xref: /dragonfly/sys/kern/vfs_cache.c (revision 235099c3)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993, 1995
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * Poul-Henning Kamp of the FreeBSD Project.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the University of
51  *	California, Berkeley and its contributors.
52  * 4. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  *
68  *	@(#)vfs_cache.c	8.5 (Berkeley) 3/22/95
69  * $FreeBSD: src/sys/kern/vfs_cache.c,v 1.42.2.6 2001/10/05 20:07:03 dillon Exp $
70  * $DragonFly: src/sys/kern/vfs_cache.c,v 1.91 2008/06/14 05:34:06 dillon Exp $
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mount.h>
78 #include <sys/vnode.h>
79 #include <sys/malloc.h>
80 #include <sys/sysproto.h>
81 #include <sys/proc.h>
82 #include <sys/namei.h>
83 #include <sys/nlookup.h>
84 #include <sys/filedesc.h>
85 #include <sys/fnv_hash.h>
86 #include <sys/globaldata.h>
87 #include <sys/kern_syscall.h>
88 #include <sys/dirent.h>
89 #include <ddb/ddb.h>
90 
91 #include <sys/sysref2.h>
92 
93 #define MAX_RECURSION_DEPTH	64
94 
95 /*
96  * Random lookups in the cache are accomplished with a hash table using
97  * a hash key of (nc_src_vp, name).
98  *
99  * Negative entries may exist and correspond to structures where nc_vp
100  * is NULL.  In a negative entry, NCF_WHITEOUT will be set if the entry
101  * corresponds to a whited-out directory entry (verses simply not finding the
102  * entry at all).
103  *
104  * Upon reaching the last segment of a path, if the reference is for DELETE,
105  * or NOCACHE is set (rewrite), and the name is located in the cache, it
106  * will be dropped.
107  */
108 
109 /*
110  * Structures associated with name cacheing.
111  */
112 #define NCHHASH(hash)	(&nchashtbl[(hash) & nchash])
113 #define MINNEG		1024
114 
115 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
116 
117 static LIST_HEAD(nchashhead, namecache) *nchashtbl;	/* Hash Table */
118 static struct namecache_list	ncneglist;		/* instead of vnode */
119 
120 /*
121  * ncvp_debug - debug cache_fromvp().  This is used by the NFS server
122  * to create the namecache infrastructure leading to a dangling vnode.
123  *
124  * 0	Only errors are reported
125  * 1	Successes are reported
126  * 2	Successes + the whole directory scan is reported
127  * 3	Force the directory scan code run as if the parent vnode did not
128  *	have a namecache record, even if it does have one.
129  */
130 static int	ncvp_debug;
131 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0, "");
132 
133 static u_long	nchash;			/* size of hash table */
134 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0, "");
135 
136 static u_long	ncnegfactor = 16;	/* ratio of negative entries */
137 SYSCTL_ULONG(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0, "");
138 
139 static int	nclockwarn;		/* warn on locked entries in ticks */
140 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0, "");
141 
142 static u_long	numneg;		/* number of cache entries allocated */
143 SYSCTL_ULONG(_debug, OID_AUTO, numneg, CTLFLAG_RD, &numneg, 0, "");
144 
145 static u_long	numcache;		/* number of cache entries allocated */
146 SYSCTL_ULONG(_debug, OID_AUTO, numcache, CTLFLAG_RD, &numcache, 0, "");
147 
148 static u_long	numunres;		/* number of unresolved entries */
149 SYSCTL_ULONG(_debug, OID_AUTO, numunres, CTLFLAG_RD, &numunres, 0, "");
150 
151 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode), "");
152 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache), "");
153 
154 static int cache_resolve_mp(struct mount *mp);
155 static struct vnode *cache_dvpref(struct namecache *ncp);
156 static void _cache_rehash(struct namecache *ncp);
157 static void _cache_lock(struct namecache *ncp);
158 static void _cache_setunresolved(struct namecache *ncp);
159 
160 /*
161  * The new name cache statistics
162  */
163 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
164 #define STATNODE(mode, name, var) \
165 	SYSCTL_ULONG(_vfs_cache, OID_AUTO, name, mode, var, 0, "");
166 STATNODE(CTLFLAG_RD, numneg, &numneg);
167 STATNODE(CTLFLAG_RD, numcache, &numcache);
168 static u_long numcalls; STATNODE(CTLFLAG_RD, numcalls, &numcalls);
169 static u_long dothits; STATNODE(CTLFLAG_RD, dothits, &dothits);
170 static u_long dotdothits; STATNODE(CTLFLAG_RD, dotdothits, &dotdothits);
171 static u_long numchecks; STATNODE(CTLFLAG_RD, numchecks, &numchecks);
172 static u_long nummiss; STATNODE(CTLFLAG_RD, nummiss, &nummiss);
173 static u_long nummisszap; STATNODE(CTLFLAG_RD, nummisszap, &nummisszap);
174 static u_long numposzaps; STATNODE(CTLFLAG_RD, numposzaps, &numposzaps);
175 static u_long numposhits; STATNODE(CTLFLAG_RD, numposhits, &numposhits);
176 static u_long numnegzaps; STATNODE(CTLFLAG_RD, numnegzaps, &numnegzaps);
177 static u_long numneghits; STATNODE(CTLFLAG_RD, numneghits, &numneghits);
178 
179 struct nchstats nchstats[SMP_MAXCPU];
180 /*
181  * Export VFS cache effectiveness statistics to user-land.
182  *
183  * The statistics are left for aggregation to user-land so
184  * neat things can be achieved, like observing per-CPU cache
185  * distribution.
186  */
187 static int
188 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
189 {
190 	struct globaldata *gd;
191 	int i, error;
192 
193 	error = 0;
194 	for (i = 0; i < ncpus; ++i) {
195 		gd = globaldata_find(i);
196 		if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
197 			sizeof(struct nchstats))))
198 			break;
199 	}
200 
201 	return (error);
202 }
203 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
204   0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
205 
206 static void cache_zap(struct namecache *ncp);
207 
208 /*
209  * cache_hold() and cache_drop() prevent the premature deletion of a
210  * namecache entry but do not prevent operations (such as zapping) on
211  * that namecache entry.
212  *
213  * This routine may only be called from outside this source module if
214  * nc_refs is already at least 1.
215  *
216  * This is a rare case where callers are allowed to hold a spinlock,
217  * so we can't ourselves.
218  */
219 static __inline
220 struct namecache *
221 _cache_hold(struct namecache *ncp)
222 {
223 	atomic_add_int(&ncp->nc_refs, 1);
224 	return(ncp);
225 }
226 
227 /*
228  * When dropping an entry, if only one ref remains and the entry has not
229  * been resolved, zap it.  Since the one reference is being dropped the
230  * entry had better not be locked.
231  */
232 static __inline
233 void
234 _cache_drop(struct namecache *ncp)
235 {
236 	KKASSERT(ncp->nc_refs > 0);
237 	if (ncp->nc_refs == 1 &&
238 	    (ncp->nc_flag & NCF_UNRESOLVED) &&
239 	    TAILQ_EMPTY(&ncp->nc_list)
240 	) {
241 		KKASSERT(ncp->nc_exlocks == 0);
242 		_cache_lock(ncp);
243 		cache_zap(ncp);
244 	} else {
245 		atomic_subtract_int(&ncp->nc_refs, 1);
246 	}
247 }
248 
249 /*
250  * Link a new namecache entry to its parent.  Be careful to avoid races
251  * if vhold() blocks in the future.
252  */
253 static void
254 cache_link_parent(struct namecache *ncp, struct namecache *par)
255 {
256 	KKASSERT(ncp->nc_parent == NULL);
257 	ncp->nc_parent = par;
258 	if (TAILQ_EMPTY(&par->nc_list)) {
259 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
260 		/*
261 		 * Any vp associated with an ncp which has children must
262 		 * be held to prevent it from being recycled.
263 		 */
264 		if (par->nc_vp)
265 			vhold(par->nc_vp);
266 	} else {
267 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
268 	}
269 }
270 
271 /*
272  * Remove the parent association from a namecache structure.  If this is
273  * the last child of the parent the cache_drop(par) will attempt to
274  * recursively zap the parent.
275  */
276 static void
277 cache_unlink_parent(struct namecache *ncp)
278 {
279 	struct namecache *par;
280 
281 	if ((par = ncp->nc_parent) != NULL) {
282 		ncp->nc_parent = NULL;
283 		par = _cache_hold(par);
284 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
285 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
286 			vdrop(par->nc_vp);
287 		_cache_drop(par);
288 	}
289 }
290 
291 /*
292  * Allocate a new namecache structure.  Most of the code does not require
293  * zero-termination of the string but it makes vop_compat_ncreate() easier.
294  */
295 static struct namecache *
296 cache_alloc(int nlen)
297 {
298 	struct namecache *ncp;
299 
300 	ncp = kmalloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
301 	if (nlen)
302 		ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHE, M_WAITOK);
303 	ncp->nc_nlen = nlen;
304 	ncp->nc_flag = NCF_UNRESOLVED;
305 	ncp->nc_error = ENOTCONN;	/* needs to be resolved */
306 	ncp->nc_refs = 1;
307 
308 	/*
309 	 * Construct a fake FSMID based on the time of day and a 32 bit
310 	 * roller for uniqueness.  This is used to generate a useful
311 	 * FSMID for filesystems which do not support it.
312 	 */
313 	ncp->nc_fsmid = cache_getnewfsmid();
314 	TAILQ_INIT(&ncp->nc_list);
315 	_cache_lock(ncp);
316 	return(ncp);
317 }
318 
319 static void
320 _cache_free(struct namecache *ncp)
321 {
322 	KKASSERT(ncp->nc_refs == 1 && ncp->nc_exlocks == 1);
323 	if (ncp->nc_name)
324 		kfree(ncp->nc_name, M_VFSCACHE);
325 	kfree(ncp, M_VFSCACHE);
326 }
327 
328 void
329 cache_zero(struct nchandle *nch)
330 {
331 	nch->ncp = NULL;
332 	nch->mount = NULL;
333 }
334 
335 /*
336  * Ref and deref a namecache structure.
337  *
338  * Warning: caller may hold an unrelated read spinlock, which means we can't
339  * use read spinlocks here.
340  */
341 struct nchandle *
342 cache_hold(struct nchandle *nch)
343 {
344 	_cache_hold(nch->ncp);
345 	++nch->mount->mnt_refs;
346 	return(nch);
347 }
348 
349 void
350 cache_copy(struct nchandle *nch, struct nchandle *target)
351 {
352 	*target = *nch;
353 	_cache_hold(target->ncp);
354 	++nch->mount->mnt_refs;
355 }
356 
357 void
358 cache_changemount(struct nchandle *nch, struct mount *mp)
359 {
360 	--nch->mount->mnt_refs;
361 	nch->mount = mp;
362 	++nch->mount->mnt_refs;
363 }
364 
365 void
366 cache_drop(struct nchandle *nch)
367 {
368 	--nch->mount->mnt_refs;
369 	_cache_drop(nch->ncp);
370 	nch->ncp = NULL;
371 	nch->mount = NULL;
372 }
373 
374 /*
375  * Namespace locking.  The caller must already hold a reference to the
376  * namecache structure in order to lock/unlock it.  This function prevents
377  * the namespace from being created or destroyed by accessors other then
378  * the lock holder.
379  *
380  * Note that holding a locked namecache structure prevents other threads
381  * from making namespace changes (e.g. deleting or creating), prevents
382  * vnode association state changes by other threads, and prevents the
383  * namecache entry from being resolved or unresolved by other threads.
384  *
385  * The lock owner has full authority to associate/disassociate vnodes
386  * and resolve/unresolve the locked ncp.
387  *
388  * WARNING!  Holding a locked ncp will prevent a vnode from being destroyed
389  * or recycled, but it does NOT help you if the vnode had already initiated
390  * a recyclement.  If this is important, use cache_get() rather then
391  * cache_lock() (and deal with the differences in the way the refs counter
392  * is handled).  Or, alternatively, make an unconditional call to
393  * cache_validate() or cache_resolve() after cache_lock() returns.
394  */
395 static
396 void
397 _cache_lock(struct namecache *ncp)
398 {
399 	thread_t td;
400 	int didwarn;
401 
402 	KKASSERT(ncp->nc_refs != 0);
403 	didwarn = 0;
404 	td = curthread;
405 
406 	for (;;) {
407 		if (ncp->nc_exlocks == 0) {
408 			ncp->nc_exlocks = 1;
409 			ncp->nc_locktd = td;
410 			/*
411 			 * The vp associated with a locked ncp must be held
412 			 * to prevent it from being recycled (which would
413 			 * cause the ncp to become unresolved).
414 			 *
415 			 * WARNING!  If VRECLAIMED is set the vnode could
416 			 * already be in the middle of a recycle.  Callers
417 			 * should not assume that nc_vp is usable when
418 			 * not NULL.  cache_vref() or cache_vget() must be
419 			 * called.
420 			 *
421 			 * XXX loop on race for later MPSAFE work.
422 			 */
423 			if (ncp->nc_vp)
424 				vhold(ncp->nc_vp);
425 			break;
426 		}
427 		if (ncp->nc_locktd == td) {
428 			++ncp->nc_exlocks;
429 			break;
430 		}
431 		ncp->nc_flag |= NCF_LOCKREQ;
432 		if (tsleep(ncp, 0, "clock", nclockwarn) == EWOULDBLOCK) {
433 			if (didwarn)
434 				continue;
435 			didwarn = 1;
436 			kprintf("[diagnostic] cache_lock: blocked on %p", ncp);
437 			kprintf(" \"%*.*s\"\n",
438 				ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
439 		}
440 	}
441 
442 	if (didwarn == 1) {
443 		kprintf("[diagnostic] cache_lock: unblocked %*.*s\n",
444 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
445 	}
446 }
447 
448 void
449 cache_lock(struct nchandle *nch)
450 {
451 	_cache_lock(nch->ncp);
452 }
453 
454 static
455 int
456 _cache_lock_nonblock(struct namecache *ncp)
457 {
458 	thread_t td;
459 
460 	KKASSERT(ncp->nc_refs != 0);
461 	td = curthread;
462 	if (ncp->nc_exlocks == 0) {
463 		ncp->nc_exlocks = 1;
464 		ncp->nc_locktd = td;
465 		/*
466 		 * The vp associated with a locked ncp must be held
467 		 * to prevent it from being recycled (which would
468 		 * cause the ncp to become unresolved).
469 		 *
470 		 * WARNING!  If VRECLAIMED is set the vnode could
471 		 * already be in the middle of a recycle.  Callers
472 		 * should not assume that nc_vp is usable when
473 		 * not NULL.  cache_vref() or cache_vget() must be
474 		 * called.
475 		 *
476 		 * XXX loop on race for later MPSAFE work.
477 		 */
478 		if (ncp->nc_vp)
479 			vhold(ncp->nc_vp);
480 		return(0);
481 	} else {
482 		return(EWOULDBLOCK);
483 	}
484 }
485 
486 int
487 cache_lock_nonblock(struct nchandle *nch)
488 {
489 	return(_cache_lock_nonblock(nch->ncp));
490 }
491 
492 static
493 void
494 _cache_unlock(struct namecache *ncp)
495 {
496 	thread_t td = curthread;
497 
498 	KKASSERT(ncp->nc_refs > 0);
499 	KKASSERT(ncp->nc_exlocks > 0);
500 	KKASSERT(ncp->nc_locktd == td);
501 	if (--ncp->nc_exlocks == 0) {
502 		if (ncp->nc_vp)
503 			vdrop(ncp->nc_vp);
504 		ncp->nc_locktd = NULL;
505 		if (ncp->nc_flag & NCF_LOCKREQ) {
506 			ncp->nc_flag &= ~NCF_LOCKREQ;
507 			wakeup(ncp);
508 		}
509 	}
510 }
511 
512 void
513 cache_unlock(struct nchandle *nch)
514 {
515 	_cache_unlock(nch->ncp);
516 }
517 
518 /*
519  * ref-and-lock, unlock-and-deref functions.
520  *
521  * This function is primarily used by nlookup.  Even though cache_lock
522  * holds the vnode, it is possible that the vnode may have already
523  * initiated a recyclement.  We want cache_get() to return a definitively
524  * usable vnode or a definitively unresolved ncp.
525  */
526 static
527 struct namecache *
528 _cache_get(struct namecache *ncp)
529 {
530 	_cache_hold(ncp);
531 	_cache_lock(ncp);
532 	if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
533 		_cache_setunresolved(ncp);
534 	return(ncp);
535 }
536 
537 /*
538  * note: the same nchandle can be passed for both arguments.
539  */
540 void
541 cache_get(struct nchandle *nch, struct nchandle *target)
542 {
543 	target->mount = nch->mount;
544 	target->ncp = _cache_get(nch->ncp);
545 	++target->mount->mnt_refs;
546 }
547 
548 static int
549 _cache_get_nonblock(struct namecache *ncp)
550 {
551 	/* XXX MP */
552 	if (ncp->nc_exlocks == 0 || ncp->nc_locktd == curthread) {
553 		_cache_hold(ncp);
554 		_cache_lock(ncp);
555 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
556 			_cache_setunresolved(ncp);
557 		return(0);
558 	}
559 	return(EWOULDBLOCK);
560 }
561 
562 int
563 cache_get_nonblock(struct nchandle *nch)
564 {
565 	int error;
566 
567 	if ((error = _cache_get_nonblock(nch->ncp)) == 0)
568 		++nch->mount->mnt_refs;
569 	return (error);
570 }
571 
572 static __inline
573 void
574 _cache_put(struct namecache *ncp)
575 {
576 	_cache_unlock(ncp);
577 	_cache_drop(ncp);
578 }
579 
580 void
581 cache_put(struct nchandle *nch)
582 {
583 	--nch->mount->mnt_refs;
584 	_cache_put(nch->ncp);
585 	nch->ncp = NULL;
586 	nch->mount = NULL;
587 }
588 
589 /*
590  * Resolve an unresolved ncp by associating a vnode with it.  If the
591  * vnode is NULL, a negative cache entry is created.
592  *
593  * The ncp should be locked on entry and will remain locked on return.
594  */
595 static
596 void
597 _cache_setvp(struct mount *mp, struct namecache *ncp, struct vnode *vp)
598 {
599 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
600 	ncp->nc_vp = vp;
601 	if (vp != NULL) {
602 		/*
603 		 * Any vp associated with an ncp which has children must
604 		 * be held.  Any vp associated with a locked ncp must be held.
605 		 */
606 		if (!TAILQ_EMPTY(&ncp->nc_list))
607 			vhold(vp);
608 		TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
609 		if (ncp->nc_exlocks)
610 			vhold(vp);
611 
612 		/*
613 		 * Set auxiliary flags
614 		 */
615 		switch(vp->v_type) {
616 		case VDIR:
617 			ncp->nc_flag |= NCF_ISDIR;
618 			break;
619 		case VLNK:
620 			ncp->nc_flag |= NCF_ISSYMLINK;
621 			/* XXX cache the contents of the symlink */
622 			break;
623 		default:
624 			break;
625 		}
626 		++numcache;
627 		ncp->nc_error = 0;
628 	} else {
629 		/*
630 		 * When creating a negative cache hit we set the
631 		 * namecache_gen.  A later resolve will clean out the
632 		 * negative cache hit if the mount point's namecache_gen
633 		 * has changed.  Used by devfs, could also be used by
634 		 * other remote FSs.
635 		 */
636 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
637 		++numneg;
638 		ncp->nc_error = ENOENT;
639 		if (mp)
640 			ncp->nc_namecache_gen = mp->mnt_namecache_gen;
641 	}
642 	ncp->nc_flag &= ~NCF_UNRESOLVED;
643 }
644 
645 void
646 cache_setvp(struct nchandle *nch, struct vnode *vp)
647 {
648 	_cache_setvp(nch->mount, nch->ncp, vp);
649 }
650 
651 void
652 cache_settimeout(struct nchandle *nch, int nticks)
653 {
654 	struct namecache *ncp = nch->ncp;
655 
656 	if ((ncp->nc_timeout = ticks + nticks) == 0)
657 		ncp->nc_timeout = 1;
658 }
659 
660 /*
661  * Disassociate the vnode or negative-cache association and mark a
662  * namecache entry as unresolved again.  Note that the ncp is still
663  * left in the hash table and still linked to its parent.
664  *
665  * The ncp should be locked and refd on entry and will remain locked and refd
666  * on return.
667  *
668  * This routine is normally never called on a directory containing children.
669  * However, NFS often does just that in its rename() code as a cop-out to
670  * avoid complex namespace operations.  This disconnects a directory vnode
671  * from its namecache and can cause the OLDAPI and NEWAPI to get out of
672  * sync.
673  *
674  * NOTE: NCF_FSMID must be cleared so a refurbishment of the ncp, such as
675  * in a create, properly propogates flag up the chain.
676  */
677 static
678 void
679 _cache_setunresolved(struct namecache *ncp)
680 {
681 	struct vnode *vp;
682 
683 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
684 		ncp->nc_flag |= NCF_UNRESOLVED;
685 		ncp->nc_timeout = 0;
686 		ncp->nc_error = ENOTCONN;
687 		++numunres;
688 		if ((vp = ncp->nc_vp) != NULL) {
689 			--numcache;
690 			ncp->nc_vp = NULL;
691 			TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
692 
693 			/*
694 			 * Any vp associated with an ncp with children is
695 			 * held by that ncp.  Any vp associated with a locked
696 			 * ncp is held by that ncp.  These conditions must be
697 			 * undone when the vp is cleared out from the ncp.
698 			 */
699 			if (ncp->nc_flag & NCF_FSMID)
700 				vupdatefsmid(vp);
701 			if (!TAILQ_EMPTY(&ncp->nc_list))
702 				vdrop(vp);
703 			if (ncp->nc_exlocks)
704 				vdrop(vp);
705 		} else {
706 			TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
707 			--numneg;
708 		}
709 		ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK|
710 				  NCF_FSMID);
711 	}
712 }
713 
714 /*
715  * The cache_nresolve() code calls this function to automatically
716  * set a resolved cache element to unresolved if it has timed out
717  * or if it is a negative cache hit and the mount point namecache_gen
718  * has changed.
719  */
720 static __inline void
721 _cache_auto_unresolve(struct mount *mp, struct namecache *ncp)
722 {
723 	/*
724 	 * Already in an unresolved state, nothing to do.
725 	 */
726 	if (ncp->nc_flag & NCF_UNRESOLVED)
727 		return;
728 
729 	/*
730 	 * Try to zap entries that have timed out.  We have
731 	 * to be careful here because locked leafs may depend
732 	 * on the vnode remaining intact in a parent, so only
733 	 * do this under very specific conditions.
734 	 */
735 	if (ncp->nc_timeout && (int)(ncp->nc_timeout - ticks) < 0 &&
736 	    TAILQ_EMPTY(&ncp->nc_list)) {
737 		_cache_setunresolved(ncp);
738 		return;
739 	}
740 
741 	/*
742 	 * If a resolved negative cache hit is invalid due to
743 	 * the mount's namecache generation being bumped, zap it.
744 	 */
745 	if (ncp->nc_vp == NULL &&
746 	    ncp->nc_namecache_gen != mp->mnt_namecache_gen) {
747 		_cache_setunresolved(ncp);
748 		return;
749 	}
750 }
751 
752 void
753 cache_setunresolved(struct nchandle *nch)
754 {
755 	_cache_setunresolved(nch->ncp);
756 }
757 
758 /*
759  * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
760  * looking for matches.  This flag tells the lookup code when it must
761  * check for a mount linkage and also prevents the directories in question
762  * from being deleted or renamed.
763  */
764 static
765 int
766 cache_clrmountpt_callback(struct mount *mp, void *data)
767 {
768 	struct nchandle *nch = data;
769 
770 	if (mp->mnt_ncmounton.ncp == nch->ncp)
771 		return(1);
772 	if (mp->mnt_ncmountpt.ncp == nch->ncp)
773 		return(1);
774 	return(0);
775 }
776 
777 void
778 cache_clrmountpt(struct nchandle *nch)
779 {
780 	int count;
781 
782 	count = mountlist_scan(cache_clrmountpt_callback, nch,
783 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
784 	if (count == 0)
785 		nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
786 }
787 
788 /*
789  * Invalidate portions of the namecache topology given a starting entry.
790  * The passed ncp is set to an unresolved state and:
791  *
792  * The passed ncp must be locked.
793  *
794  * CINV_DESTROY		- Set a flag in the passed ncp entry indicating
795  *			  that the physical underlying nodes have been
796  *			  destroyed... as in deleted.  For example, when
797  *			  a directory is removed.  This will cause record
798  *			  lookups on the name to no longer be able to find
799  *			  the record and tells the resolver to return failure
800  *			  rather then trying to resolve through the parent.
801  *
802  *			  The topology itself, including ncp->nc_name,
803  *			  remains intact.
804  *
805  *			  This only applies to the passed ncp, if CINV_CHILDREN
806  *			  is specified the children are not flagged.
807  *
808  * CINV_CHILDREN	- Set all children (recursively) to an unresolved
809  *			  state as well.
810  *
811  *			  Note that this will also have the side effect of
812  *			  cleaning out any unreferenced nodes in the topology
813  *			  from the leaves up as the recursion backs out.
814  *
815  * Note that the topology for any referenced nodes remains intact.
816  *
817  * It is possible for cache_inval() to race a cache_resolve(), meaning that
818  * the namecache entry may not actually be invalidated on return if it was
819  * revalidated while recursing down into its children.  This code guarentees
820  * that the node(s) will go through an invalidation cycle, but does not
821  * guarentee that they will remain in an invalidated state.
822  *
823  * Returns non-zero if a revalidation was detected during the invalidation
824  * recursion, zero otherwise.  Note that since only the original ncp is
825  * locked the revalidation ultimately can only indicate that the original ncp
826  * *MIGHT* no have been reresolved.
827  *
828  * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
829  * have to avoid blowing out the kernel stack.  We do this by saving the
830  * deep namecache node and aborting the recursion, then re-recursing at that
831  * node using a depth-first algorithm in order to allow multiple deep
832  * recursions to chain through each other, then we restart the invalidation
833  * from scratch.
834  */
835 
836 struct cinvtrack {
837 	struct namecache *resume_ncp;
838 	int depth;
839 };
840 
841 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
842 
843 static
844 int
845 _cache_inval(struct namecache *ncp, int flags)
846 {
847 	struct cinvtrack track;
848 	struct namecache *ncp2;
849 	int r;
850 
851 	track.depth = 0;
852 	track.resume_ncp = NULL;
853 
854 	for (;;) {
855 		r = _cache_inval_internal(ncp, flags, &track);
856 		if (track.resume_ncp == NULL)
857 			break;
858 		kprintf("Warning: deep namecache recursion at %s\n",
859 			ncp->nc_name);
860 		_cache_unlock(ncp);
861 		while ((ncp2 = track.resume_ncp) != NULL) {
862 			track.resume_ncp = NULL;
863 			_cache_lock(ncp2);
864 			_cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
865 					     &track);
866 			_cache_put(ncp2);
867 		}
868 		_cache_lock(ncp);
869 	}
870 	return(r);
871 }
872 
873 int
874 cache_inval(struct nchandle *nch, int flags)
875 {
876 	return(_cache_inval(nch->ncp, flags));
877 }
878 
879 static int
880 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
881 {
882 	struct namecache *kid;
883 	struct namecache *nextkid;
884 	int rcnt = 0;
885 
886 	KKASSERT(ncp->nc_exlocks);
887 
888 	_cache_setunresolved(ncp);
889 	if (flags & CINV_DESTROY)
890 		ncp->nc_flag |= NCF_DESTROYED;
891 
892 	if ((flags & CINV_CHILDREN) &&
893 	    (kid = TAILQ_FIRST(&ncp->nc_list)) != NULL
894 	) {
895 		if (++track->depth > MAX_RECURSION_DEPTH) {
896 			track->resume_ncp = ncp;
897 			_cache_hold(ncp);
898 			++rcnt;
899 		}
900 		_cache_hold(kid);
901 		_cache_unlock(ncp);
902 		while (kid) {
903 			if (track->resume_ncp) {
904 				_cache_drop(kid);
905 				break;
906 			}
907 			if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
908 				_cache_hold(nextkid);
909 			if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
910 			    TAILQ_FIRST(&kid->nc_list)
911 			) {
912 				_cache_lock(kid);
913 				rcnt += _cache_inval_internal(kid, flags & ~CINV_DESTROY, track);
914 				_cache_unlock(kid);
915 			}
916 			_cache_drop(kid);
917 			kid = nextkid;
918 		}
919 		--track->depth;
920 		_cache_lock(ncp);
921 	}
922 
923 	/*
924 	 * Someone could have gotten in there while ncp was unlocked,
925 	 * retry if so.
926 	 */
927 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
928 		++rcnt;
929 	return (rcnt);
930 }
931 
932 /*
933  * Invalidate a vnode's namecache associations.  To avoid races against
934  * the resolver we do not invalidate a node which we previously invalidated
935  * but which was then re-resolved while we were in the invalidation loop.
936  *
937  * Returns non-zero if any namecache entries remain after the invalidation
938  * loop completed.
939  *
940  * NOTE: unlike the namecache topology which guarentees that ncp's will not
941  * be ripped out of the topology while held, the vnode's v_namecache list
942  * has no such restriction.  NCP's can be ripped out of the list at virtually
943  * any time if not locked, even if held.
944  */
945 int
946 cache_inval_vp(struct vnode *vp, int flags)
947 {
948 	struct namecache *ncp;
949 	struct namecache *next;
950 
951 restart:
952 	ncp = TAILQ_FIRST(&vp->v_namecache);
953 	if (ncp)
954 		_cache_hold(ncp);
955 	while (ncp) {
956 		/* loop entered with ncp held */
957 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
958 			_cache_hold(next);
959 		_cache_lock(ncp);
960 		if (ncp->nc_vp != vp) {
961 			kprintf("Warning: cache_inval_vp: race-A detected on "
962 				"%s\n", ncp->nc_name);
963 			_cache_put(ncp);
964 			if (next)
965 				_cache_drop(next);
966 			goto restart;
967 		}
968 		_cache_inval(ncp, flags);
969 		_cache_put(ncp);		/* also releases reference */
970 		ncp = next;
971 		if (ncp && ncp->nc_vp != vp) {
972 			kprintf("Warning: cache_inval_vp: race-B detected on "
973 				"%s\n", ncp->nc_name);
974 			_cache_drop(ncp);
975 			goto restart;
976 		}
977 	}
978 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
979 }
980 
981 /*
982  * This routine is used instead of the normal cache_inval_vp() when we
983  * are trying to recycle otherwise good vnodes.
984  *
985  * Return 0 on success, non-zero if not all namecache records could be
986  * disassociated from the vnode (for various reasons).
987  */
988 int
989 cache_inval_vp_nonblock(struct vnode *vp)
990 {
991 	struct namecache *ncp;
992 	struct namecache *next;
993 
994 	ncp = TAILQ_FIRST(&vp->v_namecache);
995 	if (ncp)
996 		_cache_hold(ncp);
997 	while (ncp) {
998 		/* loop entered with ncp held */
999 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1000 			_cache_hold(next);
1001 		if (_cache_lock_nonblock(ncp)) {
1002 			_cache_drop(ncp);
1003 			if (next)
1004 				_cache_drop(next);
1005 			break;
1006 		}
1007 		if (ncp->nc_vp != vp) {
1008 			kprintf("Warning: cache_inval_vp: race-A detected on "
1009 				"%s\n", ncp->nc_name);
1010 			_cache_put(ncp);
1011 			if (next)
1012 				_cache_drop(next);
1013 			break;
1014 		}
1015 		_cache_inval(ncp, 0);
1016 		_cache_put(ncp);		/* also releases reference */
1017 		ncp = next;
1018 		if (ncp && ncp->nc_vp != vp) {
1019 			kprintf("Warning: cache_inval_vp: race-B detected on "
1020 				"%s\n", ncp->nc_name);
1021 			_cache_drop(ncp);
1022 			break;
1023 		}
1024 	}
1025 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1026 }
1027 
1028 /*
1029  * The source ncp has been renamed to the target ncp.  Both fncp and tncp
1030  * must be locked.  The target ncp is destroyed (as a normal rename-over
1031  * would destroy the target file or directory).
1032  *
1033  * Because there may be references to the source ncp we cannot copy its
1034  * contents to the target.  Instead the source ncp is relinked as the target
1035  * and the target ncp is removed from the namecache topology.
1036  */
1037 void
1038 cache_rename(struct nchandle *fnch, struct nchandle *tnch)
1039 {
1040 	struct namecache *fncp = fnch->ncp;
1041 	struct namecache *tncp = tnch->ncp;
1042 	char *oname;
1043 
1044 	_cache_setunresolved(tncp);
1045 	cache_unlink_parent(fncp);
1046 	cache_link_parent(fncp, tncp->nc_parent);
1047 	cache_unlink_parent(tncp);
1048 	oname = fncp->nc_name;
1049 	fncp->nc_name = tncp->nc_name;
1050 	fncp->nc_nlen = tncp->nc_nlen;
1051 	tncp->nc_name = NULL;
1052 	tncp->nc_nlen = 0;
1053 	if (fncp->nc_flag & NCF_HASHED)
1054 		_cache_rehash(fncp);
1055 	if (tncp->nc_flag & NCF_HASHED)
1056 		_cache_rehash(tncp);
1057 	if (oname)
1058 		kfree(oname, M_VFSCACHE);
1059 }
1060 
1061 /*
1062  * vget the vnode associated with the namecache entry.  Resolve the namecache
1063  * entry if necessary and deal with namecache/vp races.  The passed ncp must
1064  * be referenced and may be locked.  The ncp's ref/locking state is not
1065  * effected by this call.
1066  *
1067  * lk_type may be LK_SHARED, LK_EXCLUSIVE.  A ref'd, possibly locked
1068  * (depending on the passed lk_type) will be returned in *vpp with an error
1069  * of 0, or NULL will be returned in *vpp with a non-0 error code.  The
1070  * most typical error is ENOENT, meaning that the ncp represents a negative
1071  * cache hit and there is no vnode to retrieve, but other errors can occur
1072  * too.
1073  *
1074  * The main race we have to deal with are namecache zaps.  The ncp itself
1075  * will not disappear since it is referenced, and it turns out that the
1076  * validity of the vp pointer can be checked simply by rechecking the
1077  * contents of ncp->nc_vp.
1078  */
1079 int
1080 cache_vget(struct nchandle *nch, struct ucred *cred,
1081 	   int lk_type, struct vnode **vpp)
1082 {
1083 	struct namecache *ncp;
1084 	struct vnode *vp;
1085 	int error;
1086 
1087 	ncp = nch->ncp;
1088 again:
1089 	vp = NULL;
1090 	if (ncp->nc_flag & NCF_UNRESOLVED) {
1091 		_cache_lock(ncp);
1092 		error = cache_resolve(nch, cred);
1093 		_cache_unlock(ncp);
1094 	} else {
1095 		error = 0;
1096 	}
1097 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1098 		/*
1099 		 * Accessing the vnode from the namecache is a bit
1100 		 * dangerous.  Because there are no refs on the vnode, it
1101 		 * could be in the middle of a reclaim.
1102 		 */
1103 		if (vp->v_flag & VRECLAIMED) {
1104 			kprintf("Warning: vnode reclaim race detected in cache_vget on %p (%s)\n", vp, ncp->nc_name);
1105 			_cache_lock(ncp);
1106 			_cache_setunresolved(ncp);
1107 			_cache_unlock(ncp);
1108 			goto again;
1109 		}
1110 		error = vget(vp, lk_type);
1111 		if (error) {
1112 			if (vp != ncp->nc_vp)
1113 				goto again;
1114 			vp = NULL;
1115 		} else if (vp != ncp->nc_vp) {
1116 			vput(vp);
1117 			goto again;
1118 		} else if (vp->v_flag & VRECLAIMED) {
1119 			panic("vget succeeded on a VRECLAIMED node! vp %p", vp);
1120 		}
1121 	}
1122 	if (error == 0 && vp == NULL)
1123 		error = ENOENT;
1124 	*vpp = vp;
1125 	return(error);
1126 }
1127 
1128 int
1129 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
1130 {
1131 	struct namecache *ncp;
1132 	struct vnode *vp;
1133 	int error;
1134 
1135 	ncp = nch->ncp;
1136 
1137 again:
1138 	vp = NULL;
1139 	if (ncp->nc_flag & NCF_UNRESOLVED) {
1140 		_cache_lock(ncp);
1141 		error = cache_resolve(nch, cred);
1142 		_cache_unlock(ncp);
1143 	} else {
1144 		error = 0;
1145 	}
1146 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1147 		/*
1148 		 * Since we did not obtain any locks, a cache zap
1149 		 * race can occur here if the vnode is in the middle
1150 		 * of being reclaimed and has not yet been able to
1151 		 * clean out its cache node.  If that case occurs,
1152 		 * we must lock and unresolve the cache, then loop
1153 		 * to retry.
1154 		 */
1155 		if ((error = vget(vp, LK_SHARED)) != 0) {
1156 			if (error == ENOENT) {
1157 				kprintf("Warning: vnode reclaim race detected on cache_vref %p (%s)\n", vp, ncp->nc_name);
1158 				_cache_lock(ncp);
1159 				_cache_setunresolved(ncp);
1160 				_cache_unlock(ncp);
1161 				goto again;
1162 			}
1163 			/* fatal error */
1164 		} else {
1165 			/* caller does not want a lock */
1166 			vn_unlock(vp);
1167 		}
1168 	}
1169 	if (error == 0 && vp == NULL)
1170 		error = ENOENT;
1171 	*vpp = vp;
1172 	return(error);
1173 }
1174 
1175 /*
1176  * Return a referenced vnode representing the parent directory of
1177  * ncp.  Because the caller has locked the ncp it should not be possible for
1178  * the parent ncp to go away.
1179  *
1180  * However, we might race against the parent dvp and not be able to
1181  * reference it.  If we race, return NULL.
1182  */
1183 static struct vnode *
1184 cache_dvpref(struct namecache *ncp)
1185 {
1186 	struct namecache *par;
1187 	struct vnode *dvp;
1188 
1189 	dvp = NULL;
1190 	if ((par = ncp->nc_parent) != NULL) {
1191 		if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
1192 			if ((dvp = par->nc_vp) != NULL) {
1193 				if (vget(dvp, LK_SHARED) == 0) {
1194 					vn_unlock(dvp);
1195 					/* return referenced, unlocked dvp */
1196 				} else {
1197 					dvp = NULL;
1198 				}
1199 			}
1200 		}
1201 	}
1202 	return(dvp);
1203 }
1204 
1205 /*
1206  * Recursively set the FSMID update flag for namecache nodes leading
1207  * to root.  This will cause the next getattr or reclaim to increment the
1208  * fsmid and mark the inode for lazy updating.
1209  *
1210  * Stop recursing when we hit a node whos NCF_FSMID flag is already set.
1211  * This makes FSMIDs work in an Einsteinian fashion - where the observation
1212  * effects the result.  In this case a program monitoring a higher level
1213  * node will have detected some prior change and started its scan (clearing
1214  * NCF_FSMID in higher level nodes), but since it has not yet observed the
1215  * node where we find NCF_FSMID still set, we can safely make the related
1216  * modification without interfering with the theorized program.
1217  *
1218  * This also means that FSMIDs cannot represent time-domain quantities
1219  * in a hierarchical sense.  But the main reason for doing it this way
1220  * is to reduce the amount of recursion that occurs in the critical path
1221  * when e.g. a program is writing to a file that sits deep in a directory
1222  * hierarchy.
1223  */
1224 void
1225 cache_update_fsmid(struct nchandle *nch)
1226 {
1227 	struct namecache *ncp;
1228 	struct namecache *scan;
1229 	struct vnode *vp;
1230 
1231 	ncp = nch->ncp;
1232 
1233 	/*
1234 	 * Warning: even if we get a non-NULL vp it could still be in the
1235 	 * middle of a recyclement.  Don't do anything fancy, just set
1236 	 * NCF_FSMID.
1237 	 */
1238 	if ((vp = ncp->nc_vp) != NULL) {
1239 		TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1240 			for (scan = ncp; scan; scan = scan->nc_parent) {
1241 				if (scan->nc_flag & NCF_FSMID)
1242 					break;
1243 				scan->nc_flag |= NCF_FSMID;
1244 			}
1245 		}
1246 	} else {
1247 		while (ncp && (ncp->nc_flag & NCF_FSMID) == 0) {
1248 			ncp->nc_flag |= NCF_FSMID;
1249 			ncp = ncp->nc_parent;
1250 		}
1251 	}
1252 }
1253 
1254 void
1255 cache_update_fsmid_vp(struct vnode *vp)
1256 {
1257 	struct namecache *ncp;
1258 	struct namecache *scan;
1259 
1260 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1261 		for (scan = ncp; scan; scan = scan->nc_parent) {
1262 			if (scan->nc_flag & NCF_FSMID)
1263 				break;
1264 			scan->nc_flag |= NCF_FSMID;
1265 		}
1266 	}
1267 }
1268 
1269 /*
1270  * If getattr is called on a vnode (e.g. a stat call), the filesystem
1271  * may call this routine to determine if the namecache has the hierarchical
1272  * change flag set, requiring the fsmid to be updated.
1273  *
1274  * Since 0 indicates no support, make sure the filesystem fsmid is at least
1275  * 1.
1276  */
1277 int
1278 cache_check_fsmid_vp(struct vnode *vp, int64_t *fsmid)
1279 {
1280 	struct namecache *ncp;
1281 	int changed = 0;
1282 
1283 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1284 		if (ncp->nc_flag & NCF_FSMID) {
1285 			ncp->nc_flag &= ~NCF_FSMID;
1286 			changed = 1;
1287 		}
1288 	}
1289 	if (*fsmid == 0)
1290 		++*fsmid;
1291 	if (changed)
1292 		++*fsmid;
1293 	return(changed);
1294 }
1295 
1296 /*
1297  * Obtain the FSMID for a vnode for filesystems which do not support
1298  * a built-in FSMID.
1299  */
1300 int64_t
1301 cache_sync_fsmid_vp(struct vnode *vp)
1302 {
1303 	struct namecache *ncp;
1304 
1305 	if ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL) {
1306 		if (ncp->nc_flag & NCF_FSMID) {
1307 			ncp->nc_flag &= ~NCF_FSMID;
1308 			++ncp->nc_fsmid;
1309 		}
1310 		return(ncp->nc_fsmid);
1311 	}
1312 	return(VNOVAL);
1313 }
1314 
1315 /*
1316  * Convert a directory vnode to a namecache record without any other
1317  * knowledge of the topology.  This ONLY works with directory vnodes and
1318  * is ONLY used by the NFS server.  dvp must be refd but unlocked, and the
1319  * returned ncp (if not NULL) will be held and unlocked.
1320  *
1321  * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
1322  * If 'makeit' is 1 we attempt to track-down and create the namecache topology
1323  * for dvp.  This will fail only if the directory has been deleted out from
1324  * under the caller.
1325  *
1326  * Callers must always check for a NULL return no matter the value of 'makeit'.
1327  *
1328  * To avoid underflowing the kernel stack each recursive call increments
1329  * the makeit variable.
1330  */
1331 
1332 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1333 				  struct vnode *dvp, char *fakename);
1334 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1335 				  struct vnode **saved_dvp);
1336 
1337 int
1338 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
1339 	      struct nchandle *nch)
1340 {
1341 	struct vnode *saved_dvp;
1342 	struct vnode *pvp;
1343 	char *fakename;
1344 	int error;
1345 
1346 	nch->ncp = NULL;
1347 	nch->mount = dvp->v_mount;
1348 	saved_dvp = NULL;
1349 	fakename = NULL;
1350 
1351 	/*
1352 	 * Temporary debugging code to force the directory scanning code
1353 	 * to be exercised.
1354 	 */
1355 	if (ncvp_debug >= 3 && makeit && TAILQ_FIRST(&dvp->v_namecache)) {
1356 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
1357 		kprintf("cache_fromdvp: forcing %s\n", nch->ncp->nc_name);
1358 		goto force;
1359 	}
1360 
1361 	/*
1362 	 * Loop until resolution, inside code will break out on error.
1363 	 */
1364 	while ((nch->ncp = TAILQ_FIRST(&dvp->v_namecache)) == NULL && makeit) {
1365 force:
1366 		/*
1367 		 * If dvp is the root of its filesystem it should already
1368 		 * have a namecache pointer associated with it as a side
1369 		 * effect of the mount, but it may have been disassociated.
1370 		 */
1371 		if (dvp->v_flag & VROOT) {
1372 			nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
1373 			error = cache_resolve_mp(nch->mount);
1374 			_cache_put(nch->ncp);
1375 			if (ncvp_debug) {
1376 				kprintf("cache_fromdvp: resolve root of mount %p error %d",
1377 					dvp->v_mount, error);
1378 			}
1379 			if (error) {
1380 				if (ncvp_debug)
1381 					kprintf(" failed\n");
1382 				nch->ncp = NULL;
1383 				break;
1384 			}
1385 			if (ncvp_debug)
1386 				kprintf(" succeeded\n");
1387 			continue;
1388 		}
1389 
1390 		/*
1391 		 * If we are recursed too deeply resort to an O(n^2)
1392 		 * algorithm to resolve the namecache topology.  The
1393 		 * resolved pvp is left referenced in saved_dvp to
1394 		 * prevent the tree from being destroyed while we loop.
1395 		 */
1396 		if (makeit > 20) {
1397 			error = cache_fromdvp_try(dvp, cred, &saved_dvp);
1398 			if (error) {
1399 				kprintf("lookupdotdot(longpath) failed %d "
1400 				       "dvp %p\n", error, dvp);
1401 				nch->ncp = NULL;
1402 				break;
1403 			}
1404 			continue;
1405 		}
1406 
1407 		/*
1408 		 * Get the parent directory and resolve its ncp.
1409 		 */
1410 		if (fakename) {
1411 			kfree(fakename, M_TEMP);
1412 			fakename = NULL;
1413 		}
1414 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1415 					  &fakename);
1416 		if (error) {
1417 			kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
1418 			break;
1419 		}
1420 		vn_unlock(pvp);
1421 
1422 		/*
1423 		 * Reuse makeit as a recursion depth counter.  On success
1424 		 * nch will be fully referenced.
1425 		 */
1426 		cache_fromdvp(pvp, cred, makeit + 1, nch);
1427 		vrele(pvp);
1428 		if (nch->ncp == NULL)
1429 			break;
1430 
1431 		/*
1432 		 * Do an inefficient scan of pvp (embodied by ncp) to look
1433 		 * for dvp.  This will create a namecache record for dvp on
1434 		 * success.  We loop up to recheck on success.
1435 		 *
1436 		 * ncp and dvp are both held but not locked.
1437 		 */
1438 		error = cache_inefficient_scan(nch, cred, dvp, fakename);
1439 		if (error) {
1440 			kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
1441 				pvp, nch->ncp->nc_name, dvp);
1442 			cache_drop(nch);
1443 			/* nch was NULLed out, reload mount */
1444 			nch->mount = dvp->v_mount;
1445 			break;
1446 		}
1447 		if (ncvp_debug) {
1448 			kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
1449 				pvp, nch->ncp->nc_name);
1450 		}
1451 		cache_drop(nch);
1452 		/* nch was NULLed out, reload mount */
1453 		nch->mount = dvp->v_mount;
1454 	}
1455 
1456 	if (fakename)
1457 		kfree(fakename, M_TEMP);
1458 
1459 	/*
1460 	 * hold it for real so the mount gets a ref
1461 	 */
1462 	if (nch->ncp)
1463 		cache_hold(nch);
1464 	if (saved_dvp)
1465 		vrele(saved_dvp);
1466 	if (nch->ncp)
1467 		return (0);
1468 	return (EINVAL);
1469 }
1470 
1471 /*
1472  * Go up the chain of parent directories until we find something
1473  * we can resolve into the namecache.  This is very inefficient.
1474  */
1475 static
1476 int
1477 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1478 		  struct vnode **saved_dvp)
1479 {
1480 	struct nchandle nch;
1481 	struct vnode *pvp;
1482 	int error;
1483 	static time_t last_fromdvp_report;
1484 	char *fakename;
1485 
1486 	/*
1487 	 * Loop getting the parent directory vnode until we get something we
1488 	 * can resolve in the namecache.
1489 	 */
1490 	vref(dvp);
1491 	nch.mount = dvp->v_mount;
1492 	nch.ncp = NULL;
1493 	fakename = NULL;
1494 
1495 	for (;;) {
1496 		if (fakename) {
1497 			kfree(fakename, M_TEMP);
1498 			fakename = NULL;
1499 		}
1500 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1501 					  &fakename);
1502 		if (error) {
1503 			vrele(dvp);
1504 			break;
1505 		}
1506 		vn_unlock(pvp);
1507 		if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
1508 			_cache_hold(nch.ncp);
1509 			vrele(pvp);
1510 			break;
1511 		}
1512 		if (pvp->v_flag & VROOT) {
1513 			nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
1514 			error = cache_resolve_mp(nch.mount);
1515 			_cache_unlock(nch.ncp);
1516 			vrele(pvp);
1517 			if (error) {
1518 				_cache_drop(nch.ncp);
1519 				nch.ncp = NULL;
1520 				vrele(dvp);
1521 			}
1522 			break;
1523 		}
1524 		vrele(dvp);
1525 		dvp = pvp;
1526 	}
1527 	if (error == 0) {
1528 		if (last_fromdvp_report != time_second) {
1529 			last_fromdvp_report = time_second;
1530 			kprintf("Warning: extremely inefficient path "
1531 				"resolution on %s\n",
1532 				nch.ncp->nc_name);
1533 		}
1534 		error = cache_inefficient_scan(&nch, cred, dvp, fakename);
1535 
1536 		/*
1537 		 * Hopefully dvp now has a namecache record associated with
1538 		 * it.  Leave it referenced to prevent the kernel from
1539 		 * recycling the vnode.  Otherwise extremely long directory
1540 		 * paths could result in endless recycling.
1541 		 */
1542 		if (*saved_dvp)
1543 		    vrele(*saved_dvp);
1544 		*saved_dvp = dvp;
1545 		_cache_drop(nch.ncp);
1546 	}
1547 	if (fakename)
1548 		kfree(fakename, M_TEMP);
1549 	return (error);
1550 }
1551 
1552 /*
1553  * Do an inefficient scan of the directory represented by ncp looking for
1554  * the directory vnode dvp.  ncp must be held but not locked on entry and
1555  * will be held on return.  dvp must be refd but not locked on entry and
1556  * will remain refd on return.
1557  *
1558  * Why do this at all?  Well, due to its stateless nature the NFS server
1559  * converts file handles directly to vnodes without necessarily going through
1560  * the namecache ops that would otherwise create the namecache topology
1561  * leading to the vnode.  We could either (1) Change the namecache algorithms
1562  * to allow disconnect namecache records that are re-merged opportunistically,
1563  * or (2) Make the NFS server backtrack and scan to recover a connected
1564  * namecache topology in order to then be able to issue new API lookups.
1565  *
1566  * It turns out that (1) is a huge mess.  It takes a nice clean set of
1567  * namecache algorithms and introduces a lot of complication in every subsystem
1568  * that calls into the namecache to deal with the re-merge case, especially
1569  * since we are using the namecache to placehold negative lookups and the
1570  * vnode might not be immediately assigned. (2) is certainly far less
1571  * efficient then (1), but since we are only talking about directories here
1572  * (which are likely to remain cached), the case does not actually run all
1573  * that often and has the supreme advantage of not polluting the namecache
1574  * algorithms.
1575  *
1576  * If a fakename is supplied just construct a namecache entry using the
1577  * fake name.
1578  */
1579 static int
1580 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1581 		       struct vnode *dvp, char *fakename)
1582 {
1583 	struct nlcomponent nlc;
1584 	struct nchandle rncp;
1585 	struct dirent *den;
1586 	struct vnode *pvp;
1587 	struct vattr vat;
1588 	struct iovec iov;
1589 	struct uio uio;
1590 	int blksize;
1591 	int eofflag;
1592 	int bytes;
1593 	char *rbuf;
1594 	int error;
1595 
1596 	vat.va_blocksize = 0;
1597 	if ((error = VOP_GETATTR(dvp, &vat)) != 0)
1598 		return (error);
1599 	if ((error = cache_vref(nch, cred, &pvp)) != 0)
1600 		return (error);
1601 	if (ncvp_debug) {
1602 		kprintf("inefficient_scan: directory iosize %ld "
1603 			"vattr fileid = %lld\n",
1604 			vat.va_blocksize,
1605 			(long long)vat.va_fileid);
1606 	}
1607 
1608 	/*
1609 	 * Use the supplied fakename if not NULL.  Fake names are typically
1610 	 * not in the actual filesystem hierarchy.  This is used by HAMMER
1611 	 * to glue @@timestamp recursions together.
1612 	 */
1613 	if (fakename) {
1614 		nlc.nlc_nameptr = fakename;
1615 		nlc.nlc_namelen = strlen(fakename);
1616 		rncp = cache_nlookup(nch, &nlc);
1617 		goto done;
1618 	}
1619 
1620 	if ((blksize = vat.va_blocksize) == 0)
1621 		blksize = DEV_BSIZE;
1622 	rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
1623 	rncp.ncp = NULL;
1624 
1625 	eofflag = 0;
1626 	uio.uio_offset = 0;
1627 again:
1628 	iov.iov_base = rbuf;
1629 	iov.iov_len = blksize;
1630 	uio.uio_iov = &iov;
1631 	uio.uio_iovcnt = 1;
1632 	uio.uio_resid = blksize;
1633 	uio.uio_segflg = UIO_SYSSPACE;
1634 	uio.uio_rw = UIO_READ;
1635 	uio.uio_td = curthread;
1636 
1637 	if (ncvp_debug >= 2)
1638 		kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
1639 	error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
1640 	if (error == 0) {
1641 		den = (struct dirent *)rbuf;
1642 		bytes = blksize - uio.uio_resid;
1643 
1644 		while (bytes > 0) {
1645 			if (ncvp_debug >= 2) {
1646 				kprintf("cache_inefficient_scan: %*.*s\n",
1647 					den->d_namlen, den->d_namlen,
1648 					den->d_name);
1649 			}
1650 			if (den->d_type != DT_WHT &&
1651 			    den->d_ino == vat.va_fileid) {
1652 				if (ncvp_debug) {
1653 					kprintf("cache_inefficient_scan: "
1654 					       "MATCHED inode %lld path %s/%*.*s\n",
1655 					       (long long)vat.va_fileid,
1656 					       nch->ncp->nc_name,
1657 					       den->d_namlen, den->d_namlen,
1658 					       den->d_name);
1659 				}
1660 				nlc.nlc_nameptr = den->d_name;
1661 				nlc.nlc_namelen = den->d_namlen;
1662 				rncp = cache_nlookup(nch, &nlc);
1663 				KKASSERT(rncp.ncp != NULL);
1664 				break;
1665 			}
1666 			bytes -= _DIRENT_DIRSIZ(den);
1667 			den = _DIRENT_NEXT(den);
1668 		}
1669 		if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
1670 			goto again;
1671 	}
1672 	kfree(rbuf, M_TEMP);
1673 done:
1674 	vrele(pvp);
1675 	if (rncp.ncp) {
1676 		if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
1677 			_cache_setvp(rncp.mount, rncp.ncp, dvp);
1678 			if (ncvp_debug >= 2) {
1679 				kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
1680 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
1681 			}
1682 		} else {
1683 			if (ncvp_debug >= 2) {
1684 				kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
1685 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
1686 					rncp.ncp->nc_vp);
1687 			}
1688 		}
1689 		if (rncp.ncp->nc_vp == NULL)
1690 			error = rncp.ncp->nc_error;
1691 		/*
1692 		 * Release rncp after a successful nlookup.  rncp was fully
1693 		 * referenced.
1694 		 */
1695 		cache_put(&rncp);
1696 	} else {
1697 		kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
1698 			dvp, nch->ncp->nc_name);
1699 		error = ENOENT;
1700 	}
1701 	return (error);
1702 }
1703 
1704 /*
1705  * Zap a namecache entry.  The ncp is unconditionally set to an unresolved
1706  * state, which disassociates it from its vnode or ncneglist.
1707  *
1708  * Then, if there are no additional references to the ncp and no children,
1709  * the ncp is removed from the topology and destroyed.  This function will
1710  * also run through the nc_parent chain and destroy parent ncps if possible.
1711  * As a side benefit, it turns out the only conditions that allow running
1712  * up the chain are also the conditions to ensure no deadlock will occur.
1713  *
1714  * References and/or children may exist if the ncp is in the middle of the
1715  * topology, preventing the ncp from being destroyed.
1716  *
1717  * This function must be called with the ncp held and locked and will unlock
1718  * and drop it during zapping.
1719  */
1720 static void
1721 cache_zap(struct namecache *ncp)
1722 {
1723 	struct namecache *par;
1724 
1725 	/*
1726 	 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
1727 	 */
1728 	_cache_setunresolved(ncp);
1729 
1730 	/*
1731 	 * Try to scrap the entry and possibly tail-recurse on its parent.
1732 	 * We only scrap unref'd (other then our ref) unresolved entries,
1733 	 * we do not scrap 'live' entries.
1734 	 */
1735 	while (ncp->nc_flag & NCF_UNRESOLVED) {
1736 		/*
1737 		 * Someone other then us has a ref, stop.
1738 		 */
1739 		if (ncp->nc_refs > 1)
1740 			goto done;
1741 
1742 		/*
1743 		 * We have children, stop.
1744 		 */
1745 		if (!TAILQ_EMPTY(&ncp->nc_list))
1746 			goto done;
1747 
1748 		/*
1749 		 * Remove ncp from the topology: hash table and parent linkage.
1750 		 */
1751 		if (ncp->nc_flag & NCF_HASHED) {
1752 			ncp->nc_flag &= ~NCF_HASHED;
1753 			LIST_REMOVE(ncp, nc_hash);
1754 		}
1755 		if ((par = ncp->nc_parent) != NULL) {
1756 			par = _cache_hold(par);
1757 			TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
1758 			ncp->nc_parent = NULL;
1759 			if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
1760 				vdrop(par->nc_vp);
1761 		}
1762 
1763 		/*
1764 		 * ncp should not have picked up any refs.  Physically
1765 		 * destroy the ncp.
1766 		 */
1767 		KKASSERT(ncp->nc_refs == 1);
1768 		--numunres;
1769 		/* _cache_unlock(ncp) not required */
1770 		ncp->nc_refs = -1;	/* safety */
1771 		if (ncp->nc_name)
1772 			kfree(ncp->nc_name, M_VFSCACHE);
1773 		kfree(ncp, M_VFSCACHE);
1774 
1775 		/*
1776 		 * Loop on the parent (it may be NULL).  Only bother looping
1777 		 * if the parent has a single ref (ours), which also means
1778 		 * we can lock it trivially.
1779 		 */
1780 		ncp = par;
1781 		if (ncp == NULL)
1782 			return;
1783 		if (ncp->nc_refs != 1) {
1784 			_cache_drop(ncp);
1785 			return;
1786 		}
1787 		KKASSERT(par->nc_exlocks == 0);
1788 		_cache_lock(ncp);
1789 	}
1790 done:
1791 	_cache_unlock(ncp);
1792 	atomic_subtract_int(&ncp->nc_refs, 1);
1793 }
1794 
1795 static enum { CHI_LOW, CHI_HIGH } cache_hysteresis_state = CHI_LOW;
1796 
1797 static __inline
1798 void
1799 cache_hysteresis(void)
1800 {
1801 	/*
1802 	 * Don't cache too many negative hits.  We use hysteresis to reduce
1803 	 * the impact on the critical path.
1804 	 */
1805 	switch(cache_hysteresis_state) {
1806 	case CHI_LOW:
1807 		if (numneg > MINNEG && numneg * ncnegfactor > numcache) {
1808 			cache_cleanneg(10);
1809 			cache_hysteresis_state = CHI_HIGH;
1810 		}
1811 		break;
1812 	case CHI_HIGH:
1813 		if (numneg > MINNEG * 9 / 10 &&
1814 		    numneg * ncnegfactor * 9 / 10 > numcache
1815 		) {
1816 			cache_cleanneg(10);
1817 		} else {
1818 			cache_hysteresis_state = CHI_LOW;
1819 		}
1820 		break;
1821 	}
1822 }
1823 
1824 /*
1825  * NEW NAMECACHE LOOKUP API
1826  *
1827  * Lookup an entry in the cache.  A locked, referenced, non-NULL
1828  * entry is *always* returned, even if the supplied component is illegal.
1829  * The resulting namecache entry should be returned to the system with
1830  * cache_put() or _cache_unlock() + cache_drop().
1831  *
1832  * namecache locks are recursive but care must be taken to avoid lock order
1833  * reversals.
1834  *
1835  * Nobody else will be able to manipulate the associated namespace (e.g.
1836  * create, delete, rename, rename-target) until the caller unlocks the
1837  * entry.
1838  *
1839  * The returned entry will be in one of three states:  positive hit (non-null
1840  * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
1841  * Unresolved entries must be resolved through the filesystem to associate the
1842  * vnode and/or determine whether a positive or negative hit has occured.
1843  *
1844  * It is not necessary to lock a directory in order to lock namespace under
1845  * that directory.  In fact, it is explicitly not allowed to do that.  A
1846  * directory is typically only locked when being created, renamed, or
1847  * destroyed.
1848  *
1849  * The directory (par) may be unresolved, in which case any returned child
1850  * will likely also be marked unresolved.  Likely but not guarenteed.  Since
1851  * the filesystem lookup requires a resolved directory vnode the caller is
1852  * responsible for resolving the namecache chain top-down.  This API
1853  * specifically allows whole chains to be created in an unresolved state.
1854  */
1855 struct nchandle
1856 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
1857 {
1858 	struct nchandle nch;
1859 	struct namecache *ncp;
1860 	struct namecache *new_ncp;
1861 	struct nchashhead *nchpp;
1862 	struct mount *mp;
1863 	u_int32_t hash;
1864 	globaldata_t gd;
1865 
1866 	numcalls++;
1867 	gd = mycpu;
1868 	mp = par_nch->mount;
1869 
1870 	/*
1871 	 * Try to locate an existing entry
1872 	 */
1873 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
1874 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
1875 	new_ncp = NULL;
1876 restart:
1877 	LIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1878 		numchecks++;
1879 
1880 		/*
1881 		 * Break out if we find a matching entry.  Note that
1882 		 * UNRESOLVED entries may match, but DESTROYED entries
1883 		 * do not.
1884 		 */
1885 		if (ncp->nc_parent == par_nch->ncp &&
1886 		    ncp->nc_nlen == nlc->nlc_namelen &&
1887 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
1888 		    (ncp->nc_flag & NCF_DESTROYED) == 0
1889 		) {
1890 			if (_cache_get_nonblock(ncp) == 0) {
1891 				_cache_auto_unresolve(mp, ncp);
1892 				if (new_ncp)
1893 					_cache_free(new_ncp);
1894 				goto found;
1895 			}
1896 			_cache_get(ncp);
1897 			_cache_put(ncp);
1898 			goto restart;
1899 		}
1900 	}
1901 
1902 	/*
1903 	 * We failed to locate an entry, create a new entry and add it to
1904 	 * the cache.  We have to relookup after possibly blocking in
1905 	 * malloc.
1906 	 */
1907 	if (new_ncp == NULL) {
1908 		new_ncp = cache_alloc(nlc->nlc_namelen);
1909 		goto restart;
1910 	}
1911 
1912 	ncp = new_ncp;
1913 
1914 	/*
1915 	 * Initialize as a new UNRESOLVED entry, lock (non-blocking),
1916 	 * and link to the parent.  The mount point is usually inherited
1917 	 * from the parent unless this is a special case such as a mount
1918 	 * point where nlc_namelen is 0.   If nlc_namelen is 0 nc_name will
1919 	 * be NULL.
1920 	 */
1921 	if (nlc->nlc_namelen) {
1922 		bcopy(nlc->nlc_nameptr, ncp->nc_name, nlc->nlc_namelen);
1923 		ncp->nc_name[nlc->nlc_namelen] = 0;
1924 	}
1925 	nchpp = NCHHASH(hash);
1926 	LIST_INSERT_HEAD(nchpp, ncp, nc_hash);
1927 	ncp->nc_flag |= NCF_HASHED;
1928 	cache_link_parent(ncp, par_nch->ncp);
1929 found:
1930 	/*
1931 	 * stats and namecache size management
1932 	 */
1933 	if (ncp->nc_flag & NCF_UNRESOLVED)
1934 		++gd->gd_nchstats->ncs_miss;
1935 	else if (ncp->nc_vp)
1936 		++gd->gd_nchstats->ncs_goodhits;
1937 	else
1938 		++gd->gd_nchstats->ncs_neghits;
1939 	cache_hysteresis();
1940 	nch.mount = mp;
1941 	nch.ncp = ncp;
1942 	++nch.mount->mnt_refs;
1943 	return(nch);
1944 }
1945 
1946 /*
1947  * The namecache entry is marked as being used as a mount point.
1948  * Locate the mount if it is visible to the caller.
1949  */
1950 struct findmount_info {
1951 	struct mount *result;
1952 	struct mount *nch_mount;
1953 	struct namecache *nch_ncp;
1954 };
1955 
1956 static
1957 int
1958 cache_findmount_callback(struct mount *mp, void *data)
1959 {
1960 	struct findmount_info *info = data;
1961 
1962 	/*
1963 	 * Check the mount's mounted-on point against the passed nch.
1964 	 */
1965 	if (mp->mnt_ncmounton.mount == info->nch_mount &&
1966 	    mp->mnt_ncmounton.ncp == info->nch_ncp
1967 	) {
1968 	    info->result = mp;
1969 	    return(-1);
1970 	}
1971 	return(0);
1972 }
1973 
1974 struct mount *
1975 cache_findmount(struct nchandle *nch)
1976 {
1977 	struct findmount_info info;
1978 
1979 	info.result = NULL;
1980 	info.nch_mount = nch->mount;
1981 	info.nch_ncp = nch->ncp;
1982 	mountlist_scan(cache_findmount_callback, &info,
1983 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1984 	return(info.result);
1985 }
1986 
1987 /*
1988  * Resolve an unresolved namecache entry, generally by looking it up.
1989  * The passed ncp must be locked and refd.
1990  *
1991  * Theoretically since a vnode cannot be recycled while held, and since
1992  * the nc_parent chain holds its vnode as long as children exist, the
1993  * direct parent of the cache entry we are trying to resolve should
1994  * have a valid vnode.  If not then generate an error that we can
1995  * determine is related to a resolver bug.
1996  *
1997  * However, if a vnode was in the middle of a recyclement when the NCP
1998  * got locked, ncp->nc_vp might point to a vnode that is about to become
1999  * invalid.  cache_resolve() handles this case by unresolving the entry
2000  * and then re-resolving it.
2001  *
2002  * Note that successful resolution does not necessarily return an error
2003  * code of 0.  If the ncp resolves to a negative cache hit then ENOENT
2004  * will be returned.
2005  */
2006 int
2007 cache_resolve(struct nchandle *nch, struct ucred *cred)
2008 {
2009 	struct namecache *par;
2010 	struct namecache *ncp;
2011 	struct nchandle nctmp;
2012 	struct mount *mp;
2013 	struct vnode *dvp;
2014 	int error;
2015 
2016 	ncp = nch->ncp;
2017 	mp = nch->mount;
2018 restart:
2019 	/*
2020 	 * If the ncp is already resolved we have nothing to do.  However,
2021 	 * we do want to guarentee that a usable vnode is returned when
2022 	 * a vnode is present, so make sure it hasn't been reclaimed.
2023 	 */
2024 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
2025 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
2026 			_cache_setunresolved(ncp);
2027 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
2028 			return (ncp->nc_error);
2029 	}
2030 
2031 	/*
2032 	 * Mount points need special handling because the parent does not
2033 	 * belong to the same filesystem as the ncp.
2034 	 */
2035 	if (ncp == mp->mnt_ncmountpt.ncp)
2036 		return (cache_resolve_mp(mp));
2037 
2038 	/*
2039 	 * We expect an unbroken chain of ncps to at least the mount point,
2040 	 * and even all the way to root (but this code doesn't have to go
2041 	 * past the mount point).
2042 	 */
2043 	if (ncp->nc_parent == NULL) {
2044 		kprintf("EXDEV case 1 %p %*.*s\n", ncp,
2045 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2046 		ncp->nc_error = EXDEV;
2047 		return(ncp->nc_error);
2048 	}
2049 
2050 	/*
2051 	 * The vp's of the parent directories in the chain are held via vhold()
2052 	 * due to the existance of the child, and should not disappear.
2053 	 * However, there are cases where they can disappear:
2054 	 *
2055 	 *	- due to filesystem I/O errors.
2056 	 *	- due to NFS being stupid about tracking the namespace and
2057 	 *	  destroys the namespace for entire directories quite often.
2058 	 *	- due to forced unmounts.
2059 	 *	- due to an rmdir (parent will be marked DESTROYED)
2060 	 *
2061 	 * When this occurs we have to track the chain backwards and resolve
2062 	 * it, looping until the resolver catches up to the current node.  We
2063 	 * could recurse here but we might run ourselves out of kernel stack
2064 	 * so we do it in a more painful manner.  This situation really should
2065 	 * not occur all that often, or if it does not have to go back too
2066 	 * many nodes to resolve the ncp.
2067 	 */
2068 	while ((dvp = cache_dvpref(ncp)) == NULL) {
2069 		/*
2070 		 * This case can occur if a process is CD'd into a
2071 		 * directory which is then rmdir'd.  If the parent is marked
2072 		 * destroyed there is no point trying to resolve it.
2073 		 */
2074 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
2075 			return(ENOENT);
2076 
2077 		par = ncp->nc_parent;
2078 		while (par->nc_parent && par->nc_parent->nc_vp == NULL)
2079 			par = par->nc_parent;
2080 		if (par->nc_parent == NULL) {
2081 			kprintf("EXDEV case 2 %*.*s\n",
2082 				par->nc_nlen, par->nc_nlen, par->nc_name);
2083 			return (EXDEV);
2084 		}
2085 		kprintf("[diagnostic] cache_resolve: had to recurse on %*.*s\n",
2086 			par->nc_nlen, par->nc_nlen, par->nc_name);
2087 		/*
2088 		 * The parent is not set in stone, ref and lock it to prevent
2089 		 * it from disappearing.  Also note that due to renames it
2090 		 * is possible for our ncp to move and for par to no longer
2091 		 * be one of its parents.  We resolve it anyway, the loop
2092 		 * will handle any moves.
2093 		 */
2094 		_cache_get(par);
2095 		if (par == nch->mount->mnt_ncmountpt.ncp) {
2096 			cache_resolve_mp(nch->mount);
2097 		} else if ((dvp = cache_dvpref(par)) == NULL) {
2098 			kprintf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name);
2099 			_cache_put(par);
2100 			continue;
2101 		} else {
2102 			if (par->nc_flag & NCF_UNRESOLVED) {
2103 				nctmp.mount = mp;
2104 				nctmp.ncp = par;
2105 				par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2106 			}
2107 			vrele(dvp);
2108 		}
2109 		if ((error = par->nc_error) != 0) {
2110 			if (par->nc_error != EAGAIN) {
2111 				kprintf("EXDEV case 3 %*.*s error %d\n",
2112 				    par->nc_nlen, par->nc_nlen, par->nc_name,
2113 				    par->nc_error);
2114 				_cache_put(par);
2115 				return(error);
2116 			}
2117 			kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
2118 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
2119 		}
2120 		_cache_put(par);
2121 		/* loop */
2122 	}
2123 
2124 	/*
2125 	 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
2126 	 * ncp's and reattach them.  If this occurs the original ncp is marked
2127 	 * EAGAIN to force a relookup.
2128 	 *
2129 	 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
2130 	 * ncp must already be resolved.
2131 	 */
2132 	if (dvp) {
2133 		nctmp.mount = mp;
2134 		nctmp.ncp = ncp;
2135 		ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2136 		vrele(dvp);
2137 	} else {
2138 		ncp->nc_error = EPERM;
2139 	}
2140 	if (ncp->nc_error == EAGAIN) {
2141 		kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
2142 			ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2143 		goto restart;
2144 	}
2145 	return(ncp->nc_error);
2146 }
2147 
2148 /*
2149  * Resolve the ncp associated with a mount point.  Such ncp's almost always
2150  * remain resolved and this routine is rarely called.  NFS MPs tends to force
2151  * re-resolution more often due to its mac-truck-smash-the-namecache
2152  * method of tracking namespace changes.
2153  *
2154  * The semantics for this call is that the passed ncp must be locked on
2155  * entry and will be locked on return.  However, if we actually have to
2156  * resolve the mount point we temporarily unlock the entry in order to
2157  * avoid race-to-root deadlocks due to e.g. dead NFS mounts.  Because of
2158  * the unlock we have to recheck the flags after we relock.
2159  */
2160 static int
2161 cache_resolve_mp(struct mount *mp)
2162 {
2163 	struct namecache *ncp = mp->mnt_ncmountpt.ncp;
2164 	struct vnode *vp;
2165 	int error;
2166 
2167 	KKASSERT(mp != NULL);
2168 
2169 	/*
2170 	 * If the ncp is already resolved we have nothing to do.  However,
2171 	 * we do want to guarentee that a usable vnode is returned when
2172 	 * a vnode is present, so make sure it hasn't been reclaimed.
2173 	 */
2174 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
2175 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
2176 			_cache_setunresolved(ncp);
2177 	}
2178 
2179 	if (ncp->nc_flag & NCF_UNRESOLVED) {
2180 		_cache_unlock(ncp);
2181 		while (vfs_busy(mp, 0))
2182 			;
2183 		error = VFS_ROOT(mp, &vp);
2184 		_cache_lock(ncp);
2185 
2186 		/*
2187 		 * recheck the ncp state after relocking.
2188 		 */
2189 		if (ncp->nc_flag & NCF_UNRESOLVED) {
2190 			ncp->nc_error = error;
2191 			if (error == 0) {
2192 				_cache_setvp(mp, ncp, vp);
2193 				vput(vp);
2194 			} else {
2195 				kprintf("[diagnostic] cache_resolve_mp: failed"
2196 					" to resolve mount %p err=%d ncp=%p\n",
2197 					mp, error, ncp);
2198 				_cache_setvp(mp, ncp, NULL);
2199 			}
2200 		} else if (error == 0) {
2201 			vput(vp);
2202 		}
2203 		vfs_unbusy(mp);
2204 	}
2205 	return(ncp->nc_error);
2206 }
2207 
2208 void
2209 cache_cleanneg(int count)
2210 {
2211 	struct namecache *ncp;
2212 
2213 	/*
2214 	 * Automode from the vnlru proc - clean out 10% of the negative cache
2215 	 * entries.
2216 	 */
2217 	if (count == 0)
2218 		count = numneg / 10 + 1;
2219 
2220 	/*
2221 	 * Attempt to clean out the specified number of negative cache
2222 	 * entries.
2223 	 */
2224 	while (count) {
2225 		ncp = TAILQ_FIRST(&ncneglist);
2226 		if (ncp == NULL) {
2227 			KKASSERT(numneg == 0);
2228 			break;
2229 		}
2230 		TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
2231 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
2232 		if (_cache_get_nonblock(ncp) == 0)
2233 			cache_zap(ncp);
2234 		--count;
2235 	}
2236 }
2237 
2238 /*
2239  * Rehash a ncp.  Rehashing is typically required if the name changes (should
2240  * not generally occur) or the parent link changes.  This function will
2241  * unhash the ncp if the ncp is no longer hashable.
2242  */
2243 static void
2244 _cache_rehash(struct namecache *ncp)
2245 {
2246 	struct nchashhead *nchpp;
2247 	u_int32_t hash;
2248 
2249 	if (ncp->nc_flag & NCF_HASHED) {
2250 		ncp->nc_flag &= ~NCF_HASHED;
2251 		LIST_REMOVE(ncp, nc_hash);
2252 	}
2253 	if (ncp->nc_nlen && ncp->nc_parent) {
2254 		hash = fnv_32_buf(ncp->nc_name, ncp->nc_nlen, FNV1_32_INIT);
2255 		hash = fnv_32_buf(&ncp->nc_parent,
2256 					sizeof(ncp->nc_parent), hash);
2257 		nchpp = NCHHASH(hash);
2258 		LIST_INSERT_HEAD(nchpp, ncp, nc_hash);
2259 		ncp->nc_flag |= NCF_HASHED;
2260 	}
2261 }
2262 
2263 /*
2264  * Name cache initialization, from vfsinit() when we are booting
2265  */
2266 void
2267 nchinit(void)
2268 {
2269 	int i;
2270 	globaldata_t gd;
2271 
2272 	/* initialise per-cpu namecache effectiveness statistics. */
2273 	for (i = 0; i < ncpus; ++i) {
2274 		gd = globaldata_find(i);
2275 		gd->gd_nchstats = &nchstats[i];
2276 	}
2277 	TAILQ_INIT(&ncneglist);
2278 	nchashtbl = hashinit(desiredvnodes*2, M_VFSCACHE, &nchash);
2279 	nclockwarn = 5 * hz;
2280 }
2281 
2282 /*
2283  * Called from start_init() to bootstrap the root filesystem.  Returns
2284  * a referenced, unlocked namecache record.
2285  */
2286 void
2287 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
2288 {
2289 	nch->ncp = cache_alloc(0);
2290 	nch->mount = mp;
2291 	++mp->mnt_refs;
2292 	if (vp)
2293 		_cache_setvp(nch->mount, nch->ncp, vp);
2294 }
2295 
2296 /*
2297  * vfs_cache_setroot()
2298  *
2299  *	Create an association between the root of our namecache and
2300  *	the root vnode.  This routine may be called several times during
2301  *	booting.
2302  *
2303  *	If the caller intends to save the returned namecache pointer somewhere
2304  *	it must cache_hold() it.
2305  */
2306 void
2307 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
2308 {
2309 	struct vnode *ovp;
2310 	struct nchandle onch;
2311 
2312 	ovp = rootvnode;
2313 	onch = rootnch;
2314 	rootvnode = nvp;
2315 	if (nch)
2316 		rootnch = *nch;
2317 	else
2318 		cache_zero(&rootnch);
2319 	if (ovp)
2320 		vrele(ovp);
2321 	if (onch.ncp)
2322 		cache_drop(&onch);
2323 }
2324 
2325 /*
2326  * XXX OLD API COMPAT FUNCTION.  This really messes up the new namecache
2327  * topology and is being removed as quickly as possible.  The new VOP_N*()
2328  * API calls are required to make specific adjustments using the supplied
2329  * ncp pointers rather then just bogusly purging random vnodes.
2330  *
2331  * Invalidate all namecache entries to a particular vnode as well as
2332  * any direct children of that vnode in the namecache.  This is a
2333  * 'catch all' purge used by filesystems that do not know any better.
2334  *
2335  * Note that the linkage between the vnode and its namecache entries will
2336  * be removed, but the namecache entries themselves might stay put due to
2337  * active references from elsewhere in the system or due to the existance of
2338  * the children.   The namecache topology is left intact even if we do not
2339  * know what the vnode association is.  Such entries will be marked
2340  * NCF_UNRESOLVED.
2341  */
2342 void
2343 cache_purge(struct vnode *vp)
2344 {
2345 	cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
2346 }
2347 
2348 /*
2349  * Flush all entries referencing a particular filesystem.
2350  *
2351  * Since we need to check it anyway, we will flush all the invalid
2352  * entries at the same time.
2353  */
2354 #if 0
2355 
2356 void
2357 cache_purgevfs(struct mount *mp)
2358 {
2359 	struct nchashhead *nchpp;
2360 	struct namecache *ncp, *nnp;
2361 
2362 	/*
2363 	 * Scan hash tables for applicable entries.
2364 	 */
2365 	for (nchpp = &nchashtbl[nchash]; nchpp >= nchashtbl; nchpp--) {
2366 		ncp = LIST_FIRST(nchpp);
2367 		if (ncp)
2368 			_cache_hold(ncp);
2369 		while (ncp) {
2370 			nnp = LIST_NEXT(ncp, nc_hash);
2371 			if (nnp)
2372 				_cache_hold(nnp);
2373 			if (ncp->nc_mount == mp) {
2374 				_cache_lock(ncp);
2375 				cache_zap(ncp);
2376 			} else {
2377 				_cache_drop(ncp);
2378 			}
2379 			ncp = nnp;
2380 		}
2381 	}
2382 }
2383 
2384 #endif
2385 
2386 /*
2387  * Create a new (theoretically) unique fsmid
2388  */
2389 int64_t
2390 cache_getnewfsmid(void)
2391 {
2392 	static int fsmid_roller;
2393 	int64_t fsmid;
2394 
2395 	++fsmid_roller;
2396 	fsmid = ((int64_t)time_second << 32) |
2397 			(fsmid_roller & 0x7FFFFFFF);
2398 	return (fsmid);
2399 }
2400 
2401 
2402 static int disablecwd;
2403 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0, "");
2404 
2405 static u_long numcwdcalls; STATNODE(CTLFLAG_RD, numcwdcalls, &numcwdcalls);
2406 static u_long numcwdfail1; STATNODE(CTLFLAG_RD, numcwdfail1, &numcwdfail1);
2407 static u_long numcwdfail2; STATNODE(CTLFLAG_RD, numcwdfail2, &numcwdfail2);
2408 static u_long numcwdfail3; STATNODE(CTLFLAG_RD, numcwdfail3, &numcwdfail3);
2409 static u_long numcwdfail4; STATNODE(CTLFLAG_RD, numcwdfail4, &numcwdfail4);
2410 static u_long numcwdfound; STATNODE(CTLFLAG_RD, numcwdfound, &numcwdfound);
2411 
2412 int
2413 sys___getcwd(struct __getcwd_args *uap)
2414 {
2415 	int buflen;
2416 	int error;
2417 	char *buf;
2418 	char *bp;
2419 
2420 	if (disablecwd)
2421 		return (ENODEV);
2422 
2423 	buflen = uap->buflen;
2424 	if (buflen == 0)
2425 		return (EINVAL);
2426 	if (buflen > MAXPATHLEN)
2427 		buflen = MAXPATHLEN;
2428 
2429 	buf = kmalloc(buflen, M_TEMP, M_WAITOK);
2430 	bp = kern_getcwd(buf, buflen, &error);
2431 	if (error == 0)
2432 		error = copyout(bp, uap->buf, strlen(bp) + 1);
2433 	kfree(buf, M_TEMP);
2434 	return (error);
2435 }
2436 
2437 char *
2438 kern_getcwd(char *buf, size_t buflen, int *error)
2439 {
2440 	struct proc *p = curproc;
2441 	char *bp;
2442 	int i, slash_prefixed;
2443 	struct filedesc *fdp;
2444 	struct nchandle nch;
2445 
2446 	numcwdcalls++;
2447 	bp = buf;
2448 	bp += buflen - 1;
2449 	*bp = '\0';
2450 	fdp = p->p_fd;
2451 	slash_prefixed = 0;
2452 
2453 	nch = fdp->fd_ncdir;
2454 	while (nch.ncp && (nch.ncp != fdp->fd_nrdir.ncp ||
2455 	       nch.mount != fdp->fd_nrdir.mount)
2456 	) {
2457 		/*
2458 		 * While traversing upwards if we encounter the root
2459 		 * of the current mount we have to skip to the mount point
2460 		 * in the underlying filesystem.
2461 		 */
2462 		if (nch.ncp == nch.mount->mnt_ncmountpt.ncp) {
2463 			nch = nch.mount->mnt_ncmounton;
2464 			continue;
2465 		}
2466 
2467 		/*
2468 		 * Prepend the path segment
2469 		 */
2470 		for (i = nch.ncp->nc_nlen - 1; i >= 0; i--) {
2471 			if (bp == buf) {
2472 				numcwdfail4++;
2473 				*error = ERANGE;
2474 				return(NULL);
2475 			}
2476 			*--bp = nch.ncp->nc_name[i];
2477 		}
2478 		if (bp == buf) {
2479 			numcwdfail4++;
2480 			*error = ERANGE;
2481 			return(NULL);
2482 		}
2483 		*--bp = '/';
2484 		slash_prefixed = 1;
2485 
2486 		/*
2487 		 * Go up a directory.  This isn't a mount point so we don't
2488 		 * have to check again.
2489 		 */
2490 		nch.ncp = nch.ncp->nc_parent;
2491 	}
2492 	if (nch.ncp == NULL) {
2493 		numcwdfail2++;
2494 		*error = ENOENT;
2495 		return(NULL);
2496 	}
2497 	if (!slash_prefixed) {
2498 		if (bp == buf) {
2499 			numcwdfail4++;
2500 			*error = ERANGE;
2501 			return(NULL);
2502 		}
2503 		*--bp = '/';
2504 	}
2505 	numcwdfound++;
2506 	*error = 0;
2507 	return (bp);
2508 }
2509 
2510 /*
2511  * Thus begins the fullpath magic.
2512  */
2513 
2514 #undef STATNODE
2515 #define STATNODE(name)							\
2516 	static u_int name;						\
2517 	SYSCTL_UINT(_vfs_cache, OID_AUTO, name, CTLFLAG_RD, &name, 0, "")
2518 
2519 static int disablefullpath;
2520 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
2521     &disablefullpath, 0, "");
2522 
2523 STATNODE(numfullpathcalls);
2524 STATNODE(numfullpathfail1);
2525 STATNODE(numfullpathfail2);
2526 STATNODE(numfullpathfail3);
2527 STATNODE(numfullpathfail4);
2528 STATNODE(numfullpathfound);
2529 
2530 int
2531 cache_fullpath(struct proc *p, struct nchandle *nchp, char **retbuf, char **freebuf)
2532 {
2533 	char *bp, *buf;
2534 	int i, slash_prefixed;
2535 	struct nchandle fd_nrdir;
2536 	struct nchandle nch;
2537 
2538 	numfullpathcalls--;
2539 
2540 	*retbuf = NULL;
2541 	*freebuf = NULL;
2542 
2543 	buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
2544 	bp = buf + MAXPATHLEN - 1;
2545 	*bp = '\0';
2546 	if (p != NULL)
2547 		fd_nrdir = p->p_fd->fd_nrdir;
2548 	else
2549 		fd_nrdir = rootnch;
2550 	slash_prefixed = 0;
2551 	nch = *nchp;
2552 
2553 	while (nch.ncp &&
2554 	       (nch.ncp != fd_nrdir.ncp || nch.mount != fd_nrdir.mount)
2555 	) {
2556 		/*
2557 		 * While traversing upwards if we encounter the root
2558 		 * of the current mount we have to skip to the mount point.
2559 		 */
2560 		if (nch.ncp == nch.mount->mnt_ncmountpt.ncp) {
2561 			nch = nch.mount->mnt_ncmounton;
2562 			continue;
2563 		}
2564 
2565 		/*
2566 		 * Prepend the path segment
2567 		 */
2568 		for (i = nch.ncp->nc_nlen - 1; i >= 0; i--) {
2569 			if (bp == buf) {
2570 				numfullpathfail4++;
2571 				kfree(buf, M_TEMP);
2572 				return(ENOMEM);
2573 			}
2574 			*--bp = nch.ncp->nc_name[i];
2575 		}
2576 		if (bp == buf) {
2577 			numfullpathfail4++;
2578 			kfree(buf, M_TEMP);
2579 			return(ENOMEM);
2580 		}
2581 		*--bp = '/';
2582 		slash_prefixed = 1;
2583 
2584 		/*
2585 		 * Go up a directory.  This isn't a mount point so we don't
2586 		 * have to check again.
2587 		 */
2588 		nch.ncp = nch.ncp->nc_parent;
2589 	}
2590 	if (nch.ncp == NULL) {
2591 		numfullpathfail2++;
2592 		kfree(buf, M_TEMP);
2593 		return(ENOENT);
2594 	}
2595 
2596 	if (!slash_prefixed) {
2597 		if (bp == buf) {
2598 			numfullpathfail4++;
2599 			kfree(buf, M_TEMP);
2600 			return(ENOMEM);
2601 		}
2602 		*--bp = '/';
2603 	}
2604 	numfullpathfound++;
2605 	*retbuf = bp;
2606 	*freebuf = buf;
2607 
2608 	return(0);
2609 }
2610 
2611 int
2612 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf, char **freebuf)
2613 {
2614 	struct namecache *ncp;
2615 	struct nchandle nch;
2616 
2617 	numfullpathcalls++;
2618 	if (disablefullpath)
2619 		return (ENODEV);
2620 
2621 	if (p == NULL)
2622 		return (EINVAL);
2623 
2624 	/* vn is NULL, client wants us to use p->p_textvp */
2625 	if (vn == NULL) {
2626 		if ((vn = p->p_textvp) == NULL)
2627 			return (EINVAL);
2628 	}
2629 	TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
2630 		if (ncp->nc_nlen)
2631 			break;
2632 	}
2633 	if (ncp == NULL)
2634 		return (EINVAL);
2635 
2636 	numfullpathcalls--;
2637 	nch.ncp = ncp;;
2638 	nch.mount = vn->v_mount;
2639 	return(cache_fullpath(p, &nch, retbuf, freebuf));
2640 }
2641