp->b_bio2.bio_done = NULL;
698 	bp->b_bio2.bio_flags = 0;
699 }
700 
701 /*
702  * Reinitialize the embedded bio structures as well as any additional
703  * translation cache layers.
704  */
705 void
706 reinitbufbio(struct buf *bp)
707 {
708 	struct bio *bio;
709 
710 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
711 		bio->bio_done = NULL;
712 		bio->bio_offset = NOOFFSET;
713 	}
714 }
715 
716 /*
717  * Push another BIO layer onto an existing BIO and return it.  The new
718  * BIO layer may already exist, holding cached translation data.
719  */
720 struct bio *
721 push_bio(struct bio *bio)
722 {
723 	struct bio *nbio;
724 
725 	if ((nbio = bio->bio_next) == NULL) {
726 		int index = bio - &bio->bio_buf->b_bio_array[0];
727 		if (index >= NBUF_BIO - 1) {
728 			panic("push_bio: too many layers bp %p\n",
729 				bio->bio_buf);
730 		}
731 		nbio = &bio->bio_buf->b_bio_array[index + 1];
732 		bio->bio_next = nbio;
733 		nbio->bio_prev = bio;
734 		nbio->bio_buf = bio->bio_buf;
735 		nbio->bio_offset = NOOFFSET;
736 		nbio->bio_done = NULL;
737 		nbio->bio_next = NULL;
738 	}
739 	KKASSERT(nbio->bio_done == NULL);
740 	return(nbio);
741 }
742 
743 /*
744  * Pop a BIO translation layer, returning the previous layer.  The
745  * must have been previously pushed.
746  */
747 struct bio *
748 pop_bio(struct bio *bio)
749 {
750 	return(bio->bio_prev);
751 }
752 
753 void
754 clearbiocache(struct bio *bio)
755 {
756 	while (bio) {
757 		bio->bio_offset = NOOFFSET;
758 		bio = bio->bio_next;
759 	}
760 }
761 
762 /*
763  * bfreekva:
764  *
765  *	Free the KVA allocation for buffer 'bp'.
766  *
767  *	Must be called from a critical section as this is the only locking for
768  *	buffer_map.
769  *
770  *	Since this call frees up buffer space, we call bufspacewakeup().
771  *
772  * MPALMOSTSAFE
773  */
774 static void
775 bfreekva(struct buf *bp)
776 {
777 	int count;
778 
779 	if (bp->b_kvasize) {
780 		get_mplock();
781 		++buffreekvacnt;
782 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
783 		vm_map_lock(&buffer_map);
784 		bufspace -= bp->b_kvasize;
785 		vm_map_delete(&buffer_map,
786 		    (vm_offset_t) bp->b_kvabase,
787 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
788 		    &count
789 		);
790 		vm_map_unlock(&buffer_map);
791 		vm_map_entry_release(count);
792 		bp->b_kvasize = 0;
793 		bufspacewakeup();
794 		rel_mplock();
795 	}
796 }
797 
798 /*
799  * bremfree:
800  *
801  *	Remove the buffer from the appropriate free list.
802  */
803 static __inline void
804 _bremfree(struct buf *bp)
805 {
806 	if (bp->b_qindex != BQUEUE_NONE) {
807 		KASSERT(BUF_REFCNTNB(bp) == 1,
808 				("bremfree: bp %p not locked",bp));
809 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
810 		bp->b_qindex = BQUEUE_NONE;
811 	} else {
812 		if (BUF_REFCNTNB(bp) <= 1)
813 			panic("bremfree: removing a buffer not on a queue");
814 	}
815 }
816 
817 void
818 bremfree(struct buf *bp)
819 {
820 	spin_lock_wr(&bufspin);
821 	_bremfree(bp);
822 	spin_unlock_wr(&bufspin);
823 }
824 
825 static void
826 bremfree_locked(struct buf *bp)
827 {
828 	_bremfree(bp);
829 }
830 
831 /*
832  * bread:
833  *
834  *	Get a buffer with the specified data.  Look in the cache first.  We
835  *	must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
836  *	is set, the buffer is valid and we do not have to do anything ( see
837  *	getblk() ).
838  *
839  * MPALMOSTSAFE
840  */
841 int
842 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
843 {
844 	struct buf *bp;
845 
846 	bp = getblk(vp, loffset, size, 0, 0);
847 	*bpp = bp;
848 
849 	/* if not found in cache, do some I/O */
850 	if ((bp->b_flags & B_CACHE) == 0) {
851 		get_mplock();
852 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
853 		bp->b_cmd = BUF_CMD_READ;
854 		bp->b_bio1.bio_done = biodone_sync;
855 		bp->b_bio1.bio_flags |= BIO_SYNC;
856 		vfs_busy_pages(vp, bp);
857 		vn_strategy(vp, &bp->b_bio1);
858 		rel_mplock();
859 		return (biowait(&bp->b_bio1, "biord"));
860 	}
861 	return (0);
862 }
863 
864 /*
865  * breadn:
866  *
867  *	Operates like bread, but also starts asynchronous I/O on
868  *	read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
869  *	to initiating I/O . If B_CACHE is set, the buffer is valid
870  *	and we do not have to do anything.
871  *
872  * MPALMOSTSAFE
873  */
874 int
875 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
876 	int *rabsize, int cnt, struct buf **bpp)
877 {
878 	struct buf *bp, *rabp;
879 	int i;
880 	int rv = 0, readwait = 0;
881 
882 	*bpp = bp = getblk(vp, loffset, size, 0, 0);
883 
884 	/* if not found in cache, do some I/O */
885 	if ((bp->b_flags & B_CACHE) == 0) {
886 		get_mplock();
887 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
888 		bp->b_cmd = BUF_CMD_READ;
889 		bp->b_bio1.bio_done = biodone_sync;
890 		bp->b_bio1.bio_flags |= BIO_SYNC;
891 		vfs_busy_pages(vp, bp);
892 		vn_strategy(vp, &bp->b_bio1);
893 		++readwait;
894 		rel_mplock();
895 	}
896 
897 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
898 		if (inmem(vp, *raoffset))
899 			continue;
900 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
901 
902 		if ((rabp->b_flags & B_CACHE) == 0) {
903 			get_mplock();
904 			rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
905 			rabp->b_cmd = BUF_CMD_READ;
906 			vfs_busy_pages(vp, rabp);
907 			BUF_KERNPROC(rabp);
908 			vn_strategy(vp, &rabp->b_bio1);
909 			rel_mplock();
910 		} else {
911 			brelse(rabp);
912 		}
913 	}
914 	if (readwait)
915 		rv = biowait(&bp->b_bio1, "biord");
916 	return (rv);
917 }
918 
919 /*
920  * bwrite:
921  *
922  *	Synchronous write, waits for completion.
923  *
924  *	Write, release buffer on completion.  (Done by iodone
925  *	if async).  Do not bother writing anything if the buffer
926  *	is invalid.
927  *
928  *	Note that we set B_CACHE here, indicating that buffer is
929  *	fully valid and thus cacheable.  This is true even of NFS
930  *	now so we set it generally.  This could be set either here
931  *	or in biodone() since the I/O is synchronous.  We put it
932  *	here.
933  */
934 int
935 bwrite(struct buf *bp)
936 {
937 	int error;
938 
939 	if (bp->b_flags & B_INVAL) {
940 		brelse(bp);
941 		return (0);
942 	}
943 	if (BUF_REFCNTNB(bp) == 0)
944 		panic("bwrite: buffer is not busy???");
945 
946 	/* Mark the buffer clean */
947 	bundirty(bp);
948 
949 	bp->b_flags &= ~(B_ERROR | B_EINTR);
950 	bp->b_flags |= B_CACHE;
951 	bp->b_cmd = BUF_CMD_WRITE;
952 	bp->b_bio1.bio_done = biodone_sync;
953 	bp->b_bio1.bio_flags |= BIO_SYNC;
954 	vfs_busy_pages(bp->b_vp, bp);
955 
956 	/*
957 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
958 	 * valid for vnode-backed buffers.
959 	 */
960 	bp->b_runningbufspace = bp->b_bufsize;
961 	if (bp->b_runningbufspace) {
962 		runningbufspace += bp->b_runningbufspace;
963 		++runningbufcount;
964 	}
965 
966 	vn_strategy(bp->b_vp, &bp->b_bio1);
967 	error = biowait(&bp->b_bio1, "biows");
968 	brelse(bp);
969 	return (error);
970 }
971 
972 /*
973  * bawrite:
974  *
975  *	Asynchronous write.  Start output on a buffer, but do not wait for
976  *	it to complete.  The buffer is released when the output completes.
977  *
978  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
979  *	B_INVAL buffers.  Not us.
980  */
981 void
982 bawrite(struct buf *bp)
983 {
984 	if (bp->b_flags & B_INVAL) {
985 		brelse(bp);
986 		return;
987 	}
988 	if (BUF_REFCNTNB(bp) == 0)
989 		panic("bwrite: buffer is not busy???");
990 
991 	/* Mark the buffer clean */
992 	bundirty(bp);
993 
994 	bp->b_flags &= ~(B_ERROR | B_EINTR);
995 	bp->b_flags |= B_CACHE;
996 	bp->b_cmd = BUF_CMD_WRITE;
997 	KKASSERT(bp->b_bio1.bio_done == NULL);
998 	vfs_busy_pages(bp->b_vp, bp);
999 
1000 	/*
1001 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1002 	 * valid for vnode-backed buffers.
1003 	 */
1004 	bp->b_runningbufspace = bp->b_bufsize;
1005 	if (bp->b_runningbufspace) {
1006 		runningbufspace += bp->b_runningbufspace;
1007 		++runningbufcount;
1008 	}
1009 
1010 	BUF_KERNPROC(bp);
1011 	vn_strategy(bp->b_vp, &bp->b_bio1);
1012 }
1013 
1014 /*
1015  * bowrite:
1016  *
1017  *	Ordered write.  Start output on a buffer, and flag it so that the
1018  *	device will write it in the order it was queued.  The buffer is
1019  *	released when the output completes.  bwrite() ( or the VOP routine
1020  *	anyway ) is responsible for handling B_INVAL buffers.
1021  */
1022 int
1023 bowrite(struct buf *bp)
1024 {
1025 	bp->b_flags |= B_ORDERED;
1026 	bawrite(bp);
1027 	return (0);
1028 }
1029 
1030 /*
1031  * bdwrite:
1032  *
1033  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1034  *	anything if the buffer is marked invalid.
1035  *
1036  *	Note that since the buffer must be completely valid, we can safely
1037  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1038  *	biodone() in order to prevent getblk from writing the buffer
1039  *	out synchronously.
1040  */
1041 void
1042 bdwrite(struct buf *bp)
1043 {
1044 	if (BUF_REFCNTNB(bp) == 0)
1045 		panic("bdwrite: buffer is not busy");
1046 
1047 	if (bp->b_flags & B_INVAL) {
1048 		brelse(bp);
1049 		return;
1050 	}
1051 	bdirty(bp);
1052 
1053 	if (dsched_is_clear_buf_priv(bp))
1054 		dsched_new_buf(bp);
1055 
1056 	/*
1057 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1058 	 * true even of NFS now.
1059 	 */
1060 	bp->b_flags |= B_CACHE;
1061 
1062 	/*
1063 	 * This bmap keeps the system from needing to do the bmap later,
1064 	 * perhaps when the system is attempting to do a sync.  Since it
1065 	 * is likely that the indirect block -- or whatever other datastructure
1066 	 * that the filesystem needs is still in memory now, it is a good
1067 	 * thing to do this.  Note also, that if the pageout daemon is
1068 	 * requesting a sync -- there might not be enough memory to do
1069 	 * the bmap then...  So, this is important to do.
1070 	 */
1071 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1072 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1073 			 NULL, NULL, BUF_CMD_WRITE);
1074 	}
1075 
1076 	/*
1077 	 * Because the underlying pages may still be mapped and
1078 	 * writable trying to set the dirty buffer (b_dirtyoff/end)
1079 	 * range here will be inaccurate.
1080 	 *
1081 	 * However, we must still clean the pages to satisfy the
1082 	 * vnode_pager and pageout daemon, so theythink the pages
1083 	 * have been "cleaned".  What has really occured is that
1084 	 * they've been earmarked for later writing by the buffer
1085 	 * cache.
1086 	 *
1087 	 * So we get the b_dirtyoff/end update but will not actually
1088 	 * depend on it (NFS that is) until the pages are busied for
1089 	 * writing later on.
1090 	 */
1091 	vfs_clean_pages(bp);
1092 	bqrelse(bp);
1093 
1094 	/*
1095 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1096 	 * due to the softdep code.
1097 	 */
1098 }
1099 
1100 /*
1101  * Fake write - return pages to VM system as dirty, leave the buffer clean.
1102  * This is used by tmpfs.
1103  *
1104  * It is important for any VFS using this routine to NOT use it for
1105  * IO_SYNC or IO_ASYNC operations which occur when the system really
1106  * wants to flush VM pages to backing store.
1107  */
1108 void
1109 buwrite(struct buf *bp)
1110 {
1111 	vm_page_t m;
1112 	int i;
1113 
1114 	/*
1115 	 * Only works for VMIO buffers.  If the buffer is already
1116 	 * marked for delayed-write we can't avoid the bdwrite().
1117 	 */
1118 	if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1119 		bdwrite(bp);
1120 		return;
1121 	}
1122 
1123 	/*
1124 	 * Set valid & dirty.
1125 	 */
1126 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1127 		m = bp->b_xio.xio_pages[i];
1128 		vfs_dirty_one_page(bp, i, m);
1129 	}
1130 	bqrelse(bp);
1131 }
1132 
1133 /*
1134  * bdirty:
1135  *
1136  *	Turn buffer into delayed write request by marking it B_DELWRI.
1137  *	B_RELBUF and B_NOCACHE must be cleared.
1138  *
1139  *	We reassign the buffer to itself to properly update it in the
1140  *	dirty/clean lists.
1141  *
1142  *	Must be called from a critical section.
1143  *	The buffer must be on BQUEUE_NONE.
1144  */
1145 void
1146 bdirty(struct buf *bp)
1147 {
1148 	KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1149 	if (bp->b_flags & B_NOCACHE) {
1150 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1151 		bp->b_flags &= ~B_NOCACHE;
1152 	}
1153 	if (bp->b_flags & B_INVAL) {
1154 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1155 	}
1156 	bp->b_flags &= ~B_RELBUF;
1157 
1158 	if ((bp->b_flags & B_DELWRI) == 0) {
1159 		bp->b_flags |= B_DELWRI;
1160 		reassignbuf(bp);
1161 		atomic_add_int(&dirtybufcount, 1);
1162 		dirtybufspace += bp->b_bufsize;
1163 		if (bp->b_flags & B_HEAVY) {
1164 			atomic_add_int(&dirtybufcounthw, 1);
1165 			atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1166 		}
1167 		bd_heatup();
1168 	}
1169 }
1170 
1171 /*
1172  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1173  * needs to be flushed with a different buf_daemon thread to avoid
1174  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1175  */
1176 void
1177 bheavy(struct buf *bp)
1178 {
1179 	if ((bp->b_flags & B_HEAVY) == 0) {
1180 		bp->b_flags |= B_HEAVY;
1181 		if (bp->b_flags & B_DELWRI) {
1182 			atomic_add_int(&dirtybufcounthw, 1);
1183 			atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1184 		}
1185 	}
1186 }
1187 
1188 /*
1189  * bundirty:
1190  *
1191  *	Clear B_DELWRI for buffer.
1192  *
1193  *	Must be called from a critical section.
1194  *
1195  *	The buffer is typically on BQUEUE_NONE but there is one case in
1196  *	brelse() that calls this function after placing the buffer on
1197  *	a different queue.
1198  *
1199  * MPSAFE
1200  */
1201 void
1202 bundirty(struct buf *bp)
1203 {
1204 	if (bp->b_flags & B_DELWRI) {
1205 		bp->b_flags &= ~B_DELWRI;
1206 		reassignbuf(bp);
1207 		atomic_subtract_int(&dirtybufcount, 1);
1208 		atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1209 		if (bp->b_flags & B_HEAVY) {
1210 			atomic_subtract_int(&dirtybufcounthw, 1);
1211 			atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1212 		}
1213 		bd_signal(bp->b_bufsize);
1214 	}
1215 	/*
1216 	 * Since it is now being written, we can clear its deferred write flag.
1217 	 */
1218 	bp->b_flags &= ~B_DEFERRED;
1219 }
1220 
1221 /*
1222  * brelse:
1223  *
1224  *	Release a busy buffer and, if requested, free its resources.  The
1225  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1226  *	to be accessed later as a cache entity or reused for other purposes.
1227  *
1228  * MPALMOSTSAFE
1229  */
1230 void
1231 brelse(struct buf *bp)
1232 {
1233 #ifdef INVARIANTS
1234 	int saved_flags = bp->b_flags;
1235 #endif
1236 
1237 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1238 
1239 	/*
1240 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1241 	 * its backing store.  Clear B_DELWRI.
1242 	 *
1243 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1244 	 * to destroy the buffer and backing store and (2) when the caller
1245 	 * wants to destroy the buffer and backing store after a write
1246 	 * completes.
1247 	 */
1248 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1249 		bundirty(bp);
1250 	}
1251 
1252 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1253 		/*
1254 		 * A re-dirtied buffer is only subject to destruction
1255 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1256 		 */
1257 		/* leave buffer intact */
1258 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1259 		   (bp->b_bufsize <= 0)) {
1260 		/*
1261 		 * Either a failed read or we were asked to free or not
1262 		 * cache the buffer.  This path is reached with B_DELWRI
1263 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1264 		 * backing store destruction.
1265 		 *
1266 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1267 		 * buffer cannot be immediately freed.
1268 		 */
1269 		bp->b_flags |= B_INVAL;
1270 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1271 			get_mplock();
1272 			buf_deallocate(bp);
1273 			rel_mplock();
1274 		}
1275 		if (bp->b_flags & B_DELWRI) {
1276 			atomic_subtract_int(&dirtybufcount, 1);
1277 			atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1278 			if (bp->b_flags & B_HEAVY) {
1279 				atomic_subtract_int(&dirtybufcounthw, 1);
1280 				atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1281 			}
1282 			bd_signal(bp->b_bufsize);
1283 		}
1284 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1285 	}
1286 
1287 	/*
1288 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1289 	 * If vfs_vmio_release() is called with either bit set, the
1290 	 * underlying pages may wind up getting freed causing a previous
1291 	 * write (bdwrite()) to get 'lost' because pages associated with
1292 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1293 	 * B_LOCKED buffer may be mapped by the filesystem.
1294 	 *
1295 	 * If we want to release the buffer ourselves (rather then the
1296 	 * originator asking us to release it), give the originator a
1297 	 * chance to countermand the release by setting B_LOCKED.
1298 	 *
1299 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1300 	 * if B_DELWRI is set.
1301 	 *
1302 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1303 	 * on pages to return pages to the VM page queues.
1304 	 */
1305 	if (bp->b_flags & (B_DELWRI | B_LOCKED)) {
1306 		bp->b_flags &= ~B_RELBUF;
1307 	} else if (vm_page_count_severe()) {
1308 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1309 			get_mplock();
1310 			buf_deallocate(bp);		/* can set B_LOCKED */
1311 			rel_mplock();
1312 		}
1313 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1314 			bp->b_flags &= ~B_RELBUF;
1315 		else
1316 			bp->b_flags |= B_RELBUF;
1317 	}
1318 
1319 	/*
1320 	 * Make sure b_cmd is clear.  It may have already been cleared by
1321 	 * biodone().
1322 	 *
1323 	 * At this point destroying the buffer is governed by the B_INVAL
1324 	 * or B_RELBUF flags.
1325 	 */
1326 	bp->b_cmd = BUF_CMD_DONE;
1327 	dsched_exit_buf(bp);
1328 
1329 	/*
1330 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1331 	 * after an I/O may have replaces some of the pages with bogus pages
1332 	 * in order to not destroy dirty pages in a fill-in read.
1333 	 *
1334 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1335 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1336 	 * B_INVAL may still be set, however.
1337 	 *
1338 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1339 	 * but not the backing store.   B_NOCACHE will destroy the backing
1340 	 * store.
1341 	 *
1342 	 * Note that dirty NFS buffers contain byte-granular write ranges
1343 	 * and should not be destroyed w/ B_INVAL even if the backing store
1344 	 * is left intact.
1345 	 */
1346 	if (bp->b_flags & B_VMIO) {
1347 		/*
1348 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1349 		 */
1350 		int i, j, resid;
1351 		vm_page_t m;
1352 		off_t foff;
1353 		vm_pindex_t poff;
1354 		vm_object_t obj;
1355 		struct vnode *vp;
1356 
1357 		vp = bp->b_vp;
1358 
1359 		/*
1360 		 * Get the base offset and length of the buffer.  Note that
1361 		 * in the VMIO case if the buffer block size is not
1362 		 * page-aligned then b_data pointer may not be page-aligned.
1363 		 * But our b_xio.xio_pages array *IS* page aligned.
1364 		 *
1365 		 * block sizes less then DEV_BSIZE (usually 512) are not
1366 		 * supported due to the page granularity bits (m->valid,
1367 		 * m->dirty, etc...).
1368 		 *
1369 		 * See man buf(9) for more information
1370 		 */
1371 
1372 		resid = bp->b_bufsize;
1373 		foff = bp->b_loffset;
1374 
1375 		get_mplock();
1376 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1377 			m = bp->b_xio.xio_pages[i];
1378 			vm_page_flag_clear(m, PG_ZERO);
1379 			/*
1380 			 * If we hit a bogus page, fixup *all* of them
1381 			 * now.  Note that we left these pages wired
1382 			 * when we removed them so they had better exist,
1383 			 * and they cannot be ripped out from under us so
1384 			 * no critical section protection is necessary.
1385 			 */
1386 			if (m == bogus_page) {
1387 				obj = vp->v_object;
1388 				poff = OFF_TO_IDX(bp->b_loffset);
1389 
1390 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1391 					vm_page_t mtmp;
1392 
1393 					mtmp = bp->b_xio.xio_pages[j];
1394 					if (mtmp == bogus_page) {
1395 						mtmp = vm_page_lookup(obj, poff + j);
1396 						if (!mtmp) {
1397 							panic("brelse: page missing");
1398 						}
1399 						bp->b_xio.xio_pages[j] = mtmp;
1400 					}
1401 				}
1402 
1403 				if ((bp->b_flags & B_INVAL) == 0) {
1404 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1405 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1406 				}
1407 				m = bp->b_xio.xio_pages[i];
1408 			}
1409 
1410 			/*
1411 			 * Invalidate the backing store if B_NOCACHE is set
1412 			 * (e.g. used with vinvalbuf()).  If this is NFS
1413 			 * we impose a requirement that the block size be
1414 			 * a multiple of PAGE_SIZE and create a temporary
1415 			 * hack to basically invalidate the whole page.  The
1416 			 * problem is that NFS uses really odd buffer sizes
1417 			 * especially when tracking piecemeal writes and
1418 			 * it also vinvalbuf()'s a lot, which would result
1419 			 * in only partial page validation and invalidation
1420 			 * here.  If the file page is mmap()'d, however,
1421 			 * all the valid bits get set so after we invalidate
1422 			 * here we would end up with weird m->valid values
1423 			 * like 0xfc.  nfs_getpages() can't handle this so
1424 			 * we clear all the valid bits for the NFS case
1425 			 * instead of just some of them.
1426 			 *
1427 			 * The real bug is the VM system having to set m->valid
1428 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1429 			 * itself is an artifact of the whole 512-byte
1430 			 * granular mess that exists to support odd block
1431 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1432 			 * A complete rewrite is required.
1433 			 *
1434 			 * XXX
1435 			 */
1436 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1437 				int poffset = foff & PAGE_MASK;
1438 				int presid;
1439 
1440 				presid = PAGE_SIZE - poffset;
1441 				if (bp->b_vp->v_tag == VT_NFS &&
1442 				    bp->b_vp->v_type == VREG) {
1443 					; /* entire page */
1444 				} else if (presid > resid) {
1445 					presid = resid;
1446 				}
1447 				KASSERT(presid >= 0, ("brelse: extra page"));
1448 				vm_page_set_invalid(m, poffset, presid);
1449 
1450 				/*
1451 				 * Also make sure any swap cache is removed
1452 				 * as it is now stale (HAMMER in particular
1453 				 * uses B_NOCACHE to deal with buffer
1454 				 * aliasing).
1455 				 */
1456 				swap_pager_unswapped(m);
1457 			}
1458 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1459 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1460 		}
1461 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1462 			vfs_vmio_release(bp);
1463 		rel_mplock();
1464 	} else {
1465 		/*
1466 		 * Rundown for non-VMIO buffers.
1467 		 */
1468 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1469 			get_mplock();
1470 			if (bp->b_bufsize)
1471 				allocbuf(bp, 0);
1472 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1473 			if (bp->b_vp)
1474 				brelvp(bp);
1475 			rel_mplock();
1476 		}
1477 	}
1478 
1479 	if (bp->b_qindex != BQUEUE_NONE)
1480 		panic("brelse: free buffer onto another queue???");
1481 	if (BUF_REFCNTNB(bp) > 1) {
1482 		/* Temporary panic to verify exclusive locking */
1483 		/* This panic goes away when we allow shared refs */
1484 		panic("brelse: multiple refs");
1485 		/* NOT REACHED */
1486 		return;
1487 	}
1488 
1489 	/*
1490 	 * Figure out the correct queue to place the cleaned up buffer on.
1491 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1492 	 * disassociated from their vnode.
1493 	 */
1494 	spin_lock_wr(&bufspin);
1495 	if (bp->b_flags & B_LOCKED) {
1496 		/*
1497 		 * Buffers that are locked are placed in the locked queue
1498 		 * immediately, regardless of their state.
1499 		 */
1500 		bp->b_qindex = BQUEUE_LOCKED;
1501 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1502 	} else if (bp->b_bufsize == 0) {
1503 		/*
1504 		 * Buffers with no memory.  Due to conditionals near the top
1505 		 * of brelse() such buffers should probably already be
1506 		 * marked B_INVAL and disassociated from their vnode.
1507 		 */
1508 		bp->b_flags |= B_INVAL;
1509 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1510 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1511 		if (bp->b_kvasize) {
1512 			bp->b_qindex = BQUEUE_EMPTYKVA;
1513 		} else {
1514 			bp->b_qindex = BQUEUE_EMPTY;
1515 		}
1516 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1517 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1518 		/*
1519 		 * Buffers with junk contents.   Again these buffers had better
1520 		 * already be disassociated from their vnode.
1521 		 */
1522 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1523 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1524 		bp->b_flags |= B_INVAL;
1525 		bp->b_qindex = BQUEUE_CLEAN;
1526 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1527 	} else {
1528 		/*
1529 		 * Remaining buffers.  These buffers are still associated with
1530 		 * their vnode.
1531 		 */
1532 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1533 		case B_DELWRI:
1534 		    bp->b_qindex = BQUEUE_DIRTY;
1535 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1536 		    break;
1537 		case B_DELWRI | B_HEAVY:
1538 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1539 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1540 				      b_freelist);
1541 		    break;
1542 		default:
1543 		    /*
1544 		     * NOTE: Buffers are always placed at the end of the
1545 		     * queue.  If B_AGE is not set the buffer will cycle
1546 		     * through the queue twice.
1547 		     */
1548 		    bp->b_qindex = BQUEUE_CLEAN;
1549 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1550 		    break;
1551 		}
1552 	}
1553 	spin_unlock_wr(&bufspin);
1554 
1555 	/*
1556 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1557 	 * on the correct queue.
1558 	 */
1559 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1560 		bundirty(bp);
1561 
1562 	/*
1563 	 * The bp is on an appropriate queue unless locked.  If it is not
1564 	 * locked or dirty we can wakeup threads waiting for buffer space.
1565 	 *
1566 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1567 	 * if B_INVAL is set ).
1568 	 */
1569 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1570 		bufcountwakeup();
1571 
1572 	/*
1573 	 * Something we can maybe free or reuse
1574 	 */
1575 	if (bp->b_bufsize || bp->b_kvasize)
1576 		bufspacewakeup();
1577 
1578 	/*
1579 	 * Clean up temporary flags and unlock the buffer.
1580 	 */
1581 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1582 	BUF_UNLOCK(bp);
1583 }
1584 
1585 /*
1586  * bqrelse:
1587  *
1588  *	Release a buffer back to the appropriate queue but do not try to free
1589  *	it.  The buffer is expected to be used again soon.
1590  *
1591  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1592  *	biodone() to requeue an async I/O on completion.  It is also used when
1593  *	known good buffers need to be requeued but we think we may need the data
1594  *	again soon.
1595  *
1596  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1597  *
1598  * MPSAFE
1599  */
1600 void
1601 bqrelse(struct buf *bp)
1602 {
1603 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1604 
1605 	if (bp->b_qindex != BQUEUE_NONE)
1606 		panic("bqrelse: free buffer onto another queue???");
1607 	if (BUF_REFCNTNB(bp) > 1) {
1608 		/* do not release to free list */
1609 		panic("bqrelse: multiple refs");
1610 		return;
1611 	}
1612 
1613 	buf_act_advance(bp);
1614 
1615 	spin_lock_wr(&bufspin);
1616 	if (bp->b_flags & B_LOCKED) {
1617 		/*
1618 		 * Locked buffers are released to the locked queue.  However,
1619 		 * if the buffer is dirty it will first go into the dirty
1620 		 * queue and later on after the I/O completes successfully it
1621 		 * will be released to the locked queue.
1622 		 */
1623 		bp->b_qindex = BQUEUE_LOCKED;
1624 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1625 	} else if (bp->b_flags & B_DELWRI) {
1626 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1627 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1628 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1629 	} else if (vm_page_count_severe()) {
1630 		/*
1631 		 * We are too low on memory, we have to try to free the
1632 		 * buffer (most importantly: the wired pages making up its
1633 		 * backing store) *now*.
1634 		 */
1635 		spin_unlock_wr(&bufspin);
1636 		brelse(bp);
1637 		return;
1638 	} else {
1639 		bp->b_qindex = BQUEUE_CLEAN;
1640 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1641 	}
1642 	spin_unlock_wr(&bufspin);
1643 
1644 	if ((bp->b_flags & B_LOCKED) == 0 &&
1645 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1646 		bufcountwakeup();
1647 	}
1648 
1649 	/*
1650 	 * Something we can maybe free or reuse.
1651 	 */
1652 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1653 		bufspacewakeup();
1654 
1655 	/*
1656 	 * Final cleanup and unlock.  Clear bits that are only used while a
1657 	 * buffer is actively locked.
1658 	 */
1659 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1660 	dsched_exit_buf(bp);
1661 	BUF_UNLOCK(bp);
1662 }
1663 
1664 /*
1665  * vfs_vmio_release:
1666  *
1667  *	Return backing pages held by the buffer 'bp' back to the VM system
1668  *	if possible.  The pages are freed if they are no longer valid or
1669  *	attempt to free if it was used for direct I/O otherwise they are
1670  *	sent to the page cache.
1671  *
1672  *	Pages that were marked busy are left alone and skipped.
1673  *
1674  *	The KVA mapping (b_data) for the underlying pages is removed by
1675  *	this function.
1676  */
1677 static void
1678 vfs_vmio_release(struct buf *bp)
1679 {
1680 	int i;
1681 	vm_page_t m;
1682 
1683 	lwkt_gettoken(&vm_token);
1684 	crit_enter();
1685 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1686 		m = bp->b_xio.xio_pages[i];
1687 		bp->b_xio.xio_pages[i] = NULL;
1688 
1689 		/*
1690 		 * The VFS is telling us this is not a meta-data buffer
1691 		 * even if it is backed by a block device.
1692 		 */
1693 		if (bp->b_flags & B_NOTMETA)
1694 			vm_page_flag_set(m, PG_NOTMETA);
1695 
1696 		/*
1697 		 * This is a very important bit of code.  We try to track
1698 		 * VM page use whether the pages are wired into the buffer
1699 		 * cache or not.  While wired into the buffer cache the
1700 		 * bp tracks the act_count.
1701 		 *
1702 		 * We can choose to place unwired pages on the inactive
1703 		 * queue (0) or active queue (1).  If we place too many
1704 		 * on the active queue the queue will cycle the act_count
1705 		 * on pages we'd like to keep, just from single-use pages
1706 		 * (such as when doing a tar-up or file scan).
1707 		 */
1708 		if (bp->b_act_count < vm_cycle_point)
1709 			vm_page_unwire(m, 0);
1710 		else
1711 			vm_page_unwire(m, 1);
1712 
1713 		/*
1714 		 * We don't mess with busy pages, it is
1715 		 * the responsibility of the process that
1716 		 * busied the pages to deal with them.
1717 		 */
1718 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1719 			continue;
1720 
1721 		if (m->wire_count == 0) {
1722 			vm_page_flag_clear(m, PG_ZERO);
1723 			/*
1724 			 * Might as well free the page if we can and it has
1725 			 * no valid data.  We also free the page if the
1726 			 * buffer was used for direct I/O.
1727 			 */
1728 #if 0
1729 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1730 					m->hold_count == 0) {
1731 				vm_page_busy(m);
1732 				vm_page_protect(m, VM_PROT_NONE);
1733 				vm_page_free(m);
1734 			} else
1735 #endif
1736 			if (bp->b_flags & B_DIRECT) {
1737 				vm_page_try_to_free(m);
1738 			} else if (vm_page_count_severe()) {
1739 				m->act_count = bp->b_act_count;
1740 				vm_page_try_to_cache(m);
1741 			} else {
1742 				m->act_count = bp->b_act_count;
1743 			}
1744 		}
1745 	}
1746 	crit_exit();
1747 	lwkt_reltoken(&vm_token);
1748 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1749 	if (bp->b_bufsize) {
1750 		bufspacewakeup();
1751 		bp->b_bufsize = 0;
1752 	}
1753 	bp->b_xio.xio_npages = 0;
1754 	bp->b_flags &= ~B_VMIO;
1755 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1756 	if (bp->b_vp) {
1757 		get_mplock();
1758 		brelvp(bp);
1759 		rel_mplock();
1760 	}
1761 }
1762 
1763 /*
1764  * vfs_bio_awrite:
1765  *
1766  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1767  *	This is much better then the old way of writing only one buffer at
1768  *	a time.  Note that we may not be presented with the buffers in the
1769  *	correct order, so we search for the cluster in both directions.
1770  *
1771  *	The buffer is locked on call.
1772  */
1773 int
1774 vfs_bio_awrite(struct buf *bp)
1775 {
1776 	int i;
1777 	int j;
1778 	off_t loffset = bp->b_loffset;
1779 	struct vnode *vp = bp->b_vp;
1780 	int nbytes;
1781 	struct buf *bpa;
1782 	int nwritten;
1783 	int size;
1784 
1785 	/*
1786 	 * right now we support clustered writing only to regular files.  If
1787 	 * we find a clusterable block we could be in the middle of a cluster
1788 	 * rather then at the beginning.
1789 	 *
1790 	 * NOTE: b_bio1 contains the logical loffset and is aliased
1791 	 * to b_loffset.  b_bio2 contains the translated block number.
1792 	 */
1793 	if ((vp->v_type == VREG) &&
1794 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1795 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1796 
1797 		size = vp->v_mount->mnt_stat.f_iosize;
1798 
1799 		for (i = size; i < MAXPHYS; i += size) {
1800 			if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) &&
1801 			    BUF_REFCNT(bpa) == 0 &&
1802 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1803 			    (B_DELWRI | B_CLUSTEROK)) &&
1804 			    (bpa->b_bufsize == size)) {
1805 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1806 				    (bpa->b_bio2.bio_offset !=
1807 				     bp->b_bio2.bio_offset + i))
1808 					break;
1809 			} else {
1810 				break;
1811 			}
1812 		}
1813 		for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1814 			if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) &&
1815 			    BUF_REFCNT(bpa) == 0 &&
1816 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1817 			    (B_DELWRI | B_CLUSTEROK)) &&
1818 			    (bpa->b_bufsize == size)) {
1819 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1820 				    (bpa->b_bio2.bio_offset !=
1821 				     bp->b_bio2.bio_offset - j))
1822 					break;
1823 			} else {
1824 				break;
1825 			}
1826 		}
1827 		j -= size;
1828 		nbytes = (i + j);
1829 
1830 		/*
1831 		 * this is a possible cluster write
1832 		 */
1833 		if (nbytes != size) {
1834 			BUF_UNLOCK(bp);
1835 			nwritten = cluster_wbuild(vp, size,
1836 						  loffset - j, nbytes);
1837 			return nwritten;
1838 		}
1839 	}
1840 
1841 	/*
1842 	 * default (old) behavior, writing out only one block
1843 	 *
1844 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1845 	 */
1846 	nwritten = bp->b_bufsize;
1847 	bremfree(bp);
1848 	bawrite(bp);
1849 
1850 	return nwritten;
1851 }
1852 
1853 /*
1854  * getnewbuf:
1855  *
1856  *	Find and initialize a new buffer header, freeing up existing buffers
1857  *	in the bufqueues as necessary.  The new buffer is returned locked.
1858  *
1859  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1860  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1861  *
1862  *	We block if:
1863  *		We have insufficient buffer headers
1864  *		We have insufficient buffer space
1865  *		buffer_map is too fragmented ( space reservation fails )
1866  *		If we have to flush dirty buffers ( but we try to avoid this )
1867  *
1868  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1869  *	Instead we ask the buf daemon to do it for us.  We attempt to
1870  *	avoid piecemeal wakeups of the pageout daemon.
1871  *
1872  * MPALMOSTSAFE
1873  */
1874 static struct buf *
1875 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1876 {
1877 	struct buf *bp;
1878 	struct buf *nbp;
1879 	int defrag = 0;
1880 	int nqindex;
1881 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1882 	static int flushingbufs;
1883 
1884 	/*
1885 	 * We can't afford to block since we might be holding a vnode lock,
1886 	 * which may prevent system daemons from running.  We deal with
1887 	 * low-memory situations by proactively returning memory and running
1888 	 * async I/O rather then sync I/O.
1889 	 */
1890 
1891 	++getnewbufcalls;
1892 	--getnewbufrestarts;
1893 restart:
1894 	++getnewbufrestarts;
1895 
1896 	/*
1897 	 * Setup for scan.  If we do not have enough free buffers,
1898 	 * we setup a degenerate case that immediately fails.  Note
1899 	 * that if we are specially marked process, we are allowed to
1900 	 * dip into our reserves.
1901 	 *
1902 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1903 	 *
1904 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1905 	 * However, there are a number of cases (defragging, reusing, ...)
1906 	 * where we cannot backup.
1907 	 */
1908 	nqindex = BQUEUE_EMPTYKVA;
1909 	spin_lock_wr(&bufspin);
1910 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1911 
1912 	if (nbp == NULL) {
1913 		/*
1914 		 * If no EMPTYKVA buffers and we are either
1915 		 * defragging or reusing, locate a CLEAN buffer
1916 		 * to free or reuse.  If bufspace useage is low
1917 		 * skip this step so we can allocate a new buffer.
1918 		 */
1919 		if (defrag || bufspace >= lobufspace) {
1920 			nqindex = BQUEUE_CLEAN;
1921 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1922 		}
1923 
1924 		/*
1925 		 * If we could not find or were not allowed to reuse a
1926 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1927 		 * buffer.  We can only use an EMPTY buffer if allocating
1928 		 * its KVA would not otherwise run us out of buffer space.
1929 		 */
1930 		if (nbp == NULL && defrag == 0 &&
1931 		    bufspace + maxsize < hibufspace) {
1932 			nqindex = BQUEUE_EMPTY;
1933 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1934 		}
1935 	}
1936 
1937 	/*
1938 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1939 	 * depending.
1940 	 *
1941 	 * WARNING!  bufspin is held!
1942 	 */
1943 	while ((bp = nbp) != NULL) {
1944 		int qindex = nqindex;
1945 
1946 		nbp = TAILQ_NEXT(bp, b_freelist);
1947 
1948 		/*
1949 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
1950 		 * cycles through the queue twice before being selected.
1951 		 */
1952 		if (qindex == BQUEUE_CLEAN &&
1953 		    (bp->b_flags & B_AGE) == 0 && nbp) {
1954 			bp->b_flags |= B_AGE;
1955 			TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
1956 			TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
1957 			continue;
1958 		}
1959 
1960 		/*
1961 		 * Calculate next bp ( we can only use it if we do not block
1962 		 * or do other fancy things ).
1963 		 */
1964 		if (nbp == NULL) {
1965 			switch(qindex) {
1966 			case BQUEUE_EMPTY:
1967 				nqindex = BQUEUE_EMPTYKVA;
1968 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1969 					break;
1970 				/* fall through */
1971 			case BQUEUE_EMPTYKVA:
1972 				nqindex = BQUEUE_CLEAN;
1973 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1974 					break;
1975 				/* fall through */
1976 			case BQUEUE_CLEAN:
1977 				/*
1978 				 * nbp is NULL.
1979 				 */
1980 				break;
1981 			}
1982 		}
1983 
1984 		/*
1985 		 * Sanity Checks
1986 		 */
1987 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1988 
1989 		/*
1990 		 * Note: we no longer distinguish between VMIO and non-VMIO
1991 		 * buffers.
1992 		 */
1993 
1994 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1995 
1996 		/*
1997 		 * If we are defragging then we need a buffer with
1998 		 * b_kvasize != 0.  XXX this situation should no longer
1999 		 * occur, if defrag is non-zero the buffer's b_kvasize
2000 		 * should also be non-zero at this point.  XXX
2001 		 */
2002 		if (defrag && bp->b_kvasize == 0) {
2003 			kprintf("Warning: defrag empty buffer %p\n", bp);
2004 			continue;
2005 		}
2006 
2007 		/*
2008 		 * Start freeing the bp.  This is somewhat involved.  nbp
2009 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
2010 		 * on the clean list must be disassociated from their
2011 		 * current vnode.  Buffers on the empty[kva] lists have
2012 		 * already been disassociated.
2013 		 */
2014 
2015 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2016 			spin_unlock_wr(&bufspin);
2017 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
2018 			goto restart;
2019 		}
2020 		if (bp->b_qindex != qindex) {
2021 			spin_unlock_wr(&bufspin);
2022 			kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
2023 			BUF_UNLOCK(bp);
2024 			goto restart;
2025 		}
2026 		bremfree_locked(bp);
2027 		spin_unlock_wr(&bufspin);
2028 
2029 		/*
2030 		 * Dependancies must be handled before we disassociate the
2031 		 * vnode.
2032 		 *
2033 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2034 		 * be immediately disassociated.  HAMMER then becomes
2035 		 * responsible for releasing the buffer.
2036 		 *
2037 		 * NOTE: bufspin is UNLOCKED now.
2038 		 */
2039 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2040 			get_mplock();
2041 			buf_deallocate(bp);
2042 			rel_mplock();
2043 			if (bp->b_flags & B_LOCKED) {
2044 				bqrelse(bp);
2045 				goto restart;
2046 			}
2047 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2048 		}
2049 
2050 		if (qindex == BQUEUE_CLEAN) {
2051 			get_mplock();
2052 			if (bp->b_flags & B_VMIO) {
2053 				get_mplock();
2054 				vfs_vmio_release(bp);
2055 				rel_mplock();
2056 			}
2057 			if (bp->b_vp)
2058 				brelvp(bp);
2059 			rel_mplock();
2060 		}
2061 
2062 		/*
2063 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2064 		 * the scan from this point on.
2065 		 *
2066 		 * Get the rest of the buffer freed up.  b_kva* is still
2067 		 * valid after this operation.
2068 		 */
2069 
2070 		KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
2071 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2072 
2073 		/*
2074 		 * critical section protection is not required when
2075 		 * scrapping a buffer's contents because it is already
2076 		 * wired.
2077 		 */
2078 		if (bp->b_bufsize) {
2079 			get_mplock();
2080 			allocbuf(bp, 0);
2081 			rel_mplock();
2082 		}
2083 
2084 		bp->b_flags = B_BNOCLIP;
2085 		bp->b_cmd = BUF_CMD_DONE;
2086 		bp->b_vp = NULL;
2087 		bp->b_error = 0;
2088 		bp->b_resid = 0;
2089 		bp->b_bcount = 0;
2090 		bp->b_xio.xio_npages = 0;
2091 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2092 		bp->b_act_count = ACT_INIT;
2093 		reinitbufbio(bp);
2094 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2095 		buf_dep_init(bp);
2096 		if (blkflags & GETBLK_BHEAVY)
2097 			bp->b_flags |= B_HEAVY;
2098 
2099 		/*
2100 		 * If we are defragging then free the buffer.
2101 		 */
2102 		if (defrag) {
2103 			bp->b_flags |= B_INVAL;
2104 			bfreekva(bp);
2105 			brelse(bp);
2106 			defrag = 0;
2107 			goto restart;
2108 		}
2109 
2110 		/*
2111 		 * If we are overcomitted then recover the buffer and its
2112 		 * KVM space.  This occurs in rare situations when multiple
2113 		 * processes are blocked in getnewbuf() or allocbuf().
2114 		 */
2115 		if (bufspace >= hibufspace)
2116 			flushingbufs = 1;
2117 		if (flushingbufs && bp->b_kvasize != 0) {
2118 			bp->b_flags |= B_INVAL;
2119 			bfreekva(bp);
2120 			brelse(bp);
2121 			goto restart;
2122 		}
2123 		if (bufspace < lobufspace)
2124 			flushingbufs = 0;
2125 		break;
2126 		/* NOT REACHED, bufspin not held */
2127 	}
2128 
2129 	/*
2130 	 * If we exhausted our list, sleep as appropriate.  We may have to
2131 	 * wakeup various daemons and write out some dirty buffers.
2132 	 *
2133 	 * Generally we are sleeping due to insufficient buffer space.
2134 	 *
2135 	 * NOTE: bufspin is held if bp is NULL, else it is not held.
2136 	 */
2137 	if (bp == NULL) {
2138 		int flags;
2139 		char *waitmsg;
2140 
2141 		spin_unlock_wr(&bufspin);
2142 		if (defrag) {
2143 			flags = VFS_BIO_NEED_BUFSPACE;
2144 			waitmsg = "nbufkv";
2145 		} else if (bufspace >= hibufspace) {
2146 			waitmsg = "nbufbs";
2147 			flags = VFS_BIO_NEED_BUFSPACE;
2148 		} else {
2149 			waitmsg = "newbuf";
2150 			flags = VFS_BIO_NEED_ANY;
2151 		}
2152 
2153 		needsbuffer |= flags;
2154 		bd_speedup();	/* heeeelp */
2155 		while (needsbuffer & flags) {
2156 			if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo))
2157 				return (NULL);
2158 		}
2159 	} else {
2160 		/*
2161 		 * We finally have a valid bp.  We aren't quite out of the
2162 		 * woods, we still have to reserve kva space.  In order
2163 		 * to keep fragmentation sane we only allocate kva in
2164 		 * BKVASIZE chunks.
2165 		 *
2166 		 * (bufspin is not held)
2167 		 */
2168 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2169 
2170 		if (maxsize != bp->b_kvasize) {
2171 			vm_offset_t addr = 0;
2172 			int count;
2173 
2174 			bfreekva(bp);
2175 
2176 			get_mplock();
2177 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2178 			vm_map_lock(&buffer_map);
2179 
2180 			if (vm_map_findspace(&buffer_map,
2181 				    vm_map_min(&buffer_map), maxsize,
2182 				    maxsize, 0, &addr)) {
2183 				/*
2184 				 * Uh oh.  Buffer map is too fragmented.  We
2185 				 * must defragment the map.
2186 				 */
2187 				vm_map_unlock(&buffer_map);
2188 				vm_map_entry_release(count);
2189 				++bufdefragcnt;
2190 				defrag = 1;
2191 				bp->b_flags |= B_INVAL;
2192 				rel_mplock();
2193 				brelse(bp);
2194 				goto restart;
2195 			}
2196 			if (addr) {
2197 				vm_map_insert(&buffer_map, &count,
2198 					NULL, 0,
2199 					addr, addr + maxsize,
2200 					VM_MAPTYPE_NORMAL,
2201 					VM_PROT_ALL, VM_PROT_ALL,
2202 					MAP_NOFAULT);
2203 
2204 				bp->b_kvabase = (caddr_t) addr;
2205 				bp->b_kvasize = maxsize;
2206 				bufspace += bp->b_kvasize;
2207 				++bufreusecnt;
2208 			}
2209 			vm_map_unlock(&buffer_map);
2210 			vm_map_entry_release(count);
2211 			rel_mplock();
2212 		}
2213 		bp->b_data = bp->b_kvabase;
2214 	}
2215 	return(bp);
2216 }
2217 
2218 /*
2219  * This routine is called in an emergency to recover VM pages from the
2220  * buffer cache by cashing in clean buffers.  The idea is to recover
2221  * enough pages to be able to satisfy a stuck bio_page_alloc().
2222  */
2223 static int
2224 recoverbufpages(void)
2225 {
2226 	struct buf *bp;
2227 	int bytes = 0;
2228 
2229 	++recoverbufcalls;
2230 
2231 	spin_lock_wr(&bufspin);
2232 	while (bytes < MAXBSIZE) {
2233 		bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2234 		if (bp == NULL)
2235 			break;
2236 
2237 		/*
2238 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2239 		 * cycles through the queue twice before being selected.
2240 		 */
2241 		if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2242 			bp->b_flags |= B_AGE;
2243 			TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2244 			TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2245 					  bp, b_freelist);
2246 			continue;
2247 		}
2248 
2249 		/*
2250 		 * Sanity Checks
2251 		 */
2252 		KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2253 		KKASSERT((bp->b_flags & B_DELWRI) == 0);
2254 
2255 		/*
2256 		 * Start freeing the bp.  This is somewhat involved.
2257 		 *
2258 		 * Buffers on the clean list must be disassociated from
2259 		 * their current vnode
2260 		 */
2261 
2262 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2263 			kprintf("recoverbufpages: warning, locked buf %p, race corrected\n", bp);
2264 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
2265 			continue;
2266 		}
2267 		if (bp->b_qindex != BQUEUE_CLEAN) {
2268 			kprintf("recoverbufpages: warning, BUF_LOCK blocked unexpectedly on buf %p index %d, race corrected\n", bp, bp->b_qindex);
2269 			BUF_UNLOCK(bp);
2270 			continue;
2271 		}
2272 		bremfree_locked(bp);
2273 		spin_unlock_wr(&bufspin);
2274 
2275 		/*
2276 		 * Dependancies must be handled before we disassociate the
2277 		 * vnode.
2278 		 *
2279 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2280 		 * be immediately disassociated.  HAMMER then becomes
2281 		 * responsible for releasing the buffer.
2282 		 */
2283 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2284 			buf_deallocate(bp);
2285 			if (bp->b_flags & B_LOCKED) {
2286 				bqrelse(bp);
2287 				spin_lock_wr(&bufspin);
2288 				continue;
2289 			}
2290 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2291 		}
2292 
2293 		bytes += bp->b_bufsize;
2294 
2295 		get_mplock();
2296 		if (bp->b_flags & B_VMIO) {
2297 			bp->b_flags |= B_DIRECT;    /* try to free pages */
2298 			vfs_vmio_release(bp);
2299 		}
2300 		if (bp->b_vp)
2301 			brelvp(bp);
2302 
2303 		KKASSERT(bp->b_vp == NULL);
2304 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2305 
2306 		/*
2307 		 * critical section protection is not required when
2308 		 * scrapping a buffer's contents because it is already
2309 		 * wired.
2310 		 */
2311 		if (bp->b_bufsize)
2312 			allocbuf(bp, 0);
2313 		rel_mplock();
2314 
2315 		bp->b_flags = B_BNOCLIP;
2316 		bp->b_cmd = BUF_CMD_DONE;
2317 		bp->b_vp = NULL;
2318 		bp->b_error = 0;
2319 		bp->b_resid = 0;
2320 		bp->b_bcount = 0;
2321 		bp->b_xio.xio_npages = 0;
2322 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2323 		reinitbufbio(bp);
2324 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2325 		buf_dep_init(bp);
2326 		bp->b_flags |= B_INVAL;
2327 		/* bfreekva(bp); */
2328 		brelse(bp);
2329 		spin_lock_wr(&bufspin);
2330 	}
2331 	spin_unlock_wr(&bufspin);
2332 	return(bytes);
2333 }
2334 
2335 /*
2336  * buf_daemon:
2337  *
2338  *	Buffer flushing daemon.  Buffers are normally flushed by the
2339  *	update daemon but if it cannot keep up this process starts to
2340  *	take the load in an attempt to prevent getnewbuf() from blocking.
2341  *
2342  *	Once a flush is initiated it does not stop until the number
2343  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2344  *	waiting at the mid-point.
2345  */
2346 
2347 static struct kproc_desc buf_kp = {
2348 	"bufdaemon",
2349 	buf_daemon,
2350 	&bufdaemon_td
2351 };
2352 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2353 	kproc_start, &buf_kp)
2354 
2355 static struct kproc_desc bufhw_kp = {
2356 	"bufdaemon_hw",
2357 	buf_daemon_hw,
2358 	&bufdaemonhw_td
2359 };
2360 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2361 	kproc_start, &bufhw_kp)
2362 
2363 static void
2364 buf_daemon(void)
2365 {
2366 	int limit;
2367 
2368 	/*
2369 	 * This process needs to be suspended prior to shutdown sync.
2370 	 */
2371 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2372 			      bufdaemon_td, SHUTDOWN_PRI_LAST);
2373 	curthread->td_flags |= TDF_SYSTHREAD;
2374 
2375 	/*
2376 	 * This process is allowed to take the buffer cache to the limit
2377 	 */
2378 	crit_enter();
2379 
2380 	for (;;) {
2381 		kproc_suspend_loop();
2382 
2383 		/*
2384 		 * Do the flush as long as the number of dirty buffers
2385 		 * (including those running) exceeds lodirtybufspace.
2386 		 *
2387 		 * When flushing limit running I/O to hirunningspace
2388 		 * Do the flush.  Limit the amount of in-transit I/O we
2389 		 * allow to build up, otherwise we would completely saturate
2390 		 * the I/O system.  Wakeup any waiting processes before we
2391 		 * normally would so they can run in parallel with our drain.
2392 		 *
2393 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2394 		 * but because we split the operation into two threads we
2395 		 * have to cut it in half for each thread.
2396 		 */
2397 		waitrunningbufspace();
2398 		limit = lodirtybufspace / 2;
2399 		while (runningbufspace + dirtybufspace > limit ||
2400 		       dirtybufcount - dirtybufcounthw >= nbuf / 2) {
2401 			if (flushbufqueues(BQUEUE_DIRTY) == 0)
2402 				break;
2403 			if (runningbufspace < hirunningspace)
2404 				continue;
2405 			waitrunningbufspace();
2406 		}
2407 
2408 		/*
2409 		 * We reached our low water mark, reset the
2410 		 * request and sleep until we are needed again.
2411 		 * The sleep is just so the suspend code works.
2412 		 */
2413 		spin_lock_wr(&needsbuffer_spin);
2414 		if (bd_request == 0) {
2415 			ssleep(&bd_request, &needsbuffer_spin, 0,
2416 			       "psleep", hz);
2417 		}
2418 		bd_request = 0;
2419 		spin_unlock_wr(&needsbuffer_spin);
2420 	}
2421 }
2422 
2423 static void
2424 buf_daemon_hw(void)
2425 {
2426 	int limit;
2427 
2428 	/*
2429 	 * This process needs to be suspended prior to shutdown sync.
2430 	 */
2431 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2432 			      bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2433 	curthread->td_flags |= TDF_SYSTHREAD;
2434 
2435 	/*
2436 	 * This process is allowed to take the buffer cache to the limit
2437 	 */
2438 	crit_enter();
2439 
2440 	for (;;) {
2441 		kproc_suspend_loop();
2442 
2443 		/*
2444 		 * Do the flush.  Limit the amount of in-transit I/O we
2445 		 * allow to build up, otherwise we would completely saturate
2446 		 * the I/O system.  Wakeup any waiting processes before we
2447 		 * normally would so they can run in parallel with our drain.
2448 		 *
2449 		 * Once we decide to flush push the queued I/O up to
2450 		 * hirunningspace in order to trigger bursting by the bioq
2451 		 * subsystem.
2452 		 *
2453 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2454 		 * but because we split the operation into two threads we
2455 		 * have to cut it in half for each thread.
2456 		 */
2457 		waitrunningbufspace();
2458 		limit = lodirtybufspace / 2;
2459 		while (runningbufspace + dirtybufspacehw > limit ||
2460 		       dirtybufcounthw >= nbuf / 2) {
2461 			if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2462 				break;
2463 			if (runningbufspace < hirunningspace)
2464 				continue;
2465 			waitrunningbufspace();
2466 		}
2467 
2468 		/*
2469 		 * We reached our low water mark, reset the
2470 		 * request and sleep until we are needed again.
2471 		 * The sleep is just so the suspend code works.
2472 		 */
2473 		spin_lock_wr(&needsbuffer_spin);
2474 		if (bd_request_hw == 0) {
2475 			ssleep(&bd_request_hw, &needsbuffer_spin, 0,
2476 			       "psleep", hz);
2477 		}
2478 		bd_request_hw = 0;
2479 		spin_unlock_wr(&needsbuffer_spin);
2480 	}
2481 }
2482 
2483 /*
2484  * flushbufqueues:
2485  *
2486  *	Try to flush a buffer in the dirty queue.  We must be careful to
2487  *	free up B_INVAL buffers instead of write them, which NFS is
2488  *	particularly sensitive to.
2489  *
2490  *	B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate
2491  *	that we really want to try to get the buffer out and reuse it
2492  *	due to the write load on the machine.
2493  */
2494 static int
2495 flushbufqueues(bufq_type_t q)
2496 {
2497 	struct buf *bp;
2498 	int r = 0;
2499 	int spun;
2500 
2501 	spin_lock_wr(&bufspin);
2502 	spun = 1;
2503 
2504 	bp = TAILQ_FIRST(&bufqueues[q]);
2505 	while (bp) {
2506 		KASSERT((bp->b_flags & B_DELWRI),
2507 			("unexpected clean buffer %p", bp));
2508 
2509 		if (bp->b_flags & B_DELWRI) {
2510 			if (bp->b_flags & B_INVAL) {
2511 				spin_unlock_wr(&bufspin);
2512 				spun = 0;
2513 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2514 					panic("flushbufqueues: locked buf");
2515 				bremfree(bp);
2516 				brelse(bp);
2517 				++r;
2518 				break;
2519 			}
2520 			if (LIST_FIRST(&bp->b_dep) != NULL &&
2521 			    (bp->b_flags & B_DEFERRED) == 0 &&
2522 			    buf_countdeps(bp, 0)) {
2523 				TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2524 				TAILQ_INSERT_TAIL(&bufqueues[q], bp,
2525 						  b_freelist);
2526 				bp->b_flags |= B_DEFERRED;
2527 				bp = TAILQ_FIRST(&bufqueues[q]);
2528 				continue;
2529 			}
2530 
2531 			/*
2532 			 * Only write it out if we can successfully lock
2533 			 * it.  If the buffer has a dependancy,
2534 			 * buf_checkwrite must also return 0 for us to
2535 			 * be able to initate the write.
2536 			 *
2537 			 * If the buffer is flagged B_ERROR it may be
2538 			 * requeued over and over again, we try to
2539 			 * avoid a live lock.
2540 			 */
2541 			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
2542 				spin_unlock_wr(&bufspin);
2543 				spun = 0;
2544 				if (LIST_FIRST(&bp->b_dep) != NULL &&
2545 				    buf_checkwrite(bp)) {
2546 					bremfree(bp);
2547 					brelse(bp);
2548 				} else if (bp->b_flags & B_ERROR) {
2549 					tsleep(bp, 0, "bioer", 1);
2550 					bp->b_flags &= ~B_AGE;
2551 					vfs_bio_awrite(bp);
2552 				} else {
2553 					bp->b_flags |= B_AGE;
2554 					vfs_bio_awrite(bp);
2555 				}
2556 				++r;
2557 				break;
2558 			}
2559 		}
2560 		bp = TAILQ_NEXT(bp, b_freelist);
2561 	}
2562 	if (spun)
2563 		spin_unlock_wr(&bufspin);
2564 	return (r);
2565 }
2566 
2567 /*
2568  * inmem:
2569  *
2570  *	Returns true if no I/O is needed to access the associated VM object.
2571  *	This is like findblk except it also hunts around in the VM system for
2572  *	the data.
2573  *
2574  *	Note that we ignore vm_page_free() races from interrupts against our
2575  *	lookup, since if the caller is not protected our return value will not
2576  *	be any more valid then otherwise once we exit the critical section.
2577  */
2578 int
2579 inmem(struct vnode *vp, off_t loffset)
2580 {
2581 	vm_object_t obj;
2582 	vm_offset_t toff, tinc, size;
2583 	vm_page_t m;
2584 
2585 	if (findblk(vp, loffset, FINDBLK_TEST))
2586 		return 1;
2587 	if (vp->v_mount == NULL)
2588 		return 0;
2589 	if ((obj = vp->v_object) == NULL)
2590 		return 0;
2591 
2592 	size = PAGE_SIZE;
2593 	if (size > vp->v_mount->mnt_stat.f_iosize)
2594 		size = vp->v_mount->mnt_stat.f_iosize;
2595 
2596 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2597 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2598 		if (m == NULL)
2599 			return 0;
2600 		tinc = size;
2601 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2602 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2603 		if (vm_page_is_valid(m,
2604 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2605 			return 0;
2606 	}
2607 	return 1;
2608 }
2609 
2610 /*
2611  * findblk:
2612  *
2613  *	Locate and return the specified buffer.  Unless flagged otherwise,
2614  *	a locked buffer will be returned if it exists or NULL if it does not.
2615  *
2616  *	findblk()'d buffers are still on the bufqueues and if you intend
2617  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2618  *	and possibly do other stuff to it.
2619  *
2620  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2621  *			  for locking the buffer and ensuring that it remains
2622  *			  the desired buffer after locking.
2623  *
2624  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2625  *			  to acquire the lock we return NULL, even if the
2626  *			  buffer exists.
2627  *
2628  *	(0)		- Lock the buffer blocking.
2629  *
2630  * MPSAFE
2631  */
2632 struct buf *
2633 findblk(struct vnode *vp, off_t loffset, int flags)
2634 {
2635 	struct buf *bp;
2636 	int lkflags;
2637 
2638 	lkflags = LK_EXCLUSIVE;
2639 	if (flags & FINDBLK_NBLOCK)
2640 		lkflags |= LK_NOWAIT;
2641 
2642 	for (;;) {
2643 		lwkt_gettoken(&vp->v_token);
2644 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2645 		lwkt_reltoken(&vp->v_token);
2646 		if (bp == NULL || (flags & FINDBLK_TEST))
2647 			break;
2648 		if (BUF_LOCK(bp, lkflags)) {
2649 			bp = NULL;
2650 			break;
2651 		}
2652 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2653 			break;
2654 		BUF_UNLOCK(bp);
2655 	}
2656 	return(bp);
2657 }
2658 
2659 /*
2660  * getcacheblk:
2661  *
2662  *	Similar to getblk() except only returns the buffer if it is
2663  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2664  *	is returned.
2665  *
2666  *	If B_RAM is set the buffer might be just fine, but we return
2667  *	NULL anyway because we want the code to fall through to the
2668  *	cluster read.  Otherwise read-ahead breaks.
2669  */
2670 struct buf *
2671 getcacheblk(struct vnode *vp, off_t loffset)
2672 {
2673 	struct buf *bp;
2674 
2675 	bp = findblk(vp, loffset, 0);
2676 	if (bp) {
2677 		if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) {
2678 			bp->b_flags &= ~B_AGE;
2679 			bremfree(bp);
2680 		} else {
2681 			BUF_UNLOCK(bp);
2682 			bp = NULL;
2683 		}
2684 	}
2685 	return (bp);
2686 }
2687 
2688 /*
2689  * getblk:
2690  *
2691  *	Get a block given a specified block and offset into a file/device.
2692  * 	B_INVAL may or may not be set on return.  The caller should clear
2693  *	B_INVAL prior to initiating a READ.
2694  *
2695  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2696  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2697  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2698  *	without doing any of those things the system will likely believe
2699  *	the buffer to be valid (especially if it is not B_VMIO), and the
2700  *	next getblk() will return the buffer with B_CACHE set.
2701  *
2702  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2703  *	an existing buffer.
2704  *
2705  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2706  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2707  *	and then cleared based on the backing VM.  If the previous buffer is
2708  *	non-0-sized but invalid, B_CACHE will be cleared.
2709  *
2710  *	If getblk() must create a new buffer, the new buffer is returned with
2711  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2712  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2713  *	backing VM.
2714  *
2715  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2716  *	B_CACHE bit is clear.
2717  *
2718  *	What this means, basically, is that the caller should use B_CACHE to
2719  *	determine whether the buffer is fully valid or not and should clear
2720  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2721  *	the buffer by loading its data area with something, the caller needs
2722  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2723  *	the caller should set B_CACHE ( as an optimization ), else the caller
2724  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2725  *	a write attempt or if it was a successfull read.  If the caller
2726  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2727  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2728  *
2729  *	getblk flags:
2730  *
2731  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2732  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2733  *
2734  * MPALMOSTSAFE
2735  */
2736 struct buf *
2737 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2738 {
2739 	struct buf *bp;
2740 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2741 	int error;
2742 	int lkflags;
2743 
2744 	if (size > MAXBSIZE)
2745 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2746 	if (vp->v_object == NULL)
2747 		panic("getblk: vnode %p has no object!", vp);
2748 
2749 loop:
2750 	if ((bp = findblk(vp, loffset, FINDBLK_TEST)) != NULL) {
2751 		/*
2752 		 * The buffer was found in the cache, but we need to lock it.
2753 		 * Even with LK_NOWAIT the lockmgr may break our critical
2754 		 * section, so double-check the validity of the buffer
2755 		 * once the lock has been obtained.
2756 		 */
2757 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2758 			if (blkflags & GETBLK_NOWAIT)
2759 				return(NULL);
2760 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2761 			if (blkflags & GETBLK_PCATCH)
2762 				lkflags |= LK_PCATCH;
2763 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2764 			if (error) {
2765 				if (error == ENOLCK)
2766 					goto loop;
2767 				return (NULL);
2768 			}
2769 			/* buffer may have changed on us */
2770 		}
2771 
2772 		/*
2773 		 * Once the buffer has been locked, make sure we didn't race
2774 		 * a buffer recyclement.  Buffers that are no longer hashed
2775 		 * will have b_vp == NULL, so this takes care of that check
2776 		 * as well.
2777 		 */
2778 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2779 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2780 				"was recycled\n",
2781 				bp, vp, (long long)loffset);
2782 			BUF_UNLOCK(bp);
2783 			goto loop;
2784 		}
2785 
2786 		/*
2787 		 * If SZMATCH any pre-existing buffer must be of the requested
2788 		 * size or NULL is returned.  The caller absolutely does not
2789 		 * want getblk() to bwrite() the buffer on a size mismatch.
2790 		 */
2791 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2792 			BUF_UNLOCK(bp);
2793 			return(NULL);
2794 		}
2795 
2796 		/*
2797 		 * All vnode-based buffers must be backed by a VM object.
2798 		 */
2799 		KKASSERT(bp->b_flags & B_VMIO);
2800 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2801 		bp->b_flags &= ~B_AGE;
2802 
2803 		/*
2804 		 * Make sure that B_INVAL buffers do not have a cached
2805 		 * block number translation.
2806 		 */
2807 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2808 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2809 				" did not have cleared bio_offset cache\n",
2810 				bp, vp, (long long)loffset);
2811 			clearbiocache(&bp->b_bio2);
2812 		}
2813 
2814 		/*
2815 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2816 		 * invalid.
2817 		 */
2818 		if (bp->b_flags & B_INVAL)
2819 			bp->b_flags &= ~B_CACHE;
2820 		bremfree(bp);
2821 
2822 		/*
2823 		 * Any size inconsistancy with a dirty buffer or a buffer
2824 		 * with a softupdates dependancy must be resolved.  Resizing
2825 		 * the buffer in such circumstances can lead to problems.
2826 		 *
2827 		 * Dirty or dependant buffers are written synchronously.
2828 		 * Other types of buffers are simply released and
2829 		 * reconstituted as they may be backed by valid, dirty VM
2830 		 * pages (but not marked B_DELWRI).
2831 		 *
2832 		 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2833 		 * and may be left over from a prior truncation (and thus
2834 		 * no longer represent the actual EOF point), so we
2835 		 * definitely do not want to B_NOCACHE the backing store.
2836 		 */
2837 		if (size != bp->b_bcount) {
2838 			get_mplock();
2839 			if (bp->b_flags & B_DELWRI) {
2840 				bp->b_flags |= B_RELBUF;
2841 				bwrite(bp);
2842 			} else if (LIST_FIRST(&bp->b_dep)) {
2843 				bp->b_flags |= B_RELBUF;
2844 				bwrite(bp);
2845 			} else {
2846 				bp->b_flags |= B_RELBUF;
2847 				brelse(bp);
2848 			}
2849 			rel_mplock();
2850 			goto loop;
2851 		}
2852 		KKASSERT(size <= bp->b_kvasize);
2853 		KASSERT(bp->b_loffset != NOOFFSET,
2854 			("getblk: no buffer offset"));
2855 
2856 		/*
2857 		 * A buffer with B_DELWRI set and B_CACHE clear must
2858 		 * be committed before we can return the buffer in
2859 		 * order to prevent the caller from issuing a read
2860 		 * ( due to B_CACHE not being set ) and overwriting
2861 		 * it.
2862 		 *
2863 		 * Most callers, including NFS and FFS, need this to
2864 		 * operate properly either because they assume they
2865 		 * can issue a read if B_CACHE is not set, or because
2866 		 * ( for example ) an uncached B_DELWRI might loop due
2867 		 * to softupdates re-dirtying the buffer.  In the latter
2868 		 * case, B_CACHE is set after the first write completes,
2869 		 * preventing further loops.
2870 		 *
2871 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2872 		 * above while extending the buffer, we cannot allow the
2873 		 * buffer to remain with B_CACHE set after the write
2874 		 * completes or it will represent a corrupt state.  To
2875 		 * deal with this we set B_NOCACHE to scrap the buffer
2876 		 * after the write.
2877 		 *
2878 		 * XXX Should this be B_RELBUF instead of B_NOCACHE?
2879 		 *     I'm not even sure this state is still possible
2880 		 *     now that getblk() writes out any dirty buffers
2881 		 *     on size changes.
2882 		 *
2883 		 * We might be able to do something fancy, like setting
2884 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2885 		 * so the below call doesn't set B_CACHE, but that gets real
2886 		 * confusing.  This is much easier.
2887 		 */
2888 
2889 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2890 			get_mplock();
2891 			kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
2892 				"and CACHE clear, b_flags %08x\n",
2893 				bp, (intmax_t)bp->b_loffset, bp->b_flags);
2894 			bp->b_flags |= B_NOCACHE;
2895 			bwrite(bp);
2896 			rel_mplock();
2897 			goto loop;
2898 		}
2899 	} else {
2900 		/*
2901 		 * Buffer is not in-core, create new buffer.  The buffer
2902 		 * returned by getnewbuf() is locked.  Note that the returned
2903 		 * buffer is also considered valid (not marked B_INVAL).
2904 		 *
2905 		 * Calculating the offset for the I/O requires figuring out
2906 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
2907 		 * the mount's f_iosize otherwise.  If the vnode does not
2908 		 * have an associated mount we assume that the passed size is
2909 		 * the block size.
2910 		 *
2911 		 * Note that vn_isdisk() cannot be used here since it may
2912 		 * return a failure for numerous reasons.   Note that the
2913 		 * buffer size may be larger then the block size (the caller
2914 		 * will use block numbers with the proper multiple).  Beware
2915 		 * of using any v_* fields which are part of unions.  In
2916 		 * particular, in DragonFly the mount point overloading
2917 		 * mechanism uses the namecache only and the underlying
2918 		 * directory vnode is not a special case.
2919 		 */
2920 		int bsize, maxsize;
2921 
2922 		if (vp->v_type == VBLK || vp->v_type == VCHR)
2923 			bsize = DEV_BSIZE;
2924 		else if (vp->v_mount)
2925 			bsize = vp->v_mount->mnt_stat.f_iosize;
2926 		else
2927 			bsize = size;
2928 
2929 		maxsize = size + (loffset & PAGE_MASK);
2930 		maxsize = imax(maxsize, bsize);
2931 
2932 		bp = getnewbuf(blkflags, slptimeo, size, maxsize);
2933 		if (bp == NULL) {
2934 			if (slpflags || slptimeo)
2935 				return NULL;
2936 			goto loop;
2937 		}
2938 
2939 		/*
2940 		 * Atomically insert the buffer into the hash, so that it can
2941 		 * be found by findblk().
2942 		 *
2943 		 * If bgetvp() returns non-zero a collision occured, and the
2944 		 * bp will not be associated with the vnode.
2945 		 *
2946 		 * Make sure the translation layer has been cleared.
2947 		 */
2948 		bp->b_loffset = loffset;
2949 		bp->b_bio2.bio_offset = NOOFFSET;
2950 		/* bp->b_bio2.bio_next = NULL; */
2951 
2952 		if (bgetvp(vp, bp)) {
2953 			bp->b_flags |= B_INVAL;
2954 			brelse(bp);
2955 			goto loop;
2956 		}
2957 
2958 		/*
2959 		 * All vnode-based buffers must be backed by a VM object.
2960 		 */
2961 		KKASSERT(vp->v_object != NULL);
2962 		bp->b_flags |= B_VMIO;
2963 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2964 
2965 		get_mplock();
2966 		allocbuf(bp, size);
2967 		rel_mplock();
2968 	}
2969 	KKASSERT(dsched_is_clear_buf_priv(bp));
2970 	return (bp);
2971 }
2972 
2973 /*
2974  * regetblk(bp)
2975  *
2976  * Reacquire a buffer that was previously released to the locked queue,
2977  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
2978  * set B_LOCKED (which handles the acquisition race).
2979  *
2980  * To this end, either B_LOCKED must be set or the dependancy list must be
2981  * non-empty.
2982  *
2983  * MPSAFE
2984  */
2985 void
2986 regetblk(struct buf *bp)
2987 {
2988 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
2989 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
2990 	bremfree(bp);
2991 }
2992 
2993 /*
2994  * geteblk:
2995  *
2996  *	Get an empty, disassociated buffer of given size.  The buffer is
2997  *	initially set to B_INVAL.
2998  *
2999  *	critical section protection is not required for the allocbuf()
3000  *	call because races are impossible here.
3001  *
3002  * MPALMOSTSAFE
3003  */
3004 struct buf *
3005 geteblk(int size)
3006 {
3007 	struct buf *bp;
3008 	int maxsize;
3009 
3010 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3011 
3012 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
3013 		;
3014 	get_mplock();
3015 	allocbuf(bp, size);
3016 	rel_mplock();
3017 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3018 	KKASSERT(dsched_is_clear_buf_priv(bp));
3019 	return (bp);
3020 }
3021 
3022 
3023 /*
3024  * allocbuf:
3025  *
3026  *	This code constitutes the buffer memory from either anonymous system
3027  *	memory (in the case of non-VMIO operations) or from an associated
3028  *	VM object (in the case of VMIO operations).  This code is able to
3029  *	resize a buffer up or down.
3030  *
3031  *	Note that this code is tricky, and has many complications to resolve
3032  *	deadlock or inconsistant data situations.  Tread lightly!!!
3033  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
3034  *	the caller.  Calling this code willy nilly can result in the loss of data.
3035  *
3036  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3037  *	B_CACHE for the non-VMIO case.
3038  *
3039  *	This routine does not need to be called from a critical section but you
3040  *	must own the buffer.
3041  *
3042  * NOTMPSAFE
3043  */
3044 int
3045 allocbuf(struct buf *bp, int size)
3046 {
3047 	int newbsize, mbsize;
3048 	int i;
3049 
3050 	if (BUF_REFCNT(bp) == 0)
3051 		panic("allocbuf: buffer not busy");
3052 
3053 	if (bp->b_kvasize < size)
3054 		panic("allocbuf: buffer too small");
3055 
3056 	if ((bp->b_flags & B_VMIO) == 0) {
3057 		caddr_t origbuf;
3058 		int origbufsize;
3059 		/*
3060 		 * Just get anonymous memory from the kernel.  Don't
3061 		 * mess with B_CACHE.
3062 		 */
3063 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3064 		if (bp->b_flags & B_MALLOC)
3065 			newbsize = mbsize;
3066 		else
3067 			newbsize = round_page(size);
3068 
3069 		if (newbsize < bp->b_bufsize) {
3070 			/*
3071 			 * Malloced buffers are not shrunk
3072 			 */
3073 			if (bp->b_flags & B_MALLOC) {
3074 				if (newbsize) {
3075 					bp->b_bcount = size;
3076 				} else {
3077 					kfree(bp->b_data, M_BIOBUF);
3078 					if (bp->b_bufsize) {
3079 						bufmallocspace -= bp->b_bufsize;
3080 						bufspacewakeup();
3081 						bp->b_bufsize = 0;
3082 					}
3083 					bp->b_data = bp->b_kvabase;
3084 					bp->b_bcount = 0;
3085 					bp->b_flags &= ~B_MALLOC;
3086 				}
3087 				return 1;
3088 			}
3089 			vm_hold_free_pages(
3090 			    bp,
3091 			    (vm_offset_t) bp->b_data + newbsize,
3092 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3093 		} else if (newbsize > bp->b_bufsize) {
3094 			/*
3095 			 * We only use malloced memory on the first allocation.
3096 			 * and revert to page-allocated memory when the buffer
3097 			 * grows.
3098 			 */
3099 			if ((bufmallocspace < maxbufmallocspace) &&
3100 				(bp->b_bufsize == 0) &&
3101 				(mbsize <= PAGE_SIZE/2)) {
3102 
3103 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3104 				bp->b_bufsize = mbsize;
3105 				bp->b_bcount = size;
3106 				bp->b_flags |= B_MALLOC;
3107 				bufmallocspace += mbsize;
3108 				return 1;
3109 			}
3110 			origbuf = NULL;
3111 			origbufsize = 0;
3112 			/*
3113 			 * If the buffer is growing on its other-than-first
3114 			 * allocation, then we revert to the page-allocation
3115 			 * scheme.
3116 			 */
3117 			if (bp->b_flags & B_MALLOC) {
3118 				origbuf = bp->b_data;
3119 				origbufsize = bp->b_bufsize;
3120 				bp->b_data = bp->b_kvabase;
3121 				if (bp->b_bufsize) {
3122 					bufmallocspace -= bp->b_bufsize;
3123 					bufspacewakeup();
3124 					bp->b_bufsize = 0;
3125 				}
3126 				bp->b_flags &= ~B_MALLOC;
3127 				newbsize = round_page(newbsize);
3128 			}
3129 			vm_hold_load_pages(
3130 			    bp,
3131 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3132 			    (vm_offset_t) bp->b_data + newbsize);
3133 			if (origbuf) {
3134 				bcopy(origbuf, bp->b_data, origbufsize);
3135 				kfree(origbuf, M_BIOBUF);
3136 			}
3137 		}
3138 	} else {
3139 		vm_page_t m;
3140 		int desiredpages;
3141 
3142 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3143 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3144 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3145 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3146 
3147 		if (bp->b_flags & B_MALLOC)
3148 			panic("allocbuf: VMIO buffer can't be malloced");
3149 		/*
3150 		 * Set B_CACHE initially if buffer is 0 length or will become
3151 		 * 0-length.
3152 		 */
3153 		if (size == 0 || bp->b_bufsize == 0)
3154 			bp->b_flags |= B_CACHE;
3155 
3156 		if (newbsize < bp->b_bufsize) {
3157 			/*
3158 			 * DEV_BSIZE aligned new buffer size is less then the
3159 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3160 			 * if we have to remove any pages.
3161 			 */
3162 			if (desiredpages < bp->b_xio.xio_npages) {
3163 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3164 					/*
3165 					 * the page is not freed here -- it
3166 					 * is the responsibility of
3167 					 * vnode_pager_setsize
3168 					 */
3169 					m = bp->b_xio.xio_pages[i];
3170 					KASSERT(m != bogus_page,
3171 					    ("allocbuf: bogus page found"));
3172 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
3173 						;
3174 
3175 					bp->b_xio.xio_pages[i] = NULL;
3176 					vm_page_unwire(m, 0);
3177 				}
3178 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3179 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3180 				bp->b_xio.xio_npages = desiredpages;
3181 			}
3182 		} else if (size > bp->b_bcount) {
3183 			/*
3184 			 * We are growing the buffer, possibly in a
3185 			 * byte-granular fashion.
3186 			 */
3187 			struct vnode *vp;
3188 			vm_object_t obj;
3189 			vm_offset_t toff;
3190 			vm_offset_t tinc;
3191 
3192 			/*
3193 			 * Step 1, bring in the VM pages from the object,
3194 			 * allocating them if necessary.  We must clear
3195 			 * B_CACHE if these pages are not valid for the
3196 			 * range covered by the buffer.
3197 			 *
3198 			 * critical section protection is required to protect
3199 			 * against interrupts unbusying and freeing pages
3200 			 * between our vm_page_lookup() and our
3201 			 * busycheck/wiring call.
3202 			 */
3203 			vp = bp->b_vp;
3204 			obj = vp->v_object;
3205 
3206 			crit_enter();
3207 			while (bp->b_xio.xio_npages < desiredpages) {
3208 				vm_page_t m;
3209 				vm_pindex_t pi;
3210 
3211 				pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
3212 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
3213 					/*
3214 					 * note: must allocate system pages
3215 					 * since blocking here could intefere
3216 					 * with paging I/O, no matter which
3217 					 * process we are.
3218 					 */
3219 					m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
3220 					if (m) {
3221 						vm_page_wire(m);
3222 						vm_page_wakeup(m);
3223 						vm_page_flag_clear(m, PG_ZERO);
3224 						bp->b_flags &= ~B_CACHE;
3225 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3226 						++bp->b_xio.xio_npages;
3227 					}
3228 					continue;
3229 				}
3230 
3231 				/*
3232 				 * We found a page.  If we have to sleep on it,
3233 				 * retry because it might have gotten freed out
3234 				 * from under us.
3235 				 *
3236 				 * We can only test PG_BUSY here.  Blocking on
3237 				 * m->busy might lead to a deadlock:
3238 				 *
3239 				 *  vm_fault->getpages->cluster_read->allocbuf
3240 				 *
3241 				 */
3242 
3243 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
3244 					continue;
3245 				vm_page_flag_clear(m, PG_ZERO);
3246 				vm_page_wire(m);
3247 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3248 				++bp->b_xio.xio_npages;
3249 				if (bp->b_act_count < m->act_count)
3250 					bp->b_act_count = m->act_count;
3251 			}
3252 			crit_exit();
3253 
3254 			/*
3255 			 * Step 2.  We've loaded the pages into the buffer,
3256 			 * we have to figure out if we can still have B_CACHE
3257 			 * set.  Note that B_CACHE is set according to the
3258 			 * byte-granular range ( bcount and size ), not the
3259 			 * aligned range ( newbsize ).
3260 			 *
3261 			 * The VM test is against m->valid, which is DEV_BSIZE
3262 			 * aligned.  Needless to say, the validity of the data
3263 			 * needs to also be DEV_BSIZE aligned.  Note that this
3264 			 * fails with NFS if the server or some other client
3265 			 * extends the file's EOF.  If our buffer is resized,
3266 			 * B_CACHE may remain set! XXX
3267 			 */
3268 
3269 			toff = bp->b_bcount;
3270 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3271 
3272 			while ((bp->b_flags & B_CACHE) && toff < size) {
3273 				vm_pindex_t pi;
3274 
3275 				if (tinc > (size - toff))
3276 					tinc = size - toff;
3277 
3278 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3279 				    PAGE_SHIFT;
3280 
3281 				vfs_buf_test_cache(
3282 				    bp,
3283 				    bp->b_loffset,
3284 				    toff,
3285 				    tinc,
3286 				    bp->b_xio.xio_pages[pi]
3287 				);
3288 				toff += tinc;
3289 				tinc = PAGE_SIZE;
3290 			}
3291 
3292 			/*
3293 			 * Step 3, fixup the KVM pmap.  Remember that
3294 			 * bp->b_data is relative to bp->b_loffset, but
3295 			 * bp->b_loffset may be offset into the first page.
3296 			 */
3297 
3298 			bp->b_data = (caddr_t)
3299 			    trunc_page((vm_offset_t)bp->b_data);
3300 			pmap_qenter(
3301 			    (vm_offset_t)bp->b_data,
3302 			    bp->b_xio.xio_pages,
3303 			    bp->b_xio.xio_npages
3304 			);
3305 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3306 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3307 		}
3308 	}
3309 
3310 	/* adjust space use on already-dirty buffer */
3311 	if (bp->b_flags & B_DELWRI) {
3312 		dirtybufspace += newbsize - bp->b_bufsize;
3313 		if (bp->b_flags & B_HEAVY)
3314 			dirtybufspacehw += newbsize - bp->b_bufsize;
3315 	}
3316 	if (newbsize < bp->b_bufsize)
3317 		bufspacewakeup();
3318 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3319 	bp->b_bcount = size;		/* requested buffer size	*/
3320 	return 1;
3321 }
3322 
3323 /*
3324  * biowait:
3325  *
3326  *	Wait for buffer I/O completion, returning error status. B_EINTR
3327  *	is converted into an EINTR error but not cleared (since a chain
3328  *	of biowait() calls may occur).
3329  *
3330  *	On return bpdone() will have been called but the buffer will remain
3331  *	locked and will not have been brelse()'d.
3332  *
3333  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3334  *	likely still in progress on return.
3335  *
3336  *	NOTE!  This operation is on a BIO, not a BUF.
3337  *
3338  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3339  *
3340  * MPSAFE
3341  */
3342 static __inline int
3343 _biowait(struct bio *bio, const char *wmesg, int to)
3344 {
3345 	struct buf *bp = bio->bio_buf;
3346 	u_int32_t flags;
3347 	u_int32_t nflags;
3348 	int error;
3349 
3350 	KKASSERT(bio == &bp->b_bio1);
3351 	for (;;) {
3352 		flags = bio->bio_flags;
3353 		if (flags & BIO_DONE)
3354 			break;
3355 		tsleep_interlock(bio, 0);
3356 		nflags = flags | BIO_WANT;
3357 		tsleep_interlock(bio, 0);
3358 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3359 			if (wmesg)
3360 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3361 			else if (bp->b_cmd == BUF_CMD_READ)
3362 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3363 			else
3364 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3365 			if (error) {
3366 				kprintf("tsleep error biowait %d\n", error);
3367 				return (error);
3368 			}
3369 		}
3370 	}
3371 
3372 	/*
3373 	 * Finish up.
3374 	 */
3375 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3376 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3377 	if (bp->b_flags & B_EINTR)
3378 		return (EINTR);
3379 	if (bp->b_flags & B_ERROR)
3380 		return (bp->b_error ? bp->b_error : EIO);
3381 	return (0);
3382 }
3383 
3384 int
3385 biowait(struct bio *bio, const char *wmesg)
3386 {
3387 	return(_biowait(bio, wmesg, 0));
3388 }
3389 
3390 int
3391 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3392 {
3393 	return(_biowait(bio, wmesg, to));
3394 }
3395 
3396 /*
3397  * This associates a tracking count with an I/O.  vn_strategy() and
3398  * dev_dstrategy() do this automatically but there are a few cases
3399  * where a vnode or device layer is bypassed when a block translation
3400  * is cached.  In such cases bio_start_transaction() may be called on
3401  * the bypassed layers so the system gets an I/O in progress indication
3402  * for those higher layers.
3403  */
3404 void
3405 bio_start_transaction(struct bio *bio, struct bio_track *track)
3406 {
3407 	bio->bio_track = track;
3408 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3409 		dsched_new_buf(bio->bio_buf);
3410 	bio_track_ref(track);
3411 }
3412 
3413 /*
3414  * Initiate I/O on a vnode.
3415  *
3416  * SWAPCACHE OPERATION:
3417  *
3418  *	Real buffer cache buffers have a non-NULL bp->b_vp.  Unfortunately
3419  *	devfs also uses b_vp for fake buffers so we also have to check
3420  *	that B_PAGING is 0.  In this case the passed 'vp' is probably the
3421  *	underlying block device.  The swap assignments are related to the
3422  *	buffer cache buffer's b_vp, not the passed vp.
3423  *
3424  *	The passed vp == bp->b_vp only in the case where the strategy call
3425  *	is made on the vp itself for its own buffers (a regular file or
3426  *	block device vp).  The filesystem usually then re-calls vn_strategy()
3427  *	after translating the request to an underlying device.
3428  *
3429  *	Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3430  *	underlying buffer cache buffers.
3431  *
3432  *	We can only deal with page-aligned buffers at the moment, because
3433  *	we can't tell what the real dirty state for pages straddling a buffer
3434  *	are.
3435  *
3436  *	In order to call swap_pager_strategy() we must provide the VM object
3437  *	and base offset for the underlying buffer cache pages so it can find
3438  *	the swap blocks.
3439  */
3440 void
3441 vn_strategy(struct vnode *vp, struct bio *bio)
3442 {
3443 	struct bio_track *track;
3444 	struct buf *bp = bio->bio_buf;
3445 
3446 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3447 
3448 	/*
3449 	 * Handle the swap cache intercept.
3450 	 */
3451 	if (vn_cache_strategy(vp, bio))
3452 		return;
3453 
3454 	/*
3455 	 * Otherwise do the operation through the filesystem
3456 	 */
3457         if (bp->b_cmd == BUF_CMD_READ)
3458                 track = &vp->v_track_read;
3459         else
3460                 track = &vp->v_track_write;
3461 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3462 	bio->bio_track = track;
3463 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3464 		dsched_new_buf(bio->bio_buf);
3465 	bio_track_ref(track);
3466         vop_strategy(*vp->v_ops, vp, bio);
3467 }
3468 
3469 int
3470 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3471 {
3472 	struct buf *bp = bio->bio_buf;
3473 	struct bio *nbio;
3474 	vm_object_t object;
3475 	vm_page_t m;
3476 	int i;
3477 
3478 	/*
3479 	 * Is this buffer cache buffer suitable for reading from
3480 	 * the swap cache?
3481 	 */
3482 	if (vm_swapcache_read_enable == 0 ||
3483 	    bp->b_cmd != BUF_CMD_READ ||
3484 	    ((bp->b_flags & B_CLUSTER) == 0 &&
3485 	     (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3486 	    ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3487 	    (bp->b_bcount & PAGE_MASK) != 0) {
3488 		return(0);
3489 	}
3490 
3491 	/*
3492 	 * Figure out the original VM object (it will match the underlying
3493 	 * VM pages).  Note that swap cached data uses page indices relative
3494 	 * to that object, not relative to bio->bio_offset.
3495 	 */
3496 	if (bp->b_flags & B_CLUSTER)
3497 		object = vp->v_object;
3498 	else
3499 		object = bp->b_vp->v_object;
3500 
3501 	/*
3502 	 * In order to be able to use the swap cache all underlying VM
3503 	 * pages must be marked as such, and we can't have any bogus pages.
3504 	 */
3505 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3506 		m = bp->b_xio.xio_pages[i];
3507 		if ((m->flags & PG_SWAPPED) == 0)
3508 			break;
3509 		if (m == bogus_page)
3510 			break;
3511 	}
3512 
3513 	/*
3514 	 * If we are good then issue the I/O using swap_pager_strategy()
3515 	 */
3516 	if (i == bp->b_xio.xio_npages) {
3517 		m = bp->b_xio.xio_pages[0];
3518 		nbio = push_bio(bio);
3519 		nbio->bio_offset = ptoa(m->pindex);
3520 		KKASSERT(m->object == object);
3521 		swap_pager_strategy(object, nbio);
3522 		return(1);
3523 	}
3524 	return(0);
3525 }
3526 
3527 /*
3528  * bpdone:
3529  *
3530  *	Finish I/O on a buffer after all BIOs have been processed.
3531  *	Called when the bio chain is exhausted or by biowait.  If called
3532  *	by biowait, elseit is typically 0.
3533  *
3534  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3535  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3536  *	assuming B_INVAL is clear.
3537  *
3538  *	For the VMIO case, we set B_CACHE if the op was a read and no
3539  *	read error occured, or if the op was a write.  B_CACHE is never
3540  *	set if the buffer is invalid or otherwise uncacheable.
3541  *
3542  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3543  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3544  *	in the biodone routine.
3545  */
3546 void
3547 bpdone(struct buf *bp, int elseit)
3548 {
3549 	buf_cmd_t cmd;
3550 
3551 	KASSERT(BUF_REFCNTNB(bp) > 0,
3552 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3553 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3554 		("biodone: bp %p already done!", bp));
3555 
3556 	/*
3557 	 * No more BIOs are left.  All completion functions have been dealt
3558 	 * with, now we clean up the buffer.
3559 	 */
3560 	cmd = bp->b_cmd;
3561 	bp->b_cmd = BUF_CMD_DONE;
3562 
3563 	/*
3564 	 * Only reads and writes are processed past this point.
3565 	 */
3566 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3567 		if (cmd == BUF_CMD_FREEBLKS)
3568 			bp->b_flags |= B_NOCACHE;
3569 		if (elseit)
3570 			brelse(bp);
3571 		return;
3572 	}
3573 
3574 	/*
3575 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3576 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3577 	 */
3578 	if (LIST_FIRST(&bp->b_dep) != NULL)
3579 		buf_complete(bp);
3580 
3581 	/*
3582 	 * A failed write must re-dirty the buffer unless B_INVAL
3583 	 * was set.  Only applicable to normal buffers (with VPs).
3584 	 * vinum buffers may not have a vp.
3585 	 */
3586 	if (cmd == BUF_CMD_WRITE &&
3587 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3588 		bp->b_flags &= ~B_NOCACHE;
3589 		if (bp->b_vp)
3590 			bdirty(bp);
3591 	}
3592 
3593 	if (bp->b_flags & B_VMIO) {
3594 		int i;
3595 		vm_ooffset_t foff;
3596 		vm_page_t m;
3597 		vm_object_t obj;
3598 		int iosize;
3599 		struct vnode *vp = bp->b_vp;
3600 
3601 		obj = vp->v_object;
3602 
3603 #if defined(VFS_BIO_DEBUG)
3604 		if (vp->v_auxrefs == 0)
3605 			panic("biodone: zero vnode hold count");
3606 		if ((vp->v_flag & VOBJBUF) == 0)
3607 			panic("biodone: vnode is not setup for merged cache");
3608 #endif
3609 
3610 		foff = bp->b_loffset;
3611 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3612 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3613 
3614 #if defined(VFS_BIO_DEBUG)
3615 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3616 			kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3617 			    obj->paging_in_progress, bp->b_xio.xio_npages);
3618 		}
3619 #endif
3620 
3621 		/*
3622 		 * Set B_CACHE if the op was a normal read and no error
3623 		 * occured.  B_CACHE is set for writes in the b*write()
3624 		 * routines.
3625 		 */
3626 		iosize = bp->b_bcount - bp->b_resid;
3627 		if (cmd == BUF_CMD_READ &&
3628 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3629 			bp->b_flags |= B_CACHE;
3630 		}
3631 
3632 		crit_enter();
3633 		get_mplock();
3634 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3635 			int bogusflag = 0;
3636 			int resid;
3637 
3638 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3639 			if (resid > iosize)
3640 				resid = iosize;
3641 
3642 			/*
3643 			 * cleanup bogus pages, restoring the originals.  Since
3644 			 * the originals should still be wired, we don't have
3645 			 * to worry about interrupt/freeing races destroying
3646 			 * the VM object association.
3647 			 */
3648 			m = bp->b_xio.xio_pages[i];
3649 			if (m == bogus_page) {
3650 				bogusflag = 1;
3651 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3652 				if (m == NULL)
3653 					panic("biodone: page disappeared");
3654 				bp->b_xio.xio_pages[i] = m;
3655 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3656 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3657 			}
3658 #if defined(VFS_BIO_DEBUG)
3659 			if (OFF_TO_IDX(foff) != m->pindex) {
3660 				kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3661 					"mismatch\n",
3662 					(unsigned long)foff, (long)m->pindex);
3663 			}
3664 #endif
3665 
3666 			/*
3667 			 * In the write case, the valid and clean bits are
3668 			 * already changed correctly (see bdwrite()), so we
3669 			 * only need to do this here in the read case.
3670 			 */
3671 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3672 				vfs_clean_one_page(bp, i, m);
3673 			}
3674 			vm_page_flag_clear(m, PG_ZERO);
3675 
3676 			/*
3677 			 * when debugging new filesystems or buffer I/O
3678 			 * methods, this is the most common error that pops
3679 			 * up.  if you see this, you have not set the page
3680 			 * busy flag correctly!!!
3681 			 */
3682 			if (m->busy == 0) {
3683 				kprintf("biodone: page busy < 0, "
3684 				    "pindex: %d, foff: 0x(%x,%x), "
3685 				    "resid: %d, index: %d\n",
3686 				    (int) m->pindex, (int)(foff >> 32),
3687 						(int) foff & 0xffffffff, resid, i);
3688 				if (!vn_isdisk(vp, NULL))
3689 					kprintf(" iosize: %ld, loffset: %lld, "
3690 						"flags: 0x%08x, npages: %d\n",
3691 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3692 					    (long long)bp->b_loffset,
3693 					    bp->b_flags, bp->b_xio.xio_npages);
3694 				else
3695 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3696 					    (long long)bp->b_loffset,
3697 					    bp->b_flags, bp->b_xio.xio_npages);
3698 				kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3699 				    m->valid, m->dirty, m->wire_count);
3700 				panic("biodone: page busy < 0");
3701 			}
3702 			vm_page_io_finish(m);
3703 			vm_object_pip_subtract(obj, 1);
3704 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3705 			iosize -= resid;
3706 		}
3707 		if (obj)
3708 			vm_object_pip_wakeupn(obj, 0);
3709 		rel_mplock();
3710 		crit_exit();
3711 	}
3712 
3713 	/*
3714 	 * Finish up by releasing the buffer.  There are no more synchronous
3715 	 * or asynchronous completions, those were handled by bio_done
3716 	 * callbacks.
3717 	 */
3718 	if (elseit) {
3719 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3720 			brelse(bp);
3721 		else
3722 			bqrelse(bp);
3723 	}
3724 }
3725 
3726 /*
3727  * Normal biodone.
3728  */
3729 void
3730 biodone(struct bio *bio)
3731 {
3732 	struct buf *bp = bio->bio_buf;
3733 
3734 	runningbufwakeup(bp);
3735 
3736 	/*
3737 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3738 	 */
3739 	while (bio) {
3740 		biodone_t *done_func;
3741 		struct bio_track *track;
3742 
3743 		/*
3744 		 * BIO tracking.  Most but not all BIOs are tracked.
3745 		 */
3746 		if ((track = bio->bio_track) != NULL) {
3747 			bio_track_rel(track);
3748 			bio->bio_track = NULL;
3749 		}
3750 
3751 		/*
3752 		 * A bio_done function terminates the loop.  The function
3753 		 * will be responsible for any further chaining and/or
3754 		 * buffer management.
3755 		 *
3756 		 * WARNING!  The done function can deallocate the buffer!
3757 		 */
3758 		if ((done_func = bio->bio_done) != NULL) {
3759 			bio->bio_done = NULL;
3760 			done_func(bio);
3761 			return;
3762 		}
3763 		bio = bio->bio_prev;
3764 	}
3765 
3766 	/*
3767 	 * If we've run out of bio's do normal [a]synchronous completion.
3768 	 */
3769 	bpdone(bp, 1);
3770 }
3771 
3772 /*
3773  * Synchronous biodone - this terminates a synchronous BIO.
3774  *
3775  * bpdone() is called with elseit=FALSE, leaving the buffer completed
3776  * but still locked.  The caller must brelse() the buffer after waiting
3777  * for completion.
3778  */
3779 void
3780 biodone_sync(struct bio *bio)
3781 {
3782 	struct buf *bp = bio->bio_buf;
3783 	int flags;
3784 	int nflags;
3785 
3786 	KKASSERT(bio == &bp->b_bio1);
3787 	bpdone(bp, 0);
3788 
3789 	for (;;) {
3790 		flags = bio->bio_flags;
3791 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
3792 
3793 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3794 			if (flags & BIO_WANT)
3795 				wakeup(bio);
3796 			break;
3797 		}
3798 	}
3799 }
3800 
3801 /*
3802  * vfs_unbusy_pages:
3803  *
3804  *	This routine is called in lieu of iodone in the case of
3805  *	incomplete I/O.  This keeps the busy status for pages
3806  *	consistant.
3807  */
3808 void
3809 vfs_unbusy_pages(struct buf *bp)
3810 {
3811 	int i;
3812 
3813 	runningbufwakeup(bp);
3814 	if (bp->b_flags & B_VMIO) {
3815 		struct vnode *vp = bp->b_vp;
3816 		vm_object_t obj;
3817 
3818 		obj = vp->v_object;
3819 
3820 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3821 			vm_page_t m = bp->b_xio.xio_pages[i];
3822 
3823 			/*
3824 			 * When restoring bogus changes the original pages
3825 			 * should still be wired, so we are in no danger of
3826 			 * losing the object association and do not need
3827 			 * critical section protection particularly.
3828 			 */
3829 			if (m == bogus_page) {
3830 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3831 				if (!m) {
3832 					panic("vfs_unbusy_pages: page missing");
3833 				}
3834 				bp->b_xio.xio_pages[i] = m;
3835 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3836 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3837 			}
3838 			vm_object_pip_subtract(obj, 1);
3839 			vm_page_flag_clear(m, PG_ZERO);
3840 			vm_page_io_finish(m);
3841 		}
3842 		vm_object_pip_wakeupn(obj, 0);
3843 	}
3844 }
3845 
3846 /*
3847  * vfs_busy_pages:
3848  *
3849  *	This routine is called before a device strategy routine.
3850  *	It is used to tell the VM system that paging I/O is in
3851  *	progress, and treat the pages associated with the buffer
3852  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
3853  *	flag is handled to make sure that the object doesn't become
3854  *	inconsistant.
3855  *
3856  *	Since I/O has not been initiated yet, certain buffer flags
3857  *	such as B_ERROR or B_INVAL may be in an inconsistant state
3858  *	and should be ignored.
3859  */
3860 void
3861 vfs_busy_pages(struct vnode *vp, struct buf *bp)
3862 {
3863 	int i, bogus;
3864 	struct lwp *lp = curthread->td_lwp;
3865 
3866 	/*
3867 	 * The buffer's I/O command must already be set.  If reading,
3868 	 * B_CACHE must be 0 (double check against callers only doing
3869 	 * I/O when B_CACHE is 0).
3870 	 */
3871 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3872 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3873 
3874 	if (bp->b_flags & B_VMIO) {
3875 		vm_object_t obj;
3876 
3877 		obj = vp->v_object;
3878 		KASSERT(bp->b_loffset != NOOFFSET,
3879 			("vfs_busy_pages: no buffer offset"));
3880 
3881 		/*
3882 		 * Loop until none of the pages are busy.
3883 		 */
3884 retry:
3885 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3886 			vm_page_t m = bp->b_xio.xio_pages[i];
3887 
3888 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3889 				goto retry;
3890 		}
3891 
3892 		/*
3893 		 * Setup for I/O, soft-busy the page right now because
3894 		 * the next loop may block.
3895 		 */
3896 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3897 			vm_page_t m = bp->b_xio.xio_pages[i];
3898 
3899 			vm_page_flag_clear(m, PG_ZERO);
3900 			if ((bp->b_flags & B_CLUSTER) == 0) {
3901 				vm_object_pip_add(obj, 1);
3902 				vm_page_io_start(m);
3903 			}
3904 		}
3905 
3906 		/*
3907 		 * Adjust protections for I/O and do bogus-page mapping.
3908 		 * Assume that vm_page_protect() can block (it can block
3909 		 * if VM_PROT_NONE, don't take any chances regardless).
3910 		 *
3911 		 * In particular note that for writes we must incorporate
3912 		 * page dirtyness from the VM system into the buffer's
3913 		 * dirty range.
3914 		 *
3915 		 * For reads we theoretically must incorporate page dirtyness
3916 		 * from the VM system to determine if the page needs bogus
3917 		 * replacement, but we shortcut the test by simply checking
3918 		 * that all m->valid bits are set, indicating that the page
3919 		 * is fully valid and does not need to be re-read.  For any
3920 		 * VM system dirtyness the page will also be fully valid
3921 		 * since it was mapped at one point.
3922 		 */
3923 		bogus = 0;
3924 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3925 			vm_page_t m = bp->b_xio.xio_pages[i];
3926 
3927 			vm_page_flag_clear(m, PG_ZERO);	/* XXX */
3928 			if (bp->b_cmd == BUF_CMD_WRITE) {
3929 				/*
3930 				 * When readying a vnode-backed buffer for
3931 				 * a write we must zero-fill any invalid
3932 				 * portions of the backing VM pages, mark
3933 				 * it valid and clear related dirty bits.
3934 				 *
3935 				 * vfs_clean_one_page() incorporates any
3936 				 * VM dirtyness and updates the b_dirtyoff
3937 				 * range (after we've made the page RO).
3938 				 *
3939 				 * It is also expected that the pmap modified
3940 				 * bit has already been cleared by the
3941 				 * vm_page_protect().  We may not be able
3942 				 * to clear all dirty bits for a page if it
3943 				 * was also memory mapped (NFS).
3944 				 *
3945 				 * Finally be sure to unassign any swap-cache
3946 				 * backing store as it is now stale.
3947 				 */
3948 				vm_page_protect(m, VM_PROT_READ);
3949 				vfs_clean_one_page(bp, i, m);
3950 				swap_pager_unswapped(m);
3951 			} else if (m->valid == VM_PAGE_BITS_ALL) {
3952 				/*
3953 				 * When readying a vnode-backed buffer for
3954 				 * read we must replace any dirty pages with
3955 				 * a bogus page so dirty data is not destroyed
3956 				 * when filling gaps.
3957 				 *
3958 				 * To avoid testing whether the page is
3959 				 * dirty we instead test that the page was
3960 				 * at some point mapped (m->valid fully
3961 				 * valid) with the understanding that
3962 				 * this also covers the dirty case.
3963 				 */
3964 				bp->b_xio.xio_pages[i] = bogus_page;
3965 				bogus++;
3966 			} else if (m->valid & m->dirty) {
3967 				/*
3968 				 * This case should not occur as partial
3969 				 * dirtyment can only happen if the buffer
3970 				 * is B_CACHE, and this code is not entered
3971 				 * if the buffer is B_CACHE.
3972 				 */
3973 				kprintf("Warning: vfs_busy_pages - page not "
3974 					"fully valid! loff=%jx bpf=%08x "
3975 					"idx=%d val=%02x dir=%02x\n",
3976 					(intmax_t)bp->b_loffset, bp->b_flags,
3977 					i, m->valid, m->dirty);
3978 				vm_page_protect(m, VM_PROT_NONE);
3979 			} else {
3980 				/*
3981 				 * The page is not valid and can be made
3982 				 * part of the read.
3983 				 */
3984 				vm_page_protect(m, VM_PROT_NONE);
3985 			}
3986 		}
3987 		if (bogus) {
3988 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3989 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3990 		}
3991 	}
3992 
3993 	/*
3994 	 * This is the easiest place to put the process accounting for the I/O
3995 	 * for now.
3996 	 */
3997 	if (lp != NULL) {
3998 		if (bp->b_cmd == BUF_CMD_READ)
3999 			lp->lwp_ru.ru_inblock++;
4000 		else
4001 			lp->lwp_ru.ru_oublock++;
4002 	}
4003 }
4004 
4005 /*
4006  * vfs_clean_pages:
4007  *
4008  *	Tell the VM system that the pages associated with this buffer
4009  *	are clean.  This is used for delayed writes where the data is
4010  *	going to go to disk eventually without additional VM intevention.
4011  *
4012  *	Note that while we only really need to clean through to b_bcount, we
4013  *	just go ahead and clean through to b_bufsize.
4014  */
4015 static void
4016 vfs_clean_pages(struct buf *bp)
4017 {
4018 	vm_page_t m;
4019 	int i;
4020 
4021 	if ((bp->b_flags & B_VMIO) == 0)
4022 		return;
4023 
4024 	KASSERT(bp->b_loffset != NOOFFSET,
4025 		("vfs_clean_pages: no buffer offset"));
4026 
4027 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
4028 		m = bp->b_xio.xio_pages[i];
4029 		vfs_clean_one_page(bp, i, m);
4030 	}
4031 }
4032 
4033 /*
4034  * vfs_clean_one_page:
4035  *
4036  *	Set the valid bits and clear the dirty bits in a page within a
4037  *	buffer.  The range is restricted to the buffer's size and the
4038  *	buffer's logical offset might index into the first page.
4039  *
4040  *	The caller has busied or soft-busied the page and it is not mapped,
4041  *	test and incorporate the dirty bits into b_dirtyoff/end before
4042  *	clearing them.  Note that we need to clear the pmap modified bits
4043  *	after determining the the page was dirty, vm_page_set_validclean()
4044  *	does not do it for us.
4045  *
4046  *	This routine is typically called after a read completes (dirty should
4047  *	be zero in that case as we are not called on bogus-replace pages),
4048  *	or before a write is initiated.
4049  */
4050 static void
4051 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4052 {
4053 	int bcount;
4054 	int xoff;
4055 	int soff;
4056 	int eoff;
4057 
4058 	/*
4059 	 * Calculate offset range within the page but relative to buffer's
4060 	 * loffset.  loffset might be offset into the first page.
4061 	 */
4062 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4063 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4064 
4065 	if (pageno == 0) {
4066 		soff = xoff;
4067 		eoff = PAGE_SIZE;
4068 	} else {
4069 		soff = (pageno << PAGE_SHIFT);
4070 		eoff = soff + PAGE_SIZE;
4071 	}
4072 	if (eoff > bcount)
4073 		eoff = bcount;
4074 	if (soff >= eoff)
4075 		return;
4076 
4077 	/*
4078 	 * Test dirty bits and adjust b_dirtyoff/end.
4079 	 *
4080 	 * If dirty pages are incorporated into the bp any prior
4081 	 * B_NEEDCOMMIT state (NFS) must be cleared because the
4082 	 * caller has not taken into account the new dirty data.
4083 	 *
4084 	 * If the page was memory mapped the dirty bits might go beyond the
4085 	 * end of the buffer, but we can't really make the assumption that
4086 	 * a file EOF straddles the buffer (even though this is the case for
4087 	 * NFS if B_NEEDCOMMIT is also set).  So for the purposes of clearing
4088 	 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4089 	 * This also saves some console spam.
4090 	 *
4091 	 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4092 	 * NFS can handle huge commits but not huge writes.
4093 	 */
4094 	vm_page_test_dirty(m);
4095 	if (m->dirty) {
4096 		if ((bp->b_flags & B_NEEDCOMMIT) &&
4097 		    (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4098 			if (debug_commit)
4099 			kprintf("Warning: vfs_clean_one_page: bp %p "
4100 				"loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4101 				" cmd %d vd %02x/%02x x/s/e %d %d %d "
4102 				"doff/end %d %d\n",
4103 				bp, (intmax_t)bp->b_loffset, bp->b_bcount,
4104 				bp->b_flags, bp->b_cmd,
4105 				m->valid, m->dirty, xoff, soff, eoff,
4106 				bp->b_dirtyoff, bp->b_dirtyend);
4107 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4108 			if (debug_commit)
4109 				print_backtrace(-1);
4110 		}
4111 		/*
4112 		 * Only clear the pmap modified bits if ALL the dirty bits
4113 		 * are set, otherwise the system might mis-clear portions
4114 		 * of a page.
4115 		 */
4116 		if (m->dirty == VM_PAGE_BITS_ALL &&
4117 		    (bp->b_flags & B_NEEDCOMMIT) == 0) {
4118 			pmap_clear_modify(m);
4119 		}
4120 		if (bp->b_dirtyoff > soff - xoff)
4121 			bp->b_dirtyoff = soff - xoff;
4122 		if (bp->b_dirtyend < eoff - xoff)
4123 			bp->b_dirtyend = eoff - xoff;
4124 	}
4125 
4126 	/*
4127 	 * Set related valid bits, clear related dirty bits.
4128 	 * Does not mess with the pmap modified bit.
4129 	 *
4130 	 * WARNING!  We cannot just clear all of m->dirty here as the
4131 	 *	     buffer cache buffers may use a DEV_BSIZE'd aligned
4132 	 *	     block size, or have an odd size (e.g. NFS at file EOF).
4133 	 *	     The putpages code can clear m->dirty to 0.
4134 	 *
4135 	 *	     If a VOP_WRITE generates a buffer cache buffer which
4136 	 *	     covers the same space as mapped writable pages the
4137 	 *	     buffer flush might not be able to clear all the dirty
4138 	 *	     bits and still require a putpages from the VM system
4139 	 *	     to finish it off.
4140 	 */
4141 	vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4142 }
4143 
4144 /*
4145  * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4146  * The page data is assumed to be valid (there is no zeroing here).
4147  */
4148 static void
4149 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4150 {
4151 	int bcount;
4152 	int xoff;
4153 	int soff;
4154 	int eoff;
4155 
4156 	/*
4157 	 * Calculate offset range within the page but relative to buffer's
4158 	 * loffset.  loffset might be offset into the first page.
4159 	 */
4160 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4161 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4162 
4163 	if (pageno == 0) {
4164 		soff = xoff;
4165 		eoff = PAGE_SIZE;
4166 	} else {
4167 		soff = (pageno << PAGE_SHIFT);
4168 		eoff = soff + PAGE_SIZE;
4169 	}
4170 	if (eoff > bcount)
4171 		eoff = bcount;
4172 	if (soff >= eoff)
4173 		return;
4174 	vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4175 }
4176 
4177 /*
4178  * vfs_bio_clrbuf:
4179  *
4180  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
4181  *	to clear B_ERROR and B_INVAL.
4182  *
4183  *	Note that while we only theoretically need to clear through b_bcount,
4184  *	we go ahead and clear through b_bufsize.
4185  */
4186 
4187 void
4188 vfs_bio_clrbuf(struct buf *bp)
4189 {
4190 	int i, mask = 0;
4191 	caddr_t sa, ea;
4192 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4193 		bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4194 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4195 		    (bp->b_loffset & PAGE_MASK) == 0) {
4196 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4197 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4198 				bp->b_resid = 0;
4199 				return;
4200 			}
4201 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
4202 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
4203 				bzero(bp->b_data, bp->b_bufsize);
4204 				bp->b_xio.xio_pages[0]->valid |= mask;
4205 				bp->b_resid = 0;
4206 				return;
4207 			}
4208 		}
4209 		sa = bp->b_data;
4210 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4211 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4212 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4213 			ea = (caddr_t)(vm_offset_t)ulmin(
4214 			    (u_long)(vm_offset_t)ea,
4215 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4216 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4217 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4218 				continue;
4219 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4220 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
4221 					bzero(sa, ea - sa);
4222 				}
4223 			} else {
4224 				for (; sa < ea; sa += DEV_BSIZE, j++) {
4225 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
4226 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
4227 						bzero(sa, DEV_BSIZE);
4228 				}
4229 			}
4230 			bp->b_xio.xio_pages[i]->valid |= mask;
4231 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4232 		}
4233 		bp->b_resid = 0;
4234 	} else {
4235 		clrbuf(bp);
4236 	}
4237 }
4238 
4239 /*
4240  * vm_hold_load_pages:
4241  *
4242  *	Load pages into the buffer's address space.  The pages are
4243  *	allocated from the kernel object in order to reduce interference
4244  *	with the any VM paging I/O activity.  The range of loaded
4245  *	pages will be wired.
4246  *
4247  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
4248  *	retrieve the full range (to - from) of pages.
4249  *
4250  */
4251 void
4252 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4253 {
4254 	vm_offset_t pg;
4255 	vm_page_t p;
4256 	int index;
4257 
4258 	to = round_page(to);
4259 	from = round_page(from);
4260 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4261 
4262 	pg = from;
4263 	while (pg < to) {
4264 		/*
4265 		 * Note: must allocate system pages since blocking here
4266 		 * could intefere with paging I/O, no matter which
4267 		 * process we are.
4268 		 */
4269 		p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
4270 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4271 		if (p) {
4272 			vm_page_wire(p);
4273 			p->valid = VM_PAGE_BITS_ALL;
4274 			vm_page_flag_clear(p, PG_ZERO);
4275 			pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4276 			bp->b_xio.xio_pages[index] = p;
4277 			vm_page_wakeup(p);
4278 
4279 			pg += PAGE_SIZE;
4280 			++index;
4281 		}
4282 	}
4283 	bp->b_xio.xio_npages = index;
4284 }
4285 
4286 /*
4287  * Allocate pages for a buffer cache buffer.
4288  *
4289  * Under extremely severe memory conditions even allocating out of the
4290  * system reserve can fail.  If this occurs we must allocate out of the
4291  * interrupt reserve to avoid a deadlock with the pageout daemon.
4292  *
4293  * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf).
4294  * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock
4295  * against the pageout daemon if pages are not freed from other sources.
4296  */
4297 static
4298 vm_page_t
4299 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
4300 {
4301 	vm_page_t p;
4302 
4303 	/*
4304 	 * Try a normal allocation, allow use of system reserve.
4305 	 */
4306 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
4307 	if (p)
4308 		return(p);
4309 
4310 	/*
4311 	 * The normal allocation failed and we clearly have a page
4312 	 * deficit.  Try to reclaim some clean VM pages directly
4313 	 * from the buffer cache.
4314 	 */
4315 	vm_pageout_deficit += deficit;
4316 	recoverbufpages();
4317 
4318 	/*
4319 	 * We may have blocked, the caller will know what to do if the
4320 	 * page now exists.
4321 	 */
4322 	if (vm_page_lookup(obj, pg))
4323 		return(NULL);
4324 
4325 	/*
4326 	 * Allocate and allow use of the interrupt reserve.
4327 	 *
4328 	 * If after all that we still can't allocate a VM page we are
4329 	 * in real trouble, but we slog on anyway hoping that the system
4330 	 * won't deadlock.
4331 	 */
4332 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
4333 				   VM_ALLOC_INTERRUPT);
4334 	if (p) {
4335 		if (vm_page_count_severe()) {
4336 			kprintf("bio_page_alloc: WARNING emergency page "
4337 				"allocation\n");
4338 			vm_wait(hz / 20);
4339 		}
4340 	} else {
4341 		kprintf("bio_page_alloc: WARNING emergency page "
4342 			"allocation failed\n");
4343 		vm_wait(hz * 5);
4344 	}
4345 	return(p);
4346 }
4347 
4348 /*
4349  * vm_hold_free_pages:
4350  *
4351  *	Return pages associated with the buffer back to the VM system.
4352  *
4353  *	The range of pages underlying the buffer's address space will
4354  *	be unmapped and un-wired.
4355  */
4356 void
4357 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4358 {
4359 	vm_offset_t pg;
4360 	vm_page_t p;
4361 	int index, newnpages;
4362 
4363 	from = round_page(from);
4364 	to = round_page(to);
4365 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4366 	newnpages = index;
4367 
4368 	lwkt_gettoken(&vm_token);
4369 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4370 		p = bp->b_xio.xio_pages[index];
4371 		if (p && (index < bp->b_xio.xio_npages)) {
4372 			if (p->busy) {
4373 				kprintf("vm_hold_free_pages: doffset: %lld, "
4374 					"loffset: %lld\n",
4375 					(long long)bp->b_bio2.bio_offset,
4376 					(long long)bp->b_loffset);
4377 			}
4378 			bp->b_xio.xio_pages[index] = NULL;
4379 			pmap_kremove(pg);
4380 			vm_page_busy(p);
4381 			vm_page_unwire(p, 0);
4382 			vm_page_free(p);
4383 		}
4384 	}
4385 	bp->b_xio.xio_npages = newnpages;
4386 	lwkt_reltoken(&vm_token);
4387 }
4388 
4389 /*
4390  * vmapbuf:
4391  *
4392  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
4393  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4394  *	initialized.
4395  */
4396 int
4397 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4398 {
4399 	caddr_t addr;
4400 	vm_offset_t va;
4401 	vm_page_t m;
4402 	int vmprot;
4403 	int error;
4404 	int pidx;
4405 	int i;
4406 
4407 	/*
4408 	 * bp had better have a command and it better be a pbuf.
4409 	 */
4410 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4411 	KKASSERT(bp->b_flags & B_PAGING);
4412 
4413 	if (bytes < 0)
4414 		return (-1);
4415 
4416 	/*
4417 	 * Map the user data into KVM.  Mappings have to be page-aligned.
4418 	 */
4419 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
4420 	pidx = 0;
4421 
4422 	vmprot = VM_PROT_READ;
4423 	if (bp->b_cmd == BUF_CMD_READ)
4424 		vmprot |= VM_PROT_WRITE;
4425 
4426 	while (addr < udata + bytes) {
4427 		/*
4428 		 * Do the vm_fault if needed; do the copy-on-write thing
4429 		 * when reading stuff off device into memory.
4430 		 *
4431 		 * vm_fault_page*() returns a held VM page.
4432 		 */
4433 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4434 		va = trunc_page(va);
4435 
4436 		m = vm_fault_page_quick(va, vmprot, &error);
4437 		if (m == NULL) {
4438 			for (i = 0; i < pidx; ++i) {
4439 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
4440 			    bp->b_xio.xio_pages[i] = NULL;
4441 			}
4442 			return(-1);
4443 		}
4444 		bp->b_xio.xio_pages[pidx] = m;
4445 		addr += PAGE_SIZE;
4446 		++pidx;
4447 	}
4448 
4449 	/*
4450 	 * Map the page array and set the buffer fields to point to
4451 	 * the mapped data buffer.
4452 	 */
4453 	if (pidx > btoc(MAXPHYS))
4454 		panic("vmapbuf: mapped more than MAXPHYS");
4455 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4456 
4457 	bp->b_xio.xio_npages = pidx;
4458 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4459 	bp->b_bcount = bytes;
4460 	bp->b_bufsize = bytes;
4461 	return(0);
4462 }
4463 
4464 /*
4465  * vunmapbuf:
4466  *
4467  *	Free the io map PTEs associated with this IO operation.
4468  *	We also invalidate the TLB entries and restore the original b_addr.
4469  */
4470 void
4471 vunmapbuf(struct buf *bp)
4472 {
4473 	int pidx;
4474 	int npages;
4475 
4476 	KKASSERT(bp->b_flags & B_PAGING);
4477 
4478 	npages = bp->b_xio.xio_npages;
4479 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4480 	for (pidx = 0; pidx < npages; ++pidx) {
4481 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4482 		bp->b_xio.xio_pages[pidx] = NULL;
4483 	}
4484 	bp->b_xio.xio_npages = 0;
4485 	bp->b_data = bp->b_kvabase;
4486 }
4487 
4488 /*
4489  * Scan all buffers in the system and issue the callback.
4490  */
4491 int
4492 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4493 {
4494 	int count = 0;
4495 	int error;
4496 	int n;
4497 
4498 	for (n = 0; n < nbuf; ++n) {
4499 		if ((error = callback(&buf[n], info)) < 0) {
4500 			count = error;
4501 			break;
4502 		}
4503 		count += error;
4504 	}
4505 	return (count);
4506 }
4507 
4508 /*
4509  * nestiobuf_iodone: biodone callback for nested buffers and propagate
4510  * completion to the master buffer.
4511  */
4512 static void
4513 nestiobuf_iodone(struct bio *bio)
4514 {
4515 	struct bio *mbio;
4516 	struct buf *mbp, *bp;
4517 	int error;
4518 	int donebytes;
4519 
4520 	bp = bio->bio_buf;
4521 	mbio = bio->bio_caller_info1.ptr;
4522 	mbp = mbio->bio_buf;
4523 
4524 	KKASSERT(bp->b_bcount <= bp->b_bufsize);
4525 	KKASSERT(mbp != bp);
4526 
4527 	error = bp->b_error;
4528 	if (bp->b_error == 0 &&
4529 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4530 		/*
4531 		 * Not all got transfered, raise an error. We have no way to
4532 		 * propagate these conditions to mbp.
4533 		 */
4534 		error = EIO;
4535 	}
4536 
4537 	donebytes = bp->b_bufsize;
4538 
4539 	relpbuf(bp, NULL);
4540 	nestiobuf_done(mbio, donebytes, error);
4541 }
4542 
4543 void
4544 nestiobuf_done(struct bio *mbio, int donebytes, int error)
4545 {
4546 	struct buf *mbp;
4547 
4548 	mbp = mbio->bio_buf;
4549 
4550 	/* If this buf didn't do anything, we are done. */
4551 	if (donebytes == 0)
4552 		return;
4553 
4554 	KKASSERT(mbp->b_resid >= donebytes);
4555 
4556 	/* If an error occured, propagate it to the master buffer */
4557 	if (error)
4558 		mbp->b_error = error;
4559 
4560 	/*
4561 	 * Decrement the master buf b_resid according to our donebytes, and
4562 	 * also check if this is the last missing bit for the whole nestio
4563 	 * mess to complete. If so, call biodone() on the master buf mbp.
4564 	 */
4565 	if (atomic_fetchadd_int(&mbp->b_resid, -donebytes) == donebytes) {
4566 		biodone(mbio);
4567 	}
4568 }
4569 
4570 /*
4571  * nestiobuf_setup: setup a "nested" buffer.
4572  *
4573  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4574  * => 'bp' should be a buffer allocated by getiobuf.
4575  * => 'offset' is a byte offset in the master buffer.
4576  * => 'size' is a size in bytes of this nested buffer.
4577  */
4578 void
4579 nestiobuf_setup(struct bio *bio, struct buf *bp, int offset, size_t size)
4580 {
4581 	struct buf *mbp = bio->bio_buf;
4582 	struct vnode *vp = mbp->b_vp;
4583 
4584 	KKASSERT(mbp->b_bcount >= offset + size);
4585 
4586 	/* kernel needs to own the lock for it to be released in biodone */
4587 	BUF_KERNPROC(bp);
4588 	bp->b_vp = vp;
4589 	bp->b_cmd = mbp->b_cmd;
4590 	bp->b_bio1.bio_done = nestiobuf_iodone;
4591 	bp->b_data = (char *)mbp->b_data + offset;
4592 	bp->b_resid = bp->b_bcount = size;
4593 	bp->b_bufsize = bp->b_bcount;
4594 
4595 	bp->b_bio1.bio_track = NULL;
4596 	bp->b_bio1.bio_caller_info1.ptr = bio;
4597 }
4598 
4599 /*
4600  * print out statistics from the current status of the buffer pool
4601  * this can be toggeled by the system control option debug.syncprt
4602  */
4603 #ifdef DEBUG
4604 void
4605 vfs_bufstats(void)
4606 {
4607         int i, j, count;
4608         struct buf *bp;
4609         struct bqueues *dp;
4610         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4611         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4612 
4613         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4614                 count = 0;
4615                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4616                         counts[j] = 0;
4617 		crit_enter();
4618                 TAILQ_FOREACH(bp, dp, b_freelist) {
4619                         counts[bp->b_bufsize/PAGE_SIZE]++;
4620                         count++;
4621                 }
4622 		crit_exit();
4623                 kprintf("%s: total-%d", bname[i], count);
4624                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4625                         if (counts[j] != 0)
4626                                 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4627                 kprintf("\n");
4628         }
4629 }
4630 #endif
4631 
4632 #ifdef DDB
4633 
4634 DB_SHOW_COMMAND(buffer, db_show_buffer)
4635 {
4636 	/* get args */
4637 	struct buf *bp = (struct buf *)addr;
4638 
4639 	if (!have_addr) {
4640 		db_printf("usage: show buffer <addr>\n");
4641 		return;
4642 	}
4643 
4644 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4645 	db_printf("b_cmd = %d\n", bp->b_cmd);
4646 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4647 		  "b_resid = %d\n, b_data = %p, "
4648 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4649 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4650 		  bp->b_data,
4651 		  (long long)bp->b_bio2.bio_offset,
4652 		  (long long)(bp->b_bio2.bio_next ?
4653 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4654 	if (bp->b_xio.xio_npages) {
4655 		int i;
4656 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4657 			bp->b_xio.xio_npages);
4658 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4659 			vm_page_t m;
4660 			m = bp->b_xio.xio_pages[i];
4661 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4662 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4663 			if ((i + 1) < bp->b_xio.xio_npages)
4664 				db_printf(",");
4665 		}
4666 		db_printf("\n");
4667 	}
4668 }
4669 #endif /* DDB */
4670