xref: /dragonfly/sys/kern/vfs_cache.c (revision 611395e5)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993, 1995
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * Poul-Henning Kamp of the FreeBSD Project.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the University of
51  *	California, Berkeley and its contributors.
52  * 4. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  *
68  *	@(#)vfs_cache.c	8.5 (Berkeley) 3/22/95
69  * $FreeBSD: src/sys/kern/vfs_cache.c,v 1.42.2.6 2001/10/05 20:07:03 dillon Exp $
70  * $DragonFly: src/sys/kern/vfs_cache.c,v 1.46 2004/12/17 00:18:07 dillon Exp $
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mount.h>
78 #include <sys/vnode.h>
79 #include <sys/malloc.h>
80 #include <sys/sysproto.h>
81 #include <sys/proc.h>
82 #include <sys/namei.h>
83 #include <sys/nlookup.h>
84 #include <sys/filedesc.h>
85 #include <sys/fnv_hash.h>
86 #include <sys/globaldata.h>
87 #include <sys/kern_syscall.h>
88 #include <sys/dirent.h>
89 #include <ddb/ddb.h>
90 
91 /*
92  * Random lookups in the cache are accomplished with a hash table using
93  * a hash key of (nc_src_vp, name).
94  *
95  * Negative entries may exist and correspond to structures where nc_vp
96  * is NULL.  In a negative entry, NCF_WHITEOUT will be set if the entry
97  * corresponds to a whited-out directory entry (verses simply not finding the
98  * entry at all).
99  *
100  * Upon reaching the last segment of a path, if the reference is for DELETE,
101  * or NOCACHE is set (rewrite), and the name is located in the cache, it
102  * will be dropped.
103  */
104 
105 /*
106  * Structures associated with name cacheing.
107  */
108 #define NCHHASH(hash)	(&nchashtbl[(hash) & nchash])
109 #define MINNEG		1024
110 
111 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
112 
113 static LIST_HEAD(nchashhead, namecache) *nchashtbl;	/* Hash Table */
114 static struct namecache_list	ncneglist;		/* instead of vnode */
115 
116 /*
117  * ncvp_debug - debug cache_fromvp().  This is used by the NFS server
118  * to create the namecache infrastructure leading to a dangling vnode.
119  *
120  * 0	Only errors are reported
121  * 1	Successes are reported
122  * 2	Successes + the whole directory scan is reported
123  * 3	Force the directory scan code run as if the parent vnode did not
124  *	have a namecache record, even if it does have one.
125  */
126 static int	ncvp_debug;
127 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0, "");
128 
129 static u_long	nchash;			/* size of hash table */
130 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0, "");
131 
132 static u_long	ncnegfactor = 16;	/* ratio of negative entries */
133 SYSCTL_ULONG(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0, "");
134 
135 static int	nclockwarn;		/* warn on locked entries in ticks */
136 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0, "");
137 
138 static u_long	numneg;		/* number of cache entries allocated */
139 SYSCTL_ULONG(_debug, OID_AUTO, numneg, CTLFLAG_RD, &numneg, 0, "");
140 
141 static u_long	numcache;		/* number of cache entries allocated */
142 SYSCTL_ULONG(_debug, OID_AUTO, numcache, CTLFLAG_RD, &numcache, 0, "");
143 
144 static u_long	numunres;		/* number of unresolved entries */
145 SYSCTL_ULONG(_debug, OID_AUTO, numunres, CTLFLAG_RD, &numunres, 0, "");
146 
147 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode), "");
148 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache), "");
149 
150 static int cache_resolve_mp(struct namecache *ncp);
151 static void cache_rehash(struct namecache *ncp);
152 
153 /*
154  * The new name cache statistics
155  */
156 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
157 #define STATNODE(mode, name, var) \
158 	SYSCTL_ULONG(_vfs_cache, OID_AUTO, name, mode, var, 0, "");
159 STATNODE(CTLFLAG_RD, numneg, &numneg);
160 STATNODE(CTLFLAG_RD, numcache, &numcache);
161 static u_long numcalls; STATNODE(CTLFLAG_RD, numcalls, &numcalls);
162 static u_long dothits; STATNODE(CTLFLAG_RD, dothits, &dothits);
163 static u_long dotdothits; STATNODE(CTLFLAG_RD, dotdothits, &dotdothits);
164 static u_long numchecks; STATNODE(CTLFLAG_RD, numchecks, &numchecks);
165 static u_long nummiss; STATNODE(CTLFLAG_RD, nummiss, &nummiss);
166 static u_long nummisszap; STATNODE(CTLFLAG_RD, nummisszap, &nummisszap);
167 static u_long numposzaps; STATNODE(CTLFLAG_RD, numposzaps, &numposzaps);
168 static u_long numposhits; STATNODE(CTLFLAG_RD, numposhits, &numposhits);
169 static u_long numnegzaps; STATNODE(CTLFLAG_RD, numnegzaps, &numnegzaps);
170 static u_long numneghits; STATNODE(CTLFLAG_RD, numneghits, &numneghits);
171 
172 struct nchstats nchstats[SMP_MAXCPU];
173 /*
174  * Export VFS cache effectiveness statistics to user-land.
175  *
176  * The statistics are left for aggregation to user-land so
177  * neat things can be achieved, like observing per-CPU cache
178  * distribution.
179  */
180 static int
181 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
182 {
183 	struct globaldata *gd;
184 	int i, error;
185 
186 	error = 0;
187 	for (i = 0; i < ncpus; ++i) {
188 		gd = globaldata_find(i);
189 		if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
190 			sizeof(struct nchstats))))
191 			break;
192 	}
193 
194 	return (error);
195 }
196 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
197   0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
198 
199 static void cache_zap(struct namecache *ncp);
200 
201 /*
202  * cache_hold() and cache_drop() prevent the premature deletion of a
203  * namecache entry but do not prevent operations (such as zapping) on
204  * that namecache entry.
205  */
206 static __inline
207 struct namecache *
208 _cache_hold(struct namecache *ncp)
209 {
210 	++ncp->nc_refs;
211 	return(ncp);
212 }
213 
214 /*
215  * When dropping an entry, if only one ref remains and the entry has not
216  * been resolved, zap it.  Since the one reference is being dropped the
217  * entry had better not be locked.
218  */
219 static __inline
220 void
221 _cache_drop(struct namecache *ncp)
222 {
223 	KKASSERT(ncp->nc_refs > 0);
224 	if (ncp->nc_refs == 1 &&
225 	    (ncp->nc_flag & NCF_UNRESOLVED) &&
226 	    TAILQ_EMPTY(&ncp->nc_list)
227 	) {
228 		KKASSERT(ncp->nc_exlocks == 0);
229 		cache_lock(ncp);
230 		cache_zap(ncp);
231 	} else {
232 		--ncp->nc_refs;
233 	}
234 }
235 
236 /*
237  * Link a new namecache entry to its parent.  Be careful to avoid races
238  * if vhold() blocks in the future.
239  *
240  * If we are creating a child under an oldapi parent we must mark the
241  * child as being an oldapi entry as well.
242  */
243 static void
244 cache_link_parent(struct namecache *ncp, struct namecache *par)
245 {
246 	KKASSERT(ncp->nc_parent == NULL);
247 	ncp->nc_parent = par;
248 	if (TAILQ_EMPTY(&par->nc_list)) {
249 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
250 		/*
251 		 * Any vp associated with an ncp which has children must
252 		 * be held to prevent it from being recycled.
253 		 */
254 		if (par->nc_vp)
255 			vhold(par->nc_vp);
256 	} else {
257 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
258 	}
259 }
260 
261 /*
262  * Remove the parent association from a namecache structure.  If this is
263  * the last child of the parent the cache_drop(par) will attempt to
264  * recursively zap the parent.
265  */
266 static void
267 cache_unlink_parent(struct namecache *ncp)
268 {
269 	struct namecache *par;
270 
271 	if ((par = ncp->nc_parent) != NULL) {
272 		ncp->nc_parent = NULL;
273 		par = cache_hold(par);
274 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
275 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
276 			vdrop(par->nc_vp);
277 		cache_drop(par);
278 	}
279 }
280 
281 /*
282  * Allocate a new namecache structure.  Most of the code does not require
283  * zero-termination of the string but it makes vop_compat_ncreate() easier.
284  */
285 static struct namecache *
286 cache_alloc(int nlen)
287 {
288 	struct namecache *ncp;
289 
290 	ncp = malloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
291 	if (nlen)
292 		ncp->nc_name = malloc(nlen + 1, M_VFSCACHE, M_WAITOK);
293 	ncp->nc_nlen = nlen;
294 	ncp->nc_flag = NCF_UNRESOLVED;
295 	ncp->nc_error = ENOTCONN;	/* needs to be resolved */
296 	ncp->nc_refs = 1;
297 	TAILQ_INIT(&ncp->nc_list);
298 	cache_lock(ncp);
299 	return(ncp);
300 }
301 
302 static void
303 cache_free(struct namecache *ncp)
304 {
305 	KKASSERT(ncp->nc_refs == 1 && ncp->nc_exlocks == 1);
306 	if (ncp->nc_name)
307 		free(ncp->nc_name, M_VFSCACHE);
308 	free(ncp, M_VFSCACHE);
309 }
310 
311 /*
312  * Ref and deref a namecache structure.
313  */
314 struct namecache *
315 cache_hold(struct namecache *ncp)
316 {
317 	return(_cache_hold(ncp));
318 }
319 
320 void
321 cache_drop(struct namecache *ncp)
322 {
323 	_cache_drop(ncp);
324 }
325 
326 /*
327  * Namespace locking.  The caller must already hold a reference to the
328  * namecache structure in order to lock/unlock it.  This function prevents
329  * the namespace from being created or destroyed by accessors other then
330  * the lock holder.
331  *
332  * Note that holding a locked namecache structure prevents other threads
333  * from making namespace changes (e.g. deleting or creating), prevents
334  * vnode association state changes by other threads, and prevents the
335  * namecache entry from being resolved or unresolved by other threads.
336  *
337  * The lock owner has full authority to associate/disassociate vnodes
338  * and resolve/unresolve the locked ncp.
339  *
340  * In particular, if a vnode is associated with a locked cache entry
341  * that vnode will *NOT* be recycled.  We accomplish this by vhold()ing the
342  * vnode.  XXX we should find a more efficient way to prevent the vnode
343  * from being recycled, but remember that any given vnode may have multiple
344  * namecache associations (think hardlinks).
345  */
346 void
347 cache_lock(struct namecache *ncp)
348 {
349 	thread_t td;
350 	int didwarn;
351 
352 	KKASSERT(ncp->nc_refs != 0);
353 	didwarn = 0;
354 	td = curthread;
355 
356 	for (;;) {
357 		if (ncp->nc_exlocks == 0) {
358 			ncp->nc_exlocks = 1;
359 			ncp->nc_locktd = td;
360 			/*
361 			 * The vp associated with a locked ncp must be held
362 			 * to prevent it from being recycled (which would
363 			 * cause the ncp to become unresolved).
364 			 *
365 			 * XXX loop on race for later MPSAFE work.
366 			 */
367 			if (ncp->nc_vp)
368 				vhold(ncp->nc_vp);
369 			break;
370 		}
371 		if (ncp->nc_locktd == td) {
372 			++ncp->nc_exlocks;
373 			break;
374 		}
375 		ncp->nc_flag |= NCF_LOCKREQ;
376 		if (tsleep(ncp, 0, "clock", nclockwarn) == EWOULDBLOCK) {
377 			if (didwarn)
378 				continue;
379 			didwarn = 1;
380 			printf("[diagnostic] cache_lock: blocked on %p", ncp);
381 			if ((ncp->nc_flag & NCF_MOUNTPT) && ncp->nc_mount)
382 			    printf(" [MOUNTPT %s]\n", ncp->nc_mount->mnt_stat.f_mntonname);
383 			else
384 			    printf(" \"%*.*s\"\n",
385 				ncp->nc_nlen, ncp->nc_nlen,
386 				ncp->nc_name);
387 		}
388 	}
389 
390 	if (didwarn == 1) {
391 		printf("[diagnostic] cache_lock: unblocked %*.*s\n",
392 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
393 	}
394 }
395 
396 int
397 cache_lock_nonblock(struct namecache *ncp)
398 {
399 	thread_t td;
400 
401 	KKASSERT(ncp->nc_refs != 0);
402 	td = curthread;
403 	if (ncp->nc_exlocks == 0) {
404 		ncp->nc_exlocks = 1;
405 		ncp->nc_locktd = td;
406 		/*
407 		 * The vp associated with a locked ncp must be held
408 		 * to prevent it from being recycled (which would
409 		 * cause the ncp to become unresolved).
410 		 *
411 		 * XXX loop on race for later MPSAFE work.
412 		 */
413 		if (ncp->nc_vp)
414 			vhold(ncp->nc_vp);
415 		return(0);
416 	} else {
417 		return(EWOULDBLOCK);
418 	}
419 }
420 
421 void
422 cache_unlock(struct namecache *ncp)
423 {
424 	thread_t td = curthread;
425 
426 	KKASSERT(ncp->nc_refs > 0);
427 	KKASSERT(ncp->nc_exlocks > 0);
428 	KKASSERT(ncp->nc_locktd == td);
429 	if (--ncp->nc_exlocks == 0) {
430 		if (ncp->nc_vp)
431 			vdrop(ncp->nc_vp);
432 		ncp->nc_locktd = NULL;
433 		if (ncp->nc_flag & NCF_LOCKREQ) {
434 			ncp->nc_flag &= ~NCF_LOCKREQ;
435 			wakeup(ncp);
436 		}
437 	}
438 }
439 
440 /*
441  * ref-and-lock, unlock-and-deref functions.
442  */
443 struct namecache *
444 cache_get(struct namecache *ncp)
445 {
446 	_cache_hold(ncp);
447 	cache_lock(ncp);
448 	return(ncp);
449 }
450 
451 int
452 cache_get_nonblock(struct namecache *ncp)
453 {
454 	/* XXX MP */
455 	if (ncp->nc_exlocks == 0 || ncp->nc_locktd == curthread) {
456 		_cache_hold(ncp);
457 		cache_lock(ncp);
458 		return(0);
459 	}
460 	return(EWOULDBLOCK);
461 }
462 
463 void
464 cache_put(struct namecache *ncp)
465 {
466 	cache_unlock(ncp);
467 	_cache_drop(ncp);
468 }
469 
470 /*
471  * Resolve an unresolved ncp by associating a vnode with it.  If the
472  * vnode is NULL, a negative cache entry is created.
473  *
474  * The ncp should be locked on entry and will remain locked on return.
475  */
476 void
477 cache_setvp(struct namecache *ncp, struct vnode *vp)
478 {
479 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
480 	ncp->nc_vp = vp;
481 	if (vp != NULL) {
482 		/*
483 		 * Any vp associated with an ncp which has children must
484 		 * be held.  Any vp associated with a locked ncp must be held.
485 		 */
486 		if (!TAILQ_EMPTY(&ncp->nc_list))
487 			vhold(vp);
488 		TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
489 		if (ncp->nc_exlocks)
490 			vhold(vp);
491 
492 		/*
493 		 * Set auxillary flags
494 		 */
495 		switch(vp->v_type) {
496 		case VDIR:
497 			ncp->nc_flag |= NCF_ISDIR;
498 			break;
499 		case VLNK:
500 			ncp->nc_flag |= NCF_ISSYMLINK;
501 			/* XXX cache the contents of the symlink */
502 			break;
503 		default:
504 			break;
505 		}
506 		++numcache;
507 		ncp->nc_error = 0;
508 	} else {
509 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
510 		++numneg;
511 		ncp->nc_error = ENOENT;
512 	}
513 	ncp->nc_flag &= ~NCF_UNRESOLVED;
514 }
515 
516 void
517 cache_settimeout(struct namecache *ncp, int nticks)
518 {
519 	if ((ncp->nc_timeout = ticks + nticks) == 0)
520 		ncp->nc_timeout = 1;
521 }
522 
523 /*
524  * Disassociate the vnode or negative-cache association and mark a
525  * namecache entry as unresolved again.  Note that the ncp is still
526  * left in the hash table and still linked to its parent.
527  *
528  * The ncp should be locked and refd on entry and will remain locked and refd
529  * on return.
530  *
531  * This routine is normally never called on a directory containing children.
532  * However, NFS often does just that in its rename() code as a cop-out to
533  * avoid complex namespace operations.  This disconnects a directory vnode
534  * from its namecache and can cause the OLDAPI and NEWAPI to get out of
535  * sync.
536  */
537 void
538 cache_setunresolved(struct namecache *ncp)
539 {
540 	struct vnode *vp;
541 
542 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
543 		ncp->nc_flag |= NCF_UNRESOLVED;
544 		ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK);
545 		ncp->nc_timeout = 0;
546 		ncp->nc_error = ENOTCONN;
547 		++numunres;
548 		if ((vp = ncp->nc_vp) != NULL) {
549 			--numcache;
550 			ncp->nc_vp = NULL;
551 			TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
552 
553 			/*
554 			 * Any vp associated with an ncp with children is
555 			 * held by that ncp.  Any vp associated with a locked
556 			 * ncp is held by that ncp.  These conditions must be
557 			 * undone when the vp is cleared out from the ncp.
558 			 */
559 			if (!TAILQ_EMPTY(&ncp->nc_list))
560 				vdrop(vp);
561 			if (ncp->nc_exlocks)
562 				vdrop(vp);
563 		} else {
564 			TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
565 			--numneg;
566 		}
567 	}
568 }
569 
570 /*
571  * Invalidate portions of the namecache topology given a starting entry.
572  * The passed ncp is set to an unresolved state and:
573  *
574  * The passed ncp must be locked.
575  *
576  * CINV_DESTROY		- Set a flag in the passed ncp entry indicating
577  *			  that the physical underlying nodes have been
578  *			  destroyed... as in deleted.  For example, when
579  *			  a directory is removed.  This will cause record
580  *			  lookups on the name to no longer be able to find
581  *			  the record and tells the resolver to return failure
582  *			  rather then trying to resolve through the parent.
583  *
584  *			  The topology itself, including ncp->nc_name,
585  *			  remains intact.
586  *
587  *			  This only applies to the passed ncp, if CINV_CHILDREN
588  *			  is specified the children are not flagged.
589  *
590  * CINV_CHILDREN	- Set all children (recursively) to an unresolved
591  *			  state as well.
592  *
593  *			  Note that this will also have the side effect of
594  *			  cleaning out any unreferenced nodes in the topology
595  *			  from the leaves up as the recursion backs out.
596  *
597  * Note that the topology for any referenced nodes remains intact.
598  */
599 void
600 cache_inval(struct namecache *ncp, int flags)
601 {
602 	struct namecache *kid;
603 	struct namecache *nextkid;
604 
605 	KKASSERT(ncp->nc_exlocks);
606 again:
607 	cache_setunresolved(ncp);
608 	if (flags & CINV_DESTROY)
609 		ncp->nc_flag |= NCF_DESTROYED;
610 
611 	if ((flags & CINV_CHILDREN) &&
612 	    (kid = TAILQ_FIRST(&ncp->nc_list)) != NULL
613 	) {
614 		cache_hold(kid);
615 		cache_unlock(ncp);
616 		while (kid) {
617 			if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
618 				cache_hold(nextkid);
619 			if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
620 			    TAILQ_FIRST(&kid->nc_list)
621 			) {
622 				cache_lock(kid);
623 				cache_inval(kid, flags & ~CINV_DESTROY);
624 				cache_unlock(kid);
625 			}
626 			cache_drop(kid);
627 			kid = nextkid;
628 		}
629 		cache_lock(ncp);
630 
631 		/*
632 		 * Someone could have gotten in there while ncp was unlocked,
633 		 * retry if so.
634 		 */
635 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
636 			goto again;
637 	}
638 }
639 
640 /*
641  * Invalidate a vnode's namecache associations.
642  */
643 void
644 cache_inval_vp(struct vnode *vp, int flags)
645 {
646 	struct namecache *ncp;
647 
648 	while ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL) {
649 		cache_get(ncp);
650 		cache_inval(ncp, flags);
651 		cache_put(ncp);
652 	}
653 }
654 
655 /*
656  * The source ncp has been renamed to the target ncp.  Both fncp and tncp
657  * must be locked.  Both will be set to unresolved, any children of tncp
658  * will be disconnected (the prior contents of the target is assumed to be
659  * destroyed by the rename operation, e.g. renaming over an empty directory),
660  * and all children of fncp will be moved to tncp.
661  *
662  * XXX the disconnection could pose a problem, check code paths to make
663  * sure any code that blocks can handle the parent being changed out from
664  * under it.  Maybe we should lock the children (watch out for deadlocks) ?
665  *
666  * After we return the caller has the option of calling cache_setvp() if
667  * the vnode of the new target ncp is known.
668  *
669  * Any process CD'd into any of the children will no longer be able to ".."
670  * back out.  An rm -rf can cause this situation to occur.
671  */
672 void
673 cache_rename(struct namecache *fncp, struct namecache *tncp)
674 {
675 	struct namecache *scan;
676 
677 	cache_setunresolved(fncp);
678 	cache_setunresolved(tncp);
679 	cache_inval(tncp, CINV_CHILDREN);
680 	while ((scan = TAILQ_FIRST(&fncp->nc_list)) != NULL) {
681 		cache_hold(scan);
682 		cache_unlink_parent(scan);
683 		cache_link_parent(scan, tncp);
684 		if (scan->nc_flag & NCF_HASHED)
685 			cache_rehash(scan);
686 		cache_drop(scan);
687 	}
688 }
689 
690 /*
691  * vget the vnode associated with the namecache entry.  Resolve the namecache
692  * entry if necessary and deal with namecache/vp races.  The passed ncp must
693  * be referenced and may be locked.  The ncp's ref/locking state is not
694  * effected by this call.
695  *
696  * lk_type may be LK_SHARED, LK_EXCLUSIVE.  A ref'd, possibly locked
697  * (depending on the passed lk_type) will be returned in *vpp with an error
698  * of 0, or NULL will be returned in *vpp with a non-0 error code.  The
699  * most typical error is ENOENT, meaning that the ncp represents a negative
700  * cache hit and there is no vnode to retrieve, but other errors can occur
701  * too.
702  *
703  * The main race we have to deal with are namecache zaps.  The ncp itself
704  * will not disappear since it is referenced, and it turns out that the
705  * validity of the vp pointer can be checked simply by rechecking the
706  * contents of ncp->nc_vp.
707  */
708 int
709 cache_vget(struct namecache *ncp, struct ucred *cred,
710 	   int lk_type, struct vnode **vpp)
711 {
712 	struct vnode *vp;
713 	int error;
714 
715 again:
716 	vp = NULL;
717 	if (ncp->nc_flag & NCF_UNRESOLVED) {
718 		cache_lock(ncp);
719 		error = cache_resolve(ncp, cred);
720 		cache_unlock(ncp);
721 	} else {
722 		error = 0;
723 	}
724 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
725 		error = vget(vp, lk_type, curthread);
726 		if (error) {
727 			if (vp != ncp->nc_vp)	/* handle cache_zap race */
728 				goto again;
729 			vp = NULL;
730 		} else if (vp != ncp->nc_vp) {	/* handle cache_zap race */
731 			vput(vp);
732 			goto again;
733 		}
734 	}
735 	if (error == 0 && vp == NULL)
736 		error = ENOENT;
737 	*vpp = vp;
738 	return(error);
739 }
740 
741 int
742 cache_vref(struct namecache *ncp, struct ucred *cred, struct vnode **vpp)
743 {
744 	struct vnode *vp;
745 	int error;
746 
747 again:
748 	vp = NULL;
749 	if (ncp->nc_flag & NCF_UNRESOLVED) {
750 		cache_lock(ncp);
751 		error = cache_resolve(ncp, cred);
752 		cache_unlock(ncp);
753 	} else {
754 		error = 0;
755 	}
756 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
757 		vref(vp);
758 		if (vp != ncp->nc_vp) {		/* handle cache_zap race */
759 			vrele(vp);
760 			goto again;
761 		}
762 	}
763 	if (error == 0 && vp == NULL)
764 		error = ENOENT;
765 	*vpp = vp;
766 	return(error);
767 }
768 
769 /*
770  * Convert a directory vnode to a namecache record without any other
771  * knowledge of the topology.  This ONLY works with directory vnodes and
772  * is ONLY used by the NFS server.  dvp must be refd but unlocked, and the
773  * returned ncp (if not NULL) will be held and unlocked.
774  *
775  * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
776  * If 'makeit' is 1 we attempt to track-down and create the namecache topology
777  * for dvp.  This will fail only if the directory has been deleted out from
778  * under the caller.
779  *
780  * Callers must always check for a NULL return no matter the value of 'makeit'.
781  */
782 
783 static int cache_inefficient_scan(struct namecache *ncp, struct ucred *cred,
784 				  struct vnode *dvp);
785 
786 struct namecache *
787 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit)
788 {
789 	struct namecache *ncp;
790 	struct vnode *pvp;
791 	int error;
792 
793 	/*
794 	 * Temporary debugging code to force the directory scanning code
795 	 * to be exercised.
796 	 */
797 	ncp = NULL;
798 	if (ncvp_debug >= 3 && makeit && TAILQ_FIRST(&dvp->v_namecache)) {
799 		ncp = TAILQ_FIRST(&dvp->v_namecache);
800 		printf("cache_fromdvp: forcing %s\n", ncp->nc_name);
801 		goto force;
802 	}
803 
804 	/*
805 	 * Loop until resolution, inside code will break out on error.
806 	 */
807 	while ((ncp = TAILQ_FIRST(&dvp->v_namecache)) == NULL && makeit) {
808 force:
809 		/*
810 		 * If dvp is the root of its filesystem it should already
811 		 * have a namecache pointer associated with it as a side
812 		 * effect of the mount, but it may have been disassociated.
813 		 */
814 		if (dvp->v_flag & VROOT) {
815 			ncp = cache_get(dvp->v_mount->mnt_ncp);
816 			error = cache_resolve_mp(ncp);
817 			cache_put(ncp);
818 			if (ncvp_debug) {
819 				printf("cache_fromdvp: resolve root of mount %p error %d",
820 					dvp->v_mount, error);
821 			}
822 			if (error) {
823 				if (ncvp_debug)
824 					printf(" failed\n");
825 				ncp = NULL;
826 				break;
827 			}
828 			if (ncvp_debug)
829 				printf(" succeeded\n");
830 			continue;
831 		}
832 
833 		/*
834 		 * Get the parent directory and resolve its ncp.
835 		 */
836 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred);
837 		if (error) {
838 			printf("lookupdotdot failed %d %p\n", error, pvp);
839 			break;
840 		}
841 		VOP_UNLOCK(pvp, 0, curthread);
842 
843 		/*
844 		 * XXX this recursion could run the kernel out of stack,
845 		 * change to a less efficient algorithm if we get too deep
846 		 * (use 'makeit' for a depth counter?)
847 		 */
848 		ncp = cache_fromdvp(pvp, cred, makeit);
849 		vrele(pvp);
850 		if (ncp == NULL)
851 			break;
852 
853 		/*
854 		 * Do an inefficient scan of pvp (embodied by ncp) to look
855 		 * for dvp.  This will create a namecache record for dvp on
856 		 * success.  We loop up to recheck on success.
857 		 *
858 		 * ncp and dvp are both held but not locked.
859 		 */
860 		error = cache_inefficient_scan(ncp, cred, dvp);
861 		cache_drop(ncp);
862 		if (error) {
863 			printf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
864 				pvp, ncp->nc_name, dvp);
865 			ncp = NULL;
866 			break;
867 		}
868 		if (ncvp_debug) {
869 			printf("cache_fromdvp: scan %p (%s) succeeded\n",
870 				pvp, ncp->nc_name);
871 		}
872 	}
873 	if (ncp)
874 		cache_hold(ncp);
875 	return (ncp);
876 }
877 
878 /*
879  * Do an inefficient scan of the directory represented by ncp looking for
880  * the directory vnode dvp.  ncp must be held but not locked on entry and
881  * will be held on return.  dvp must be refd but not locked on entry and
882  * will remain refd on return.
883  *
884  * Why do this at all?  Well, due to its stateless nature the NFS server
885  * converts file handles directly to vnodes without necessarily going through
886  * the namecache ops that would otherwise create the namecache topology
887  * leading to the vnode.  We could either (1) Change the namecache algorithms
888  * to allow disconnect namecache records that are re-merged opportunistically,
889  * or (2) Make the NFS server backtrack and scan to recover a connected
890  * namecache topology in order to then be able to issue new API lookups.
891  *
892  * It turns out that (1) is a huge mess.  It takes a nice clean set of
893  * namecache algorithms and introduces a lot of complication in every subsystem
894  * that calls into the namecache to deal with the re-merge case, especially
895  * since we are using the namecache to placehold negative lookups and the
896  * vnode might not be immediately assigned. (2) is certainly far less
897  * efficient then (1), but since we are only talking about directories here
898  * (which are likely to remain cached), the case does not actually run all
899  * that often and has the supreme advantage of not polluting the namecache
900  * algorithms.
901  */
902 static int
903 cache_inefficient_scan(struct namecache *ncp, struct ucred *cred,
904 		       struct vnode *dvp)
905 {
906 	struct nlcomponent nlc;
907 	struct namecache *rncp;
908 	struct dirent *den;
909 	struct vnode *pvp;
910 	struct vattr vat;
911 	struct iovec iov;
912 	struct uio uio;
913 	u_long *cookies;
914 	off_t baseoff;
915 	int ncookies;
916 	int blksize;
917 	int eofflag;
918 	char *rbuf;
919 	int error;
920 	int xoff;
921 	int i;
922 
923 	vat.va_blocksize = 0;
924 	if ((error = VOP_GETATTR(dvp, &vat, curthread)) != 0)
925 		return (error);
926 	if ((error = cache_vget(ncp, cred, LK_SHARED, &pvp)) != 0)
927 		return (error);
928 	if (ncvp_debug)
929 		printf("inefficient_scan: directory iosize %ld vattr fileid = %ld\n", vat.va_blocksize, (long)vat.va_fileid);
930 	if ((blksize = vat.va_blocksize) == 0)
931 		blksize = DEV_BSIZE;
932 	rbuf = malloc(blksize, M_TEMP, M_WAITOK);
933 	rncp = NULL;
934 
935 	eofflag = 0;
936 	uio.uio_offset = 0;
937 	cookies = NULL;
938 again:
939 	baseoff = uio.uio_offset;
940 	iov.iov_base = rbuf;
941 	iov.iov_len = blksize;
942 	uio.uio_iov = &iov;
943 	uio.uio_iovcnt = 1;
944 	uio.uio_resid = blksize;
945 	uio.uio_segflg = UIO_SYSSPACE;
946 	uio.uio_rw = UIO_READ;
947 	uio.uio_td = curthread;
948 
949 	if (cookies) {
950 		free(cookies, M_TEMP);
951 		cookies = NULL;
952 	}
953 	if (ncvp_debug >= 2)
954 		printf("cache_inefficient_scan: readdir @ %08x\n", (int)baseoff);
955 	error = VOP_READDIR(pvp, &uio, cred, &eofflag, &ncookies, &cookies);
956 	if (error == 0 && cookies == NULL)
957 		error = EPERM;
958 	if (error == 0) {
959 		for (i = 0; i < ncookies; ++i) {
960 			xoff = (int)(cookies[i] - (u_long)baseoff);
961 			/*
962 			 * UFS plays a little trick to skip the first entry
963 			 * in a directory ("."), by assigning the cookie to
964 			 * dpoff + dp->d_reclen in the loop.  This causes
965 			 * the last cookie to be assigned to the data-end of
966 			 * the directory.  XXX
967 			 */
968 			if (xoff == blksize)
969 				break;
970 			KKASSERT(xoff >= 0 && xoff <= blksize);
971 			den = (struct dirent *)(rbuf + xoff);
972 			if (ncvp_debug >= 2)
973 				printf("cache_inefficient_scan: %*.*s\n",
974 					den->d_namlen, den->d_namlen, den->d_name);
975 			if (den->d_type != DT_WHT &&
976 			    den->d_fileno == vat.va_fileid) {
977 				if (ncvp_debug)
978 					printf("cache_inefficient_scan: MATCHED inode %ld path %s/%*.*s\n", vat.va_fileid, ncp->nc_name, den->d_namlen, den->d_namlen, den->d_name);
979 				nlc.nlc_nameptr = den->d_name;
980 				nlc.nlc_namelen = den->d_namlen;
981 				VOP_UNLOCK(pvp, 0, curthread);
982 				rncp = cache_nlookup(ncp, &nlc);
983 				KKASSERT(rncp != NULL);
984 				break;
985 			}
986 		}
987 		if (rncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
988 			goto again;
989 	}
990 	if (cookies) {
991 		free(cookies, M_TEMP);
992 		cookies = NULL;
993 	}
994 	if (rncp) {
995 		vrele(pvp);
996 		if (rncp->nc_flag & NCF_UNRESOLVED) {
997 			cache_setvp(rncp, dvp);
998 			if (ncvp_debug >= 2) {
999 				printf("cache_inefficient_scan: setvp %s/%s = %p\n",
1000 					ncp->nc_name, rncp->nc_name, dvp);
1001 			}
1002 		} else {
1003 			if (ncvp_debug >= 2) {
1004 				printf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
1005 					ncp->nc_name, rncp->nc_name, dvp,
1006 					rncp->nc_vp);
1007 			}
1008 		}
1009 		if (rncp->nc_vp == NULL)
1010 			error = rncp->nc_error;
1011 		cache_put(rncp);
1012 	} else {
1013 		printf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
1014 			dvp, ncp->nc_name);
1015 		vput(pvp);
1016 		error = ENOENT;
1017 	}
1018 	free(rbuf, M_TEMP);
1019 	return (error);
1020 }
1021 
1022 /*
1023  * Zap a namecache entry.  The ncp is unconditionally set to an unresolved
1024  * state, which disassociates it from its vnode or ncneglist.
1025  *
1026  * Then, if there are no additional references to the ncp and no children,
1027  * the ncp is removed from the topology and destroyed.  This function will
1028  * also run through the nc_parent chain and destroy parent ncps if possible.
1029  * As a side benefit, it turns out the only conditions that allow running
1030  * up the chain are also the conditions to ensure no deadlock will occur.
1031  *
1032  * References and/or children may exist if the ncp is in the middle of the
1033  * topology, preventing the ncp from being destroyed.
1034  *
1035  * This function must be called with the ncp held and locked and will unlock
1036  * and drop it during zapping.
1037  */
1038 static void
1039 cache_zap(struct namecache *ncp)
1040 {
1041 	struct namecache *par;
1042 
1043 	/*
1044 	 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
1045 	 */
1046 	cache_setunresolved(ncp);
1047 
1048 	/*
1049 	 * Try to scrap the entry and possibly tail-recurse on its parent.
1050 	 * We only scrap unref'd (other then our ref) unresolved entries,
1051 	 * we do not scrap 'live' entries.
1052 	 */
1053 	while (ncp->nc_flag & NCF_UNRESOLVED) {
1054 		/*
1055 		 * Someone other then us has a ref, stop.
1056 		 */
1057 		if (ncp->nc_refs > 1)
1058 			goto done;
1059 
1060 		/*
1061 		 * We have children, stop.
1062 		 */
1063 		if (!TAILQ_EMPTY(&ncp->nc_list))
1064 			goto done;
1065 
1066 		/*
1067 		 * Remove ncp from the topology: hash table and parent linkage.
1068 		 */
1069 		if (ncp->nc_flag & NCF_HASHED) {
1070 			ncp->nc_flag &= ~NCF_HASHED;
1071 			LIST_REMOVE(ncp, nc_hash);
1072 		}
1073 		if ((par = ncp->nc_parent) != NULL) {
1074 			par = cache_hold(par);
1075 			TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
1076 			ncp->nc_parent = NULL;
1077 			if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
1078 				vdrop(par->nc_vp);
1079 		}
1080 
1081 		/*
1082 		 * ncp should not have picked up any refs.  Physically
1083 		 * destroy the ncp.
1084 		 */
1085 		KKASSERT(ncp->nc_refs == 1);
1086 		--numunres;
1087 		/* cache_unlock(ncp) not required */
1088 		ncp->nc_refs = -1;	/* safety */
1089 		if (ncp->nc_name)
1090 			free(ncp->nc_name, M_VFSCACHE);
1091 		free(ncp, M_VFSCACHE);
1092 
1093 		/*
1094 		 * Loop on the parent (it may be NULL).  Only bother looping
1095 		 * if the parent has a single ref (ours), which also means
1096 		 * we can lock it trivially.
1097 		 */
1098 		ncp = par;
1099 		if (ncp == NULL)
1100 			return;
1101 		if (ncp->nc_refs != 1) {
1102 			cache_drop(ncp);
1103 			return;
1104 		}
1105 		KKASSERT(par->nc_exlocks == 0);
1106 		cache_lock(ncp);
1107 	}
1108 done:
1109 	cache_unlock(ncp);
1110 	--ncp->nc_refs;
1111 }
1112 
1113 static enum { CHI_LOW, CHI_HIGH } cache_hysteresis_state = CHI_LOW;
1114 
1115 static __inline
1116 void
1117 cache_hysteresis(void)
1118 {
1119 	/*
1120 	 * Don't cache too many negative hits.  We use hysteresis to reduce
1121 	 * the impact on the critical path.
1122 	 */
1123 	switch(cache_hysteresis_state) {
1124 	case CHI_LOW:
1125 		if (numneg > MINNEG && numneg * ncnegfactor > numcache) {
1126 			cache_cleanneg(10);
1127 			cache_hysteresis_state = CHI_HIGH;
1128 		}
1129 		break;
1130 	case CHI_HIGH:
1131 		if (numneg > MINNEG * 9 / 10 &&
1132 		    numneg * ncnegfactor * 9 / 10 > numcache
1133 		) {
1134 			cache_cleanneg(10);
1135 		} else {
1136 			cache_hysteresis_state = CHI_LOW;
1137 		}
1138 		break;
1139 	}
1140 }
1141 
1142 /*
1143  * NEW NAMECACHE LOOKUP API
1144  *
1145  * Lookup an entry in the cache.  A locked, referenced, non-NULL
1146  * entry is *always* returned, even if the supplied component is illegal.
1147  * The resulting namecache entry should be returned to the system with
1148  * cache_put() or cache_unlock() + cache_drop().
1149  *
1150  * namecache locks are recursive but care must be taken to avoid lock order
1151  * reversals.
1152  *
1153  * Nobody else will be able to manipulate the associated namespace (e.g.
1154  * create, delete, rename, rename-target) until the caller unlocks the
1155  * entry.
1156  *
1157  * The returned entry will be in one of three states:  positive hit (non-null
1158  * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
1159  * Unresolved entries must be resolved through the filesystem to associate the
1160  * vnode and/or determine whether a positive or negative hit has occured.
1161  *
1162  * It is not necessary to lock a directory in order to lock namespace under
1163  * that directory.  In fact, it is explicitly not allowed to do that.  A
1164  * directory is typically only locked when being created, renamed, or
1165  * destroyed.
1166  *
1167  * The directory (par) may be unresolved, in which case any returned child
1168  * will likely also be marked unresolved.  Likely but not guarenteed.  Since
1169  * the filesystem lookup requires a resolved directory vnode the caller is
1170  * responsible for resolving the namecache chain top-down.  This API
1171  * specifically allows whole chains to be created in an unresolved state.
1172  */
1173 struct namecache *
1174 cache_nlookup(struct namecache *par, struct nlcomponent *nlc)
1175 {
1176 	struct namecache *ncp;
1177 	struct namecache *new_ncp;
1178 	struct nchashhead *nchpp;
1179 	u_int32_t hash;
1180 	globaldata_t gd;
1181 
1182 	numcalls++;
1183 	gd = mycpu;
1184 
1185 	/*
1186 	 * Try to locate an existing entry
1187 	 */
1188 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
1189 	hash = fnv_32_buf(&par, sizeof(par), hash);
1190 	new_ncp = NULL;
1191 restart:
1192 	LIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1193 		numchecks++;
1194 
1195 		/*
1196 		 * Zap entries that have timed out.
1197 		 */
1198 		if (ncp->nc_timeout &&
1199 		    (int)(ncp->nc_timeout - ticks) < 0 &&
1200 		    (ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
1201 		    ncp->nc_exlocks == 0
1202 		) {
1203 			cache_zap(cache_get(ncp));
1204 			goto restart;
1205 		}
1206 
1207 		/*
1208 		 * Break out if we find a matching entry.  Note that
1209 		 * UNRESOLVED entries may match, but DESTROYED entries
1210 		 * do not.
1211 		 */
1212 		if (ncp->nc_parent == par &&
1213 		    ncp->nc_nlen == nlc->nlc_namelen &&
1214 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
1215 		    (ncp->nc_flag & NCF_DESTROYED) == 0
1216 		) {
1217 			if (cache_get_nonblock(ncp) == 0) {
1218 				if (new_ncp)
1219 					cache_free(new_ncp);
1220 				goto found;
1221 			}
1222 			cache_get(ncp);
1223 			cache_put(ncp);
1224 			goto restart;
1225 		}
1226 	}
1227 
1228 	/*
1229 	 * We failed to locate an entry, create a new entry and add it to
1230 	 * the cache.  We have to relookup after possibly blocking in
1231 	 * malloc.
1232 	 */
1233 	if (new_ncp == NULL) {
1234 		new_ncp = cache_alloc(nlc->nlc_namelen);
1235 		goto restart;
1236 	}
1237 
1238 	ncp = new_ncp;
1239 
1240 	/*
1241 	 * Initialize as a new UNRESOLVED entry, lock (non-blocking),
1242 	 * and link to the parent.  The mount point is usually inherited
1243 	 * from the parent unless this is a special case such as a mount
1244 	 * point where nlc_namelen is 0.  The caller is responsible for
1245 	 * setting nc_mount in that case.  If nlc_namelen is 0 nc_name will
1246 	 * be NULL.
1247 	 */
1248 	if (nlc->nlc_namelen) {
1249 		bcopy(nlc->nlc_nameptr, ncp->nc_name, nlc->nlc_namelen);
1250 		ncp->nc_name[nlc->nlc_namelen] = 0;
1251 		ncp->nc_mount = par->nc_mount;
1252 	}
1253 	nchpp = NCHHASH(hash);
1254 	LIST_INSERT_HEAD(nchpp, ncp, nc_hash);
1255 	ncp->nc_flag |= NCF_HASHED;
1256 	cache_link_parent(ncp, par);
1257 found:
1258 	/*
1259 	 * stats and namecache size management
1260 	 */
1261 	if (ncp->nc_flag & NCF_UNRESOLVED)
1262 		++gd->gd_nchstats->ncs_miss;
1263 	else if (ncp->nc_vp)
1264 		++gd->gd_nchstats->ncs_goodhits;
1265 	else
1266 		++gd->gd_nchstats->ncs_neghits;
1267 	cache_hysteresis();
1268 	return(ncp);
1269 }
1270 
1271 /*
1272  * Resolve an unresolved namecache entry, generally by looking it up.
1273  * The passed ncp must be locked and refd.
1274  *
1275  * Theoretically since a vnode cannot be recycled while held, and since
1276  * the nc_parent chain holds its vnode as long as children exist, the
1277  * direct parent of the cache entry we are trying to resolve should
1278  * have a valid vnode.  If not then generate an error that we can
1279  * determine is related to a resolver bug.
1280  *
1281  * Note that successful resolution does not necessarily return an error
1282  * code of 0.  If the ncp resolves to a negative cache hit then ENOENT
1283  * will be returned.
1284  */
1285 int
1286 cache_resolve(struct namecache *ncp, struct ucred *cred)
1287 {
1288 	struct namecache *par;
1289 	int error;
1290 
1291 restart:
1292 	/*
1293 	 * If the ncp is already resolved we have nothing to do.
1294 	 */
1295 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1296 		return (ncp->nc_error);
1297 
1298 	/*
1299 	 * Mount points need special handling because the parent does not
1300 	 * belong to the same filesystem as the ncp.
1301 	 */
1302 	if (ncp->nc_flag & NCF_MOUNTPT)
1303 		return (cache_resolve_mp(ncp));
1304 
1305 	/*
1306 	 * We expect an unbroken chain of ncps to at least the mount point,
1307 	 * and even all the way to root (but this code doesn't have to go
1308 	 * past the mount point).
1309 	 */
1310 	if (ncp->nc_parent == NULL) {
1311 		printf("EXDEV case 1 %p %*.*s\n", ncp,
1312 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
1313 		ncp->nc_error = EXDEV;
1314 		return(ncp->nc_error);
1315 	}
1316 
1317 	/*
1318 	 * The vp's of the parent directories in the chain are held via vhold()
1319 	 * due to the existance of the child, and should not disappear.
1320 	 * However, there are cases where they can disappear:
1321 	 *
1322 	 *	- due to filesystem I/O errors.
1323 	 *	- due to NFS being stupid about tracking the namespace and
1324 	 *	  destroys the namespace for entire directories quite often.
1325 	 *	- due to forced unmounts.
1326 	 *	- due to an rmdir (parent will be marked DESTROYED)
1327 	 *
1328 	 * When this occurs we have to track the chain backwards and resolve
1329 	 * it, looping until the resolver catches up to the current node.  We
1330 	 * could recurse here but we might run ourselves out of kernel stack
1331 	 * so we do it in a more painful manner.  This situation really should
1332 	 * not occur all that often, or if it does not have to go back too
1333 	 * many nodes to resolve the ncp.
1334 	 */
1335 	while (ncp->nc_parent->nc_vp == NULL) {
1336 		/*
1337 		 * This case can occur if a process is CD'd into a
1338 		 * directory which is then rmdir'd.  If the parent is marked
1339 		 * destroyed there is no point trying to resolve it.
1340 		 */
1341 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
1342 			return(ENOENT);
1343 
1344 		par = ncp->nc_parent;
1345 		while (par->nc_parent && par->nc_parent->nc_vp == NULL)
1346 			par = par->nc_parent;
1347 		if (par->nc_parent == NULL) {
1348 			printf("EXDEV case 2 %*.*s\n",
1349 				par->nc_nlen, par->nc_nlen, par->nc_name);
1350 			return (EXDEV);
1351 		}
1352 		printf("[diagnostic] cache_resolve: had to recurse on %*.*s\n",
1353 			par->nc_nlen, par->nc_nlen, par->nc_name);
1354 		/*
1355 		 * The parent is not set in stone, ref and lock it to prevent
1356 		 * it from disappearing.  Also note that due to renames it
1357 		 * is possible for our ncp to move and for par to no longer
1358 		 * be one of its parents.  We resolve it anyway, the loop
1359 		 * will handle any moves.
1360 		 */
1361 		cache_get(par);
1362 		if (par->nc_flag & NCF_MOUNTPT) {
1363 			cache_resolve_mp(par);
1364 		} else if (par->nc_parent->nc_vp == NULL) {
1365 			printf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name);
1366 			cache_put(par);
1367 			continue;
1368 		} else if (par->nc_flag & NCF_UNRESOLVED) {
1369 			par->nc_error = VOP_NRESOLVE(par, cred);
1370 		}
1371 		if ((error = par->nc_error) != 0) {
1372 			if (par->nc_error != EAGAIN) {
1373 				printf("EXDEV case 3 %*.*s error %d\n",
1374 				    par->nc_nlen, par->nc_nlen, par->nc_name,
1375 				    par->nc_error);
1376 				cache_put(par);
1377 				return(error);
1378 			}
1379 			printf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
1380 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
1381 		}
1382 		cache_put(par);
1383 		/* loop */
1384 	}
1385 
1386 	/*
1387 	 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
1388 	 * ncp's and reattach them.  If this occurs the original ncp is marked
1389 	 * EAGAIN to force a relookup.
1390 	 *
1391 	 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
1392 	 * ncp must already be resolved.
1393 	 */
1394 	KKASSERT((ncp->nc_flag & NCF_MOUNTPT) == 0);
1395 	ncp->nc_error = VOP_NRESOLVE(ncp, cred);
1396 	/*vop_nresolve(*ncp->nc_parent->nc_vp->v_ops, ncp, cred);*/
1397 	if (ncp->nc_error == EAGAIN) {
1398 		printf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
1399 			ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
1400 		goto restart;
1401 	}
1402 	return(ncp->nc_error);
1403 }
1404 
1405 /*
1406  * Resolve the ncp associated with a mount point.  Such ncp's almost always
1407  * remain resolved and this routine is rarely called.  NFS MPs tends to force
1408  * re-resolution more often due to its mac-truck-smash-the-namecache
1409  * method of tracking namespace changes.
1410  *
1411  * The semantics for this call is that the passed ncp must be locked on
1412  * entry and will be locked on return.  However, if we actually have to
1413  * resolve the mount point we temporarily unlock the entry in order to
1414  * avoid race-to-root deadlocks due to e.g. dead NFS mounts.  Because of
1415  * the unlock we have to recheck the flags after we relock.
1416  */
1417 static int
1418 cache_resolve_mp(struct namecache *ncp)
1419 {
1420 	struct vnode *vp;
1421 	struct mount *mp = ncp->nc_mount;
1422 	int error;
1423 
1424 	KKASSERT(mp != NULL);
1425 	if (ncp->nc_flag & NCF_UNRESOLVED) {
1426 		cache_unlock(ncp);
1427 		while (vfs_busy(mp, 0, NULL, curthread))
1428 			;
1429 		error = VFS_ROOT(mp, &vp);
1430 		cache_lock(ncp);
1431 
1432 		/*
1433 		 * recheck the ncp state after relocking.
1434 		 */
1435 		if (ncp->nc_flag & NCF_UNRESOLVED) {
1436 			ncp->nc_error = error;
1437 			if (error == 0) {
1438 				cache_setvp(ncp, vp);
1439 				vput(vp);
1440 			} else {
1441 				printf("[diagnostic] cache_resolve_mp: failed to resolve mount %p\n", mp);
1442 				cache_setvp(ncp, NULL);
1443 			}
1444 		} else if (error == 0) {
1445 			vput(vp);
1446 		}
1447 		vfs_unbusy(mp, curthread);
1448 	}
1449 	return(ncp->nc_error);
1450 }
1451 
1452 void
1453 cache_cleanneg(int count)
1454 {
1455 	struct namecache *ncp;
1456 
1457 	/*
1458 	 * Automode from the vnlru proc - clean out 10% of the negative cache
1459 	 * entries.
1460 	 */
1461 	if (count == 0)
1462 		count = numneg / 10 + 1;
1463 
1464 	/*
1465 	 * Attempt to clean out the specified number of negative cache
1466 	 * entries.
1467 	 */
1468 	while (count) {
1469 		ncp = TAILQ_FIRST(&ncneglist);
1470 		if (ncp == NULL) {
1471 			KKASSERT(numneg == 0);
1472 			break;
1473 		}
1474 		TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
1475 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
1476 		if (cache_get_nonblock(ncp) == 0)
1477 			cache_zap(ncp);
1478 		--count;
1479 	}
1480 }
1481 
1482 /*
1483  * Rehash a ncp.  Rehashing is typically required if the name changes (should
1484  * not generally occur) or the parent link changes.  This function will
1485  * unhash the ncp if the ncp is no longer hashable.
1486  */
1487 static void
1488 cache_rehash(struct namecache *ncp)
1489 {
1490 	struct nchashhead *nchpp;
1491 	u_int32_t hash;
1492 
1493 	if (ncp->nc_flag & NCF_HASHED) {
1494 		ncp->nc_flag &= ~NCF_HASHED;
1495 		LIST_REMOVE(ncp, nc_hash);
1496 	}
1497 	if (ncp->nc_nlen && ncp->nc_parent) {
1498 		hash = fnv_32_buf(ncp->nc_name, ncp->nc_nlen, FNV1_32_INIT);
1499 		hash = fnv_32_buf(&ncp->nc_parent,
1500 					sizeof(ncp->nc_parent), hash);
1501 		nchpp = NCHHASH(hash);
1502 		LIST_INSERT_HEAD(nchpp, ncp, nc_hash);
1503 		ncp->nc_flag |= NCF_HASHED;
1504 	}
1505 }
1506 
1507 /*
1508  * Name cache initialization, from vfsinit() when we are booting
1509  */
1510 void
1511 nchinit(void)
1512 {
1513 	int i;
1514 	globaldata_t gd;
1515 
1516 	/* initialise per-cpu namecache effectiveness statistics. */
1517 	for (i = 0; i < ncpus; ++i) {
1518 		gd = globaldata_find(i);
1519 		gd->gd_nchstats = &nchstats[i];
1520 	}
1521 	TAILQ_INIT(&ncneglist);
1522 	nchashtbl = hashinit(desiredvnodes*2, M_VFSCACHE, &nchash);
1523 	nclockwarn = 1 * hz;
1524 }
1525 
1526 /*
1527  * Called from start_init() to bootstrap the root filesystem.  Returns
1528  * a referenced, unlocked namecache record.
1529  */
1530 struct namecache *
1531 cache_allocroot(struct mount *mp, struct vnode *vp)
1532 {
1533 	struct namecache *ncp = cache_alloc(0);
1534 
1535 	ncp->nc_flag |= NCF_MOUNTPT | NCF_ROOT;
1536 	ncp->nc_mount = mp;
1537 	cache_setvp(ncp, vp);
1538 	return(ncp);
1539 }
1540 
1541 /*
1542  * vfs_cache_setroot()
1543  *
1544  *	Create an association between the root of our namecache and
1545  *	the root vnode.  This routine may be called several times during
1546  *	booting.
1547  *
1548  *	If the caller intends to save the returned namecache pointer somewhere
1549  *	it must cache_hold() it.
1550  */
1551 void
1552 vfs_cache_setroot(struct vnode *nvp, struct namecache *ncp)
1553 {
1554 	struct vnode *ovp;
1555 	struct namecache *oncp;
1556 
1557 	ovp = rootvnode;
1558 	oncp = rootncp;
1559 	rootvnode = nvp;
1560 	rootncp = ncp;
1561 
1562 	if (ovp)
1563 		vrele(ovp);
1564 	if (oncp)
1565 		cache_drop(oncp);
1566 }
1567 
1568 /*
1569  * XXX OLD API COMPAT FUNCTION.  This really messes up the new namecache
1570  * topology and is being removed as quickly as possible.  The new VOP_N*()
1571  * API calls are required to make specific adjustments using the supplied
1572  * ncp pointers rather then just bogusly purging random vnodes.
1573  *
1574  * Invalidate all namecache entries to a particular vnode as well as
1575  * any direct children of that vnode in the namecache.  This is a
1576  * 'catch all' purge used by filesystems that do not know any better.
1577  *
1578  * A new vnode v_id is generated.  Note that no vnode will ever have a
1579  * v_id of 0.
1580  *
1581  * Note that the linkage between the vnode and its namecache entries will
1582  * be removed, but the namecache entries themselves might stay put due to
1583  * active references from elsewhere in the system or due to the existance of
1584  * the children.   The namecache topology is left intact even if we do not
1585  * know what the vnode association is.  Such entries will be marked
1586  * NCF_UNRESOLVED.
1587  *
1588  * XXX: Only time and the size of v_id prevents this from failing:
1589  * XXX: In theory we should hunt down all (struct vnode*, v_id)
1590  * XXX: soft references and nuke them, at least on the global
1591  * XXX: v_id wraparound.  The period of resistance can be extended
1592  * XXX: by incrementing each vnodes v_id individually instead of
1593  * XXX: using the global v_id.
1594  */
1595 void
1596 cache_purge(struct vnode *vp)
1597 {
1598 	static u_long nextid;
1599 
1600 	cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
1601 
1602 	/*
1603 	 * Calculate a new unique id for ".." handling
1604 	 */
1605 	do {
1606 		nextid++;
1607 	} while (nextid == vp->v_id || nextid == 0);
1608 	vp->v_id = nextid;
1609 }
1610 
1611 /*
1612  * Flush all entries referencing a particular filesystem.
1613  *
1614  * Since we need to check it anyway, we will flush all the invalid
1615  * entries at the same time.
1616  */
1617 void
1618 cache_purgevfs(struct mount *mp)
1619 {
1620 	struct nchashhead *nchpp;
1621 	struct namecache *ncp, *nnp;
1622 
1623 	/*
1624 	 * Scan hash tables for applicable entries.
1625 	 */
1626 	for (nchpp = &nchashtbl[nchash]; nchpp >= nchashtbl; nchpp--) {
1627 		ncp = LIST_FIRST(nchpp);
1628 		if (ncp)
1629 			cache_hold(ncp);
1630 		while (ncp) {
1631 			nnp = LIST_NEXT(ncp, nc_hash);
1632 			if (nnp)
1633 				cache_hold(nnp);
1634 			if (ncp->nc_mount == mp) {
1635 				cache_lock(ncp);
1636 				cache_zap(ncp);
1637 			} else {
1638 				cache_drop(ncp);
1639 			}
1640 			ncp = nnp;
1641 		}
1642 	}
1643 }
1644 
1645 static int disablecwd;
1646 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0, "");
1647 
1648 static u_long numcwdcalls; STATNODE(CTLFLAG_RD, numcwdcalls, &numcwdcalls);
1649 static u_long numcwdfail1; STATNODE(CTLFLAG_RD, numcwdfail1, &numcwdfail1);
1650 static u_long numcwdfail2; STATNODE(CTLFLAG_RD, numcwdfail2, &numcwdfail2);
1651 static u_long numcwdfail3; STATNODE(CTLFLAG_RD, numcwdfail3, &numcwdfail3);
1652 static u_long numcwdfail4; STATNODE(CTLFLAG_RD, numcwdfail4, &numcwdfail4);
1653 static u_long numcwdfound; STATNODE(CTLFLAG_RD, numcwdfound, &numcwdfound);
1654 
1655 int
1656 __getcwd(struct __getcwd_args *uap)
1657 {
1658 	int buflen;
1659 	int error;
1660 	char *buf;
1661 	char *bp;
1662 
1663 	if (disablecwd)
1664 		return (ENODEV);
1665 
1666 	buflen = uap->buflen;
1667 	if (buflen < 2)
1668 		return (EINVAL);
1669 	if (buflen > MAXPATHLEN)
1670 		buflen = MAXPATHLEN;
1671 
1672 	buf = malloc(buflen, M_TEMP, M_WAITOK);
1673 	bp = kern_getcwd(buf, buflen, &error);
1674 	if (error == 0)
1675 		error = copyout(bp, uap->buf, strlen(bp) + 1);
1676 	free(buf, M_TEMP);
1677 	return (error);
1678 }
1679 
1680 char *
1681 kern_getcwd(char *buf, size_t buflen, int *error)
1682 {
1683 	struct proc *p = curproc;
1684 	char *bp;
1685 	int i, slash_prefixed;
1686 	struct filedesc *fdp;
1687 	struct namecache *ncp;
1688 
1689 	numcwdcalls++;
1690 	bp = buf;
1691 	bp += buflen - 1;
1692 	*bp = '\0';
1693 	fdp = p->p_fd;
1694 	slash_prefixed = 0;
1695 
1696 	ncp = fdp->fd_ncdir;
1697 	while (ncp && ncp != fdp->fd_nrdir && (ncp->nc_flag & NCF_ROOT) == 0) {
1698 		if (ncp->nc_flag & NCF_MOUNTPT) {
1699 			if (ncp->nc_mount == NULL) {
1700 				*error = EBADF;		/* forced unmount? */
1701 				return(NULL);
1702 			}
1703 			ncp = ncp->nc_parent;
1704 			continue;
1705 		}
1706 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
1707 			if (bp == buf) {
1708 				numcwdfail4++;
1709 				*error = ENOMEM;
1710 				return(NULL);
1711 			}
1712 			*--bp = ncp->nc_name[i];
1713 		}
1714 		if (bp == buf) {
1715 			numcwdfail4++;
1716 			*error = ENOMEM;
1717 			return(NULL);
1718 		}
1719 		*--bp = '/';
1720 		slash_prefixed = 1;
1721 		ncp = ncp->nc_parent;
1722 	}
1723 	if (ncp == NULL) {
1724 		numcwdfail2++;
1725 		*error = ENOENT;
1726 		return(NULL);
1727 	}
1728 	if (!slash_prefixed) {
1729 		if (bp == buf) {
1730 			numcwdfail4++;
1731 			*error = ENOMEM;
1732 			return(NULL);
1733 		}
1734 		*--bp = '/';
1735 	}
1736 	numcwdfound++;
1737 	*error = 0;
1738 	return (bp);
1739 }
1740 
1741 /*
1742  * Thus begins the fullpath magic.
1743  */
1744 
1745 #undef STATNODE
1746 #define STATNODE(name)							\
1747 	static u_int name;						\
1748 	SYSCTL_UINT(_vfs_cache, OID_AUTO, name, CTLFLAG_RD, &name, 0, "")
1749 
1750 static int disablefullpath;
1751 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
1752     &disablefullpath, 0, "");
1753 
1754 STATNODE(numfullpathcalls);
1755 STATNODE(numfullpathfail1);
1756 STATNODE(numfullpathfail2);
1757 STATNODE(numfullpathfail3);
1758 STATNODE(numfullpathfail4);
1759 STATNODE(numfullpathfound);
1760 
1761 int
1762 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf, char **freebuf)
1763 {
1764 	char *bp, *buf;
1765 	int i, slash_prefixed;
1766 	struct filedesc *fdp;
1767 	struct namecache *ncp;
1768 
1769 	numfullpathcalls++;
1770 	if (disablefullpath)
1771 		return (ENODEV);
1772 
1773 	if (p == NULL)
1774 		return (EINVAL);
1775 
1776 	/* vn is NULL, client wants us to use p->p_textvp */
1777 	if (vn == NULL) {
1778 		if ((vn = p->p_textvp) == NULL)
1779 			return (EINVAL);
1780 	}
1781 	TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
1782 		if (ncp->nc_nlen)
1783 			break;
1784 	}
1785 	if (ncp == NULL)
1786 		return (EINVAL);
1787 
1788 	buf = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
1789 	bp = buf + MAXPATHLEN - 1;
1790 	*bp = '\0';
1791 	fdp = p->p_fd;
1792 	slash_prefixed = 0;
1793 	while (ncp && ncp != fdp->fd_nrdir && (ncp->nc_flag & NCF_ROOT) == 0) {
1794 		if (ncp->nc_flag & NCF_MOUNTPT) {
1795 			if (ncp->nc_mount == NULL) {
1796 				free(buf, M_TEMP);
1797 				return(EBADF);
1798 			}
1799 			ncp = ncp->nc_parent;
1800 			continue;
1801 		}
1802 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
1803 			if (bp == buf) {
1804 				numfullpathfail4++;
1805 				free(buf, M_TEMP);
1806 				return (ENOMEM);
1807 			}
1808 			*--bp = ncp->nc_name[i];
1809 		}
1810 		if (bp == buf) {
1811 			numfullpathfail4++;
1812 			free(buf, M_TEMP);
1813 			return (ENOMEM);
1814 		}
1815 		*--bp = '/';
1816 		slash_prefixed = 1;
1817 		ncp = ncp->nc_parent;
1818 	}
1819 	if (ncp == NULL) {
1820 		numfullpathfail2++;
1821 		free(buf, M_TEMP);
1822 		return (ENOENT);
1823 	}
1824 	if (!slash_prefixed) {
1825 		if (bp == buf) {
1826 			numfullpathfail4++;
1827 			free(buf, M_TEMP);
1828 			return (ENOMEM);
1829 		}
1830 		*--bp = '/';
1831 	}
1832 	numfullpathfound++;
1833 	*retbuf = bp;
1834 	*freebuf = buf;
1835 	return (0);
1836 }
1837 
1838