xref: /dragonfly/sys/kern/vfs_cache.c (revision 2dac8a3e)
1 /*
2  * Copyright (c) 2003-2020 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993, 1995
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * Poul-Henning Kamp of the FreeBSD Project.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. Neither the name of the University nor the names of its contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/uio.h>
68 #include <sys/kernel.h>
69 #include <sys/sysctl.h>
70 #include <sys/mount.h>
71 #include <sys/vnode.h>
72 #include <sys/malloc.h>
73 #include <sys/sysproto.h>
74 #include <sys/spinlock.h>
75 #include <sys/proc.h>
76 #include <sys/nlookup.h>
77 #include <sys/filedesc.h>
78 #include <sys/fnv_hash.h>
79 #include <sys/globaldata.h>
80 #include <sys/kern_syscall.h>
81 #include <sys/dirent.h>
82 #include <ddb/ddb.h>
83 
84 #include <sys/spinlock2.h>
85 
86 #define MAX_RECURSION_DEPTH	64
87 
88 /*
89  * Random lookups in the cache are accomplished with a hash table using
90  * a hash key of (nc_src_vp, name).  Each hash chain has its own spin lock,
91  * but we use the ncp->update counter trick to avoid acquiring any
92  * contestable spin-locks during a lookup.
93  *
94  * Negative entries may exist and correspond to resolved namecache
95  * structures where nc_vp is NULL.  In a negative entry, NCF_WHITEOUT
96  * will be set if the entry corresponds to a whited-out directory entry
97  * (verses simply not finding the entry at all).  pcpu_ncache[n].neg_list
98  * is locked via pcpu_ncache[n].neg_spin;
99  *
100  * MPSAFE RULES:
101  *
102  * (1) ncp's typically have at least a nc_refs of 1, and usually 2.  One
103  *     is applicable to direct lookups via the hash table nchpp or via
104  *     nc_list (the two are added or removed together).  Removal of the ncp
105  *     from the hash table drops this reference.  The second is applicable
106  *     to vp->v_namecache linkages (or negative list linkages), and removal
107  *     of the ncp from these lists drops this reference.
108  *
109  *     On the 1->0 transition of nc_refs the ncp can no longer be referenced
110  *     and must be destroyed.  No other thread should have access to it at
111  *     this point so it can be safely locked and freed without any deadlock
112  *     fears.
113  *
114  *     The 1->0 transition can occur at almost any juncture and so cache_drop()
115  *     deals with it directly.
116  *
117  * (2) Once the 1->0 transition occurs, the entity that caused the transition
118  *     will be responsible for destroying the ncp.  The ncp cannot be on any
119  *     list or hash at this time, or be held by anyone other than the caller
120  *     responsible for the transition.
121  *
122  * (3) A ncp must be locked in order to modify it.
123  *
124  * (5) ncp locks are ordered, child-to-parent.  Child first, then parent.
125  *     This may seem backwards but forward-scans use the hash table and thus
126  *     can hold the parent unlocked while traversing downward.  Deletions,
127  *     on the other-hand, tend to propagate bottom-up since the ref on the
128  *     is dropped as the children go away.
129  *
130  * (6) Both parent and child must be locked in order to enter the child onto
131  *     the parent's nc_list.
132  */
133 
134 /*
135  * Structures associated with name cacheing.
136  */
137 #define NCHHASH(hash)		(&nchashtbl[(hash) & nchash])
138 #define MINNEG			1024
139 #define MINPOS			1024
140 #define NCMOUNT_NUMCACHE	(16384)	/* power of 2 */
141 #define NCMOUNT_SET		(8)	/* power of 2 */
142 
143 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
144 
145 TAILQ_HEAD(nchash_list, namecache);
146 
147 /*
148  * Don't cachealign, but at least pad to 32 bytes so entries
149  * don't cross a cache line.
150  */
151 struct nchash_head {
152        struct nchash_list list;	/* 16 bytes */
153        struct spinlock	spin;	/* 8 bytes */
154        long	pad01;		/* 8 bytes */
155 };
156 
157 struct ncmount_cache {
158 	struct spinlock	spin;
159 	struct namecache *ncp;
160 	struct mount *mp;
161 	struct mount *mp_target;
162 	int isneg;
163 	int ticks;
164 	int updating;
165 	int unused01;
166 };
167 
168 struct pcpu_ncache {
169 	struct spinlock		umount_spin;	/* cache_findmount/interlock */
170 	struct spinlock		neg_spin;	/* for neg_list and neg_count */
171 	struct namecache_list	neg_list;
172 	long			neg_count;
173 	long			vfscache_negs;
174 	long			vfscache_count;
175 	long			vfscache_leafs;
176 	long			numdefered;
177 } __cachealign;
178 
179 __read_mostly static struct nchash_head	*nchashtbl;
180 __read_mostly static struct pcpu_ncache	*pcpu_ncache;
181 static struct ncmount_cache	ncmount_cache[NCMOUNT_NUMCACHE];
182 
183 /*
184  * ncvp_debug - debug cache_fromvp().  This is used by the NFS server
185  * to create the namecache infrastructure leading to a dangling vnode.
186  *
187  * 0	Only errors are reported
188  * 1	Successes are reported
189  * 2	Successes + the whole directory scan is reported
190  * 3	Force the directory scan code run as if the parent vnode did not
191  *	have a namecache record, even if it does have one.
192  */
193 __read_mostly static int	ncvp_debug;
194 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0,
195     "Namecache debug level (0-3)");
196 
197 __read_mostly static u_long nchash;		/* size of hash table */
198 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
199     "Size of namecache hash table");
200 
201 __read_mostly static int ncnegflush = 10;	/* burst for negative flush */
202 SYSCTL_INT(_debug, OID_AUTO, ncnegflush, CTLFLAG_RW, &ncnegflush, 0,
203     "Batch flush negative entries");
204 
205 __read_mostly static int ncposflush = 10;	/* burst for positive flush */
206 SYSCTL_INT(_debug, OID_AUTO, ncposflush, CTLFLAG_RW, &ncposflush, 0,
207     "Batch flush positive entries");
208 
209 __read_mostly static int ncnegfactor = 16;	/* ratio of negative entries */
210 SYSCTL_INT(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0,
211     "Ratio of namecache negative entries");
212 
213 __read_mostly static int nclockwarn;	/* warn on locked entries in ticks */
214 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0,
215     "Warn on locked namecache entries in ticks");
216 
217 __read_mostly static int ncposlimit;	/* number of cache entries allocated */
218 SYSCTL_INT(_debug, OID_AUTO, ncposlimit, CTLFLAG_RW, &ncposlimit, 0,
219     "Number of cache entries allocated");
220 
221 __read_mostly static int ncp_shared_lock_disable = 0;
222 SYSCTL_INT(_debug, OID_AUTO, ncp_shared_lock_disable, CTLFLAG_RW,
223 	   &ncp_shared_lock_disable, 0, "Disable shared namecache locks");
224 
225 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode),
226     "sizeof(struct vnode)");
227 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache),
228     "sizeof(struct namecache)");
229 
230 __read_mostly static int ncmount_cache_enable = 1;
231 SYSCTL_INT(_debug, OID_AUTO, ncmount_cache_enable, CTLFLAG_RW,
232 	   &ncmount_cache_enable, 0, "mount point cache");
233 
234 static __inline void _cache_drop(struct namecache *ncp);
235 static int cache_resolve_mp(struct mount *mp);
236 static int cache_findmount_callback(struct mount *mp, void *data);
237 static void _cache_setunresolved(struct namecache *ncp);
238 static void _cache_cleanneg(long count);
239 static void _cache_cleanpos(long count);
240 static void _cache_cleandefered(void);
241 static void _cache_unlink(struct namecache *ncp);
242 
243 /*
244  * The new name cache statistics (these are rolled up globals and not
245  * modified in the critical path, see struct pcpu_ncache).
246  */
247 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
248 static long vfscache_negs;
249 SYSCTL_LONG(_vfs_cache, OID_AUTO, numneg, CTLFLAG_RD, &vfscache_negs, 0,
250     "Number of negative namecache entries");
251 static long vfscache_count;
252 SYSCTL_LONG(_vfs_cache, OID_AUTO, numcache, CTLFLAG_RD, &vfscache_count, 0,
253     "Number of namecaches entries");
254 static long vfscache_leafs;
255 SYSCTL_LONG(_vfs_cache, OID_AUTO, numleafs, CTLFLAG_RD, &vfscache_leafs, 0,
256     "Number of namecaches entries");
257 static long	numdefered;
258 SYSCTL_LONG(_debug, OID_AUTO, numdefered, CTLFLAG_RD, &numdefered, 0,
259     "Number of cache entries allocated");
260 
261 
262 struct nchstats nchstats[SMP_MAXCPU];
263 /*
264  * Export VFS cache effectiveness statistics to user-land.
265  *
266  * The statistics are left for aggregation to user-land so
267  * neat things can be achieved, like observing per-CPU cache
268  * distribution.
269  */
270 static int
271 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
272 {
273 	struct globaldata *gd;
274 	int i, error;
275 
276 	error = 0;
277 	for (i = 0; i < ncpus; ++i) {
278 		gd = globaldata_find(i);
279 		if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
280 			sizeof(struct nchstats))))
281 			break;
282 	}
283 
284 	return (error);
285 }
286 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
287   0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
288 
289 static void cache_zap(struct namecache *ncp);
290 
291 /*
292  * Cache mount points and namecache records in order to avoid unnecessary
293  * atomic ops on mnt_refs and ncp->refs.  This improves concurrent SMP
294  * performance and is particularly important on multi-socket systems to
295  * reduce cache-line ping-ponging.
296  *
297  * Try to keep the pcpu structure within one cache line (~64 bytes).
298  */
299 #define MNTCACHE_COUNT	32	/* power of 2, multiple of SET */
300 #define MNTCACHE_SET	8	/* set associativity */
301 
302 struct mntcache_elm {
303 	struct namecache *ncp;
304 	struct mount	 *mp;
305 	int	ticks;
306 	int	unused01;
307 };
308 
309 struct mntcache {
310 	struct mntcache_elm array[MNTCACHE_COUNT];
311 } __cachealign;
312 
313 static struct mntcache	pcpu_mntcache[MAXCPU];
314 
315 static __inline
316 struct mntcache_elm *
317 _cache_mntcache_hash(void *ptr)
318 {
319 	struct mntcache_elm *elm;
320 	int hv;
321 
322 	hv = iscsi_crc32(&ptr, sizeof(ptr)) & (MNTCACHE_COUNT - 1);
323 	elm = &pcpu_mntcache[mycpu->gd_cpuid].array[hv & ~(MNTCACHE_SET - 1)];
324 
325 	return elm;
326 }
327 
328 static
329 void
330 _cache_mntref(struct mount *mp)
331 {
332 	struct mntcache_elm *elm;
333 	struct mount *mpr;
334 	int i;
335 
336 	elm = _cache_mntcache_hash(mp);
337 	for (i = 0; i < MNTCACHE_SET; ++i) {
338 		if (elm->mp == mp) {
339 			mpr = atomic_swap_ptr((void *)&elm->mp, NULL);
340 			if (__predict_true(mpr == mp))
341 				return;
342 			if (mpr)
343 				atomic_add_int(&mpr->mnt_refs, -1);
344 		}
345 		++elm;
346 	}
347 	atomic_add_int(&mp->mnt_refs, 1);
348 }
349 
350 static
351 void
352 _cache_mntrel(struct mount *mp)
353 {
354 	struct mntcache_elm *elm;
355 	struct mntcache_elm *best;
356 	struct mount *mpr;
357 	int delta1;
358 	int delta2;
359 	int i;
360 
361 	elm = _cache_mntcache_hash(mp);
362 	best = elm;
363 	for (i = 0; i < MNTCACHE_SET; ++i) {
364 		if (elm->mp == NULL) {
365 			mpr = atomic_swap_ptr((void *)&elm->mp, mp);
366 			if (__predict_false(mpr != NULL)) {
367 				atomic_add_int(&mpr->mnt_refs, -1);
368 			}
369 			elm->ticks = ticks;
370 			return;
371 		}
372 		delta1 = ticks - best->ticks;
373 		delta2 = ticks - elm->ticks;
374 		if (delta2 > delta1 || delta1 < -1 || delta2 < -1)
375 			best = elm;
376 		++elm;
377 	}
378 	mpr = atomic_swap_ptr((void *)&best->mp, mp);
379 	best->ticks = ticks;
380 	if (mpr)
381 		atomic_add_int(&mpr->mnt_refs, -1);
382 }
383 
384 /*
385  * Clears all cached mount points on all cpus.  This routine should only
386  * be called when we are waiting for a mount to clear, e.g. so we can
387  * unmount.
388  */
389 void
390 cache_clearmntcache(struct mount *target __unused)
391 {
392 	int n;
393 
394 	for (n = 0; n < ncpus; ++n) {
395 		struct mntcache *cache = &pcpu_mntcache[n];
396 		struct mntcache_elm *elm;
397 		struct namecache *ncp;
398 		struct mount *mp;
399 		int i;
400 
401 		for (i = 0; i < MNTCACHE_COUNT; ++i) {
402 			elm = &cache->array[i];
403 			if (elm->mp) {
404 				mp = atomic_swap_ptr((void *)&elm->mp, NULL);
405 				if (mp)
406 					atomic_add_int(&mp->mnt_refs, -1);
407 			}
408 			if (elm->ncp) {
409 				ncp = atomic_swap_ptr((void *)&elm->ncp, NULL);
410 				if (ncp)
411 					_cache_drop(ncp);
412 			}
413 		}
414 	}
415 }
416 
417 /*
418  * Namespace locking.  The caller must already hold a reference to the
419  * namecache structure in order to lock/unlock it.  The controlling entity
420  * in a 1->0 transition does not need to lock the ncp to dispose of it,
421  * as nobody else will have visiblity to it at that point.
422  *
423  * Note that holding a locked namecache structure prevents other threads
424  * from making namespace changes (e.g. deleting or creating), prevents
425  * vnode association state changes by other threads, and prevents the
426  * namecache entry from being resolved or unresolved by other threads.
427  *
428  * An exclusive lock owner has full authority to associate/disassociate
429  * vnodes and resolve/unresolve the locked ncp.
430  *
431  * A shared lock owner only has authority to acquire the underlying vnode,
432  * if any.
433  *
434  * The primary lock field is nc_lockstatus.  nc_locktd is set after the
435  * fact (when locking) or cleared prior to unlocking.
436  *
437  * WARNING!  Holding a locked ncp will prevent a vnode from being destroyed
438  *	     or recycled, but it does NOT help you if the vnode had already
439  *	     initiated a recyclement.  If this is important, use cache_get()
440  *	     rather then cache_lock() (and deal with the differences in the
441  *	     way the refs counter is handled).  Or, alternatively, make an
442  *	     unconditional call to cache_validate() or cache_resolve()
443  *	     after cache_lock() returns.
444  */
445 static __inline
446 void
447 _cache_lock(struct namecache *ncp)
448 {
449 	int didwarn = 0;
450 	int error;
451 
452 	error = lockmgr(&ncp->nc_lock, LK_EXCLUSIVE);
453 	while (__predict_false(error == EWOULDBLOCK)) {
454 		if (didwarn == 0) {
455 			didwarn = ticks - nclockwarn;
456 			kprintf("[diagnostic] cache_lock: "
457 				"%s blocked on %p "
458 				"\"%*.*s\"\n",
459 				curthread->td_comm, ncp,
460 				ncp->nc_nlen, ncp->nc_nlen,
461 				ncp->nc_name);
462 		}
463 		error = lockmgr(&ncp->nc_lock, LK_EXCLUSIVE | LK_TIMELOCK);
464 	}
465 	if (__predict_false(didwarn)) {
466 		kprintf("[diagnostic] cache_lock: "
467 			"%s unblocked %*.*s after %d secs\n",
468 			curthread->td_comm,
469 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
470 			(int)(ticks - didwarn) / hz);
471 	}
472 }
473 
474 /*
475  * Release a previously acquired lock.
476  *
477  * A concurrent shared-lock acquisition or acquisition/release can
478  * race bit 31 so only drop the ncp if bit 31 was set.
479  */
480 static __inline
481 void
482 _cache_unlock(struct namecache *ncp)
483 {
484 	lockmgr(&ncp->nc_lock, LK_RELEASE);
485 }
486 
487 /*
488  * Lock ncp exclusively, non-blocking.  Return 0 on success.
489  */
490 static __inline
491 int
492 _cache_lock_nonblock(struct namecache *ncp)
493 {
494 	int error;
495 
496 	error = lockmgr(&ncp->nc_lock, LK_EXCLUSIVE | LK_NOWAIT);
497 	if (__predict_false(error != 0)) {
498 		return(EWOULDBLOCK);
499 	}
500 	return 0;
501 }
502 
503 /*
504  * This is a special form of _cache_lock() which only succeeds if
505  * it can get a pristine, non-recursive lock.  The caller must have
506  * already ref'd the ncp.
507  *
508  * On success the ncp will be locked, on failure it will not.  The
509  * ref count does not change either way.
510  *
511  * We want _cache_lock_special() (on success) to return a definitively
512  * usable vnode or a definitively unresolved ncp.
513  */
514 static __inline
515 int
516 _cache_lock_special(struct namecache *ncp)
517 {
518 	if (_cache_lock_nonblock(ncp) == 0) {
519 		if (lockmgr_oneexcl(&ncp->nc_lock)) {
520 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
521 				_cache_setunresolved(ncp);
522 			return 0;
523 		}
524 		_cache_unlock(ncp);
525 	}
526 	return EWOULDBLOCK;
527 }
528 
529 /*
530  * Shared lock, guarantees vp held
531  *
532  * The shared lock holds vp on the 0->1 transition.  It is possible to race
533  * another shared lock release, preventing the other release from dropping
534  * the vnode and clearing bit 31.
535  *
536  * If it is not set then we are responsible for setting it, and this
537  * responsibility does not race with anyone else.
538  */
539 static __inline
540 void
541 _cache_lock_shared(struct namecache *ncp)
542 {
543 	int didwarn = 0;
544 	int error;
545 
546 	error = lockmgr(&ncp->nc_lock, LK_SHARED | LK_TIMELOCK);
547 	while (__predict_false(error == EWOULDBLOCK)) {
548 		if (didwarn == 0) {
549 			didwarn = ticks - nclockwarn;
550 			kprintf("[diagnostic] cache_lock_shared: "
551 				"%s blocked on %p "
552 				"\"%*.*s\"\n",
553 				curthread->td_comm, ncp,
554 				ncp->nc_nlen, ncp->nc_nlen,
555 				ncp->nc_name);
556 		}
557 		error = lockmgr(&ncp->nc_lock, LK_SHARED | LK_TIMELOCK);
558 	}
559 	if (__predict_false(didwarn)) {
560 		kprintf("[diagnostic] cache_lock_shared: "
561 			"%s unblocked %*.*s after %d secs\n",
562 			curthread->td_comm,
563 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
564 			(int)(ticks - didwarn) / hz);
565 	}
566 }
567 
568 /*
569  * Shared lock, guarantees vp held.  Non-blocking.  Returns 0 on success
570  */
571 static __inline
572 int
573 _cache_lock_shared_nonblock(struct namecache *ncp)
574 {
575 	int error;
576 
577 	error = lockmgr(&ncp->nc_lock, LK_SHARED | LK_NOWAIT);
578 	if (__predict_false(error != 0)) {
579 		return(EWOULDBLOCK);
580 	}
581 	return 0;
582 }
583 
584 /*
585  * This function tries to get a shared lock but will back-off to an
586  * exclusive lock if:
587  *
588  * (1) Some other thread is trying to obtain an exclusive lock
589  *     (to prevent the exclusive requester from getting livelocked out
590  *     by many shared locks).
591  *
592  * (2) The current thread already owns an exclusive lock (to avoid
593  *     deadlocking).
594  *
595  * WARNING! On machines with lots of cores we really want to try hard to
596  *	    get a shared lock or concurrent path lookups can chain-react
597  *	    into a very high-latency exclusive lock.
598  *
599  *	    This is very evident in dsynth's initial scans.
600  */
601 static __inline
602 int
603 _cache_lock_shared_special(struct namecache *ncp)
604 {
605 	/*
606 	 * Only honor a successful shared lock (returning 0) if there is
607 	 * no exclusive request pending and the vnode, if present, is not
608 	 * in a reclaimed state.
609 	 */
610 	if (_cache_lock_shared_nonblock(ncp) == 0) {
611 		if (__predict_true(!lockmgr_exclpending(&ncp->nc_lock))) {
612 			if (ncp->nc_vp == NULL ||
613 			    (ncp->nc_vp->v_flag & VRECLAIMED) == 0) {
614 				return(0);
615 			}
616 		}
617 		_cache_unlock(ncp);
618 		return(EWOULDBLOCK);
619 	}
620 
621 	/*
622 	 * Non-blocking shared lock failed.  If we already own the exclusive
623 	 * lock just acquire another exclusive lock (instead of deadlocking).
624 	 * Otherwise acquire a shared lock.
625 	 */
626 	if (lockstatus(&ncp->nc_lock, curthread) == LK_EXCLUSIVE) {
627 		_cache_lock(ncp);
628 		return(0);
629 	}
630 	_cache_lock_shared(ncp);
631 	return(0);
632 }
633 
634 static __inline
635 int
636 _cache_lockstatus(struct namecache *ncp)
637 {
638 	int status;
639 
640 	status = lockstatus(&ncp->nc_lock, curthread);
641 	if (status == 0 || status == LK_EXCLOTHER)
642 		status = -1;
643 	return status;
644 }
645 
646 /*
647  * cache_hold() and cache_drop() prevent the premature deletion of a
648  * namecache entry but do not prevent operations (such as zapping) on
649  * that namecache entry.
650  *
651  * This routine may only be called from outside this source module if
652  * nc_refs is already deterministically at least 1, such as being
653  * associated with e.g. a process, file descriptor, or some other entity.
654  *
655  * Only the above situations, similar situations within this module where
656  * the ref count is deterministically at least 1, or when the ncp is found
657  * via the nchpp (hash table) lookup, can bump nc_refs.
658  *
659  * Very specifically, a ncp found via nc_list CANNOT bump nc_refs.  It
660  * can still be removed from the nc_list, however, as long as the caller
661  * can acquire its lock (in the wrong order).
662  *
663  * This is a rare case where callers are allowed to hold a spinlock,
664  * so we can't ourselves.
665  */
666 static __inline
667 struct namecache *
668 _cache_hold(struct namecache *ncp)
669 {
670 	KKASSERT(ncp->nc_refs > 0);
671 	atomic_add_int(&ncp->nc_refs, 1);
672 
673 	return(ncp);
674 }
675 
676 /*
677  * Drop a cache entry.
678  *
679  * The 1->0 transition is special and requires the caller to destroy the
680  * entry.  It means that the ncp is no longer on a nchpp list (since that
681  * would mean there was stilla ref).  The ncp could still be on a nc_list
682  * but will not have any child of its own, again because nc_refs is now 0
683  * and children would have a ref to their parent.
684  *
685  * Once the 1->0 transition is made, nc_refs cannot be incremented again.
686  */
687 static __inline
688 void
689 _cache_drop(struct namecache *ncp)
690 {
691 	if (atomic_fetchadd_int(&ncp->nc_refs, -1) == 1) {
692 		/*
693 		 * Executed unlocked (no need to lock on last drop)
694 		 */
695 		_cache_setunresolved(ncp);
696 
697 		/*
698 		 * Scrap it.
699 		 */
700 		ncp->nc_refs = -1;	/* safety */
701 		if (ncp->nc_name)
702 			kfree(ncp->nc_name, M_VFSCACHE);
703 		kfree(ncp, M_VFSCACHE);
704 	}
705 }
706 
707 /*
708  * Link a new namecache entry to its parent and to the hash table.  Be
709  * careful to avoid races if vhold() blocks in the future.
710  *
711  * Both ncp and par must be referenced and locked.  The reference is
712  * transfered to the nchpp (and, most notably, NOT to the parent list).
713  *
714  * NOTE: The hash table spinlock is held across this call, we can't do
715  *	 anything fancy.
716  */
717 static void
718 _cache_link_parent(struct namecache *ncp, struct namecache *par,
719 		   struct nchash_head *nchpp)
720 {
721 	struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
722 
723 	KKASSERT(ncp->nc_parent == NULL);
724 	ncp->nc_parent = par;
725 	ncp->nc_head = nchpp;
726 
727 	/*
728 	 * Set inheritance flags.  Note that the parent flags may be
729 	 * stale due to getattr potentially not having been run yet
730 	 * (it gets run during nlookup()'s).
731 	 */
732 	ncp->nc_flag &= ~(NCF_SF_PNOCACHE | NCF_UF_PCACHE);
733 	if (par->nc_flag & (NCF_SF_NOCACHE | NCF_SF_PNOCACHE))
734 		ncp->nc_flag |= NCF_SF_PNOCACHE;
735 	if (par->nc_flag & (NCF_UF_CACHE | NCF_UF_PCACHE))
736 		ncp->nc_flag |= NCF_UF_PCACHE;
737 
738 	/*
739 	 * Add to hash table and parent, adjust accounting
740 	 */
741 	TAILQ_INSERT_HEAD(&nchpp->list, ncp, nc_hash);
742 	atomic_add_long(&pn->vfscache_count, 1);
743 	if (TAILQ_EMPTY(&ncp->nc_list))
744 		atomic_add_long(&pn->vfscache_leafs, 1);
745 
746 	if (TAILQ_EMPTY(&par->nc_list)) {
747 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
748 		atomic_add_long(&pn->vfscache_leafs, -1);
749 		/*
750 		 * Any vp associated with an ncp which has children must
751 		 * be held to prevent it from being recycled.
752 		 */
753 		if (par->nc_vp)
754 			vhold(par->nc_vp);
755 	} else {
756 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
757 	}
758 	_cache_hold(par);	/* add nc_parent ref */
759 }
760 
761 /*
762  * Remove the parent and hash associations from a namecache structure.
763  * Drop the ref-count on the parent.  The caller receives the ref
764  * from the ncp's nchpp linkage that was removed and may forward that
765  * ref to a new linkage.
766 
767  * The caller usually holds an additional ref * on the ncp so the unlink
768  * cannot be the final drop.  XXX should not be necessary now since the
769  * caller receives the ref from the nchpp linkage, assuming the ncp
770  * was linked in the first place.
771  *
772  * ncp must be locked, which means that there won't be any nc_parent
773  * removal races.  This routine will acquire a temporary lock on
774  * the parent as well as the appropriate hash chain.
775  */
776 static void
777 _cache_unlink_parent(struct namecache *ncp)
778 {
779 	struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
780 	struct namecache *par;
781 	struct vnode *dropvp;
782 	struct nchash_head *nchpp;
783 
784 	if ((par = ncp->nc_parent) != NULL) {
785 		cpu_ccfence();
786 		KKASSERT(ncp->nc_parent == par);
787 
788 		/* don't add a ref, we drop the nchpp ref later */
789 		_cache_lock(par);
790 		nchpp = ncp->nc_head;
791 		spin_lock(&nchpp->spin);
792 
793 		/*
794 		 * Remove from hash table and parent, adjust accounting
795 		 */
796 		TAILQ_REMOVE(&ncp->nc_head->list, ncp, nc_hash);
797 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
798 		atomic_add_long(&pn->vfscache_count, -1);
799 		if (TAILQ_EMPTY(&ncp->nc_list))
800 			atomic_add_long(&pn->vfscache_leafs, -1);
801 
802 		dropvp = NULL;
803 		if (TAILQ_EMPTY(&par->nc_list)) {
804 			atomic_add_long(&pn->vfscache_leafs, 1);
805 			if (par->nc_vp)
806 				dropvp = par->nc_vp;
807 		}
808 		ncp->nc_parent = NULL;
809 		ncp->nc_head = NULL;
810 		spin_unlock(&nchpp->spin);
811 		_cache_unlock(par);
812 		_cache_drop(par);	/* drop nc_parent ref */
813 
814 		/*
815 		 * We can only safely vdrop with no spinlocks held.
816 		 */
817 		if (dropvp)
818 			vdrop(dropvp);
819 	}
820 }
821 
822 /*
823  * Allocate a new namecache structure.  Most of the code does not require
824  * zero-termination of the string but it makes vop_compat_ncreate() easier.
825  *
826  * The returned ncp will be locked and referenced.  The ref is generally meant
827  * to be transfered to the nchpp linkage.
828  */
829 static struct namecache *
830 cache_alloc(int nlen)
831 {
832 	struct namecache *ncp;
833 
834 	ncp = kmalloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
835 	if (nlen)
836 		ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHE, M_WAITOK);
837 	ncp->nc_nlen = nlen;
838 	ncp->nc_flag = NCF_UNRESOLVED;
839 	ncp->nc_error = ENOTCONN;	/* needs to be resolved */
840 	ncp->nc_refs = 1;
841 	TAILQ_INIT(&ncp->nc_list);
842 	lockinit(&ncp->nc_lock, "ncplk", hz, LK_CANRECURSE);
843 	lockmgr(&ncp->nc_lock, LK_EXCLUSIVE);
844 
845 	return(ncp);
846 }
847 
848 /*
849  * Can only be called for the case where the ncp has never been
850  * associated with anything (so no spinlocks are needed).
851  */
852 static void
853 _cache_free(struct namecache *ncp)
854 {
855 	KKASSERT(ncp->nc_refs == 1);
856 	if (ncp->nc_name)
857 		kfree(ncp->nc_name, M_VFSCACHE);
858 	kfree(ncp, M_VFSCACHE);
859 }
860 
861 /*
862  * [re]initialize a nchandle.
863  */
864 void
865 cache_zero(struct nchandle *nch)
866 {
867 	nch->ncp = NULL;
868 	nch->mount = NULL;
869 }
870 
871 /*
872  * Ref and deref a nchandle structure (ncp + mp)
873  *
874  * The caller must specify a stable ncp pointer, typically meaning the
875  * ncp is already referenced but this can also occur indirectly through
876  * e.g. holding a lock on a direct child.
877  *
878  * WARNING: Caller may hold an unrelated read spinlock, which means we can't
879  *	    use read spinlocks here.
880  */
881 struct nchandle *
882 cache_hold(struct nchandle *nch)
883 {
884 	_cache_hold(nch->ncp);
885 	_cache_mntref(nch->mount);
886 	return(nch);
887 }
888 
889 /*
890  * Create a copy of a namecache handle for an already-referenced
891  * entry.
892  */
893 void
894 cache_copy(struct nchandle *nch, struct nchandle *target)
895 {
896 	struct namecache *ncp;
897 	struct mount *mp;
898 	struct mntcache_elm *elm;
899 	struct namecache *ncpr;
900 	int i;
901 
902 	ncp = nch->ncp;
903 	mp = nch->mount;
904 	target->ncp = ncp;
905 	target->mount = mp;
906 
907 	elm = _cache_mntcache_hash(ncp);
908 	for (i = 0; i < MNTCACHE_SET; ++i) {
909 		if (elm->ncp == ncp) {
910 			ncpr = atomic_swap_ptr((void *)&elm->ncp, NULL);
911 			if (ncpr == ncp) {
912 				_cache_mntref(mp);
913 				return;
914 			}
915 			if (ncpr)
916 				_cache_drop(ncpr);
917 		}
918 		++elm;
919 	}
920 	if (ncp)
921 		_cache_hold(ncp);
922 	_cache_mntref(mp);
923 }
924 
925 /*
926  * Drop the nchandle, but try to cache the ref to avoid global atomic
927  * ops.  This is typically done on the system root and jail root nchandles.
928  */
929 void
930 cache_drop_and_cache(struct nchandle *nch, int elmno)
931 {
932 	struct mntcache_elm *elm;
933 	struct mntcache_elm *best;
934 	struct namecache *ncpr;
935 	int delta1;
936 	int delta2;
937 	int i;
938 
939 	if (elmno > 4) {
940 		if (nch->ncp) {
941 			_cache_drop(nch->ncp);
942 			nch->ncp = NULL;
943 		}
944 		if (nch->mount) {
945 			_cache_mntrel(nch->mount);
946 			nch->mount = NULL;
947 		}
948 		return;
949 	}
950 
951 	elm = _cache_mntcache_hash(nch->ncp);
952 	best = elm;
953 	for (i = 0; i < MNTCACHE_SET; ++i) {
954 		if (elm->ncp == NULL) {
955 			ncpr = atomic_swap_ptr((void *)&elm->ncp, nch->ncp);
956 			_cache_mntrel(nch->mount);
957 			elm->ticks = ticks;
958 			nch->mount = NULL;
959 			nch->ncp = NULL;
960 			if (ncpr)
961 				_cache_drop(ncpr);
962 			return;
963 		}
964 		delta1 = ticks - best->ticks;
965 		delta2 = ticks - elm->ticks;
966 		if (delta2 > delta1 || delta1 < -1 || delta2 < -1)
967 			best = elm;
968 		++elm;
969 	}
970 	ncpr = atomic_swap_ptr((void *)&best->ncp, nch->ncp);
971 	_cache_mntrel(nch->mount);
972 	best->ticks = ticks;
973 	nch->mount = NULL;
974 	nch->ncp = NULL;
975 	if (ncpr)
976 		_cache_drop(ncpr);
977 }
978 
979 void
980 cache_changemount(struct nchandle *nch, struct mount *mp)
981 {
982 	_cache_mntref(mp);
983 	_cache_mntrel(nch->mount);
984 	nch->mount = mp;
985 }
986 
987 void
988 cache_drop(struct nchandle *nch)
989 {
990 	_cache_mntrel(nch->mount);
991 	_cache_drop(nch->ncp);
992 	nch->ncp = NULL;
993 	nch->mount = NULL;
994 }
995 
996 int
997 cache_lockstatus(struct nchandle *nch)
998 {
999 	return(_cache_lockstatus(nch->ncp));
1000 }
1001 
1002 void
1003 cache_lock(struct nchandle *nch)
1004 {
1005 	_cache_lock(nch->ncp);
1006 }
1007 
1008 void
1009 cache_lock_maybe_shared(struct nchandle *nch, int excl)
1010 {
1011 	struct namecache *ncp = nch->ncp;
1012 
1013 	if (ncp_shared_lock_disable || excl ||
1014 	    (ncp->nc_flag & NCF_UNRESOLVED)) {
1015 		_cache_lock(ncp);
1016 	} else {
1017 		_cache_lock_shared(ncp);
1018 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1019 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
1020 				_cache_unlock(ncp);
1021 				_cache_lock(ncp);
1022 			}
1023 		} else {
1024 			_cache_unlock(ncp);
1025 			_cache_lock(ncp);
1026 		}
1027 	}
1028 }
1029 
1030 /*
1031  * Relock nch1 given an unlocked nch1 and a locked nch2.  The caller
1032  * is responsible for checking both for validity on return as they
1033  * may have become invalid.
1034  *
1035  * We have to deal with potential deadlocks here, just ping pong
1036  * the lock until we get it (we will always block somewhere when
1037  * looping so this is not cpu-intensive).
1038  *
1039  * which = 0	nch1 not locked, nch2 is locked
1040  * which = 1	nch1 is locked, nch2 is not locked
1041  */
1042 void
1043 cache_relock(struct nchandle *nch1, struct ucred *cred1,
1044 	     struct nchandle *nch2, struct ucred *cred2)
1045 {
1046 	int which;
1047 
1048 	which = 0;
1049 
1050 	for (;;) {
1051 		if (which == 0) {
1052 			if (cache_lock_nonblock(nch1) == 0) {
1053 				cache_resolve(nch1, cred1);
1054 				break;
1055 			}
1056 			cache_unlock(nch2);
1057 			cache_lock(nch1);
1058 			cache_resolve(nch1, cred1);
1059 			which = 1;
1060 		} else {
1061 			if (cache_lock_nonblock(nch2) == 0) {
1062 				cache_resolve(nch2, cred2);
1063 				break;
1064 			}
1065 			cache_unlock(nch1);
1066 			cache_lock(nch2);
1067 			cache_resolve(nch2, cred2);
1068 			which = 0;
1069 		}
1070 	}
1071 }
1072 
1073 int
1074 cache_lock_nonblock(struct nchandle *nch)
1075 {
1076 	return(_cache_lock_nonblock(nch->ncp));
1077 }
1078 
1079 void
1080 cache_unlock(struct nchandle *nch)
1081 {
1082 	_cache_unlock(nch->ncp);
1083 }
1084 
1085 /*
1086  * ref-and-lock, unlock-and-deref functions.
1087  *
1088  * This function is primarily used by nlookup.  Even though cache_lock
1089  * holds the vnode, it is possible that the vnode may have already
1090  * initiated a recyclement.
1091  *
1092  * We want cache_get() to return a definitively usable vnode or a
1093  * definitively unresolved ncp.
1094  */
1095 static
1096 struct namecache *
1097 _cache_get(struct namecache *ncp)
1098 {
1099 	_cache_hold(ncp);
1100 	_cache_lock(ncp);
1101 	if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1102 		_cache_setunresolved(ncp);
1103 	return(ncp);
1104 }
1105 
1106 /*
1107  * Attempt to obtain a shared lock on the ncp.  A shared lock will only
1108  * be obtained if the ncp is resolved and the vnode (if not ENOENT) is
1109  * valid.  Otherwise an exclusive lock will be acquired instead.
1110  */
1111 static
1112 struct namecache *
1113 _cache_get_maybe_shared(struct namecache *ncp, int excl)
1114 {
1115 	if (ncp_shared_lock_disable || excl ||
1116 	    (ncp->nc_flag & NCF_UNRESOLVED)) {
1117 		return(_cache_get(ncp));
1118 	}
1119 	_cache_hold(ncp);
1120 	_cache_lock_shared(ncp);
1121 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1122 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
1123 			_cache_unlock(ncp);
1124 			ncp = _cache_get(ncp);
1125 			_cache_drop(ncp);
1126 		}
1127 	} else {
1128 		_cache_unlock(ncp);
1129 		ncp = _cache_get(ncp);
1130 		_cache_drop(ncp);
1131 	}
1132 	return(ncp);
1133 }
1134 
1135 /*
1136  * NOTE: The same nchandle can be passed for both arguments.
1137  */
1138 void
1139 cache_get(struct nchandle *nch, struct nchandle *target)
1140 {
1141 	KKASSERT(nch->ncp->nc_refs > 0);
1142 	target->mount = nch->mount;
1143 	target->ncp = _cache_get(nch->ncp);
1144 	_cache_mntref(target->mount);
1145 }
1146 
1147 void
1148 cache_get_maybe_shared(struct nchandle *nch, struct nchandle *target, int excl)
1149 {
1150 	KKASSERT(nch->ncp->nc_refs > 0);
1151 	target->mount = nch->mount;
1152 	target->ncp = _cache_get_maybe_shared(nch->ncp, excl);
1153 	_cache_mntref(target->mount);
1154 }
1155 
1156 /*
1157  * Release a held and locked ncp
1158  */
1159 static __inline
1160 void
1161 _cache_put(struct namecache *ncp)
1162 {
1163 	_cache_unlock(ncp);
1164 	_cache_drop(ncp);
1165 }
1166 
1167 void
1168 cache_put(struct nchandle *nch)
1169 {
1170 	_cache_mntrel(nch->mount);
1171 	_cache_put(nch->ncp);
1172 	nch->ncp = NULL;
1173 	nch->mount = NULL;
1174 }
1175 
1176 /*
1177  * Resolve an unresolved ncp by associating a vnode with it.  If the
1178  * vnode is NULL, a negative cache entry is created.
1179  *
1180  * The ncp should be locked on entry and will remain locked on return.
1181  */
1182 static
1183 void
1184 _cache_setvp(struct mount *mp, struct namecache *ncp, struct vnode *vp)
1185 {
1186 	KKASSERT((ncp->nc_flag & NCF_UNRESOLVED) &&
1187 		 (_cache_lockstatus(ncp) == LK_EXCLUSIVE) &&
1188 		 ncp->nc_vp == NULL);
1189 
1190 	if (vp) {
1191 		/*
1192 		 * Any vp associated with an ncp which has children must
1193 		 * be held.  Any vp associated with a locked ncp must be held.
1194 		 */
1195 		if (!TAILQ_EMPTY(&ncp->nc_list))
1196 			vhold(vp);
1197 		spin_lock(&vp->v_spin);
1198 		ncp->nc_vp = vp;
1199 		TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
1200 		++vp->v_namecache_count;
1201 		_cache_hold(ncp);		/* v_namecache assoc */
1202 		spin_unlock(&vp->v_spin);
1203 		vhold(vp);			/* nc_vp */
1204 
1205 		/*
1206 		 * Set auxiliary flags
1207 		 */
1208 		switch(vp->v_type) {
1209 		case VDIR:
1210 			ncp->nc_flag |= NCF_ISDIR;
1211 			break;
1212 		case VLNK:
1213 			ncp->nc_flag |= NCF_ISSYMLINK;
1214 			/* XXX cache the contents of the symlink */
1215 			break;
1216 		default:
1217 			break;
1218 		}
1219 
1220 		ncp->nc_error = 0;
1221 
1222 		/*
1223 		 * XXX: this is a hack to work-around the lack of a real pfs vfs
1224 		 * implementation
1225 		 */
1226 		if (mp) {
1227 			if (strncmp(mp->mnt_stat.f_fstypename, "null", 5) == 0)
1228 				vp->v_pfsmp = mp;
1229 		}
1230 	} else {
1231 		/*
1232 		 * When creating a negative cache hit we set the
1233 		 * namecache_gen.  A later resolve will clean out the
1234 		 * negative cache hit if the mount point's namecache_gen
1235 		 * has changed.  Used by devfs, could also be used by
1236 		 * other remote FSs.
1237 		 */
1238 		struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
1239 
1240 		ncp->nc_vp = NULL;
1241 		ncp->nc_negcpu = mycpu->gd_cpuid;
1242 		spin_lock(&pn->neg_spin);
1243 		TAILQ_INSERT_TAIL(&pn->neg_list, ncp, nc_vnode);
1244 		_cache_hold(ncp);	/* neg_list assoc */
1245 		++pn->neg_count;
1246 		spin_unlock(&pn->neg_spin);
1247 		atomic_add_long(&pn->vfscache_negs, 1);
1248 
1249 		ncp->nc_error = ENOENT;
1250 		if (mp)
1251 			VFS_NCPGEN_SET(mp, ncp);
1252 	}
1253 	ncp->nc_flag &= ~(NCF_UNRESOLVED | NCF_DEFEREDZAP);
1254 }
1255 
1256 void
1257 cache_setvp(struct nchandle *nch, struct vnode *vp)
1258 {
1259 	_cache_setvp(nch->mount, nch->ncp, vp);
1260 }
1261 
1262 /*
1263  * Used for NFS
1264  */
1265 void
1266 cache_settimeout(struct nchandle *nch, int nticks)
1267 {
1268 	struct namecache *ncp = nch->ncp;
1269 
1270 	if ((ncp->nc_timeout = ticks + nticks) == 0)
1271 		ncp->nc_timeout = 1;
1272 }
1273 
1274 /*
1275  * Disassociate the vnode or negative-cache association and mark a
1276  * namecache entry as unresolved again.  Note that the ncp is still
1277  * left in the hash table and still linked to its parent.
1278  *
1279  * The ncp should be locked and refd on entry and will remain locked and refd
1280  * on return.
1281  *
1282  * This routine is normally never called on a directory containing children.
1283  * However, NFS often does just that in its rename() code as a cop-out to
1284  * avoid complex namespace operations.  This disconnects a directory vnode
1285  * from its namecache and can cause the OLDAPI and NEWAPI to get out of
1286  * sync.
1287  *
1288  */
1289 static
1290 void
1291 _cache_setunresolved(struct namecache *ncp)
1292 {
1293 	struct vnode *vp;
1294 
1295 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1296 		ncp->nc_flag |= NCF_UNRESOLVED;
1297 		ncp->nc_timeout = 0;
1298 		ncp->nc_error = ENOTCONN;
1299 		if ((vp = ncp->nc_vp) != NULL) {
1300 			spin_lock(&vp->v_spin);
1301 			ncp->nc_vp = NULL;
1302 			TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
1303 			--vp->v_namecache_count;
1304 			spin_unlock(&vp->v_spin);
1305 
1306 			/*
1307 			 * Any vp associated with an ncp with children is
1308 			 * held by that ncp.  Any vp associated with  ncp
1309 			 * is held by that ncp.  These conditions must be
1310 			 * undone when the vp is cleared out from the ncp.
1311 			 */
1312 			if (!TAILQ_EMPTY(&ncp->nc_list))
1313 				vdrop(vp);
1314 			vdrop(vp);
1315 		} else {
1316 			struct pcpu_ncache *pn;
1317 
1318 			pn = &pcpu_ncache[ncp->nc_negcpu];
1319 
1320 			atomic_add_long(&pn->vfscache_negs, -1);
1321 			spin_lock(&pn->neg_spin);
1322 			TAILQ_REMOVE(&pn->neg_list, ncp, nc_vnode);
1323 			--pn->neg_count;
1324 			spin_unlock(&pn->neg_spin);
1325 		}
1326 		ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK);
1327 		_cache_drop(ncp);	/* from v_namecache or neg_list */
1328 	}
1329 }
1330 
1331 /*
1332  * The cache_nresolve() code calls this function to automatically
1333  * set a resolved cache element to unresolved if it has timed out
1334  * or if it is a negative cache hit and the mount point namecache_gen
1335  * has changed.
1336  */
1337 static __inline int
1338 _cache_auto_unresolve_test(struct mount *mp, struct namecache *ncp)
1339 {
1340 	/*
1341 	 * Try to zap entries that have timed out.  We have
1342 	 * to be careful here because locked leafs may depend
1343 	 * on the vnode remaining intact in a parent, so only
1344 	 * do this under very specific conditions.
1345 	 */
1346 	if (ncp->nc_timeout && (int)(ncp->nc_timeout - ticks) < 0 &&
1347 	    TAILQ_EMPTY(&ncp->nc_list)) {
1348 		return 1;
1349 	}
1350 
1351 	/*
1352 	 * If a resolved negative cache hit is invalid due to
1353 	 * the mount's namecache generation being bumped, zap it.
1354 	 */
1355 	if (ncp->nc_vp == NULL && VFS_NCPGEN_TEST(mp, ncp)) {
1356 		return 1;
1357 	}
1358 
1359 	/*
1360 	 * Otherwise we are good
1361 	 */
1362 	return 0;
1363 }
1364 
1365 static __inline void
1366 _cache_auto_unresolve(struct mount *mp, struct namecache *ncp)
1367 {
1368 	/*
1369 	 * Already in an unresolved state, nothing to do.
1370 	 */
1371 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1372 		if (_cache_auto_unresolve_test(mp, ncp))
1373 			_cache_setunresolved(ncp);
1374 	}
1375 }
1376 
1377 void
1378 cache_setunresolved(struct nchandle *nch)
1379 {
1380 	_cache_setunresolved(nch->ncp);
1381 }
1382 
1383 /*
1384  * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
1385  * looking for matches.  This flag tells the lookup code when it must
1386  * check for a mount linkage and also prevents the directories in question
1387  * from being deleted or renamed.
1388  */
1389 static
1390 int
1391 cache_clrmountpt_callback(struct mount *mp, void *data)
1392 {
1393 	struct nchandle *nch = data;
1394 
1395 	if (mp->mnt_ncmounton.ncp == nch->ncp)
1396 		return(1);
1397 	if (mp->mnt_ncmountpt.ncp == nch->ncp)
1398 		return(1);
1399 	return(0);
1400 }
1401 
1402 /*
1403  * Clear NCF_ISMOUNTPT on nch->ncp if it is no longer associated
1404  * with a mount point.
1405  */
1406 void
1407 cache_clrmountpt(struct nchandle *nch)
1408 {
1409 	int count;
1410 
1411 	count = mountlist_scan(cache_clrmountpt_callback, nch,
1412 			       MNTSCAN_FORWARD | MNTSCAN_NOBUSY |
1413 			       MNTSCAN_NOUNLOCK);
1414 	if (count == 0)
1415 		nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
1416 }
1417 
1418 /*
1419  * Invalidate portions of the namecache topology given a starting entry.
1420  * The passed ncp is set to an unresolved state and:
1421  *
1422  * The passed ncp must be referenced and locked.  The routine may unlock
1423  * and relock ncp several times, and will recheck the children and loop
1424  * to catch races.  When done the passed ncp will be returned with the
1425  * reference and lock intact.
1426  *
1427  * CINV_DESTROY		- Set a flag in the passed ncp entry indicating
1428  *			  that the physical underlying nodes have been
1429  *			  destroyed... as in deleted.  For example, when
1430  *			  a directory is removed.  This will cause record
1431  *			  lookups on the name to no longer be able to find
1432  *			  the record and tells the resolver to return failure
1433  *			  rather then trying to resolve through the parent.
1434  *
1435  *			  The topology itself, including ncp->nc_name,
1436  *			  remains intact.
1437  *
1438  *			  This only applies to the passed ncp, if CINV_CHILDREN
1439  *			  is specified the children are not flagged.
1440  *
1441  * CINV_CHILDREN	- Set all children (recursively) to an unresolved
1442  *			  state as well.
1443  *
1444  *			  Note that this will also have the side effect of
1445  *			  cleaning out any unreferenced nodes in the topology
1446  *			  from the leaves up as the recursion backs out.
1447  *
1448  * Note that the topology for any referenced nodes remains intact, but
1449  * the nodes will be marked as having been destroyed and will be set
1450  * to an unresolved state.
1451  *
1452  * It is possible for cache_inval() to race a cache_resolve(), meaning that
1453  * the namecache entry may not actually be invalidated on return if it was
1454  * revalidated while recursing down into its children.  This code guarentees
1455  * that the node(s) will go through an invalidation cycle, but does not
1456  * guarentee that they will remain in an invalidated state.
1457  *
1458  * Returns non-zero if a revalidation was detected during the invalidation
1459  * recursion, zero otherwise.  Note that since only the original ncp is
1460  * locked the revalidation ultimately can only indicate that the original ncp
1461  * *MIGHT* no have been reresolved.
1462  *
1463  * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
1464  * have to avoid blowing out the kernel stack.  We do this by saving the
1465  * deep namecache node and aborting the recursion, then re-recursing at that
1466  * node using a depth-first algorithm in order to allow multiple deep
1467  * recursions to chain through each other, then we restart the invalidation
1468  * from scratch.
1469  */
1470 
1471 struct cinvtrack {
1472 	struct namecache *resume_ncp;
1473 	int depth;
1474 };
1475 
1476 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
1477 
1478 static
1479 int
1480 _cache_inval(struct namecache *ncp, int flags)
1481 {
1482 	struct cinvtrack track;
1483 	struct namecache *ncp2;
1484 	int r;
1485 
1486 	track.depth = 0;
1487 	track.resume_ncp = NULL;
1488 
1489 	for (;;) {
1490 		r = _cache_inval_internal(ncp, flags, &track);
1491 		if (track.resume_ncp == NULL)
1492 			break;
1493 		_cache_unlock(ncp);
1494 		while ((ncp2 = track.resume_ncp) != NULL) {
1495 			track.resume_ncp = NULL;
1496 			_cache_lock(ncp2);
1497 			_cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
1498 					     &track);
1499 			/*_cache_put(ncp2);*/
1500 			cache_zap(ncp2);
1501 		}
1502 		_cache_lock(ncp);
1503 	}
1504 	return(r);
1505 }
1506 
1507 int
1508 cache_inval(struct nchandle *nch, int flags)
1509 {
1510 	return(_cache_inval(nch->ncp, flags));
1511 }
1512 
1513 /*
1514  * Helper for _cache_inval().  The passed ncp is refd and locked and
1515  * remains that way on return, but may be unlocked/relocked multiple
1516  * times by the routine.
1517  */
1518 static int
1519 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
1520 {
1521 	struct namecache *nextkid;
1522 	int rcnt = 0;
1523 
1524 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
1525 
1526 	_cache_setunresolved(ncp);
1527 	if (flags & CINV_DESTROY) {
1528 		ncp->nc_flag |= NCF_DESTROYED;
1529 		++ncp->nc_generation;
1530 	}
1531 
1532 	while ((flags & CINV_CHILDREN) &&
1533 	       (nextkid = TAILQ_FIRST(&ncp->nc_list)) != NULL
1534 	) {
1535 		struct namecache *kid;
1536 		int restart;
1537 
1538 		restart = 0;
1539 		_cache_hold(nextkid);
1540 		if (++track->depth > MAX_RECURSION_DEPTH) {
1541 			track->resume_ncp = ncp;
1542 			_cache_hold(ncp);
1543 			++rcnt;
1544 		}
1545 		while ((kid = nextkid) != NULL) {
1546 			/*
1547 			 * Parent (ncp) must be locked for the iteration.
1548 			 */
1549 			nextkid = NULL;
1550 			if (kid->nc_parent != ncp) {
1551 				_cache_drop(kid);
1552 				kprintf("cache_inval_internal restartA %s\n",
1553 					ncp->nc_name);
1554 				restart = 1;
1555 				break;
1556 			}
1557 			if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
1558 				_cache_hold(nextkid);
1559 
1560 			/*
1561 			 * Parent unlocked for this section to avoid
1562 			 * deadlocks.  Then lock the kid and check for
1563 			 * races.
1564 			 */
1565 			_cache_unlock(ncp);
1566 			if (track->resume_ncp) {
1567 				_cache_drop(kid);
1568 				_cache_lock(ncp);
1569 				break;
1570 			}
1571 			_cache_lock(kid);
1572 			if (kid->nc_parent != ncp) {
1573 				kprintf("cache_inval_internal "
1574 					"restartB %s\n",
1575 					ncp->nc_name);
1576 				restart = 1;
1577 				_cache_unlock(kid);
1578 				_cache_drop(kid);
1579 				_cache_lock(ncp);
1580 				break;
1581 			}
1582 			if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
1583 			    TAILQ_FIRST(&kid->nc_list)
1584 			) {
1585 
1586 				rcnt += _cache_inval_internal(kid,
1587 						flags & ~CINV_DESTROY, track);
1588 				/*_cache_unlock(kid);*/
1589 				/*_cache_drop(kid);*/
1590 				cache_zap(kid);
1591 			} else {
1592 				cache_zap(kid);
1593 			}
1594 
1595 			/*
1596 			 * Relock parent to continue scan
1597 			 */
1598 			_cache_lock(ncp);
1599 		}
1600 		if (nextkid)
1601 			_cache_drop(nextkid);
1602 		--track->depth;
1603 		if (restart == 0)
1604 			break;
1605 	}
1606 
1607 	/*
1608 	 * Someone could have gotten in there while ncp was unlocked,
1609 	 * retry if so.
1610 	 */
1611 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1612 		++rcnt;
1613 	return (rcnt);
1614 }
1615 
1616 /*
1617  * Invalidate a vnode's namecache associations.  To avoid races against
1618  * the resolver we do not invalidate a node which we previously invalidated
1619  * but which was then re-resolved while we were in the invalidation loop.
1620  *
1621  * Returns non-zero if any namecache entries remain after the invalidation
1622  * loop completed.
1623  *
1624  * NOTE: Unlike the namecache topology which guarentees that ncp's will not
1625  *	 be ripped out of the topology while held, the vnode's v_namecache
1626  *	 list has no such restriction.  NCP's can be ripped out of the list
1627  *	 at virtually any time if not locked, even if held.
1628  *
1629  *	 In addition, the v_namecache list itself must be locked via
1630  *	 the vnode's spinlock.
1631  */
1632 int
1633 cache_inval_vp(struct vnode *vp, int flags)
1634 {
1635 	struct namecache *ncp;
1636 	struct namecache *next;
1637 
1638 restart:
1639 	spin_lock(&vp->v_spin);
1640 	ncp = TAILQ_FIRST(&vp->v_namecache);
1641 	if (ncp)
1642 		_cache_hold(ncp);
1643 	while (ncp) {
1644 		/* loop entered with ncp held and vp spin-locked */
1645 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1646 			_cache_hold(next);
1647 		spin_unlock(&vp->v_spin);
1648 		_cache_lock(ncp);
1649 		if (ncp->nc_vp != vp) {
1650 			kprintf("Warning: cache_inval_vp: race-A detected on "
1651 				"%s\n", ncp->nc_name);
1652 			_cache_put(ncp);
1653 			if (next)
1654 				_cache_drop(next);
1655 			goto restart;
1656 		}
1657 		_cache_inval(ncp, flags);
1658 		_cache_put(ncp);		/* also releases reference */
1659 		ncp = next;
1660 		spin_lock(&vp->v_spin);
1661 		if (ncp && ncp->nc_vp != vp) {
1662 			spin_unlock(&vp->v_spin);
1663 			kprintf("Warning: cache_inval_vp: race-B detected on "
1664 				"%s\n", ncp->nc_name);
1665 			_cache_drop(ncp);
1666 			goto restart;
1667 		}
1668 	}
1669 	spin_unlock(&vp->v_spin);
1670 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1671 }
1672 
1673 /*
1674  * This routine is used instead of the normal cache_inval_vp() when we
1675  * are trying to recycle otherwise good vnodes.
1676  *
1677  * Return 0 on success, non-zero if not all namecache records could be
1678  * disassociated from the vnode (for various reasons).
1679  */
1680 int
1681 cache_inval_vp_nonblock(struct vnode *vp)
1682 {
1683 	struct namecache *ncp;
1684 	struct namecache *next;
1685 
1686 	spin_lock(&vp->v_spin);
1687 	ncp = TAILQ_FIRST(&vp->v_namecache);
1688 	if (ncp)
1689 		_cache_hold(ncp);
1690 	while (ncp) {
1691 		/* loop entered with ncp held */
1692 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1693 			_cache_hold(next);
1694 		spin_unlock(&vp->v_spin);
1695 		if (_cache_lock_nonblock(ncp)) {
1696 			_cache_drop(ncp);
1697 			if (next)
1698 				_cache_drop(next);
1699 			goto done;
1700 		}
1701 		if (ncp->nc_vp != vp) {
1702 			kprintf("Warning: cache_inval_vp: race-A detected on "
1703 				"%s\n", ncp->nc_name);
1704 			_cache_put(ncp);
1705 			if (next)
1706 				_cache_drop(next);
1707 			goto done;
1708 		}
1709 		_cache_inval(ncp, 0);
1710 		_cache_put(ncp);		/* also releases reference */
1711 		ncp = next;
1712 		spin_lock(&vp->v_spin);
1713 		if (ncp && ncp->nc_vp != vp) {
1714 			spin_unlock(&vp->v_spin);
1715 			kprintf("Warning: cache_inval_vp: race-B detected on "
1716 				"%s\n", ncp->nc_name);
1717 			_cache_drop(ncp);
1718 			goto done;
1719 		}
1720 	}
1721 	spin_unlock(&vp->v_spin);
1722 done:
1723 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1724 }
1725 
1726 /*
1727  * Clears the universal directory search 'ok' flag.  This flag allows
1728  * nlookup() to bypass normal vnode checks.  This flag is a cached flag
1729  * so clearing it simply forces revalidation.
1730  */
1731 void
1732 cache_inval_wxok(struct vnode *vp)
1733 {
1734 	struct namecache *ncp;
1735 
1736 	spin_lock(&vp->v_spin);
1737 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1738 		if (ncp->nc_flag & (NCF_WXOK | NCF_NOTX))
1739 			atomic_clear_short(&ncp->nc_flag, NCF_WXOK | NCF_NOTX);
1740 	}
1741 	spin_unlock(&vp->v_spin);
1742 }
1743 
1744 /*
1745  * The source ncp has been renamed to the target ncp.  Both fncp and tncp
1746  * must be locked.  The target ncp is destroyed (as a normal rename-over
1747  * would destroy the target file or directory).
1748  *
1749  * Because there may be references to the source ncp we cannot copy its
1750  * contents to the target.  Instead the source ncp is relinked as the target
1751  * and the target ncp is removed from the namecache topology.
1752  */
1753 void
1754 cache_rename(struct nchandle *fnch, struct nchandle *tnch)
1755 {
1756 	struct namecache *fncp = fnch->ncp;
1757 	struct namecache *tncp = tnch->ncp;
1758 	struct namecache *tncp_par;
1759 	struct nchash_head *nchpp;
1760 	u_int32_t hash;
1761 	char *oname;
1762 	char *nname;
1763 
1764 	++fncp->nc_generation;
1765 	++tncp->nc_generation;
1766 	if (tncp->nc_nlen) {
1767 		nname = kmalloc(tncp->nc_nlen + 1, M_VFSCACHE, M_WAITOK);
1768 		bcopy(tncp->nc_name, nname, tncp->nc_nlen);
1769 		nname[tncp->nc_nlen] = 0;
1770 	} else {
1771 		nname = NULL;
1772 	}
1773 
1774 	/*
1775 	 * Rename fncp (unlink)
1776 	 */
1777 	_cache_unlink_parent(fncp);
1778 	oname = fncp->nc_name;
1779 	fncp->nc_name = nname;
1780 	fncp->nc_nlen = tncp->nc_nlen;
1781 	if (oname)
1782 		kfree(oname, M_VFSCACHE);
1783 
1784 	tncp_par = tncp->nc_parent;
1785 	_cache_hold(tncp_par);
1786 	_cache_lock(tncp_par);
1787 
1788 	/*
1789 	 * Rename fncp (relink)
1790 	 */
1791 	hash = fnv_32_buf(fncp->nc_name, fncp->nc_nlen, FNV1_32_INIT);
1792 	hash = fnv_32_buf(&tncp_par, sizeof(tncp_par), hash);
1793 	nchpp = NCHHASH(hash);
1794 
1795 	spin_lock(&nchpp->spin);
1796 	_cache_link_parent(fncp, tncp_par, nchpp);
1797 	spin_unlock(&nchpp->spin);
1798 
1799 	_cache_put(tncp_par);
1800 
1801 	/*
1802 	 * Get rid of the overwritten tncp (unlink)
1803 	 */
1804 	_cache_unlink(tncp);
1805 }
1806 
1807 /*
1808  * Perform actions consistent with unlinking a file.  The passed-in ncp
1809  * must be locked.
1810  *
1811  * The ncp is marked DESTROYED so it no longer shows up in searches,
1812  * and will be physically deleted when the vnode goes away.
1813  *
1814  * If the related vnode has no refs then we cycle it through vget()/vput()
1815  * to (possibly if we don't have a ref race) trigger a deactivation,
1816  * allowing the VFS to trivially detect and recycle the deleted vnode
1817  * via VOP_INACTIVE().
1818  *
1819  * NOTE: _cache_rename() will automatically call _cache_unlink() on the
1820  *	 target ncp.
1821  */
1822 void
1823 cache_unlink(struct nchandle *nch)
1824 {
1825 	_cache_unlink(nch->ncp);
1826 }
1827 
1828 static void
1829 _cache_unlink(struct namecache *ncp)
1830 {
1831 	struct vnode *vp;
1832 
1833 	/*
1834 	 * Causes lookups to fail and allows another ncp with the same
1835 	 * name to be created under ncp->nc_parent.
1836 	 */
1837 	ncp->nc_flag |= NCF_DESTROYED;
1838 	++ncp->nc_generation;
1839 
1840 	/*
1841 	 * Attempt to trigger a deactivation.  Set VREF_FINALIZE to
1842 	 * force action on the 1->0 transition.
1843 	 */
1844 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
1845 	    (vp = ncp->nc_vp) != NULL) {
1846 		atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1847 		if (VREFCNT(vp) <= 0) {
1848 			if (vget(vp, LK_SHARED) == 0)
1849 				vput(vp);
1850 		}
1851 	}
1852 }
1853 
1854 /*
1855  * Return non-zero if the nch might be associated with an open and/or mmap()'d
1856  * file.  The easy solution is to just return non-zero if the vnode has refs.
1857  * Used to interlock hammer2 reclaims (VREF_FINALIZE should already be set to
1858  * force the reclaim).
1859  */
1860 int
1861 cache_isopen(struct nchandle *nch)
1862 {
1863 	struct vnode *vp;
1864 	struct namecache *ncp = nch->ncp;
1865 
1866 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
1867 	    (vp = ncp->nc_vp) != NULL &&
1868 	    VREFCNT(vp)) {
1869 		return 1;
1870 	}
1871 	return 0;
1872 }
1873 
1874 
1875 /*
1876  * vget the vnode associated with the namecache entry.  Resolve the namecache
1877  * entry if necessary.  The passed ncp must be referenced and locked.  If
1878  * the ncp is resolved it might be locked shared.
1879  *
1880  * lk_type may be LK_SHARED, LK_EXCLUSIVE.  A ref'd, possibly locked
1881  * (depending on the passed lk_type) will be returned in *vpp with an error
1882  * of 0, or NULL will be returned in *vpp with a non-0 error code.  The
1883  * most typical error is ENOENT, meaning that the ncp represents a negative
1884  * cache hit and there is no vnode to retrieve, but other errors can occur
1885  * too.
1886  *
1887  * The vget() can race a reclaim.  If this occurs we re-resolve the
1888  * namecache entry.
1889  *
1890  * There are numerous places in the kernel where vget() is called on a
1891  * vnode while one or more of its namecache entries is locked.  Releasing
1892  * a vnode never deadlocks against locked namecache entries (the vnode
1893  * will not get recycled while referenced ncp's exist).  This means we
1894  * can safely acquire the vnode.  In fact, we MUST NOT release the ncp
1895  * lock when acquiring the vp lock or we might cause a deadlock.
1896  *
1897  * NOTE: The passed-in ncp must be locked exclusively if it is initially
1898  *	 unresolved.  If a reclaim race occurs the passed-in ncp will be
1899  *	 relocked exclusively before being re-resolved.
1900  */
1901 int
1902 cache_vget(struct nchandle *nch, struct ucred *cred,
1903 	   int lk_type, struct vnode **vpp)
1904 {
1905 	struct namecache *ncp;
1906 	struct vnode *vp;
1907 	int error;
1908 
1909 	ncp = nch->ncp;
1910 again:
1911 	vp = NULL;
1912 	if (ncp->nc_flag & NCF_UNRESOLVED)
1913 		error = cache_resolve(nch, cred);
1914 	else
1915 		error = 0;
1916 
1917 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1918 		error = vget(vp, lk_type);
1919 		if (error) {
1920 			/*
1921 			 * VRECLAIM race
1922 			 *
1923 			 * The ncp may have been locked shared, we must relock
1924 			 * it exclusively before we can set it to unresolved.
1925 			 */
1926 			if (error == ENOENT) {
1927 				kprintf("Warning: vnode reclaim race detected "
1928 					"in cache_vget on %p (%s)\n",
1929 					vp, ncp->nc_name);
1930 				_cache_unlock(ncp);
1931 				_cache_lock(ncp);
1932 				_cache_setunresolved(ncp);
1933 				goto again;
1934 			}
1935 
1936 			/*
1937 			 * Not a reclaim race, some other error.
1938 			 */
1939 			KKASSERT(ncp->nc_vp == vp);
1940 			vp = NULL;
1941 		} else {
1942 			KKASSERT(ncp->nc_vp == vp);
1943 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1944 		}
1945 	}
1946 	if (error == 0 && vp == NULL)
1947 		error = ENOENT;
1948 	*vpp = vp;
1949 	return(error);
1950 }
1951 
1952 /*
1953  * Similar to cache_vget() but only acquires a ref on the vnode.  The vnode
1954  * is already held by virtuue of the ncp being locked, but it might not be
1955  * referenced and while it is not referenced it can transition into the
1956  * VRECLAIMED state.
1957  *
1958  * NOTE: The passed-in ncp must be locked exclusively if it is initially
1959  *	 unresolved.  If a reclaim race occurs the passed-in ncp will be
1960  *	 relocked exclusively before being re-resolved.
1961  *
1962  * NOTE: At the moment we have to issue a vget() on the vnode, even though
1963  *	 we are going to immediately release the lock, in order to resolve
1964  *	 potential reclamation races.  Once we have a solid vnode ref that
1965  *	 was (at some point) interlocked via a vget(), the vnode will not
1966  *	 be reclaimed.
1967  *
1968  * NOTE: vhold counts (v_auxrefs) do not prevent reclamation.
1969  */
1970 int
1971 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
1972 {
1973 	struct namecache *ncp;
1974 	struct vnode *vp;
1975 	int error;
1976 	int v;
1977 
1978 	ncp = nch->ncp;
1979 again:
1980 	vp = NULL;
1981 	if (ncp->nc_flag & NCF_UNRESOLVED)
1982 		error = cache_resolve(nch, cred);
1983 	else
1984 		error = 0;
1985 
1986 	while (error == 0 && (vp = ncp->nc_vp) != NULL) {
1987 		/*
1988 		 * Try a lockless ref of the vnode.  VRECLAIMED transitions
1989 		 * use the vx_lock state and update-counter mechanism so we
1990 		 * can detect if one is in-progress or occurred.
1991 		 *
1992 		 * If we can successfully ref the vnode and interlock against
1993 		 * the update-counter mechanism, and VRECLAIMED is found to
1994 		 * not be set after that, we should be good.
1995 		 */
1996 		v = spin_access_start_only(&vp->v_spin);
1997 		if (__predict_true(spin_access_check_inprog(v) == 0)) {
1998 			vref_special(vp);
1999 			if (__predict_false(
2000 				    spin_access_end_only(&vp->v_spin, v))) {
2001 				vrele(vp);
2002 				kprintf("CACHE_VREF: RACED %p\n", vp);
2003 				continue;
2004 			}
2005 			if (__predict_true((vp->v_flag & VRECLAIMED) == 0)) {
2006 				break;
2007 			}
2008 			vrele(vp);
2009 			kprintf("CACHE_VREF: IN-RECLAIM\n");
2010 		}
2011 
2012 		/*
2013 		 * Do it the slow way
2014 		 */
2015 		error = vget(vp, LK_SHARED);
2016 		if (error) {
2017 			/*
2018 			 * VRECLAIM race
2019 			 */
2020 			if (error == ENOENT) {
2021 				kprintf("Warning: vnode reclaim race detected "
2022 					"in cache_vget on %p (%s)\n",
2023 					vp, ncp->nc_name);
2024 				_cache_unlock(ncp);
2025 				_cache_lock(ncp);
2026 				_cache_setunresolved(ncp);
2027 				goto again;
2028 			}
2029 
2030 			/*
2031 			 * Not a reclaim race, some other error.
2032 			 */
2033 			KKASSERT(ncp->nc_vp == vp);
2034 			vp = NULL;
2035 		} else {
2036 			KKASSERT(ncp->nc_vp == vp);
2037 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
2038 			/* caller does not want a lock */
2039 			vn_unlock(vp);
2040 		}
2041 		break;
2042 	}
2043 	if (error == 0 && vp == NULL)
2044 		error = ENOENT;
2045 	*vpp = vp;
2046 
2047 	return(error);
2048 }
2049 
2050 /*
2051  * Return a referenced vnode representing the parent directory of
2052  * ncp.
2053  *
2054  * Because the caller has locked the ncp it should not be possible for
2055  * the parent ncp to go away.  However, the parent can unresolve its
2056  * dvp at any time so we must be able to acquire a lock on the parent
2057  * to safely access nc_vp.
2058  *
2059  * We have to leave par unlocked when vget()ing dvp to avoid a deadlock,
2060  * so use vhold()/vdrop() while holding the lock to prevent dvp from
2061  * getting destroyed.
2062  *
2063  * NOTE: vhold() is allowed when dvp has 0 refs if we hold a
2064  *	 lock on the ncp in question..
2065  */
2066 struct vnode *
2067 cache_dvpref(struct namecache *ncp)
2068 {
2069 	struct namecache *par;
2070 	struct vnode *dvp;
2071 
2072 	dvp = NULL;
2073 	if ((par = ncp->nc_parent) != NULL) {
2074 		_cache_hold(par);
2075 		_cache_lock(par);
2076 		if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
2077 			if ((dvp = par->nc_vp) != NULL)
2078 				vhold(dvp);
2079 		}
2080 		_cache_unlock(par);
2081 		if (dvp) {
2082 			if (vget(dvp, LK_SHARED) == 0) {
2083 				vn_unlock(dvp);
2084 				vdrop(dvp);
2085 				/* return refd, unlocked dvp */
2086 			} else {
2087 				vdrop(dvp);
2088 				dvp = NULL;
2089 			}
2090 		}
2091 		_cache_drop(par);
2092 	}
2093 	return(dvp);
2094 }
2095 
2096 /*
2097  * Convert a directory vnode to a namecache record without any other
2098  * knowledge of the topology.  This ONLY works with directory vnodes and
2099  * is ONLY used by the NFS server.  dvp must be refd but unlocked, and the
2100  * returned ncp (if not NULL) will be held and unlocked.
2101  *
2102  * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
2103  * If 'makeit' is 1 we attempt to track-down and create the namecache topology
2104  * for dvp.  This will fail only if the directory has been deleted out from
2105  * under the caller.
2106  *
2107  * Callers must always check for a NULL return no matter the value of 'makeit'.
2108  *
2109  * To avoid underflowing the kernel stack each recursive call increments
2110  * the makeit variable.
2111  */
2112 
2113 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
2114 				  struct vnode *dvp, char *fakename);
2115 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
2116 				  struct vnode **saved_dvp);
2117 
2118 int
2119 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
2120 	      struct nchandle *nch)
2121 {
2122 	struct vnode *saved_dvp;
2123 	struct vnode *pvp;
2124 	char *fakename;
2125 	int error;
2126 
2127 	nch->ncp = NULL;
2128 	nch->mount = dvp->v_mount;
2129 	saved_dvp = NULL;
2130 	fakename = NULL;
2131 
2132 	/*
2133 	 * Handle the makeit == 0 degenerate case
2134 	 */
2135 	if (makeit == 0) {
2136 		spin_lock_shared(&dvp->v_spin);
2137 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
2138 		if (nch->ncp)
2139 			cache_hold(nch);
2140 		spin_unlock_shared(&dvp->v_spin);
2141 	}
2142 
2143 	/*
2144 	 * Loop until resolution, inside code will break out on error.
2145 	 */
2146 	while (makeit) {
2147 		/*
2148 		 * Break out if we successfully acquire a working ncp.
2149 		 */
2150 		spin_lock_shared(&dvp->v_spin);
2151 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
2152 		if (nch->ncp) {
2153 			cache_hold(nch);
2154 			spin_unlock_shared(&dvp->v_spin);
2155 			break;
2156 		}
2157 		spin_unlock_shared(&dvp->v_spin);
2158 
2159 		/*
2160 		 * If dvp is the root of its filesystem it should already
2161 		 * have a namecache pointer associated with it as a side
2162 		 * effect of the mount, but it may have been disassociated.
2163 		 */
2164 		if (dvp->v_flag & VROOT) {
2165 			nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
2166 			error = cache_resolve_mp(nch->mount);
2167 			_cache_put(nch->ncp);
2168 			if (ncvp_debug) {
2169 				kprintf("cache_fromdvp: resolve root of mount %p error %d",
2170 					dvp->v_mount, error);
2171 			}
2172 			if (error) {
2173 				if (ncvp_debug)
2174 					kprintf(" failed\n");
2175 				nch->ncp = NULL;
2176 				break;
2177 			}
2178 			if (ncvp_debug)
2179 				kprintf(" succeeded\n");
2180 			continue;
2181 		}
2182 
2183 		/*
2184 		 * If we are recursed too deeply resort to an O(n^2)
2185 		 * algorithm to resolve the namecache topology.  The
2186 		 * resolved pvp is left referenced in saved_dvp to
2187 		 * prevent the tree from being destroyed while we loop.
2188 		 */
2189 		if (makeit > 20) {
2190 			error = cache_fromdvp_try(dvp, cred, &saved_dvp);
2191 			if (error) {
2192 				kprintf("lookupdotdot(longpath) failed %d "
2193 				       "dvp %p\n", error, dvp);
2194 				nch->ncp = NULL;
2195 				break;
2196 			}
2197 			continue;
2198 		}
2199 
2200 		/*
2201 		 * Get the parent directory and resolve its ncp.
2202 		 */
2203 		if (fakename) {
2204 			kfree(fakename, M_TEMP);
2205 			fakename = NULL;
2206 		}
2207 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2208 					  &fakename);
2209 		if (error) {
2210 			kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
2211 			break;
2212 		}
2213 		vn_unlock(pvp);
2214 
2215 		/*
2216 		 * Reuse makeit as a recursion depth counter.  On success
2217 		 * nch will be fully referenced.
2218 		 */
2219 		cache_fromdvp(pvp, cred, makeit + 1, nch);
2220 		vrele(pvp);
2221 		if (nch->ncp == NULL)
2222 			break;
2223 
2224 		/*
2225 		 * Do an inefficient scan of pvp (embodied by ncp) to look
2226 		 * for dvp.  This will create a namecache record for dvp on
2227 		 * success.  We loop up to recheck on success.
2228 		 *
2229 		 * ncp and dvp are both held but not locked.
2230 		 */
2231 		error = cache_inefficient_scan(nch, cred, dvp, fakename);
2232 		if (error) {
2233 			kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
2234 				pvp, nch->ncp->nc_name, dvp);
2235 			cache_drop(nch);
2236 			/* nch was NULLed out, reload mount */
2237 			nch->mount = dvp->v_mount;
2238 			break;
2239 		}
2240 		if (ncvp_debug) {
2241 			kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
2242 				pvp, nch->ncp->nc_name);
2243 		}
2244 		cache_drop(nch);
2245 		/* nch was NULLed out, reload mount */
2246 		nch->mount = dvp->v_mount;
2247 	}
2248 
2249 	/*
2250 	 * If nch->ncp is non-NULL it will have been held already.
2251 	 */
2252 	if (fakename)
2253 		kfree(fakename, M_TEMP);
2254 	if (saved_dvp)
2255 		vrele(saved_dvp);
2256 	if (nch->ncp)
2257 		return (0);
2258 	return (EINVAL);
2259 }
2260 
2261 /*
2262  * Go up the chain of parent directories until we find something
2263  * we can resolve into the namecache.  This is very inefficient.
2264  */
2265 static
2266 int
2267 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
2268 		  struct vnode **saved_dvp)
2269 {
2270 	struct nchandle nch;
2271 	struct vnode *pvp;
2272 	int error;
2273 	static time_t last_fromdvp_report;
2274 	char *fakename;
2275 
2276 	/*
2277 	 * Loop getting the parent directory vnode until we get something we
2278 	 * can resolve in the namecache.
2279 	 */
2280 	vref(dvp);
2281 	nch.mount = dvp->v_mount;
2282 	nch.ncp = NULL;
2283 	fakename = NULL;
2284 
2285 	for (;;) {
2286 		if (fakename) {
2287 			kfree(fakename, M_TEMP);
2288 			fakename = NULL;
2289 		}
2290 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2291 					  &fakename);
2292 		if (error) {
2293 			vrele(dvp);
2294 			break;
2295 		}
2296 		vn_unlock(pvp);
2297 		spin_lock_shared(&pvp->v_spin);
2298 		if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
2299 			_cache_hold(nch.ncp);
2300 			spin_unlock_shared(&pvp->v_spin);
2301 			vrele(pvp);
2302 			break;
2303 		}
2304 		spin_unlock_shared(&pvp->v_spin);
2305 		if (pvp->v_flag & VROOT) {
2306 			nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
2307 			error = cache_resolve_mp(nch.mount);
2308 			_cache_unlock(nch.ncp);
2309 			vrele(pvp);
2310 			if (error) {
2311 				_cache_drop(nch.ncp);
2312 				nch.ncp = NULL;
2313 				vrele(dvp);
2314 			}
2315 			break;
2316 		}
2317 		vrele(dvp);
2318 		dvp = pvp;
2319 	}
2320 	if (error == 0) {
2321 		if (last_fromdvp_report != time_uptime) {
2322 			last_fromdvp_report = time_uptime;
2323 			kprintf("Warning: extremely inefficient path "
2324 				"resolution on %s\n",
2325 				nch.ncp->nc_name);
2326 		}
2327 		error = cache_inefficient_scan(&nch, cred, dvp, fakename);
2328 
2329 		/*
2330 		 * Hopefully dvp now has a namecache record associated with
2331 		 * it.  Leave it referenced to prevent the kernel from
2332 		 * recycling the vnode.  Otherwise extremely long directory
2333 		 * paths could result in endless recycling.
2334 		 */
2335 		if (*saved_dvp)
2336 		    vrele(*saved_dvp);
2337 		*saved_dvp = dvp;
2338 		_cache_drop(nch.ncp);
2339 	}
2340 	if (fakename)
2341 		kfree(fakename, M_TEMP);
2342 	return (error);
2343 }
2344 
2345 /*
2346  * Do an inefficient scan of the directory represented by ncp looking for
2347  * the directory vnode dvp.  ncp must be held but not locked on entry and
2348  * will be held on return.  dvp must be refd but not locked on entry and
2349  * will remain refd on return.
2350  *
2351  * Why do this at all?  Well, due to its stateless nature the NFS server
2352  * converts file handles directly to vnodes without necessarily going through
2353  * the namecache ops that would otherwise create the namecache topology
2354  * leading to the vnode.  We could either (1) Change the namecache algorithms
2355  * to allow disconnect namecache records that are re-merged opportunistically,
2356  * or (2) Make the NFS server backtrack and scan to recover a connected
2357  * namecache topology in order to then be able to issue new API lookups.
2358  *
2359  * It turns out that (1) is a huge mess.  It takes a nice clean set of
2360  * namecache algorithms and introduces a lot of complication in every subsystem
2361  * that calls into the namecache to deal with the re-merge case, especially
2362  * since we are using the namecache to placehold negative lookups and the
2363  * vnode might not be immediately assigned. (2) is certainly far less
2364  * efficient then (1), but since we are only talking about directories here
2365  * (which are likely to remain cached), the case does not actually run all
2366  * that often and has the supreme advantage of not polluting the namecache
2367  * algorithms.
2368  *
2369  * If a fakename is supplied just construct a namecache entry using the
2370  * fake name.
2371  */
2372 static int
2373 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
2374 		       struct vnode *dvp, char *fakename)
2375 {
2376 	struct nlcomponent nlc;
2377 	struct nchandle rncp;
2378 	struct dirent *den;
2379 	struct vnode *pvp;
2380 	struct vattr vat;
2381 	struct iovec iov;
2382 	struct uio uio;
2383 	int blksize;
2384 	int eofflag;
2385 	int bytes;
2386 	char *rbuf;
2387 	int error;
2388 
2389 	vat.va_blocksize = 0;
2390 	if ((error = VOP_GETATTR(dvp, &vat)) != 0)
2391 		return (error);
2392 	cache_lock(nch);
2393 	error = cache_vref(nch, cred, &pvp);
2394 	cache_unlock(nch);
2395 	if (error)
2396 		return (error);
2397 	if (ncvp_debug) {
2398 		kprintf("inefficient_scan of (%p,%s): directory iosize %ld "
2399 			"vattr fileid = %lld\n",
2400 			nch->ncp, nch->ncp->nc_name,
2401 			vat.va_blocksize,
2402 			(long long)vat.va_fileid);
2403 	}
2404 
2405 	/*
2406 	 * Use the supplied fakename if not NULL.  Fake names are typically
2407 	 * not in the actual filesystem hierarchy.  This is used by HAMMER
2408 	 * to glue @@timestamp recursions together.
2409 	 */
2410 	if (fakename) {
2411 		nlc.nlc_nameptr = fakename;
2412 		nlc.nlc_namelen = strlen(fakename);
2413 		rncp = cache_nlookup(nch, &nlc);
2414 		goto done;
2415 	}
2416 
2417 	if ((blksize = vat.va_blocksize) == 0)
2418 		blksize = DEV_BSIZE;
2419 	rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
2420 	rncp.ncp = NULL;
2421 
2422 	eofflag = 0;
2423 	uio.uio_offset = 0;
2424 again:
2425 	iov.iov_base = rbuf;
2426 	iov.iov_len = blksize;
2427 	uio.uio_iov = &iov;
2428 	uio.uio_iovcnt = 1;
2429 	uio.uio_resid = blksize;
2430 	uio.uio_segflg = UIO_SYSSPACE;
2431 	uio.uio_rw = UIO_READ;
2432 	uio.uio_td = curthread;
2433 
2434 	if (ncvp_debug >= 2)
2435 		kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
2436 	error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
2437 	if (error == 0) {
2438 		den = (struct dirent *)rbuf;
2439 		bytes = blksize - uio.uio_resid;
2440 
2441 		while (bytes > 0) {
2442 			if (ncvp_debug >= 2) {
2443 				kprintf("cache_inefficient_scan: %*.*s\n",
2444 					den->d_namlen, den->d_namlen,
2445 					den->d_name);
2446 			}
2447 			if (den->d_type != DT_WHT &&
2448 			    den->d_ino == vat.va_fileid) {
2449 				if (ncvp_debug) {
2450 					kprintf("cache_inefficient_scan: "
2451 					       "MATCHED inode %lld path %s/%*.*s\n",
2452 					       (long long)vat.va_fileid,
2453 					       nch->ncp->nc_name,
2454 					       den->d_namlen, den->d_namlen,
2455 					       den->d_name);
2456 				}
2457 				nlc.nlc_nameptr = den->d_name;
2458 				nlc.nlc_namelen = den->d_namlen;
2459 				rncp = cache_nlookup(nch, &nlc);
2460 				KKASSERT(rncp.ncp != NULL);
2461 				break;
2462 			}
2463 			bytes -= _DIRENT_DIRSIZ(den);
2464 			den = _DIRENT_NEXT(den);
2465 		}
2466 		if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
2467 			goto again;
2468 	}
2469 	kfree(rbuf, M_TEMP);
2470 done:
2471 	vrele(pvp);
2472 	if (rncp.ncp) {
2473 		if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
2474 			_cache_setvp(rncp.mount, rncp.ncp, dvp);
2475 			if (ncvp_debug >= 2) {
2476 				kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
2477 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
2478 			}
2479 		} else {
2480 			if (ncvp_debug >= 2) {
2481 				kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
2482 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
2483 					rncp.ncp->nc_vp);
2484 			}
2485 		}
2486 		if (rncp.ncp->nc_vp == NULL)
2487 			error = rncp.ncp->nc_error;
2488 		/*
2489 		 * Release rncp after a successful nlookup.  rncp was fully
2490 		 * referenced.
2491 		 */
2492 		cache_put(&rncp);
2493 	} else {
2494 		kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
2495 			dvp, nch->ncp->nc_name);
2496 		error = ENOENT;
2497 	}
2498 	return (error);
2499 }
2500 
2501 /*
2502  * This function must be called with the ncp held and locked and will unlock
2503  * and drop it during zapping.
2504  *
2505  * Zap a namecache entry.  The ncp is unconditionally set to an unresolved
2506  * state, which disassociates it from its vnode or pcpu_ncache[n].neg_list
2507  * and removes the related reference.  If the ncp can be removed, and the
2508  * parent can be zapped non-blocking, this function loops up.
2509  *
2510  * There will be one ref from the caller (which we now own).  The only
2511  * remaining autonomous refs to the ncp will then be due to nc_parent->nc_list,
2512  * so possibly 2 refs left.  Taking this into account, if there are no
2513  * additional refs and no children, the ncp will be removed from the topology
2514  * and destroyed.
2515  *
2516  * References and/or children may exist if the ncp is in the middle of the
2517  * topology, preventing the ncp from being destroyed.
2518  *
2519  * If nonblock is non-zero and the parent ncp cannot be locked we give up.
2520  *
2521  * This function may return a held (but NOT locked) parent node which the
2522  * caller must drop in a loop.  Looping is one way to avoid unbounded recursion
2523  * due to deep namecache trees.
2524  *
2525  * WARNING!  For MPSAFE operation this routine must acquire up to three
2526  *	     spin locks to be able to safely test nc_refs.  Lock order is
2527  *	     very important.
2528  *
2529  *	     hash spinlock if on hash list
2530  *	     parent spinlock if child of parent
2531  *	     (the ncp is unresolved so there is no vnode association)
2532  */
2533 static void
2534 cache_zap(struct namecache *ncp)
2535 {
2536 	struct namecache *par;
2537 	struct vnode *dropvp;
2538 	struct nchash_head *nchpp;
2539 	int refcmp;
2540 	int nonblock = 1;	/* XXX cleanup */
2541 
2542 again:
2543 	/*
2544 	 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
2545 	 * This gets rid of any vp->v_namecache list or negative list and
2546 	 * the related ref.
2547 	 */
2548 	_cache_setunresolved(ncp);
2549 
2550 	/*
2551 	 * Try to scrap the entry and possibly tail-recurse on its parent.
2552 	 * We only scrap unref'd (other then our ref) unresolved entries,
2553 	 * we do not scrap 'live' entries.
2554 	 *
2555 	 * If nc_parent is non NULL we expect 2 references, else just 1.
2556 	 * If there are more, someone else also holds the ncp and we cannot
2557 	 * destroy it.
2558 	 */
2559 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
2560 	KKASSERT(ncp->nc_refs > 0);
2561 
2562 	/*
2563 	 * If the ncp is linked to its parent it will also be in the hash
2564 	 * table.  We have to be able to lock the parent and the hash table.
2565 	 *
2566 	 * Acquire locks.  Note that the parent can't go away while we hold
2567 	 * a child locked.  If nc_parent is present, expect 2 refs instead
2568 	 * of 1.
2569 	 */
2570 	nchpp = NULL;
2571 	if ((par = ncp->nc_parent) != NULL) {
2572 		if (nonblock) {
2573 			if (_cache_lock_nonblock(par)) {
2574 				/* lock failed */
2575 				ncp->nc_flag |= NCF_DEFEREDZAP;
2576 				atomic_add_long(
2577 				    &pcpu_ncache[mycpu->gd_cpuid].numdefered,
2578 				    1);
2579 				_cache_unlock(ncp);
2580 				_cache_drop(ncp);	/* caller's ref */
2581 				return;
2582 			}
2583 			_cache_hold(par);
2584 		} else {
2585 			_cache_hold(par);
2586 			_cache_lock(par);
2587 		}
2588 		nchpp = ncp->nc_head;
2589 		spin_lock(&nchpp->spin);
2590 	}
2591 
2592 	/*
2593 	 * With the parent and nchpp locked, and the vnode removed
2594 	 * (no vp->v_namecache), we expect 1 or 2 refs.  If there are
2595 	 * more someone else has a ref and we cannot zap the entry.
2596 	 *
2597 	 * one for our hold
2598 	 * one for our parent link (parent also has one from the linkage)
2599 	 */
2600 	if (par)
2601 		refcmp = 2;
2602 	else
2603 		refcmp = 1;
2604 
2605 	/*
2606 	 * On failure undo the work we've done so far and drop the
2607 	 * caller's ref and ncp.
2608 	 */
2609 	if (ncp->nc_refs != refcmp || TAILQ_FIRST(&ncp->nc_list)) {
2610 		if (par) {
2611 			spin_unlock(&nchpp->spin);
2612 			_cache_put(par);
2613 		}
2614 		_cache_unlock(ncp);
2615 		_cache_drop(ncp);
2616 		return;
2617 	}
2618 
2619 	/*
2620 	 * We own all the refs and with the spinlocks held no further
2621 	 * refs can be acquired by others.
2622 	 *
2623 	 * Remove us from the hash list and parent list.  We have to
2624 	 * drop a ref on the parent's vp if the parent's list becomes
2625 	 * empty.
2626 	 */
2627 	dropvp = NULL;
2628 	if (par) {
2629 		struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
2630 
2631 		KKASSERT(nchpp == ncp->nc_head);
2632 		TAILQ_REMOVE(&ncp->nc_head->list, ncp, nc_hash);
2633 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
2634 		atomic_add_long(&pn->vfscache_count, -1);
2635 		if (TAILQ_EMPTY(&ncp->nc_list))
2636 			atomic_add_long(&pn->vfscache_leafs, -1);
2637 
2638 		if (TAILQ_EMPTY(&par->nc_list)) {
2639 			atomic_add_long(&pn->vfscache_leafs, 1);
2640 			if (par->nc_vp)
2641 				dropvp = par->nc_vp;
2642 		}
2643 		ncp->nc_parent = NULL;
2644 		ncp->nc_head = NULL;
2645 		spin_unlock(&nchpp->spin);
2646 		_cache_drop(par);	/* removal of ncp from par->nc_list */
2647 		/*_cache_unlock(par);*/
2648 	} else {
2649 		KKASSERT(ncp->nc_head == NULL);
2650 	}
2651 
2652 	/*
2653 	 * ncp should not have picked up any refs.  Physically
2654 	 * destroy the ncp.
2655 	 */
2656 	if (ncp->nc_refs != refcmp) {
2657 		panic("cache_zap: %p bad refs %d (expected %d)\n",
2658 			ncp, ncp->nc_refs, refcmp);
2659 	}
2660 	/* _cache_unlock(ncp) not required */
2661 	ncp->nc_refs = -1;	/* safety */
2662 	if (ncp->nc_name)
2663 		kfree(ncp->nc_name, M_VFSCACHE);
2664 	kfree(ncp, M_VFSCACHE);
2665 
2666 	/*
2667 	 * Delayed drop (we had to release our spinlocks)
2668 	 */
2669 	if (dropvp)
2670 		vdrop(dropvp);
2671 
2672 	/*
2673 	 * Loop up if we can recursively clean out the parent.
2674 	 */
2675 	if (par) {
2676 		refcmp = 1;		/* ref on parent */
2677 		if (par->nc_parent)	/* par->par */
2678 			++refcmp;
2679 		par->nc_flag &= ~NCF_DEFEREDZAP;
2680 		if ((par->nc_flag & NCF_UNRESOLVED) &&
2681 		    par->nc_refs == refcmp &&
2682 		    TAILQ_EMPTY(&par->nc_list)) {
2683 			ncp = par;
2684 			goto again;
2685 		}
2686 		_cache_unlock(par);
2687 		_cache_drop(par);
2688 	}
2689 }
2690 
2691 /*
2692  * Clean up dangling negative cache and defered-drop entries in the
2693  * namecache.
2694  *
2695  * This routine is called in the critical path and also called from
2696  * vnlru().  When called from vnlru we use a lower limit to try to
2697  * deal with the negative cache before the critical path has to start
2698  * dealing with it.
2699  */
2700 typedef enum { CHI_LOW, CHI_HIGH } cache_hs_t;
2701 
2702 static cache_hs_t neg_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
2703 static cache_hs_t pos_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
2704 
2705 void
2706 cache_hysteresis(int critpath)
2707 {
2708 	long poslimit;
2709 	long neglimit = maxvnodes / ncnegfactor;
2710 	long xnumcache = vfscache_leafs;
2711 
2712 	if (critpath == 0)
2713 		neglimit = neglimit * 8 / 10;
2714 
2715 	/*
2716 	 * Don't cache too many negative hits.  We use hysteresis to reduce
2717 	 * the impact on the critical path.
2718 	 */
2719 	switch(neg_cache_hysteresis_state[critpath]) {
2720 	case CHI_LOW:
2721 		if (vfscache_negs > MINNEG && vfscache_negs > neglimit) {
2722 			if (critpath)
2723 				_cache_cleanneg(ncnegflush);
2724 			else
2725 				_cache_cleanneg(ncnegflush +
2726 						vfscache_negs - neglimit);
2727 			neg_cache_hysteresis_state[critpath] = CHI_HIGH;
2728 		}
2729 		break;
2730 	case CHI_HIGH:
2731 		if (vfscache_negs > MINNEG * 9 / 10 &&
2732 		    vfscache_negs * 9 / 10 > neglimit
2733 		) {
2734 			if (critpath)
2735 				_cache_cleanneg(ncnegflush);
2736 			else
2737 				_cache_cleanneg(ncnegflush +
2738 						vfscache_negs * 9 / 10 -
2739 						neglimit);
2740 		} else {
2741 			neg_cache_hysteresis_state[critpath] = CHI_LOW;
2742 		}
2743 		break;
2744 	}
2745 
2746 	/*
2747 	 * Don't cache too many positive hits.  We use hysteresis to reduce
2748 	 * the impact on the critical path.
2749 	 *
2750 	 * Excessive positive hits can accumulate due to large numbers of
2751 	 * hardlinks (the vnode cache will not prevent hl ncps from growing
2752 	 * into infinity).
2753 	 */
2754 	if ((poslimit = ncposlimit) == 0)
2755 		poslimit = maxvnodes * 2;
2756 	if (critpath == 0)
2757 		poslimit = poslimit * 8 / 10;
2758 
2759 	switch(pos_cache_hysteresis_state[critpath]) {
2760 	case CHI_LOW:
2761 		if (xnumcache > poslimit && xnumcache > MINPOS) {
2762 			if (critpath)
2763 				_cache_cleanpos(ncposflush);
2764 			else
2765 				_cache_cleanpos(ncposflush +
2766 						xnumcache - poslimit);
2767 			pos_cache_hysteresis_state[critpath] = CHI_HIGH;
2768 		}
2769 		break;
2770 	case CHI_HIGH:
2771 		if (xnumcache > poslimit * 5 / 6 && xnumcache > MINPOS) {
2772 			if (critpath)
2773 				_cache_cleanpos(ncposflush);
2774 			else
2775 				_cache_cleanpos(ncposflush +
2776 						xnumcache - poslimit * 5 / 6);
2777 		} else {
2778 			pos_cache_hysteresis_state[critpath] = CHI_LOW;
2779 		}
2780 		break;
2781 	}
2782 
2783 	/*
2784 	 * Clean out dangling defered-zap ncps which could not be cleanly
2785 	 * dropped if too many build up.  Note that numdefered is
2786 	 * heuristical.  Make sure we are real-time for the current cpu,
2787 	 * plus the global rollup.
2788 	 */
2789 	if (pcpu_ncache[mycpu->gd_cpuid].numdefered + numdefered > neglimit) {
2790 		_cache_cleandefered();
2791 	}
2792 }
2793 
2794 /*
2795  * NEW NAMECACHE LOOKUP API
2796  *
2797  * Lookup an entry in the namecache.  The passed par_nch must be referenced
2798  * and unlocked.  A referenced and locked nchandle with a non-NULL nch.ncp
2799  * is ALWAYS returned, eve if the supplied component is illegal.
2800  *
2801  * The resulting namecache entry should be returned to the system with
2802  * cache_put() or cache_unlock() + cache_drop().
2803  *
2804  * namecache locks are recursive but care must be taken to avoid lock order
2805  * reversals (hence why the passed par_nch must be unlocked).  Locking
2806  * rules are to order for parent traversals, not for child traversals.
2807  *
2808  * Nobody else will be able to manipulate the associated namespace (e.g.
2809  * create, delete, rename, rename-target) until the caller unlocks the
2810  * entry.
2811  *
2812  * The returned entry will be in one of three states:  positive hit (non-null
2813  * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
2814  * Unresolved entries must be resolved through the filesystem to associate the
2815  * vnode and/or determine whether a positive or negative hit has occured.
2816  *
2817  * It is not necessary to lock a directory in order to lock namespace under
2818  * that directory.  In fact, it is explicitly not allowed to do that.  A
2819  * directory is typically only locked when being created, renamed, or
2820  * destroyed.
2821  *
2822  * The directory (par) may be unresolved, in which case any returned child
2823  * will likely also be marked unresolved.  Likely but not guarenteed.  Since
2824  * the filesystem lookup requires a resolved directory vnode the caller is
2825  * responsible for resolving the namecache chain top-down.  This API
2826  * specifically allows whole chains to be created in an unresolved state.
2827  */
2828 struct nchandle
2829 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
2830 {
2831 	struct nchandle nch;
2832 	struct namecache *ncp;
2833 	struct namecache *new_ncp;
2834 	struct namecache *rep_ncp;	/* reuse a destroyed ncp */
2835 	struct nchash_head *nchpp;
2836 	struct mount *mp;
2837 	u_int32_t hash;
2838 	globaldata_t gd;
2839 	int par_locked;
2840 
2841 	gd = mycpu;
2842 	mp = par_nch->mount;
2843 	par_locked = 0;
2844 
2845 	/*
2846 	 * This is a good time to call it, no ncp's are locked by
2847 	 * the caller or us.
2848 	 */
2849 	cache_hysteresis(1);
2850 
2851 	/*
2852 	 * Try to locate an existing entry
2853 	 */
2854 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2855 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2856 	new_ncp = NULL;
2857 	nchpp = NCHHASH(hash);
2858 restart:
2859 	rep_ncp = NULL;
2860 	if (new_ncp)
2861 		spin_lock(&nchpp->spin);
2862 	else
2863 		spin_lock_shared(&nchpp->spin);
2864 
2865 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
2866 		/*
2867 		 * Break out if we find a matching entry.  Note that
2868 		 * UNRESOLVED entries may match, but DESTROYED entries
2869 		 * do not.
2870 		 *
2871 		 * We may be able to reuse DESTROYED entries that we come
2872 		 * across, even if the name does not match, as long as
2873 		 * nc_nlen is correct and the only hold ref is from the nchpp
2874 		 * list itself.
2875 		 */
2876 		if (ncp->nc_parent == par_nch->ncp &&
2877 		    ncp->nc_nlen == nlc->nlc_namelen) {
2878 			if (ncp->nc_flag & NCF_DESTROYED) {
2879 				if (ncp->nc_refs == 1 && rep_ncp == NULL)
2880 					rep_ncp = ncp;
2881 				continue;
2882 			}
2883 			if (bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen))
2884 				continue;
2885 			_cache_hold(ncp);
2886 			if (new_ncp)
2887 				spin_unlock(&nchpp->spin);
2888 			else
2889 				spin_unlock_shared(&nchpp->spin);
2890 			if (par_locked) {
2891 				_cache_unlock(par_nch->ncp);
2892 				par_locked = 0;
2893 			}
2894 			if (_cache_lock_special(ncp) == 0) {
2895 				/*
2896 				 * Successfully locked but we must re-test
2897 				 * conditions that might have changed since
2898 				 * we did not have the lock before.
2899 				 */
2900 				if (ncp->nc_parent != par_nch->ncp ||
2901 				    ncp->nc_nlen != nlc->nlc_namelen ||
2902 				    bcmp(ncp->nc_name, nlc->nlc_nameptr,
2903 					 ncp->nc_nlen) ||
2904 				    (ncp->nc_flag & NCF_DESTROYED)) {
2905 					_cache_put(ncp);
2906 					goto restart;
2907 				}
2908 				_cache_auto_unresolve(mp, ncp);
2909 				if (new_ncp)
2910 					_cache_free(new_ncp);
2911 				goto found;
2912 			}
2913 			_cache_get(ncp);	/* cycle the lock to block */
2914 			_cache_put(ncp);
2915 			_cache_drop(ncp);
2916 			goto restart;
2917 		}
2918 	}
2919 
2920 	/*
2921 	 * We failed to locate the entry, try to resurrect a destroyed
2922 	 * entry that we did find that is already correctly linked into
2923 	 * nchpp and the parent.  We must re-test conditions after
2924 	 * successfully locking rep_ncp.
2925 	 *
2926 	 * This case can occur under heavy loads due to not being able
2927 	 * to safely lock the parent in cache_zap().  Nominally a repeated
2928 	 * create/unlink load, but only the namelen needs to match.
2929 	 */
2930 	if (rep_ncp && new_ncp == NULL) {
2931 		if (_cache_lock_nonblock(rep_ncp) == 0) {
2932 			_cache_hold(rep_ncp);
2933 			if (rep_ncp->nc_parent == par_nch->ncp &&
2934 			    rep_ncp->nc_nlen == nlc->nlc_namelen &&
2935 			    (rep_ncp->nc_flag & NCF_DESTROYED) &&
2936 			    rep_ncp->nc_refs == 2) {
2937 				/*
2938 				 * Update nc_name as reuse as new.
2939 				 */
2940 				ncp = rep_ncp;
2941 				bcopy(nlc->nlc_nameptr, ncp->nc_name,
2942 				      nlc->nlc_namelen);
2943 				spin_unlock_shared(&nchpp->spin);
2944 				_cache_setunresolved(ncp);
2945 				ncp->nc_flag = NCF_UNRESOLVED;
2946 				ncp->nc_error = ENOTCONN;
2947 				goto found;
2948 			}
2949 			_cache_put(rep_ncp);
2950 		}
2951 	}
2952 
2953 	/*
2954 	 * Otherwise create a new entry and add it to the cache.  The parent
2955 	 * ncp must also be locked so we can link into it.
2956 	 *
2957 	 * We have to relookup after possibly blocking in kmalloc or
2958 	 * when locking par_nch.
2959 	 *
2960 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
2961 	 *	 mount case, in which case nc_name will be NULL.
2962 	 */
2963 	if (new_ncp == NULL) {
2964 		spin_unlock_shared(&nchpp->spin);
2965 		new_ncp = cache_alloc(nlc->nlc_namelen);
2966 		if (nlc->nlc_namelen) {
2967 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
2968 			      nlc->nlc_namelen);
2969 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
2970 		}
2971 		goto restart;
2972 	}
2973 
2974 	/*
2975 	 * NOTE! The spinlock is held exclusively here because new_ncp
2976 	 *	 is non-NULL.
2977 	 */
2978 	if (par_locked == 0) {
2979 		spin_unlock(&nchpp->spin);
2980 		_cache_lock(par_nch->ncp);
2981 		par_locked = 1;
2982 		goto restart;
2983 	}
2984 
2985 	/*
2986 	 * Link to parent (requires another ref, the one already in new_ncp
2987 	 * is what we wil lreturn).
2988 	 *
2989 	 * WARNING!  We still hold the spinlock.  We have to set the hash
2990 	 *	     table entry atomically.
2991 	 */
2992 	ncp = new_ncp;
2993 	++ncp->nc_refs;
2994 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
2995 	spin_unlock(&nchpp->spin);
2996 	_cache_unlock(par_nch->ncp);
2997 	/* par_locked = 0 - not used */
2998 found:
2999 	/*
3000 	 * stats and namecache size management
3001 	 */
3002 	if (ncp->nc_flag & NCF_UNRESOLVED)
3003 		++gd->gd_nchstats->ncs_miss;
3004 	else if (ncp->nc_vp)
3005 		++gd->gd_nchstats->ncs_goodhits;
3006 	else
3007 		++gd->gd_nchstats->ncs_neghits;
3008 	nch.mount = mp;
3009 	nch.ncp = ncp;
3010 	_cache_mntref(nch.mount);
3011 
3012 	return(nch);
3013 }
3014 
3015 /*
3016  * Attempt to lookup a namecache entry and return with a shared namecache
3017  * lock.  This operates non-blocking.  EWOULDBLOCK is returned if excl is
3018  * set or we are unable to lock.
3019  */
3020 int
3021 cache_nlookup_maybe_shared(struct nchandle *par_nch,
3022 			   struct nlcomponent *nlc,
3023 			   int excl, struct nchandle *res_nch)
3024 {
3025 	struct namecache *ncp;
3026 	struct nchash_head *nchpp;
3027 	struct mount *mp;
3028 	u_int32_t hash;
3029 	globaldata_t gd;
3030 
3031 	/*
3032 	 * If exclusive requested or shared namecache locks are disabled,
3033 	 * return failure.
3034 	 */
3035 	if (ncp_shared_lock_disable || excl)
3036 		return(EWOULDBLOCK);
3037 
3038 	gd = mycpu;
3039 	mp = par_nch->mount;
3040 
3041 	/*
3042 	 * This is a good time to call it, no ncp's are locked by
3043 	 * the caller or us.
3044 	 */
3045 	cache_hysteresis(1);
3046 
3047 	/*
3048 	 * Try to locate an existing entry
3049 	 */
3050 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3051 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3052 	nchpp = NCHHASH(hash);
3053 
3054 	spin_lock_shared(&nchpp->spin);
3055 
3056 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
3057 		/*
3058 		 * Break out if we find a matching entry.  Note that
3059 		 * UNRESOLVED entries may match, but DESTROYED entries
3060 		 * do not.
3061 		 */
3062 		if (ncp->nc_parent == par_nch->ncp &&
3063 		    ncp->nc_nlen == nlc->nlc_namelen &&
3064 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
3065 		    (ncp->nc_flag & NCF_DESTROYED) == 0
3066 		) {
3067 			_cache_hold(ncp);
3068 			spin_unlock_shared(&nchpp->spin);
3069 
3070 			if (_cache_lock_shared_special(ncp) == 0) {
3071 				if (ncp->nc_parent == par_nch->ncp &&
3072 				    ncp->nc_nlen == nlc->nlc_namelen &&
3073 				    bcmp(ncp->nc_name, nlc->nlc_nameptr,
3074 					 ncp->nc_nlen) == 0 &&
3075 				    (ncp->nc_flag & NCF_DESTROYED) == 0 &&
3076 				    (ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
3077 				    _cache_auto_unresolve_test(mp, ncp) == 0) {
3078 					goto found;
3079 				}
3080 				_cache_unlock(ncp);
3081 			}
3082 			_cache_drop(ncp);
3083 			return(EWOULDBLOCK);
3084 		}
3085 	}
3086 
3087 	/*
3088 	 * Failure
3089 	 */
3090 	spin_unlock_shared(&nchpp->spin);
3091 	return(EWOULDBLOCK);
3092 
3093 	/*
3094 	 * Success
3095 	 *
3096 	 * Note that nc_error might be non-zero (e.g ENOENT).
3097 	 */
3098 found:
3099 	res_nch->mount = mp;
3100 	res_nch->ncp = ncp;
3101 	++gd->gd_nchstats->ncs_goodhits;
3102 	_cache_mntref(res_nch->mount);
3103 
3104 	KKASSERT(ncp->nc_error != EWOULDBLOCK);
3105 	return(ncp->nc_error);
3106 }
3107 
3108 /*
3109  * This is a non-blocking verison of cache_nlookup() used by
3110  * nfs_readdirplusrpc_uio().  It can fail for any reason and
3111  * will return nch.ncp == NULL in that case.
3112  */
3113 struct nchandle
3114 cache_nlookup_nonblock(struct nchandle *par_nch, struct nlcomponent *nlc)
3115 {
3116 	struct nchandle nch;
3117 	struct namecache *ncp;
3118 	struct namecache *new_ncp;
3119 	struct nchash_head *nchpp;
3120 	struct mount *mp;
3121 	u_int32_t hash;
3122 	globaldata_t gd;
3123 	int par_locked;
3124 
3125 	gd = mycpu;
3126 	mp = par_nch->mount;
3127 	par_locked = 0;
3128 
3129 	/*
3130 	 * Try to locate an existing entry
3131 	 */
3132 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3133 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3134 	new_ncp = NULL;
3135 	nchpp = NCHHASH(hash);
3136 restart:
3137 	spin_lock(&nchpp->spin);
3138 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
3139 		/*
3140 		 * Break out if we find a matching entry.  Note that
3141 		 * UNRESOLVED entries may match, but DESTROYED entries
3142 		 * do not.
3143 		 */
3144 		if (ncp->nc_parent == par_nch->ncp &&
3145 		    ncp->nc_nlen == nlc->nlc_namelen &&
3146 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
3147 		    (ncp->nc_flag & NCF_DESTROYED) == 0
3148 		) {
3149 			_cache_hold(ncp);
3150 			spin_unlock(&nchpp->spin);
3151 			if (par_locked) {
3152 				_cache_unlock(par_nch->ncp);
3153 				par_locked = 0;
3154 			}
3155 			if (_cache_lock_special(ncp) == 0) {
3156 				if (ncp->nc_parent != par_nch->ncp ||
3157 				    ncp->nc_nlen != nlc->nlc_namelen ||
3158 				    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) ||
3159 				    (ncp->nc_flag & NCF_DESTROYED)) {
3160 					kprintf("cache_lookup_nonblock: "
3161 						"ncp-race %p %*.*s\n",
3162 						ncp,
3163 						nlc->nlc_namelen,
3164 						nlc->nlc_namelen,
3165 						nlc->nlc_nameptr);
3166 					_cache_unlock(ncp);
3167 					_cache_drop(ncp);
3168 					goto failed;
3169 				}
3170 				_cache_auto_unresolve(mp, ncp);
3171 				if (new_ncp) {
3172 					_cache_free(new_ncp);
3173 					new_ncp = NULL;
3174 				}
3175 				goto found;
3176 			}
3177 			_cache_drop(ncp);
3178 			goto failed;
3179 		}
3180 	}
3181 
3182 	/*
3183 	 * We failed to locate an entry, create a new entry and add it to
3184 	 * the cache.  The parent ncp must also be locked so we
3185 	 * can link into it.
3186 	 *
3187 	 * We have to relookup after possibly blocking in kmalloc or
3188 	 * when locking par_nch.
3189 	 *
3190 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
3191 	 *	 mount case, in which case nc_name will be NULL.
3192 	 */
3193 	if (new_ncp == NULL) {
3194 		spin_unlock(&nchpp->spin);
3195 		new_ncp = cache_alloc(nlc->nlc_namelen);
3196 		if (nlc->nlc_namelen) {
3197 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
3198 			      nlc->nlc_namelen);
3199 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
3200 		}
3201 		goto restart;
3202 	}
3203 	if (par_locked == 0) {
3204 		spin_unlock(&nchpp->spin);
3205 		if (_cache_lock_nonblock(par_nch->ncp) == 0) {
3206 			par_locked = 1;
3207 			goto restart;
3208 		}
3209 		goto failed;
3210 	}
3211 
3212 	/*
3213 	 * Link to parent (requires another ref, the one already in new_ncp
3214 	 * is what we wil lreturn).
3215 	 *
3216 	 * WARNING!  We still hold the spinlock.  We have to set the hash
3217 	 *	     table entry atomically.
3218 	 */
3219 	ncp = new_ncp;
3220 	++ncp->nc_refs;
3221 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
3222 	spin_unlock(&nchpp->spin);
3223 	_cache_unlock(par_nch->ncp);
3224 	/* par_locked = 0 - not used */
3225 found:
3226 	/*
3227 	 * stats and namecache size management
3228 	 */
3229 	if (ncp->nc_flag & NCF_UNRESOLVED)
3230 		++gd->gd_nchstats->ncs_miss;
3231 	else if (ncp->nc_vp)
3232 		++gd->gd_nchstats->ncs_goodhits;
3233 	else
3234 		++gd->gd_nchstats->ncs_neghits;
3235 	nch.mount = mp;
3236 	nch.ncp = ncp;
3237 	_cache_mntref(nch.mount);
3238 
3239 	return(nch);
3240 failed:
3241 	if (new_ncp) {
3242 		_cache_free(new_ncp);
3243 		new_ncp = NULL;
3244 	}
3245 	nch.mount = NULL;
3246 	nch.ncp = NULL;
3247 	return(nch);
3248 }
3249 
3250 /*
3251  * This version is non-locking.  The caller must validate the result
3252  * for parent-to-child continuity.
3253  *
3254  * It can fail for any reason and will return nch.ncp == NULL in that case.
3255  */
3256 struct nchandle
3257 cache_nlookup_nonlocked(struct nchandle *par_nch, struct nlcomponent *nlc)
3258 {
3259 	struct nchandle nch;
3260 	struct namecache *ncp;
3261 	struct nchash_head *nchpp;
3262 	struct mount *mp;
3263 	u_int32_t hash;
3264 	globaldata_t gd;
3265 
3266 	gd = mycpu;
3267 	mp = par_nch->mount;
3268 
3269 	/*
3270 	 * Try to locate an existing entry
3271 	 */
3272 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3273 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3274 	nchpp = NCHHASH(hash);
3275 
3276 	spin_lock_shared(&nchpp->spin);
3277 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
3278 		/*
3279 		 * Break out if we find a matching entry.  Note that
3280 		 * UNRESOLVED entries may match, but DESTROYED entries
3281 		 * do not.
3282 		 *
3283 		 * Resolved NFS entries which have timed out fail so the
3284 		 * caller can rerun with normal locking.
3285 		 */
3286 		if (ncp->nc_parent == par_nch->ncp &&
3287 		    ncp->nc_nlen == nlc->nlc_namelen &&
3288 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
3289 		    (ncp->nc_flag & NCF_DESTROYED) == 0
3290 		) {
3291 			if (_cache_auto_unresolve_test(par_nch->mount, ncp))
3292 				break;
3293 			_cache_hold(ncp);
3294 			spin_unlock_shared(&nchpp->spin);
3295 			goto found;
3296 		}
3297 	}
3298 	spin_unlock_shared(&nchpp->spin);
3299 	nch.mount = NULL;
3300 	nch.ncp = NULL;
3301 	return nch;
3302 found:
3303 	/*
3304 	 * stats and namecache size management
3305 	 */
3306 	if (ncp->nc_flag & NCF_UNRESOLVED)
3307 		++gd->gd_nchstats->ncs_miss;
3308 	else if (ncp->nc_vp)
3309 		++gd->gd_nchstats->ncs_goodhits;
3310 	else
3311 		++gd->gd_nchstats->ncs_neghits;
3312 	nch.mount = mp;
3313 	nch.ncp = ncp;
3314 	_cache_mntref(nch.mount);
3315 
3316 	return(nch);
3317 }
3318 
3319 /*
3320  * The namecache entry is marked as being used as a mount point.
3321  * Locate the mount if it is visible to the caller.  The DragonFly
3322  * mount system allows arbitrary loops in the topology and disentangles
3323  * those loops by matching against (mp, ncp) rather than just (ncp).
3324  * This means any given ncp can dive any number of mounts, depending
3325  * on the relative mount (e.g. nullfs) the caller is at in the topology.
3326  *
3327  * We use a very simple frontend cache to reduce SMP conflicts,
3328  * which we have to do because the mountlist scan needs an exclusive
3329  * lock around its ripout info list.  Not to mention that there might
3330  * be a lot of mounts.
3331  *
3332  * Because all mounts can potentially be accessed by all cpus, break the cpu's
3333  * down a bit to allow some contention rather than making the cache
3334  * excessively huge.
3335  *
3336  * The hash table is split into per-cpu areas, is 4-way set-associative.
3337  */
3338 struct findmount_info {
3339 	struct mount *result;
3340 	struct mount *nch_mount;
3341 	struct namecache *nch_ncp;
3342 };
3343 
3344 static __inline
3345 struct ncmount_cache *
3346 ncmount_cache_lookup4(struct mount *mp, struct namecache *ncp)
3347 {
3348 	uint32_t hash;
3349 
3350 	hash = iscsi_crc32(&mp, sizeof(mp));
3351 	hash = iscsi_crc32_ext(&ncp, sizeof(ncp), hash);
3352 	hash ^= hash >> 16;
3353 	hash = hash & ((NCMOUNT_NUMCACHE - 1) & ~(NCMOUNT_SET - 1));
3354 
3355 	return (&ncmount_cache[hash]);
3356 }
3357 
3358 static
3359 struct ncmount_cache *
3360 ncmount_cache_lookup(struct mount *mp, struct namecache *ncp)
3361 {
3362 	struct ncmount_cache *ncc;
3363 	struct ncmount_cache *best;
3364 	int delta;
3365 	int best_delta;
3366 	int i;
3367 
3368 	ncc = ncmount_cache_lookup4(mp, ncp);
3369 
3370 	/*
3371 	 * NOTE: When checking for a ticks overflow implement a slop of
3372 	 *	 2 ticks just to be safe, because ticks is accessed
3373 	 *	 non-atomically one CPU can increment it while another
3374 	 *	 is still using the old value.
3375 	 */
3376 	if (ncc->ncp == ncp && ncc->mp == mp)	/* 0 */
3377 		return ncc;
3378 	delta = (int)(ticks - ncc->ticks);	/* beware GCC opts */
3379 	if (delta < -2)				/* overflow reset */
3380 		ncc->ticks = ticks;
3381 	best = ncc;
3382 	best_delta = delta;
3383 
3384 	for (i = 1; i < NCMOUNT_SET; ++i) {	/* 1, 2, 3 */
3385 		++ncc;
3386 		if (ncc->ncp == ncp && ncc->mp == mp)
3387 			return ncc;
3388 		delta = (int)(ticks - ncc->ticks);
3389 		if (delta < -2)
3390 			ncc->ticks = ticks;
3391 		if (delta > best_delta) {
3392 			best_delta = delta;
3393 			best = ncc;
3394 		}
3395 	}
3396 	return best;
3397 }
3398 
3399 /*
3400  * pcpu-optimized mount search.  Locate the recursive mountpoint, avoid
3401  * doing an expensive mountlist_scan*() if possible.
3402  *
3403  * (mp, ncp) -> mountonpt.k
3404  *
3405  * Returns a referenced mount pointer or NULL
3406  *
3407  * General SMP operation uses a per-cpu umount_spin to interlock unmount
3408  * operations (that is, where the mp_target can be freed out from under us).
3409  *
3410  * Lookups use the ncc->updating counter to validate the contents in order
3411  * to avoid having to obtain the per cache-element spin-lock.  In addition,
3412  * the ticks field is only updated when it changes.  However, if our per-cpu
3413  * lock fails due to an unmount-in-progress, we fall-back to the
3414  * cache-element's spin-lock.
3415  */
3416 struct mount *
3417 cache_findmount(struct nchandle *nch)
3418 {
3419 	struct findmount_info info;
3420 	struct ncmount_cache *ncc;
3421 	struct ncmount_cache ncc_copy;
3422 	struct mount *target;
3423 	struct pcpu_ncache *pcpu;
3424 	struct spinlock *spinlk;
3425 	int update;
3426 
3427 	pcpu = pcpu_ncache;
3428 	if (ncmount_cache_enable == 0 || pcpu == NULL) {
3429 		ncc = NULL;
3430 		goto skip;
3431 	}
3432 	pcpu += mycpu->gd_cpuid;
3433 
3434 again:
3435 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3436 	if (ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3437 found:
3438 		/*
3439 		 * This is a bit messy for now because we do not yet have
3440 		 * safe disposal of mount structures.  We have to ref
3441 		 * ncc->mp_target but the 'update' counter only tell us
3442 		 * whether the cache has changed after the fact.
3443 		 *
3444 		 * For now get a per-cpu spinlock that will only contend
3445 		 * against umount's.  This is the best path.  If it fails,
3446 		 * instead of waiting on the umount we fall-back to a
3447 		 * shared ncc->spin lock, which will generally only cost a
3448 		 * cache ping-pong.
3449 		 */
3450 		update = ncc->updating;
3451 		if (__predict_true(spin_trylock(&pcpu->umount_spin))) {
3452 			spinlk = &pcpu->umount_spin;
3453 		} else {
3454 			spinlk = &ncc->spin;
3455 			spin_lock_shared(spinlk);
3456 		}
3457 		if (update & 1) {		/* update in progress */
3458 			spin_unlock_any(spinlk);
3459 			goto skip;
3460 		}
3461 		ncc_copy = *ncc;
3462 		cpu_lfence();
3463 		if (ncc->updating != update) {	/* content changed */
3464 			spin_unlock_any(spinlk);
3465 			goto again;
3466 		}
3467 		if (ncc_copy.ncp != nch->ncp || ncc_copy.mp != nch->mount) {
3468 			spin_unlock_any(spinlk);
3469 			goto again;
3470 		}
3471 		if (ncc_copy.isneg == 0) {
3472 			target = ncc_copy.mp_target;
3473 			if (target->mnt_ncmounton.mount == nch->mount &&
3474 			    target->mnt_ncmounton.ncp == nch->ncp) {
3475 				/*
3476 				 * Cache hit (positive) (avoid dirtying
3477 				 * the cache line if possible)
3478 				 */
3479 				if (ncc->ticks != (int)ticks)
3480 					ncc->ticks = (int)ticks;
3481 				_cache_mntref(target);
3482 			}
3483 		} else {
3484 			/*
3485 			 * Cache hit (negative) (avoid dirtying
3486 			 * the cache line if possible)
3487 			 */
3488 			if (ncc->ticks != (int)ticks)
3489 				ncc->ticks = (int)ticks;
3490 			target = NULL;
3491 		}
3492 		spin_unlock_any(spinlk);
3493 
3494 		return target;
3495 	}
3496 skip:
3497 
3498 	/*
3499 	 * Slow
3500 	 */
3501 	info.result = NULL;
3502 	info.nch_mount = nch->mount;
3503 	info.nch_ncp = nch->ncp;
3504 	mountlist_scan(cache_findmount_callback, &info,
3505 		       MNTSCAN_FORWARD | MNTSCAN_NOBUSY | MNTSCAN_NOUNLOCK);
3506 
3507 	/*
3508 	 * To reduce multi-re-entry on the cache, relookup in the cache.
3509 	 * This can still race, obviously, but that's ok.
3510 	 */
3511 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3512 	if (ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3513 		if (info.result)
3514 			atomic_add_int(&info.result->mnt_refs, -1);
3515 		goto found;
3516 	}
3517 
3518 	/*
3519 	 * Cache the result.
3520 	 */
3521 	if ((info.result == NULL ||
3522 	    (info.result->mnt_kern_flag & MNTK_UNMOUNT) == 0)) {
3523 		spin_lock(&ncc->spin);
3524 		atomic_add_int_nonlocked(&ncc->updating, 1);
3525 		cpu_sfence();
3526 		KKASSERT(ncc->updating & 1);
3527 		if (ncc->mp != nch->mount) {
3528 			if (ncc->mp)
3529 				atomic_add_int(&ncc->mp->mnt_refs, -1);
3530 			atomic_add_int(&nch->mount->mnt_refs, 1);
3531 			ncc->mp = nch->mount;
3532 		}
3533 		ncc->ncp = nch->ncp;	/* ptr compares only, not refd*/
3534 		ncc->ticks = (int)ticks;
3535 
3536 		if (info.result) {
3537 			ncc->isneg = 0;
3538 			if (ncc->mp_target != info.result) {
3539 				if (ncc->mp_target)
3540 					atomic_add_int(&ncc->mp_target->mnt_refs, -1);
3541 				ncc->mp_target = info.result;
3542 				atomic_add_int(&info.result->mnt_refs, 1);
3543 			}
3544 		} else {
3545 			ncc->isneg = 1;
3546 			if (ncc->mp_target) {
3547 				atomic_add_int(&ncc->mp_target->mnt_refs, -1);
3548 				ncc->mp_target = NULL;
3549 			}
3550 		}
3551 		cpu_sfence();
3552 		atomic_add_int_nonlocked(&ncc->updating, 1);
3553 		spin_unlock(&ncc->spin);
3554 	}
3555 	return(info.result);
3556 }
3557 
3558 static
3559 int
3560 cache_findmount_callback(struct mount *mp, void *data)
3561 {
3562 	struct findmount_info *info = data;
3563 
3564 	/*
3565 	 * Check the mount's mounted-on point against the passed nch.
3566 	 */
3567 	if (mp->mnt_ncmounton.mount == info->nch_mount &&
3568 	    mp->mnt_ncmounton.ncp == info->nch_ncp
3569 	) {
3570 	    info->result = mp;
3571 	    _cache_mntref(mp);
3572 	    return(-1);
3573 	}
3574 	return(0);
3575 }
3576 
3577 void
3578 cache_dropmount(struct mount *mp)
3579 {
3580 	_cache_mntrel(mp);
3581 }
3582 
3583 /*
3584  * mp is being mounted, scrap entries matching mp->mnt_ncmounton (positive
3585  * or negative).
3586  *
3587  * A full scan is not required, but for now just do it anyway.
3588  */
3589 void
3590 cache_ismounting(struct mount *mp)
3591 {
3592 	struct ncmount_cache *ncc;
3593 	struct mount *ncc_mp;
3594 	int i;
3595 
3596 	if (pcpu_ncache == NULL)
3597 		return;
3598 
3599 	for (i = 0; i < NCMOUNT_NUMCACHE; ++i) {
3600 		ncc = &ncmount_cache[i];
3601 		if (ncc->mp != mp->mnt_ncmounton.mount ||
3602 		    ncc->ncp != mp->mnt_ncmounton.ncp) {
3603 			continue;
3604 		}
3605 		spin_lock(&ncc->spin);
3606 		atomic_add_int_nonlocked(&ncc->updating, 1);
3607 		cpu_sfence();
3608 		KKASSERT(ncc->updating & 1);
3609 		if (ncc->mp != mp->mnt_ncmounton.mount ||
3610 		    ncc->ncp != mp->mnt_ncmounton.ncp) {
3611 			cpu_sfence();
3612 			++ncc->updating;
3613 			spin_unlock(&ncc->spin);
3614 			continue;
3615 		}
3616 		ncc_mp = ncc->mp;
3617 		ncc->ncp = NULL;
3618 		ncc->mp = NULL;
3619 		if (ncc_mp)
3620 			atomic_add_int(&ncc_mp->mnt_refs, -1);
3621 		ncc_mp = ncc->mp_target;
3622 		ncc->mp_target = NULL;
3623 		if (ncc_mp)
3624 			atomic_add_int(&ncc_mp->mnt_refs, -1);
3625 		ncc->ticks = (int)ticks - hz * 120;
3626 
3627 		cpu_sfence();
3628 		atomic_add_int_nonlocked(&ncc->updating, 1);
3629 		spin_unlock(&ncc->spin);
3630 	}
3631 
3632 	/*
3633 	 * Pre-cache the mount point
3634 	 */
3635 	ncc = ncmount_cache_lookup(mp->mnt_ncmounton.mount,
3636 				   mp->mnt_ncmounton.ncp);
3637 
3638 	spin_lock(&ncc->spin);
3639 	atomic_add_int_nonlocked(&ncc->updating, 1);
3640 	cpu_sfence();
3641 	KKASSERT(ncc->updating & 1);
3642 
3643 	if (ncc->mp)
3644 		atomic_add_int(&ncc->mp->mnt_refs, -1);
3645 	atomic_add_int(&mp->mnt_ncmounton.mount->mnt_refs, 1);
3646 	ncc->mp = mp->mnt_ncmounton.mount;
3647 	ncc->ncp = mp->mnt_ncmounton.ncp;	/* ptr compares only */
3648 	ncc->ticks = (int)ticks;
3649 
3650 	ncc->isneg = 0;
3651 	if (ncc->mp_target != mp) {
3652 		if (ncc->mp_target)
3653 			atomic_add_int(&ncc->mp_target->mnt_refs, -1);
3654 		ncc->mp_target = mp;
3655 		atomic_add_int(&mp->mnt_refs, 1);
3656 	}
3657 	cpu_sfence();
3658 	atomic_add_int_nonlocked(&ncc->updating, 1);
3659 	spin_unlock(&ncc->spin);
3660 }
3661 
3662 /*
3663  * Scrap any ncmount_cache entries related to mp.  Not only do we need to
3664  * scrap entries matching mp->mnt_ncmounton, but we also need to scrap any
3665  * negative hits involving (mp, <any>).
3666  *
3667  * A full scan is required.
3668  */
3669 void
3670 cache_unmounting(struct mount *mp)
3671 {
3672 	struct ncmount_cache *ncc;
3673 	struct pcpu_ncache *pcpu;
3674 	struct mount *ncc_mp;
3675 	int i;
3676 
3677 	pcpu = pcpu_ncache;
3678 	if (pcpu == NULL)
3679 		return;
3680 
3681 	for (i = 0; i < ncpus; ++i)
3682 		spin_lock(&pcpu[i].umount_spin);
3683 
3684 	for (i = 0; i < NCMOUNT_NUMCACHE; ++i) {
3685 		ncc = &ncmount_cache[i];
3686 		if (ncc->mp != mp && ncc->mp_target != mp)
3687 			continue;
3688 		spin_lock(&ncc->spin);
3689 		atomic_add_int_nonlocked(&ncc->updating, 1);
3690 		cpu_sfence();
3691 
3692 		if (ncc->mp != mp && ncc->mp_target != mp) {
3693 			atomic_add_int_nonlocked(&ncc->updating, 1);
3694 			cpu_sfence();
3695 			spin_unlock(&ncc->spin);
3696 			continue;
3697 		}
3698 		ncc_mp = ncc->mp;
3699 		ncc->ncp = NULL;
3700 		ncc->mp = NULL;
3701 		if (ncc_mp)
3702 			atomic_add_int(&ncc_mp->mnt_refs, -1);
3703 		ncc_mp = ncc->mp_target;
3704 		ncc->mp_target = NULL;
3705 		if (ncc_mp)
3706 			atomic_add_int(&ncc_mp->mnt_refs, -1);
3707 		ncc->ticks = (int)ticks - hz * 120;
3708 
3709 		cpu_sfence();
3710 		atomic_add_int_nonlocked(&ncc->updating, 1);
3711 		spin_unlock(&ncc->spin);
3712 	}
3713 
3714 	for (i = 0; i < ncpus; ++i)
3715 		spin_unlock(&pcpu[i].umount_spin);
3716 }
3717 
3718 /*
3719  * Resolve an unresolved namecache entry, generally by looking it up.
3720  * The passed ncp must be locked and refd.
3721  *
3722  * Theoretically since a vnode cannot be recycled while held, and since
3723  * the nc_parent chain holds its vnode as long as children exist, the
3724  * direct parent of the cache entry we are trying to resolve should
3725  * have a valid vnode.  If not then generate an error that we can
3726  * determine is related to a resolver bug.
3727  *
3728  * However, if a vnode was in the middle of a recyclement when the NCP
3729  * got locked, ncp->nc_vp might point to a vnode that is about to become
3730  * invalid.  cache_resolve() handles this case by unresolving the entry
3731  * and then re-resolving it.
3732  *
3733  * Note that successful resolution does not necessarily return an error
3734  * code of 0.  If the ncp resolves to a negative cache hit then ENOENT
3735  * will be returned.
3736  */
3737 int
3738 cache_resolve(struct nchandle *nch, struct ucred *cred)
3739 {
3740 	struct namecache *par_tmp;
3741 	struct namecache *par;
3742 	struct namecache *ncp;
3743 	struct nchandle nctmp;
3744 	struct mount *mp;
3745 	struct vnode *dvp;
3746 	int error;
3747 
3748 	ncp = nch->ncp;
3749 	mp = nch->mount;
3750 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
3751 restart:
3752 	/*
3753 	 * If the ncp is already resolved we have nothing to do.  However,
3754 	 * we do want to guarentee that a usable vnode is returned when
3755 	 * a vnode is present, so make sure it hasn't been reclaimed.
3756 	 */
3757 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3758 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
3759 			_cache_setunresolved(ncp);
3760 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
3761 			return (ncp->nc_error);
3762 	}
3763 
3764 	/*
3765 	 * If the ncp was destroyed it will never resolve again.  This
3766 	 * can basically only happen when someone is chdir'd into an
3767 	 * empty directory which is then rmdir'd.  We want to catch this
3768 	 * here and not dive the VFS because the VFS might actually
3769 	 * have a way to re-resolve the disconnected ncp, which will
3770 	 * result in inconsistencies in the cdir/nch for proc->p_fd.
3771 	 */
3772 	if (ncp->nc_flag & NCF_DESTROYED)
3773 		return(EINVAL);
3774 
3775 	/*
3776 	 * Mount points need special handling because the parent does not
3777 	 * belong to the same filesystem as the ncp.
3778 	 */
3779 	if (ncp == mp->mnt_ncmountpt.ncp)
3780 		return (cache_resolve_mp(mp));
3781 
3782 	/*
3783 	 * We expect an unbroken chain of ncps to at least the mount point,
3784 	 * and even all the way to root (but this code doesn't have to go
3785 	 * past the mount point).
3786 	 */
3787 	if (ncp->nc_parent == NULL) {
3788 		kprintf("EXDEV case 1 %p %*.*s\n", ncp,
3789 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
3790 		ncp->nc_error = EXDEV;
3791 		return(ncp->nc_error);
3792 	}
3793 
3794 	/*
3795 	 * The vp's of the parent directories in the chain are held via vhold()
3796 	 * due to the existance of the child, and should not disappear.
3797 	 * However, there are cases where they can disappear:
3798 	 *
3799 	 *	- due to filesystem I/O errors.
3800 	 *	- due to NFS being stupid about tracking the namespace and
3801 	 *	  destroys the namespace for entire directories quite often.
3802 	 *	- due to forced unmounts.
3803 	 *	- due to an rmdir (parent will be marked DESTROYED)
3804 	 *
3805 	 * When this occurs we have to track the chain backwards and resolve
3806 	 * it, looping until the resolver catches up to the current node.  We
3807 	 * could recurse here but we might run ourselves out of kernel stack
3808 	 * so we do it in a more painful manner.  This situation really should
3809 	 * not occur all that often, or if it does not have to go back too
3810 	 * many nodes to resolve the ncp.
3811 	 */
3812 	while ((dvp = cache_dvpref(ncp)) == NULL) {
3813 		/*
3814 		 * This case can occur if a process is CD'd into a
3815 		 * directory which is then rmdir'd.  If the parent is marked
3816 		 * destroyed there is no point trying to resolve it.
3817 		 */
3818 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
3819 			return(ENOENT);
3820 		par = ncp->nc_parent;
3821 		_cache_hold(par);
3822 		_cache_lock(par);
3823 		while ((par_tmp = par->nc_parent) != NULL &&
3824 		       par_tmp->nc_vp == NULL) {
3825 			_cache_hold(par_tmp);
3826 			_cache_lock(par_tmp);
3827 			_cache_put(par);
3828 			par = par_tmp;
3829 		}
3830 		if (par->nc_parent == NULL) {
3831 			kprintf("EXDEV case 2 %*.*s\n",
3832 				par->nc_nlen, par->nc_nlen, par->nc_name);
3833 			_cache_put(par);
3834 			return (EXDEV);
3835 		}
3836 		/*
3837 		 * The parent is not set in stone, ref and lock it to prevent
3838 		 * it from disappearing.  Also note that due to renames it
3839 		 * is possible for our ncp to move and for par to no longer
3840 		 * be one of its parents.  We resolve it anyway, the loop
3841 		 * will handle any moves.
3842 		 */
3843 		_cache_get(par);	/* additional hold/lock */
3844 		_cache_put(par);	/* from earlier hold/lock */
3845 		if (par == nch->mount->mnt_ncmountpt.ncp) {
3846 			cache_resolve_mp(nch->mount);
3847 		} else if ((dvp = cache_dvpref(par)) == NULL) {
3848 			kprintf("[diagnostic] cache_resolve: raced on %*.*s\n",
3849 				par->nc_nlen, par->nc_nlen, par->nc_name);
3850 			_cache_put(par);
3851 			continue;
3852 		} else {
3853 			if (par->nc_flag & NCF_UNRESOLVED) {
3854 				nctmp.mount = mp;
3855 				nctmp.ncp = par;
3856 				par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
3857 			}
3858 			vrele(dvp);
3859 		}
3860 		if ((error = par->nc_error) != 0) {
3861 			if (par->nc_error != EAGAIN) {
3862 				kprintf("EXDEV case 3 %*.*s error %d\n",
3863 				    par->nc_nlen, par->nc_nlen, par->nc_name,
3864 				    par->nc_error);
3865 				_cache_put(par);
3866 				return(error);
3867 			}
3868 			kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
3869 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
3870 		}
3871 		_cache_put(par);
3872 		/* loop */
3873 	}
3874 
3875 	/*
3876 	 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
3877 	 * ncp's and reattach them.  If this occurs the original ncp is marked
3878 	 * EAGAIN to force a relookup.
3879 	 *
3880 	 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
3881 	 * ncp must already be resolved.
3882 	 */
3883 	if (dvp) {
3884 		nctmp.mount = mp;
3885 		nctmp.ncp = ncp;
3886 		ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
3887 		vrele(dvp);
3888 	} else {
3889 		ncp->nc_error = EPERM;
3890 	}
3891 	if (ncp->nc_error == EAGAIN) {
3892 		kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
3893 			ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
3894 		goto restart;
3895 	}
3896 	return(ncp->nc_error);
3897 }
3898 
3899 /*
3900  * Resolve the ncp associated with a mount point.  Such ncp's almost always
3901  * remain resolved and this routine is rarely called.  NFS MPs tends to force
3902  * re-resolution more often due to its mac-truck-smash-the-namecache
3903  * method of tracking namespace changes.
3904  *
3905  * The semantics for this call is that the passed ncp must be locked on
3906  * entry and will be locked on return.  However, if we actually have to
3907  * resolve the mount point we temporarily unlock the entry in order to
3908  * avoid race-to-root deadlocks due to e.g. dead NFS mounts.  Because of
3909  * the unlock we have to recheck the flags after we relock.
3910  */
3911 static int
3912 cache_resolve_mp(struct mount *mp)
3913 {
3914 	struct namecache *ncp = mp->mnt_ncmountpt.ncp;
3915 	struct vnode *vp;
3916 	int error;
3917 
3918 	KKASSERT(mp != NULL);
3919 
3920 	/*
3921 	 * If the ncp is already resolved we have nothing to do.  However,
3922 	 * we do want to guarentee that a usable vnode is returned when
3923 	 * a vnode is present, so make sure it hasn't been reclaimed.
3924 	 */
3925 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3926 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
3927 			_cache_setunresolved(ncp);
3928 	}
3929 
3930 	if (ncp->nc_flag & NCF_UNRESOLVED) {
3931 		_cache_unlock(ncp);
3932 		while (vfs_busy(mp, 0))
3933 			;
3934 		error = VFS_ROOT(mp, &vp);
3935 		_cache_lock(ncp);
3936 
3937 		/*
3938 		 * recheck the ncp state after relocking.
3939 		 */
3940 		if (ncp->nc_flag & NCF_UNRESOLVED) {
3941 			ncp->nc_error = error;
3942 			if (error == 0) {
3943 				_cache_setvp(mp, ncp, vp);
3944 				vput(vp);
3945 			} else {
3946 				kprintf("[diagnostic] cache_resolve_mp: failed"
3947 					" to resolve mount %p err=%d ncp=%p\n",
3948 					mp, error, ncp);
3949 				_cache_setvp(mp, ncp, NULL);
3950 			}
3951 		} else if (error == 0) {
3952 			vput(vp);
3953 		}
3954 		vfs_unbusy(mp);
3955 	}
3956 	return(ncp->nc_error);
3957 }
3958 
3959 /*
3960  * Clean out negative cache entries when too many have accumulated.
3961  */
3962 static void
3963 _cache_cleanneg(long count)
3964 {
3965 	struct pcpu_ncache *pn;
3966 	struct namecache *ncp;
3967 	static uint32_t neg_rover;
3968 	uint32_t n;
3969 	long vnegs;
3970 
3971 	n = neg_rover++;	/* SMP heuristical, race ok */
3972 	cpu_ccfence();
3973 	n = n % (uint32_t)ncpus;
3974 
3975 	/*
3976 	 * Normalize vfscache_negs and count.  count is sometimes based
3977 	 * on vfscache_negs.  vfscache_negs is heuristical and can sometimes
3978 	 * have crazy values.
3979 	 */
3980 	vnegs = vfscache_negs;
3981 	cpu_ccfence();
3982 	if (vnegs <= MINNEG)
3983 		vnegs = MINNEG;
3984 	if (count < 1)
3985 		count = 1;
3986 
3987 	pn = &pcpu_ncache[n];
3988 	spin_lock(&pn->neg_spin);
3989 	count = pn->neg_count * count / vnegs + 1;
3990 	spin_unlock(&pn->neg_spin);
3991 
3992 	/*
3993 	 * Attempt to clean out the specified number of negative cache
3994 	 * entries.
3995 	 */
3996 	while (count > 0) {
3997 		spin_lock(&pn->neg_spin);
3998 		ncp = TAILQ_FIRST(&pn->neg_list);
3999 		if (ncp == NULL) {
4000 			spin_unlock(&pn->neg_spin);
4001 			break;
4002 		}
4003 		TAILQ_REMOVE(&pn->neg_list, ncp, nc_vnode);
4004 		TAILQ_INSERT_TAIL(&pn->neg_list, ncp, nc_vnode);
4005 		_cache_hold(ncp);
4006 		spin_unlock(&pn->neg_spin);
4007 
4008 		/*
4009 		 * This can race, so we must re-check that the ncp
4010 		 * is on the ncneg.list after successfully locking it.
4011 		 */
4012 		if (_cache_lock_special(ncp) == 0) {
4013 			if (ncp->nc_vp == NULL &&
4014 			    (ncp->nc_flag & NCF_UNRESOLVED) == 0) {
4015 				cache_zap(ncp);
4016 			} else {
4017 				_cache_unlock(ncp);
4018 				_cache_drop(ncp);
4019 			}
4020 		} else {
4021 			_cache_drop(ncp);
4022 		}
4023 		--count;
4024 	}
4025 }
4026 
4027 /*
4028  * Clean out positive cache entries when too many have accumulated.
4029  */
4030 static void
4031 _cache_cleanpos(long count)
4032 {
4033 	static volatile int rover;
4034 	struct nchash_head *nchpp;
4035 	struct namecache *ncp;
4036 	int rover_copy;
4037 
4038 	/*
4039 	 * Attempt to clean out the specified number of negative cache
4040 	 * entries.
4041 	 */
4042 	while (count > 0) {
4043 		rover_copy = ++rover;	/* MPSAFEENOUGH */
4044 		cpu_ccfence();
4045 		nchpp = NCHHASH(rover_copy);
4046 
4047 		if (TAILQ_FIRST(&nchpp->list) == NULL) {
4048 			--count;
4049 			continue;
4050 		}
4051 
4052 		/*
4053 		 * Cycle ncp on list, ignore and do not move DUMMY
4054 		 * ncps.  These are temporary list iterators.
4055 		 *
4056 		 * We must cycle the ncp to the end of the list to
4057 		 * ensure that all ncp's have an equal chance of
4058 		 * being removed.
4059 		 */
4060 		spin_lock(&nchpp->spin);
4061 		ncp = TAILQ_FIRST(&nchpp->list);
4062 		while (ncp && (ncp->nc_flag & NCF_DUMMY))
4063 			ncp = TAILQ_NEXT(ncp, nc_hash);
4064 		if (ncp) {
4065 			TAILQ_REMOVE(&nchpp->list, ncp, nc_hash);
4066 			TAILQ_INSERT_TAIL(&nchpp->list, ncp, nc_hash);
4067 			_cache_hold(ncp);
4068 		}
4069 		spin_unlock(&nchpp->spin);
4070 
4071 		if (ncp) {
4072 			if (_cache_lock_special(ncp) == 0) {
4073 				cache_zap(ncp);
4074 			} else {
4075 				_cache_drop(ncp);
4076 			}
4077 		}
4078 		--count;
4079 	}
4080 }
4081 
4082 /*
4083  * This is a kitchen sink function to clean out ncps which we
4084  * tried to zap from cache_drop() but failed because we were
4085  * unable to acquire the parent lock.
4086  *
4087  * Such entries can also be removed via cache_inval_vp(), such
4088  * as when unmounting.
4089  */
4090 static void
4091 _cache_cleandefered(void)
4092 {
4093 	struct nchash_head *nchpp;
4094 	struct namecache *ncp;
4095 	struct namecache dummy;
4096 	int i;
4097 
4098 	/*
4099 	 * Create a list iterator.  DUMMY indicates that this is a list
4100 	 * iterator, DESTROYED prevents matches by lookup functions.
4101 	 */
4102 	numdefered = 0;
4103 	pcpu_ncache[mycpu->gd_cpuid].numdefered = 0;
4104 	bzero(&dummy, sizeof(dummy));
4105 	dummy.nc_flag = NCF_DESTROYED | NCF_DUMMY;
4106 	dummy.nc_refs = 1;
4107 
4108 	for (i = 0; i <= nchash; ++i) {
4109 		nchpp = &nchashtbl[i];
4110 
4111 		spin_lock(&nchpp->spin);
4112 		TAILQ_INSERT_HEAD(&nchpp->list, &dummy, nc_hash);
4113 		ncp = &dummy;
4114 		while ((ncp = TAILQ_NEXT(ncp, nc_hash)) != NULL) {
4115 			if ((ncp->nc_flag & NCF_DEFEREDZAP) == 0)
4116 				continue;
4117 			TAILQ_REMOVE(&nchpp->list, &dummy, nc_hash);
4118 			TAILQ_INSERT_AFTER(&nchpp->list, ncp, &dummy, nc_hash);
4119 			_cache_hold(ncp);
4120 			spin_unlock(&nchpp->spin);
4121 			if (_cache_lock_nonblock(ncp) == 0) {
4122 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
4123 				_cache_unlock(ncp);
4124 			}
4125 			_cache_drop(ncp);
4126 			spin_lock(&nchpp->spin);
4127 			ncp = &dummy;
4128 		}
4129 		TAILQ_REMOVE(&nchpp->list, &dummy, nc_hash);
4130 		spin_unlock(&nchpp->spin);
4131 	}
4132 }
4133 
4134 /*
4135  * Name cache initialization, from vfsinit() when we are booting
4136  */
4137 void
4138 nchinit(void)
4139 {
4140 	struct pcpu_ncache *pn;
4141 	globaldata_t gd;
4142 	int i;
4143 
4144 	/*
4145 	 * Per-cpu accounting and negative hit list
4146 	 */
4147 	pcpu_ncache = kmalloc(sizeof(*pcpu_ncache) * ncpus,
4148 			      M_VFSCACHE, M_WAITOK|M_ZERO);
4149 	for (i = 0; i < ncpus; ++i) {
4150 		pn = &pcpu_ncache[i];
4151 		TAILQ_INIT(&pn->neg_list);
4152 		spin_init(&pn->neg_spin, "ncneg");
4153 		spin_init(&pn->umount_spin, "ncumm");
4154 	}
4155 
4156 	/*
4157 	 * Initialise per-cpu namecache effectiveness statistics.
4158 	 */
4159 	for (i = 0; i < ncpus; ++i) {
4160 		gd = globaldata_find(i);
4161 		gd->gd_nchstats = &nchstats[i];
4162 	}
4163 
4164 	/*
4165 	 * Create a generous namecache hash table
4166 	 */
4167 	nchashtbl = hashinit_ext(vfs_inodehashsize(),
4168 				 sizeof(struct nchash_head),
4169 				 M_VFSCACHE, &nchash);
4170 	for (i = 0; i <= (int)nchash; ++i) {
4171 		TAILQ_INIT(&nchashtbl[i].list);
4172 		spin_init(&nchashtbl[i].spin, "nchinit_hash");
4173 	}
4174 	for (i = 0; i < NCMOUNT_NUMCACHE; ++i)
4175 		spin_init(&ncmount_cache[i].spin, "nchinit_cache");
4176 	nclockwarn = 5 * hz;
4177 }
4178 
4179 /*
4180  * Called from start_init() to bootstrap the root filesystem.  Returns
4181  * a referenced, unlocked namecache record.
4182  */
4183 void
4184 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
4185 {
4186 	nch->ncp = cache_alloc(0);
4187 	nch->mount = mp;
4188 	_cache_mntref(mp);
4189 	if (vp)
4190 		_cache_setvp(nch->mount, nch->ncp, vp);
4191 }
4192 
4193 /*
4194  * vfs_cache_setroot()
4195  *
4196  *	Create an association between the root of our namecache and
4197  *	the root vnode.  This routine may be called several times during
4198  *	booting.
4199  *
4200  *	If the caller intends to save the returned namecache pointer somewhere
4201  *	it must cache_hold() it.
4202  */
4203 void
4204 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
4205 {
4206 	struct vnode *ovp;
4207 	struct nchandle onch;
4208 
4209 	ovp = rootvnode;
4210 	onch = rootnch;
4211 	rootvnode = nvp;
4212 	if (nch)
4213 		rootnch = *nch;
4214 	else
4215 		cache_zero(&rootnch);
4216 	if (ovp)
4217 		vrele(ovp);
4218 	if (onch.ncp)
4219 		cache_drop(&onch);
4220 }
4221 
4222 /*
4223  * XXX OLD API COMPAT FUNCTION.  This really messes up the new namecache
4224  * topology and is being removed as quickly as possible.  The new VOP_N*()
4225  * API calls are required to make specific adjustments using the supplied
4226  * ncp pointers rather then just bogusly purging random vnodes.
4227  *
4228  * Invalidate all namecache entries to a particular vnode as well as
4229  * any direct children of that vnode in the namecache.  This is a
4230  * 'catch all' purge used by filesystems that do not know any better.
4231  *
4232  * Note that the linkage between the vnode and its namecache entries will
4233  * be removed, but the namecache entries themselves might stay put due to
4234  * active references from elsewhere in the system or due to the existance of
4235  * the children.   The namecache topology is left intact even if we do not
4236  * know what the vnode association is.  Such entries will be marked
4237  * NCF_UNRESOLVED.
4238  */
4239 void
4240 cache_purge(struct vnode *vp)
4241 {
4242 	cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
4243 }
4244 
4245 static int disablecwd;
4246 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0,
4247     "Disable getcwd");
4248 
4249 static u_long numcwdcalls;
4250 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdcalls, CTLFLAG_RD, &numcwdcalls, 0,
4251     "Number of current directory resolution calls");
4252 static u_long numcwdfailnf;
4253 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfailnf, CTLFLAG_RD, &numcwdfailnf, 0,
4254     "Number of current directory failures due to lack of file");
4255 static u_long numcwdfailsz;
4256 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfailsz, CTLFLAG_RD, &numcwdfailsz, 0,
4257     "Number of current directory failures due to large result");
4258 static u_long numcwdfound;
4259 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfound, CTLFLAG_RD, &numcwdfound, 0,
4260     "Number of current directory resolution successes");
4261 
4262 /*
4263  * MPALMOSTSAFE
4264  */
4265 int
4266 sys___getcwd(struct __getcwd_args *uap)
4267 {
4268 	u_int buflen;
4269 	int error;
4270 	char *buf;
4271 	char *bp;
4272 
4273 	if (disablecwd)
4274 		return (ENODEV);
4275 
4276 	buflen = uap->buflen;
4277 	if (buflen == 0)
4278 		return (EINVAL);
4279 	if (buflen > MAXPATHLEN)
4280 		buflen = MAXPATHLEN;
4281 
4282 	buf = kmalloc(buflen, M_TEMP, M_WAITOK);
4283 	bp = kern_getcwd(buf, buflen, &error);
4284 	if (error == 0)
4285 		error = copyout(bp, uap->buf, strlen(bp) + 1);
4286 	kfree(buf, M_TEMP);
4287 	return (error);
4288 }
4289 
4290 char *
4291 kern_getcwd(char *buf, size_t buflen, int *error)
4292 {
4293 	struct proc *p = curproc;
4294 	char *bp;
4295 	int i, slash_prefixed;
4296 	struct filedesc *fdp;
4297 	struct nchandle nch;
4298 	struct namecache *ncp;
4299 
4300 	numcwdcalls++;
4301 	bp = buf;
4302 	bp += buflen - 1;
4303 	*bp = '\0';
4304 	fdp = p->p_fd;
4305 	slash_prefixed = 0;
4306 
4307 	nch = fdp->fd_ncdir;
4308 	ncp = nch.ncp;
4309 	if (ncp)
4310 		_cache_hold(ncp);
4311 
4312 	while (ncp && (ncp != fdp->fd_nrdir.ncp ||
4313 	       nch.mount != fdp->fd_nrdir.mount)
4314 	) {
4315 		/*
4316 		 * While traversing upwards if we encounter the root
4317 		 * of the current mount we have to skip to the mount point
4318 		 * in the underlying filesystem.
4319 		 */
4320 		if (ncp == nch.mount->mnt_ncmountpt.ncp) {
4321 			nch = nch.mount->mnt_ncmounton;
4322 			_cache_drop(ncp);
4323 			ncp = nch.ncp;
4324 			if (ncp)
4325 				_cache_hold(ncp);
4326 			continue;
4327 		}
4328 
4329 		/*
4330 		 * Prepend the path segment
4331 		 */
4332 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
4333 			if (bp == buf) {
4334 				numcwdfailsz++;
4335 				*error = ERANGE;
4336 				bp = NULL;
4337 				goto done;
4338 			}
4339 			*--bp = ncp->nc_name[i];
4340 		}
4341 		if (bp == buf) {
4342 			numcwdfailsz++;
4343 			*error = ERANGE;
4344 			bp = NULL;
4345 			goto done;
4346 		}
4347 		*--bp = '/';
4348 		slash_prefixed = 1;
4349 
4350 		/*
4351 		 * Go up a directory.  This isn't a mount point so we don't
4352 		 * have to check again.
4353 		 */
4354 		while ((nch.ncp = ncp->nc_parent) != NULL) {
4355 			if (ncp_shared_lock_disable)
4356 				_cache_lock(ncp);
4357 			else
4358 				_cache_lock_shared(ncp);
4359 			if (nch.ncp != ncp->nc_parent) {
4360 				_cache_unlock(ncp);
4361 				continue;
4362 			}
4363 			_cache_hold(nch.ncp);
4364 			_cache_unlock(ncp);
4365 			break;
4366 		}
4367 		_cache_drop(ncp);
4368 		ncp = nch.ncp;
4369 	}
4370 	if (ncp == NULL) {
4371 		numcwdfailnf++;
4372 		*error = ENOENT;
4373 		bp = NULL;
4374 		goto done;
4375 	}
4376 	if (!slash_prefixed) {
4377 		if (bp == buf) {
4378 			numcwdfailsz++;
4379 			*error = ERANGE;
4380 			bp = NULL;
4381 			goto done;
4382 		}
4383 		*--bp = '/';
4384 	}
4385 	numcwdfound++;
4386 	*error = 0;
4387 done:
4388 	if (ncp)
4389 		_cache_drop(ncp);
4390 	return (bp);
4391 }
4392 
4393 /*
4394  * Thus begins the fullpath magic.
4395  *
4396  * The passed nchp is referenced but not locked.
4397  */
4398 static int disablefullpath;
4399 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
4400     &disablefullpath, 0,
4401     "Disable fullpath lookups");
4402 
4403 int
4404 cache_fullpath(struct proc *p, struct nchandle *nchp, struct nchandle *nchbase,
4405 	       char **retbuf, char **freebuf, int guess)
4406 {
4407 	struct nchandle fd_nrdir;
4408 	struct nchandle nch;
4409 	struct namecache *ncp;
4410 	struct mount *mp, *new_mp;
4411 	char *bp, *buf;
4412 	int slash_prefixed;
4413 	int error = 0;
4414 	int i;
4415 
4416 	*retbuf = NULL;
4417 	*freebuf = NULL;
4418 
4419 	buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
4420 	bp = buf + MAXPATHLEN - 1;
4421 	*bp = '\0';
4422 	if (nchbase)
4423 		fd_nrdir = *nchbase;
4424 	else if (p != NULL)
4425 		fd_nrdir = p->p_fd->fd_nrdir;
4426 	else
4427 		fd_nrdir = rootnch;
4428 	slash_prefixed = 0;
4429 	nch = *nchp;
4430 	ncp = nch.ncp;
4431 	if (ncp)
4432 		_cache_hold(ncp);
4433 	mp = nch.mount;
4434 
4435 	while (ncp && (ncp != fd_nrdir.ncp || mp != fd_nrdir.mount)) {
4436 		new_mp = NULL;
4437 
4438 		/*
4439 		 * If we are asked to guess the upwards path, we do so whenever
4440 		 * we encounter an ncp marked as a mountpoint. We try to find
4441 		 * the actual mountpoint by finding the mountpoint with this
4442 		 * ncp.
4443 		 */
4444 		if (guess && (ncp->nc_flag & NCF_ISMOUNTPT)) {
4445 			new_mp = mount_get_by_nc(ncp);
4446 		}
4447 		/*
4448 		 * While traversing upwards if we encounter the root
4449 		 * of the current mount we have to skip to the mount point.
4450 		 */
4451 		if (ncp == mp->mnt_ncmountpt.ncp) {
4452 			new_mp = mp;
4453 		}
4454 		if (new_mp) {
4455 			nch = new_mp->mnt_ncmounton;
4456 			_cache_drop(ncp);
4457 			ncp = nch.ncp;
4458 			if (ncp)
4459 				_cache_hold(ncp);
4460 			mp = nch.mount;
4461 			continue;
4462 		}
4463 
4464 		/*
4465 		 * Prepend the path segment
4466 		 */
4467 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
4468 			if (bp == buf) {
4469 				kfree(buf, M_TEMP);
4470 				error = ENOMEM;
4471 				goto done;
4472 			}
4473 			*--bp = ncp->nc_name[i];
4474 		}
4475 		if (bp == buf) {
4476 			kfree(buf, M_TEMP);
4477 			error = ENOMEM;
4478 			goto done;
4479 		}
4480 		*--bp = '/';
4481 		slash_prefixed = 1;
4482 
4483 		/*
4484 		 * Go up a directory.  This isn't a mount point so we don't
4485 		 * have to check again.
4486 		 *
4487 		 * We can only safely access nc_parent with ncp held locked.
4488 		 */
4489 		while ((nch.ncp = ncp->nc_parent) != NULL) {
4490 			_cache_lock_shared(ncp);
4491 			if (nch.ncp != ncp->nc_parent) {
4492 				_cache_unlock(ncp);
4493 				continue;
4494 			}
4495 			_cache_hold(nch.ncp);
4496 			_cache_unlock(ncp);
4497 			break;
4498 		}
4499 		_cache_drop(ncp);
4500 		ncp = nch.ncp;
4501 	}
4502 	if (ncp == NULL) {
4503 		kfree(buf, M_TEMP);
4504 		error = ENOENT;
4505 		goto done;
4506 	}
4507 
4508 	if (!slash_prefixed) {
4509 		if (bp == buf) {
4510 			kfree(buf, M_TEMP);
4511 			error = ENOMEM;
4512 			goto done;
4513 		}
4514 		*--bp = '/';
4515 	}
4516 	*retbuf = bp;
4517 	*freebuf = buf;
4518 	error = 0;
4519 done:
4520 	if (ncp)
4521 		_cache_drop(ncp);
4522 	return(error);
4523 }
4524 
4525 int
4526 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf,
4527 	    char **freebuf, int guess)
4528 {
4529 	struct namecache *ncp;
4530 	struct nchandle nch;
4531 	int error;
4532 
4533 	*freebuf = NULL;
4534 	if (disablefullpath)
4535 		return (ENODEV);
4536 
4537 	if (p == NULL)
4538 		return (EINVAL);
4539 
4540 	/* vn is NULL, client wants us to use p->p_textvp */
4541 	if (vn == NULL) {
4542 		if ((vn = p->p_textvp) == NULL)
4543 			return (EINVAL);
4544 	}
4545 	spin_lock_shared(&vn->v_spin);
4546 	TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
4547 		if (ncp->nc_nlen)
4548 			break;
4549 	}
4550 	if (ncp == NULL) {
4551 		spin_unlock_shared(&vn->v_spin);
4552 		return (EINVAL);
4553 	}
4554 	_cache_hold(ncp);
4555 	spin_unlock_shared(&vn->v_spin);
4556 
4557 	nch.ncp = ncp;
4558 	nch.mount = vn->v_mount;
4559 	error = cache_fullpath(p, &nch, NULL, retbuf, freebuf, guess);
4560 	_cache_drop(ncp);
4561 	return (error);
4562 }
4563 
4564 void
4565 vfscache_rollup_cpu(struct globaldata *gd)
4566 {
4567 	struct pcpu_ncache *pn;
4568 	long count;
4569 
4570 	if (pcpu_ncache == NULL)
4571 		return;
4572 	pn = &pcpu_ncache[gd->gd_cpuid];
4573 
4574 	if (pn->vfscache_count) {
4575 		count = atomic_swap_long(&pn->vfscache_count, 0);
4576 		atomic_add_long(&vfscache_count, count);
4577 	}
4578 	if (pn->vfscache_leafs) {
4579 		count = atomic_swap_long(&pn->vfscache_leafs, 0);
4580 		atomic_add_long(&vfscache_leafs, count);
4581 	}
4582 	if (pn->vfscache_negs) {
4583 		count = atomic_swap_long(&pn->vfscache_negs, 0);
4584 		atomic_add_long(&vfscache_negs, count);
4585 	}
4586 	if (pn->numdefered) {
4587 		count = atomic_swap_long(&pn->numdefered, 0);
4588 		atomic_add_long(&numdefered, count);
4589 	}
4590 }
4591