xref: /dragonfly/sys/kern/vfs_bio.c (revision e5e174ad)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  */
16 
17 /*
18  * this file contains a new buffer I/O scheme implementing a coherent
19  * VM object and buffer cache scheme.  Pains have been taken to make
20  * sure that the performance degradation associated with schemes such
21  * as this is not realized.
22  *
23  * Author:  John S. Dyson
24  * Significant help during the development and debugging phases
25  * had been provided by David Greenman, also of the FreeBSD core team.
26  *
27  * see man buf(9) for more info.  Note that man buf(9) doesn't reflect
28  * the actual buf/bio implementation in DragonFly.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/devicestat.h>
36 #include <sys/eventhandler.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mount.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/proc.h>
43 #include <sys/reboot.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 #include <sys/dsched.h>
49 #include <vm/vm.h>
50 #include <vm/vm_param.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_pageout.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_map.h>
57 #include <vm/vm_pager.h>
58 #include <vm/swap_pager.h>
59 
60 #include <sys/buf2.h>
61 #include <sys/thread2.h>
62 #include <sys/spinlock2.h>
63 #include <sys/mplock2.h>
64 #include <vm/vm_page2.h>
65 
66 #include "opt_ddb.h"
67 #ifdef DDB
68 #include <ddb/ddb.h>
69 #endif
70 
71 /*
72  * Buffer queues.
73  */
74 enum bufq_type {
75 	BQUEUE_NONE,    	/* not on any queue */
76 	BQUEUE_LOCKED,  	/* locked buffers */
77 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
78 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
79 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
80 	BQUEUE_EMPTY,    	/* empty buffer headers */
81 
82 	BUFFER_QUEUES		/* number of buffer queues */
83 };
84 
85 typedef enum bufq_type bufq_type_t;
86 
87 #define BD_WAKE_SIZE	16384
88 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
89 
90 TAILQ_HEAD(bqueues, buf);
91 
92 struct bufpcpu {
93 	struct spinlock spin;
94 	struct bqueues bufqueues[BUFFER_QUEUES];
95 } __cachealign;
96 
97 struct bufpcpu bufpcpu[MAXCPU];
98 
99 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
100 
101 struct buf *buf;		/* buffer header pool */
102 
103 static void vfs_clean_pages(struct buf *bp);
104 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
105 #if 0
106 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
107 #endif
108 static void vfs_vmio_release(struct buf *bp);
109 static int flushbufqueues(struct buf *marker, bufq_type_t q);
110 static void repurposebuf(struct buf *bp, int size);
111 static vm_page_t bio_page_alloc(struct buf *bp, vm_object_t obj,
112 				vm_pindex_t pg, int deficit);
113 
114 static void bd_signal(long totalspace);
115 static void buf_daemon(void);
116 static void buf_daemon_hw(void);
117 
118 /*
119  * bogus page -- for I/O to/from partially complete buffers
120  * this is a temporary solution to the problem, but it is not
121  * really that bad.  it would be better to split the buffer
122  * for input in the case of buffers partially already in memory,
123  * but the code is intricate enough already.
124  */
125 vm_page_t bogus_page;
126 
127 /*
128  * These are all static, but make the ones we export globals so we do
129  * not need to use compiler magic.
130  */
131 long bufspace;			/* atomic ops */
132 long maxbufspace;
133 static long bufmallocspace;	/* atomic ops */
134 long maxbufmallocspace, lobufspace, hibufspace;
135 static long lorunningspace;
136 static long hirunningspace;
137 static long dirtykvaspace;		/* atomic */
138 long dirtybufspace;			/* atomic (global for systat) */
139 static long dirtybufcount;		/* atomic */
140 static long dirtybufspacehw;		/* atomic */
141 static long dirtybufcounthw;		/* atomic */
142 static long runningbufspace;		/* atomic */
143 static long runningbufcount;		/* atomic */
144 static long repurposedspace;
145 long lodirtybufspace;
146 long hidirtybufspace;
147 static int getnewbufcalls;
148 static int recoverbufcalls;
149 static int needsbuffer;			/* atomic */
150 static int runningbufreq;		/* atomic */
151 static int bd_request;			/* atomic */
152 static int bd_request_hw;		/* atomic */
153 static u_int bd_wake_ary[BD_WAKE_SIZE];
154 static u_int bd_wake_index;
155 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
156 static int debug_commit;
157 static int debug_bufbio;
158 static long bufcache_bw = 200 * 1024 * 1024;
159 static long bufcache_bw_accum;
160 static int bufcache_bw_ticks;
161 
162 static struct thread *bufdaemon_td;
163 static struct thread *bufdaemonhw_td;
164 static u_int lowmempgallocs;
165 static u_int lowmempgfails;
166 static u_int flushperqueue = 1024;
167 static int repurpose_enable;
168 
169 /*
170  * Sysctls for operational control of the buffer cache.
171  */
172 SYSCTL_UINT(_vfs, OID_AUTO, flushperqueue, CTLFLAG_RW, &flushperqueue, 0,
173 	"Number of buffers to flush from each per-cpu queue");
174 SYSCTL_LONG(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
175 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
176 SYSCTL_LONG(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
177 	"High watermark used to trigger explicit flushing of dirty buffers");
178 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
179 	"Minimum amount of buffer space required for active I/O");
180 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
181 	"Maximum amount of buffer space to usable for active I/O");
182 SYSCTL_LONG(_vfs, OID_AUTO, bufcache_bw, CTLFLAG_RW, &bufcache_bw, 0,
183 	"Buffer-cache -> VM page cache transfer bandwidth");
184 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
185 	"Page allocations done during periods of very low free memory");
186 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0,
187 	"Page allocations which failed during periods of very low free memory");
188 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
189 	"Recycle pages to active or inactive queue transition pt 0-64");
190 SYSCTL_UINT(_vfs, OID_AUTO, repurpose_enable, CTLFLAG_RW, &repurpose_enable, 0,
191 	"Enable buffer cache VM repurposing for high-I/O");
192 /*
193  * Sysctls determining current state of the buffer cache.
194  */
195 SYSCTL_LONG(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
196 	"Total number of buffers in buffer cache");
197 SYSCTL_LONG(_vfs, OID_AUTO, dirtykvaspace, CTLFLAG_RD, &dirtykvaspace, 0,
198 	"KVA reserved by dirty buffers (all)");
199 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
200 	"Pending bytes of dirty buffers (all)");
201 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
202 	"Pending bytes of dirty buffers (heavy weight)");
203 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
204 	"Pending number of dirty buffers");
205 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
206 	"Pending number of dirty buffers (heavy weight)");
207 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
208 	"I/O bytes currently in progress due to asynchronous writes");
209 SYSCTL_LONG(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
210 	"I/O buffers currently in progress due to asynchronous writes");
211 SYSCTL_LONG(_vfs, OID_AUTO, repurposedspace, CTLFLAG_RD, &repurposedspace, 0,
212 	"Buffer-cache memory repurposed in-place");
213 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
214 	"Hard limit on maximum amount of memory usable for buffer space");
215 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
216 	"Soft limit on maximum amount of memory usable for buffer space");
217 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
218 	"Minimum amount of memory to reserve for system buffer space");
219 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
220 	"Amount of memory available for buffers");
221 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
222 	0, "Maximum amount of memory reserved for buffers using malloc");
223 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
224 	"Amount of memory left for buffers using malloc-scheme");
225 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
226 	"New buffer header acquisition requests");
227 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
228 	"Recover VM space in an emergency");
229 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
230 SYSCTL_INT(_vfs, OID_AUTO, debug_bufbio, CTLFLAG_RW, &debug_bufbio, 0, "");
231 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
232 	"sizeof(struct buf)");
233 
234 char *buf_wmesg = BUF_WMESG;
235 
236 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
237 #define VFS_BIO_NEED_UNUSED02	0x02
238 #define VFS_BIO_NEED_UNUSED04	0x04
239 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
240 
241 /*
242  * Called when buffer space is potentially available for recovery.
243  * getnewbuf() will block on this flag when it is unable to free
244  * sufficient buffer space.  Buffer space becomes recoverable when
245  * bp's get placed back in the queues.
246  */
247 static __inline void
248 bufspacewakeup(void)
249 {
250 	/*
251 	 * If someone is waiting for BUF space, wake them up.  Even
252 	 * though we haven't freed the kva space yet, the waiting
253 	 * process will be able to now.
254 	 */
255 	for (;;) {
256 		int flags = needsbuffer;
257 		cpu_ccfence();
258 		if ((flags & VFS_BIO_NEED_BUFSPACE) == 0)
259 			break;
260 		if (atomic_cmpset_int(&needsbuffer, flags,
261 				      flags & ~VFS_BIO_NEED_BUFSPACE)) {
262 			wakeup(&needsbuffer);
263 			break;
264 		}
265 		/* retry */
266 	}
267 }
268 
269 /*
270  * runningbufwakeup:
271  *
272  *	Accounting for I/O in progress.
273  *
274  */
275 static __inline void
276 runningbufwakeup(struct buf *bp)
277 {
278 	long totalspace;
279 	long flags;
280 
281 	if ((totalspace = bp->b_runningbufspace) != 0) {
282 		atomic_add_long(&runningbufspace, -totalspace);
283 		atomic_add_long(&runningbufcount, -1);
284 		bp->b_runningbufspace = 0;
285 
286 		/*
287 		 * see waitrunningbufspace() for limit test.
288 		 */
289 		for (;;) {
290 			flags = runningbufreq;
291 			cpu_ccfence();
292 			if (flags == 0)
293 				break;
294 			if (atomic_cmpset_int(&runningbufreq, flags, 0)) {
295 				wakeup(&runningbufreq);
296 				break;
297 			}
298 			/* retry */
299 		}
300 		bd_signal(totalspace);
301 	}
302 }
303 
304 /*
305  * bufcountwakeup:
306  *
307  *	Called when a buffer has been added to one of the free queues to
308  *	account for the buffer and to wakeup anyone waiting for free buffers.
309  *	This typically occurs when large amounts of metadata are being handled
310  *	by the buffer cache ( else buffer space runs out first, usually ).
311  */
312 static __inline void
313 bufcountwakeup(void)
314 {
315 	long flags;
316 
317 	for (;;) {
318 		flags = needsbuffer;
319 		if (flags == 0)
320 			break;
321 		if (atomic_cmpset_int(&needsbuffer, flags,
322 				      (flags & ~VFS_BIO_NEED_ANY))) {
323 			wakeup(&needsbuffer);
324 			break;
325 		}
326 		/* retry */
327 	}
328 }
329 
330 /*
331  * waitrunningbufspace()
332  *
333  * If runningbufspace exceeds 4/6 hirunningspace we block until
334  * runningbufspace drops to 3/6 hirunningspace.  We also block if another
335  * thread blocked here in order to be fair, even if runningbufspace
336  * is now lower than the limit.
337  *
338  * The caller may be using this function to block in a tight loop, we
339  * must block while runningbufspace is greater than at least
340  * hirunningspace * 3 / 6.
341  */
342 void
343 waitrunningbufspace(void)
344 {
345 	long limit = hirunningspace * 4 / 6;
346 	long flags;
347 
348 	while (runningbufspace > limit || runningbufreq) {
349 		tsleep_interlock(&runningbufreq, 0);
350 		flags = atomic_fetchadd_int(&runningbufreq, 1);
351 		if (runningbufspace > limit || flags)
352 			tsleep(&runningbufreq, PINTERLOCKED, "wdrn1", hz);
353 	}
354 }
355 
356 /*
357  * buf_dirty_count_severe:
358  *
359  *	Return true if we have too many dirty buffers.
360  */
361 int
362 buf_dirty_count_severe(void)
363 {
364 	return (runningbufspace + dirtykvaspace >= hidirtybufspace ||
365 	        dirtybufcount >= nbuf / 2);
366 }
367 
368 /*
369  * Return true if the amount of running I/O is severe and BIOQ should
370  * start bursting.
371  */
372 int
373 buf_runningbufspace_severe(void)
374 {
375 	return (runningbufspace >= hirunningspace * 4 / 6);
376 }
377 
378 /*
379  * vfs_buf_test_cache:
380  *
381  * Called when a buffer is extended.  This function clears the B_CACHE
382  * bit if the newly extended portion of the buffer does not contain
383  * valid data.
384  *
385  * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
386  * cache buffers.  The VM pages remain dirty, as someone had mmap()'d
387  * them while a clean buffer was present.
388  */
389 static __inline__
390 void
391 vfs_buf_test_cache(struct buf *bp,
392 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
393 		  vm_page_t m)
394 {
395 	if (bp->b_flags & B_CACHE) {
396 		int base = (foff + off) & PAGE_MASK;
397 		if (vm_page_is_valid(m, base, size) == 0)
398 			bp->b_flags &= ~B_CACHE;
399 	}
400 }
401 
402 /*
403  * bd_speedup()
404  *
405  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
406  * low water mark.
407  */
408 static __inline__
409 void
410 bd_speedup(void)
411 {
412 	if (dirtykvaspace < lodirtybufspace && dirtybufcount < nbuf / 2)
413 		return;
414 
415 	if (bd_request == 0 &&
416 	    (dirtykvaspace > lodirtybufspace / 2 ||
417 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
418 		if (atomic_fetchadd_int(&bd_request, 1) == 0)
419 			wakeup(&bd_request);
420 	}
421 	if (bd_request_hw == 0 &&
422 	    (dirtykvaspace > lodirtybufspace / 2 ||
423 	     dirtybufcounthw >= nbuf / 2)) {
424 		if (atomic_fetchadd_int(&bd_request_hw, 1) == 0)
425 			wakeup(&bd_request_hw);
426 	}
427 }
428 
429 /*
430  * bd_heatup()
431  *
432  *	Get the buf_daemon heated up when the number of running and dirty
433  *	buffers exceeds the mid-point.
434  *
435  *	Return the total number of dirty bytes past the second mid point
436  *	as a measure of how much excess dirty data there is in the system.
437  */
438 long
439 bd_heatup(void)
440 {
441 	long mid1;
442 	long mid2;
443 	long totalspace;
444 
445 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
446 
447 	totalspace = runningbufspace + dirtykvaspace;
448 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
449 		bd_speedup();
450 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
451 		if (totalspace >= mid2)
452 			return(totalspace - mid2);
453 	}
454 	return(0);
455 }
456 
457 /*
458  * bd_wait()
459  *
460  *	Wait for the buffer cache to flush (totalspace) bytes worth of
461  *	buffers, then return.
462  *
463  *	Regardless this function blocks while the number of dirty buffers
464  *	exceeds hidirtybufspace.
465  */
466 void
467 bd_wait(long totalspace)
468 {
469 	u_int i;
470 	u_int j;
471 	u_int mi;
472 	int count;
473 
474 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
475 		return;
476 
477 	while (totalspace > 0) {
478 		bd_heatup();
479 
480 		/*
481 		 * Order is important.  Suppliers adjust bd_wake_index after
482 		 * updating runningbufspace/dirtykvaspace.  We want to fetch
483 		 * bd_wake_index before accessing.  Any error should thus
484 		 * be in our favor.
485 		 */
486 		i = atomic_fetchadd_int(&bd_wake_index, 0);
487 		if (totalspace > runningbufspace + dirtykvaspace)
488 			totalspace = runningbufspace + dirtykvaspace;
489 		count = totalspace / MAXBSIZE;
490 		if (count >= BD_WAKE_SIZE / 2)
491 			count = BD_WAKE_SIZE / 2;
492 		i = i + count;
493 		mi = i & BD_WAKE_MASK;
494 
495 		/*
496 		 * This is not a strict interlock, so we play a bit loose
497 		 * with locking access to dirtybufspace*.  We have to re-check
498 		 * bd_wake_index to ensure that it hasn't passed us.
499 		 */
500 		tsleep_interlock(&bd_wake_ary[mi], 0);
501 		atomic_add_int(&bd_wake_ary[mi], 1);
502 		j = atomic_fetchadd_int(&bd_wake_index, 0);
503 		if ((int)(i - j) >= 0)
504 			tsleep(&bd_wake_ary[mi], PINTERLOCKED, "flstik", hz);
505 
506 		totalspace = runningbufspace + dirtykvaspace - hidirtybufspace;
507 	}
508 }
509 
510 /*
511  * bd_signal()
512  *
513  *	This function is called whenever runningbufspace or dirtykvaspace
514  *	is reduced.  Track threads waiting for run+dirty buffer I/O
515  *	complete.
516  */
517 static void
518 bd_signal(long totalspace)
519 {
520 	u_int i;
521 
522 	if (totalspace > 0) {
523 		if (totalspace > MAXBSIZE * BD_WAKE_SIZE)
524 			totalspace = MAXBSIZE * BD_WAKE_SIZE;
525 		while (totalspace > 0) {
526 			i = atomic_fetchadd_int(&bd_wake_index, 1);
527 			i &= BD_WAKE_MASK;
528 			if (atomic_readandclear_int(&bd_wake_ary[i]))
529 				wakeup(&bd_wake_ary[i]);
530 			totalspace -= MAXBSIZE;
531 		}
532 	}
533 }
534 
535 /*
536  * BIO tracking support routines.
537  *
538  * Release a ref on a bio_track.  Wakeup requests are atomically released
539  * along with the last reference so bk_active will never wind up set to
540  * only 0x80000000.
541  */
542 static
543 void
544 bio_track_rel(struct bio_track *track)
545 {
546 	int	active;
547 	int	desired;
548 
549 	/*
550 	 * Shortcut
551 	 */
552 	active = track->bk_active;
553 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
554 		return;
555 
556 	/*
557 	 * Full-on.  Note that the wait flag is only atomically released on
558 	 * the 1->0 count transition.
559 	 *
560 	 * We check for a negative count transition using bit 30 since bit 31
561 	 * has a different meaning.
562 	 */
563 	for (;;) {
564 		desired = (active & 0x7FFFFFFF) - 1;
565 		if (desired)
566 			desired |= active & 0x80000000;
567 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
568 			if (desired & 0x40000000)
569 				panic("bio_track_rel: bad count: %p", track);
570 			if (active & 0x80000000)
571 				wakeup(track);
572 			break;
573 		}
574 		active = track->bk_active;
575 	}
576 }
577 
578 /*
579  * Wait for the tracking count to reach 0.
580  *
581  * Use atomic ops such that the wait flag is only set atomically when
582  * bk_active is non-zero.
583  */
584 int
585 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
586 {
587 	int	active;
588 	int	desired;
589 	int	error;
590 
591 	/*
592 	 * Shortcut
593 	 */
594 	if (track->bk_active == 0)
595 		return(0);
596 
597 	/*
598 	 * Full-on.  Note that the wait flag may only be atomically set if
599 	 * the active count is non-zero.
600 	 *
601 	 * NOTE: We cannot optimize active == desired since a wakeup could
602 	 *	 clear active prior to our tsleep_interlock().
603 	 */
604 	error = 0;
605 	while ((active = track->bk_active) != 0) {
606 		cpu_ccfence();
607 		desired = active | 0x80000000;
608 		tsleep_interlock(track, slp_flags);
609 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
610 			error = tsleep(track, slp_flags | PINTERLOCKED,
611 				       "trwait", slp_timo);
612 			if (error)
613 				break;
614 		}
615 	}
616 	return (error);
617 }
618 
619 /*
620  * bufinit:
621  *
622  *	Load time initialisation of the buffer cache, called from machine
623  *	dependant initialization code.
624  */
625 static
626 void
627 bufinit(void *dummy __unused)
628 {
629 	struct bufpcpu *pcpu;
630 	struct buf *bp;
631 	vm_offset_t bogus_offset;
632 	int i;
633 	int j;
634 	long n;
635 
636 	/* next, make a null set of free lists */
637 	for (i = 0; i < ncpus; ++i) {
638 		pcpu = &bufpcpu[i];
639 		spin_init(&pcpu->spin, "bufinit");
640 		for (j = 0; j < BUFFER_QUEUES; j++)
641 			TAILQ_INIT(&pcpu->bufqueues[j]);
642 	}
643 
644 	/*
645 	 * Finally, initialize each buffer header and stick on empty q.
646 	 * Each buffer gets its own KVA reservation.
647 	 */
648 	i = 0;
649 	pcpu = &bufpcpu[i];
650 
651 	for (n = 0; n < nbuf; n++) {
652 		bp = &buf[n];
653 		bzero(bp, sizeof *bp);
654 		bp->b_flags = B_INVAL;	/* we're just an empty header */
655 		bp->b_cmd = BUF_CMD_DONE;
656 		bp->b_qindex = BQUEUE_EMPTY;
657 		bp->b_qcpu = i;
658 		bp->b_kvabase = (void *)(vm_map_min(&buffer_map) +
659 					 MAXBSIZE * n);
660 		bp->b_kvasize = MAXBSIZE;
661 		initbufbio(bp);
662 		xio_init(&bp->b_xio);
663 		buf_dep_init(bp);
664 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
665 				  bp, b_freelist);
666 
667 		i = (i + 1) % ncpus;
668 		pcpu = &bufpcpu[i];
669 	}
670 
671 	/*
672 	 * maxbufspace is the absolute maximum amount of buffer space we are
673 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
674 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
675 	 * used by most other processes.  The differential is required to
676 	 * ensure that buf_daemon is able to run when other processes might
677 	 * be blocked waiting for buffer space.
678 	 *
679 	 * Calculate hysteresis (lobufspace, hibufspace).  Don't make it
680 	 * too large or we might lockup a cpu for too long a period of
681 	 * time in our tight loop.
682 	 */
683 	maxbufspace = nbuf * NBUFCALCSIZE;
684 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
685 	lobufspace = hibufspace * 7 / 8;
686 	if (hibufspace - lobufspace > 64 * 1024 * 1024)
687 		lobufspace = hibufspace - 64 * 1024 * 1024;
688 	if (lobufspace > hibufspace - MAXBSIZE)
689 		lobufspace = hibufspace - MAXBSIZE;
690 
691 	lorunningspace = 512 * 1024;
692 	/* hirunningspace -- see below */
693 
694 	/*
695 	 * Limit the amount of malloc memory since it is wired permanently
696 	 * into the kernel space.  Even though this is accounted for in
697 	 * the buffer allocation, we don't want the malloced region to grow
698 	 * uncontrolled.  The malloc scheme improves memory utilization
699 	 * significantly on average (small) directories.
700 	 */
701 	maxbufmallocspace = hibufspace / 20;
702 
703 	/*
704 	 * Reduce the chance of a deadlock occuring by limiting the number
705 	 * of delayed-write dirty buffers we allow to stack up.
706 	 *
707 	 * We don't want too much actually queued to the device at once
708 	 * (XXX this needs to be per-mount!), because the buffers will
709 	 * wind up locked for a very long period of time while the I/O
710 	 * drains.
711 	 */
712 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
713 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
714 	if (hirunningspace < 1024 * 1024)
715 		hirunningspace = 1024 * 1024;
716 
717 	dirtykvaspace = 0;
718 	dirtybufspace = 0;
719 	dirtybufspacehw = 0;
720 
721 	lodirtybufspace = hidirtybufspace / 2;
722 
723 	/*
724 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
725 	 * somewhat of a hack at the moment, we really need to limit ourselves
726 	 * based on the number of bytes of I/O in-transit that were initiated
727 	 * from buf_daemon.
728 	 */
729 
730 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
731 	vm_object_hold(&kernel_object);
732 	bogus_page = vm_page_alloc(&kernel_object,
733 				   (bogus_offset >> PAGE_SHIFT),
734 				   VM_ALLOC_NORMAL);
735 	vm_object_drop(&kernel_object);
736 	vmstats.v_wire_count++;
737 
738 }
739 
740 SYSINIT(do_bufinit, SI_BOOT2_MACHDEP, SI_ORDER_FIRST, bufinit, NULL);
741 
742 /*
743  * Initialize the embedded bio structures, typically used by
744  * deprecated code which tries to allocate its own struct bufs.
745  */
746 void
747 initbufbio(struct buf *bp)
748 {
749 	bp->b_bio1.bio_buf = bp;
750 	bp->b_bio1.bio_prev = NULL;
751 	bp->b_bio1.bio_offset = NOOFFSET;
752 	bp->b_bio1.bio_next = &bp->b_bio2;
753 	bp->b_bio1.bio_done = NULL;
754 	bp->b_bio1.bio_flags = 0;
755 
756 	bp->b_bio2.bio_buf = bp;
757 	bp->b_bio2.bio_prev = &bp->b_bio1;
758 	bp->b_bio2.bio_offset = NOOFFSET;
759 	bp->b_bio2.bio_next = NULL;
760 	bp->b_bio2.bio_done = NULL;
761 	bp->b_bio2.bio_flags = 0;
762 
763 	BUF_LOCKINIT(bp);
764 }
765 
766 /*
767  * Reinitialize the embedded bio structures as well as any additional
768  * translation cache layers.
769  */
770 void
771 reinitbufbio(struct buf *bp)
772 {
773 	struct bio *bio;
774 
775 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
776 		bio->bio_done = NULL;
777 		bio->bio_offset = NOOFFSET;
778 	}
779 }
780 
781 /*
782  * Undo the effects of an initbufbio().
783  */
784 void
785 uninitbufbio(struct buf *bp)
786 {
787 	dsched_buf_exit(bp);
788 	BUF_LOCKFREE(bp);
789 }
790 
791 /*
792  * Push another BIO layer onto an existing BIO and return it.  The new
793  * BIO layer may already exist, holding cached translation data.
794  */
795 struct bio *
796 push_bio(struct bio *bio)
797 {
798 	struct bio *nbio;
799 
800 	if ((nbio = bio->bio_next) == NULL) {
801 		int index = bio - &bio->bio_buf->b_bio_array[0];
802 		if (index >= NBUF_BIO - 1) {
803 			panic("push_bio: too many layers %d for bp %p",
804 				index, bio->bio_buf);
805 		}
806 		nbio = &bio->bio_buf->b_bio_array[index + 1];
807 		bio->bio_next = nbio;
808 		nbio->bio_prev = bio;
809 		nbio->bio_buf = bio->bio_buf;
810 		nbio->bio_offset = NOOFFSET;
811 		nbio->bio_done = NULL;
812 		nbio->bio_next = NULL;
813 	}
814 	KKASSERT(nbio->bio_done == NULL);
815 	return(nbio);
816 }
817 
818 /*
819  * Pop a BIO translation layer, returning the previous layer.  The
820  * must have been previously pushed.
821  */
822 struct bio *
823 pop_bio(struct bio *bio)
824 {
825 	return(bio->bio_prev);
826 }
827 
828 void
829 clearbiocache(struct bio *bio)
830 {
831 	while (bio) {
832 		bio->bio_offset = NOOFFSET;
833 		bio = bio->bio_next;
834 	}
835 }
836 
837 /*
838  * Remove the buffer from the appropriate free list.
839  * (caller must be locked)
840  */
841 static __inline void
842 _bremfree(struct buf *bp)
843 {
844 	struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
845 
846 	if (bp->b_qindex != BQUEUE_NONE) {
847 		KASSERT(BUF_REFCNTNB(bp) == 1,
848 			("bremfree: bp %p not locked",bp));
849 		TAILQ_REMOVE(&pcpu->bufqueues[bp->b_qindex], bp, b_freelist);
850 		bp->b_qindex = BQUEUE_NONE;
851 	} else {
852 		if (BUF_REFCNTNB(bp) <= 1)
853 			panic("bremfree: removing a buffer not on a queue");
854 	}
855 }
856 
857 /*
858  * bremfree() - must be called with a locked buffer
859  */
860 void
861 bremfree(struct buf *bp)
862 {
863 	struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
864 
865 	spin_lock(&pcpu->spin);
866 	_bremfree(bp);
867 	spin_unlock(&pcpu->spin);
868 }
869 
870 /*
871  * bremfree_locked - must be called with pcpu->spin locked
872  */
873 static void
874 bremfree_locked(struct buf *bp)
875 {
876 	_bremfree(bp);
877 }
878 
879 /*
880  * This version of bread issues any required I/O asyncnronously and
881  * makes a callback on completion.
882  *
883  * The callback must check whether BIO_DONE is set in the bio and issue
884  * the bpdone(bp, 0) if it isn't.  The callback is responsible for clearing
885  * BIO_DONE and disposing of the I/O (bqrelse()ing it).
886  */
887 void
888 breadcb(struct vnode *vp, off_t loffset, int size,
889 	void (*func)(struct bio *), void *arg)
890 {
891 	struct buf *bp;
892 
893 	bp = getblk(vp, loffset, size, 0, 0);
894 
895 	/* if not found in cache, do some I/O */
896 	if ((bp->b_flags & B_CACHE) == 0) {
897 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
898 		bp->b_cmd = BUF_CMD_READ;
899 		bp->b_bio1.bio_done = func;
900 		bp->b_bio1.bio_caller_info1.ptr = arg;
901 		vfs_busy_pages(vp, bp);
902 		BUF_KERNPROC(bp);
903 		vn_strategy(vp, &bp->b_bio1);
904 	} else if (func) {
905 		/*
906 		 * Since we are issuing the callback synchronously it cannot
907 		 * race the BIO_DONE, so no need for atomic ops here.
908 		 */
909 		/*bp->b_bio1.bio_done = func;*/
910 		bp->b_bio1.bio_caller_info1.ptr = arg;
911 		bp->b_bio1.bio_flags |= BIO_DONE;
912 		func(&bp->b_bio1);
913 	} else {
914 		bqrelse(bp);
915 	}
916 }
917 
918 /*
919  * breadnx() - Terminal function for bread() and breadn().
920  *
921  * This function will start asynchronous I/O on read-ahead blocks as well
922  * as satisfy the primary request.
923  *
924  * We must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE is
925  * set, the buffer is valid and we do not have to do anything.
926  */
927 int
928 breadnx(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
929 	int *rabsize, int cnt, struct buf **bpp)
930 {
931 	struct buf *bp, *rabp;
932 	int i;
933 	int rv = 0, readwait = 0;
934 
935 	if (*bpp)
936 		bp = *bpp;
937 	else
938 		*bpp = bp = getblk(vp, loffset, size, 0, 0);
939 
940 	/* if not found in cache, do some I/O */
941 	if ((bp->b_flags & B_CACHE) == 0) {
942 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
943 		bp->b_cmd = BUF_CMD_READ;
944 		bp->b_bio1.bio_done = biodone_sync;
945 		bp->b_bio1.bio_flags |= BIO_SYNC;
946 		vfs_busy_pages(vp, bp);
947 		vn_strategy(vp, &bp->b_bio1);
948 		++readwait;
949 	}
950 
951 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
952 		if (inmem(vp, *raoffset))
953 			continue;
954 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
955 
956 		if ((rabp->b_flags & B_CACHE) == 0) {
957 			rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
958 			rabp->b_cmd = BUF_CMD_READ;
959 			vfs_busy_pages(vp, rabp);
960 			BUF_KERNPROC(rabp);
961 			vn_strategy(vp, &rabp->b_bio1);
962 		} else {
963 			brelse(rabp);
964 		}
965 	}
966 	if (readwait)
967 		rv = biowait(&bp->b_bio1, "biord");
968 	return (rv);
969 }
970 
971 /*
972  * bwrite:
973  *
974  *	Synchronous write, waits for completion.
975  *
976  *	Write, release buffer on completion.  (Done by iodone
977  *	if async).  Do not bother writing anything if the buffer
978  *	is invalid.
979  *
980  *	Note that we set B_CACHE here, indicating that buffer is
981  *	fully valid and thus cacheable.  This is true even of NFS
982  *	now so we set it generally.  This could be set either here
983  *	or in biodone() since the I/O is synchronous.  We put it
984  *	here.
985  */
986 int
987 bwrite(struct buf *bp)
988 {
989 	int error;
990 
991 	if (bp->b_flags & B_INVAL) {
992 		brelse(bp);
993 		return (0);
994 	}
995 	if (BUF_REFCNTNB(bp) == 0)
996 		panic("bwrite: buffer is not busy???");
997 
998 	/*
999 	 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
1000 	 *	 call because it will remove the buffer from the vnode's
1001 	 *	 dirty buffer list prematurely and possibly cause filesystem
1002 	 *	 checks to race buffer flushes.  This is now handled in
1003 	 *	 bpdone().
1004 	 *
1005 	 *	 bundirty(bp); REMOVED
1006 	 */
1007 
1008 	bp->b_flags &= ~(B_ERROR | B_EINTR);
1009 	bp->b_flags |= B_CACHE;
1010 	bp->b_cmd = BUF_CMD_WRITE;
1011 	bp->b_bio1.bio_done = biodone_sync;
1012 	bp->b_bio1.bio_flags |= BIO_SYNC;
1013 	vfs_busy_pages(bp->b_vp, bp);
1014 
1015 	/*
1016 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1017 	 * valid for vnode-backed buffers.
1018 	 */
1019 	bsetrunningbufspace(bp, bp->b_bufsize);
1020 	vn_strategy(bp->b_vp, &bp->b_bio1);
1021 	error = biowait(&bp->b_bio1, "biows");
1022 	brelse(bp);
1023 
1024 	return (error);
1025 }
1026 
1027 /*
1028  * bawrite:
1029  *
1030  *	Asynchronous write.  Start output on a buffer, but do not wait for
1031  *	it to complete.  The buffer is released when the output completes.
1032  *
1033  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1034  *	B_INVAL buffers.  Not us.
1035  */
1036 void
1037 bawrite(struct buf *bp)
1038 {
1039 	if (bp->b_flags & B_INVAL) {
1040 		brelse(bp);
1041 		return;
1042 	}
1043 	if (BUF_REFCNTNB(bp) == 0)
1044 		panic("bawrite: buffer is not busy???");
1045 
1046 	/*
1047 	 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
1048 	 *	 call because it will remove the buffer from the vnode's
1049 	 *	 dirty buffer list prematurely and possibly cause filesystem
1050 	 *	 checks to race buffer flushes.  This is now handled in
1051 	 *	 bpdone().
1052 	 *
1053 	 *	 bundirty(bp); REMOVED
1054 	 */
1055 	bp->b_flags &= ~(B_ERROR | B_EINTR);
1056 	bp->b_flags |= B_CACHE;
1057 	bp->b_cmd = BUF_CMD_WRITE;
1058 	KKASSERT(bp->b_bio1.bio_done == NULL);
1059 	vfs_busy_pages(bp->b_vp, bp);
1060 
1061 	/*
1062 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1063 	 * valid for vnode-backed buffers.
1064 	 */
1065 	bsetrunningbufspace(bp, bp->b_bufsize);
1066 	BUF_KERNPROC(bp);
1067 	vn_strategy(bp->b_vp, &bp->b_bio1);
1068 }
1069 
1070 /*
1071  * bowrite:
1072  *
1073  *	Ordered write.  Start output on a buffer, and flag it so that the
1074  *	device will write it in the order it was queued.  The buffer is
1075  *	released when the output completes.  bwrite() ( or the VOP routine
1076  *	anyway ) is responsible for handling B_INVAL buffers.
1077  */
1078 int
1079 bowrite(struct buf *bp)
1080 {
1081 	bp->b_flags |= B_ORDERED;
1082 	bawrite(bp);
1083 	return (0);
1084 }
1085 
1086 /*
1087  * bdwrite:
1088  *
1089  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1090  *	anything if the buffer is marked invalid.
1091  *
1092  *	Note that since the buffer must be completely valid, we can safely
1093  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1094  *	biodone() in order to prevent getblk from writing the buffer
1095  *	out synchronously.
1096  */
1097 void
1098 bdwrite(struct buf *bp)
1099 {
1100 	if (BUF_REFCNTNB(bp) == 0)
1101 		panic("bdwrite: buffer is not busy");
1102 
1103 	if (bp->b_flags & B_INVAL) {
1104 		brelse(bp);
1105 		return;
1106 	}
1107 	bdirty(bp);
1108 
1109 	dsched_buf_enter(bp);	/* might stack */
1110 
1111 	/*
1112 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1113 	 * true even of NFS now.
1114 	 */
1115 	bp->b_flags |= B_CACHE;
1116 
1117 	/*
1118 	 * This bmap keeps the system from needing to do the bmap later,
1119 	 * perhaps when the system is attempting to do a sync.  Since it
1120 	 * is likely that the indirect block -- or whatever other datastructure
1121 	 * that the filesystem needs is still in memory now, it is a good
1122 	 * thing to do this.  Note also, that if the pageout daemon is
1123 	 * requesting a sync -- there might not be enough memory to do
1124 	 * the bmap then...  So, this is important to do.
1125 	 */
1126 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1127 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1128 			 NULL, NULL, BUF_CMD_WRITE);
1129 	}
1130 
1131 	/*
1132 	 * Because the underlying pages may still be mapped and
1133 	 * writable trying to set the dirty buffer (b_dirtyoff/end)
1134 	 * range here will be inaccurate.
1135 	 *
1136 	 * However, we must still clean the pages to satisfy the
1137 	 * vnode_pager and pageout daemon, so they think the pages
1138 	 * have been "cleaned".  What has really occured is that
1139 	 * they've been earmarked for later writing by the buffer
1140 	 * cache.
1141 	 *
1142 	 * So we get the b_dirtyoff/end update but will not actually
1143 	 * depend on it (NFS that is) until the pages are busied for
1144 	 * writing later on.
1145 	 */
1146 	vfs_clean_pages(bp);
1147 	bqrelse(bp);
1148 
1149 	/*
1150 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1151 	 * due to the softdep code.
1152 	 */
1153 }
1154 
1155 /*
1156  * Fake write - return pages to VM system as dirty, leave the buffer clean.
1157  * This is used by tmpfs.
1158  *
1159  * It is important for any VFS using this routine to NOT use it for
1160  * IO_SYNC or IO_ASYNC operations which occur when the system really
1161  * wants to flush VM pages to backing store.
1162  */
1163 void
1164 buwrite(struct buf *bp)
1165 {
1166 	vm_page_t m;
1167 	int i;
1168 
1169 	/*
1170 	 * Only works for VMIO buffers.  If the buffer is already
1171 	 * marked for delayed-write we can't avoid the bdwrite().
1172 	 */
1173 	if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1174 		bdwrite(bp);
1175 		return;
1176 	}
1177 
1178 	/*
1179 	 * Mark as needing a commit.
1180 	 */
1181 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1182 		m = bp->b_xio.xio_pages[i];
1183 		vm_page_need_commit(m);
1184 	}
1185 	bqrelse(bp);
1186 }
1187 
1188 /*
1189  * bdirty:
1190  *
1191  *	Turn buffer into delayed write request by marking it B_DELWRI.
1192  *	B_RELBUF and B_NOCACHE must be cleared.
1193  *
1194  *	We reassign the buffer to itself to properly update it in the
1195  *	dirty/clean lists.
1196  *
1197  *	Must be called from a critical section.
1198  *	The buffer must be on BQUEUE_NONE.
1199  */
1200 void
1201 bdirty(struct buf *bp)
1202 {
1203 	KASSERT(bp->b_qindex == BQUEUE_NONE,
1204 		("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1205 	if (bp->b_flags & B_NOCACHE) {
1206 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1207 		bp->b_flags &= ~B_NOCACHE;
1208 	}
1209 	if (bp->b_flags & B_INVAL) {
1210 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1211 	}
1212 	bp->b_flags &= ~B_RELBUF;
1213 
1214 	if ((bp->b_flags & B_DELWRI) == 0) {
1215 		lwkt_gettoken(&bp->b_vp->v_token);
1216 		bp->b_flags |= B_DELWRI;
1217 		reassignbuf(bp);
1218 		lwkt_reltoken(&bp->b_vp->v_token);
1219 
1220 		atomic_add_long(&dirtybufcount, 1);
1221 		atomic_add_long(&dirtykvaspace, bp->b_kvasize);
1222 		atomic_add_long(&dirtybufspace, bp->b_bufsize);
1223 		if (bp->b_flags & B_HEAVY) {
1224 			atomic_add_long(&dirtybufcounthw, 1);
1225 			atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1226 		}
1227 		bd_heatup();
1228 	}
1229 }
1230 
1231 /*
1232  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1233  * needs to be flushed with a different buf_daemon thread to avoid
1234  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1235  */
1236 void
1237 bheavy(struct buf *bp)
1238 {
1239 	if ((bp->b_flags & B_HEAVY) == 0) {
1240 		bp->b_flags |= B_HEAVY;
1241 		if (bp->b_flags & B_DELWRI) {
1242 			atomic_add_long(&dirtybufcounthw, 1);
1243 			atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1244 		}
1245 	}
1246 }
1247 
1248 /*
1249  * bundirty:
1250  *
1251  *	Clear B_DELWRI for buffer.
1252  *
1253  *	Must be called from a critical section.
1254  *
1255  *	The buffer is typically on BQUEUE_NONE but there is one case in
1256  *	brelse() that calls this function after placing the buffer on
1257  *	a different queue.
1258  */
1259 void
1260 bundirty(struct buf *bp)
1261 {
1262 	if (bp->b_flags & B_DELWRI) {
1263 		lwkt_gettoken(&bp->b_vp->v_token);
1264 		bp->b_flags &= ~B_DELWRI;
1265 		reassignbuf(bp);
1266 		lwkt_reltoken(&bp->b_vp->v_token);
1267 
1268 		atomic_add_long(&dirtybufcount, -1);
1269 		atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1270 		atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1271 		if (bp->b_flags & B_HEAVY) {
1272 			atomic_add_long(&dirtybufcounthw, -1);
1273 			atomic_add_long(&dirtybufspacehw, -bp->b_bufsize);
1274 		}
1275 		bd_signal(bp->b_bufsize);
1276 	}
1277 	/*
1278 	 * Since it is now being written, we can clear its deferred write flag.
1279 	 */
1280 	bp->b_flags &= ~B_DEFERRED;
1281 }
1282 
1283 /*
1284  * Set the b_runningbufspace field, used to track how much I/O is
1285  * in progress at any given moment.
1286  */
1287 void
1288 bsetrunningbufspace(struct buf *bp, int bytes)
1289 {
1290 	bp->b_runningbufspace = bytes;
1291 	if (bytes) {
1292 		atomic_add_long(&runningbufspace, bytes);
1293 		atomic_add_long(&runningbufcount, 1);
1294 	}
1295 }
1296 
1297 /*
1298  * brelse:
1299  *
1300  *	Release a busy buffer and, if requested, free its resources.  The
1301  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1302  *	to be accessed later as a cache entity or reused for other purposes.
1303  */
1304 void
1305 brelse(struct buf *bp)
1306 {
1307 	struct bufpcpu *pcpu;
1308 #ifdef INVARIANTS
1309 	int saved_flags = bp->b_flags;
1310 #endif
1311 
1312 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1313 		("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1314 
1315 	/*
1316 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1317 	 * its backing store.  Clear B_DELWRI.
1318 	 *
1319 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1320 	 * to destroy the buffer and backing store and (2) when the caller
1321 	 * wants to destroy the buffer and backing store after a write
1322 	 * completes.
1323 	 */
1324 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1325 		bundirty(bp);
1326 	}
1327 
1328 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1329 		/*
1330 		 * A re-dirtied buffer is only subject to destruction
1331 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1332 		 */
1333 		/* leave buffer intact */
1334 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1335 		   (bp->b_bufsize <= 0)) {
1336 		/*
1337 		 * Either a failed read or we were asked to free or not
1338 		 * cache the buffer.  This path is reached with B_DELWRI
1339 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1340 		 * backing store destruction.
1341 		 *
1342 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1343 		 * buffer cannot be immediately freed.
1344 		 */
1345 		bp->b_flags |= B_INVAL;
1346 		if (LIST_FIRST(&bp->b_dep) != NULL)
1347 			buf_deallocate(bp);
1348 		if (bp->b_flags & B_DELWRI) {
1349 			atomic_add_long(&dirtybufcount, -1);
1350 			atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1351 			atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1352 			if (bp->b_flags & B_HEAVY) {
1353 				atomic_add_long(&dirtybufcounthw, -1);
1354 				atomic_add_long(&dirtybufspacehw,
1355 						-bp->b_bufsize);
1356 			}
1357 			bd_signal(bp->b_bufsize);
1358 		}
1359 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1360 	}
1361 
1362 	/*
1363 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1364 	 * or if b_refs is non-zero.
1365 	 *
1366 	 * If vfs_vmio_release() is called with either bit set, the
1367 	 * underlying pages may wind up getting freed causing a previous
1368 	 * write (bdwrite()) to get 'lost' because pages associated with
1369 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1370 	 * B_LOCKED buffer may be mapped by the filesystem.
1371 	 *
1372 	 * If we want to release the buffer ourselves (rather then the
1373 	 * originator asking us to release it), give the originator a
1374 	 * chance to countermand the release by setting B_LOCKED.
1375 	 *
1376 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1377 	 * if B_DELWRI is set.
1378 	 *
1379 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1380 	 * on pages to return pages to the VM page queues.
1381 	 */
1382 	if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) {
1383 		bp->b_flags &= ~B_RELBUF;
1384 	} else if (vm_page_count_min(0)) {
1385 		if (LIST_FIRST(&bp->b_dep) != NULL)
1386 			buf_deallocate(bp);		/* can set B_LOCKED */
1387 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1388 			bp->b_flags &= ~B_RELBUF;
1389 		else
1390 			bp->b_flags |= B_RELBUF;
1391 	}
1392 
1393 	/*
1394 	 * Make sure b_cmd is clear.  It may have already been cleared by
1395 	 * biodone().
1396 	 *
1397 	 * At this point destroying the buffer is governed by the B_INVAL
1398 	 * or B_RELBUF flags.
1399 	 */
1400 	bp->b_cmd = BUF_CMD_DONE;
1401 	dsched_buf_exit(bp);
1402 
1403 	/*
1404 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1405 	 * after an I/O may have replaces some of the pages with bogus pages
1406 	 * in order to not destroy dirty pages in a fill-in read.
1407 	 *
1408 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1409 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1410 	 * B_INVAL may still be set, however.
1411 	 *
1412 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1413 	 * but not the backing store.   B_NOCACHE will destroy the backing
1414 	 * store.
1415 	 *
1416 	 * Note that dirty NFS buffers contain byte-granular write ranges
1417 	 * and should not be destroyed w/ B_INVAL even if the backing store
1418 	 * is left intact.
1419 	 */
1420 	if (bp->b_flags & B_VMIO) {
1421 		/*
1422 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1423 		 */
1424 		int i, j, resid;
1425 		vm_page_t m;
1426 		off_t foff;
1427 		vm_pindex_t poff;
1428 		vm_object_t obj;
1429 		struct vnode *vp;
1430 
1431 		vp = bp->b_vp;
1432 
1433 		/*
1434 		 * Get the base offset and length of the buffer.  Note that
1435 		 * in the VMIO case if the buffer block size is not
1436 		 * page-aligned then b_data pointer may not be page-aligned.
1437 		 * But our b_xio.xio_pages array *IS* page aligned.
1438 		 *
1439 		 * block sizes less then DEV_BSIZE (usually 512) are not
1440 		 * supported due to the page granularity bits (m->valid,
1441 		 * m->dirty, etc...).
1442 		 *
1443 		 * See man buf(9) for more information
1444 		 */
1445 
1446 		resid = bp->b_bufsize;
1447 		foff = bp->b_loffset;
1448 
1449 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1450 			m = bp->b_xio.xio_pages[i];
1451 
1452 			/*
1453 			 * If we hit a bogus page, fixup *all* of them
1454 			 * now.  Note that we left these pages wired
1455 			 * when we removed them so they had better exist,
1456 			 * and they cannot be ripped out from under us so
1457 			 * no critical section protection is necessary.
1458 			 */
1459 			if (m == bogus_page) {
1460 				obj = vp->v_object;
1461 				poff = OFF_TO_IDX(bp->b_loffset);
1462 
1463 				vm_object_hold(obj);
1464 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1465 					vm_page_t mtmp;
1466 
1467 					mtmp = bp->b_xio.xio_pages[j];
1468 					if (mtmp == bogus_page) {
1469 						if ((bp->b_flags & B_HASBOGUS) == 0)
1470 							panic("brelse: bp %p corrupt bogus", bp);
1471 						mtmp = vm_page_lookup(obj, poff + j);
1472 						if (!mtmp)
1473 							panic("brelse: bp %p page %d missing", bp, j);
1474 						bp->b_xio.xio_pages[j] = mtmp;
1475 					}
1476 				}
1477 				vm_object_drop(obj);
1478 
1479 				if ((bp->b_flags & B_HASBOGUS) || (bp->b_flags & B_INVAL) == 0) {
1480 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1481 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1482 					bp->b_flags &= ~B_HASBOGUS;
1483 				}
1484 				m = bp->b_xio.xio_pages[i];
1485 			}
1486 
1487 			/*
1488 			 * Invalidate the backing store if B_NOCACHE is set
1489 			 * (e.g. used with vinvalbuf()).  If this is NFS
1490 			 * we impose a requirement that the block size be
1491 			 * a multiple of PAGE_SIZE and create a temporary
1492 			 * hack to basically invalidate the whole page.  The
1493 			 * problem is that NFS uses really odd buffer sizes
1494 			 * especially when tracking piecemeal writes and
1495 			 * it also vinvalbuf()'s a lot, which would result
1496 			 * in only partial page validation and invalidation
1497 			 * here.  If the file page is mmap()'d, however,
1498 			 * all the valid bits get set so after we invalidate
1499 			 * here we would end up with weird m->valid values
1500 			 * like 0xfc.  nfs_getpages() can't handle this so
1501 			 * we clear all the valid bits for the NFS case
1502 			 * instead of just some of them.
1503 			 *
1504 			 * The real bug is the VM system having to set m->valid
1505 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1506 			 * itself is an artifact of the whole 512-byte
1507 			 * granular mess that exists to support odd block
1508 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1509 			 * A complete rewrite is required.
1510 			 *
1511 			 * XXX
1512 			 */
1513 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1514 				int poffset = foff & PAGE_MASK;
1515 				int presid;
1516 
1517 				presid = PAGE_SIZE - poffset;
1518 				if (bp->b_vp->v_tag == VT_NFS &&
1519 				    bp->b_vp->v_type == VREG) {
1520 					; /* entire page */
1521 				} else if (presid > resid) {
1522 					presid = resid;
1523 				}
1524 				KASSERT(presid >= 0, ("brelse: extra page"));
1525 				vm_page_set_invalid(m, poffset, presid);
1526 
1527 				/*
1528 				 * Also make sure any swap cache is removed
1529 				 * as it is now stale (HAMMER in particular
1530 				 * uses B_NOCACHE to deal with buffer
1531 				 * aliasing).
1532 				 */
1533 				swap_pager_unswapped(m);
1534 			}
1535 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1536 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1537 		}
1538 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1539 			vfs_vmio_release(bp);
1540 	} else {
1541 		/*
1542 		 * Rundown for non-VMIO buffers.
1543 		 */
1544 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1545 			if (bp->b_bufsize)
1546 				allocbuf(bp, 0);
1547 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1548 			if (bp->b_vp)
1549 				brelvp(bp);
1550 		}
1551 	}
1552 
1553 	if (bp->b_qindex != BQUEUE_NONE)
1554 		panic("brelse: free buffer onto another queue???");
1555 	if (BUF_REFCNTNB(bp) > 1) {
1556 		/* Temporary panic to verify exclusive locking */
1557 		/* This panic goes away when we allow shared refs */
1558 		panic("brelse: multiple refs");
1559 		/* NOT REACHED */
1560 		return;
1561 	}
1562 
1563 	/*
1564 	 * Figure out the correct queue to place the cleaned up buffer on.
1565 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1566 	 * disassociated from their vnode.
1567 	 *
1568 	 * Return the buffer to its original pcpu area
1569 	 */
1570 	pcpu = &bufpcpu[bp->b_qcpu];
1571 	spin_lock(&pcpu->spin);
1572 
1573 	if (bp->b_flags & B_LOCKED) {
1574 		/*
1575 		 * Buffers that are locked are placed in the locked queue
1576 		 * immediately, regardless of their state.
1577 		 */
1578 		bp->b_qindex = BQUEUE_LOCKED;
1579 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1580 				  bp, b_freelist);
1581 	} else if (bp->b_bufsize == 0) {
1582 		/*
1583 		 * Buffers with no memory.  Due to conditionals near the top
1584 		 * of brelse() such buffers should probably already be
1585 		 * marked B_INVAL and disassociated from their vnode.
1586 		 */
1587 		bp->b_flags |= B_INVAL;
1588 		KASSERT(bp->b_vp == NULL,
1589 			("bp1 %p flags %08x/%08x vnode %p "
1590 			 "unexpectededly still associated!",
1591 			bp, saved_flags, bp->b_flags, bp->b_vp));
1592 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1593 		bp->b_qindex = BQUEUE_EMPTY;
1594 		TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1595 				  bp, b_freelist);
1596 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1597 		/*
1598 		 * Buffers with junk contents.   Again these buffers had better
1599 		 * already be disassociated from their vnode.
1600 		 */
1601 		KASSERT(bp->b_vp == NULL,
1602 			("bp2 %p flags %08x/%08x vnode %p unexpectededly "
1603 			 "still associated!",
1604 			bp, saved_flags, bp->b_flags, bp->b_vp));
1605 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1606 		bp->b_flags |= B_INVAL;
1607 		bp->b_qindex = BQUEUE_CLEAN;
1608 		TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1609 				  bp, b_freelist);
1610 	} else {
1611 		/*
1612 		 * Remaining buffers.  These buffers are still associated with
1613 		 * their vnode.
1614 		 */
1615 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1616 		case B_DELWRI:
1617 			bp->b_qindex = BQUEUE_DIRTY;
1618 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1619 					  bp, b_freelist);
1620 			break;
1621 		case B_DELWRI | B_HEAVY:
1622 			bp->b_qindex = BQUEUE_DIRTY_HW;
1623 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1624 					  bp, b_freelist);
1625 			break;
1626 		default:
1627 			/*
1628 			 * NOTE: Buffers are always placed at the end of the
1629 			 * queue.  If B_AGE is not set the buffer will cycle
1630 			 * through the queue twice.
1631 			 */
1632 			bp->b_qindex = BQUEUE_CLEAN;
1633 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1634 					  bp, b_freelist);
1635 			break;
1636 		}
1637 	}
1638 	spin_unlock(&pcpu->spin);
1639 
1640 	/*
1641 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1642 	 * on the correct queue but we have not yet unlocked it.
1643 	 */
1644 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1645 		bundirty(bp);
1646 
1647 	/*
1648 	 * The bp is on an appropriate queue unless locked.  If it is not
1649 	 * locked or dirty we can wakeup threads waiting for buffer space.
1650 	 *
1651 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1652 	 * if B_INVAL is set ).
1653 	 */
1654 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1655 		bufcountwakeup();
1656 
1657 	/*
1658 	 * Something we can maybe free or reuse
1659 	 */
1660 	if (bp->b_bufsize || bp->b_kvasize)
1661 		bufspacewakeup();
1662 
1663 	/*
1664 	 * Clean up temporary flags and unlock the buffer.
1665 	 */
1666 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1667 	BUF_UNLOCK(bp);
1668 }
1669 
1670 /*
1671  * bqrelse:
1672  *
1673  *	Release a buffer back to the appropriate queue but do not try to free
1674  *	it.  The buffer is expected to be used again soon.
1675  *
1676  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1677  *	biodone() to requeue an async I/O on completion.  It is also used when
1678  *	known good buffers need to be requeued but we think we may need the data
1679  *	again soon.
1680  *
1681  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1682  */
1683 void
1684 bqrelse(struct buf *bp)
1685 {
1686 	struct bufpcpu *pcpu;
1687 
1688 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1689 		("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1690 
1691 	if (bp->b_qindex != BQUEUE_NONE)
1692 		panic("bqrelse: free buffer onto another queue???");
1693 	if (BUF_REFCNTNB(bp) > 1) {
1694 		/* do not release to free list */
1695 		panic("bqrelse: multiple refs");
1696 		return;
1697 	}
1698 
1699 	buf_act_advance(bp);
1700 
1701 	pcpu = &bufpcpu[bp->b_qcpu];
1702 	spin_lock(&pcpu->spin);
1703 
1704 	if (bp->b_flags & B_LOCKED) {
1705 		/*
1706 		 * Locked buffers are released to the locked queue.  However,
1707 		 * if the buffer is dirty it will first go into the dirty
1708 		 * queue and later on after the I/O completes successfully it
1709 		 * will be released to the locked queue.
1710 		 */
1711 		bp->b_qindex = BQUEUE_LOCKED;
1712 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1713 				  bp, b_freelist);
1714 	} else if (bp->b_flags & B_DELWRI) {
1715 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1716 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1717 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1718 				  bp, b_freelist);
1719 	} else if (vm_page_count_min(0)) {
1720 		/*
1721 		 * We are too low on memory, we have to try to free the
1722 		 * buffer (most importantly: the wired pages making up its
1723 		 * backing store) *now*.
1724 		 */
1725 		spin_unlock(&pcpu->spin);
1726 		brelse(bp);
1727 		return;
1728 	} else {
1729 		bp->b_qindex = BQUEUE_CLEAN;
1730 		TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1731 				  bp, b_freelist);
1732 	}
1733 	spin_unlock(&pcpu->spin);
1734 
1735 	/*
1736 	 * We have now placed the buffer on the proper queue, but have yet
1737 	 * to unlock it.
1738 	 */
1739 	if ((bp->b_flags & B_LOCKED) == 0 &&
1740 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1741 		bufcountwakeup();
1742 	}
1743 
1744 	/*
1745 	 * Something we can maybe free or reuse.
1746 	 */
1747 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1748 		bufspacewakeup();
1749 
1750 	/*
1751 	 * Final cleanup and unlock.  Clear bits that are only used while a
1752 	 * buffer is actively locked.
1753 	 */
1754 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1755 	dsched_buf_exit(bp);
1756 	BUF_UNLOCK(bp);
1757 }
1758 
1759 /*
1760  * Hold a buffer, preventing it from being reused.  This will prevent
1761  * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1762  * operations.  If a B_INVAL operation occurs the buffer will remain held
1763  * but the underlying pages may get ripped out.
1764  *
1765  * These functions are typically used in VOP_READ/VOP_WRITE functions
1766  * to hold a buffer during a copyin or copyout, preventing deadlocks
1767  * or recursive lock panics when read()/write() is used over mmap()'d
1768  * space.
1769  *
1770  * NOTE: bqhold() requires that the buffer be locked at the time of the
1771  *	 hold.  bqdrop() has no requirements other than the buffer having
1772  *	 previously been held.
1773  */
1774 void
1775 bqhold(struct buf *bp)
1776 {
1777 	atomic_add_int(&bp->b_refs, 1);
1778 }
1779 
1780 void
1781 bqdrop(struct buf *bp)
1782 {
1783 	KKASSERT(bp->b_refs > 0);
1784 	atomic_add_int(&bp->b_refs, -1);
1785 }
1786 
1787 /*
1788  * Return backing pages held by the buffer 'bp' back to the VM system.
1789  * This routine is called when the bp is invalidated, released, or
1790  * reused.
1791  *
1792  * The KVA mapping (b_data) for the underlying pages is removed by
1793  * this function.
1794  *
1795  * WARNING! This routine is integral to the low memory critical path
1796  *          when a buffer is B_RELBUF'd.  If the system has a severe page
1797  *          deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE
1798  *          queues so they can be reused in the current pageout daemon
1799  *          pass.
1800  */
1801 static void
1802 vfs_vmio_release(struct buf *bp)
1803 {
1804 	int i;
1805 	vm_page_t m;
1806 
1807 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1808 		m = bp->b_xio.xio_pages[i];
1809 		bp->b_xio.xio_pages[i] = NULL;
1810 
1811 		/*
1812 		 * We need to own the page in order to safely unwire it.
1813 		 */
1814 		vm_page_busy_wait(m, FALSE, "vmiopg");
1815 
1816 		/*
1817 		 * The VFS is telling us this is not a meta-data buffer
1818 		 * even if it is backed by a block device.
1819 		 */
1820 		if (bp->b_flags & B_NOTMETA)
1821 			vm_page_flag_set(m, PG_NOTMETA);
1822 
1823 		/*
1824 		 * This is a very important bit of code.  We try to track
1825 		 * VM page use whether the pages are wired into the buffer
1826 		 * cache or not.  While wired into the buffer cache the
1827 		 * bp tracks the act_count.
1828 		 *
1829 		 * We can choose to place unwired pages on the inactive
1830 		 * queue (0) or active queue (1).  If we place too many
1831 		 * on the active queue the queue will cycle the act_count
1832 		 * on pages we'd like to keep, just from single-use pages
1833 		 * (such as when doing a tar-up or file scan).
1834 		 */
1835 		if (bp->b_act_count < vm_cycle_point)
1836 			vm_page_unwire(m, 0);
1837 		else
1838 			vm_page_unwire(m, 1);
1839 
1840 		/*
1841 		 * If the wire_count has dropped to 0 we may need to take
1842 		 * further action before unbusying the page.
1843 		 *
1844 		 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us.
1845 		 */
1846 		if (m->wire_count == 0) {
1847 			if (bp->b_flags & B_DIRECT) {
1848 				/*
1849 				 * Attempt to free the page if B_DIRECT is
1850 				 * set, the caller does not desire the page
1851 				 * to be cached.
1852 				 */
1853 				vm_page_wakeup(m);
1854 				vm_page_try_to_free(m);
1855 			} else if ((bp->b_flags & B_NOTMETA) ||
1856 				   vm_page_count_min(0)) {
1857 				/*
1858 				 * Attempt to move the page to PQ_CACHE
1859 				 * if B_NOTMETA is set.  This flag is set
1860 				 * by HAMMER to remove one of the two pages
1861 				 * present when double buffering is enabled.
1862 				 *
1863 				 * Attempt to move the page to PQ_CACHE
1864 				 * If we have a severe page deficit.  This
1865 				 * will cause buffer cache operations related
1866 				 * to pageouts to recycle the related pages
1867 				 * in order to avoid a low memory deadlock.
1868 				 */
1869 				m->act_count = bp->b_act_count;
1870 				vm_page_wakeup(m);
1871 				vm_page_try_to_cache(m);
1872 			} else {
1873 				/*
1874 				 * Nominal case, leave the page on the
1875 				 * queue the original unwiring placed it on
1876 				 * (active or inactive).
1877 				 */
1878 				m->act_count = bp->b_act_count;
1879 				vm_page_wakeup(m);
1880 			}
1881 		} else {
1882 			vm_page_wakeup(m);
1883 		}
1884 	}
1885 
1886 	/*
1887 	 * Zero out the pmap pte's for the mapping, but don't bother
1888 	 * invalidating the TLB.  The range will be properly invalidating
1889 	 * when new pages are entered into the mapping.
1890 	 *
1891 	 * This in particular reduces tmpfs tear-down overhead and reduces
1892 	 * buffer cache re-use overhead (one invalidation sequence instead
1893 	 * of two per re-use).
1894 	 */
1895 	pmap_qremove_noinval(trunc_page((vm_offset_t) bp->b_data),
1896 			     bp->b_xio.xio_npages);
1897 	if (bp->b_bufsize) {
1898 		atomic_add_long(&bufspace, -bp->b_bufsize);
1899 		bp->b_bufsize = 0;
1900 		bufspacewakeup();
1901 	}
1902 	bp->b_xio.xio_npages = 0;
1903 	bp->b_flags &= ~B_VMIO;
1904 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1905 	if (bp->b_vp)
1906 		brelvp(bp);
1907 }
1908 
1909 /*
1910  * Find and initialize a new buffer header, freeing up existing buffers
1911  * in the bufqueues as necessary.  The new buffer is returned locked.
1912  *
1913  * If repurpose is non-NULL getnewbuf() is allowed to re-purpose an existing
1914  * buffer.  The buffer will be disassociated, its page and page mappings
1915  * left intact, and returned with *repurpose set to 1.  Else *repurpose is set
1916  * to 0.  If 1, the caller must repurpose the underlying VM pages.
1917  *
1918  * If repurpose is NULL getnewbuf() is not allowed to re-purpose an
1919  * existing buffer.  That is, it must completely initialize the returned
1920  * buffer.
1921  *
1922  * Important:  B_INVAL is not set.  If the caller wishes to throw the
1923  * buffer away, the caller must set B_INVAL prior to calling brelse().
1924  *
1925  * We block if:
1926  *	We have insufficient buffer headers
1927  *	We have insufficient buffer space
1928  *
1929  * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1930  * Instead we ask the buf daemon to do it for us.  We attempt to
1931  * avoid piecemeal wakeups of the pageout daemon.
1932  */
1933 struct buf *
1934 getnewbuf(int blkflags, int slptimeo, int size, int maxsize,
1935 	  struct vm_object **repurposep)
1936 {
1937 	struct bufpcpu *pcpu;
1938 	struct buf *bp;
1939 	struct buf *nbp;
1940 	int nqindex;
1941 	int nqcpu;
1942 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1943 	int maxloops = 200000;
1944 	int restart_reason = 0;
1945 	struct buf *restart_bp = NULL;
1946 	static char flushingbufs[MAXCPU];
1947 	char *flushingp;
1948 
1949 	/*
1950 	 * We can't afford to block since we might be holding a vnode lock,
1951 	 * which may prevent system daemons from running.  We deal with
1952 	 * low-memory situations by proactively returning memory and running
1953 	 * async I/O rather then sync I/O.
1954 	 */
1955 
1956 	++getnewbufcalls;
1957 	nqcpu = mycpu->gd_cpuid;
1958 	flushingp = &flushingbufs[nqcpu];
1959 restart:
1960 	if (bufspace < lobufspace)
1961 		*flushingp = 0;
1962 
1963 	if (debug_bufbio && --maxloops == 0)
1964 		panic("getnewbuf, excessive loops on cpu %d restart %d (%p)",
1965 			mycpu->gd_cpuid, restart_reason, restart_bp);
1966 
1967 	/*
1968 	 * Setup for scan.  If we do not have enough free buffers,
1969 	 * we setup a degenerate case that immediately fails.  Note
1970 	 * that if we are specially marked process, we are allowed to
1971 	 * dip into our reserves.
1972 	 *
1973 	 * The scanning sequence is nominally:  EMPTY->CLEAN
1974 	 */
1975 	pcpu = &bufpcpu[nqcpu];
1976 	spin_lock(&pcpu->spin);
1977 
1978 	/*
1979 	 * Determine if repurposing should be disallowed.  Generally speaking
1980 	 * do not repurpose buffers if the buffer cache hasn't capped.  Also
1981 	 * control repurposing based on buffer-cache -> main-memory bandwidth.
1982 	 * That is, we want to recycle buffers normally up until the buffer
1983 	 * cache bandwidth (new-buffer bw) exceeds bufcache_bw.
1984 	 *
1985 	 * (This is heuristical, SMP collisions are ok)
1986 	 */
1987 	if (repurposep) {
1988 		int delta = ticks - bufcache_bw_ticks;
1989 		if (delta < 0 || delta >= hz) {
1990 			atomic_swap_long(&bufcache_bw_accum, 0);
1991 			atomic_swap_int(&bufcache_bw_ticks, ticks);
1992 		}
1993 		atomic_add_long(&bufcache_bw_accum, size);
1994 		if (bufspace < lobufspace) {
1995 			repurposep = NULL;
1996 		} else if (bufcache_bw_accum < bufcache_bw) {
1997 			repurposep = NULL;
1998 		}
1999 	}
2000 
2001 	/*
2002 	 * Prime the scan for this cpu.  Locate the first buffer to
2003 	 * check.  If we are flushing buffers we must skip the
2004 	 * EMPTY queue.
2005 	 */
2006 	nqindex = BQUEUE_EMPTY;
2007 	nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_EMPTY]);
2008 	if (nbp == NULL || *flushingp || repurposep) {
2009 		nqindex = BQUEUE_CLEAN;
2010 		nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN]);
2011 	}
2012 
2013 	/*
2014 	 * Run scan, possibly freeing data and/or kva mappings on the fly,
2015 	 * depending.
2016 	 *
2017 	 * WARNING! spin is held!
2018 	 */
2019 	while ((bp = nbp) != NULL) {
2020 		int qindex = nqindex;
2021 
2022 		nbp = TAILQ_NEXT(bp, b_freelist);
2023 
2024 		/*
2025 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2026 		 * cycles through the queue twice before being selected.
2027 		 */
2028 		if (qindex == BQUEUE_CLEAN &&
2029 		    (bp->b_flags & B_AGE) == 0 && nbp) {
2030 			bp->b_flags |= B_AGE;
2031 			TAILQ_REMOVE(&pcpu->bufqueues[qindex],
2032 				     bp, b_freelist);
2033 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[qindex],
2034 					  bp, b_freelist);
2035 			continue;
2036 		}
2037 
2038 		/*
2039 		 * Calculate next bp ( we can only use it if we do not block
2040 		 * or do other fancy things ).
2041 		 */
2042 		if (nbp == NULL) {
2043 			switch(qindex) {
2044 			case BQUEUE_EMPTY:
2045 				nqindex = BQUEUE_CLEAN;
2046 				if ((nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN])))
2047 					break;
2048 				/* fall through */
2049 			case BQUEUE_CLEAN:
2050 				/*
2051 				 * nbp is NULL.
2052 				 */
2053 				break;
2054 			}
2055 		}
2056 
2057 		/*
2058 		 * Sanity Checks
2059 		 */
2060 		KASSERT(bp->b_qindex == qindex,
2061 			("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2062 
2063 		/*
2064 		 * Note: we no longer distinguish between VMIO and non-VMIO
2065 		 * buffers.
2066 		 */
2067 		KASSERT((bp->b_flags & B_DELWRI) == 0,
2068 			("delwri buffer %p found in queue %d", bp, qindex));
2069 
2070 		/*
2071 		 * Do not try to reuse a buffer with a non-zero b_refs.
2072 		 * This is an unsynchronized test.  A synchronized test
2073 		 * is also performed after we lock the buffer.
2074 		 */
2075 		if (bp->b_refs)
2076 			continue;
2077 
2078 		/*
2079 		 * Start freeing the bp.  This is somewhat involved.  nbp
2080 		 * remains valid only for BQUEUE_EMPTY bp's.  Buffers
2081 		 * on the clean list must be disassociated from their
2082 		 * current vnode.  Buffers on the empty lists have
2083 		 * already been disassociated.
2084 		 *
2085 		 * b_refs is checked after locking along with queue changes.
2086 		 * We must check here to deal with zero->nonzero transitions
2087 		 * made by the owner of the buffer lock, which is used by
2088 		 * VFS's to hold the buffer while issuing an unlocked
2089 		 * uiomove()s.  We cannot invalidate the buffer's pages
2090 		 * for this case.  Once we successfully lock a buffer the
2091 		 * only 0->1 transitions of b_refs will occur via findblk().
2092 		 *
2093 		 * We must also check for queue changes after successful
2094 		 * locking as the current lock holder may dispose of the
2095 		 * buffer and change its queue.
2096 		 */
2097 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2098 			spin_unlock(&pcpu->spin);
2099 			tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100);
2100 			restart_reason = 1;
2101 			restart_bp = bp;
2102 			goto restart;
2103 		}
2104 		if (bp->b_qindex != qindex || bp->b_refs) {
2105 			spin_unlock(&pcpu->spin);
2106 			BUF_UNLOCK(bp);
2107 			restart_reason = 2;
2108 			restart_bp = bp;
2109 			goto restart;
2110 		}
2111 		bremfree_locked(bp);
2112 		spin_unlock(&pcpu->spin);
2113 
2114 		/*
2115 		 * Dependancies must be handled before we disassociate the
2116 		 * vnode.
2117 		 *
2118 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2119 		 * be immediately disassociated.  HAMMER then becomes
2120 		 * responsible for releasing the buffer.
2121 		 *
2122 		 * NOTE: spin is UNLOCKED now.
2123 		 */
2124 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2125 			buf_deallocate(bp);
2126 			if (bp->b_flags & B_LOCKED) {
2127 				bqrelse(bp);
2128 				restart_reason = 3;
2129 				restart_bp = bp;
2130 				goto restart;
2131 			}
2132 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2133 		}
2134 
2135 		/*
2136 		 * CLEAN buffers have content or associations that must be
2137 		 * cleaned out if not repurposing.
2138 		 */
2139 		if (qindex == BQUEUE_CLEAN) {
2140 			if (bp->b_flags & B_VMIO) {
2141 				if (repurpose_enable &&
2142 				    repurposep && bp->b_bufsize &&
2143 				    (bp->b_flags & (B_DELWRI | B_MALLOC)) == 0) {
2144 					*repurposep = bp->b_vp->v_object;
2145 					vm_object_hold(*repurposep);
2146 				} else {
2147 					vfs_vmio_release(bp);
2148 				}
2149 			}
2150 			if (bp->b_vp)
2151 				brelvp(bp);
2152 		}
2153 
2154 		/*
2155 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2156 		 * the scan from this point on.
2157 		 *
2158 		 * Get the rest of the buffer freed up.  b_kva* is still
2159 		 * valid after this operation.
2160 		 */
2161 		KASSERT(bp->b_vp == NULL,
2162 			("bp3 %p flags %08x vnode %p qindex %d "
2163 			 "unexpectededly still associated!",
2164 			 bp, bp->b_flags, bp->b_vp, qindex));
2165 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2166 
2167 		if (repurposep == NULL || *repurposep == NULL) {
2168 			if (bp->b_bufsize)
2169 				allocbuf(bp, 0);
2170 		}
2171 
2172                 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN | B_HASHED)) {
2173 			kprintf("getnewbuf: caught bug vp queue "
2174 				"%p/%08x qidx %d\n",
2175 				bp, bp->b_flags, qindex);
2176 			brelvp(bp);
2177 		}
2178 		bp->b_flags = B_BNOCLIP;
2179 		bp->b_cmd = BUF_CMD_DONE;
2180 		bp->b_vp = NULL;
2181 		bp->b_error = 0;
2182 		bp->b_resid = 0;
2183 		bp->b_bcount = 0;
2184 		if (repurposep == NULL || *repurposep == NULL)
2185 			bp->b_xio.xio_npages = 0;
2186 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2187 		bp->b_act_count = ACT_INIT;
2188 		reinitbufbio(bp);
2189 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2190 		buf_dep_init(bp);
2191 		if (blkflags & GETBLK_BHEAVY)
2192 			bp->b_flags |= B_HEAVY;
2193 
2194 		if (bufspace >= hibufspace)
2195 			*flushingp = 1;
2196 		if (bufspace < lobufspace)
2197 			*flushingp = 0;
2198 		if (*flushingp) {
2199 			if (repurposep && *repurposep != NULL) {
2200 				bp->b_flags |= B_VMIO;
2201 				vfs_vmio_release(bp);
2202 				if (bp->b_bufsize)
2203 					allocbuf(bp, 0);
2204 				vm_object_drop(*repurposep);
2205 				*repurposep = NULL;
2206 			}
2207 			bp->b_flags |= B_INVAL;
2208 			brelse(bp);
2209 			restart_reason = 5;
2210 			restart_bp = bp;
2211 			goto restart;
2212 		}
2213 
2214 		/*
2215 		 * b_refs can transition to a non-zero value while we hold
2216 		 * the buffer locked due to a findblk().  Our brelvp() above
2217 		 * interlocked any future possible transitions due to
2218 		 * findblk()s.
2219 		 *
2220 		 * If we find b_refs to be non-zero we can destroy the
2221 		 * buffer's contents but we cannot yet reuse the buffer.
2222 		 */
2223 		if (bp->b_refs) {
2224 			if (repurposep && *repurposep != NULL) {
2225 				bp->b_flags |= B_VMIO;
2226 				vfs_vmio_release(bp);
2227 				if (bp->b_bufsize)
2228 					allocbuf(bp, 0);
2229 				vm_object_drop(*repurposep);
2230 				*repurposep = NULL;
2231 			}
2232 			bp->b_flags |= B_INVAL;
2233 			brelse(bp);
2234 			restart_reason = 6;
2235 			restart_bp = bp;
2236 
2237 			goto restart;
2238 		}
2239 
2240 		/*
2241 		 * We found our buffer!
2242 		 */
2243 		break;
2244 	}
2245 
2246 	/*
2247 	 * If we exhausted our list, iterate other cpus.  If that fails,
2248 	 * sleep as appropriate.  We may have to wakeup various daemons
2249 	 * and write out some dirty buffers.
2250 	 *
2251 	 * Generally we are sleeping due to insufficient buffer space.
2252 	 *
2253 	 * NOTE: spin is held if bp is NULL, else it is not held.
2254 	 */
2255 	if (bp == NULL) {
2256 		int flags;
2257 		char *waitmsg;
2258 
2259 		spin_unlock(&pcpu->spin);
2260 
2261 		nqcpu = (nqcpu + 1) % ncpus;
2262 		if (nqcpu != mycpu->gd_cpuid) {
2263 			restart_reason = 7;
2264 			restart_bp = bp;
2265 			goto restart;
2266 		}
2267 
2268 		if (bufspace >= hibufspace) {
2269 			waitmsg = "bufspc";
2270 			flags = VFS_BIO_NEED_BUFSPACE;
2271 		} else {
2272 			waitmsg = "newbuf";
2273 			flags = VFS_BIO_NEED_ANY;
2274 		}
2275 
2276 		bd_speedup();	/* heeeelp */
2277 		atomic_set_int(&needsbuffer, flags);
2278 		while (needsbuffer & flags) {
2279 			int value;
2280 
2281 			tsleep_interlock(&needsbuffer, 0);
2282 			value = atomic_fetchadd_int(&needsbuffer, 0);
2283 			if (value & flags) {
2284 				if (tsleep(&needsbuffer, PINTERLOCKED|slpflags,
2285 					   waitmsg, slptimeo)) {
2286 					return (NULL);
2287 				}
2288 			}
2289 		}
2290 	} else {
2291 		/*
2292 		 * We finally have a valid bp.  Reset b_data.
2293 		 *
2294 		 * (spin is not held)
2295 		 */
2296 		bp->b_data = bp->b_kvabase;
2297 	}
2298 	return(bp);
2299 }
2300 
2301 /*
2302  * buf_daemon:
2303  *
2304  *	Buffer flushing daemon.  Buffers are normally flushed by the
2305  *	update daemon but if it cannot keep up this process starts to
2306  *	take the load in an attempt to prevent getnewbuf() from blocking.
2307  *
2308  *	Once a flush is initiated it does not stop until the number
2309  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2310  *	waiting at the mid-point.
2311  */
2312 static struct kproc_desc buf_kp = {
2313 	"bufdaemon",
2314 	buf_daemon,
2315 	&bufdaemon_td
2316 };
2317 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2318 	kproc_start, &buf_kp);
2319 
2320 static struct kproc_desc bufhw_kp = {
2321 	"bufdaemon_hw",
2322 	buf_daemon_hw,
2323 	&bufdaemonhw_td
2324 };
2325 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2326 	kproc_start, &bufhw_kp);
2327 
2328 static void
2329 buf_daemon1(struct thread *td, int queue, int (*buf_limit_fn)(long),
2330 	    int *bd_req)
2331 {
2332 	long limit;
2333 	struct buf *marker;
2334 
2335 	marker = kmalloc(sizeof(*marker), M_BIOBUF, M_WAITOK | M_ZERO);
2336 	marker->b_flags |= B_MARKER;
2337 	marker->b_qindex = BQUEUE_NONE;
2338 	marker->b_qcpu = 0;
2339 
2340 	/*
2341 	 * This process needs to be suspended prior to shutdown sync.
2342 	 */
2343 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2344 			      td, SHUTDOWN_PRI_LAST);
2345 	curthread->td_flags |= TDF_SYSTHREAD;
2346 
2347 	/*
2348 	 * This process is allowed to take the buffer cache to the limit
2349 	 */
2350 	for (;;) {
2351 		kproc_suspend_loop();
2352 
2353 		/*
2354 		 * Do the flush as long as the number of dirty buffers
2355 		 * (including those running) exceeds lodirtybufspace.
2356 		 *
2357 		 * When flushing limit running I/O to hirunningspace
2358 		 * Do the flush.  Limit the amount of in-transit I/O we
2359 		 * allow to build up, otherwise we would completely saturate
2360 		 * the I/O system.  Wakeup any waiting processes before we
2361 		 * normally would so they can run in parallel with our drain.
2362 		 *
2363 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2364 		 * but because we split the operation into two threads we
2365 		 * have to cut it in half for each thread.
2366 		 */
2367 		waitrunningbufspace();
2368 		limit = lodirtybufspace / 2;
2369 		while (buf_limit_fn(limit)) {
2370 			if (flushbufqueues(marker, queue) == 0)
2371 				break;
2372 			if (runningbufspace < hirunningspace)
2373 				continue;
2374 			waitrunningbufspace();
2375 		}
2376 
2377 		/*
2378 		 * We reached our low water mark, reset the
2379 		 * request and sleep until we are needed again.
2380 		 * The sleep is just so the suspend code works.
2381 		 */
2382 		tsleep_interlock(bd_req, 0);
2383 		if (atomic_swap_int(bd_req, 0) == 0)
2384 			tsleep(bd_req, PINTERLOCKED, "psleep", hz);
2385 	}
2386 	/* NOT REACHED */
2387 	/*kfree(marker, M_BIOBUF);*/
2388 }
2389 
2390 static int
2391 buf_daemon_limit(long limit)
2392 {
2393 	return (runningbufspace + dirtykvaspace > limit ||
2394 		dirtybufcount - dirtybufcounthw >= nbuf / 2);
2395 }
2396 
2397 static int
2398 buf_daemon_hw_limit(long limit)
2399 {
2400 	return (runningbufspace + dirtykvaspace > limit ||
2401 		dirtybufcounthw >= nbuf / 2);
2402 }
2403 
2404 static void
2405 buf_daemon(void)
2406 {
2407 	buf_daemon1(bufdaemon_td, BQUEUE_DIRTY, buf_daemon_limit,
2408 		    &bd_request);
2409 }
2410 
2411 static void
2412 buf_daemon_hw(void)
2413 {
2414 	buf_daemon1(bufdaemonhw_td, BQUEUE_DIRTY_HW, buf_daemon_hw_limit,
2415 		    &bd_request_hw);
2416 }
2417 
2418 /*
2419  * Flush up to (flushperqueue) buffers in the dirty queue.  Each cpu has a
2420  * localized version of the queue.  Each call made to this function iterates
2421  * to another cpu.  It is desireable to flush several buffers from the same
2422  * cpu's queue at once, as these are likely going to be linear.
2423  *
2424  * We must be careful to free up B_INVAL buffers instead of write them, which
2425  * NFS is particularly sensitive to.
2426  *
2427  * B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate that we
2428  * really want to try to get the buffer out and reuse it due to the write
2429  * load on the machine.
2430  *
2431  * We must lock the buffer in order to check its validity before we can mess
2432  * with its contents.  spin isn't enough.
2433  */
2434 static int
2435 flushbufqueues(struct buf *marker, bufq_type_t q)
2436 {
2437 	struct bufpcpu *pcpu;
2438 	struct buf *bp;
2439 	int r = 0;
2440 	u_int loops = flushperqueue;
2441 	int lcpu = marker->b_qcpu;
2442 
2443 	KKASSERT(marker->b_qindex == BQUEUE_NONE);
2444 	KKASSERT(marker->b_flags & B_MARKER);
2445 
2446 again:
2447 	/*
2448 	 * Spinlock needed to perform operations on the queue and may be
2449 	 * held through a non-blocking BUF_LOCK(), but cannot be held when
2450 	 * BUF_UNLOCK()ing or through any other major operation.
2451 	 */
2452 	pcpu = &bufpcpu[marker->b_qcpu];
2453 	spin_lock(&pcpu->spin);
2454 	marker->b_qindex = q;
2455 	TAILQ_INSERT_HEAD(&pcpu->bufqueues[q], marker, b_freelist);
2456 	bp = marker;
2457 
2458 	while ((bp = TAILQ_NEXT(bp, b_freelist)) != NULL) {
2459 		/*
2460 		 * NOTE: spinlock is always held at the top of the loop
2461 		 */
2462 		if (bp->b_flags & B_MARKER)
2463 			continue;
2464 		if ((bp->b_flags & B_DELWRI) == 0) {
2465 			kprintf("Unexpected clean buffer %p\n", bp);
2466 			continue;
2467 		}
2468 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
2469 			continue;
2470 		KKASSERT(bp->b_qcpu == marker->b_qcpu && bp->b_qindex == q);
2471 
2472 		/*
2473 		 * Once the buffer is locked we will have no choice but to
2474 		 * unlock the spinlock around a later BUF_UNLOCK and re-set
2475 		 * bp = marker when looping.  Move the marker now to make
2476 		 * things easier.
2477 		 */
2478 		TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2479 		TAILQ_INSERT_AFTER(&pcpu->bufqueues[q], bp, marker, b_freelist);
2480 
2481 		/*
2482 		 * Must recheck B_DELWRI after successfully locking
2483 		 * the buffer.
2484 		 */
2485 		if ((bp->b_flags & B_DELWRI) == 0) {
2486 			spin_unlock(&pcpu->spin);
2487 			BUF_UNLOCK(bp);
2488 			spin_lock(&pcpu->spin);
2489 			bp = marker;
2490 			continue;
2491 		}
2492 
2493 		/*
2494 		 * Remove the buffer from its queue.  We still own the
2495 		 * spinlock here.
2496 		 */
2497 		_bremfree(bp);
2498 
2499 		/*
2500 		 * Disposing of an invalid buffer counts as a flush op
2501 		 */
2502 		if (bp->b_flags & B_INVAL) {
2503 			spin_unlock(&pcpu->spin);
2504 			brelse(bp);
2505 			goto doloop;
2506 		}
2507 
2508 		/*
2509 		 * Release the spinlock for the more complex ops we
2510 		 * are now going to do.
2511 		 */
2512 		spin_unlock(&pcpu->spin);
2513 		lwkt_yield();
2514 
2515 		/*
2516 		 * This is a bit messy
2517 		 */
2518 		if (LIST_FIRST(&bp->b_dep) != NULL &&
2519 		    (bp->b_flags & B_DEFERRED) == 0 &&
2520 		    buf_countdeps(bp, 0)) {
2521 			spin_lock(&pcpu->spin);
2522 			TAILQ_INSERT_TAIL(&pcpu->bufqueues[q], bp, b_freelist);
2523 			bp->b_qindex = q;
2524 			bp->b_flags |= B_DEFERRED;
2525 			spin_unlock(&pcpu->spin);
2526 			BUF_UNLOCK(bp);
2527 			spin_lock(&pcpu->spin);
2528 			bp = marker;
2529 			continue;
2530 		}
2531 
2532 		/*
2533 		 * spinlock not held here.
2534 		 *
2535 		 * If the buffer has a dependancy, buf_checkwrite() must
2536 		 * also return 0 for us to be able to initate the write.
2537 		 *
2538 		 * If the buffer is flagged B_ERROR it may be requeued
2539 		 * over and over again, we try to avoid a live lock.
2540 		 */
2541 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2542 			brelse(bp);
2543 		} else if (bp->b_flags & B_ERROR) {
2544 			tsleep(bp, 0, "bioer", 1);
2545 			bp->b_flags &= ~B_AGE;
2546 			cluster_awrite(bp);
2547 		} else {
2548 			bp->b_flags |= B_AGE;
2549 			cluster_awrite(bp);
2550 		}
2551 		/* bp invalid but needs to be NULL-tested if we break out */
2552 doloop:
2553 		spin_lock(&pcpu->spin);
2554 		++r;
2555 		if (--loops == 0)
2556 			break;
2557 		bp = marker;
2558 	}
2559 	/* bp is invalid here but can be NULL-tested to advance */
2560 
2561 	TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2562 	marker->b_qindex = BQUEUE_NONE;
2563 	spin_unlock(&pcpu->spin);
2564 
2565 	/*
2566 	 * Advance the marker to be fair.
2567 	 */
2568 	marker->b_qcpu = (marker->b_qcpu + 1) % ncpus;
2569 	if (bp == NULL) {
2570 		if (marker->b_qcpu != lcpu)
2571 			goto again;
2572 	}
2573 
2574 	return (r);
2575 }
2576 
2577 /*
2578  * inmem:
2579  *
2580  *	Returns true if no I/O is needed to access the associated VM object.
2581  *	This is like findblk except it also hunts around in the VM system for
2582  *	the data.
2583  *
2584  *	Note that we ignore vm_page_free() races from interrupts against our
2585  *	lookup, since if the caller is not protected our return value will not
2586  *	be any more valid then otherwise once we exit the critical section.
2587  */
2588 int
2589 inmem(struct vnode *vp, off_t loffset)
2590 {
2591 	vm_object_t obj;
2592 	vm_offset_t toff, tinc, size;
2593 	vm_page_t m;
2594 	int res = 1;
2595 
2596 	if (findblk(vp, loffset, FINDBLK_TEST))
2597 		return 1;
2598 	if (vp->v_mount == NULL)
2599 		return 0;
2600 	if ((obj = vp->v_object) == NULL)
2601 		return 0;
2602 
2603 	size = PAGE_SIZE;
2604 	if (size > vp->v_mount->mnt_stat.f_iosize)
2605 		size = vp->v_mount->mnt_stat.f_iosize;
2606 
2607 	vm_object_hold(obj);
2608 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2609 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2610 		if (m == NULL) {
2611 			res = 0;
2612 			break;
2613 		}
2614 		tinc = size;
2615 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2616 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2617 		if (vm_page_is_valid(m,
2618 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) {
2619 			res = 0;
2620 			break;
2621 		}
2622 	}
2623 	vm_object_drop(obj);
2624 	return (res);
2625 }
2626 
2627 /*
2628  * findblk:
2629  *
2630  *	Locate and return the specified buffer.  Unless flagged otherwise,
2631  *	a locked buffer will be returned if it exists or NULL if it does not.
2632  *
2633  *	findblk()'d buffers are still on the bufqueues and if you intend
2634  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2635  *	and possibly do other stuff to it.
2636  *
2637  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2638  *			  for locking the buffer and ensuring that it remains
2639  *			  the desired buffer after locking.
2640  *
2641  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2642  *			  to acquire the lock we return NULL, even if the
2643  *			  buffer exists.
2644  *
2645  *	FINDBLK_REF	- Returns the buffer ref'd, which prevents normal
2646  *			  reuse by getnewbuf() but does not prevent
2647  *			  disassociation (B_INVAL).  Used to avoid deadlocks
2648  *			  against random (vp,loffset)s due to reassignment.
2649  *
2650  *	(0)		- Lock the buffer blocking.
2651  */
2652 struct buf *
2653 findblk(struct vnode *vp, off_t loffset, int flags)
2654 {
2655 	struct buf *bp;
2656 	int lkflags;
2657 
2658 	lkflags = LK_EXCLUSIVE;
2659 	if (flags & FINDBLK_NBLOCK)
2660 		lkflags |= LK_NOWAIT;
2661 
2662 	for (;;) {
2663 		/*
2664 		 * Lookup.  Ref the buf while holding v_token to prevent
2665 		 * reuse (but does not prevent diassociation).
2666 		 */
2667 		lwkt_gettoken_shared(&vp->v_token);
2668 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2669 		if (bp == NULL) {
2670 			lwkt_reltoken(&vp->v_token);
2671 			return(NULL);
2672 		}
2673 		bqhold(bp);
2674 		lwkt_reltoken(&vp->v_token);
2675 
2676 		/*
2677 		 * If testing only break and return bp, do not lock.
2678 		 */
2679 		if (flags & FINDBLK_TEST)
2680 			break;
2681 
2682 		/*
2683 		 * Lock the buffer, return an error if the lock fails.
2684 		 * (only FINDBLK_NBLOCK can cause the lock to fail).
2685 		 */
2686 		if (BUF_LOCK(bp, lkflags)) {
2687 			atomic_subtract_int(&bp->b_refs, 1);
2688 			/* bp = NULL; not needed */
2689 			return(NULL);
2690 		}
2691 
2692 		/*
2693 		 * Revalidate the locked buf before allowing it to be
2694 		 * returned.
2695 		 */
2696 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2697 			break;
2698 		atomic_subtract_int(&bp->b_refs, 1);
2699 		BUF_UNLOCK(bp);
2700 	}
2701 
2702 	/*
2703 	 * Success
2704 	 */
2705 	if ((flags & FINDBLK_REF) == 0)
2706 		atomic_subtract_int(&bp->b_refs, 1);
2707 	return(bp);
2708 }
2709 
2710 /*
2711  * getcacheblk:
2712  *
2713  *	Similar to getblk() except only returns the buffer if it is
2714  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2715  *	is returned.  NULL is also returned if GETBLK_NOWAIT is set
2716  *	and the getblk() would block.
2717  *
2718  *	If B_RAM is set the buffer might be just fine, but we return
2719  *	NULL anyway because we want the code to fall through to the
2720  *	cluster read to issue more read-aheads.  Otherwise read-ahead breaks.
2721  *
2722  *	If blksize is 0 the buffer cache buffer must already be fully
2723  *	cached.
2724  *
2725  *	If blksize is non-zero getblk() will be used, allowing a buffer
2726  *	to be reinstantiated from its VM backing store.  The buffer must
2727  *	still be fully cached after reinstantiation to be returned.
2728  */
2729 struct buf *
2730 getcacheblk(struct vnode *vp, off_t loffset, int blksize, int blkflags)
2731 {
2732 	struct buf *bp;
2733 	int fndflags = (blkflags & GETBLK_NOWAIT) ? FINDBLK_NBLOCK : 0;
2734 
2735 	if (blksize) {
2736 		bp = getblk(vp, loffset, blksize, blkflags, 0);
2737 		if (bp) {
2738 			if ((bp->b_flags & (B_INVAL | B_CACHE)) == B_CACHE) {
2739 				bp->b_flags &= ~B_AGE;
2740 				if (bp->b_flags & B_RAM) {
2741 					bqrelse(bp);
2742 					bp = NULL;
2743 				}
2744 			} else {
2745 				brelse(bp);
2746 				bp = NULL;
2747 			}
2748 		}
2749 	} else {
2750 		bp = findblk(vp, loffset, fndflags);
2751 		if (bp) {
2752 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2753 			    B_CACHE) {
2754 				bp->b_flags &= ~B_AGE;
2755 				bremfree(bp);
2756 			} else {
2757 				BUF_UNLOCK(bp);
2758 				bp = NULL;
2759 			}
2760 		}
2761 	}
2762 	return (bp);
2763 }
2764 
2765 /*
2766  * getblk:
2767  *
2768  *	Get a block given a specified block and offset into a file/device.
2769  * 	B_INVAL may or may not be set on return.  The caller should clear
2770  *	B_INVAL prior to initiating a READ.
2771  *
2772  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2773  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2774  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2775  *	without doing any of those things the system will likely believe
2776  *	the buffer to be valid (especially if it is not B_VMIO), and the
2777  *	next getblk() will return the buffer with B_CACHE set.
2778  *
2779  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2780  *	an existing buffer.
2781  *
2782  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2783  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2784  *	and then cleared based on the backing VM.  If the previous buffer is
2785  *	non-0-sized but invalid, B_CACHE will be cleared.
2786  *
2787  *	If getblk() must create a new buffer, the new buffer is returned with
2788  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2789  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2790  *	backing VM.
2791  *
2792  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2793  *	B_CACHE bit is clear.
2794  *
2795  *	What this means, basically, is that the caller should use B_CACHE to
2796  *	determine whether the buffer is fully valid or not and should clear
2797  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2798  *	the buffer by loading its data area with something, the caller needs
2799  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2800  *	the caller should set B_CACHE ( as an optimization ), else the caller
2801  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2802  *	a write attempt or if it was a successfull read.  If the caller
2803  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2804  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2805  *
2806  *	getblk flags:
2807  *
2808  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2809  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2810  */
2811 struct buf *
2812 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2813 {
2814 	struct buf *bp;
2815 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2816 	int error;
2817 	int lkflags;
2818 
2819 	if (size > MAXBSIZE)
2820 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2821 	if (vp->v_object == NULL)
2822 		panic("getblk: vnode %p has no object!", vp);
2823 
2824 loop:
2825 	if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2826 		/*
2827 		 * The buffer was found in the cache, but we need to lock it.
2828 		 * We must acquire a ref on the bp to prevent reuse, but
2829 		 * this will not prevent disassociation (brelvp()) so we
2830 		 * must recheck (vp,loffset) after acquiring the lock.
2831 		 *
2832 		 * Without the ref the buffer could potentially be reused
2833 		 * before we acquire the lock and create a deadlock
2834 		 * situation between the thread trying to reuse the buffer
2835 		 * and us due to the fact that we would wind up blocking
2836 		 * on a random (vp,loffset).
2837 		 */
2838 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2839 			if (blkflags & GETBLK_NOWAIT) {
2840 				bqdrop(bp);
2841 				return(NULL);
2842 			}
2843 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2844 			if (blkflags & GETBLK_PCATCH)
2845 				lkflags |= LK_PCATCH;
2846 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2847 			if (error) {
2848 				bqdrop(bp);
2849 				if (error == ENOLCK)
2850 					goto loop;
2851 				return (NULL);
2852 			}
2853 			/* buffer may have changed on us */
2854 		}
2855 		bqdrop(bp);
2856 
2857 		/*
2858 		 * Once the buffer has been locked, make sure we didn't race
2859 		 * a buffer recyclement.  Buffers that are no longer hashed
2860 		 * will have b_vp == NULL, so this takes care of that check
2861 		 * as well.
2862 		 */
2863 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2864 #if 0
2865 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2866 				"was recycled\n",
2867 				bp, vp, (long long)loffset);
2868 #endif
2869 			BUF_UNLOCK(bp);
2870 			goto loop;
2871 		}
2872 
2873 		/*
2874 		 * If SZMATCH any pre-existing buffer must be of the requested
2875 		 * size or NULL is returned.  The caller absolutely does not
2876 		 * want getblk() to bwrite() the buffer on a size mismatch.
2877 		 */
2878 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2879 			BUF_UNLOCK(bp);
2880 			return(NULL);
2881 		}
2882 
2883 		/*
2884 		 * All vnode-based buffers must be backed by a VM object.
2885 		 */
2886 		KKASSERT(bp->b_flags & B_VMIO);
2887 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2888 		bp->b_flags &= ~B_AGE;
2889 
2890 		/*
2891 		 * Make sure that B_INVAL buffers do not have a cached
2892 		 * block number translation.
2893 		 */
2894 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2895 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2896 				" did not have cleared bio_offset cache\n",
2897 				bp, vp, (long long)loffset);
2898 			clearbiocache(&bp->b_bio2);
2899 		}
2900 
2901 		/*
2902 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2903 		 * invalid.
2904 		 */
2905 		if (bp->b_flags & B_INVAL)
2906 			bp->b_flags &= ~B_CACHE;
2907 		bremfree(bp);
2908 
2909 		/*
2910 		 * Any size inconsistancy with a dirty buffer or a buffer
2911 		 * with a softupdates dependancy must be resolved.  Resizing
2912 		 * the buffer in such circumstances can lead to problems.
2913 		 *
2914 		 * Dirty or dependant buffers are written synchronously.
2915 		 * Other types of buffers are simply released and
2916 		 * reconstituted as they may be backed by valid, dirty VM
2917 		 * pages (but not marked B_DELWRI).
2918 		 *
2919 		 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2920 		 * and may be left over from a prior truncation (and thus
2921 		 * no longer represent the actual EOF point), so we
2922 		 * definitely do not want to B_NOCACHE the backing store.
2923 		 */
2924 		if (size != bp->b_bcount) {
2925 			if (bp->b_flags & B_DELWRI) {
2926 				bp->b_flags |= B_RELBUF;
2927 				bwrite(bp);
2928 			} else if (LIST_FIRST(&bp->b_dep)) {
2929 				bp->b_flags |= B_RELBUF;
2930 				bwrite(bp);
2931 			} else {
2932 				bp->b_flags |= B_RELBUF;
2933 				brelse(bp);
2934 			}
2935 			goto loop;
2936 		}
2937 		KKASSERT(size <= bp->b_kvasize);
2938 		KASSERT(bp->b_loffset != NOOFFSET,
2939 			("getblk: no buffer offset"));
2940 
2941 		/*
2942 		 * A buffer with B_DELWRI set and B_CACHE clear must
2943 		 * be committed before we can return the buffer in
2944 		 * order to prevent the caller from issuing a read
2945 		 * ( due to B_CACHE not being set ) and overwriting
2946 		 * it.
2947 		 *
2948 		 * Most callers, including NFS and FFS, need this to
2949 		 * operate properly either because they assume they
2950 		 * can issue a read if B_CACHE is not set, or because
2951 		 * ( for example ) an uncached B_DELWRI might loop due
2952 		 * to softupdates re-dirtying the buffer.  In the latter
2953 		 * case, B_CACHE is set after the first write completes,
2954 		 * preventing further loops.
2955 		 *
2956 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2957 		 * above while extending the buffer, we cannot allow the
2958 		 * buffer to remain with B_CACHE set after the write
2959 		 * completes or it will represent a corrupt state.  To
2960 		 * deal with this we set B_NOCACHE to scrap the buffer
2961 		 * after the write.
2962 		 *
2963 		 * XXX Should this be B_RELBUF instead of B_NOCACHE?
2964 		 *     I'm not even sure this state is still possible
2965 		 *     now that getblk() writes out any dirty buffers
2966 		 *     on size changes.
2967 		 *
2968 		 * We might be able to do something fancy, like setting
2969 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2970 		 * so the below call doesn't set B_CACHE, but that gets real
2971 		 * confusing.  This is much easier.
2972 		 */
2973 
2974 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2975 			kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
2976 				"and CACHE clear, b_flags %08x\n",
2977 				bp, (uintmax_t)bp->b_loffset, bp->b_flags);
2978 			bp->b_flags |= B_NOCACHE;
2979 			bwrite(bp);
2980 			goto loop;
2981 		}
2982 	} else {
2983 		/*
2984 		 * Buffer is not in-core, create new buffer.  The buffer
2985 		 * returned by getnewbuf() is locked.  Note that the returned
2986 		 * buffer is also considered valid (not marked B_INVAL).
2987 		 *
2988 		 * Calculating the offset for the I/O requires figuring out
2989 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
2990 		 * the mount's f_iosize otherwise.  If the vnode does not
2991 		 * have an associated mount we assume that the passed size is
2992 		 * the block size.
2993 		 *
2994 		 * Note that vn_isdisk() cannot be used here since it may
2995 		 * return a failure for numerous reasons.   Note that the
2996 		 * buffer size may be larger then the block size (the caller
2997 		 * will use block numbers with the proper multiple).  Beware
2998 		 * of using any v_* fields which are part of unions.  In
2999 		 * particular, in DragonFly the mount point overloading
3000 		 * mechanism uses the namecache only and the underlying
3001 		 * directory vnode is not a special case.
3002 		 */
3003 		int bsize, maxsize;
3004 		vm_object_t repurpose;
3005 
3006 		if (vp->v_type == VBLK || vp->v_type == VCHR)
3007 			bsize = DEV_BSIZE;
3008 		else if (vp->v_mount)
3009 			bsize = vp->v_mount->mnt_stat.f_iosize;
3010 		else
3011 			bsize = size;
3012 
3013 		maxsize = size + (loffset & PAGE_MASK);
3014 		maxsize = imax(maxsize, bsize);
3015 		repurpose = NULL;
3016 
3017 		/*
3018 		 * Allow repurposing.  The returned buffer may contain VM
3019 		 * pages associated with its previous incarnation.  These
3020 		 * pages must be repurposed for the new buffer (hopefully
3021 		 * without disturbing the KVM mapping).
3022 		 *
3023 		 * WARNING!  If repurpose != NULL on return, the buffer will
3024 		 *	     still contain some data from its prior
3025 		 *	     incarnation.  We MUST properly dispose of this
3026 		 *	     data.
3027 		 */
3028 		bp = getnewbuf(blkflags, slptimeo, size, maxsize, &repurpose);
3029 		if (bp == NULL) {
3030 			if (slpflags || slptimeo)
3031 				return NULL;
3032 			goto loop;
3033 		}
3034 
3035 		/*
3036 		 * Atomically insert the buffer into the hash, so that it can
3037 		 * be found by findblk().
3038 		 *
3039 		 * If bgetvp() returns non-zero a collision occured, and the
3040 		 * bp will not be associated with the vnode.
3041 		 *
3042 		 * Make sure the translation layer has been cleared.
3043 		 */
3044 		bp->b_loffset = loffset;
3045 		bp->b_bio2.bio_offset = NOOFFSET;
3046 		/* bp->b_bio2.bio_next = NULL; */
3047 
3048 		if (bgetvp(vp, bp, size)) {
3049 			if (repurpose) {
3050 				bp->b_flags |= B_VMIO;
3051 				repurposebuf(bp, 0);
3052 				vm_object_drop(repurpose);
3053 			}
3054 			bp->b_flags |= B_INVAL;
3055 			brelse(bp);
3056 			goto loop;
3057 		}
3058 
3059 		/*
3060 		 * All vnode-based buffers must be backed by a VM object.
3061 		 */
3062 		KKASSERT(vp->v_object != NULL);
3063 		bp->b_flags |= B_VMIO;
3064 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3065 
3066 		/*
3067 		 * If we allowed repurposing of the buffer it will contain
3068 		 * free-but-held vm_page's, already kmapped, that can be
3069 		 * repurposed.  The repurposebuf() code handles reassigning
3070 		 * those pages to the new (object, offsets) and dealing with
3071 		 * the case where the pages already exist.
3072 		 */
3073 		if (repurpose) {
3074 			repurposebuf(bp, size);
3075 			vm_object_drop(repurpose);
3076 		} else {
3077 			allocbuf(bp, size);
3078 		}
3079 	}
3080 	return (bp);
3081 }
3082 
3083 /*
3084  * regetblk(bp)
3085  *
3086  * Reacquire a buffer that was previously released to the locked queue,
3087  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3088  * set B_LOCKED (which handles the acquisition race).
3089  *
3090  * To this end, either B_LOCKED must be set or the dependancy list must be
3091  * non-empty.
3092  */
3093 void
3094 regetblk(struct buf *bp)
3095 {
3096 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3097 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3098 	bremfree(bp);
3099 }
3100 
3101 /*
3102  * geteblk:
3103  *
3104  *	Get an empty, disassociated buffer of given size.  The buffer is
3105  *	initially set to B_INVAL.
3106  *
3107  *	critical section protection is not required for the allocbuf()
3108  *	call because races are impossible here.
3109  */
3110 struct buf *
3111 geteblk(int size)
3112 {
3113 	struct buf *bp;
3114 
3115 	while ((bp = getnewbuf(0, 0, size, MAXBSIZE, NULL)) == NULL)
3116 		;
3117 	allocbuf(bp, size);
3118 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3119 
3120 	return (bp);
3121 }
3122 
3123 /*
3124  * allocbuf:
3125  *
3126  *	This code constitutes the buffer memory from either anonymous system
3127  *	memory (in the case of non-VMIO operations) or from an associated
3128  *	VM object (in the case of VMIO operations).  This code is able to
3129  *	resize a buffer up or down.
3130  *
3131  *	Note that this code is tricky, and has many complications to resolve
3132  *	deadlock or inconsistant data situations.  Tread lightly!!!
3133  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
3134  *	the caller.  Calling this code willy nilly can result in the loss of
3135  *	data.
3136  *
3137  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3138  *	B_CACHE for the non-VMIO case.
3139  *
3140  *	This routine does not need to be called from a critical section but you
3141  *	must own the buffer.
3142  */
3143 void
3144 allocbuf(struct buf *bp, int size)
3145 {
3146 	int newbsize, mbsize;
3147 	int i;
3148 
3149 	if (BUF_REFCNT(bp) == 0)
3150 		panic("allocbuf: buffer not busy");
3151 
3152 	if (bp->b_kvasize < size)
3153 		panic("allocbuf: buffer too small");
3154 
3155 	if ((bp->b_flags & B_VMIO) == 0) {
3156 		caddr_t origbuf;
3157 		int origbufsize;
3158 		/*
3159 		 * Just get anonymous memory from the kernel.  Don't
3160 		 * mess with B_CACHE.
3161 		 */
3162 		mbsize = roundup2(size, DEV_BSIZE);
3163 		if (bp->b_flags & B_MALLOC)
3164 			newbsize = mbsize;
3165 		else
3166 			newbsize = round_page(size);
3167 
3168 		if (newbsize < bp->b_bufsize) {
3169 			/*
3170 			 * Malloced buffers are not shrunk
3171 			 */
3172 			if (bp->b_flags & B_MALLOC) {
3173 				if (newbsize) {
3174 					bp->b_bcount = size;
3175 				} else {
3176 					kfree(bp->b_data, M_BIOBUF);
3177 					if (bp->b_bufsize) {
3178 						atomic_subtract_long(&bufmallocspace, bp->b_bufsize);
3179 						bp->b_bufsize = 0;
3180 						bufspacewakeup();
3181 					}
3182 					bp->b_data = bp->b_kvabase;
3183 					bp->b_bcount = 0;
3184 					bp->b_flags &= ~B_MALLOC;
3185 				}
3186 				return;
3187 			}
3188 			vm_hold_free_pages(
3189 			    bp,
3190 			    (vm_offset_t) bp->b_data + newbsize,
3191 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3192 		} else if (newbsize > bp->b_bufsize) {
3193 			/*
3194 			 * We only use malloced memory on the first allocation.
3195 			 * and revert to page-allocated memory when the buffer
3196 			 * grows.
3197 			 */
3198 			if ((bufmallocspace < maxbufmallocspace) &&
3199 				(bp->b_bufsize == 0) &&
3200 				(mbsize <= PAGE_SIZE/2)) {
3201 
3202 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3203 				bp->b_bufsize = mbsize;
3204 				bp->b_bcount = size;
3205 				bp->b_flags |= B_MALLOC;
3206 				atomic_add_long(&bufmallocspace, mbsize);
3207 				return;
3208 			}
3209 			origbuf = NULL;
3210 			origbufsize = 0;
3211 			/*
3212 			 * If the buffer is growing on its other-than-first
3213 			 * allocation, then we revert to the page-allocation
3214 			 * scheme.
3215 			 */
3216 			if (bp->b_flags & B_MALLOC) {
3217 				origbuf = bp->b_data;
3218 				origbufsize = bp->b_bufsize;
3219 				bp->b_data = bp->b_kvabase;
3220 				if (bp->b_bufsize) {
3221 					atomic_subtract_long(&bufmallocspace,
3222 							     bp->b_bufsize);
3223 					bp->b_bufsize = 0;
3224 					bufspacewakeup();
3225 				}
3226 				bp->b_flags &= ~B_MALLOC;
3227 				newbsize = round_page(newbsize);
3228 			}
3229 			vm_hold_load_pages(
3230 			    bp,
3231 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3232 			    (vm_offset_t) bp->b_data + newbsize);
3233 			if (origbuf) {
3234 				bcopy(origbuf, bp->b_data, origbufsize);
3235 				kfree(origbuf, M_BIOBUF);
3236 			}
3237 		}
3238 	} else {
3239 		vm_page_t m;
3240 		int desiredpages;
3241 
3242 		newbsize = roundup2(size, DEV_BSIZE);
3243 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3244 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3245 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3246 
3247 		if (bp->b_flags & B_MALLOC)
3248 			panic("allocbuf: VMIO buffer can't be malloced");
3249 		/*
3250 		 * Set B_CACHE initially if buffer is 0 length or will become
3251 		 * 0-length.
3252 		 */
3253 		if (size == 0 || bp->b_bufsize == 0)
3254 			bp->b_flags |= B_CACHE;
3255 
3256 		if (newbsize < bp->b_bufsize) {
3257 			/*
3258 			 * DEV_BSIZE aligned new buffer size is less then the
3259 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3260 			 * if we have to remove any pages.
3261 			 */
3262 			if (desiredpages < bp->b_xio.xio_npages) {
3263 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3264 					/*
3265 					 * the page is not freed here -- it
3266 					 * is the responsibility of
3267 					 * vnode_pager_setsize
3268 					 */
3269 					m = bp->b_xio.xio_pages[i];
3270 					KASSERT(m != bogus_page,
3271 					    ("allocbuf: bogus page found"));
3272 					vm_page_busy_wait(m, TRUE, "biodep");
3273 					bp->b_xio.xio_pages[i] = NULL;
3274 					vm_page_unwire(m, 0);
3275 					vm_page_wakeup(m);
3276 				}
3277 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3278 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3279 				bp->b_xio.xio_npages = desiredpages;
3280 			}
3281 		} else if (size > bp->b_bcount) {
3282 			/*
3283 			 * We are growing the buffer, possibly in a
3284 			 * byte-granular fashion.
3285 			 */
3286 			struct vnode *vp;
3287 			vm_object_t obj;
3288 			vm_offset_t toff;
3289 			vm_offset_t tinc;
3290 
3291 			/*
3292 			 * Step 1, bring in the VM pages from the object,
3293 			 * allocating them if necessary.  We must clear
3294 			 * B_CACHE if these pages are not valid for the
3295 			 * range covered by the buffer.
3296 			 */
3297 			vp = bp->b_vp;
3298 			obj = vp->v_object;
3299 
3300 			vm_object_hold(obj);
3301 			while (bp->b_xio.xio_npages < desiredpages) {
3302 				vm_page_t m;
3303 				vm_pindex_t pi;
3304 				int error;
3305 
3306 				pi = OFF_TO_IDX(bp->b_loffset) +
3307 				     bp->b_xio.xio_npages;
3308 
3309 				/*
3310 				 * Blocking on m->busy might lead to a
3311 				 * deadlock:
3312 				 *
3313 				 *  vm_fault->getpages->cluster_read->allocbuf
3314 				 */
3315 				m = vm_page_lookup_busy_try(obj, pi, FALSE,
3316 							    &error);
3317 				if (error) {
3318 					vm_page_sleep_busy(m, FALSE, "pgtblk");
3319 					continue;
3320 				}
3321 				if (m == NULL) {
3322 					/*
3323 					 * note: must allocate system pages
3324 					 * since blocking here could intefere
3325 					 * with paging I/O, no matter which
3326 					 * process we are.
3327 					 */
3328 					m = bio_page_alloc(bp, obj, pi, desiredpages - bp->b_xio.xio_npages);
3329 					if (m) {
3330 						vm_page_wire(m);
3331 						vm_page_wakeup(m);
3332 						bp->b_flags &= ~B_CACHE;
3333 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3334 						++bp->b_xio.xio_npages;
3335 					}
3336 					continue;
3337 				}
3338 
3339 				/*
3340 				 * We found a page and were able to busy it.
3341 				 */
3342 				vm_page_wire(m);
3343 				vm_page_wakeup(m);
3344 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3345 				++bp->b_xio.xio_npages;
3346 				if (bp->b_act_count < m->act_count)
3347 					bp->b_act_count = m->act_count;
3348 			}
3349 			vm_object_drop(obj);
3350 
3351 			/*
3352 			 * Step 2.  We've loaded the pages into the buffer,
3353 			 * we have to figure out if we can still have B_CACHE
3354 			 * set.  Note that B_CACHE is set according to the
3355 			 * byte-granular range ( bcount and size ), not the
3356 			 * aligned range ( newbsize ).
3357 			 *
3358 			 * The VM test is against m->valid, which is DEV_BSIZE
3359 			 * aligned.  Needless to say, the validity of the data
3360 			 * needs to also be DEV_BSIZE aligned.  Note that this
3361 			 * fails with NFS if the server or some other client
3362 			 * extends the file's EOF.  If our buffer is resized,
3363 			 * B_CACHE may remain set! XXX
3364 			 */
3365 
3366 			toff = bp->b_bcount;
3367 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3368 
3369 			while ((bp->b_flags & B_CACHE) && toff < size) {
3370 				vm_pindex_t pi;
3371 
3372 				if (tinc > (size - toff))
3373 					tinc = size - toff;
3374 
3375 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3376 				    PAGE_SHIFT;
3377 
3378 				vfs_buf_test_cache(
3379 				    bp,
3380 				    bp->b_loffset,
3381 				    toff,
3382 				    tinc,
3383 				    bp->b_xio.xio_pages[pi]
3384 				);
3385 				toff += tinc;
3386 				tinc = PAGE_SIZE;
3387 			}
3388 
3389 			/*
3390 			 * Step 3, fixup the KVM pmap.  Remember that
3391 			 * bp->b_data is relative to bp->b_loffset, but
3392 			 * bp->b_loffset may be offset into the first page.
3393 			 */
3394 			bp->b_data = (caddr_t)
3395 					trunc_page((vm_offset_t)bp->b_data);
3396 			pmap_qenter((vm_offset_t)bp->b_data,
3397 				    bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3398 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3399 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3400 		}
3401 		atomic_add_long(&bufspace, newbsize - bp->b_bufsize);
3402 	}
3403 
3404 	/* adjust space use on already-dirty buffer */
3405 	if (bp->b_flags & B_DELWRI) {
3406 		/* dirtykvaspace unchanged */
3407 		atomic_add_long(&dirtybufspace, newbsize - bp->b_bufsize);
3408 		if (bp->b_flags & B_HEAVY) {
3409 			atomic_add_long(&dirtybufspacehw,
3410 					newbsize - bp->b_bufsize);
3411 		}
3412 	}
3413 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3414 	bp->b_bcount = size;		/* requested buffer size	*/
3415 	bufspacewakeup();
3416 }
3417 
3418 /*
3419  * repurposebuf() (VMIO only)
3420  *
3421  * This performs a function similar to allocbuf() but the passed-in buffer
3422  * may contain some detrius from its previous incarnation in the form of
3423  * the page array.  We try to repurpose the underlying pages.
3424  *
3425  * This code is nominally called to recycle buffer cache buffers AND (if
3426  * they are clean) to also recycle their underlying pages.  We currently
3427  * can only recycle unmapped, clean pages.  The code is called when buffer
3428  * cache 'newbuf' bandwidth exceeds (bufrate_cache) bytes per second.
3429  */
3430 static
3431 void
3432 repurposebuf(struct buf *bp, int size)
3433 {
3434 	int newbsize;
3435 	int desiredpages;
3436 	vm_offset_t toff;
3437 	vm_offset_t tinc;
3438 	vm_object_t obj;
3439 	vm_page_t m;
3440 	int i;
3441 	int must_reenter = 0;
3442 	long deaccumulate = 0;
3443 
3444 
3445 	KKASSERT((bp->b_flags & (B_VMIO | B_DELWRI | B_MALLOC)) == B_VMIO);
3446 	if (BUF_REFCNT(bp) == 0)
3447 		panic("repurposebuf: buffer not busy");
3448 
3449 	if (bp->b_kvasize < size)
3450 		panic("repurposebuf: buffer too small");
3451 
3452 	newbsize = roundup2(size, DEV_BSIZE);
3453 	desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3454 			newbsize + PAGE_MASK) >> PAGE_SHIFT;
3455 	KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3456 
3457 	/*
3458 	 * Buffer starts out 0-length with B_CACHE set.  We will clear
3459 	 * As we check the backing store we will clear B_CACHE if necessary.
3460 	 */
3461 	atomic_add_long(&bufspace, newbsize - bp->b_bufsize);
3462 	bp->b_bufsize = 0;
3463 	bp->b_bcount = 0;
3464 	bp->b_flags |= B_CACHE;
3465 
3466 	if (desiredpages) {
3467 		obj = bp->b_vp->v_object;
3468 		vm_object_hold(obj);
3469 	} else {
3470 		obj = NULL;
3471 	}
3472 
3473 	/*
3474 	 * Step 1, bring in the VM pages from the object, repurposing or
3475 	 * allocating them if necessary.  We must clear B_CACHE if these
3476 	 * pages are not valid for the range covered by the buffer.
3477 	 *
3478 	 * We are growing the buffer, possibly in a byte-granular fashion.
3479 	 */
3480 	for (i = 0; i < desiredpages; ++i) {
3481 		vm_pindex_t pi;
3482 		int error;
3483 		int iswired;
3484 
3485 		pi = OFF_TO_IDX(bp->b_loffset) + i;
3486 
3487 		/*
3488 		 * Blocking on m->busy might lead to a
3489 		 * deadlock:
3490 		 *
3491 		 * vm_fault->getpages->cluster_read->allocbuf
3492 		 */
3493 		m = (i < bp->b_xio.xio_npages) ? bp->b_xio.xio_pages[i] : NULL;
3494 		bp->b_xio.xio_pages[i] = NULL;
3495 		KASSERT(m != bogus_page, ("repurposebuf: bogus page found"));
3496 		m = vm_page_repurpose(obj, pi, FALSE, &error, m,
3497 				      &must_reenter, &iswired);
3498 
3499 		if (error) {
3500 			vm_page_sleep_busy(m, FALSE, "pgtblk");
3501 			--i;		/* retry */
3502 			continue;
3503 		}
3504 		if (m == NULL) {
3505 			/*
3506 			 * note: must allocate system pages
3507 			 * since blocking here could intefere
3508 			 * with paging I/O, no matter which
3509 			 * process we are.
3510 			 */
3511 			must_reenter = 1;
3512 			m = bio_page_alloc(bp, obj, pi, desiredpages - i);
3513 			if (m) {
3514 				vm_page_wire(m);
3515 				vm_page_wakeup(m);
3516 				bp->b_flags &= ~B_CACHE;
3517 				bp->b_xio.xio_pages[i] = m;
3518 				if (m->valid)
3519 					deaccumulate += PAGE_SIZE;
3520 			} else {
3521 				--i;	/* retry */
3522 			}
3523 			continue;
3524 		}
3525 		if (m->valid)
3526 			deaccumulate += PAGE_SIZE;
3527 
3528 		/*
3529 		 * We found a page and were able to busy it.
3530 		 */
3531 		if (!iswired)
3532 			vm_page_wire(m);
3533 		vm_page_wakeup(m);
3534 		bp->b_xio.xio_pages[i] = m;
3535 		if (bp->b_act_count < m->act_count)
3536 			bp->b_act_count = m->act_count;
3537 	}
3538 	if (desiredpages)
3539 		vm_object_drop(obj);
3540 
3541 	/*
3542 	 * Even though its a new buffer, any pages already in the VM
3543 	 * page cache should not count towards I/O bandwidth.
3544 	 */
3545 	if (deaccumulate)
3546 		atomic_add_long(&bufcache_bw_accum, -deaccumulate);
3547 
3548 	/*
3549 	 * Clean-up any loose pages.
3550 	 */
3551 	while (i < bp->b_xio.xio_npages) {
3552 		m = bp->b_xio.xio_pages[i];
3553 		KASSERT(m != bogus_page, ("repurposebuf: bogus page found"));
3554 		vm_page_busy_wait(m, TRUE, "biodep");
3555 		bp->b_xio.xio_pages[i] = NULL;
3556 		vm_page_unwire(m, 0);
3557 		vm_page_wakeup(m);
3558 		++i;
3559 	}
3560 	if (desiredpages < bp->b_xio.xio_npages) {
3561 		pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
3562 			     (desiredpages << PAGE_SHIFT),
3563 			     (bp->b_xio.xio_npages - desiredpages));
3564 	}
3565 	bp->b_xio.xio_npages = desiredpages;
3566 
3567 	/*
3568 	 * Step 2.  We've loaded the pages into the buffer,
3569 	 * we have to figure out if we can still have B_CACHE
3570 	 * set.  Note that B_CACHE is set according to the
3571 	 * byte-granular range ( bcount and size ), not the
3572 	 * aligned range ( newbsize ).
3573 	 *
3574 	 * The VM test is against m->valid, which is DEV_BSIZE
3575 	 * aligned.  Needless to say, the validity of the data
3576 	 * needs to also be DEV_BSIZE aligned.  Note that this
3577 	 * fails with NFS if the server or some other client
3578 	 * extends the file's EOF.  If our buffer is resized,
3579 	 * B_CACHE may remain set! XXX
3580 	 */
3581 	toff = bp->b_bcount;
3582 	tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3583 
3584 	while ((bp->b_flags & B_CACHE) && toff < size) {
3585 		vm_pindex_t pi;
3586 
3587 		if (tinc > (size - toff))
3588 			tinc = size - toff;
3589 
3590 		pi = ((bp->b_loffset & PAGE_MASK) + toff) >> PAGE_SHIFT;
3591 
3592 		vfs_buf_test_cache(bp, bp->b_loffset, toff,
3593 				   tinc, bp->b_xio.xio_pages[pi]);
3594 		toff += tinc;
3595 		tinc = PAGE_SIZE;
3596 	}
3597 
3598 	/*
3599 	 * Step 3, fixup the KVM pmap.  Remember that
3600 	 * bp->b_data is relative to bp->b_loffset, but
3601 	 * bp->b_loffset may be offset into the first page.
3602 	 */
3603 	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
3604 	if (must_reenter) {
3605 		pmap_qenter((vm_offset_t)bp->b_data,
3606 			    bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3607 	} else {
3608 		atomic_add_long(&repurposedspace, newbsize);
3609 	}
3610 	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3611 		     (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3612 
3613 	if (newbsize < bp->b_bufsize)
3614 		bufspacewakeup();
3615 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3616 	bp->b_bcount = size;		/* requested buffer size	*/
3617 }
3618 
3619 /*
3620  * biowait:
3621  *
3622  *	Wait for buffer I/O completion, returning error status. B_EINTR
3623  *	is converted into an EINTR error but not cleared (since a chain
3624  *	of biowait() calls may occur).
3625  *
3626  *	On return bpdone() will have been called but the buffer will remain
3627  *	locked and will not have been brelse()'d.
3628  *
3629  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3630  *	likely still in progress on return.
3631  *
3632  *	NOTE!  This operation is on a BIO, not a BUF.
3633  *
3634  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3635  */
3636 static __inline int
3637 _biowait(struct bio *bio, const char *wmesg, int to)
3638 {
3639 	struct buf *bp = bio->bio_buf;
3640 	u_int32_t flags;
3641 	u_int32_t nflags;
3642 	int error;
3643 
3644 	KKASSERT(bio == &bp->b_bio1);
3645 	for (;;) {
3646 		flags = bio->bio_flags;
3647 		if (flags & BIO_DONE)
3648 			break;
3649 		nflags = flags | BIO_WANT;
3650 		tsleep_interlock(bio, 0);
3651 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3652 			if (wmesg)
3653 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3654 			else if (bp->b_cmd == BUF_CMD_READ)
3655 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3656 			else
3657 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3658 			if (error) {
3659 				kprintf("tsleep error biowait %d\n", error);
3660 				return (error);
3661 			}
3662 		}
3663 	}
3664 
3665 	/*
3666 	 * Finish up.
3667 	 */
3668 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3669 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3670 	if (bp->b_flags & B_EINTR)
3671 		return (EINTR);
3672 	if (bp->b_flags & B_ERROR)
3673 		return (bp->b_error ? bp->b_error : EIO);
3674 	return (0);
3675 }
3676 
3677 int
3678 biowait(struct bio *bio, const char *wmesg)
3679 {
3680 	return(_biowait(bio, wmesg, 0));
3681 }
3682 
3683 int
3684 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3685 {
3686 	return(_biowait(bio, wmesg, to));
3687 }
3688 
3689 /*
3690  * This associates a tracking count with an I/O.  vn_strategy() and
3691  * dev_dstrategy() do this automatically but there are a few cases
3692  * where a vnode or device layer is bypassed when a block translation
3693  * is cached.  In such cases bio_start_transaction() may be called on
3694  * the bypassed layers so the system gets an I/O in progress indication
3695  * for those higher layers.
3696  */
3697 void
3698 bio_start_transaction(struct bio *bio, struct bio_track *track)
3699 {
3700 	bio->bio_track = track;
3701 	bio_track_ref(track);
3702 	dsched_buf_enter(bio->bio_buf);	/* might stack */
3703 }
3704 
3705 /*
3706  * Initiate I/O on a vnode.
3707  *
3708  * SWAPCACHE OPERATION:
3709  *
3710  *	Real buffer cache buffers have a non-NULL bp->b_vp.  Unfortunately
3711  *	devfs also uses b_vp for fake buffers so we also have to check
3712  *	that B_PAGING is 0.  In this case the passed 'vp' is probably the
3713  *	underlying block device.  The swap assignments are related to the
3714  *	buffer cache buffer's b_vp, not the passed vp.
3715  *
3716  *	The passed vp == bp->b_vp only in the case where the strategy call
3717  *	is made on the vp itself for its own buffers (a regular file or
3718  *	block device vp).  The filesystem usually then re-calls vn_strategy()
3719  *	after translating the request to an underlying device.
3720  *
3721  *	Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3722  *	underlying buffer cache buffers.
3723  *
3724  *	We can only deal with page-aligned buffers at the moment, because
3725  *	we can't tell what the real dirty state for pages straddling a buffer
3726  *	are.
3727  *
3728  *	In order to call swap_pager_strategy() we must provide the VM object
3729  *	and base offset for the underlying buffer cache pages so it can find
3730  *	the swap blocks.
3731  */
3732 void
3733 vn_strategy(struct vnode *vp, struct bio *bio)
3734 {
3735 	struct bio_track *track;
3736 	struct buf *bp = bio->bio_buf;
3737 
3738 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3739 
3740 	/*
3741 	 * Set when an I/O is issued on the bp.  Cleared by consumers
3742 	 * (aka HAMMER), allowing the consumer to determine if I/O had
3743 	 * actually occurred.
3744 	 */
3745 	bp->b_flags |= B_IOISSUED;
3746 
3747 	/*
3748 	 * Handle the swap cache intercept.
3749 	 */
3750 	if (vn_cache_strategy(vp, bio))
3751 		return;
3752 
3753 	/*
3754 	 * Otherwise do the operation through the filesystem
3755 	 */
3756         if (bp->b_cmd == BUF_CMD_READ)
3757                 track = &vp->v_track_read;
3758         else
3759                 track = &vp->v_track_write;
3760 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3761 	bio->bio_track = track;
3762 	bio_track_ref(track);
3763 	dsched_buf_enter(bp);	/* might stack */
3764         vop_strategy(*vp->v_ops, vp, bio);
3765 }
3766 
3767 static void vn_cache_strategy_callback(struct bio *bio);
3768 
3769 int
3770 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3771 {
3772 	struct buf *bp = bio->bio_buf;
3773 	struct bio *nbio;
3774 	vm_object_t object;
3775 	vm_page_t m;
3776 	int i;
3777 
3778 	/*
3779 	 * Stop using swapcache if paniced, dumping, or dumped
3780 	 */
3781 	if (panicstr || dumping)
3782 		return(0);
3783 
3784 	/*
3785 	 * Is this buffer cache buffer suitable for reading from
3786 	 * the swap cache?
3787 	 */
3788 	if (vm_swapcache_read_enable == 0 ||
3789 	    bp->b_cmd != BUF_CMD_READ ||
3790 	    ((bp->b_flags & B_CLUSTER) == 0 &&
3791 	     (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3792 	    ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3793 	    (bp->b_bcount & PAGE_MASK) != 0) {
3794 		return(0);
3795 	}
3796 
3797 	/*
3798 	 * Figure out the original VM object (it will match the underlying
3799 	 * VM pages).  Note that swap cached data uses page indices relative
3800 	 * to that object, not relative to bio->bio_offset.
3801 	 */
3802 	if (bp->b_flags & B_CLUSTER)
3803 		object = vp->v_object;
3804 	else
3805 		object = bp->b_vp->v_object;
3806 
3807 	/*
3808 	 * In order to be able to use the swap cache all underlying VM
3809 	 * pages must be marked as such, and we can't have any bogus pages.
3810 	 */
3811 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3812 		m = bp->b_xio.xio_pages[i];
3813 		if ((m->flags & PG_SWAPPED) == 0)
3814 			break;
3815 		if (m == bogus_page)
3816 			break;
3817 	}
3818 
3819 	/*
3820 	 * If we are good then issue the I/O using swap_pager_strategy().
3821 	 *
3822 	 * We can only do this if the buffer actually supports object-backed
3823 	 * I/O.  If it doesn't npages will be 0.
3824 	 */
3825 	if (i && i == bp->b_xio.xio_npages) {
3826 		m = bp->b_xio.xio_pages[0];
3827 		nbio = push_bio(bio);
3828 		nbio->bio_done = vn_cache_strategy_callback;
3829 		nbio->bio_offset = ptoa(m->pindex);
3830 		KKASSERT(m->object == object);
3831 		swap_pager_strategy(object, nbio);
3832 		return(1);
3833 	}
3834 	return(0);
3835 }
3836 
3837 /*
3838  * This is a bit of a hack but since the vn_cache_strategy() function can
3839  * override a VFS's strategy function we must make sure that the bio, which
3840  * is probably bio2, doesn't leak an unexpected offset value back to the
3841  * filesystem.  The filesystem (e.g. UFS) might otherwise assume that the
3842  * bio went through its own file strategy function and the the bio2 offset
3843  * is a cached disk offset when, in fact, it isn't.
3844  */
3845 static void
3846 vn_cache_strategy_callback(struct bio *bio)
3847 {
3848 	bio->bio_offset = NOOFFSET;
3849 	biodone(pop_bio(bio));
3850 }
3851 
3852 /*
3853  * bpdone:
3854  *
3855  *	Finish I/O on a buffer after all BIOs have been processed.
3856  *	Called when the bio chain is exhausted or by biowait.  If called
3857  *	by biowait, elseit is typically 0.
3858  *
3859  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3860  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3861  *	assuming B_INVAL is clear.
3862  *
3863  *	For the VMIO case, we set B_CACHE if the op was a read and no
3864  *	read error occured, or if the op was a write.  B_CACHE is never
3865  *	set if the buffer is invalid or otherwise uncacheable.
3866  *
3867  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3868  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3869  *	in the biodone routine.
3870  *
3871  *	bpdone is responsible for calling bundirty() on the buffer after a
3872  *	successful write.  We previously did this prior to initiating the
3873  *	write under the assumption that the buffer might be dirtied again
3874  *	while the write was in progress, however doing it before-hand creates
3875  *	a race condition prior to the call to vn_strategy() where the
3876  *	filesystem may not be aware that a dirty buffer is present.
3877  *	It should not be possible for the buffer or its underlying pages to
3878  *	be redirtied prior to bpdone()'s unbusying of the underlying VM
3879  *	pages.
3880  */
3881 void
3882 bpdone(struct buf *bp, int elseit)
3883 {
3884 	buf_cmd_t cmd;
3885 
3886 	KASSERT(BUF_REFCNTNB(bp) > 0,
3887 		("bpdone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3888 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3889 		("bpdone: bp %p already done!", bp));
3890 
3891 	/*
3892 	 * No more BIOs are left.  All completion functions have been dealt
3893 	 * with, now we clean up the buffer.
3894 	 */
3895 	cmd = bp->b_cmd;
3896 	bp->b_cmd = BUF_CMD_DONE;
3897 
3898 	/*
3899 	 * Only reads and writes are processed past this point.
3900 	 */
3901 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3902 		if (cmd == BUF_CMD_FREEBLKS)
3903 			bp->b_flags |= B_NOCACHE;
3904 		if (elseit)
3905 			brelse(bp);
3906 		return;
3907 	}
3908 
3909 	/*
3910 	 * A failed write must re-dirty the buffer unless B_INVAL
3911 	 * was set.
3912 	 *
3913 	 * A successful write must clear the dirty flag.  This is done after
3914 	 * the write to ensure that the buffer remains on the vnode's dirty
3915 	 * list for filesystem interlocks / checks until the write is actually
3916 	 * complete.  HAMMER2 is sensitive to this issue.
3917 	 *
3918 	 * Only applicable to normal buffers (with VPs).  vinum buffers may
3919 	 * not have a vp.
3920 	 *
3921 	 * Must be done prior to calling buf_complete() as the callback might
3922 	 * re-dirty the buffer.
3923 	 */
3924 	if (cmd == BUF_CMD_WRITE) {
3925 		if ((bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3926 			bp->b_flags &= ~B_NOCACHE;
3927 			if (bp->b_vp)
3928 				bdirty(bp);
3929 		} else {
3930 			if (bp->b_vp)
3931 				bundirty(bp);
3932 		}
3933 	}
3934 
3935 	/*
3936 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3937 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3938 	 */
3939 	if (LIST_FIRST(&bp->b_dep) != NULL)
3940 		buf_complete(bp);
3941 
3942 	if (bp->b_flags & B_VMIO) {
3943 		int i;
3944 		vm_ooffset_t foff;
3945 		vm_page_t m;
3946 		vm_object_t obj;
3947 		int iosize;
3948 		struct vnode *vp = bp->b_vp;
3949 
3950 		obj = vp->v_object;
3951 
3952 #if defined(VFS_BIO_DEBUG)
3953 		if (vp->v_auxrefs == 0)
3954 			panic("bpdone: zero vnode hold count");
3955 		if ((vp->v_flag & VOBJBUF) == 0)
3956 			panic("bpdone: vnode is not setup for merged cache");
3957 #endif
3958 
3959 		foff = bp->b_loffset;
3960 		KASSERT(foff != NOOFFSET, ("bpdone: no buffer offset"));
3961 		KASSERT(obj != NULL, ("bpdone: missing VM object"));
3962 
3963 #if defined(VFS_BIO_DEBUG)
3964 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3965 			kprintf("bpdone: paging in progress(%d) < "
3966 				"bp->b_xio.xio_npages(%d)\n",
3967 				obj->paging_in_progress,
3968 				bp->b_xio.xio_npages);
3969 		}
3970 #endif
3971 
3972 		/*
3973 		 * Set B_CACHE if the op was a normal read and no error
3974 		 * occured.  B_CACHE is set for writes in the b*write()
3975 		 * routines.
3976 		 */
3977 		iosize = bp->b_bcount - bp->b_resid;
3978 		if (cmd == BUF_CMD_READ &&
3979 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3980 			bp->b_flags |= B_CACHE;
3981 		}
3982 
3983 		vm_object_hold(obj);
3984 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3985 			int resid;
3986 			int isbogus;
3987 
3988 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3989 			if (resid > iosize)
3990 				resid = iosize;
3991 
3992 			/*
3993 			 * cleanup bogus pages, restoring the originals.  Since
3994 			 * the originals should still be wired, we don't have
3995 			 * to worry about interrupt/freeing races destroying
3996 			 * the VM object association.
3997 			 */
3998 			m = bp->b_xio.xio_pages[i];
3999 			if (m == bogus_page) {
4000 				if ((bp->b_flags & B_HASBOGUS) == 0)
4001 					panic("bpdone: bp %p corrupt bogus", bp);
4002 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
4003 				if (m == NULL)
4004 					panic("bpdone: page disappeared");
4005 				bp->b_xio.xio_pages[i] = m;
4006 				isbogus = 1;
4007 			} else {
4008 				isbogus = 0;
4009 			}
4010 #if defined(VFS_BIO_DEBUG)
4011 			if (OFF_TO_IDX(foff) != m->pindex) {
4012 				kprintf("bpdone: foff(%lu)/m->pindex(%ld) "
4013 					"mismatch\n",
4014 					(unsigned long)foff, (long)m->pindex);
4015 			}
4016 #endif
4017 
4018 			/*
4019 			 * In the write case, the valid and clean bits are
4020 			 * already changed correctly (see bdwrite()), so we
4021 			 * only need to do this here in the read case.
4022 			 */
4023 			vm_page_busy_wait(m, FALSE, "bpdpgw");
4024 			if (cmd == BUF_CMD_READ && isbogus == 0 && resid > 0)
4025 				vfs_clean_one_page(bp, i, m);
4026 
4027 			/*
4028 			 * when debugging new filesystems or buffer I/O
4029 			 * methods, this is the most common error that pops
4030 			 * up.  if you see this, you have not set the page
4031 			 * busy flag correctly!!!
4032 			 */
4033 			if (m->busy == 0) {
4034 				kprintf("bpdone: page busy < 0, "
4035 				    "pindex: %d, foff: 0x(%x,%x), "
4036 				    "resid: %d, index: %d\n",
4037 				    (int) m->pindex, (int)(foff >> 32),
4038 						(int) foff & 0xffffffff, resid, i);
4039 				if (!vn_isdisk(vp, NULL))
4040 					kprintf(" iosize: %ld, loffset: %lld, "
4041 						"flags: 0x%08x, npages: %d\n",
4042 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
4043 					    (long long)bp->b_loffset,
4044 					    bp->b_flags, bp->b_xio.xio_npages);
4045 				else
4046 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
4047 					    (long long)bp->b_loffset,
4048 					    bp->b_flags, bp->b_xio.xio_npages);
4049 				kprintf(" valid: 0x%x, dirty: 0x%x, "
4050 					"wired: %d\n",
4051 					m->valid, m->dirty,
4052 					m->wire_count);
4053 				panic("bpdone: page busy < 0");
4054 			}
4055 			vm_page_io_finish(m);
4056 			vm_page_wakeup(m);
4057 			vm_object_pip_wakeup(obj);
4058 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4059 			iosize -= resid;
4060 		}
4061 		if (bp->b_flags & B_HASBOGUS) {
4062 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4063 				    bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4064 			bp->b_flags &= ~B_HASBOGUS;
4065 		}
4066 		vm_object_drop(obj);
4067 	}
4068 
4069 	/*
4070 	 * Finish up by releasing the buffer.  There are no more synchronous
4071 	 * or asynchronous completions, those were handled by bio_done
4072 	 * callbacks.
4073 	 */
4074 	if (elseit) {
4075 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
4076 			brelse(bp);
4077 		else
4078 			bqrelse(bp);
4079 	}
4080 }
4081 
4082 /*
4083  * Normal biodone.
4084  */
4085 void
4086 biodone(struct bio *bio)
4087 {
4088 	struct buf *bp = bio->bio_buf;
4089 
4090 	runningbufwakeup(bp);
4091 
4092 	/*
4093 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
4094 	 */
4095 	while (bio) {
4096 		biodone_t *done_func;
4097 		struct bio_track *track;
4098 
4099 		/*
4100 		 * BIO tracking.  Most but not all BIOs are tracked.
4101 		 */
4102 		if ((track = bio->bio_track) != NULL) {
4103 			bio_track_rel(track);
4104 			bio->bio_track = NULL;
4105 		}
4106 
4107 		/*
4108 		 * A bio_done function terminates the loop.  The function
4109 		 * will be responsible for any further chaining and/or
4110 		 * buffer management.
4111 		 *
4112 		 * WARNING!  The done function can deallocate the buffer!
4113 		 */
4114 		if ((done_func = bio->bio_done) != NULL) {
4115 			bio->bio_done = NULL;
4116 			done_func(bio);
4117 			return;
4118 		}
4119 		bio = bio->bio_prev;
4120 	}
4121 
4122 	/*
4123 	 * If we've run out of bio's do normal [a]synchronous completion.
4124 	 */
4125 	bpdone(bp, 1);
4126 }
4127 
4128 /*
4129  * Synchronous biodone - this terminates a synchronous BIO.
4130  *
4131  * bpdone() is called with elseit=FALSE, leaving the buffer completed
4132  * but still locked.  The caller must brelse() the buffer after waiting
4133  * for completion.
4134  */
4135 void
4136 biodone_sync(struct bio *bio)
4137 {
4138 	struct buf *bp = bio->bio_buf;
4139 	int flags;
4140 	int nflags;
4141 
4142 	KKASSERT(bio == &bp->b_bio1);
4143 	bpdone(bp, 0);
4144 
4145 	for (;;) {
4146 		flags = bio->bio_flags;
4147 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
4148 
4149 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
4150 			if (flags & BIO_WANT)
4151 				wakeup(bio);
4152 			break;
4153 		}
4154 	}
4155 }
4156 
4157 /*
4158  * vfs_unbusy_pages:
4159  *
4160  *	This routine is called in lieu of iodone in the case of
4161  *	incomplete I/O.  This keeps the busy status for pages
4162  *	consistant.
4163  */
4164 void
4165 vfs_unbusy_pages(struct buf *bp)
4166 {
4167 	int i;
4168 
4169 	runningbufwakeup(bp);
4170 
4171 	if (bp->b_flags & B_VMIO) {
4172 		struct vnode *vp = bp->b_vp;
4173 		vm_object_t obj;
4174 
4175 		obj = vp->v_object;
4176 		vm_object_hold(obj);
4177 
4178 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4179 			vm_page_t m = bp->b_xio.xio_pages[i];
4180 
4181 			/*
4182 			 * When restoring bogus changes the original pages
4183 			 * should still be wired, so we are in no danger of
4184 			 * losing the object association and do not need
4185 			 * critical section protection particularly.
4186 			 */
4187 			if (m == bogus_page) {
4188 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
4189 				if (!m) {
4190 					panic("vfs_unbusy_pages: page missing");
4191 				}
4192 				bp->b_xio.xio_pages[i] = m;
4193 			}
4194 			vm_page_busy_wait(m, FALSE, "bpdpgw");
4195 			vm_page_io_finish(m);
4196 			vm_page_wakeup(m);
4197 			vm_object_pip_wakeup(obj);
4198 		}
4199 		if (bp->b_flags & B_HASBOGUS) {
4200 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4201 				    bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4202 			bp->b_flags &= ~B_HASBOGUS;
4203 		}
4204 		vm_object_drop(obj);
4205 	}
4206 }
4207 
4208 /*
4209  * vfs_busy_pages:
4210  *
4211  *	This routine is called before a device strategy routine.
4212  *	It is used to tell the VM system that paging I/O is in
4213  *	progress, and treat the pages associated with the buffer
4214  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
4215  *	flag is handled to make sure that the object doesn't become
4216  *	inconsistant.
4217  *
4218  *	Since I/O has not been initiated yet, certain buffer flags
4219  *	such as B_ERROR or B_INVAL may be in an inconsistant state
4220  *	and should be ignored.
4221  */
4222 void
4223 vfs_busy_pages(struct vnode *vp, struct buf *bp)
4224 {
4225 	int i, bogus;
4226 	struct lwp *lp = curthread->td_lwp;
4227 
4228 	/*
4229 	 * The buffer's I/O command must already be set.  If reading,
4230 	 * B_CACHE must be 0 (double check against callers only doing
4231 	 * I/O when B_CACHE is 0).
4232 	 */
4233 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4234 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
4235 
4236 	if (bp->b_flags & B_VMIO) {
4237 		vm_object_t obj;
4238 
4239 		obj = vp->v_object;
4240 		KASSERT(bp->b_loffset != NOOFFSET,
4241 			("vfs_busy_pages: no buffer offset"));
4242 
4243 		/*
4244 		 * Busy all the pages.  We have to busy them all at once
4245 		 * to avoid deadlocks.
4246 		 */
4247 retry:
4248 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4249 			vm_page_t m = bp->b_xio.xio_pages[i];
4250 
4251 			if (vm_page_busy_try(m, FALSE)) {
4252 				vm_page_sleep_busy(m, FALSE, "vbpage");
4253 				while (--i >= 0)
4254 					vm_page_wakeup(bp->b_xio.xio_pages[i]);
4255 				goto retry;
4256 			}
4257 		}
4258 
4259 		/*
4260 		 * Setup for I/O, soft-busy the page right now because
4261 		 * the next loop may block.
4262 		 */
4263 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4264 			vm_page_t m = bp->b_xio.xio_pages[i];
4265 
4266 			if ((bp->b_flags & B_CLUSTER) == 0) {
4267 				vm_object_pip_add(obj, 1);
4268 				vm_page_io_start(m);
4269 			}
4270 		}
4271 
4272 		/*
4273 		 * Adjust protections for I/O and do bogus-page mapping.
4274 		 * Assume that vm_page_protect() can block (it can block
4275 		 * if VM_PROT_NONE, don't take any chances regardless).
4276 		 *
4277 		 * In particular note that for writes we must incorporate
4278 		 * page dirtyness from the VM system into the buffer's
4279 		 * dirty range.
4280 		 *
4281 		 * For reads we theoretically must incorporate page dirtyness
4282 		 * from the VM system to determine if the page needs bogus
4283 		 * replacement, but we shortcut the test by simply checking
4284 		 * that all m->valid bits are set, indicating that the page
4285 		 * is fully valid and does not need to be re-read.  For any
4286 		 * VM system dirtyness the page will also be fully valid
4287 		 * since it was mapped at one point.
4288 		 */
4289 		bogus = 0;
4290 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4291 			vm_page_t m = bp->b_xio.xio_pages[i];
4292 
4293 			if (bp->b_cmd == BUF_CMD_WRITE) {
4294 				/*
4295 				 * When readying a vnode-backed buffer for
4296 				 * a write we must zero-fill any invalid
4297 				 * portions of the backing VM pages, mark
4298 				 * it valid and clear related dirty bits.
4299 				 *
4300 				 * vfs_clean_one_page() incorporates any
4301 				 * VM dirtyness and updates the b_dirtyoff
4302 				 * range (after we've made the page RO).
4303 				 *
4304 				 * It is also expected that the pmap modified
4305 				 * bit has already been cleared by the
4306 				 * vm_page_protect().  We may not be able
4307 				 * to clear all dirty bits for a page if it
4308 				 * was also memory mapped (NFS).
4309 				 *
4310 				 * Finally be sure to unassign any swap-cache
4311 				 * backing store as it is now stale.
4312 				 */
4313 				vm_page_protect(m, VM_PROT_READ);
4314 				vfs_clean_one_page(bp, i, m);
4315 				swap_pager_unswapped(m);
4316 			} else if (m->valid == VM_PAGE_BITS_ALL) {
4317 				/*
4318 				 * When readying a vnode-backed buffer for
4319 				 * read we must replace any dirty pages with
4320 				 * a bogus page so dirty data is not destroyed
4321 				 * when filling gaps.
4322 				 *
4323 				 * To avoid testing whether the page is
4324 				 * dirty we instead test that the page was
4325 				 * at some point mapped (m->valid fully
4326 				 * valid) with the understanding that
4327 				 * this also covers the dirty case.
4328 				 */
4329 				bp->b_xio.xio_pages[i] = bogus_page;
4330 				bp->b_flags |= B_HASBOGUS;
4331 				bogus++;
4332 			} else if (m->valid & m->dirty) {
4333 				/*
4334 				 * This case should not occur as partial
4335 				 * dirtyment can only happen if the buffer
4336 				 * is B_CACHE, and this code is not entered
4337 				 * if the buffer is B_CACHE.
4338 				 */
4339 				kprintf("Warning: vfs_busy_pages - page not "
4340 					"fully valid! loff=%jx bpf=%08x "
4341 					"idx=%d val=%02x dir=%02x\n",
4342 					(uintmax_t)bp->b_loffset, bp->b_flags,
4343 					i, m->valid, m->dirty);
4344 				vm_page_protect(m, VM_PROT_NONE);
4345 			} else {
4346 				/*
4347 				 * The page is not valid and can be made
4348 				 * part of the read.
4349 				 */
4350 				vm_page_protect(m, VM_PROT_NONE);
4351 			}
4352 			vm_page_wakeup(m);
4353 		}
4354 		if (bogus) {
4355 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4356 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4357 		}
4358 	}
4359 
4360 	/*
4361 	 * This is the easiest place to put the process accounting for the I/O
4362 	 * for now.
4363 	 */
4364 	if (lp != NULL) {
4365 		if (bp->b_cmd == BUF_CMD_READ)
4366 			lp->lwp_ru.ru_inblock++;
4367 		else
4368 			lp->lwp_ru.ru_oublock++;
4369 	}
4370 }
4371 
4372 /*
4373  * Tell the VM system that the pages associated with this buffer
4374  * are clean.  This is used for delayed writes where the data is
4375  * going to go to disk eventually without additional VM intevention.
4376  *
4377  * NOTE: While we only really need to clean through to b_bcount, we
4378  *	 just go ahead and clean through to b_bufsize.
4379  */
4380 static void
4381 vfs_clean_pages(struct buf *bp)
4382 {
4383 	vm_page_t m;
4384 	int i;
4385 
4386 	if ((bp->b_flags & B_VMIO) == 0)
4387 		return;
4388 
4389 	KASSERT(bp->b_loffset != NOOFFSET,
4390 		("vfs_clean_pages: no buffer offset"));
4391 
4392 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
4393 		m = bp->b_xio.xio_pages[i];
4394 		vfs_clean_one_page(bp, i, m);
4395 	}
4396 }
4397 
4398 /*
4399  * vfs_clean_one_page:
4400  *
4401  *	Set the valid bits and clear the dirty bits in a page within a
4402  *	buffer.  The range is restricted to the buffer's size and the
4403  *	buffer's logical offset might index into the first page.
4404  *
4405  *	The caller has busied or soft-busied the page and it is not mapped,
4406  *	test and incorporate the dirty bits into b_dirtyoff/end before
4407  *	clearing them.  Note that we need to clear the pmap modified bits
4408  *	after determining the the page was dirty, vm_page_set_validclean()
4409  *	does not do it for us.
4410  *
4411  *	This routine is typically called after a read completes (dirty should
4412  *	be zero in that case as we are not called on bogus-replace pages),
4413  *	or before a write is initiated.
4414  */
4415 static void
4416 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4417 {
4418 	int bcount;
4419 	int xoff;
4420 	int soff;
4421 	int eoff;
4422 
4423 	/*
4424 	 * Calculate offset range within the page but relative to buffer's
4425 	 * loffset.  loffset might be offset into the first page.
4426 	 */
4427 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4428 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4429 
4430 	if (pageno == 0) {
4431 		soff = xoff;
4432 		eoff = PAGE_SIZE;
4433 	} else {
4434 		soff = (pageno << PAGE_SHIFT);
4435 		eoff = soff + PAGE_SIZE;
4436 	}
4437 	if (eoff > bcount)
4438 		eoff = bcount;
4439 	if (soff >= eoff)
4440 		return;
4441 
4442 	/*
4443 	 * Test dirty bits and adjust b_dirtyoff/end.
4444 	 *
4445 	 * If dirty pages are incorporated into the bp any prior
4446 	 * B_NEEDCOMMIT state (NFS) must be cleared because the
4447 	 * caller has not taken into account the new dirty data.
4448 	 *
4449 	 * If the page was memory mapped the dirty bits might go beyond the
4450 	 * end of the buffer, but we can't really make the assumption that
4451 	 * a file EOF straddles the buffer (even though this is the case for
4452 	 * NFS if B_NEEDCOMMIT is also set).  So for the purposes of clearing
4453 	 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4454 	 * This also saves some console spam.
4455 	 *
4456 	 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4457 	 * NFS can handle huge commits but not huge writes.
4458 	 */
4459 	vm_page_test_dirty(m);
4460 	if (m->dirty) {
4461 		if ((bp->b_flags & B_NEEDCOMMIT) &&
4462 		    (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4463 			if (debug_commit)
4464 				kprintf("Warning: vfs_clean_one_page: bp %p "
4465 				    "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4466 				    " cmd %d vd %02x/%02x x/s/e %d %d %d "
4467 				    "doff/end %d %d\n",
4468 				    bp, (uintmax_t)bp->b_loffset, bp->b_bcount,
4469 				    bp->b_flags, bp->b_cmd,
4470 				    m->valid, m->dirty, xoff, soff, eoff,
4471 				    bp->b_dirtyoff, bp->b_dirtyend);
4472 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4473 			if (debug_commit)
4474 				print_backtrace(-1);
4475 		}
4476 		/*
4477 		 * Only clear the pmap modified bits if ALL the dirty bits
4478 		 * are set, otherwise the system might mis-clear portions
4479 		 * of a page.
4480 		 */
4481 		if (m->dirty == VM_PAGE_BITS_ALL &&
4482 		    (bp->b_flags & B_NEEDCOMMIT) == 0) {
4483 			pmap_clear_modify(m);
4484 		}
4485 		if (bp->b_dirtyoff > soff - xoff)
4486 			bp->b_dirtyoff = soff - xoff;
4487 		if (bp->b_dirtyend < eoff - xoff)
4488 			bp->b_dirtyend = eoff - xoff;
4489 	}
4490 
4491 	/*
4492 	 * Set related valid bits, clear related dirty bits.
4493 	 * Does not mess with the pmap modified bit.
4494 	 *
4495 	 * WARNING!  We cannot just clear all of m->dirty here as the
4496 	 *	     buffer cache buffers may use a DEV_BSIZE'd aligned
4497 	 *	     block size, or have an odd size (e.g. NFS at file EOF).
4498 	 *	     The putpages code can clear m->dirty to 0.
4499 	 *
4500 	 *	     If a VOP_WRITE generates a buffer cache buffer which
4501 	 *	     covers the same space as mapped writable pages the
4502 	 *	     buffer flush might not be able to clear all the dirty
4503 	 *	     bits and still require a putpages from the VM system
4504 	 *	     to finish it off.
4505 	 *
4506 	 * WARNING!  vm_page_set_validclean() currently assumes vm_token
4507 	 *	     is held.  The page might not be busied (bdwrite() case).
4508 	 *	     XXX remove this comment once we've validated that this
4509 	 *	     is no longer an issue.
4510 	 */
4511 	vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4512 }
4513 
4514 #if 0
4515 /*
4516  * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4517  * The page data is assumed to be valid (there is no zeroing here).
4518  */
4519 static void
4520 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4521 {
4522 	int bcount;
4523 	int xoff;
4524 	int soff;
4525 	int eoff;
4526 
4527 	/*
4528 	 * Calculate offset range within the page but relative to buffer's
4529 	 * loffset.  loffset might be offset into the first page.
4530 	 */
4531 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4532 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4533 
4534 	if (pageno == 0) {
4535 		soff = xoff;
4536 		eoff = PAGE_SIZE;
4537 	} else {
4538 		soff = (pageno << PAGE_SHIFT);
4539 		eoff = soff + PAGE_SIZE;
4540 	}
4541 	if (eoff > bcount)
4542 		eoff = bcount;
4543 	if (soff >= eoff)
4544 		return;
4545 	vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4546 }
4547 #endif
4548 
4549 /*
4550  * vfs_bio_clrbuf:
4551  *
4552  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
4553  *	to clear B_ERROR and B_INVAL.
4554  *
4555  *	Note that while we only theoretically need to clear through b_bcount,
4556  *	we go ahead and clear through b_bufsize.
4557  */
4558 
4559 void
4560 vfs_bio_clrbuf(struct buf *bp)
4561 {
4562 	int i, mask = 0;
4563 	caddr_t sa, ea;
4564 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4565 		bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4566 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4567 		    (bp->b_loffset & PAGE_MASK) == 0) {
4568 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4569 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4570 				bp->b_resid = 0;
4571 				return;
4572 			}
4573 			if ((bp->b_xio.xio_pages[0]->valid & mask) == 0) {
4574 				bzero(bp->b_data, bp->b_bufsize);
4575 				bp->b_xio.xio_pages[0]->valid |= mask;
4576 				bp->b_resid = 0;
4577 				return;
4578 			}
4579 		}
4580 		sa = bp->b_data;
4581 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4582 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4583 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4584 			ea = (caddr_t)(vm_offset_t)ulmin(
4585 			    (u_long)(vm_offset_t)ea,
4586 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4587 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4588 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4589 				continue;
4590 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4591 				bzero(sa, ea - sa);
4592 			} else {
4593 				for (; sa < ea; sa += DEV_BSIZE, j++) {
4594 					if ((bp->b_xio.xio_pages[i]->valid &
4595 					    (1<<j)) == 0) {
4596 						bzero(sa, DEV_BSIZE);
4597 					}
4598 				}
4599 			}
4600 			bp->b_xio.xio_pages[i]->valid |= mask;
4601 		}
4602 		bp->b_resid = 0;
4603 	} else {
4604 		clrbuf(bp);
4605 	}
4606 }
4607 
4608 /*
4609  * vm_hold_load_pages:
4610  *
4611  *	Load pages into the buffer's address space.  The pages are
4612  *	allocated from the kernel object in order to reduce interference
4613  *	with the any VM paging I/O activity.  The range of loaded
4614  *	pages will be wired.
4615  *
4616  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
4617  *	retrieve the full range (to - from) of pages.
4618  */
4619 void
4620 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4621 {
4622 	vm_offset_t pg;
4623 	vm_page_t p;
4624 	int index;
4625 
4626 	to = round_page(to);
4627 	from = round_page(from);
4628 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4629 
4630 	pg = from;
4631 	while (pg < to) {
4632 		/*
4633 		 * Note: must allocate system pages since blocking here
4634 		 * could intefere with paging I/O, no matter which
4635 		 * process we are.
4636 		 */
4637 		vm_object_hold(&kernel_object);
4638 		p = bio_page_alloc(bp, &kernel_object, pg >> PAGE_SHIFT,
4639 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4640 		vm_object_drop(&kernel_object);
4641 		if (p) {
4642 			vm_page_wire(p);
4643 			p->valid = VM_PAGE_BITS_ALL;
4644 			pmap_kenter_noinval(pg, VM_PAGE_TO_PHYS(p));
4645 			bp->b_xio.xio_pages[index] = p;
4646 			vm_page_wakeup(p);
4647 
4648 			pg += PAGE_SIZE;
4649 			++index;
4650 		}
4651 	}
4652 	pmap_invalidate_range(&kernel_pmap, from, to);
4653 	bp->b_xio.xio_npages = index;
4654 }
4655 
4656 /*
4657  * Allocate a page for a buffer cache buffer.
4658  *
4659  * If NULL is returned the caller is expected to retry (typically check if
4660  * the page already exists on retry before trying to allocate one).
4661  *
4662  * NOTE! Low-memory handling is dealt with in b[q]relse(), not here.  This
4663  *	 function will use the system reserve with the hope that the page
4664  *	 allocations can be returned to PQ_CACHE/PQ_FREE when the caller
4665  *	 is done with the buffer.
4666  *
4667  * NOTE! However, TMPFS is a special case because flushing a dirty buffer
4668  *	 to TMPFS doesn't clean the page.  For TMPFS, only the pagedaemon
4669  *	 is capable of retiring pages (to swap).  For TMPFS we don't dig
4670  *	 into the system reserve because doing so could stall out pretty
4671  *	 much every process running on the system.
4672  */
4673 static
4674 vm_page_t
4675 bio_page_alloc(struct buf *bp, vm_object_t obj, vm_pindex_t pg, int deficit)
4676 {
4677 	int vmflags = VM_ALLOC_NORMAL | VM_ALLOC_NULL_OK;
4678 	vm_page_t p;
4679 
4680 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj));
4681 
4682 	/*
4683 	 * Try a normal allocation first.
4684 	 */
4685 	p = vm_page_alloc(obj, pg, vmflags);
4686 	if (p)
4687 		return(p);
4688 	if (vm_page_lookup(obj, pg))
4689 		return(NULL);
4690 	vm_pageout_deficit += deficit;
4691 
4692 	/*
4693 	 * Try again, digging into the system reserve.
4694 	 *
4695 	 * Trying to recover pages from the buffer cache here can deadlock
4696 	 * against other threads trying to busy underlying pages so we
4697 	 * depend on the code in brelse() and bqrelse() to free/cache the
4698 	 * underlying buffer cache pages when memory is low.
4699 	 */
4700 	if (curthread->td_flags & TDF_SYSTHREAD)
4701 		vmflags |= VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT;
4702 	else if (bp->b_vp && bp->b_vp->v_tag == VT_TMPFS)
4703 		vmflags |= 0;
4704 	else
4705 		vmflags |= VM_ALLOC_SYSTEM;
4706 
4707 	/*recoverbufpages();*/
4708 	p = vm_page_alloc(obj, pg, vmflags);
4709 	if (p)
4710 		return(p);
4711 	if (vm_page_lookup(obj, pg))
4712 		return(NULL);
4713 
4714 	/*
4715 	 * Wait for memory to free up and try again
4716 	 */
4717 	if (vm_page_count_severe())
4718 		++lowmempgallocs;
4719 	vm_wait(hz / 20 + 1);
4720 
4721 	p = vm_page_alloc(obj, pg, vmflags);
4722 	if (p)
4723 		return(p);
4724 	if (vm_page_lookup(obj, pg))
4725 		return(NULL);
4726 
4727 	/*
4728 	 * Ok, now we are really in trouble.
4729 	 */
4730 	{
4731 		static struct krate biokrate = { .freq = 1 };
4732 		krateprintf(&biokrate,
4733 			    "Warning: bio_page_alloc: memory exhausted "
4734 			    "during buffer cache page allocation from %s\n",
4735 			    curthread->td_comm);
4736 	}
4737 	if (curthread->td_flags & TDF_SYSTHREAD)
4738 		vm_wait(hz / 20 + 1);
4739 	else
4740 		vm_wait(hz / 2 + 1);
4741 	return (NULL);
4742 }
4743 
4744 /*
4745  * vm_hold_free_pages:
4746  *
4747  *	Return pages associated with the buffer back to the VM system.
4748  *
4749  *	The range of pages underlying the buffer's address space will
4750  *	be unmapped and un-wired.
4751  */
4752 void
4753 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4754 {
4755 	vm_offset_t pg;
4756 	vm_page_t p;
4757 	int index, newnpages;
4758 
4759 	from = round_page(from);
4760 	to = round_page(to);
4761 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4762 	newnpages = index;
4763 
4764 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4765 		p = bp->b_xio.xio_pages[index];
4766 		if (p && (index < bp->b_xio.xio_npages)) {
4767 			if (p->busy) {
4768 				kprintf("vm_hold_free_pages: doffset: %lld, "
4769 					"loffset: %lld\n",
4770 					(long long)bp->b_bio2.bio_offset,
4771 					(long long)bp->b_loffset);
4772 			}
4773 			bp->b_xio.xio_pages[index] = NULL;
4774 			pmap_kremove_noinval(pg);
4775 			vm_page_busy_wait(p, FALSE, "vmhldpg");
4776 			vm_page_unwire(p, 0);
4777 			vm_page_free(p);
4778 		}
4779 	}
4780 	pmap_invalidate_range(&kernel_pmap, from, to);
4781 	bp->b_xio.xio_npages = newnpages;
4782 }
4783 
4784 /*
4785  * vmapbuf:
4786  *
4787  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
4788  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4789  *	initialized.
4790  */
4791 int
4792 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4793 {
4794 	caddr_t addr;
4795 	vm_offset_t va;
4796 	vm_page_t m;
4797 	int vmprot;
4798 	int error;
4799 	int pidx;
4800 	int i;
4801 
4802 	/*
4803 	 * bp had better have a command and it better be a pbuf.
4804 	 */
4805 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4806 	KKASSERT(bp->b_flags & B_PAGING);
4807 	KKASSERT(bp->b_kvabase);
4808 
4809 	if (bytes < 0)
4810 		return (-1);
4811 
4812 	/*
4813 	 * Map the user data into KVM.  Mappings have to be page-aligned.
4814 	 */
4815 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
4816 	pidx = 0;
4817 
4818 	vmprot = VM_PROT_READ;
4819 	if (bp->b_cmd == BUF_CMD_READ)
4820 		vmprot |= VM_PROT_WRITE;
4821 
4822 	while (addr < udata + bytes) {
4823 		/*
4824 		 * Do the vm_fault if needed; do the copy-on-write thing
4825 		 * when reading stuff off device into memory.
4826 		 *
4827 		 * vm_fault_page*() returns a held VM page.
4828 		 */
4829 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4830 		va = trunc_page(va);
4831 
4832 		m = vm_fault_page_quick(va, vmprot, &error);
4833 		if (m == NULL) {
4834 			for (i = 0; i < pidx; ++i) {
4835 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
4836 			    bp->b_xio.xio_pages[i] = NULL;
4837 			}
4838 			return(-1);
4839 		}
4840 		bp->b_xio.xio_pages[pidx] = m;
4841 		addr += PAGE_SIZE;
4842 		++pidx;
4843 	}
4844 
4845 	/*
4846 	 * Map the page array and set the buffer fields to point to
4847 	 * the mapped data buffer.
4848 	 */
4849 	if (pidx > btoc(MAXPHYS))
4850 		panic("vmapbuf: mapped more than MAXPHYS");
4851 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4852 
4853 	bp->b_xio.xio_npages = pidx;
4854 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4855 	bp->b_bcount = bytes;
4856 	bp->b_bufsize = bytes;
4857 
4858 	return(0);
4859 }
4860 
4861 /*
4862  * vunmapbuf:
4863  *
4864  *	Free the io map PTEs associated with this IO operation.
4865  *	We also invalidate the TLB entries and restore the original b_addr.
4866  */
4867 void
4868 vunmapbuf(struct buf *bp)
4869 {
4870 	int pidx;
4871 	int npages;
4872 
4873 	KKASSERT(bp->b_flags & B_PAGING);
4874 
4875 	npages = bp->b_xio.xio_npages;
4876 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4877 	for (pidx = 0; pidx < npages; ++pidx) {
4878 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4879 		bp->b_xio.xio_pages[pidx] = NULL;
4880 	}
4881 	bp->b_xio.xio_npages = 0;
4882 	bp->b_data = bp->b_kvabase;
4883 }
4884 
4885 /*
4886  * Scan all buffers in the system and issue the callback.
4887  */
4888 int
4889 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4890 {
4891 	int count = 0;
4892 	int error;
4893 	long n;
4894 
4895 	for (n = 0; n < nbuf; ++n) {
4896 		if ((error = callback(&buf[n], info)) < 0) {
4897 			count = error;
4898 			break;
4899 		}
4900 		count += error;
4901 	}
4902 	return (count);
4903 }
4904 
4905 /*
4906  * nestiobuf_iodone: biodone callback for nested buffers and propagate
4907  * completion to the master buffer.
4908  */
4909 static void
4910 nestiobuf_iodone(struct bio *bio)
4911 {
4912 	struct bio *mbio;
4913 	struct buf *mbp, *bp;
4914 	struct devstat *stats;
4915 	int error;
4916 	int donebytes;
4917 
4918 	bp = bio->bio_buf;
4919 	mbio = bio->bio_caller_info1.ptr;
4920 	stats = bio->bio_caller_info2.ptr;
4921 	mbp = mbio->bio_buf;
4922 
4923 	KKASSERT(bp->b_bcount <= bp->b_bufsize);
4924 	KKASSERT(mbp != bp);
4925 
4926 	error = bp->b_error;
4927 	if (bp->b_error == 0 &&
4928 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4929 		/*
4930 		 * Not all got transfered, raise an error. We have no way to
4931 		 * propagate these conditions to mbp.
4932 		 */
4933 		error = EIO;
4934 	}
4935 
4936 	donebytes = bp->b_bufsize;
4937 
4938 	relpbuf(bp, NULL);
4939 
4940 	nestiobuf_done(mbio, donebytes, error, stats);
4941 }
4942 
4943 void
4944 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats)
4945 {
4946 	struct buf *mbp;
4947 
4948 	mbp = mbio->bio_buf;
4949 
4950 	KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4951 
4952 	/*
4953 	 * If an error occured, propagate it to the master buffer.
4954 	 *
4955 	 * Several biodone()s may wind up running concurrently so
4956 	 * use an atomic op to adjust b_flags.
4957 	 */
4958 	if (error) {
4959 		mbp->b_error = error;
4960 		atomic_set_int(&mbp->b_flags, B_ERROR);
4961 	}
4962 
4963 	/*
4964 	 * Decrement the operations in progress counter and terminate the
4965 	 * I/O if this was the last bit.
4966 	 */
4967 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4968 		mbp->b_resid = 0;
4969 		if (stats)
4970 			devstat_end_transaction_buf(stats, mbp);
4971 		biodone(mbio);
4972 	}
4973 }
4974 
4975 /*
4976  * Initialize a nestiobuf for use.  Set an initial count of 1 to prevent
4977  * the mbio from being biodone()'d while we are still adding sub-bios to
4978  * it.
4979  */
4980 void
4981 nestiobuf_init(struct bio *bio)
4982 {
4983 	bio->bio_driver_info = (void *)1;
4984 }
4985 
4986 /*
4987  * The BIOs added to the nestedio have already been started, remove the
4988  * count that placeheld our mbio and biodone() it if the count would
4989  * transition to 0.
4990  */
4991 void
4992 nestiobuf_start(struct bio *mbio)
4993 {
4994 	struct buf *mbp = mbio->bio_buf;
4995 
4996 	/*
4997 	 * Decrement the operations in progress counter and terminate the
4998 	 * I/O if this was the last bit.
4999 	 */
5000 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
5001 		if (mbp->b_flags & B_ERROR)
5002 			mbp->b_resid = mbp->b_bcount;
5003 		else
5004 			mbp->b_resid = 0;
5005 		biodone(mbio);
5006 	}
5007 }
5008 
5009 /*
5010  * Set an intermediate error prior to calling nestiobuf_start()
5011  */
5012 void
5013 nestiobuf_error(struct bio *mbio, int error)
5014 {
5015 	struct buf *mbp = mbio->bio_buf;
5016 
5017 	if (error) {
5018 		mbp->b_error = error;
5019 		atomic_set_int(&mbp->b_flags, B_ERROR);
5020 	}
5021 }
5022 
5023 /*
5024  * nestiobuf_add: setup a "nested" buffer.
5025  *
5026  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
5027  * => 'bp' should be a buffer allocated by getiobuf.
5028  * => 'offset' is a byte offset in the master buffer.
5029  * => 'size' is a size in bytes of this nested buffer.
5030  */
5031 void
5032 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats)
5033 {
5034 	struct buf *mbp = mbio->bio_buf;
5035 	struct vnode *vp = mbp->b_vp;
5036 
5037 	KKASSERT(mbp->b_bcount >= offset + size);
5038 
5039 	atomic_add_int((int *)&mbio->bio_driver_info, 1);
5040 
5041 	/* kernel needs to own the lock for it to be released in biodone */
5042 	BUF_KERNPROC(bp);
5043 	bp->b_vp = vp;
5044 	bp->b_cmd = mbp->b_cmd;
5045 	bp->b_bio1.bio_done = nestiobuf_iodone;
5046 	bp->b_data = (char *)mbp->b_data + offset;
5047 	bp->b_resid = bp->b_bcount = size;
5048 	bp->b_bufsize = bp->b_bcount;
5049 
5050 	bp->b_bio1.bio_track = NULL;
5051 	bp->b_bio1.bio_caller_info1.ptr = mbio;
5052 	bp->b_bio1.bio_caller_info2.ptr = stats;
5053 }
5054 
5055 #ifdef DDB
5056 
5057 DB_SHOW_COMMAND(buffer, db_show_buffer)
5058 {
5059 	/* get args */
5060 	struct buf *bp = (struct buf *)addr;
5061 
5062 	if (!have_addr) {
5063 		db_printf("usage: show buffer <addr>\n");
5064 		return;
5065 	}
5066 
5067 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
5068 	db_printf("b_cmd = %d\n", bp->b_cmd);
5069 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
5070 		  "b_resid = %d\n, b_data = %p, "
5071 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
5072 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
5073 		  bp->b_data,
5074 		  (long long)bp->b_bio2.bio_offset,
5075 		  (long long)(bp->b_bio2.bio_next ?
5076 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
5077 	if (bp->b_xio.xio_npages) {
5078 		int i;
5079 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
5080 			bp->b_xio.xio_npages);
5081 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
5082 			vm_page_t m;
5083 			m = bp->b_xio.xio_pages[i];
5084 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
5085 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
5086 			if ((i + 1) < bp->b_xio.xio_npages)
5087 				db_printf(",");
5088 		}
5089 		db_printf("\n");
5090 	}
5091 }
5092 #endif /* DDB */
5093