xref: /dragonfly/sys/kern/vfs_cache.c (revision 448e56d8)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993, 1995
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * Poul-Henning Kamp of the FreeBSD Project.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the University of
51  *	California, Berkeley and its contributors.
52  * 4. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  *
68  *	@(#)vfs_cache.c	8.5 (Berkeley) 3/22/95
69  * $FreeBSD: src/sys/kern/vfs_cache.c,v 1.42.2.6 2001/10/05 20:07:03 dillon Exp $
70  * $DragonFly: src/sys/kern/vfs_cache.c,v 1.91 2008/06/14 05:34:06 dillon Exp $
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mount.h>
78 #include <sys/vnode.h>
79 #include <sys/malloc.h>
80 #include <sys/sysproto.h>
81 #include <sys/proc.h>
82 #include <sys/namei.h>
83 #include <sys/nlookup.h>
84 #include <sys/filedesc.h>
85 #include <sys/fnv_hash.h>
86 #include <sys/globaldata.h>
87 #include <sys/kern_syscall.h>
88 #include <sys/dirent.h>
89 #include <ddb/ddb.h>
90 
91 #include <sys/sysref2.h>
92 
93 #define MAX_RECURSION_DEPTH	64
94 
95 /*
96  * Random lookups in the cache are accomplished with a hash table using
97  * a hash key of (nc_src_vp, name).
98  *
99  * Negative entries may exist and correspond to structures where nc_vp
100  * is NULL.  In a negative entry, NCF_WHITEOUT will be set if the entry
101  * corresponds to a whited-out directory entry (verses simply not finding the
102  * entry at all).
103  *
104  * Upon reaching the last segment of a path, if the reference is for DELETE,
105  * or NOCACHE is set (rewrite), and the name is located in the cache, it
106  * will be dropped.
107  */
108 
109 /*
110  * Structures associated with name cacheing.
111  */
112 #define NCHHASH(hash)	(&nchashtbl[(hash) & nchash])
113 #define MINNEG		1024
114 
115 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
116 
117 static LIST_HEAD(nchashhead, namecache) *nchashtbl;	/* Hash Table */
118 static struct namecache_list	ncneglist;		/* instead of vnode */
119 
120 /*
121  * ncvp_debug - debug cache_fromvp().  This is used by the NFS server
122  * to create the namecache infrastructure leading to a dangling vnode.
123  *
124  * 0	Only errors are reported
125  * 1	Successes are reported
126  * 2	Successes + the whole directory scan is reported
127  * 3	Force the directory scan code run as if the parent vnode did not
128  *	have a namecache record, even if it does have one.
129  */
130 static int	ncvp_debug;
131 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0, "");
132 
133 static u_long	nchash;			/* size of hash table */
134 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0, "");
135 
136 static u_long	ncnegfactor = 16;	/* ratio of negative entries */
137 SYSCTL_ULONG(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0, "");
138 
139 static int	nclockwarn;		/* warn on locked entries in ticks */
140 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0, "");
141 
142 static u_long	numneg;		/* number of cache entries allocated */
143 SYSCTL_ULONG(_debug, OID_AUTO, numneg, CTLFLAG_RD, &numneg, 0, "");
144 
145 static u_long	numcache;		/* number of cache entries allocated */
146 SYSCTL_ULONG(_debug, OID_AUTO, numcache, CTLFLAG_RD, &numcache, 0, "");
147 
148 static u_long	numunres;		/* number of unresolved entries */
149 SYSCTL_ULONG(_debug, OID_AUTO, numunres, CTLFLAG_RD, &numunres, 0, "");
150 
151 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode), "");
152 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache), "");
153 
154 static int cache_resolve_mp(struct mount *mp);
155 static struct vnode *cache_dvpref(struct namecache *ncp);
156 static void _cache_rehash(struct namecache *ncp);
157 static void _cache_lock(struct namecache *ncp);
158 static void _cache_setunresolved(struct namecache *ncp);
159 
160 /*
161  * The new name cache statistics
162  */
163 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
164 #define STATNODE(mode, name, var) \
165 	SYSCTL_ULONG(_vfs_cache, OID_AUTO, name, mode, var, 0, "");
166 STATNODE(CTLFLAG_RD, numneg, &numneg);
167 STATNODE(CTLFLAG_RD, numcache, &numcache);
168 static u_long numcalls; STATNODE(CTLFLAG_RD, numcalls, &numcalls);
169 static u_long dothits; STATNODE(CTLFLAG_RD, dothits, &dothits);
170 static u_long dotdothits; STATNODE(CTLFLAG_RD, dotdothits, &dotdothits);
171 static u_long numchecks; STATNODE(CTLFLAG_RD, numchecks, &numchecks);
172 static u_long nummiss; STATNODE(CTLFLAG_RD, nummiss, &nummiss);
173 static u_long nummisszap; STATNODE(CTLFLAG_RD, nummisszap, &nummisszap);
174 static u_long numposzaps; STATNODE(CTLFLAG_RD, numposzaps, &numposzaps);
175 static u_long numposhits; STATNODE(CTLFLAG_RD, numposhits, &numposhits);
176 static u_long numnegzaps; STATNODE(CTLFLAG_RD, numnegzaps, &numnegzaps);
177 static u_long numneghits; STATNODE(CTLFLAG_RD, numneghits, &numneghits);
178 
179 struct nchstats nchstats[SMP_MAXCPU];
180 /*
181  * Export VFS cache effectiveness statistics to user-land.
182  *
183  * The statistics are left for aggregation to user-land so
184  * neat things can be achieved, like observing per-CPU cache
185  * distribution.
186  */
187 static int
188 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
189 {
190 	struct globaldata *gd;
191 	int i, error;
192 
193 	error = 0;
194 	for (i = 0; i < ncpus; ++i) {
195 		gd = globaldata_find(i);
196 		if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
197 			sizeof(struct nchstats))))
198 			break;
199 	}
200 
201 	return (error);
202 }
203 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
204   0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
205 
206 static void cache_zap(struct namecache *ncp);
207 
208 /*
209  * cache_hold() and cache_drop() prevent the premature deletion of a
210  * namecache entry but do not prevent operations (such as zapping) on
211  * that namecache entry.
212  *
213  * This routine may only be called from outside this source module if
214  * nc_refs is already at least 1.
215  *
216  * This is a rare case where callers are allowed to hold a spinlock,
217  * so we can't ourselves.
218  */
219 static __inline
220 struct namecache *
221 _cache_hold(struct namecache *ncp)
222 {
223 	atomic_add_int(&ncp->nc_refs, 1);
224 	return(ncp);
225 }
226 
227 /*
228  * When dropping an entry, if only one ref remains and the entry has not
229  * been resolved, zap it.  Since the one reference is being dropped the
230  * entry had better not be locked.
231  */
232 static __inline
233 void
234 _cache_drop(struct namecache *ncp)
235 {
236 	KKASSERT(ncp->nc_refs > 0);
237 	if (ncp->nc_refs == 1 &&
238 	    (ncp->nc_flag & NCF_UNRESOLVED) &&
239 	    TAILQ_EMPTY(&ncp->nc_list)
240 	) {
241 		KKASSERT(ncp->nc_exlocks == 0);
242 		_cache_lock(ncp);
243 		cache_zap(ncp);
244 	} else {
245 		atomic_subtract_int(&ncp->nc_refs, 1);
246 	}
247 }
248 
249 /*
250  * Link a new namecache entry to its parent.  Be careful to avoid races
251  * if vhold() blocks in the future.
252  */
253 static void
254 cache_link_parent(struct namecache *ncp, struct namecache *par)
255 {
256 	KKASSERT(ncp->nc_parent == NULL);
257 	ncp->nc_parent = par;
258 	if (TAILQ_EMPTY(&par->nc_list)) {
259 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
260 		/*
261 		 * Any vp associated with an ncp which has children must
262 		 * be held to prevent it from being recycled.
263 		 */
264 		if (par->nc_vp)
265 			vhold(par->nc_vp);
266 	} else {
267 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
268 	}
269 }
270 
271 /*
272  * Remove the parent association from a namecache structure.  If this is
273  * the last child of the parent the cache_drop(par) will attempt to
274  * recursively zap the parent.
275  */
276 static void
277 cache_unlink_parent(struct namecache *ncp)
278 {
279 	struct namecache *par;
280 
281 	if ((par = ncp->nc_parent) != NULL) {
282 		ncp->nc_parent = NULL;
283 		par = _cache_hold(par);
284 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
285 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
286 			vdrop(par->nc_vp);
287 		_cache_drop(par);
288 	}
289 }
290 
291 /*
292  * Allocate a new namecache structure.  Most of the code does not require
293  * zero-termination of the string but it makes vop_compat_ncreate() easier.
294  */
295 static struct namecache *
296 cache_alloc(int nlen)
297 {
298 	struct namecache *ncp;
299 
300 	ncp = kmalloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
301 	if (nlen)
302 		ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHE, M_WAITOK);
303 	ncp->nc_nlen = nlen;
304 	ncp->nc_flag = NCF_UNRESOLVED;
305 	ncp->nc_error = ENOTCONN;	/* needs to be resolved */
306 	ncp->nc_refs = 1;
307 
308 	/*
309 	 * Construct a fake FSMID based on the time of day and a 32 bit
310 	 * roller for uniqueness.  This is used to generate a useful
311 	 * FSMID for filesystems which do not support it.
312 	 */
313 	ncp->nc_fsmid = cache_getnewfsmid();
314 	TAILQ_INIT(&ncp->nc_list);
315 	_cache_lock(ncp);
316 	return(ncp);
317 }
318 
319 static void
320 _cache_free(struct namecache *ncp)
321 {
322 	KKASSERT(ncp->nc_refs == 1 && ncp->nc_exlocks == 1);
323 	if (ncp->nc_name)
324 		kfree(ncp->nc_name, M_VFSCACHE);
325 	kfree(ncp, M_VFSCACHE);
326 }
327 
328 void
329 cache_zero(struct nchandle *nch)
330 {
331 	nch->ncp = NULL;
332 	nch->mount = NULL;
333 }
334 
335 /*
336  * Ref and deref a namecache structure.
337  *
338  * Warning: caller may hold an unrelated read spinlock, which means we can't
339  * use read spinlocks here.
340  */
341 struct nchandle *
342 cache_hold(struct nchandle *nch)
343 {
344 	_cache_hold(nch->ncp);
345 	++nch->mount->mnt_refs;
346 	return(nch);
347 }
348 
349 void
350 cache_copy(struct nchandle *nch, struct nchandle *target)
351 {
352 	*target = *nch;
353 	_cache_hold(target->ncp);
354 	++nch->mount->mnt_refs;
355 }
356 
357 void
358 cache_changemount(struct nchandle *nch, struct mount *mp)
359 {
360 	--nch->mount->mnt_refs;
361 	nch->mount = mp;
362 	++nch->mount->mnt_refs;
363 }
364 
365 void
366 cache_drop(struct nchandle *nch)
367 {
368 	--nch->mount->mnt_refs;
369 	_cache_drop(nch->ncp);
370 	nch->ncp = NULL;
371 	nch->mount = NULL;
372 }
373 
374 /*
375  * Namespace locking.  The caller must already hold a reference to the
376  * namecache structure in order to lock/unlock it.  This function prevents
377  * the namespace from being created or destroyed by accessors other then
378  * the lock holder.
379  *
380  * Note that holding a locked namecache structure prevents other threads
381  * from making namespace changes (e.g. deleting or creating), prevents
382  * vnode association state changes by other threads, and prevents the
383  * namecache entry from being resolved or unresolved by other threads.
384  *
385  * The lock owner has full authority to associate/disassociate vnodes
386  * and resolve/unresolve the locked ncp.
387  *
388  * WARNING!  Holding a locked ncp will prevent a vnode from being destroyed
389  * or recycled, but it does NOT help you if the vnode had already initiated
390  * a recyclement.  If this is important, use cache_get() rather then
391  * cache_lock() (and deal with the differences in the way the refs counter
392  * is handled).  Or, alternatively, make an unconditional call to
393  * cache_validate() or cache_resolve() after cache_lock() returns.
394  */
395 static
396 void
397 _cache_lock(struct namecache *ncp)
398 {
399 	thread_t td;
400 	int didwarn;
401 
402 	KKASSERT(ncp->nc_refs != 0);
403 	didwarn = 0;
404 	td = curthread;
405 
406 	for (;;) {
407 		if (ncp->nc_exlocks == 0) {
408 			ncp->nc_exlocks = 1;
409 			ncp->nc_locktd = td;
410 			/*
411 			 * The vp associated with a locked ncp must be held
412 			 * to prevent it from being recycled (which would
413 			 * cause the ncp to become unresolved).
414 			 *
415 			 * WARNING!  If VRECLAIMED is set the vnode could
416 			 * already be in the middle of a recycle.  Callers
417 			 * should not assume that nc_vp is usable when
418 			 * not NULL.  cache_vref() or cache_vget() must be
419 			 * called.
420 			 *
421 			 * XXX loop on race for later MPSAFE work.
422 			 */
423 			if (ncp->nc_vp)
424 				vhold(ncp->nc_vp);
425 			break;
426 		}
427 		if (ncp->nc_locktd == td) {
428 			++ncp->nc_exlocks;
429 			break;
430 		}
431 		ncp->nc_flag |= NCF_LOCKREQ;
432 		if (tsleep(ncp, 0, "clock", nclockwarn) == EWOULDBLOCK) {
433 			if (didwarn)
434 				continue;
435 			didwarn = 1;
436 			kprintf("[diagnostic] cache_lock: blocked on %p", ncp);
437 			kprintf(" \"%*.*s\"\n",
438 				ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
439 		}
440 	}
441 
442 	if (didwarn == 1) {
443 		kprintf("[diagnostic] cache_lock: unblocked %*.*s\n",
444 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
445 	}
446 }
447 
448 void
449 cache_lock(struct nchandle *nch)
450 {
451 	_cache_lock(nch->ncp);
452 }
453 
454 static
455 int
456 _cache_lock_nonblock(struct namecache *ncp)
457 {
458 	thread_t td;
459 
460 	KKASSERT(ncp->nc_refs != 0);
461 	td = curthread;
462 	if (ncp->nc_exlocks == 0) {
463 		ncp->nc_exlocks = 1;
464 		ncp->nc_locktd = td;
465 		/*
466 		 * The vp associated with a locked ncp must be held
467 		 * to prevent it from being recycled (which would
468 		 * cause the ncp to become unresolved).
469 		 *
470 		 * WARNING!  If VRECLAIMED is set the vnode could
471 		 * already be in the middle of a recycle.  Callers
472 		 * should not assume that nc_vp is usable when
473 		 * not NULL.  cache_vref() or cache_vget() must be
474 		 * called.
475 		 *
476 		 * XXX loop on race for later MPSAFE work.
477 		 */
478 		if (ncp->nc_vp)
479 			vhold(ncp->nc_vp);
480 		return(0);
481 	} else {
482 		return(EWOULDBLOCK);
483 	}
484 }
485 
486 int
487 cache_lock_nonblock(struct nchandle *nch)
488 {
489 	return(_cache_lock_nonblock(nch->ncp));
490 }
491 
492 static
493 void
494 _cache_unlock(struct namecache *ncp)
495 {
496 	thread_t td = curthread;
497 
498 	KKASSERT(ncp->nc_refs > 0);
499 	KKASSERT(ncp->nc_exlocks > 0);
500 	KKASSERT(ncp->nc_locktd == td);
501 	if (--ncp->nc_exlocks == 0) {
502 		if (ncp->nc_vp)
503 			vdrop(ncp->nc_vp);
504 		ncp->nc_locktd = NULL;
505 		if (ncp->nc_flag & NCF_LOCKREQ) {
506 			ncp->nc_flag &= ~NCF_LOCKREQ;
507 			wakeup(ncp);
508 		}
509 	}
510 }
511 
512 void
513 cache_unlock(struct nchandle *nch)
514 {
515 	_cache_unlock(nch->ncp);
516 }
517 
518 /*
519  * ref-and-lock, unlock-and-deref functions.
520  *
521  * This function is primarily used by nlookup.  Even though cache_lock
522  * holds the vnode, it is possible that the vnode may have already
523  * initiated a recyclement.  We want cache_get() to return a definitively
524  * usable vnode or a definitively unresolved ncp.
525  */
526 static
527 struct namecache *
528 _cache_get(struct namecache *ncp)
529 {
530 	_cache_hold(ncp);
531 	_cache_lock(ncp);
532 	if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
533 		_cache_setunresolved(ncp);
534 	return(ncp);
535 }
536 
537 /*
538  * note: the same nchandle can be passed for both arguments.
539  */
540 void
541 cache_get(struct nchandle *nch, struct nchandle *target)
542 {
543 	target->mount = nch->mount;
544 	target->ncp = _cache_get(nch->ncp);
545 	++target->mount->mnt_refs;
546 }
547 
548 static int
549 _cache_get_nonblock(struct namecache *ncp)
550 {
551 	/* XXX MP */
552 	if (ncp->nc_exlocks == 0 || ncp->nc_locktd == curthread) {
553 		_cache_hold(ncp);
554 		_cache_lock(ncp);
555 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
556 			_cache_setunresolved(ncp);
557 		return(0);
558 	}
559 	return(EWOULDBLOCK);
560 }
561 
562 int
563 cache_get_nonblock(struct nchandle *nch)
564 {
565 	int error;
566 
567 	if ((error = _cache_get_nonblock(nch->ncp)) == 0)
568 		++nch->mount->mnt_refs;
569 	return (error);
570 }
571 
572 static __inline
573 void
574 _cache_put(struct namecache *ncp)
575 {
576 	_cache_unlock(ncp);
577 	_cache_drop(ncp);
578 }
579 
580 void
581 cache_put(struct nchandle *nch)
582 {
583 	--nch->mount->mnt_refs;
584 	_cache_put(nch->ncp);
585 	nch->ncp = NULL;
586 	nch->mount = NULL;
587 }
588 
589 /*
590  * Resolve an unresolved ncp by associating a vnode with it.  If the
591  * vnode is NULL, a negative cache entry is created.
592  *
593  * The ncp should be locked on entry and will remain locked on return.
594  */
595 static
596 void
597 _cache_setvp(struct namecache *ncp, struct vnode *vp)
598 {
599 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
600 	ncp->nc_vp = vp;
601 	if (vp != NULL) {
602 		/*
603 		 * Any vp associated with an ncp which has children must
604 		 * be held.  Any vp associated with a locked ncp must be held.
605 		 */
606 		if (!TAILQ_EMPTY(&ncp->nc_list))
607 			vhold(vp);
608 		TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
609 		if (ncp->nc_exlocks)
610 			vhold(vp);
611 
612 		/*
613 		 * Set auxiliary flags
614 		 */
615 		switch(vp->v_type) {
616 		case VDIR:
617 			ncp->nc_flag |= NCF_ISDIR;
618 			break;
619 		case VLNK:
620 			ncp->nc_flag |= NCF_ISSYMLINK;
621 			/* XXX cache the contents of the symlink */
622 			break;
623 		default:
624 			break;
625 		}
626 		++numcache;
627 		ncp->nc_error = 0;
628 	} else {
629 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
630 		++numneg;
631 		ncp->nc_error = ENOENT;
632 	}
633 	ncp->nc_flag &= ~NCF_UNRESOLVED;
634 }
635 
636 void
637 cache_setvp(struct nchandle *nch, struct vnode *vp)
638 {
639 	_cache_setvp(nch->ncp, vp);
640 }
641 
642 void
643 cache_settimeout(struct nchandle *nch, int nticks)
644 {
645 	struct namecache *ncp = nch->ncp;
646 
647 	if ((ncp->nc_timeout = ticks + nticks) == 0)
648 		ncp->nc_timeout = 1;
649 }
650 
651 /*
652  * Disassociate the vnode or negative-cache association and mark a
653  * namecache entry as unresolved again.  Note that the ncp is still
654  * left in the hash table and still linked to its parent.
655  *
656  * The ncp should be locked and refd on entry and will remain locked and refd
657  * on return.
658  *
659  * This routine is normally never called on a directory containing children.
660  * However, NFS often does just that in its rename() code as a cop-out to
661  * avoid complex namespace operations.  This disconnects a directory vnode
662  * from its namecache and can cause the OLDAPI and NEWAPI to get out of
663  * sync.
664  *
665  * NOTE: NCF_FSMID must be cleared so a refurbishment of the ncp, such as
666  * in a create, properly propogates flag up the chain.
667  */
668 static
669 void
670 _cache_setunresolved(struct namecache *ncp)
671 {
672 	struct vnode *vp;
673 
674 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
675 		ncp->nc_flag |= NCF_UNRESOLVED;
676 		ncp->nc_timeout = 0;
677 		ncp->nc_error = ENOTCONN;
678 		++numunres;
679 		if ((vp = ncp->nc_vp) != NULL) {
680 			--numcache;
681 			ncp->nc_vp = NULL;
682 			TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
683 
684 			/*
685 			 * Any vp associated with an ncp with children is
686 			 * held by that ncp.  Any vp associated with a locked
687 			 * ncp is held by that ncp.  These conditions must be
688 			 * undone when the vp is cleared out from the ncp.
689 			 */
690 			if (ncp->nc_flag & NCF_FSMID)
691 				vupdatefsmid(vp);
692 			if (!TAILQ_EMPTY(&ncp->nc_list))
693 				vdrop(vp);
694 			if (ncp->nc_exlocks)
695 				vdrop(vp);
696 		} else {
697 			TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
698 			--numneg;
699 		}
700 		ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK|
701 				  NCF_FSMID);
702 	}
703 }
704 
705 void
706 cache_setunresolved(struct nchandle *nch)
707 {
708 	_cache_setunresolved(nch->ncp);
709 }
710 
711 /*
712  * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
713  * looking for matches.  This flag tells the lookup code when it must
714  * check for a mount linkage and also prevents the directories in question
715  * from being deleted or renamed.
716  */
717 static
718 int
719 cache_clrmountpt_callback(struct mount *mp, void *data)
720 {
721 	struct nchandle *nch = data;
722 
723 	if (mp->mnt_ncmounton.ncp == nch->ncp)
724 		return(1);
725 	if (mp->mnt_ncmountpt.ncp == nch->ncp)
726 		return(1);
727 	return(0);
728 }
729 
730 void
731 cache_clrmountpt(struct nchandle *nch)
732 {
733 	int count;
734 
735 	count = mountlist_scan(cache_clrmountpt_callback, nch,
736 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
737 	if (count == 0)
738 		nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
739 }
740 
741 /*
742  * Invalidate portions of the namecache topology given a starting entry.
743  * The passed ncp is set to an unresolved state and:
744  *
745  * The passed ncp must be locked.
746  *
747  * CINV_DESTROY		- Set a flag in the passed ncp entry indicating
748  *			  that the physical underlying nodes have been
749  *			  destroyed... as in deleted.  For example, when
750  *			  a directory is removed.  This will cause record
751  *			  lookups on the name to no longer be able to find
752  *			  the record and tells the resolver to return failure
753  *			  rather then trying to resolve through the parent.
754  *
755  *			  The topology itself, including ncp->nc_name,
756  *			  remains intact.
757  *
758  *			  This only applies to the passed ncp, if CINV_CHILDREN
759  *			  is specified the children are not flagged.
760  *
761  * CINV_CHILDREN	- Set all children (recursively) to an unresolved
762  *			  state as well.
763  *
764  *			  Note that this will also have the side effect of
765  *			  cleaning out any unreferenced nodes in the topology
766  *			  from the leaves up as the recursion backs out.
767  *
768  * Note that the topology for any referenced nodes remains intact.
769  *
770  * It is possible for cache_inval() to race a cache_resolve(), meaning that
771  * the namecache entry may not actually be invalidated on return if it was
772  * revalidated while recursing down into its children.  This code guarentees
773  * that the node(s) will go through an invalidation cycle, but does not
774  * guarentee that they will remain in an invalidated state.
775  *
776  * Returns non-zero if a revalidation was detected during the invalidation
777  * recursion, zero otherwise.  Note that since only the original ncp is
778  * locked the revalidation ultimately can only indicate that the original ncp
779  * *MIGHT* no have been reresolved.
780  *
781  * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
782  * have to avoid blowing out the kernel stack.  We do this by saving the
783  * deep namecache node and aborting the recursion, then re-recursing at that
784  * node using a depth-first algorithm in order to allow multiple deep
785  * recursions to chain through each other, then we restart the invalidation
786  * from scratch.
787  */
788 
789 struct cinvtrack {
790 	struct namecache *resume_ncp;
791 	int depth;
792 };
793 
794 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
795 
796 static
797 int
798 _cache_inval(struct namecache *ncp, int flags)
799 {
800 	struct cinvtrack track;
801 	struct namecache *ncp2;
802 	int r;
803 
804 	track.depth = 0;
805 	track.resume_ncp = NULL;
806 
807 	for (;;) {
808 		r = _cache_inval_internal(ncp, flags, &track);
809 		if (track.resume_ncp == NULL)
810 			break;
811 		kprintf("Warning: deep namecache recursion at %s\n",
812 			ncp->nc_name);
813 		_cache_unlock(ncp);
814 		while ((ncp2 = track.resume_ncp) != NULL) {
815 			track.resume_ncp = NULL;
816 			_cache_lock(ncp2);
817 			_cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
818 					     &track);
819 			_cache_put(ncp2);
820 		}
821 		_cache_lock(ncp);
822 	}
823 	return(r);
824 }
825 
826 int
827 cache_inval(struct nchandle *nch, int flags)
828 {
829 	return(_cache_inval(nch->ncp, flags));
830 }
831 
832 static int
833 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
834 {
835 	struct namecache *kid;
836 	struct namecache *nextkid;
837 	int rcnt = 0;
838 
839 	KKASSERT(ncp->nc_exlocks);
840 
841 	_cache_setunresolved(ncp);
842 	if (flags & CINV_DESTROY)
843 		ncp->nc_flag |= NCF_DESTROYED;
844 
845 	if ((flags & CINV_CHILDREN) &&
846 	    (kid = TAILQ_FIRST(&ncp->nc_list)) != NULL
847 	) {
848 		if (++track->depth > MAX_RECURSION_DEPTH) {
849 			track->resume_ncp = ncp;
850 			_cache_hold(ncp);
851 			++rcnt;
852 		}
853 		_cache_hold(kid);
854 		_cache_unlock(ncp);
855 		while (kid) {
856 			if (track->resume_ncp) {
857 				_cache_drop(kid);
858 				break;
859 			}
860 			if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
861 				_cache_hold(nextkid);
862 			if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
863 			    TAILQ_FIRST(&kid->nc_list)
864 			) {
865 				_cache_lock(kid);
866 				rcnt += _cache_inval_internal(kid, flags & ~CINV_DESTROY, track);
867 				_cache_unlock(kid);
868 			}
869 			_cache_drop(kid);
870 			kid = nextkid;
871 		}
872 		--track->depth;
873 		_cache_lock(ncp);
874 	}
875 
876 	/*
877 	 * Someone could have gotten in there while ncp was unlocked,
878 	 * retry if so.
879 	 */
880 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
881 		++rcnt;
882 	return (rcnt);
883 }
884 
885 /*
886  * Invalidate a vnode's namecache associations.  To avoid races against
887  * the resolver we do not invalidate a node which we previously invalidated
888  * but which was then re-resolved while we were in the invalidation loop.
889  *
890  * Returns non-zero if any namecache entries remain after the invalidation
891  * loop completed.
892  *
893  * NOTE: unlike the namecache topology which guarentees that ncp's will not
894  * be ripped out of the topology while held, the vnode's v_namecache list
895  * has no such restriction.  NCP's can be ripped out of the list at virtually
896  * any time if not locked, even if held.
897  */
898 int
899 cache_inval_vp(struct vnode *vp, int flags)
900 {
901 	struct namecache *ncp;
902 	struct namecache *next;
903 
904 restart:
905 	ncp = TAILQ_FIRST(&vp->v_namecache);
906 	if (ncp)
907 		_cache_hold(ncp);
908 	while (ncp) {
909 		/* loop entered with ncp held */
910 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
911 			_cache_hold(next);
912 		_cache_lock(ncp);
913 		if (ncp->nc_vp != vp) {
914 			kprintf("Warning: cache_inval_vp: race-A detected on "
915 				"%s\n", ncp->nc_name);
916 			_cache_put(ncp);
917 			if (next)
918 				_cache_drop(next);
919 			goto restart;
920 		}
921 		_cache_inval(ncp, flags);
922 		_cache_put(ncp);		/* also releases reference */
923 		ncp = next;
924 		if (ncp && ncp->nc_vp != vp) {
925 			kprintf("Warning: cache_inval_vp: race-B detected on "
926 				"%s\n", ncp->nc_name);
927 			_cache_drop(ncp);
928 			goto restart;
929 		}
930 	}
931 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
932 }
933 
934 /*
935  * This routine is used instead of the normal cache_inval_vp() when we
936  * are trying to recycle otherwise good vnodes.
937  *
938  * Return 0 on success, non-zero if not all namecache records could be
939  * disassociated from the vnode (for various reasons).
940  */
941 int
942 cache_inval_vp_nonblock(struct vnode *vp)
943 {
944 	struct namecache *ncp;
945 	struct namecache *next;
946 
947 	ncp = TAILQ_FIRST(&vp->v_namecache);
948 	if (ncp)
949 		_cache_hold(ncp);
950 	while (ncp) {
951 		/* loop entered with ncp held */
952 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
953 			_cache_hold(next);
954 		if (_cache_lock_nonblock(ncp)) {
955 			_cache_drop(ncp);
956 			if (next)
957 				_cache_drop(next);
958 			break;
959 		}
960 		if (ncp->nc_vp != vp) {
961 			kprintf("Warning: cache_inval_vp: race-A detected on "
962 				"%s\n", ncp->nc_name);
963 			_cache_put(ncp);
964 			if (next)
965 				_cache_drop(next);
966 			break;
967 		}
968 		_cache_inval(ncp, 0);
969 		_cache_put(ncp);		/* also releases reference */
970 		ncp = next;
971 		if (ncp && ncp->nc_vp != vp) {
972 			kprintf("Warning: cache_inval_vp: race-B detected on "
973 				"%s\n", ncp->nc_name);
974 			_cache_drop(ncp);
975 			break;
976 		}
977 	}
978 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
979 }
980 
981 /*
982  * The source ncp has been renamed to the target ncp.  Both fncp and tncp
983  * must be locked.  The target ncp is destroyed (as a normal rename-over
984  * would destroy the target file or directory).
985  *
986  * Because there may be references to the source ncp we cannot copy its
987  * contents to the target.  Instead the source ncp is relinked as the target
988  * and the target ncp is removed from the namecache topology.
989  */
990 void
991 cache_rename(struct nchandle *fnch, struct nchandle *tnch)
992 {
993 	struct namecache *fncp = fnch->ncp;
994 	struct namecache *tncp = tnch->ncp;
995 	char *oname;
996 
997 	_cache_setunresolved(tncp);
998 	cache_unlink_parent(fncp);
999 	cache_link_parent(fncp, tncp->nc_parent);
1000 	cache_unlink_parent(tncp);
1001 	oname = fncp->nc_name;
1002 	fncp->nc_name = tncp->nc_name;
1003 	fncp->nc_nlen = tncp->nc_nlen;
1004 	tncp->nc_name = NULL;
1005 	tncp->nc_nlen = 0;
1006 	if (fncp->nc_flag & NCF_HASHED)
1007 		_cache_rehash(fncp);
1008 	if (tncp->nc_flag & NCF_HASHED)
1009 		_cache_rehash(tncp);
1010 	if (oname)
1011 		kfree(oname, M_VFSCACHE);
1012 }
1013 
1014 /*
1015  * vget the vnode associated with the namecache entry.  Resolve the namecache
1016  * entry if necessary and deal with namecache/vp races.  The passed ncp must
1017  * be referenced and may be locked.  The ncp's ref/locking state is not
1018  * effected by this call.
1019  *
1020  * lk_type may be LK_SHARED, LK_EXCLUSIVE.  A ref'd, possibly locked
1021  * (depending on the passed lk_type) will be returned in *vpp with an error
1022  * of 0, or NULL will be returned in *vpp with a non-0 error code.  The
1023  * most typical error is ENOENT, meaning that the ncp represents a negative
1024  * cache hit and there is no vnode to retrieve, but other errors can occur
1025  * too.
1026  *
1027  * The main race we have to deal with are namecache zaps.  The ncp itself
1028  * will not disappear since it is referenced, and it turns out that the
1029  * validity of the vp pointer can be checked simply by rechecking the
1030  * contents of ncp->nc_vp.
1031  */
1032 int
1033 cache_vget(struct nchandle *nch, struct ucred *cred,
1034 	   int lk_type, struct vnode **vpp)
1035 {
1036 	struct namecache *ncp;
1037 	struct vnode *vp;
1038 	int error;
1039 
1040 	ncp = nch->ncp;
1041 again:
1042 	vp = NULL;
1043 	if (ncp->nc_flag & NCF_UNRESOLVED) {
1044 		_cache_lock(ncp);
1045 		error = cache_resolve(nch, cred);
1046 		_cache_unlock(ncp);
1047 	} else {
1048 		error = 0;
1049 	}
1050 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1051 		/*
1052 		 * Accessing the vnode from the namecache is a bit
1053 		 * dangerous.  Because there are no refs on the vnode, it
1054 		 * could be in the middle of a reclaim.
1055 		 */
1056 		if (vp->v_flag & VRECLAIMED) {
1057 			kprintf("Warning: vnode reclaim race detected in cache_vget on %p (%s)\n", vp, ncp->nc_name);
1058 			_cache_lock(ncp);
1059 			_cache_setunresolved(ncp);
1060 			_cache_unlock(ncp);
1061 			goto again;
1062 		}
1063 		error = vget(vp, lk_type);
1064 		if (error) {
1065 			if (vp != ncp->nc_vp)
1066 				goto again;
1067 			vp = NULL;
1068 		} else if (vp != ncp->nc_vp) {
1069 			vput(vp);
1070 			goto again;
1071 		} else if (vp->v_flag & VRECLAIMED) {
1072 			panic("vget succeeded on a VRECLAIMED node! vp %p", vp);
1073 		}
1074 	}
1075 	if (error == 0 && vp == NULL)
1076 		error = ENOENT;
1077 	*vpp = vp;
1078 	return(error);
1079 }
1080 
1081 int
1082 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
1083 {
1084 	struct namecache *ncp;
1085 	struct vnode *vp;
1086 	int error;
1087 
1088 	ncp = nch->ncp;
1089 
1090 again:
1091 	vp = NULL;
1092 	if (ncp->nc_flag & NCF_UNRESOLVED) {
1093 		_cache_lock(ncp);
1094 		error = cache_resolve(nch, cred);
1095 		_cache_unlock(ncp);
1096 	} else {
1097 		error = 0;
1098 	}
1099 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1100 		/*
1101 		 * Since we did not obtain any locks, a cache zap
1102 		 * race can occur here if the vnode is in the middle
1103 		 * of being reclaimed and has not yet been able to
1104 		 * clean out its cache node.  If that case occurs,
1105 		 * we must lock and unresolve the cache, then loop
1106 		 * to retry.
1107 		 */
1108 		if ((error = vget(vp, LK_SHARED)) != 0) {
1109 			if (error == ENOENT) {
1110 				kprintf("Warning: vnode reclaim race detected on cache_vref %p (%s)\n", vp, ncp->nc_name);
1111 				_cache_lock(ncp);
1112 				_cache_setunresolved(ncp);
1113 				_cache_unlock(ncp);
1114 				goto again;
1115 			}
1116 			/* fatal error */
1117 		} else {
1118 			/* caller does not want a lock */
1119 			vn_unlock(vp);
1120 		}
1121 	}
1122 	if (error == 0 && vp == NULL)
1123 		error = ENOENT;
1124 	*vpp = vp;
1125 	return(error);
1126 }
1127 
1128 /*
1129  * Return a referenced vnode representing the parent directory of
1130  * ncp.  Because the caller has locked the ncp it should not be possible for
1131  * the parent ncp to go away.
1132  *
1133  * However, we might race against the parent dvp and not be able to
1134  * reference it.  If we race, return NULL.
1135  */
1136 static struct vnode *
1137 cache_dvpref(struct namecache *ncp)
1138 {
1139 	struct namecache *par;
1140 	struct vnode *dvp;
1141 
1142 	dvp = NULL;
1143 	if ((par = ncp->nc_parent) != NULL) {
1144 		if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
1145 			if ((dvp = par->nc_vp) != NULL) {
1146 				if (vget(dvp, LK_SHARED) == 0) {
1147 					vn_unlock(dvp);
1148 					/* return referenced, unlocked dvp */
1149 				} else {
1150 					dvp = NULL;
1151 				}
1152 			}
1153 		}
1154 	}
1155 	return(dvp);
1156 }
1157 
1158 /*
1159  * Recursively set the FSMID update flag for namecache nodes leading
1160  * to root.  This will cause the next getattr or reclaim to increment the
1161  * fsmid and mark the inode for lazy updating.
1162  *
1163  * Stop recursing when we hit a node whos NCF_FSMID flag is already set.
1164  * This makes FSMIDs work in an Einsteinian fashion - where the observation
1165  * effects the result.  In this case a program monitoring a higher level
1166  * node will have detected some prior change and started its scan (clearing
1167  * NCF_FSMID in higher level nodes), but since it has not yet observed the
1168  * node where we find NCF_FSMID still set, we can safely make the related
1169  * modification without interfering with the theorized program.
1170  *
1171  * This also means that FSMIDs cannot represent time-domain quantities
1172  * in a hierarchical sense.  But the main reason for doing it this way
1173  * is to reduce the amount of recursion that occurs in the critical path
1174  * when e.g. a program is writing to a file that sits deep in a directory
1175  * hierarchy.
1176  */
1177 void
1178 cache_update_fsmid(struct nchandle *nch)
1179 {
1180 	struct namecache *ncp;
1181 	struct namecache *scan;
1182 	struct vnode *vp;
1183 
1184 	ncp = nch->ncp;
1185 
1186 	/*
1187 	 * Warning: even if we get a non-NULL vp it could still be in the
1188 	 * middle of a recyclement.  Don't do anything fancy, just set
1189 	 * NCF_FSMID.
1190 	 */
1191 	if ((vp = ncp->nc_vp) != NULL) {
1192 		TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1193 			for (scan = ncp; scan; scan = scan->nc_parent) {
1194 				if (scan->nc_flag & NCF_FSMID)
1195 					break;
1196 				scan->nc_flag |= NCF_FSMID;
1197 			}
1198 		}
1199 	} else {
1200 		while (ncp && (ncp->nc_flag & NCF_FSMID) == 0) {
1201 			ncp->nc_flag |= NCF_FSMID;
1202 			ncp = ncp->nc_parent;
1203 		}
1204 	}
1205 }
1206 
1207 void
1208 cache_update_fsmid_vp(struct vnode *vp)
1209 {
1210 	struct namecache *ncp;
1211 	struct namecache *scan;
1212 
1213 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1214 		for (scan = ncp; scan; scan = scan->nc_parent) {
1215 			if (scan->nc_flag & NCF_FSMID)
1216 				break;
1217 			scan->nc_flag |= NCF_FSMID;
1218 		}
1219 	}
1220 }
1221 
1222 /*
1223  * If getattr is called on a vnode (e.g. a stat call), the filesystem
1224  * may call this routine to determine if the namecache has the hierarchical
1225  * change flag set, requiring the fsmid to be updated.
1226  *
1227  * Since 0 indicates no support, make sure the filesystem fsmid is at least
1228  * 1.
1229  */
1230 int
1231 cache_check_fsmid_vp(struct vnode *vp, int64_t *fsmid)
1232 {
1233 	struct namecache *ncp;
1234 	int changed = 0;
1235 
1236 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1237 		if (ncp->nc_flag & NCF_FSMID) {
1238 			ncp->nc_flag &= ~NCF_FSMID;
1239 			changed = 1;
1240 		}
1241 	}
1242 	if (*fsmid == 0)
1243 		++*fsmid;
1244 	if (changed)
1245 		++*fsmid;
1246 	return(changed);
1247 }
1248 
1249 /*
1250  * Obtain the FSMID for a vnode for filesystems which do not support
1251  * a built-in FSMID.
1252  */
1253 int64_t
1254 cache_sync_fsmid_vp(struct vnode *vp)
1255 {
1256 	struct namecache *ncp;
1257 
1258 	if ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL) {
1259 		if (ncp->nc_flag & NCF_FSMID) {
1260 			ncp->nc_flag &= ~NCF_FSMID;
1261 			++ncp->nc_fsmid;
1262 		}
1263 		return(ncp->nc_fsmid);
1264 	}
1265 	return(VNOVAL);
1266 }
1267 
1268 /*
1269  * Convert a directory vnode to a namecache record without any other
1270  * knowledge of the topology.  This ONLY works with directory vnodes and
1271  * is ONLY used by the NFS server.  dvp must be refd but unlocked, and the
1272  * returned ncp (if not NULL) will be held and unlocked.
1273  *
1274  * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
1275  * If 'makeit' is 1 we attempt to track-down and create the namecache topology
1276  * for dvp.  This will fail only if the directory has been deleted out from
1277  * under the caller.
1278  *
1279  * Callers must always check for a NULL return no matter the value of 'makeit'.
1280  *
1281  * To avoid underflowing the kernel stack each recursive call increments
1282  * the makeit variable.
1283  */
1284 
1285 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1286 				  struct vnode *dvp, char *fakename);
1287 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1288 				  struct vnode **saved_dvp);
1289 
1290 int
1291 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
1292 	      struct nchandle *nch)
1293 {
1294 	struct vnode *saved_dvp;
1295 	struct vnode *pvp;
1296 	char *fakename;
1297 	int error;
1298 
1299 	nch->ncp = NULL;
1300 	nch->mount = dvp->v_mount;
1301 	saved_dvp = NULL;
1302 	fakename = NULL;
1303 
1304 	/*
1305 	 * Temporary debugging code to force the directory scanning code
1306 	 * to be exercised.
1307 	 */
1308 	if (ncvp_debug >= 3 && makeit && TAILQ_FIRST(&dvp->v_namecache)) {
1309 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
1310 		kprintf("cache_fromdvp: forcing %s\n", nch->ncp->nc_name);
1311 		goto force;
1312 	}
1313 
1314 	/*
1315 	 * Loop until resolution, inside code will break out on error.
1316 	 */
1317 	while ((nch->ncp = TAILQ_FIRST(&dvp->v_namecache)) == NULL && makeit) {
1318 force:
1319 		/*
1320 		 * If dvp is the root of its filesystem it should already
1321 		 * have a namecache pointer associated with it as a side
1322 		 * effect of the mount, but it may have been disassociated.
1323 		 */
1324 		if (dvp->v_flag & VROOT) {
1325 			nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
1326 			error = cache_resolve_mp(nch->mount);
1327 			_cache_put(nch->ncp);
1328 			if (ncvp_debug) {
1329 				kprintf("cache_fromdvp: resolve root of mount %p error %d",
1330 					dvp->v_mount, error);
1331 			}
1332 			if (error) {
1333 				if (ncvp_debug)
1334 					kprintf(" failed\n");
1335 				nch->ncp = NULL;
1336 				break;
1337 			}
1338 			if (ncvp_debug)
1339 				kprintf(" succeeded\n");
1340 			continue;
1341 		}
1342 
1343 		/*
1344 		 * If we are recursed too deeply resort to an O(n^2)
1345 		 * algorithm to resolve the namecache topology.  The
1346 		 * resolved pvp is left referenced in saved_dvp to
1347 		 * prevent the tree from being destroyed while we loop.
1348 		 */
1349 		if (makeit > 20) {
1350 			error = cache_fromdvp_try(dvp, cred, &saved_dvp);
1351 			if (error) {
1352 				kprintf("lookupdotdot(longpath) failed %d "
1353 				       "dvp %p\n", error, dvp);
1354 				nch->ncp = NULL;
1355 				break;
1356 			}
1357 			continue;
1358 		}
1359 
1360 		/*
1361 		 * Get the parent directory and resolve its ncp.
1362 		 */
1363 		if (fakename) {
1364 			kfree(fakename, M_TEMP);
1365 			fakename = NULL;
1366 		}
1367 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1368 					  &fakename);
1369 		if (error) {
1370 			kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
1371 			break;
1372 		}
1373 		vn_unlock(pvp);
1374 
1375 		/*
1376 		 * Reuse makeit as a recursion depth counter.  On success
1377 		 * nch will be fully referenced.
1378 		 */
1379 		cache_fromdvp(pvp, cred, makeit + 1, nch);
1380 		vrele(pvp);
1381 		if (nch->ncp == NULL)
1382 			break;
1383 
1384 		/*
1385 		 * Do an inefficient scan of pvp (embodied by ncp) to look
1386 		 * for dvp.  This will create a namecache record for dvp on
1387 		 * success.  We loop up to recheck on success.
1388 		 *
1389 		 * ncp and dvp are both held but not locked.
1390 		 */
1391 		error = cache_inefficient_scan(nch, cred, dvp, fakename);
1392 		if (error) {
1393 			kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
1394 				pvp, nch->ncp->nc_name, dvp);
1395 			cache_drop(nch);
1396 			/* nch was NULLed out, reload mount */
1397 			nch->mount = dvp->v_mount;
1398 			break;
1399 		}
1400 		if (ncvp_debug) {
1401 			kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
1402 				pvp, nch->ncp->nc_name);
1403 		}
1404 		cache_drop(nch);
1405 		/* nch was NULLed out, reload mount */
1406 		nch->mount = dvp->v_mount;
1407 	}
1408 
1409 	if (fakename)
1410 		kfree(fakename, M_TEMP);
1411 
1412 	/*
1413 	 * hold it for real so the mount gets a ref
1414 	 */
1415 	if (nch->ncp)
1416 		cache_hold(nch);
1417 	if (saved_dvp)
1418 		vrele(saved_dvp);
1419 	if (nch->ncp)
1420 		return (0);
1421 	return (EINVAL);
1422 }
1423 
1424 /*
1425  * Go up the chain of parent directories until we find something
1426  * we can resolve into the namecache.  This is very inefficient.
1427  */
1428 static
1429 int
1430 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1431 		  struct vnode **saved_dvp)
1432 {
1433 	struct nchandle nch;
1434 	struct vnode *pvp;
1435 	int error;
1436 	static time_t last_fromdvp_report;
1437 	char *fakename;
1438 
1439 	/*
1440 	 * Loop getting the parent directory vnode until we get something we
1441 	 * can resolve in the namecache.
1442 	 */
1443 	vref(dvp);
1444 	nch.mount = dvp->v_mount;
1445 	nch.ncp = NULL;
1446 	fakename = NULL;
1447 
1448 	for (;;) {
1449 		if (fakename) {
1450 			kfree(fakename, M_TEMP);
1451 			fakename = NULL;
1452 		}
1453 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1454 					  &fakename);
1455 		if (error) {
1456 			vrele(dvp);
1457 			break;
1458 		}
1459 		vn_unlock(pvp);
1460 		if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
1461 			_cache_hold(nch.ncp);
1462 			vrele(pvp);
1463 			break;
1464 		}
1465 		if (pvp->v_flag & VROOT) {
1466 			nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
1467 			error = cache_resolve_mp(nch.mount);
1468 			_cache_unlock(nch.ncp);
1469 			vrele(pvp);
1470 			if (error) {
1471 				_cache_drop(nch.ncp);
1472 				nch.ncp = NULL;
1473 				vrele(dvp);
1474 			}
1475 			break;
1476 		}
1477 		vrele(dvp);
1478 		dvp = pvp;
1479 	}
1480 	if (error == 0) {
1481 		if (last_fromdvp_report != time_second) {
1482 			last_fromdvp_report = time_second;
1483 			kprintf("Warning: extremely inefficient path "
1484 				"resolution on %s\n",
1485 				nch.ncp->nc_name);
1486 		}
1487 		error = cache_inefficient_scan(&nch, cred, dvp, fakename);
1488 
1489 		/*
1490 		 * Hopefully dvp now has a namecache record associated with
1491 		 * it.  Leave it referenced to prevent the kernel from
1492 		 * recycling the vnode.  Otherwise extremely long directory
1493 		 * paths could result in endless recycling.
1494 		 */
1495 		if (*saved_dvp)
1496 		    vrele(*saved_dvp);
1497 		*saved_dvp = dvp;
1498 		_cache_drop(nch.ncp);
1499 	}
1500 	if (fakename)
1501 		kfree(fakename, M_TEMP);
1502 	return (error);
1503 }
1504 
1505 /*
1506  * Do an inefficient scan of the directory represented by ncp looking for
1507  * the directory vnode dvp.  ncp must be held but not locked on entry and
1508  * will be held on return.  dvp must be refd but not locked on entry and
1509  * will remain refd on return.
1510  *
1511  * Why do this at all?  Well, due to its stateless nature the NFS server
1512  * converts file handles directly to vnodes without necessarily going through
1513  * the namecache ops that would otherwise create the namecache topology
1514  * leading to the vnode.  We could either (1) Change the namecache algorithms
1515  * to allow disconnect namecache records that are re-merged opportunistically,
1516  * or (2) Make the NFS server backtrack and scan to recover a connected
1517  * namecache topology in order to then be able to issue new API lookups.
1518  *
1519  * It turns out that (1) is a huge mess.  It takes a nice clean set of
1520  * namecache algorithms and introduces a lot of complication in every subsystem
1521  * that calls into the namecache to deal with the re-merge case, especially
1522  * since we are using the namecache to placehold negative lookups and the
1523  * vnode might not be immediately assigned. (2) is certainly far less
1524  * efficient then (1), but since we are only talking about directories here
1525  * (which are likely to remain cached), the case does not actually run all
1526  * that often and has the supreme advantage of not polluting the namecache
1527  * algorithms.
1528  *
1529  * If a fakename is supplied just construct a namecache entry using the
1530  * fake name.
1531  */
1532 static int
1533 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1534 		       struct vnode *dvp, char *fakename)
1535 {
1536 	struct nlcomponent nlc;
1537 	struct nchandle rncp;
1538 	struct dirent *den;
1539 	struct vnode *pvp;
1540 	struct vattr vat;
1541 	struct iovec iov;
1542 	struct uio uio;
1543 	int blksize;
1544 	int eofflag;
1545 	int bytes;
1546 	char *rbuf;
1547 	int error;
1548 
1549 	vat.va_blocksize = 0;
1550 	if ((error = VOP_GETATTR(dvp, &vat)) != 0)
1551 		return (error);
1552 	if ((error = cache_vref(nch, cred, &pvp)) != 0)
1553 		return (error);
1554 	if (ncvp_debug)
1555 		kprintf("inefficient_scan: directory iosize %ld vattr fileid = %lld\n", vat.va_blocksize, vat.va_fileid);
1556 
1557 	/*
1558 	 * Use the supplied fakename if not NULL.  Fake names are typically
1559 	 * not in the actual filesystem hierarchy.  This is used by HAMMER
1560 	 * to glue @@timestamp recursions together.
1561 	 */
1562 	if (fakename) {
1563 		nlc.nlc_nameptr = fakename;
1564 		nlc.nlc_namelen = strlen(fakename);
1565 		rncp = cache_nlookup(nch, &nlc);
1566 		goto done;
1567 	}
1568 
1569 	if ((blksize = vat.va_blocksize) == 0)
1570 		blksize = DEV_BSIZE;
1571 	rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
1572 	rncp.ncp = NULL;
1573 
1574 	eofflag = 0;
1575 	uio.uio_offset = 0;
1576 again:
1577 	iov.iov_base = rbuf;
1578 	iov.iov_len = blksize;
1579 	uio.uio_iov = &iov;
1580 	uio.uio_iovcnt = 1;
1581 	uio.uio_resid = blksize;
1582 	uio.uio_segflg = UIO_SYSSPACE;
1583 	uio.uio_rw = UIO_READ;
1584 	uio.uio_td = curthread;
1585 
1586 	if (ncvp_debug >= 2)
1587 		kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
1588 	error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
1589 	if (error == 0) {
1590 		den = (struct dirent *)rbuf;
1591 		bytes = blksize - uio.uio_resid;
1592 
1593 		while (bytes > 0) {
1594 			if (ncvp_debug >= 2) {
1595 				kprintf("cache_inefficient_scan: %*.*s\n",
1596 					den->d_namlen, den->d_namlen,
1597 					den->d_name);
1598 			}
1599 			if (den->d_type != DT_WHT &&
1600 			    den->d_ino == vat.va_fileid) {
1601 				if (ncvp_debug) {
1602 					kprintf("cache_inefficient_scan: "
1603 					       "MATCHED inode %lld path %s/%*.*s\n",
1604 					       vat.va_fileid, nch->ncp->nc_name,
1605 					       den->d_namlen, den->d_namlen,
1606 					       den->d_name);
1607 				}
1608 				nlc.nlc_nameptr = den->d_name;
1609 				nlc.nlc_namelen = den->d_namlen;
1610 				rncp = cache_nlookup(nch, &nlc);
1611 				KKASSERT(rncp.ncp != NULL);
1612 				break;
1613 			}
1614 			bytes -= _DIRENT_DIRSIZ(den);
1615 			den = _DIRENT_NEXT(den);
1616 		}
1617 		if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
1618 			goto again;
1619 	}
1620 	kfree(rbuf, M_TEMP);
1621 done:
1622 	vrele(pvp);
1623 	if (rncp.ncp) {
1624 		if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
1625 			_cache_setvp(rncp.ncp, dvp);
1626 			if (ncvp_debug >= 2) {
1627 				kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
1628 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
1629 			}
1630 		} else {
1631 			if (ncvp_debug >= 2) {
1632 				kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
1633 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
1634 					rncp.ncp->nc_vp);
1635 			}
1636 		}
1637 		if (rncp.ncp->nc_vp == NULL)
1638 			error = rncp.ncp->nc_error;
1639 		/*
1640 		 * Release rncp after a successful nlookup.  rncp was fully
1641 		 * referenced.
1642 		 */
1643 		cache_put(&rncp);
1644 	} else {
1645 		kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
1646 			dvp, nch->ncp->nc_name);
1647 		error = ENOENT;
1648 	}
1649 	return (error);
1650 }
1651 
1652 /*
1653  * Zap a namecache entry.  The ncp is unconditionally set to an unresolved
1654  * state, which disassociates it from its vnode or ncneglist.
1655  *
1656  * Then, if there are no additional references to the ncp and no children,
1657  * the ncp is removed from the topology and destroyed.  This function will
1658  * also run through the nc_parent chain and destroy parent ncps if possible.
1659  * As a side benefit, it turns out the only conditions that allow running
1660  * up the chain are also the conditions to ensure no deadlock will occur.
1661  *
1662  * References and/or children may exist if the ncp is in the middle of the
1663  * topology, preventing the ncp from being destroyed.
1664  *
1665  * This function must be called with the ncp held and locked and will unlock
1666  * and drop it during zapping.
1667  */
1668 static void
1669 cache_zap(struct namecache *ncp)
1670 {
1671 	struct namecache *par;
1672 
1673 	/*
1674 	 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
1675 	 */
1676 	_cache_setunresolved(ncp);
1677 
1678 	/*
1679 	 * Try to scrap the entry and possibly tail-recurse on its parent.
1680 	 * We only scrap unref'd (other then our ref) unresolved entries,
1681 	 * we do not scrap 'live' entries.
1682 	 */
1683 	while (ncp->nc_flag & NCF_UNRESOLVED) {
1684 		/*
1685 		 * Someone other then us has a ref, stop.
1686 		 */
1687 		if (ncp->nc_refs > 1)
1688 			goto done;
1689 
1690 		/*
1691 		 * We have children, stop.
1692 		 */
1693 		if (!TAILQ_EMPTY(&ncp->nc_list))
1694 			goto done;
1695 
1696 		/*
1697 		 * Remove ncp from the topology: hash table and parent linkage.
1698 		 */
1699 		if (ncp->nc_flag & NCF_HASHED) {
1700 			ncp->nc_flag &= ~NCF_HASHED;
1701 			LIST_REMOVE(ncp, nc_hash);
1702 		}
1703 		if ((par = ncp->nc_parent) != NULL) {
1704 			par = _cache_hold(par);
1705 			TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
1706 			ncp->nc_parent = NULL;
1707 			if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
1708 				vdrop(par->nc_vp);
1709 		}
1710 
1711 		/*
1712 		 * ncp should not have picked up any refs.  Physically
1713 		 * destroy the ncp.
1714 		 */
1715 		KKASSERT(ncp->nc_refs == 1);
1716 		--numunres;
1717 		/* _cache_unlock(ncp) not required */
1718 		ncp->nc_refs = -1;	/* safety */
1719 		if (ncp->nc_name)
1720 			kfree(ncp->nc_name, M_VFSCACHE);
1721 		kfree(ncp, M_VFSCACHE);
1722 
1723 		/*
1724 		 * Loop on the parent (it may be NULL).  Only bother looping
1725 		 * if the parent has a single ref (ours), which also means
1726 		 * we can lock it trivially.
1727 		 */
1728 		ncp = par;
1729 		if (ncp == NULL)
1730 			return;
1731 		if (ncp->nc_refs != 1) {
1732 			_cache_drop(ncp);
1733 			return;
1734 		}
1735 		KKASSERT(par->nc_exlocks == 0);
1736 		_cache_lock(ncp);
1737 	}
1738 done:
1739 	_cache_unlock(ncp);
1740 	atomic_subtract_int(&ncp->nc_refs, 1);
1741 }
1742 
1743 static enum { CHI_LOW, CHI_HIGH } cache_hysteresis_state = CHI_LOW;
1744 
1745 static __inline
1746 void
1747 cache_hysteresis(void)
1748 {
1749 	/*
1750 	 * Don't cache too many negative hits.  We use hysteresis to reduce
1751 	 * the impact on the critical path.
1752 	 */
1753 	switch(cache_hysteresis_state) {
1754 	case CHI_LOW:
1755 		if (numneg > MINNEG && numneg * ncnegfactor > numcache) {
1756 			cache_cleanneg(10);
1757 			cache_hysteresis_state = CHI_HIGH;
1758 		}
1759 		break;
1760 	case CHI_HIGH:
1761 		if (numneg > MINNEG * 9 / 10 &&
1762 		    numneg * ncnegfactor * 9 / 10 > numcache
1763 		) {
1764 			cache_cleanneg(10);
1765 		} else {
1766 			cache_hysteresis_state = CHI_LOW;
1767 		}
1768 		break;
1769 	}
1770 }
1771 
1772 /*
1773  * NEW NAMECACHE LOOKUP API
1774  *
1775  * Lookup an entry in the cache.  A locked, referenced, non-NULL
1776  * entry is *always* returned, even if the supplied component is illegal.
1777  * The resulting namecache entry should be returned to the system with
1778  * cache_put() or _cache_unlock() + cache_drop().
1779  *
1780  * namecache locks are recursive but care must be taken to avoid lock order
1781  * reversals.
1782  *
1783  * Nobody else will be able to manipulate the associated namespace (e.g.
1784  * create, delete, rename, rename-target) until the caller unlocks the
1785  * entry.
1786  *
1787  * The returned entry will be in one of three states:  positive hit (non-null
1788  * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
1789  * Unresolved entries must be resolved through the filesystem to associate the
1790  * vnode and/or determine whether a positive or negative hit has occured.
1791  *
1792  * It is not necessary to lock a directory in order to lock namespace under
1793  * that directory.  In fact, it is explicitly not allowed to do that.  A
1794  * directory is typically only locked when being created, renamed, or
1795  * destroyed.
1796  *
1797  * The directory (par) may be unresolved, in which case any returned child
1798  * will likely also be marked unresolved.  Likely but not guarenteed.  Since
1799  * the filesystem lookup requires a resolved directory vnode the caller is
1800  * responsible for resolving the namecache chain top-down.  This API
1801  * specifically allows whole chains to be created in an unresolved state.
1802  */
1803 struct nchandle
1804 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
1805 {
1806 	struct nchandle nch;
1807 	struct namecache *ncp;
1808 	struct namecache *new_ncp;
1809 	struct nchashhead *nchpp;
1810 	u_int32_t hash;
1811 	globaldata_t gd;
1812 
1813 	numcalls++;
1814 	gd = mycpu;
1815 
1816 	/*
1817 	 * Try to locate an existing entry
1818 	 */
1819 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
1820 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
1821 	new_ncp = NULL;
1822 restart:
1823 	LIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1824 		numchecks++;
1825 
1826 		/*
1827 		 * Try to zap entries that have timed out.  We have
1828 		 * to be careful here because locked leafs may depend
1829 		 * on the vnode remaining intact in a parent, so only
1830 		 * do this under very specific conditions.
1831 		 */
1832 		if (ncp->nc_timeout &&
1833 		    (int)(ncp->nc_timeout - ticks) < 0 &&
1834 		    (ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
1835 		    ncp->nc_exlocks == 0 &&
1836 		    TAILQ_EMPTY(&ncp->nc_list)
1837 		) {
1838 			cache_zap(_cache_get(ncp));
1839 			goto restart;
1840 		}
1841 
1842 		/*
1843 		 * Break out if we find a matching entry.  Note that
1844 		 * UNRESOLVED entries may match, but DESTROYED entries
1845 		 * do not.
1846 		 */
1847 		if (ncp->nc_parent == par_nch->ncp &&
1848 		    ncp->nc_nlen == nlc->nlc_namelen &&
1849 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
1850 		    (ncp->nc_flag & NCF_DESTROYED) == 0
1851 		) {
1852 			if (_cache_get_nonblock(ncp) == 0) {
1853 				if (new_ncp)
1854 					_cache_free(new_ncp);
1855 				goto found;
1856 			}
1857 			_cache_get(ncp);
1858 			_cache_put(ncp);
1859 			goto restart;
1860 		}
1861 	}
1862 
1863 	/*
1864 	 * We failed to locate an entry, create a new entry and add it to
1865 	 * the cache.  We have to relookup after possibly blocking in
1866 	 * malloc.
1867 	 */
1868 	if (new_ncp == NULL) {
1869 		new_ncp = cache_alloc(nlc->nlc_namelen);
1870 		goto restart;
1871 	}
1872 
1873 	ncp = new_ncp;
1874 
1875 	/*
1876 	 * Initialize as a new UNRESOLVED entry, lock (non-blocking),
1877 	 * and link to the parent.  The mount point is usually inherited
1878 	 * from the parent unless this is a special case such as a mount
1879 	 * point where nlc_namelen is 0.   If nlc_namelen is 0 nc_name will
1880 	 * be NULL.
1881 	 */
1882 	if (nlc->nlc_namelen) {
1883 		bcopy(nlc->nlc_nameptr, ncp->nc_name, nlc->nlc_namelen);
1884 		ncp->nc_name[nlc->nlc_namelen] = 0;
1885 	}
1886 	nchpp = NCHHASH(hash);
1887 	LIST_INSERT_HEAD(nchpp, ncp, nc_hash);
1888 	ncp->nc_flag |= NCF_HASHED;
1889 	cache_link_parent(ncp, par_nch->ncp);
1890 found:
1891 	/*
1892 	 * stats and namecache size management
1893 	 */
1894 	if (ncp->nc_flag & NCF_UNRESOLVED)
1895 		++gd->gd_nchstats->ncs_miss;
1896 	else if (ncp->nc_vp)
1897 		++gd->gd_nchstats->ncs_goodhits;
1898 	else
1899 		++gd->gd_nchstats->ncs_neghits;
1900 	cache_hysteresis();
1901 	nch.mount = par_nch->mount;
1902 	nch.ncp = ncp;
1903 	++nch.mount->mnt_refs;
1904 	return(nch);
1905 }
1906 
1907 /*
1908  * The namecache entry is marked as being used as a mount point.
1909  * Locate the mount if it is visible to the caller.
1910  */
1911 struct findmount_info {
1912 	struct mount *result;
1913 	struct mount *nch_mount;
1914 	struct namecache *nch_ncp;
1915 };
1916 
1917 static
1918 int
1919 cache_findmount_callback(struct mount *mp, void *data)
1920 {
1921 	struct findmount_info *info = data;
1922 
1923 	/*
1924 	 * Check the mount's mounted-on point against the passed nch.
1925 	 */
1926 	if (mp->mnt_ncmounton.mount == info->nch_mount &&
1927 	    mp->mnt_ncmounton.ncp == info->nch_ncp
1928 	) {
1929 	    info->result = mp;
1930 	    return(-1);
1931 	}
1932 	return(0);
1933 }
1934 
1935 struct mount *
1936 cache_findmount(struct nchandle *nch)
1937 {
1938 	struct findmount_info info;
1939 
1940 	info.result = NULL;
1941 	info.nch_mount = nch->mount;
1942 	info.nch_ncp = nch->ncp;
1943 	mountlist_scan(cache_findmount_callback, &info,
1944 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1945 	return(info.result);
1946 }
1947 
1948 /*
1949  * Resolve an unresolved namecache entry, generally by looking it up.
1950  * The passed ncp must be locked and refd.
1951  *
1952  * Theoretically since a vnode cannot be recycled while held, and since
1953  * the nc_parent chain holds its vnode as long as children exist, the
1954  * direct parent of the cache entry we are trying to resolve should
1955  * have a valid vnode.  If not then generate an error that we can
1956  * determine is related to a resolver bug.
1957  *
1958  * However, if a vnode was in the middle of a recyclement when the NCP
1959  * got locked, ncp->nc_vp might point to a vnode that is about to become
1960  * invalid.  cache_resolve() handles this case by unresolving the entry
1961  * and then re-resolving it.
1962  *
1963  * Note that successful resolution does not necessarily return an error
1964  * code of 0.  If the ncp resolves to a negative cache hit then ENOENT
1965  * will be returned.
1966  */
1967 int
1968 cache_resolve(struct nchandle *nch, struct ucred *cred)
1969 {
1970 	struct namecache *par;
1971 	struct namecache *ncp;
1972 	struct nchandle nctmp;
1973 	struct mount *mp;
1974 	struct vnode *dvp;
1975 	int error;
1976 
1977 	ncp = nch->ncp;
1978 	mp = nch->mount;
1979 restart:
1980 	/*
1981 	 * If the ncp is already resolved we have nothing to do.  However,
1982 	 * we do want to guarentee that a usable vnode is returned when
1983 	 * a vnode is present, so make sure it hasn't been reclaimed.
1984 	 */
1985 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1986 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1987 			_cache_setunresolved(ncp);
1988 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1989 			return (ncp->nc_error);
1990 	}
1991 
1992 	/*
1993 	 * Mount points need special handling because the parent does not
1994 	 * belong to the same filesystem as the ncp.
1995 	 */
1996 	if (ncp == mp->mnt_ncmountpt.ncp)
1997 		return (cache_resolve_mp(mp));
1998 
1999 	/*
2000 	 * We expect an unbroken chain of ncps to at least the mount point,
2001 	 * and even all the way to root (but this code doesn't have to go
2002 	 * past the mount point).
2003 	 */
2004 	if (ncp->nc_parent == NULL) {
2005 		kprintf("EXDEV case 1 %p %*.*s\n", ncp,
2006 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2007 		ncp->nc_error = EXDEV;
2008 		return(ncp->nc_error);
2009 	}
2010 
2011 	/*
2012 	 * The vp's of the parent directories in the chain are held via vhold()
2013 	 * due to the existance of the child, and should not disappear.
2014 	 * However, there are cases where they can disappear:
2015 	 *
2016 	 *	- due to filesystem I/O errors.
2017 	 *	- due to NFS being stupid about tracking the namespace and
2018 	 *	  destroys the namespace for entire directories quite often.
2019 	 *	- due to forced unmounts.
2020 	 *	- due to an rmdir (parent will be marked DESTROYED)
2021 	 *
2022 	 * When this occurs we have to track the chain backwards and resolve
2023 	 * it, looping until the resolver catches up to the current node.  We
2024 	 * could recurse here but we might run ourselves out of kernel stack
2025 	 * so we do it in a more painful manner.  This situation really should
2026 	 * not occur all that often, or if it does not have to go back too
2027 	 * many nodes to resolve the ncp.
2028 	 */
2029 	while ((dvp = cache_dvpref(ncp)) == NULL) {
2030 		/*
2031 		 * This case can occur if a process is CD'd into a
2032 		 * directory which is then rmdir'd.  If the parent is marked
2033 		 * destroyed there is no point trying to resolve it.
2034 		 */
2035 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
2036 			return(ENOENT);
2037 
2038 		par = ncp->nc_parent;
2039 		while (par->nc_parent && par->nc_parent->nc_vp == NULL)
2040 			par = par->nc_parent;
2041 		if (par->nc_parent == NULL) {
2042 			kprintf("EXDEV case 2 %*.*s\n",
2043 				par->nc_nlen, par->nc_nlen, par->nc_name);
2044 			return (EXDEV);
2045 		}
2046 		kprintf("[diagnostic] cache_resolve: had to recurse on %*.*s\n",
2047 			par->nc_nlen, par->nc_nlen, par->nc_name);
2048 		/*
2049 		 * The parent is not set in stone, ref and lock it to prevent
2050 		 * it from disappearing.  Also note that due to renames it
2051 		 * is possible for our ncp to move and for par to no longer
2052 		 * be one of its parents.  We resolve it anyway, the loop
2053 		 * will handle any moves.
2054 		 */
2055 		_cache_get(par);
2056 		if (par == nch->mount->mnt_ncmountpt.ncp) {
2057 			cache_resolve_mp(nch->mount);
2058 		} else if ((dvp = cache_dvpref(par)) == NULL) {
2059 			kprintf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name);
2060 			_cache_put(par);
2061 			continue;
2062 		} else {
2063 			if (par->nc_flag & NCF_UNRESOLVED) {
2064 				nctmp.mount = mp;
2065 				nctmp.ncp = par;
2066 				par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2067 			}
2068 			vrele(dvp);
2069 		}
2070 		if ((error = par->nc_error) != 0) {
2071 			if (par->nc_error != EAGAIN) {
2072 				kprintf("EXDEV case 3 %*.*s error %d\n",
2073 				    par->nc_nlen, par->nc_nlen, par->nc_name,
2074 				    par->nc_error);
2075 				_cache_put(par);
2076 				return(error);
2077 			}
2078 			kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
2079 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
2080 		}
2081 		_cache_put(par);
2082 		/* loop */
2083 	}
2084 
2085 	/*
2086 	 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
2087 	 * ncp's and reattach them.  If this occurs the original ncp is marked
2088 	 * EAGAIN to force a relookup.
2089 	 *
2090 	 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
2091 	 * ncp must already be resolved.
2092 	 */
2093 	if (dvp) {
2094 		nctmp.mount = mp;
2095 		nctmp.ncp = ncp;
2096 		ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2097 		vrele(dvp);
2098 	} else {
2099 		ncp->nc_error = EPERM;
2100 	}
2101 	if (ncp->nc_error == EAGAIN) {
2102 		kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
2103 			ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2104 		goto restart;
2105 	}
2106 	return(ncp->nc_error);
2107 }
2108 
2109 /*
2110  * Resolve the ncp associated with a mount point.  Such ncp's almost always
2111  * remain resolved and this routine is rarely called.  NFS MPs tends to force
2112  * re-resolution more often due to its mac-truck-smash-the-namecache
2113  * method of tracking namespace changes.
2114  *
2115  * The semantics for this call is that the passed ncp must be locked on
2116  * entry and will be locked on return.  However, if we actually have to
2117  * resolve the mount point we temporarily unlock the entry in order to
2118  * avoid race-to-root deadlocks due to e.g. dead NFS mounts.  Because of
2119  * the unlock we have to recheck the flags after we relock.
2120  */
2121 static int
2122 cache_resolve_mp(struct mount *mp)
2123 {
2124 	struct namecache *ncp = mp->mnt_ncmountpt.ncp;
2125 	struct vnode *vp;
2126 	int error;
2127 
2128 	KKASSERT(mp != NULL);
2129 
2130 	/*
2131 	 * If the ncp is already resolved we have nothing to do.  However,
2132 	 * we do want to guarentee that a usable vnode is returned when
2133 	 * a vnode is present, so make sure it hasn't been reclaimed.
2134 	 */
2135 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
2136 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
2137 			_cache_setunresolved(ncp);
2138 	}
2139 
2140 	if (ncp->nc_flag & NCF_UNRESOLVED) {
2141 		_cache_unlock(ncp);
2142 		while (vfs_busy(mp, 0))
2143 			;
2144 		error = VFS_ROOT(mp, &vp);
2145 		_cache_lock(ncp);
2146 
2147 		/*
2148 		 * recheck the ncp state after relocking.
2149 		 */
2150 		if (ncp->nc_flag & NCF_UNRESOLVED) {
2151 			ncp->nc_error = error;
2152 			if (error == 0) {
2153 				_cache_setvp(ncp, vp);
2154 				vput(vp);
2155 			} else {
2156 				kprintf("[diagnostic] cache_resolve_mp: failed to resolve mount %p\n", mp);
2157 				_cache_setvp(ncp, NULL);
2158 			}
2159 		} else if (error == 0) {
2160 			vput(vp);
2161 		}
2162 		vfs_unbusy(mp);
2163 	}
2164 	return(ncp->nc_error);
2165 }
2166 
2167 void
2168 cache_cleanneg(int count)
2169 {
2170 	struct namecache *ncp;
2171 
2172 	/*
2173 	 * Automode from the vnlru proc - clean out 10% of the negative cache
2174 	 * entries.
2175 	 */
2176 	if (count == 0)
2177 		count = numneg / 10 + 1;
2178 
2179 	/*
2180 	 * Attempt to clean out the specified number of negative cache
2181 	 * entries.
2182 	 */
2183 	while (count) {
2184 		ncp = TAILQ_FIRST(&ncneglist);
2185 		if (ncp == NULL) {
2186 			KKASSERT(numneg == 0);
2187 			break;
2188 		}
2189 		TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
2190 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
2191 		if (_cache_get_nonblock(ncp) == 0)
2192 			cache_zap(ncp);
2193 		--count;
2194 	}
2195 }
2196 
2197 /*
2198  * Rehash a ncp.  Rehashing is typically required if the name changes (should
2199  * not generally occur) or the parent link changes.  This function will
2200  * unhash the ncp if the ncp is no longer hashable.
2201  */
2202 static void
2203 _cache_rehash(struct namecache *ncp)
2204 {
2205 	struct nchashhead *nchpp;
2206 	u_int32_t hash;
2207 
2208 	if (ncp->nc_flag & NCF_HASHED) {
2209 		ncp->nc_flag &= ~NCF_HASHED;
2210 		LIST_REMOVE(ncp, nc_hash);
2211 	}
2212 	if (ncp->nc_nlen && ncp->nc_parent) {
2213 		hash = fnv_32_buf(ncp->nc_name, ncp->nc_nlen, FNV1_32_INIT);
2214 		hash = fnv_32_buf(&ncp->nc_parent,
2215 					sizeof(ncp->nc_parent), hash);
2216 		nchpp = NCHHASH(hash);
2217 		LIST_INSERT_HEAD(nchpp, ncp, nc_hash);
2218 		ncp->nc_flag |= NCF_HASHED;
2219 	}
2220 }
2221 
2222 /*
2223  * Name cache initialization, from vfsinit() when we are booting
2224  */
2225 void
2226 nchinit(void)
2227 {
2228 	int i;
2229 	globaldata_t gd;
2230 
2231 	/* initialise per-cpu namecache effectiveness statistics. */
2232 	for (i = 0; i < ncpus; ++i) {
2233 		gd = globaldata_find(i);
2234 		gd->gd_nchstats = &nchstats[i];
2235 	}
2236 	TAILQ_INIT(&ncneglist);
2237 	nchashtbl = hashinit(desiredvnodes*2, M_VFSCACHE, &nchash);
2238 	nclockwarn = 5 * hz;
2239 }
2240 
2241 /*
2242  * Called from start_init() to bootstrap the root filesystem.  Returns
2243  * a referenced, unlocked namecache record.
2244  */
2245 void
2246 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
2247 {
2248 	nch->ncp = cache_alloc(0);
2249 	nch->mount = mp;
2250 	++mp->mnt_refs;
2251 	if (vp)
2252 		_cache_setvp(nch->ncp, vp);
2253 }
2254 
2255 /*
2256  * vfs_cache_setroot()
2257  *
2258  *	Create an association between the root of our namecache and
2259  *	the root vnode.  This routine may be called several times during
2260  *	booting.
2261  *
2262  *	If the caller intends to save the returned namecache pointer somewhere
2263  *	it must cache_hold() it.
2264  */
2265 void
2266 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
2267 {
2268 	struct vnode *ovp;
2269 	struct nchandle onch;
2270 
2271 	ovp = rootvnode;
2272 	onch = rootnch;
2273 	rootvnode = nvp;
2274 	if (nch)
2275 		rootnch = *nch;
2276 	else
2277 		cache_zero(&rootnch);
2278 	if (ovp)
2279 		vrele(ovp);
2280 	if (onch.ncp)
2281 		cache_drop(&onch);
2282 }
2283 
2284 /*
2285  * XXX OLD API COMPAT FUNCTION.  This really messes up the new namecache
2286  * topology and is being removed as quickly as possible.  The new VOP_N*()
2287  * API calls are required to make specific adjustments using the supplied
2288  * ncp pointers rather then just bogusly purging random vnodes.
2289  *
2290  * Invalidate all namecache entries to a particular vnode as well as
2291  * any direct children of that vnode in the namecache.  This is a
2292  * 'catch all' purge used by filesystems that do not know any better.
2293  *
2294  * Note that the linkage between the vnode and its namecache entries will
2295  * be removed, but the namecache entries themselves might stay put due to
2296  * active references from elsewhere in the system or due to the existance of
2297  * the children.   The namecache topology is left intact even if we do not
2298  * know what the vnode association is.  Such entries will be marked
2299  * NCF_UNRESOLVED.
2300  */
2301 void
2302 cache_purge(struct vnode *vp)
2303 {
2304 	cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
2305 }
2306 
2307 /*
2308  * Flush all entries referencing a particular filesystem.
2309  *
2310  * Since we need to check it anyway, we will flush all the invalid
2311  * entries at the same time.
2312  */
2313 #if 0
2314 
2315 void
2316 cache_purgevfs(struct mount *mp)
2317 {
2318 	struct nchashhead *nchpp;
2319 	struct namecache *ncp, *nnp;
2320 
2321 	/*
2322 	 * Scan hash tables for applicable entries.
2323 	 */
2324 	for (nchpp = &nchashtbl[nchash]; nchpp >= nchashtbl; nchpp--) {
2325 		ncp = LIST_FIRST(nchpp);
2326 		if (ncp)
2327 			_cache_hold(ncp);
2328 		while (ncp) {
2329 			nnp = LIST_NEXT(ncp, nc_hash);
2330 			if (nnp)
2331 				_cache_hold(nnp);
2332 			if (ncp->nc_mount == mp) {
2333 				_cache_lock(ncp);
2334 				cache_zap(ncp);
2335 			} else {
2336 				_cache_drop(ncp);
2337 			}
2338 			ncp = nnp;
2339 		}
2340 	}
2341 }
2342 
2343 #endif
2344 
2345 /*
2346  * Create a new (theoretically) unique fsmid
2347  */
2348 int64_t
2349 cache_getnewfsmid(void)
2350 {
2351 	static int fsmid_roller;
2352 	int64_t fsmid;
2353 
2354 	++fsmid_roller;
2355 	fsmid = ((int64_t)time_second << 32) |
2356 			(fsmid_roller & 0x7FFFFFFF);
2357 	return (fsmid);
2358 }
2359 
2360 
2361 static int disablecwd;
2362 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0, "");
2363 
2364 static u_long numcwdcalls; STATNODE(CTLFLAG_RD, numcwdcalls, &numcwdcalls);
2365 static u_long numcwdfail1; STATNODE(CTLFLAG_RD, numcwdfail1, &numcwdfail1);
2366 static u_long numcwdfail2; STATNODE(CTLFLAG_RD, numcwdfail2, &numcwdfail2);
2367 static u_long numcwdfail3; STATNODE(CTLFLAG_RD, numcwdfail3, &numcwdfail3);
2368 static u_long numcwdfail4; STATNODE(CTLFLAG_RD, numcwdfail4, &numcwdfail4);
2369 static u_long numcwdfound; STATNODE(CTLFLAG_RD, numcwdfound, &numcwdfound);
2370 
2371 int
2372 sys___getcwd(struct __getcwd_args *uap)
2373 {
2374 	int buflen;
2375 	int error;
2376 	char *buf;
2377 	char *bp;
2378 
2379 	if (disablecwd)
2380 		return (ENODEV);
2381 
2382 	buflen = uap->buflen;
2383 	if (buflen < 2)
2384 		return (EINVAL);
2385 	if (buflen > MAXPATHLEN)
2386 		buflen = MAXPATHLEN;
2387 
2388 	buf = kmalloc(buflen, M_TEMP, M_WAITOK);
2389 	bp = kern_getcwd(buf, buflen, &error);
2390 	if (error == 0)
2391 		error = copyout(bp, uap->buf, strlen(bp) + 1);
2392 	kfree(buf, M_TEMP);
2393 	return (error);
2394 }
2395 
2396 char *
2397 kern_getcwd(char *buf, size_t buflen, int *error)
2398 {
2399 	struct proc *p = curproc;
2400 	char *bp;
2401 	int i, slash_prefixed;
2402 	struct filedesc *fdp;
2403 	struct nchandle nch;
2404 
2405 	numcwdcalls++;
2406 	bp = buf;
2407 	bp += buflen - 1;
2408 	*bp = '\0';
2409 	fdp = p->p_fd;
2410 	slash_prefixed = 0;
2411 
2412 	nch = fdp->fd_ncdir;
2413 	while (nch.ncp && (nch.ncp != fdp->fd_nrdir.ncp ||
2414 	       nch.mount != fdp->fd_nrdir.mount)
2415 	) {
2416 		/*
2417 		 * While traversing upwards if we encounter the root
2418 		 * of the current mount we have to skip to the mount point
2419 		 * in the underlying filesystem.
2420 		 */
2421 		if (nch.ncp == nch.mount->mnt_ncmountpt.ncp) {
2422 			nch = nch.mount->mnt_ncmounton;
2423 			continue;
2424 		}
2425 
2426 		/*
2427 		 * Prepend the path segment
2428 		 */
2429 		for (i = nch.ncp->nc_nlen - 1; i >= 0; i--) {
2430 			if (bp == buf) {
2431 				numcwdfail4++;
2432 				*error = ENOMEM;
2433 				return(NULL);
2434 			}
2435 			*--bp = nch.ncp->nc_name[i];
2436 		}
2437 		if (bp == buf) {
2438 			numcwdfail4++;
2439 			*error = ENOMEM;
2440 			return(NULL);
2441 		}
2442 		*--bp = '/';
2443 		slash_prefixed = 1;
2444 
2445 		/*
2446 		 * Go up a directory.  This isn't a mount point so we don't
2447 		 * have to check again.
2448 		 */
2449 		nch.ncp = nch.ncp->nc_parent;
2450 	}
2451 	if (nch.ncp == NULL) {
2452 		numcwdfail2++;
2453 		*error = ENOENT;
2454 		return(NULL);
2455 	}
2456 	if (!slash_prefixed) {
2457 		if (bp == buf) {
2458 			numcwdfail4++;
2459 			*error = ENOMEM;
2460 			return(NULL);
2461 		}
2462 		*--bp = '/';
2463 	}
2464 	numcwdfound++;
2465 	*error = 0;
2466 	return (bp);
2467 }
2468 
2469 /*
2470  * Thus begins the fullpath magic.
2471  */
2472 
2473 #undef STATNODE
2474 #define STATNODE(name)							\
2475 	static u_int name;						\
2476 	SYSCTL_UINT(_vfs_cache, OID_AUTO, name, CTLFLAG_RD, &name, 0, "")
2477 
2478 static int disablefullpath;
2479 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
2480     &disablefullpath, 0, "");
2481 
2482 STATNODE(numfullpathcalls);
2483 STATNODE(numfullpathfail1);
2484 STATNODE(numfullpathfail2);
2485 STATNODE(numfullpathfail3);
2486 STATNODE(numfullpathfail4);
2487 STATNODE(numfullpathfound);
2488 
2489 int
2490 cache_fullpath(struct proc *p, struct nchandle *nchp, char **retbuf, char **freebuf)
2491 {
2492 	char *bp, *buf;
2493 	int i, slash_prefixed;
2494 	struct nchandle fd_nrdir;
2495 	struct nchandle nch;
2496 
2497 	numfullpathcalls--;
2498 
2499 	*retbuf = NULL;
2500 	*freebuf = NULL;
2501 
2502 	buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
2503 	bp = buf + MAXPATHLEN - 1;
2504 	*bp = '\0';
2505 	if (p != NULL)
2506 		fd_nrdir = p->p_fd->fd_nrdir;
2507 	else
2508 		fd_nrdir = rootnch;
2509 	slash_prefixed = 0;
2510 	nch = *nchp;
2511 
2512 	while (nch.ncp &&
2513 	       (nch.ncp != fd_nrdir.ncp || nch.mount != fd_nrdir.mount)
2514 	) {
2515 		/*
2516 		 * While traversing upwards if we encounter the root
2517 		 * of the current mount we have to skip to the mount point.
2518 		 */
2519 		if (nch.ncp == nch.mount->mnt_ncmountpt.ncp) {
2520 			nch = nch.mount->mnt_ncmounton;
2521 			continue;
2522 		}
2523 
2524 		/*
2525 		 * Prepend the path segment
2526 		 */
2527 		for (i = nch.ncp->nc_nlen - 1; i >= 0; i--) {
2528 			if (bp == buf) {
2529 				numfullpathfail4++;
2530 				kfree(buf, M_TEMP);
2531 				return(ENOMEM);
2532 			}
2533 			*--bp = nch.ncp->nc_name[i];
2534 		}
2535 		if (bp == buf) {
2536 			numfullpathfail4++;
2537 			kfree(buf, M_TEMP);
2538 			return(ENOMEM);
2539 		}
2540 		*--bp = '/';
2541 		slash_prefixed = 1;
2542 
2543 		/*
2544 		 * Go up a directory.  This isn't a mount point so we don't
2545 		 * have to check again.
2546 		 */
2547 		nch.ncp = nch.ncp->nc_parent;
2548 	}
2549 	if (nch.ncp == NULL) {
2550 		numfullpathfail2++;
2551 		kfree(buf, M_TEMP);
2552 		return(ENOENT);
2553 	}
2554 
2555 	if (!slash_prefixed) {
2556 		if (bp == buf) {
2557 			numfullpathfail4++;
2558 			kfree(buf, M_TEMP);
2559 			return(ENOMEM);
2560 		}
2561 		*--bp = '/';
2562 	}
2563 	numfullpathfound++;
2564 	*retbuf = bp;
2565 	*freebuf = buf;
2566 
2567 	return(0);
2568 }
2569 
2570 int
2571 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf, char **freebuf)
2572 {
2573 	struct namecache *ncp;
2574 	struct nchandle nch;
2575 
2576 	numfullpathcalls++;
2577 	if (disablefullpath)
2578 		return (ENODEV);
2579 
2580 	if (p == NULL)
2581 		return (EINVAL);
2582 
2583 	/* vn is NULL, client wants us to use p->p_textvp */
2584 	if (vn == NULL) {
2585 		if ((vn = p->p_textvp) == NULL)
2586 			return (EINVAL);
2587 	}
2588 	TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
2589 		if (ncp->nc_nlen)
2590 			break;
2591 	}
2592 	if (ncp == NULL)
2593 		return (EINVAL);
2594 
2595 	numfullpathcalls--;
2596 	nch.ncp = ncp;;
2597 	nch.mount = vn->v_mount;
2598 	return(cache_fullpath(p, &nch, retbuf, freebuf));
2599 }
2600