xref: /dragonfly/sys/kern/vfs_cache.c (revision 49781055)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993, 1995
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * Poul-Henning Kamp of the FreeBSD Project.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the University of
51  *	California, Berkeley and its contributors.
52  * 4. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  *
68  *	@(#)vfs_cache.c	8.5 (Berkeley) 3/22/95
69  * $FreeBSD: src/sys/kern/vfs_cache.c,v 1.42.2.6 2001/10/05 20:07:03 dillon Exp $
70  * $DragonFly: src/sys/kern/vfs_cache.c,v 1.59 2005/09/17 08:29:42 dillon Exp $
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mount.h>
78 #include <sys/vnode.h>
79 #include <sys/malloc.h>
80 #include <sys/sysproto.h>
81 #include <sys/proc.h>
82 #include <sys/namei.h>
83 #include <sys/nlookup.h>
84 #include <sys/filedesc.h>
85 #include <sys/fnv_hash.h>
86 #include <sys/globaldata.h>
87 #include <sys/kern_syscall.h>
88 #include <sys/dirent.h>
89 #include <ddb/ddb.h>
90 
91 /*
92  * Random lookups in the cache are accomplished with a hash table using
93  * a hash key of (nc_src_vp, name).
94  *
95  * Negative entries may exist and correspond to structures where nc_vp
96  * is NULL.  In a negative entry, NCF_WHITEOUT will be set if the entry
97  * corresponds to a whited-out directory entry (verses simply not finding the
98  * entry at all).
99  *
100  * Upon reaching the last segment of a path, if the reference is for DELETE,
101  * or NOCACHE is set (rewrite), and the name is located in the cache, it
102  * will be dropped.
103  */
104 
105 /*
106  * Structures associated with name cacheing.
107  */
108 #define NCHHASH(hash)	(&nchashtbl[(hash) & nchash])
109 #define MINNEG		1024
110 
111 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
112 
113 static LIST_HEAD(nchashhead, namecache) *nchashtbl;	/* Hash Table */
114 static struct namecache_list	ncneglist;		/* instead of vnode */
115 
116 /*
117  * ncvp_debug - debug cache_fromvp().  This is used by the NFS server
118  * to create the namecache infrastructure leading to a dangling vnode.
119  *
120  * 0	Only errors are reported
121  * 1	Successes are reported
122  * 2	Successes + the whole directory scan is reported
123  * 3	Force the directory scan code run as if the parent vnode did not
124  *	have a namecache record, even if it does have one.
125  */
126 static int	ncvp_debug;
127 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0, "");
128 
129 static u_long	nchash;			/* size of hash table */
130 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0, "");
131 
132 static u_long	ncnegfactor = 16;	/* ratio of negative entries */
133 SYSCTL_ULONG(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0, "");
134 
135 static int	nclockwarn;		/* warn on locked entries in ticks */
136 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0, "");
137 
138 static u_long	numneg;		/* number of cache entries allocated */
139 SYSCTL_ULONG(_debug, OID_AUTO, numneg, CTLFLAG_RD, &numneg, 0, "");
140 
141 static u_long	numcache;		/* number of cache entries allocated */
142 SYSCTL_ULONG(_debug, OID_AUTO, numcache, CTLFLAG_RD, &numcache, 0, "");
143 
144 static u_long	numunres;		/* number of unresolved entries */
145 SYSCTL_ULONG(_debug, OID_AUTO, numunres, CTLFLAG_RD, &numunres, 0, "");
146 
147 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode), "");
148 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache), "");
149 
150 static int cache_resolve_mp(struct namecache *ncp);
151 static void cache_rehash(struct namecache *ncp);
152 
153 /*
154  * The new name cache statistics
155  */
156 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
157 #define STATNODE(mode, name, var) \
158 	SYSCTL_ULONG(_vfs_cache, OID_AUTO, name, mode, var, 0, "");
159 STATNODE(CTLFLAG_RD, numneg, &numneg);
160 STATNODE(CTLFLAG_RD, numcache, &numcache);
161 static u_long numcalls; STATNODE(CTLFLAG_RD, numcalls, &numcalls);
162 static u_long dothits; STATNODE(CTLFLAG_RD, dothits, &dothits);
163 static u_long dotdothits; STATNODE(CTLFLAG_RD, dotdothits, &dotdothits);
164 static u_long numchecks; STATNODE(CTLFLAG_RD, numchecks, &numchecks);
165 static u_long nummiss; STATNODE(CTLFLAG_RD, nummiss, &nummiss);
166 static u_long nummisszap; STATNODE(CTLFLAG_RD, nummisszap, &nummisszap);
167 static u_long numposzaps; STATNODE(CTLFLAG_RD, numposzaps, &numposzaps);
168 static u_long numposhits; STATNODE(CTLFLAG_RD, numposhits, &numposhits);
169 static u_long numnegzaps; STATNODE(CTLFLAG_RD, numnegzaps, &numnegzaps);
170 static u_long numneghits; STATNODE(CTLFLAG_RD, numneghits, &numneghits);
171 
172 struct nchstats nchstats[SMP_MAXCPU];
173 /*
174  * Export VFS cache effectiveness statistics to user-land.
175  *
176  * The statistics are left for aggregation to user-land so
177  * neat things can be achieved, like observing per-CPU cache
178  * distribution.
179  */
180 static int
181 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
182 {
183 	struct globaldata *gd;
184 	int i, error;
185 
186 	error = 0;
187 	for (i = 0; i < ncpus; ++i) {
188 		gd = globaldata_find(i);
189 		if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
190 			sizeof(struct nchstats))))
191 			break;
192 	}
193 
194 	return (error);
195 }
196 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
197   0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
198 
199 static void cache_zap(struct namecache *ncp);
200 
201 /*
202  * cache_hold() and cache_drop() prevent the premature deletion of a
203  * namecache entry but do not prevent operations (such as zapping) on
204  * that namecache entry.
205  */
206 static __inline
207 struct namecache *
208 _cache_hold(struct namecache *ncp)
209 {
210 	++ncp->nc_refs;
211 	return(ncp);
212 }
213 
214 /*
215  * When dropping an entry, if only one ref remains and the entry has not
216  * been resolved, zap it.  Since the one reference is being dropped the
217  * entry had better not be locked.
218  */
219 static __inline
220 void
221 _cache_drop(struct namecache *ncp)
222 {
223 	KKASSERT(ncp->nc_refs > 0);
224 	if (ncp->nc_refs == 1 &&
225 	    (ncp->nc_flag & NCF_UNRESOLVED) &&
226 	    TAILQ_EMPTY(&ncp->nc_list)
227 	) {
228 		KKASSERT(ncp->nc_exlocks == 0);
229 		cache_lock(ncp);
230 		cache_zap(ncp);
231 	} else {
232 		--ncp->nc_refs;
233 	}
234 }
235 
236 /*
237  * Link a new namecache entry to its parent.  Be careful to avoid races
238  * if vhold() blocks in the future.
239  *
240  * If we are creating a child under an oldapi parent we must mark the
241  * child as being an oldapi entry as well.
242  */
243 static void
244 cache_link_parent(struct namecache *ncp, struct namecache *par)
245 {
246 	KKASSERT(ncp->nc_parent == NULL);
247 	ncp->nc_parent = par;
248 	if (TAILQ_EMPTY(&par->nc_list)) {
249 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
250 		/*
251 		 * Any vp associated with an ncp which has children must
252 		 * be held to prevent it from being recycled.
253 		 */
254 		if (par->nc_vp)
255 			vhold(par->nc_vp);
256 	} else {
257 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
258 	}
259 }
260 
261 /*
262  * Remove the parent association from a namecache structure.  If this is
263  * the last child of the parent the cache_drop(par) will attempt to
264  * recursively zap the parent.
265  */
266 static void
267 cache_unlink_parent(struct namecache *ncp)
268 {
269 	struct namecache *par;
270 
271 	if ((par = ncp->nc_parent) != NULL) {
272 		ncp->nc_parent = NULL;
273 		par = cache_hold(par);
274 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
275 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
276 			vdrop(par->nc_vp);
277 		cache_drop(par);
278 	}
279 }
280 
281 /*
282  * Allocate a new namecache structure.  Most of the code does not require
283  * zero-termination of the string but it makes vop_compat_ncreate() easier.
284  */
285 static struct namecache *
286 cache_alloc(int nlen)
287 {
288 	struct namecache *ncp;
289 
290 	ncp = malloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
291 	if (nlen)
292 		ncp->nc_name = malloc(nlen + 1, M_VFSCACHE, M_WAITOK);
293 	ncp->nc_nlen = nlen;
294 	ncp->nc_flag = NCF_UNRESOLVED;
295 	ncp->nc_error = ENOTCONN;	/* needs to be resolved */
296 	ncp->nc_refs = 1;
297 	ncp->nc_fsmid = 1;
298 	TAILQ_INIT(&ncp->nc_list);
299 	cache_lock(ncp);
300 	return(ncp);
301 }
302 
303 static void
304 cache_free(struct namecache *ncp)
305 {
306 	KKASSERT(ncp->nc_refs == 1 && ncp->nc_exlocks == 1);
307 	if (ncp->nc_name)
308 		free(ncp->nc_name, M_VFSCACHE);
309 	free(ncp, M_VFSCACHE);
310 }
311 
312 /*
313  * Ref and deref a namecache structure.
314  */
315 struct namecache *
316 cache_hold(struct namecache *ncp)
317 {
318 	return(_cache_hold(ncp));
319 }
320 
321 void
322 cache_drop(struct namecache *ncp)
323 {
324 	_cache_drop(ncp);
325 }
326 
327 /*
328  * Namespace locking.  The caller must already hold a reference to the
329  * namecache structure in order to lock/unlock it.  This function prevents
330  * the namespace from being created or destroyed by accessors other then
331  * the lock holder.
332  *
333  * Note that holding a locked namecache structure prevents other threads
334  * from making namespace changes (e.g. deleting or creating), prevents
335  * vnode association state changes by other threads, and prevents the
336  * namecache entry from being resolved or unresolved by other threads.
337  *
338  * The lock owner has full authority to associate/disassociate vnodes
339  * and resolve/unresolve the locked ncp.
340  *
341  * In particular, if a vnode is associated with a locked cache entry
342  * that vnode will *NOT* be recycled.  We accomplish this by vhold()ing the
343  * vnode.  XXX we should find a more efficient way to prevent the vnode
344  * from being recycled, but remember that any given vnode may have multiple
345  * namecache associations (think hardlinks).
346  */
347 void
348 cache_lock(struct namecache *ncp)
349 {
350 	thread_t td;
351 	int didwarn;
352 
353 	KKASSERT(ncp->nc_refs != 0);
354 	didwarn = 0;
355 	td = curthread;
356 
357 	for (;;) {
358 		if (ncp->nc_exlocks == 0) {
359 			ncp->nc_exlocks = 1;
360 			ncp->nc_locktd = td;
361 			/*
362 			 * The vp associated with a locked ncp must be held
363 			 * to prevent it from being recycled (which would
364 			 * cause the ncp to become unresolved).
365 			 *
366 			 * XXX loop on race for later MPSAFE work.
367 			 */
368 			if (ncp->nc_vp)
369 				vhold(ncp->nc_vp);
370 			break;
371 		}
372 		if (ncp->nc_locktd == td) {
373 			++ncp->nc_exlocks;
374 			break;
375 		}
376 		ncp->nc_flag |= NCF_LOCKREQ;
377 		if (tsleep(ncp, 0, "clock", nclockwarn) == EWOULDBLOCK) {
378 			if (didwarn)
379 				continue;
380 			didwarn = 1;
381 			printf("[diagnostic] cache_lock: blocked on %p", ncp);
382 			if ((ncp->nc_flag & NCF_MOUNTPT) && ncp->nc_mount)
383 			    printf(" [MOUNTFROM %s]\n", ncp->nc_mount->mnt_stat.f_mntfromname);
384 			else
385 			    printf(" \"%*.*s\"\n",
386 				ncp->nc_nlen, ncp->nc_nlen,
387 				ncp->nc_name);
388 		}
389 	}
390 
391 	if (didwarn == 1) {
392 		printf("[diagnostic] cache_lock: unblocked %*.*s\n",
393 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
394 	}
395 }
396 
397 int
398 cache_lock_nonblock(struct namecache *ncp)
399 {
400 	thread_t td;
401 
402 	KKASSERT(ncp->nc_refs != 0);
403 	td = curthread;
404 	if (ncp->nc_exlocks == 0) {
405 		ncp->nc_exlocks = 1;
406 		ncp->nc_locktd = td;
407 		/*
408 		 * The vp associated with a locked ncp must be held
409 		 * to prevent it from being recycled (which would
410 		 * cause the ncp to become unresolved).
411 		 *
412 		 * XXX loop on race for later MPSAFE work.
413 		 */
414 		if (ncp->nc_vp)
415 			vhold(ncp->nc_vp);
416 		return(0);
417 	} else {
418 		return(EWOULDBLOCK);
419 	}
420 }
421 
422 void
423 cache_unlock(struct namecache *ncp)
424 {
425 	thread_t td = curthread;
426 
427 	KKASSERT(ncp->nc_refs > 0);
428 	KKASSERT(ncp->nc_exlocks > 0);
429 	KKASSERT(ncp->nc_locktd == td);
430 	if (--ncp->nc_exlocks == 0) {
431 		if (ncp->nc_vp)
432 			vdrop(ncp->nc_vp);
433 		ncp->nc_locktd = NULL;
434 		if (ncp->nc_flag & NCF_LOCKREQ) {
435 			ncp->nc_flag &= ~NCF_LOCKREQ;
436 			wakeup(ncp);
437 		}
438 	}
439 }
440 
441 /*
442  * ref-and-lock, unlock-and-deref functions.
443  */
444 struct namecache *
445 cache_get(struct namecache *ncp)
446 {
447 	_cache_hold(ncp);
448 	cache_lock(ncp);
449 	return(ncp);
450 }
451 
452 int
453 cache_get_nonblock(struct namecache *ncp)
454 {
455 	/* XXX MP */
456 	if (ncp->nc_exlocks == 0 || ncp->nc_locktd == curthread) {
457 		_cache_hold(ncp);
458 		cache_lock(ncp);
459 		return(0);
460 	}
461 	return(EWOULDBLOCK);
462 }
463 
464 void
465 cache_put(struct namecache *ncp)
466 {
467 	cache_unlock(ncp);
468 	_cache_drop(ncp);
469 }
470 
471 /*
472  * Resolve an unresolved ncp by associating a vnode with it.  If the
473  * vnode is NULL, a negative cache entry is created.
474  *
475  * The ncp should be locked on entry and will remain locked on return.
476  */
477 void
478 cache_setvp(struct namecache *ncp, struct vnode *vp)
479 {
480 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
481 	ncp->nc_vp = vp;
482 	if (vp != NULL) {
483 		/*
484 		 * Any vp associated with an ncp which has children must
485 		 * be held.  Any vp associated with a locked ncp must be held.
486 		 */
487 		if (!TAILQ_EMPTY(&ncp->nc_list))
488 			vhold(vp);
489 		TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
490 		if (ncp->nc_exlocks)
491 			vhold(vp);
492 
493 		/*
494 		 * Set auxillary flags
495 		 */
496 		switch(vp->v_type) {
497 		case VDIR:
498 			ncp->nc_flag |= NCF_ISDIR;
499 			break;
500 		case VLNK:
501 			ncp->nc_flag |= NCF_ISSYMLINK;
502 			/* XXX cache the contents of the symlink */
503 			break;
504 		default:
505 			break;
506 		}
507 		++numcache;
508 		ncp->nc_error = 0;
509 	} else {
510 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
511 		++numneg;
512 		ncp->nc_error = ENOENT;
513 	}
514 	ncp->nc_flag &= ~NCF_UNRESOLVED;
515 }
516 
517 void
518 cache_settimeout(struct namecache *ncp, int nticks)
519 {
520 	if ((ncp->nc_timeout = ticks + nticks) == 0)
521 		ncp->nc_timeout = 1;
522 }
523 
524 /*
525  * Disassociate the vnode or negative-cache association and mark a
526  * namecache entry as unresolved again.  Note that the ncp is still
527  * left in the hash table and still linked to its parent.
528  *
529  * The ncp should be locked and refd on entry and will remain locked and refd
530  * on return.
531  *
532  * This routine is normally never called on a directory containing children.
533  * However, NFS often does just that in its rename() code as a cop-out to
534  * avoid complex namespace operations.  This disconnects a directory vnode
535  * from its namecache and can cause the OLDAPI and NEWAPI to get out of
536  * sync.
537  *
538  * NOTE: NCF_FSMID must be cleared so a refurbishment of the ncp, such as
539  * in a create, properly propogates flag up the chain.
540  */
541 void
542 cache_setunresolved(struct namecache *ncp)
543 {
544 	struct vnode *vp;
545 
546 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
547 		ncp->nc_flag |= NCF_UNRESOLVED;
548 		ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK|
549 				  NCF_FSMID);
550 		ncp->nc_timeout = 0;
551 		ncp->nc_error = ENOTCONN;
552 		++numunres;
553 		if ((vp = ncp->nc_vp) != NULL) {
554 			--numcache;
555 			ncp->nc_vp = NULL;
556 			TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
557 
558 			/*
559 			 * Any vp associated with an ncp with children is
560 			 * held by that ncp.  Any vp associated with a locked
561 			 * ncp is held by that ncp.  These conditions must be
562 			 * undone when the vp is cleared out from the ncp.
563 			 */
564 			if (!TAILQ_EMPTY(&ncp->nc_list))
565 				vdrop(vp);
566 			if (ncp->nc_exlocks)
567 				vdrop(vp);
568 		} else {
569 			TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
570 			--numneg;
571 		}
572 	}
573 }
574 
575 /*
576  * Invalidate portions of the namecache topology given a starting entry.
577  * The passed ncp is set to an unresolved state and:
578  *
579  * The passed ncp must be locked.
580  *
581  * CINV_DESTROY		- Set a flag in the passed ncp entry indicating
582  *			  that the physical underlying nodes have been
583  *			  destroyed... as in deleted.  For example, when
584  *			  a directory is removed.  This will cause record
585  *			  lookups on the name to no longer be able to find
586  *			  the record and tells the resolver to return failure
587  *			  rather then trying to resolve through the parent.
588  *
589  *			  The topology itself, including ncp->nc_name,
590  *			  remains intact.
591  *
592  *			  This only applies to the passed ncp, if CINV_CHILDREN
593  *			  is specified the children are not flagged.
594  *
595  * CINV_CHILDREN	- Set all children (recursively) to an unresolved
596  *			  state as well.
597  *
598  *			  Note that this will also have the side effect of
599  *			  cleaning out any unreferenced nodes in the topology
600  *			  from the leaves up as the recursion backs out.
601  *
602  * Note that the topology for any referenced nodes remains intact.
603  *
604  * It is possible for cache_inval() to race a cache_resolve(), meaning that
605  * the namecache entry may not actually be invalidated on return if it was
606  * revalidated while recursing down into its children.  This code guarentees
607  * that the node(s) will go through an invalidation cycle, but does not
608  * guarentee that they will remain in an invalidated state.
609  *
610  * Returns non-zero if a revalidation was detected during the invalidation
611  * recursion, zero otherwise.  Note that since only the original ncp is
612  * locked the revalidation ultimately can only indicate that the original ncp
613  * *MIGHT* no have been reresolved.
614  */
615 int
616 cache_inval(struct namecache *ncp, int flags)
617 {
618 	struct namecache *kid;
619 	struct namecache *nextkid;
620 	int rcnt = 0;
621 
622 	KKASSERT(ncp->nc_exlocks);
623 
624 	cache_setunresolved(ncp);
625 	if (flags & CINV_DESTROY)
626 		ncp->nc_flag |= NCF_DESTROYED;
627 
628 	if ((flags & CINV_CHILDREN) &&
629 	    (kid = TAILQ_FIRST(&ncp->nc_list)) != NULL
630 	) {
631 		cache_hold(kid);
632 		cache_unlock(ncp);
633 		while (kid) {
634 			if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
635 				cache_hold(nextkid);
636 			if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
637 			    TAILQ_FIRST(&kid->nc_list)
638 			) {
639 				cache_lock(kid);
640 				rcnt += cache_inval(kid, flags & ~CINV_DESTROY);
641 				cache_unlock(kid);
642 			}
643 			cache_drop(kid);
644 			kid = nextkid;
645 		}
646 		cache_lock(ncp);
647 	}
648 
649 	/*
650 	 * Someone could have gotten in there while ncp was unlocked,
651 	 * retry if so.
652 	 */
653 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
654 		++rcnt;
655 	return (rcnt);
656 }
657 
658 /*
659  * Invalidate a vnode's namecache associations.  To avoid races against
660  * the resolver we do not invalidate a node which we previously invalidated
661  * but which was then re-resolved while we were in the invalidation loop.
662  *
663  * Returns non-zero if any namecache entries remain after the invalidation
664  * loop completed.
665  *
666  * NOTE: unlike the namecache topology which guarentees that ncp's will not
667  * be ripped out of the topology while held, the vnode's v_namecache list
668  * has no such restriction.  NCP's can be ripped out of the list at virtually
669  * any time if not locked, even if held.
670  */
671 int
672 cache_inval_vp(struct vnode *vp, int flags, int *retflags)
673 {
674 	struct namecache *ncp;
675 	struct namecache *next;
676 
677 restart:
678 	ncp = TAILQ_FIRST(&vp->v_namecache);
679 	if (ncp)
680 		cache_hold(ncp);
681 	while (ncp) {
682 		/* loop entered with ncp held */
683 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
684 			cache_hold(next);
685 		cache_lock(ncp);
686 		if (ncp->nc_vp != vp) {
687 			printf("Warning: cache_inval_vp: race-A detected on "
688 				"%s\n", ncp->nc_name);
689 			cache_put(ncp);
690 			if (next)
691 				cache_drop(next);
692 			goto restart;
693 		}
694 		*retflags |= ncp->nc_flag & NCF_FSMID;
695 		cache_inval(ncp, flags);
696 		cache_put(ncp);		/* also releases reference */
697 		ncp = next;
698 		if (ncp && ncp->nc_vp != vp) {
699 			printf("Warning: cache_inval_vp: race-B detected on "
700 				"%s\n", ncp->nc_name);
701 			cache_drop(ncp);
702 			goto restart;
703 		}
704 	}
705 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
706 }
707 
708 /*
709  * The source ncp has been renamed to the target ncp.  Both fncp and tncp
710  * must be locked.  Both will be set to unresolved, any children of tncp
711  * will be disconnected (the prior contents of the target is assumed to be
712  * destroyed by the rename operation, e.g. renaming over an empty directory),
713  * and all children of fncp will be moved to tncp.
714  *
715  * XXX the disconnection could pose a problem, check code paths to make
716  * sure any code that blocks can handle the parent being changed out from
717  * under it.  Maybe we should lock the children (watch out for deadlocks) ?
718  *
719  * After we return the caller has the option of calling cache_setvp() if
720  * the vnode of the new target ncp is known.
721  *
722  * Any process CD'd into any of the children will no longer be able to ".."
723  * back out.  An rm -rf can cause this situation to occur.
724  */
725 void
726 cache_rename(struct namecache *fncp, struct namecache *tncp)
727 {
728 	struct namecache *scan;
729 	int didwarn = 0;
730 
731 	cache_setunresolved(fncp);
732 	cache_setunresolved(tncp);
733 	while (cache_inval(tncp, CINV_CHILDREN) != 0) {
734 		if (didwarn++ % 10 == 0) {
735 			printf("Warning: cache_rename: race during "
736 				"rename %s->%s\n",
737 				fncp->nc_name, tncp->nc_name);
738 		}
739 		tsleep(tncp, 0, "mvrace", hz / 10);
740 		cache_setunresolved(tncp);
741 	}
742 	while ((scan = TAILQ_FIRST(&fncp->nc_list)) != NULL) {
743 		cache_hold(scan);
744 		cache_unlink_parent(scan);
745 		cache_link_parent(scan, tncp);
746 		if (scan->nc_flag & NCF_HASHED)
747 			cache_rehash(scan);
748 		cache_drop(scan);
749 	}
750 }
751 
752 /*
753  * vget the vnode associated with the namecache entry.  Resolve the namecache
754  * entry if necessary and deal with namecache/vp races.  The passed ncp must
755  * be referenced and may be locked.  The ncp's ref/locking state is not
756  * effected by this call.
757  *
758  * lk_type may be LK_SHARED, LK_EXCLUSIVE.  A ref'd, possibly locked
759  * (depending on the passed lk_type) will be returned in *vpp with an error
760  * of 0, or NULL will be returned in *vpp with a non-0 error code.  The
761  * most typical error is ENOENT, meaning that the ncp represents a negative
762  * cache hit and there is no vnode to retrieve, but other errors can occur
763  * too.
764  *
765  * The main race we have to deal with are namecache zaps.  The ncp itself
766  * will not disappear since it is referenced, and it turns out that the
767  * validity of the vp pointer can be checked simply by rechecking the
768  * contents of ncp->nc_vp.
769  */
770 int
771 cache_vget(struct namecache *ncp, struct ucred *cred,
772 	   int lk_type, struct vnode **vpp)
773 {
774 	struct vnode *vp;
775 	int error;
776 
777 again:
778 	vp = NULL;
779 	if (ncp->nc_flag & NCF_UNRESOLVED) {
780 		cache_lock(ncp);
781 		error = cache_resolve(ncp, cred);
782 		cache_unlock(ncp);
783 	} else {
784 		error = 0;
785 	}
786 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
787 		error = vget(vp, lk_type, curthread);
788 		if (error) {
789 			if (vp != ncp->nc_vp)	/* handle cache_zap race */
790 				goto again;
791 			vp = NULL;
792 		} else if (vp != ncp->nc_vp) {	/* handle cache_zap race */
793 			vput(vp);
794 			goto again;
795 		}
796 	}
797 	if (error == 0 && vp == NULL)
798 		error = ENOENT;
799 	*vpp = vp;
800 	return(error);
801 }
802 
803 int
804 cache_vref(struct namecache *ncp, struct ucred *cred, struct vnode **vpp)
805 {
806 	struct vnode *vp;
807 	int error;
808 
809 again:
810 	vp = NULL;
811 	if (ncp->nc_flag & NCF_UNRESOLVED) {
812 		cache_lock(ncp);
813 		error = cache_resolve(ncp, cred);
814 		cache_unlock(ncp);
815 	} else {
816 		error = 0;
817 	}
818 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
819 		vref(vp);
820 		if (vp != ncp->nc_vp) {		/* handle cache_zap race */
821 			vrele(vp);
822 			goto again;
823 		}
824 	}
825 	if (error == 0 && vp == NULL)
826 		error = ENOENT;
827 	*vpp = vp;
828 	return(error);
829 }
830 
831 /*
832  * Recursively set the FSMID update flag for namecache nodes leading
833  * to root.  This will cause the next getattr or reclaim to increment the
834  * fsmid and mark the inode for lazy updating.
835  *
836  * Stop recursing when we hit a node whos NCF_FSMID flag is already set.
837  * This makes FSMIDs work in an Einsteinian fashion - where the observation
838  * effects the result.  In this case a program monitoring a higher level
839  * node will have detected some prior change and started its scan (clearing
840  * NCF_FSMID in higher level nodes), but since it has not yet observed the
841  * node where we find NCF_FSMID still set, we can safely make the related
842  * modification without interfering with the theorized program.
843  *
844  * This also means that FSMIDs cannot represent time-domain quantities
845  * in a hierarchical sense.  But the main reason for doing it this way
846  * is to reduce the amount of recursion that occurs in the critical path
847  * when e.g. a program is writing to a file that sits deep in a directory
848  * hierarchy.
849  */
850 void
851 cache_update_fsmid(struct namecache *ncp)
852 {
853 	struct vnode *vp;
854 	struct namecache *scan;
855 
856 	if ((vp = ncp->nc_vp) != NULL) {
857 		TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
858 			for (scan = ncp; scan; scan = scan->nc_parent) {
859 				if (scan->nc_flag & NCF_FSMID)
860 					break;
861 				scan->nc_flag |= NCF_FSMID;
862 			}
863 		}
864 	} else {
865 		while (ncp && (ncp->nc_flag & NCF_FSMID) == 0) {
866 			ncp->nc_flag |= NCF_FSMID;
867 			ncp = ncp->nc_parent;
868 		}
869 	}
870 }
871 
872 void
873 cache_update_fsmid_vp(struct vnode *vp)
874 {
875 	struct namecache *ncp;
876 	struct namecache *scan;
877 
878 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
879 		for (scan = ncp; scan; scan = scan->nc_parent) {
880 			if (scan->nc_flag & NCF_FSMID)
881 				break;
882 			scan->nc_flag |= NCF_FSMID;
883 		}
884 	}
885 }
886 
887 /*
888  * If getattr is called on a vnode (e.g. a stat call), the filesystem
889  * may call this routine to determine if the namecache has the hierarchical
890  * change flag set, requiring the fsmid to be updated.
891  *
892  * Since 0 indicates no support, make sure the filesystem fsmid is at least
893  * 1.
894  */
895 int
896 cache_check_fsmid_vp(struct vnode *vp, int64_t *fsmid)
897 {
898 	struct namecache *ncp;
899 	int changed = 0;
900 
901 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
902 		if (ncp->nc_flag & NCF_FSMID) {
903 			ncp->nc_flag &= ~NCF_FSMID;
904 			changed = 1;
905 		}
906 	}
907 	if (*fsmid == 0)
908 		++*fsmid;
909 	if (changed)
910 		++*fsmid;
911 	return(changed);
912 }
913 
914 /*
915  * Convert a directory vnode to a namecache record without any other
916  * knowledge of the topology.  This ONLY works with directory vnodes and
917  * is ONLY used by the NFS server.  dvp must be refd but unlocked, and the
918  * returned ncp (if not NULL) will be held and unlocked.
919  *
920  * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
921  * If 'makeit' is 1 we attempt to track-down and create the namecache topology
922  * for dvp.  This will fail only if the directory has been deleted out from
923  * under the caller.
924  *
925  * Callers must always check for a NULL return no matter the value of 'makeit'.
926  */
927 
928 static int cache_inefficient_scan(struct namecache *ncp, struct ucred *cred,
929 				  struct vnode *dvp);
930 
931 struct namecache *
932 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit)
933 {
934 	struct namecache *ncp;
935 	struct vnode *pvp;
936 	int error;
937 
938 	/*
939 	 * Temporary debugging code to force the directory scanning code
940 	 * to be exercised.
941 	 */
942 	ncp = NULL;
943 	if (ncvp_debug >= 3 && makeit && TAILQ_FIRST(&dvp->v_namecache)) {
944 		ncp = TAILQ_FIRST(&dvp->v_namecache);
945 		printf("cache_fromdvp: forcing %s\n", ncp->nc_name);
946 		goto force;
947 	}
948 
949 	/*
950 	 * Loop until resolution, inside code will break out on error.
951 	 */
952 	while ((ncp = TAILQ_FIRST(&dvp->v_namecache)) == NULL && makeit) {
953 force:
954 		/*
955 		 * If dvp is the root of its filesystem it should already
956 		 * have a namecache pointer associated with it as a side
957 		 * effect of the mount, but it may have been disassociated.
958 		 */
959 		if (dvp->v_flag & VROOT) {
960 			ncp = cache_get(dvp->v_mount->mnt_ncp);
961 			error = cache_resolve_mp(ncp);
962 			cache_put(ncp);
963 			if (ncvp_debug) {
964 				printf("cache_fromdvp: resolve root of mount %p error %d",
965 					dvp->v_mount, error);
966 			}
967 			if (error) {
968 				if (ncvp_debug)
969 					printf(" failed\n");
970 				ncp = NULL;
971 				break;
972 			}
973 			if (ncvp_debug)
974 				printf(" succeeded\n");
975 			continue;
976 		}
977 
978 		/*
979 		 * Get the parent directory and resolve its ncp.
980 		 */
981 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred);
982 		if (error) {
983 			printf("lookupdotdot failed %d %p\n", error, pvp);
984 			break;
985 		}
986 		VOP_UNLOCK(pvp, 0, curthread);
987 
988 		/*
989 		 * XXX this recursion could run the kernel out of stack,
990 		 * change to a less efficient algorithm if we get too deep
991 		 * (use 'makeit' for a depth counter?)
992 		 */
993 		ncp = cache_fromdvp(pvp, cred, makeit);
994 		vrele(pvp);
995 		if (ncp == NULL)
996 			break;
997 
998 		/*
999 		 * Do an inefficient scan of pvp (embodied by ncp) to look
1000 		 * for dvp.  This will create a namecache record for dvp on
1001 		 * success.  We loop up to recheck on success.
1002 		 *
1003 		 * ncp and dvp are both held but not locked.
1004 		 */
1005 		error = cache_inefficient_scan(ncp, cred, dvp);
1006 		cache_drop(ncp);
1007 		if (error) {
1008 			printf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
1009 				pvp, ncp->nc_name, dvp);
1010 			ncp = NULL;
1011 			break;
1012 		}
1013 		if (ncvp_debug) {
1014 			printf("cache_fromdvp: scan %p (%s) succeeded\n",
1015 				pvp, ncp->nc_name);
1016 		}
1017 	}
1018 	if (ncp)
1019 		cache_hold(ncp);
1020 	return (ncp);
1021 }
1022 
1023 /*
1024  * Do an inefficient scan of the directory represented by ncp looking for
1025  * the directory vnode dvp.  ncp must be held but not locked on entry and
1026  * will be held on return.  dvp must be refd but not locked on entry and
1027  * will remain refd on return.
1028  *
1029  * Why do this at all?  Well, due to its stateless nature the NFS server
1030  * converts file handles directly to vnodes without necessarily going through
1031  * the namecache ops that would otherwise create the namecache topology
1032  * leading to the vnode.  We could either (1) Change the namecache algorithms
1033  * to allow disconnect namecache records that are re-merged opportunistically,
1034  * or (2) Make the NFS server backtrack and scan to recover a connected
1035  * namecache topology in order to then be able to issue new API lookups.
1036  *
1037  * It turns out that (1) is a huge mess.  It takes a nice clean set of
1038  * namecache algorithms and introduces a lot of complication in every subsystem
1039  * that calls into the namecache to deal with the re-merge case, especially
1040  * since we are using the namecache to placehold negative lookups and the
1041  * vnode might not be immediately assigned. (2) is certainly far less
1042  * efficient then (1), but since we are only talking about directories here
1043  * (which are likely to remain cached), the case does not actually run all
1044  * that often and has the supreme advantage of not polluting the namecache
1045  * algorithms.
1046  */
1047 static int
1048 cache_inefficient_scan(struct namecache *ncp, struct ucred *cred,
1049 		       struct vnode *dvp)
1050 {
1051 	struct nlcomponent nlc;
1052 	struct namecache *rncp;
1053 	struct dirent *den;
1054 	struct vnode *pvp;
1055 	struct vattr vat;
1056 	struct iovec iov;
1057 	struct uio uio;
1058 	int blksize;
1059 	int eofflag;
1060 	int bytes;
1061 	char *rbuf;
1062 	int error;
1063 
1064 	vat.va_blocksize = 0;
1065 	if ((error = VOP_GETATTR(dvp, &vat, curthread)) != 0)
1066 		return (error);
1067 	if ((error = cache_vget(ncp, cred, LK_SHARED, &pvp)) != 0)
1068 		return (error);
1069 	if (ncvp_debug)
1070 		printf("inefficient_scan: directory iosize %ld vattr fileid = %ld\n", vat.va_blocksize, (long)vat.va_fileid);
1071 	if ((blksize = vat.va_blocksize) == 0)
1072 		blksize = DEV_BSIZE;
1073 	rbuf = malloc(blksize, M_TEMP, M_WAITOK);
1074 	rncp = NULL;
1075 
1076 	eofflag = 0;
1077 	uio.uio_offset = 0;
1078 again:
1079 	iov.iov_base = rbuf;
1080 	iov.iov_len = blksize;
1081 	uio.uio_iov = &iov;
1082 	uio.uio_iovcnt = 1;
1083 	uio.uio_resid = blksize;
1084 	uio.uio_segflg = UIO_SYSSPACE;
1085 	uio.uio_rw = UIO_READ;
1086 	uio.uio_td = curthread;
1087 
1088 	if (ncvp_debug >= 2)
1089 		printf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
1090 	error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
1091 	if (error == 0) {
1092 		den = (struct dirent *)rbuf;
1093 		bytes = blksize - uio.uio_resid;
1094 
1095 		while (bytes > 0) {
1096 			if (ncvp_debug >= 2) {
1097 				printf("cache_inefficient_scan: %*.*s\n",
1098 					den->d_namlen, den->d_namlen,
1099 					den->d_name);
1100 			}
1101 			if (den->d_type != DT_WHT &&
1102 			    den->d_ino == vat.va_fileid) {
1103 				if (ncvp_debug) {
1104 					printf("cache_inefficient_scan: "
1105 					       "MATCHED inode %ld path %s/%*.*s\n",
1106 					       vat.va_fileid, ncp->nc_name,
1107 					       den->d_namlen, den->d_namlen,
1108 					       den->d_name);
1109 				}
1110 				nlc.nlc_nameptr = den->d_name;
1111 				nlc.nlc_namelen = den->d_namlen;
1112 				VOP_UNLOCK(pvp, 0, curthread);
1113 				rncp = cache_nlookup(ncp, &nlc);
1114 				KKASSERT(rncp != NULL);
1115 				break;
1116 			}
1117 			bytes -= _DIRENT_DIRSIZ(den);
1118 			den = _DIRENT_NEXT(den);
1119 		}
1120 		if (rncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
1121 			goto again;
1122 	}
1123 	if (rncp) {
1124 		vrele(pvp);
1125 		if (rncp->nc_flag & NCF_UNRESOLVED) {
1126 			cache_setvp(rncp, dvp);
1127 			if (ncvp_debug >= 2) {
1128 				printf("cache_inefficient_scan: setvp %s/%s = %p\n",
1129 					ncp->nc_name, rncp->nc_name, dvp);
1130 			}
1131 		} else {
1132 			if (ncvp_debug >= 2) {
1133 				printf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
1134 					ncp->nc_name, rncp->nc_name, dvp,
1135 					rncp->nc_vp);
1136 			}
1137 		}
1138 		if (rncp->nc_vp == NULL)
1139 			error = rncp->nc_error;
1140 		cache_put(rncp);
1141 	} else {
1142 		printf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
1143 			dvp, ncp->nc_name);
1144 		vput(pvp);
1145 		error = ENOENT;
1146 	}
1147 	free(rbuf, M_TEMP);
1148 	return (error);
1149 }
1150 
1151 /*
1152  * Zap a namecache entry.  The ncp is unconditionally set to an unresolved
1153  * state, which disassociates it from its vnode or ncneglist.
1154  *
1155  * Then, if there are no additional references to the ncp and no children,
1156  * the ncp is removed from the topology and destroyed.  This function will
1157  * also run through the nc_parent chain and destroy parent ncps if possible.
1158  * As a side benefit, it turns out the only conditions that allow running
1159  * up the chain are also the conditions to ensure no deadlock will occur.
1160  *
1161  * References and/or children may exist if the ncp is in the middle of the
1162  * topology, preventing the ncp from being destroyed.
1163  *
1164  * This function must be called with the ncp held and locked and will unlock
1165  * and drop it during zapping.
1166  */
1167 static void
1168 cache_zap(struct namecache *ncp)
1169 {
1170 	struct namecache *par;
1171 
1172 	/*
1173 	 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
1174 	 */
1175 	cache_setunresolved(ncp);
1176 
1177 	/*
1178 	 * Try to scrap the entry and possibly tail-recurse on its parent.
1179 	 * We only scrap unref'd (other then our ref) unresolved entries,
1180 	 * we do not scrap 'live' entries.
1181 	 */
1182 	while (ncp->nc_flag & NCF_UNRESOLVED) {
1183 		/*
1184 		 * Someone other then us has a ref, stop.
1185 		 */
1186 		if (ncp->nc_refs > 1)
1187 			goto done;
1188 
1189 		/*
1190 		 * We have children, stop.
1191 		 */
1192 		if (!TAILQ_EMPTY(&ncp->nc_list))
1193 			goto done;
1194 
1195 		/*
1196 		 * Remove ncp from the topology: hash table and parent linkage.
1197 		 */
1198 		if (ncp->nc_flag & NCF_HASHED) {
1199 			ncp->nc_flag &= ~NCF_HASHED;
1200 			LIST_REMOVE(ncp, nc_hash);
1201 		}
1202 		if ((par = ncp->nc_parent) != NULL) {
1203 			par = cache_hold(par);
1204 			TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
1205 			ncp->nc_parent = NULL;
1206 			if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
1207 				vdrop(par->nc_vp);
1208 		}
1209 
1210 		/*
1211 		 * ncp should not have picked up any refs.  Physically
1212 		 * destroy the ncp.
1213 		 */
1214 		KKASSERT(ncp->nc_refs == 1);
1215 		--numunres;
1216 		/* cache_unlock(ncp) not required */
1217 		ncp->nc_refs = -1;	/* safety */
1218 		if (ncp->nc_name)
1219 			free(ncp->nc_name, M_VFSCACHE);
1220 		free(ncp, M_VFSCACHE);
1221 
1222 		/*
1223 		 * Loop on the parent (it may be NULL).  Only bother looping
1224 		 * if the parent has a single ref (ours), which also means
1225 		 * we can lock it trivially.
1226 		 */
1227 		ncp = par;
1228 		if (ncp == NULL)
1229 			return;
1230 		if (ncp->nc_refs != 1) {
1231 			cache_drop(ncp);
1232 			return;
1233 		}
1234 		KKASSERT(par->nc_exlocks == 0);
1235 		cache_lock(ncp);
1236 	}
1237 done:
1238 	cache_unlock(ncp);
1239 	--ncp->nc_refs;
1240 }
1241 
1242 static enum { CHI_LOW, CHI_HIGH } cache_hysteresis_state = CHI_LOW;
1243 
1244 static __inline
1245 void
1246 cache_hysteresis(void)
1247 {
1248 	/*
1249 	 * Don't cache too many negative hits.  We use hysteresis to reduce
1250 	 * the impact on the critical path.
1251 	 */
1252 	switch(cache_hysteresis_state) {
1253 	case CHI_LOW:
1254 		if (numneg > MINNEG && numneg * ncnegfactor > numcache) {
1255 			cache_cleanneg(10);
1256 			cache_hysteresis_state = CHI_HIGH;
1257 		}
1258 		break;
1259 	case CHI_HIGH:
1260 		if (numneg > MINNEG * 9 / 10 &&
1261 		    numneg * ncnegfactor * 9 / 10 > numcache
1262 		) {
1263 			cache_cleanneg(10);
1264 		} else {
1265 			cache_hysteresis_state = CHI_LOW;
1266 		}
1267 		break;
1268 	}
1269 }
1270 
1271 /*
1272  * NEW NAMECACHE LOOKUP API
1273  *
1274  * Lookup an entry in the cache.  A locked, referenced, non-NULL
1275  * entry is *always* returned, even if the supplied component is illegal.
1276  * The resulting namecache entry should be returned to the system with
1277  * cache_put() or cache_unlock() + cache_drop().
1278  *
1279  * namecache locks are recursive but care must be taken to avoid lock order
1280  * reversals.
1281  *
1282  * Nobody else will be able to manipulate the associated namespace (e.g.
1283  * create, delete, rename, rename-target) until the caller unlocks the
1284  * entry.
1285  *
1286  * The returned entry will be in one of three states:  positive hit (non-null
1287  * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
1288  * Unresolved entries must be resolved through the filesystem to associate the
1289  * vnode and/or determine whether a positive or negative hit has occured.
1290  *
1291  * It is not necessary to lock a directory in order to lock namespace under
1292  * that directory.  In fact, it is explicitly not allowed to do that.  A
1293  * directory is typically only locked when being created, renamed, or
1294  * destroyed.
1295  *
1296  * The directory (par) may be unresolved, in which case any returned child
1297  * will likely also be marked unresolved.  Likely but not guarenteed.  Since
1298  * the filesystem lookup requires a resolved directory vnode the caller is
1299  * responsible for resolving the namecache chain top-down.  This API
1300  * specifically allows whole chains to be created in an unresolved state.
1301  */
1302 struct namecache *
1303 cache_nlookup(struct namecache *par, struct nlcomponent *nlc)
1304 {
1305 	struct namecache *ncp;
1306 	struct namecache *new_ncp;
1307 	struct nchashhead *nchpp;
1308 	u_int32_t hash;
1309 	globaldata_t gd;
1310 
1311 	numcalls++;
1312 	gd = mycpu;
1313 
1314 	/*
1315 	 * Try to locate an existing entry
1316 	 */
1317 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
1318 	hash = fnv_32_buf(&par, sizeof(par), hash);
1319 	new_ncp = NULL;
1320 restart:
1321 	LIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1322 		numchecks++;
1323 
1324 		/*
1325 		 * Zap entries that have timed out.
1326 		 */
1327 		if (ncp->nc_timeout &&
1328 		    (int)(ncp->nc_timeout - ticks) < 0 &&
1329 		    (ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
1330 		    ncp->nc_exlocks == 0
1331 		) {
1332 			cache_zap(cache_get(ncp));
1333 			goto restart;
1334 		}
1335 
1336 		/*
1337 		 * Break out if we find a matching entry.  Note that
1338 		 * UNRESOLVED entries may match, but DESTROYED entries
1339 		 * do not.
1340 		 */
1341 		if (ncp->nc_parent == par &&
1342 		    ncp->nc_nlen == nlc->nlc_namelen &&
1343 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
1344 		    (ncp->nc_flag & NCF_DESTROYED) == 0
1345 		) {
1346 			if (cache_get_nonblock(ncp) == 0) {
1347 				if (new_ncp)
1348 					cache_free(new_ncp);
1349 				goto found;
1350 			}
1351 			cache_get(ncp);
1352 			cache_put(ncp);
1353 			goto restart;
1354 		}
1355 	}
1356 
1357 	/*
1358 	 * We failed to locate an entry, create a new entry and add it to
1359 	 * the cache.  We have to relookup after possibly blocking in
1360 	 * malloc.
1361 	 */
1362 	if (new_ncp == NULL) {
1363 		new_ncp = cache_alloc(nlc->nlc_namelen);
1364 		goto restart;
1365 	}
1366 
1367 	ncp = new_ncp;
1368 
1369 	/*
1370 	 * Initialize as a new UNRESOLVED entry, lock (non-blocking),
1371 	 * and link to the parent.  The mount point is usually inherited
1372 	 * from the parent unless this is a special case such as a mount
1373 	 * point where nlc_namelen is 0.  The caller is responsible for
1374 	 * setting nc_mount in that case.  If nlc_namelen is 0 nc_name will
1375 	 * be NULL.
1376 	 */
1377 	if (nlc->nlc_namelen) {
1378 		bcopy(nlc->nlc_nameptr, ncp->nc_name, nlc->nlc_namelen);
1379 		ncp->nc_name[nlc->nlc_namelen] = 0;
1380 		ncp->nc_mount = par->nc_mount;
1381 	}
1382 	nchpp = NCHHASH(hash);
1383 	LIST_INSERT_HEAD(nchpp, ncp, nc_hash);
1384 	ncp->nc_flag |= NCF_HASHED;
1385 	cache_link_parent(ncp, par);
1386 found:
1387 	/*
1388 	 * stats and namecache size management
1389 	 */
1390 	if (ncp->nc_flag & NCF_UNRESOLVED)
1391 		++gd->gd_nchstats->ncs_miss;
1392 	else if (ncp->nc_vp)
1393 		++gd->gd_nchstats->ncs_goodhits;
1394 	else
1395 		++gd->gd_nchstats->ncs_neghits;
1396 	cache_hysteresis();
1397 	return(ncp);
1398 }
1399 
1400 /*
1401  * Resolve an unresolved namecache entry, generally by looking it up.
1402  * The passed ncp must be locked and refd.
1403  *
1404  * Theoretically since a vnode cannot be recycled while held, and since
1405  * the nc_parent chain holds its vnode as long as children exist, the
1406  * direct parent of the cache entry we are trying to resolve should
1407  * have a valid vnode.  If not then generate an error that we can
1408  * determine is related to a resolver bug.
1409  *
1410  * Note that successful resolution does not necessarily return an error
1411  * code of 0.  If the ncp resolves to a negative cache hit then ENOENT
1412  * will be returned.
1413  */
1414 int
1415 cache_resolve(struct namecache *ncp, struct ucred *cred)
1416 {
1417 	struct namecache *par;
1418 	int error;
1419 
1420 restart:
1421 	/*
1422 	 * If the ncp is already resolved we have nothing to do.
1423 	 */
1424 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1425 		return (ncp->nc_error);
1426 
1427 	/*
1428 	 * Mount points need special handling because the parent does not
1429 	 * belong to the same filesystem as the ncp.
1430 	 */
1431 	if (ncp->nc_flag & NCF_MOUNTPT)
1432 		return (cache_resolve_mp(ncp));
1433 
1434 	/*
1435 	 * We expect an unbroken chain of ncps to at least the mount point,
1436 	 * and even all the way to root (but this code doesn't have to go
1437 	 * past the mount point).
1438 	 */
1439 	if (ncp->nc_parent == NULL) {
1440 		printf("EXDEV case 1 %p %*.*s\n", ncp,
1441 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
1442 		ncp->nc_error = EXDEV;
1443 		return(ncp->nc_error);
1444 	}
1445 
1446 	/*
1447 	 * The vp's of the parent directories in the chain are held via vhold()
1448 	 * due to the existance of the child, and should not disappear.
1449 	 * However, there are cases where they can disappear:
1450 	 *
1451 	 *	- due to filesystem I/O errors.
1452 	 *	- due to NFS being stupid about tracking the namespace and
1453 	 *	  destroys the namespace for entire directories quite often.
1454 	 *	- due to forced unmounts.
1455 	 *	- due to an rmdir (parent will be marked DESTROYED)
1456 	 *
1457 	 * When this occurs we have to track the chain backwards and resolve
1458 	 * it, looping until the resolver catches up to the current node.  We
1459 	 * could recurse here but we might run ourselves out of kernel stack
1460 	 * so we do it in a more painful manner.  This situation really should
1461 	 * not occur all that often, or if it does not have to go back too
1462 	 * many nodes to resolve the ncp.
1463 	 */
1464 	while (ncp->nc_parent->nc_vp == NULL) {
1465 		/*
1466 		 * This case can occur if a process is CD'd into a
1467 		 * directory which is then rmdir'd.  If the parent is marked
1468 		 * destroyed there is no point trying to resolve it.
1469 		 */
1470 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
1471 			return(ENOENT);
1472 
1473 		par = ncp->nc_parent;
1474 		while (par->nc_parent && par->nc_parent->nc_vp == NULL)
1475 			par = par->nc_parent;
1476 		if (par->nc_parent == NULL) {
1477 			printf("EXDEV case 2 %*.*s\n",
1478 				par->nc_nlen, par->nc_nlen, par->nc_name);
1479 			return (EXDEV);
1480 		}
1481 		printf("[diagnostic] cache_resolve: had to recurse on %*.*s\n",
1482 			par->nc_nlen, par->nc_nlen, par->nc_name);
1483 		/*
1484 		 * The parent is not set in stone, ref and lock it to prevent
1485 		 * it from disappearing.  Also note that due to renames it
1486 		 * is possible for our ncp to move and for par to no longer
1487 		 * be one of its parents.  We resolve it anyway, the loop
1488 		 * will handle any moves.
1489 		 */
1490 		cache_get(par);
1491 		if (par->nc_flag & NCF_MOUNTPT) {
1492 			cache_resolve_mp(par);
1493 		} else if (par->nc_parent->nc_vp == NULL) {
1494 			printf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name);
1495 			cache_put(par);
1496 			continue;
1497 		} else if (par->nc_flag & NCF_UNRESOLVED) {
1498 			par->nc_error = VOP_NRESOLVE(par, cred);
1499 		}
1500 		if ((error = par->nc_error) != 0) {
1501 			if (par->nc_error != EAGAIN) {
1502 				printf("EXDEV case 3 %*.*s error %d\n",
1503 				    par->nc_nlen, par->nc_nlen, par->nc_name,
1504 				    par->nc_error);
1505 				cache_put(par);
1506 				return(error);
1507 			}
1508 			printf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
1509 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
1510 		}
1511 		cache_put(par);
1512 		/* loop */
1513 	}
1514 
1515 	/*
1516 	 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
1517 	 * ncp's and reattach them.  If this occurs the original ncp is marked
1518 	 * EAGAIN to force a relookup.
1519 	 *
1520 	 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
1521 	 * ncp must already be resolved.
1522 	 */
1523 	KKASSERT((ncp->nc_flag & NCF_MOUNTPT) == 0);
1524 	ncp->nc_error = VOP_NRESOLVE(ncp, cred);
1525 	/*vop_nresolve(*ncp->nc_parent->nc_vp->v_ops, ncp, cred);*/
1526 	if (ncp->nc_error == EAGAIN) {
1527 		printf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
1528 			ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
1529 		goto restart;
1530 	}
1531 	return(ncp->nc_error);
1532 }
1533 
1534 /*
1535  * Resolve the ncp associated with a mount point.  Such ncp's almost always
1536  * remain resolved and this routine is rarely called.  NFS MPs tends to force
1537  * re-resolution more often due to its mac-truck-smash-the-namecache
1538  * method of tracking namespace changes.
1539  *
1540  * The semantics for this call is that the passed ncp must be locked on
1541  * entry and will be locked on return.  However, if we actually have to
1542  * resolve the mount point we temporarily unlock the entry in order to
1543  * avoid race-to-root deadlocks due to e.g. dead NFS mounts.  Because of
1544  * the unlock we have to recheck the flags after we relock.
1545  */
1546 static int
1547 cache_resolve_mp(struct namecache *ncp)
1548 {
1549 	struct vnode *vp;
1550 	struct mount *mp = ncp->nc_mount;
1551 	int error;
1552 
1553 	KKASSERT(mp != NULL);
1554 	if (ncp->nc_flag & NCF_UNRESOLVED) {
1555 		cache_unlock(ncp);
1556 		while (vfs_busy(mp, 0, curthread))
1557 			;
1558 		error = VFS_ROOT(mp, &vp);
1559 		cache_lock(ncp);
1560 
1561 		/*
1562 		 * recheck the ncp state after relocking.
1563 		 */
1564 		if (ncp->nc_flag & NCF_UNRESOLVED) {
1565 			ncp->nc_error = error;
1566 			if (error == 0) {
1567 				cache_setvp(ncp, vp);
1568 				vput(vp);
1569 			} else {
1570 				printf("[diagnostic] cache_resolve_mp: failed to resolve mount %p\n", mp);
1571 				cache_setvp(ncp, NULL);
1572 			}
1573 		} else if (error == 0) {
1574 			vput(vp);
1575 		}
1576 		vfs_unbusy(mp, curthread);
1577 	}
1578 	return(ncp->nc_error);
1579 }
1580 
1581 void
1582 cache_cleanneg(int count)
1583 {
1584 	struct namecache *ncp;
1585 
1586 	/*
1587 	 * Automode from the vnlru proc - clean out 10% of the negative cache
1588 	 * entries.
1589 	 */
1590 	if (count == 0)
1591 		count = numneg / 10 + 1;
1592 
1593 	/*
1594 	 * Attempt to clean out the specified number of negative cache
1595 	 * entries.
1596 	 */
1597 	while (count) {
1598 		ncp = TAILQ_FIRST(&ncneglist);
1599 		if (ncp == NULL) {
1600 			KKASSERT(numneg == 0);
1601 			break;
1602 		}
1603 		TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
1604 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
1605 		if (cache_get_nonblock(ncp) == 0)
1606 			cache_zap(ncp);
1607 		--count;
1608 	}
1609 }
1610 
1611 /*
1612  * Rehash a ncp.  Rehashing is typically required if the name changes (should
1613  * not generally occur) or the parent link changes.  This function will
1614  * unhash the ncp if the ncp is no longer hashable.
1615  */
1616 static void
1617 cache_rehash(struct namecache *ncp)
1618 {
1619 	struct nchashhead *nchpp;
1620 	u_int32_t hash;
1621 
1622 	if (ncp->nc_flag & NCF_HASHED) {
1623 		ncp->nc_flag &= ~NCF_HASHED;
1624 		LIST_REMOVE(ncp, nc_hash);
1625 	}
1626 	if (ncp->nc_nlen && ncp->nc_parent) {
1627 		hash = fnv_32_buf(ncp->nc_name, ncp->nc_nlen, FNV1_32_INIT);
1628 		hash = fnv_32_buf(&ncp->nc_parent,
1629 					sizeof(ncp->nc_parent), hash);
1630 		nchpp = NCHHASH(hash);
1631 		LIST_INSERT_HEAD(nchpp, ncp, nc_hash);
1632 		ncp->nc_flag |= NCF_HASHED;
1633 	}
1634 }
1635 
1636 /*
1637  * Name cache initialization, from vfsinit() when we are booting
1638  */
1639 void
1640 nchinit(void)
1641 {
1642 	int i;
1643 	globaldata_t gd;
1644 
1645 	/* initialise per-cpu namecache effectiveness statistics. */
1646 	for (i = 0; i < ncpus; ++i) {
1647 		gd = globaldata_find(i);
1648 		gd->gd_nchstats = &nchstats[i];
1649 	}
1650 	TAILQ_INIT(&ncneglist);
1651 	nchashtbl = hashinit(desiredvnodes*2, M_VFSCACHE, &nchash);
1652 	nclockwarn = 1 * hz;
1653 }
1654 
1655 /*
1656  * Called from start_init() to bootstrap the root filesystem.  Returns
1657  * a referenced, unlocked namecache record.
1658  */
1659 struct namecache *
1660 cache_allocroot(struct mount *mp, struct vnode *vp)
1661 {
1662 	struct namecache *ncp = cache_alloc(0);
1663 
1664 	ncp->nc_flag |= NCF_MOUNTPT | NCF_ROOT;
1665 	ncp->nc_mount = mp;
1666 	cache_setvp(ncp, vp);
1667 	return(ncp);
1668 }
1669 
1670 /*
1671  * vfs_cache_setroot()
1672  *
1673  *	Create an association between the root of our namecache and
1674  *	the root vnode.  This routine may be called several times during
1675  *	booting.
1676  *
1677  *	If the caller intends to save the returned namecache pointer somewhere
1678  *	it must cache_hold() it.
1679  */
1680 void
1681 vfs_cache_setroot(struct vnode *nvp, struct namecache *ncp)
1682 {
1683 	struct vnode *ovp;
1684 	struct namecache *oncp;
1685 
1686 	ovp = rootvnode;
1687 	oncp = rootncp;
1688 	rootvnode = nvp;
1689 	rootncp = ncp;
1690 
1691 	if (ovp)
1692 		vrele(ovp);
1693 	if (oncp)
1694 		cache_drop(oncp);
1695 }
1696 
1697 /*
1698  * XXX OLD API COMPAT FUNCTION.  This really messes up the new namecache
1699  * topology and is being removed as quickly as possible.  The new VOP_N*()
1700  * API calls are required to make specific adjustments using the supplied
1701  * ncp pointers rather then just bogusly purging random vnodes.
1702  *
1703  * Invalidate all namecache entries to a particular vnode as well as
1704  * any direct children of that vnode in the namecache.  This is a
1705  * 'catch all' purge used by filesystems that do not know any better.
1706  *
1707  * A new vnode v_id is generated.  Note that no vnode will ever have a
1708  * v_id of 0.
1709  *
1710  * Note that the linkage between the vnode and its namecache entries will
1711  * be removed, but the namecache entries themselves might stay put due to
1712  * active references from elsewhere in the system or due to the existance of
1713  * the children.   The namecache topology is left intact even if we do not
1714  * know what the vnode association is.  Such entries will be marked
1715  * NCF_UNRESOLVED.
1716  *
1717  * XXX: Only time and the size of v_id prevents this from failing:
1718  * XXX: In theory we should hunt down all (struct vnode*, v_id)
1719  * XXX: soft references and nuke them, at least on the global
1720  * XXX: v_id wraparound.  The period of resistance can be extended
1721  * XXX: by incrementing each vnodes v_id individually instead of
1722  * XXX: using the global v_id.
1723  *
1724  * Does not support NCP_FSMID accumulation on invalidation (retflags is
1725  * not used).
1726  */
1727 void
1728 cache_purge(struct vnode *vp)
1729 {
1730 	static u_long nextid;
1731 	int retflags = 0;
1732 
1733 	cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN, &retflags);
1734 
1735 	/*
1736 	 * Calculate a new unique id for ".." handling
1737 	 */
1738 	do {
1739 		nextid++;
1740 	} while (nextid == vp->v_id || nextid == 0);
1741 	vp->v_id = nextid;
1742 }
1743 
1744 /*
1745  * Flush all entries referencing a particular filesystem.
1746  *
1747  * Since we need to check it anyway, we will flush all the invalid
1748  * entries at the same time.
1749  */
1750 void
1751 cache_purgevfs(struct mount *mp)
1752 {
1753 	struct nchashhead *nchpp;
1754 	struct namecache *ncp, *nnp;
1755 
1756 	/*
1757 	 * Scan hash tables for applicable entries.
1758 	 */
1759 	for (nchpp = &nchashtbl[nchash]; nchpp >= nchashtbl; nchpp--) {
1760 		ncp = LIST_FIRST(nchpp);
1761 		if (ncp)
1762 			cache_hold(ncp);
1763 		while (ncp) {
1764 			nnp = LIST_NEXT(ncp, nc_hash);
1765 			if (nnp)
1766 				cache_hold(nnp);
1767 			if (ncp->nc_mount == mp) {
1768 				cache_lock(ncp);
1769 				cache_zap(ncp);
1770 			} else {
1771 				cache_drop(ncp);
1772 			}
1773 			ncp = nnp;
1774 		}
1775 	}
1776 }
1777 
1778 static int disablecwd;
1779 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0, "");
1780 
1781 static u_long numcwdcalls; STATNODE(CTLFLAG_RD, numcwdcalls, &numcwdcalls);
1782 static u_long numcwdfail1; STATNODE(CTLFLAG_RD, numcwdfail1, &numcwdfail1);
1783 static u_long numcwdfail2; STATNODE(CTLFLAG_RD, numcwdfail2, &numcwdfail2);
1784 static u_long numcwdfail3; STATNODE(CTLFLAG_RD, numcwdfail3, &numcwdfail3);
1785 static u_long numcwdfail4; STATNODE(CTLFLAG_RD, numcwdfail4, &numcwdfail4);
1786 static u_long numcwdfound; STATNODE(CTLFLAG_RD, numcwdfound, &numcwdfound);
1787 
1788 int
1789 __getcwd(struct __getcwd_args *uap)
1790 {
1791 	int buflen;
1792 	int error;
1793 	char *buf;
1794 	char *bp;
1795 
1796 	if (disablecwd)
1797 		return (ENODEV);
1798 
1799 	buflen = uap->buflen;
1800 	if (buflen < 2)
1801 		return (EINVAL);
1802 	if (buflen > MAXPATHLEN)
1803 		buflen = MAXPATHLEN;
1804 
1805 	buf = malloc(buflen, M_TEMP, M_WAITOK);
1806 	bp = kern_getcwd(buf, buflen, &error);
1807 	if (error == 0)
1808 		error = copyout(bp, uap->buf, strlen(bp) + 1);
1809 	free(buf, M_TEMP);
1810 	return (error);
1811 }
1812 
1813 char *
1814 kern_getcwd(char *buf, size_t buflen, int *error)
1815 {
1816 	struct proc *p = curproc;
1817 	char *bp;
1818 	int i, slash_prefixed;
1819 	struct filedesc *fdp;
1820 	struct namecache *ncp;
1821 
1822 	numcwdcalls++;
1823 	bp = buf;
1824 	bp += buflen - 1;
1825 	*bp = '\0';
1826 	fdp = p->p_fd;
1827 	slash_prefixed = 0;
1828 
1829 	ncp = fdp->fd_ncdir;
1830 	while (ncp && ncp != fdp->fd_nrdir && (ncp->nc_flag & NCF_ROOT) == 0) {
1831 		if (ncp->nc_flag & NCF_MOUNTPT) {
1832 			if (ncp->nc_mount == NULL) {
1833 				*error = EBADF;		/* forced unmount? */
1834 				return(NULL);
1835 			}
1836 			ncp = ncp->nc_parent;
1837 			continue;
1838 		}
1839 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
1840 			if (bp == buf) {
1841 				numcwdfail4++;
1842 				*error = ENOMEM;
1843 				return(NULL);
1844 			}
1845 			*--bp = ncp->nc_name[i];
1846 		}
1847 		if (bp == buf) {
1848 			numcwdfail4++;
1849 			*error = ENOMEM;
1850 			return(NULL);
1851 		}
1852 		*--bp = '/';
1853 		slash_prefixed = 1;
1854 		ncp = ncp->nc_parent;
1855 	}
1856 	if (ncp == NULL) {
1857 		numcwdfail2++;
1858 		*error = ENOENT;
1859 		return(NULL);
1860 	}
1861 	if (!slash_prefixed) {
1862 		if (bp == buf) {
1863 			numcwdfail4++;
1864 			*error = ENOMEM;
1865 			return(NULL);
1866 		}
1867 		*--bp = '/';
1868 	}
1869 	numcwdfound++;
1870 	*error = 0;
1871 	return (bp);
1872 }
1873 
1874 /*
1875  * Thus begins the fullpath magic.
1876  */
1877 
1878 #undef STATNODE
1879 #define STATNODE(name)							\
1880 	static u_int name;						\
1881 	SYSCTL_UINT(_vfs_cache, OID_AUTO, name, CTLFLAG_RD, &name, 0, "")
1882 
1883 static int disablefullpath;
1884 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
1885     &disablefullpath, 0, "");
1886 
1887 STATNODE(numfullpathcalls);
1888 STATNODE(numfullpathfail1);
1889 STATNODE(numfullpathfail2);
1890 STATNODE(numfullpathfail3);
1891 STATNODE(numfullpathfail4);
1892 STATNODE(numfullpathfound);
1893 
1894 int
1895 cache_fullpath(struct proc *p, struct namecache *ncp, char **retbuf, char **freebuf)
1896 {
1897 	char *bp, *buf;
1898 	int i, slash_prefixed;
1899 	struct namecache *fd_nrdir;
1900 
1901 	numfullpathcalls--;
1902 
1903 	buf = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
1904 	bp = buf + MAXPATHLEN - 1;
1905 	*bp = '\0';
1906 	if (p != NULL)
1907 		fd_nrdir = p->p_fd->fd_nrdir;
1908 	else
1909 		fd_nrdir = NULL;
1910 	slash_prefixed = 0;
1911 	while (ncp && ncp != fd_nrdir && (ncp->nc_flag & NCF_ROOT) == 0) {
1912 		if (ncp->nc_flag & NCF_MOUNTPT) {
1913 			if (ncp->nc_mount == NULL) {
1914 				free(buf, M_TEMP);
1915 				return(EBADF);
1916 			}
1917 			ncp = ncp->nc_parent;
1918 			continue;
1919 		}
1920 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
1921 			if (bp == buf) {
1922 				numfullpathfail4++;
1923 				free(buf, M_TEMP);
1924 				return(ENOMEM);
1925 			}
1926 			*--bp = ncp->nc_name[i];
1927 		}
1928 		if (bp == buf) {
1929 			numfullpathfail4++;
1930 			free(buf, M_TEMP);
1931 			return(ENOMEM);
1932 		}
1933 		*--bp = '/';
1934 		slash_prefixed = 1;
1935 		ncp = ncp->nc_parent;
1936 	}
1937 	if (ncp == NULL) {
1938 		numfullpathfail2++;
1939 		free(buf, M_TEMP);
1940 		return(ENOENT);
1941 	}
1942 	if (p != NULL && (ncp->nc_flag & NCF_ROOT) && ncp != fd_nrdir) {
1943 		bp = buf + MAXPATHLEN - 1;
1944 		*bp = '\0';
1945 		slash_prefixed = 0;
1946 	}
1947 	if (!slash_prefixed) {
1948 		if (bp == buf) {
1949 			numfullpathfail4++;
1950 			free(buf, M_TEMP);
1951 			return(ENOMEM);
1952 		}
1953 		*--bp = '/';
1954 	}
1955 	numfullpathfound++;
1956 	*retbuf = bp;
1957 	*freebuf = buf;
1958 
1959 	return(0);
1960 }
1961 
1962 int
1963 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf, char **freebuf)
1964 {
1965 	struct namecache *ncp;
1966 
1967 	numfullpathcalls++;
1968 	if (disablefullpath)
1969 		return (ENODEV);
1970 
1971 	if (p == NULL)
1972 		return (EINVAL);
1973 
1974 	/* vn is NULL, client wants us to use p->p_textvp */
1975 	if (vn == NULL) {
1976 		if ((vn = p->p_textvp) == NULL)
1977 			return (EINVAL);
1978 	}
1979 	TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
1980 		if (ncp->nc_nlen)
1981 			break;
1982 	}
1983 	if (ncp == NULL)
1984 		return (EINVAL);
1985 
1986 	numfullpathcalls--;
1987 	return(cache_fullpath(p, ncp, retbuf, freebuf));
1988 }
1989