xref: /dragonfly/sys/kern/vfs_cache.c (revision 631c21f2)
1 /*
2  * Copyright (c) 2003-2020 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993, 1995
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * Poul-Henning Kamp of the FreeBSD Project.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. Neither the name of the University nor the names of its contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/uio.h>
68 #include <sys/kernel.h>
69 #include <sys/sysctl.h>
70 #include <sys/mount.h>
71 #include <sys/vnode.h>
72 #include <sys/malloc.h>
73 #include <sys/sysmsg.h>
74 #include <sys/spinlock.h>
75 #include <sys/proc.h>
76 #include <sys/nlookup.h>
77 #include <sys/filedesc.h>
78 #include <sys/fnv_hash.h>
79 #include <sys/globaldata.h>
80 #include <sys/kern_syscall.h>
81 #include <sys/dirent.h>
82 #include <ddb/ddb.h>
83 
84 #include <sys/spinlock2.h>
85 
86 #define MAX_RECURSION_DEPTH	64
87 
88 /*
89  * Random lookups in the cache are accomplished with a hash table using
90  * a hash key of (nc_src_vp, name).  Each hash chain has its own spin lock,
91  * but we use the ncp->update counter trick to avoid acquiring any
92  * contestable spin-locks during a lookup.
93  *
94  * Negative entries may exist and correspond to resolved namecache
95  * structures where nc_vp is NULL.  In a negative entry, NCF_WHITEOUT
96  * will be set if the entry corresponds to a whited-out directory entry
97  * (verses simply not finding the entry at all).  pcpu_ncache[n].neg_list
98  * is locked via pcpu_ncache[n].neg_spin;
99  *
100  * MPSAFE RULES:
101  *
102  * (1) ncp's typically have at least a nc_refs of 1, and usually 2.  One
103  *     is applicable to direct lookups via the hash table nchpp or via
104  *     nc_list (the two are added or removed together).  Removal of the ncp
105  *     from the hash table drops this reference.  The second is applicable
106  *     to vp->v_namecache linkages (or negative list linkages), and removal
107  *     of the ncp from these lists drops this reference.
108  *
109  *     On the 1->0 transition of nc_refs the ncp can no longer be referenced
110  *     and must be destroyed.  No other thread should have access to it at
111  *     this point so it can be safely locked and freed without any deadlock
112  *     fears.
113  *
114  *     The 1->0 transition can occur at almost any juncture and so cache_drop()
115  *     deals with it directly.
116  *
117  * (2) Once the 1->0 transition occurs, the entity that caused the transition
118  *     will be responsible for destroying the ncp.  The ncp cannot be on any
119  *     list or hash at this time, or be held by anyone other than the caller
120  *     responsible for the transition.
121  *
122  * (3) A ncp must be locked in order to modify it.
123  *
124  * (5) ncp locks are ordered, child-to-parent.  Child first, then parent.
125  *     This may seem backwards but forward-scans use the hash table and thus
126  *     can hold the parent unlocked while traversing downward.  Deletions,
127  *     on the other-hand, tend to propagate bottom-up since the ref on the
128  *     is dropped as the children go away.
129  *
130  * (6) Both parent and child must be locked in order to enter the child onto
131  *     the parent's nc_list.
132  */
133 
134 /*
135  * Structures associated with name cacheing.
136  */
137 #define NCHHASH(hash)		(&nchashtbl[(hash) & nchash])
138 #define MINNEG			1024
139 #define MINPOS			1024
140 #define NCMOUNT_NUMCACHE	(16384)	/* power of 2 */
141 #define NCMOUNT_SET		(8)	/* power of 2 */
142 
143 MALLOC_DEFINE_OBJ(M_VFSCACHE, sizeof(struct namecache),
144 		  "namecache", "namecache entries");
145 MALLOC_DEFINE(M_VFSCACHEAUX, "namecachestr", "namecache strings");
146 
147 TAILQ_HEAD(nchash_list, namecache);
148 
149 /*
150  * Don't cachealign, but at least pad to 32 bytes so entries
151  * don't cross a cache line.
152  */
153 struct nchash_head {
154        struct nchash_list list;	/* 16 bytes */
155        struct spinlock	spin;	/* 8 bytes */
156        long	pad01;		/* 8 bytes */
157 };
158 
159 struct ncmount_cache {
160 	struct spinlock	spin;
161 	struct namecache *ncp;
162 	struct mount *mp;
163 	struct mount *mp_target;
164 	int isneg;
165 	int ticks;
166 	int updating;
167 	int unused01;
168 };
169 
170 struct pcpu_ncache {
171 	struct spinlock		umount_spin;	/* cache_findmount/interlock */
172 	struct spinlock		neg_spin;	/* for neg_list and neg_count */
173 	struct namecache_list	neg_list;
174 	long			neg_count;
175 	long			vfscache_negs;
176 	long			vfscache_count;
177 	long			vfscache_leafs;
178 	long			numdefered;
179 } __cachealign;
180 
181 __read_mostly static struct nchash_head	*nchashtbl;
182 __read_mostly static struct pcpu_ncache	*pcpu_ncache;
183 static struct ncmount_cache	ncmount_cache[NCMOUNT_NUMCACHE];
184 
185 /*
186  * ncvp_debug - debug cache_fromvp().  This is used by the NFS server
187  * to create the namecache infrastructure leading to a dangling vnode.
188  *
189  * 0	Only errors are reported
190  * 1	Successes are reported
191  * 2	Successes + the whole directory scan is reported
192  * 3	Force the directory scan code run as if the parent vnode did not
193  *	have a namecache record, even if it does have one.
194  */
195 __read_mostly static int	ncvp_debug;
196 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0,
197     "Namecache debug level (0-3)");
198 
199 __read_mostly static u_long nchash;		/* size of hash table */
200 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
201     "Size of namecache hash table");
202 
203 __read_mostly static int ncnegflush = 10;	/* burst for negative flush */
204 SYSCTL_INT(_debug, OID_AUTO, ncnegflush, CTLFLAG_RW, &ncnegflush, 0,
205     "Batch flush negative entries");
206 
207 __read_mostly static int ncposflush = 10;	/* burst for positive flush */
208 SYSCTL_INT(_debug, OID_AUTO, ncposflush, CTLFLAG_RW, &ncposflush, 0,
209     "Batch flush positive entries");
210 
211 __read_mostly static int ncnegfactor = 16;	/* ratio of negative entries */
212 SYSCTL_INT(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0,
213     "Ratio of namecache negative entries");
214 
215 __read_mostly static int nclockwarn;	/* warn on locked entries in ticks */
216 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0,
217     "Warn on locked namecache entries in ticks");
218 
219 __read_mostly static int ncposlimit;	/* number of cache entries allocated */
220 SYSCTL_INT(_debug, OID_AUTO, ncposlimit, CTLFLAG_RW, &ncposlimit, 0,
221     "Number of cache entries allocated");
222 
223 __read_mostly static int ncp_shared_lock_disable = 0;
224 SYSCTL_INT(_debug, OID_AUTO, ncp_shared_lock_disable, CTLFLAG_RW,
225 	   &ncp_shared_lock_disable, 0, "Disable shared namecache locks");
226 
227 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode),
228     "sizeof(struct vnode)");
229 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache),
230     "sizeof(struct namecache)");
231 
232 __read_mostly static int ncmount_cache_enable = 1;
233 SYSCTL_INT(_debug, OID_AUTO, ncmount_cache_enable, CTLFLAG_RW,
234 	   &ncmount_cache_enable, 0, "mount point cache");
235 
236 static __inline void _cache_drop(struct namecache *ncp);
237 static int cache_resolve_mp(struct mount *mp);
238 static int cache_findmount_callback(struct mount *mp, void *data);
239 static void _cache_setunresolved(struct namecache *ncp);
240 static void _cache_cleanneg(long count);
241 static void _cache_cleanpos(long count);
242 static void _cache_cleandefered(void);
243 static void _cache_unlink(struct namecache *ncp);
244 
245 /*
246  * The new name cache statistics (these are rolled up globals and not
247  * modified in the critical path, see struct pcpu_ncache).
248  */
249 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
250 static long vfscache_negs;
251 SYSCTL_LONG(_vfs_cache, OID_AUTO, numneg, CTLFLAG_RD, &vfscache_negs, 0,
252     "Number of negative namecache entries");
253 static long vfscache_count;
254 SYSCTL_LONG(_vfs_cache, OID_AUTO, numcache, CTLFLAG_RD, &vfscache_count, 0,
255     "Number of namecaches entries");
256 static long vfscache_leafs;
257 SYSCTL_LONG(_vfs_cache, OID_AUTO, numleafs, CTLFLAG_RD, &vfscache_leafs, 0,
258     "Number of namecaches entries");
259 static long	numdefered;
260 SYSCTL_LONG(_debug, OID_AUTO, numdefered, CTLFLAG_RD, &numdefered, 0,
261     "Number of cache entries allocated");
262 
263 
264 struct nchstats nchstats[SMP_MAXCPU];
265 /*
266  * Export VFS cache effectiveness statistics to user-land.
267  *
268  * The statistics are left for aggregation to user-land so
269  * neat things can be achieved, like observing per-CPU cache
270  * distribution.
271  */
272 static int
273 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
274 {
275 	struct globaldata *gd;
276 	int i, error;
277 
278 	error = 0;
279 	for (i = 0; i < ncpus; ++i) {
280 		gd = globaldata_find(i);
281 		if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
282 			sizeof(struct nchstats))))
283 			break;
284 	}
285 
286 	return (error);
287 }
288 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
289   0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
290 
291 static void cache_zap(struct namecache *ncp);
292 
293 /*
294  * Cache mount points and namecache records in order to avoid unnecessary
295  * atomic ops on mnt_refs and ncp->refs.  This improves concurrent SMP
296  * performance and is particularly important on multi-socket systems to
297  * reduce cache-line ping-ponging.
298  *
299  * Try to keep the pcpu structure within one cache line (~64 bytes).
300  */
301 #define MNTCACHE_COUNT	32	/* power of 2, multiple of SET */
302 #define MNTCACHE_SET	8	/* set associativity */
303 
304 struct mntcache_elm {
305 	struct namecache *ncp;
306 	struct mount	 *mp;
307 	int	ticks;
308 	int	unused01;
309 };
310 
311 struct mntcache {
312 	struct mntcache_elm array[MNTCACHE_COUNT];
313 } __cachealign;
314 
315 static struct mntcache	pcpu_mntcache[MAXCPU];
316 
317 static __inline
318 struct mntcache_elm *
319 _cache_mntcache_hash(void *ptr)
320 {
321 	struct mntcache_elm *elm;
322 	int hv;
323 
324 	hv = iscsi_crc32(&ptr, sizeof(ptr)) & (MNTCACHE_COUNT - 1);
325 	elm = &pcpu_mntcache[mycpu->gd_cpuid].array[hv & ~(MNTCACHE_SET - 1)];
326 
327 	return elm;
328 }
329 
330 static
331 void
332 _cache_mntref(struct mount *mp)
333 {
334 	struct mntcache_elm *elm;
335 	struct mount *mpr;
336 	int i;
337 
338 	elm = _cache_mntcache_hash(mp);
339 	for (i = 0; i < MNTCACHE_SET; ++i) {
340 		if (elm->mp == mp) {
341 			mpr = atomic_swap_ptr((void *)&elm->mp, NULL);
342 			if (__predict_true(mpr == mp))
343 				return;
344 			if (mpr)
345 				atomic_add_int(&mpr->mnt_refs, -1);
346 		}
347 		++elm;
348 	}
349 	atomic_add_int(&mp->mnt_refs, 1);
350 }
351 
352 static
353 void
354 _cache_mntrel(struct mount *mp)
355 {
356 	struct mntcache_elm *elm;
357 	struct mntcache_elm *best;
358 	struct mount *mpr;
359 	int delta1;
360 	int delta2;
361 	int i;
362 
363 	elm = _cache_mntcache_hash(mp);
364 	best = elm;
365 	for (i = 0; i < MNTCACHE_SET; ++i) {
366 		if (elm->mp == NULL) {
367 			mpr = atomic_swap_ptr((void *)&elm->mp, mp);
368 			if (__predict_false(mpr != NULL)) {
369 				atomic_add_int(&mpr->mnt_refs, -1);
370 			}
371 			elm->ticks = ticks;
372 			return;
373 		}
374 		delta1 = ticks - best->ticks;
375 		delta2 = ticks - elm->ticks;
376 		if (delta2 > delta1 || delta1 < -1 || delta2 < -1)
377 			best = elm;
378 		++elm;
379 	}
380 	mpr = atomic_swap_ptr((void *)&best->mp, mp);
381 	best->ticks = ticks;
382 	if (mpr)
383 		atomic_add_int(&mpr->mnt_refs, -1);
384 }
385 
386 /*
387  * Clears all cached mount points on all cpus.  This routine should only
388  * be called when we are waiting for a mount to clear, e.g. so we can
389  * unmount.
390  */
391 void
392 cache_clearmntcache(struct mount *target __unused)
393 {
394 	int n;
395 
396 	for (n = 0; n < ncpus; ++n) {
397 		struct mntcache *cache = &pcpu_mntcache[n];
398 		struct mntcache_elm *elm;
399 		struct namecache *ncp;
400 		struct mount *mp;
401 		int i;
402 
403 		for (i = 0; i < MNTCACHE_COUNT; ++i) {
404 			elm = &cache->array[i];
405 			if (elm->mp) {
406 				mp = atomic_swap_ptr((void *)&elm->mp, NULL);
407 				if (mp)
408 					atomic_add_int(&mp->mnt_refs, -1);
409 			}
410 			if (elm->ncp) {
411 				ncp = atomic_swap_ptr((void *)&elm->ncp, NULL);
412 				if (ncp)
413 					_cache_drop(ncp);
414 			}
415 		}
416 	}
417 }
418 
419 /*
420  * Namespace locking.  The caller must already hold a reference to the
421  * namecache structure in order to lock/unlock it.  The controlling entity
422  * in a 1->0 transition does not need to lock the ncp to dispose of it,
423  * as nobody else will have visibility to it at that point.
424  *
425  * Note that holding a locked namecache structure prevents other threads
426  * from making namespace changes (e.g. deleting or creating), prevents
427  * vnode association state changes by other threads, and prevents the
428  * namecache entry from being resolved or unresolved by other threads.
429  *
430  * An exclusive lock owner has full authority to associate/disassociate
431  * vnodes and resolve/unresolve the locked ncp.
432  *
433  * A shared lock owner only has authority to acquire the underlying vnode,
434  * if any.
435  *
436  * The primary lock field is nc_lockstatus.  nc_locktd is set after the
437  * fact (when locking) or cleared prior to unlocking.
438  *
439  * WARNING!  Holding a locked ncp will prevent a vnode from being destroyed
440  *	     or recycled, but it does NOT help you if the vnode had already
441  *	     initiated a recyclement.  If this is important, use cache_get()
442  *	     rather then cache_lock() (and deal with the differences in the
443  *	     way the refs counter is handled).  Or, alternatively, make an
444  *	     unconditional call to cache_validate() or cache_resolve()
445  *	     after cache_lock() returns.
446  */
447 static __inline
448 void
449 _cache_lock(struct namecache *ncp)
450 {
451 	int didwarn = 0;
452 	int error;
453 
454 	error = lockmgr(&ncp->nc_lock, LK_EXCLUSIVE);
455 	while (__predict_false(error == EWOULDBLOCK)) {
456 		if (didwarn == 0) {
457 			didwarn = ticks - nclockwarn;
458 			kprintf("[diagnostic] cache_lock: "
459 				"%s blocked on %p "
460 				"\"%*.*s\"\n",
461 				curthread->td_comm, ncp,
462 				ncp->nc_nlen, ncp->nc_nlen,
463 				ncp->nc_name);
464 		}
465 		error = lockmgr(&ncp->nc_lock, LK_EXCLUSIVE | LK_TIMELOCK);
466 	}
467 	if (__predict_false(didwarn)) {
468 		kprintf("[diagnostic] cache_lock: "
469 			"%s unblocked %*.*s after %d secs\n",
470 			curthread->td_comm,
471 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
472 			(int)(ticks - didwarn) / hz);
473 	}
474 }
475 
476 /*
477  * Release a previously acquired lock.
478  *
479  * A concurrent shared-lock acquisition or acquisition/release can
480  * race bit 31 so only drop the ncp if bit 31 was set.
481  */
482 static __inline
483 void
484 _cache_unlock(struct namecache *ncp)
485 {
486 	lockmgr(&ncp->nc_lock, LK_RELEASE);
487 }
488 
489 /*
490  * Lock ncp exclusively, non-blocking.  Return 0 on success.
491  */
492 static __inline
493 int
494 _cache_lock_nonblock(struct namecache *ncp)
495 {
496 	int error;
497 
498 	error = lockmgr(&ncp->nc_lock, LK_EXCLUSIVE | LK_NOWAIT);
499 	if (__predict_false(error != 0)) {
500 		return(EWOULDBLOCK);
501 	}
502 	return 0;
503 }
504 
505 /*
506  * This is a special form of _cache_lock() which only succeeds if
507  * it can get a pristine, non-recursive lock.  The caller must have
508  * already ref'd the ncp.
509  *
510  * On success the ncp will be locked, on failure it will not.  The
511  * ref count does not change either way.
512  *
513  * We want _cache_lock_special() (on success) to return a definitively
514  * usable vnode or a definitively unresolved ncp.
515  */
516 static __inline
517 int
518 _cache_lock_special(struct namecache *ncp)
519 {
520 	if (_cache_lock_nonblock(ncp) == 0) {
521 		if (lockmgr_oneexcl(&ncp->nc_lock)) {
522 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
523 				_cache_setunresolved(ncp);
524 			return 0;
525 		}
526 		_cache_unlock(ncp);
527 	}
528 	return EWOULDBLOCK;
529 }
530 
531 /*
532  * Shared lock, guarantees vp held
533  *
534  * The shared lock holds vp on the 0->1 transition.  It is possible to race
535  * another shared lock release, preventing the other release from dropping
536  * the vnode and clearing bit 31.
537  *
538  * If it is not set then we are responsible for setting it, and this
539  * responsibility does not race with anyone else.
540  */
541 static __inline
542 void
543 _cache_lock_shared(struct namecache *ncp)
544 {
545 	int didwarn = 0;
546 	int error;
547 
548 	error = lockmgr(&ncp->nc_lock, LK_SHARED | LK_TIMELOCK);
549 	while (__predict_false(error == EWOULDBLOCK)) {
550 		if (didwarn == 0) {
551 			didwarn = ticks - nclockwarn;
552 			kprintf("[diagnostic] cache_lock_shared: "
553 				"%s blocked on %p "
554 				"\"%*.*s\"\n",
555 				curthread->td_comm, ncp,
556 				ncp->nc_nlen, ncp->nc_nlen,
557 				ncp->nc_name);
558 		}
559 		error = lockmgr(&ncp->nc_lock, LK_SHARED | LK_TIMELOCK);
560 	}
561 	if (__predict_false(didwarn)) {
562 		kprintf("[diagnostic] cache_lock_shared: "
563 			"%s unblocked %*.*s after %d secs\n",
564 			curthread->td_comm,
565 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
566 			(int)(ticks - didwarn) / hz);
567 	}
568 }
569 
570 /*
571  * Shared lock, guarantees vp held.  Non-blocking.  Returns 0 on success
572  */
573 static __inline
574 int
575 _cache_lock_shared_nonblock(struct namecache *ncp)
576 {
577 	int error;
578 
579 	error = lockmgr(&ncp->nc_lock, LK_SHARED | LK_NOWAIT);
580 	if (__predict_false(error != 0)) {
581 		return(EWOULDBLOCK);
582 	}
583 	return 0;
584 }
585 
586 /*
587  * This function tries to get a shared lock but will back-off to an
588  * exclusive lock if:
589  *
590  * (1) Some other thread is trying to obtain an exclusive lock
591  *     (to prevent the exclusive requester from getting livelocked out
592  *     by many shared locks).
593  *
594  * (2) The current thread already owns an exclusive lock (to avoid
595  *     deadlocking).
596  *
597  * WARNING! On machines with lots of cores we really want to try hard to
598  *	    get a shared lock or concurrent path lookups can chain-react
599  *	    into a very high-latency exclusive lock.
600  *
601  *	    This is very evident in dsynth's initial scans.
602  */
603 static __inline
604 int
605 _cache_lock_shared_special(struct namecache *ncp)
606 {
607 	/*
608 	 * Only honor a successful shared lock (returning 0) if there is
609 	 * no exclusive request pending and the vnode, if present, is not
610 	 * in a reclaimed state.
611 	 */
612 	if (_cache_lock_shared_nonblock(ncp) == 0) {
613 		if (__predict_true(!lockmgr_exclpending(&ncp->nc_lock))) {
614 			if (ncp->nc_vp == NULL ||
615 			    (ncp->nc_vp->v_flag & VRECLAIMED) == 0) {
616 				return(0);
617 			}
618 		}
619 		_cache_unlock(ncp);
620 		return(EWOULDBLOCK);
621 	}
622 
623 	/*
624 	 * Non-blocking shared lock failed.  If we already own the exclusive
625 	 * lock just acquire another exclusive lock (instead of deadlocking).
626 	 * Otherwise acquire a shared lock.
627 	 */
628 	if (lockstatus(&ncp->nc_lock, curthread) == LK_EXCLUSIVE) {
629 		_cache_lock(ncp);
630 		return(0);
631 	}
632 	_cache_lock_shared(ncp);
633 	return(0);
634 }
635 
636 static __inline
637 int
638 _cache_lockstatus(struct namecache *ncp)
639 {
640 	int status;
641 
642 	status = lockstatus(&ncp->nc_lock, curthread);
643 	if (status == 0 || status == LK_EXCLOTHER)
644 		status = -1;
645 	return status;
646 }
647 
648 /*
649  * cache_hold() and cache_drop() prevent the premature deletion of a
650  * namecache entry but do not prevent operations (such as zapping) on
651  * that namecache entry.
652  *
653  * This routine may only be called from outside this source module if
654  * nc_refs is already deterministically at least 1, such as being
655  * associated with e.g. a process, file descriptor, or some other entity.
656  *
657  * Only the above situations, similar situations within this module where
658  * the ref count is deterministically at least 1, or when the ncp is found
659  * via the nchpp (hash table) lookup, can bump nc_refs.
660  *
661  * Very specifically, a ncp found via nc_list CANNOT bump nc_refs.  It
662  * can still be removed from the nc_list, however, as long as the caller
663  * can acquire its lock (in the wrong order).
664  *
665  * This is a rare case where callers are allowed to hold a spinlock,
666  * so we can't ourselves.
667  */
668 static __inline
669 struct namecache *
670 _cache_hold(struct namecache *ncp)
671 {
672 	KKASSERT(ncp->nc_refs > 0);
673 	atomic_add_int(&ncp->nc_refs, 1);
674 
675 	return(ncp);
676 }
677 
678 /*
679  * Drop a cache entry.
680  *
681  * The 1->0 transition is special and requires the caller to destroy the
682  * entry.  It means that the ncp is no longer on a nchpp list (since that
683  * would mean there was stilla ref).  The ncp could still be on a nc_list
684  * but will not have any child of its own, again because nc_refs is now 0
685  * and children would have a ref to their parent.
686  *
687  * Once the 1->0 transition is made, nc_refs cannot be incremented again.
688  */
689 static __inline
690 void
691 _cache_drop(struct namecache *ncp)
692 {
693 	if (atomic_fetchadd_int(&ncp->nc_refs, -1) == 1) {
694 		/*
695 		 * Executed unlocked (no need to lock on last drop)
696 		 */
697 		_cache_setunresolved(ncp);
698 
699 		/*
700 		 * Scrap it.
701 		 */
702 		ncp->nc_refs = -1;	/* safety */
703 		if (ncp->nc_name)
704 			kfree(ncp->nc_name, M_VFSCACHEAUX);
705 		kfree_obj(ncp, M_VFSCACHE);
706 	}
707 }
708 
709 /*
710  * Link a new namecache entry to its parent and to the hash table.  Be
711  * careful to avoid races if vhold() blocks in the future.
712  *
713  * Both ncp and par must be referenced and locked.  The reference is
714  * transfered to the nchpp (and, most notably, NOT to the parent list).
715  *
716  * NOTE: The hash table spinlock is held across this call, we can't do
717  *	 anything fancy.
718  */
719 static void
720 _cache_link_parent(struct namecache *ncp, struct namecache *par,
721 		   struct nchash_head *nchpp)
722 {
723 	struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
724 
725 	KKASSERT(ncp->nc_parent == NULL);
726 	ncp->nc_parent = par;
727 	ncp->nc_head = nchpp;
728 
729 	/*
730 	 * Set inheritance flags.  Note that the parent flags may be
731 	 * stale due to getattr potentially not having been run yet
732 	 * (it gets run during nlookup()'s).
733 	 */
734 	ncp->nc_flag &= ~(NCF_SF_PNOCACHE | NCF_UF_PCACHE);
735 	if (par->nc_flag & (NCF_SF_NOCACHE | NCF_SF_PNOCACHE))
736 		ncp->nc_flag |= NCF_SF_PNOCACHE;
737 	if (par->nc_flag & (NCF_UF_CACHE | NCF_UF_PCACHE))
738 		ncp->nc_flag |= NCF_UF_PCACHE;
739 
740 	/*
741 	 * Add to hash table and parent, adjust accounting
742 	 */
743 	TAILQ_INSERT_HEAD(&nchpp->list, ncp, nc_hash);
744 	atomic_add_long(&pn->vfscache_count, 1);
745 	if (TAILQ_EMPTY(&ncp->nc_list))
746 		atomic_add_long(&pn->vfscache_leafs, 1);
747 
748 	if (TAILQ_EMPTY(&par->nc_list)) {
749 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
750 		atomic_add_long(&pn->vfscache_leafs, -1);
751 		/*
752 		 * Any vp associated with an ncp which has children must
753 		 * be held to prevent it from being recycled.
754 		 */
755 		if (par->nc_vp)
756 			vhold(par->nc_vp);
757 	} else {
758 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
759 	}
760 	_cache_hold(par);	/* add nc_parent ref */
761 }
762 
763 /*
764  * Remove the parent and hash associations from a namecache structure.
765  * Drop the ref-count on the parent.  The caller receives the ref
766  * from the ncp's nchpp linkage that was removed and may forward that
767  * ref to a new linkage.
768 
769  * The caller usually holds an additional ref * on the ncp so the unlink
770  * cannot be the final drop.  XXX should not be necessary now since the
771  * caller receives the ref from the nchpp linkage, assuming the ncp
772  * was linked in the first place.
773  *
774  * ncp must be locked, which means that there won't be any nc_parent
775  * removal races.  This routine will acquire a temporary lock on
776  * the parent as well as the appropriate hash chain.
777  */
778 static void
779 _cache_unlink_parent(struct namecache *ncp)
780 {
781 	struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
782 	struct namecache *par;
783 	struct vnode *dropvp;
784 	struct nchash_head *nchpp;
785 
786 	if ((par = ncp->nc_parent) != NULL) {
787 		cpu_ccfence();
788 		KKASSERT(ncp->nc_parent == par);
789 
790 		/* don't add a ref, we drop the nchpp ref later */
791 		_cache_lock(par);
792 		nchpp = ncp->nc_head;
793 		spin_lock(&nchpp->spin);
794 
795 		/*
796 		 * Remove from hash table and parent, adjust accounting
797 		 */
798 		TAILQ_REMOVE(&ncp->nc_head->list, ncp, nc_hash);
799 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
800 		atomic_add_long(&pn->vfscache_count, -1);
801 		if (TAILQ_EMPTY(&ncp->nc_list))
802 			atomic_add_long(&pn->vfscache_leafs, -1);
803 
804 		dropvp = NULL;
805 		if (TAILQ_EMPTY(&par->nc_list)) {
806 			atomic_add_long(&pn->vfscache_leafs, 1);
807 			if (par->nc_vp)
808 				dropvp = par->nc_vp;
809 		}
810 		ncp->nc_parent = NULL;
811 		ncp->nc_head = NULL;
812 		spin_unlock(&nchpp->spin);
813 		_cache_unlock(par);
814 		_cache_drop(par);	/* drop nc_parent ref */
815 
816 		/*
817 		 * We can only safely vdrop with no spinlocks held.
818 		 */
819 		if (dropvp)
820 			vdrop(dropvp);
821 	}
822 }
823 
824 /*
825  * Allocate a new namecache structure.  Most of the code does not require
826  * zero-termination of the string but it makes vop_compat_ncreate() easier.
827  *
828  * The returned ncp will be locked and referenced.  The ref is generally meant
829  * to be transfered to the nchpp linkage.
830  */
831 static struct namecache *
832 cache_alloc(int nlen)
833 {
834 	struct namecache *ncp;
835 
836 	ncp = kmalloc_obj(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
837 	if (nlen)
838 		ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHEAUX, M_WAITOK);
839 	ncp->nc_nlen = nlen;
840 	ncp->nc_flag = NCF_UNRESOLVED;
841 	ncp->nc_error = ENOTCONN;	/* needs to be resolved */
842 	ncp->nc_refs = 1;
843 	TAILQ_INIT(&ncp->nc_list);
844 	lockinit(&ncp->nc_lock, "ncplk", hz, LK_CANRECURSE);
845 	lockmgr(&ncp->nc_lock, LK_EXCLUSIVE);
846 
847 	return(ncp);
848 }
849 
850 /*
851  * Can only be called for the case where the ncp has never been
852  * associated with anything (so no spinlocks are needed).
853  */
854 static void
855 _cache_free(struct namecache *ncp)
856 {
857 	KKASSERT(ncp->nc_refs == 1);
858 	if (ncp->nc_name)
859 		kfree(ncp->nc_name, M_VFSCACHEAUX);
860 	kfree_obj(ncp, M_VFSCACHE);
861 }
862 
863 /*
864  * [re]initialize a nchandle.
865  */
866 void
867 cache_zero(struct nchandle *nch)
868 {
869 	nch->ncp = NULL;
870 	nch->mount = NULL;
871 }
872 
873 /*
874  * Ref and deref a nchandle structure (ncp + mp)
875  *
876  * The caller must specify a stable ncp pointer, typically meaning the
877  * ncp is already referenced but this can also occur indirectly through
878  * e.g. holding a lock on a direct child.
879  *
880  * WARNING: Caller may hold an unrelated read spinlock, which means we can't
881  *	    use read spinlocks here.
882  */
883 struct nchandle *
884 cache_hold(struct nchandle *nch)
885 {
886 	_cache_hold(nch->ncp);
887 	_cache_mntref(nch->mount);
888 	return(nch);
889 }
890 
891 /*
892  * Create a copy of a namecache handle for an already-referenced
893  * entry.
894  */
895 void
896 cache_copy(struct nchandle *nch, struct nchandle *target)
897 {
898 	struct namecache *ncp;
899 	struct mount *mp;
900 	struct mntcache_elm *elm;
901 	struct namecache *ncpr;
902 	int i;
903 
904 	ncp = nch->ncp;
905 	mp = nch->mount;
906 	target->ncp = ncp;
907 	target->mount = mp;
908 
909 	elm = _cache_mntcache_hash(ncp);
910 	for (i = 0; i < MNTCACHE_SET; ++i) {
911 		if (elm->ncp == ncp) {
912 			ncpr = atomic_swap_ptr((void *)&elm->ncp, NULL);
913 			if (ncpr == ncp) {
914 				_cache_mntref(mp);
915 				return;
916 			}
917 			if (ncpr)
918 				_cache_drop(ncpr);
919 		}
920 		++elm;
921 	}
922 	if (ncp)
923 		_cache_hold(ncp);
924 	_cache_mntref(mp);
925 }
926 
927 /*
928  * Drop the nchandle, but try to cache the ref to avoid global atomic
929  * ops.  This is typically done on the system root and jail root nchandles.
930  */
931 void
932 cache_drop_and_cache(struct nchandle *nch, int elmno)
933 {
934 	struct mntcache_elm *elm;
935 	struct mntcache_elm *best;
936 	struct namecache *ncpr;
937 	int delta1;
938 	int delta2;
939 	int i;
940 
941 	if (elmno > 4) {
942 		if (nch->ncp) {
943 			_cache_drop(nch->ncp);
944 			nch->ncp = NULL;
945 		}
946 		if (nch->mount) {
947 			_cache_mntrel(nch->mount);
948 			nch->mount = NULL;
949 		}
950 		return;
951 	}
952 
953 	elm = _cache_mntcache_hash(nch->ncp);
954 	best = elm;
955 	for (i = 0; i < MNTCACHE_SET; ++i) {
956 		if (elm->ncp == NULL) {
957 			ncpr = atomic_swap_ptr((void *)&elm->ncp, nch->ncp);
958 			_cache_mntrel(nch->mount);
959 			elm->ticks = ticks;
960 			nch->mount = NULL;
961 			nch->ncp = NULL;
962 			if (ncpr)
963 				_cache_drop(ncpr);
964 			return;
965 		}
966 		delta1 = ticks - best->ticks;
967 		delta2 = ticks - elm->ticks;
968 		if (delta2 > delta1 || delta1 < -1 || delta2 < -1)
969 			best = elm;
970 		++elm;
971 	}
972 	ncpr = atomic_swap_ptr((void *)&best->ncp, nch->ncp);
973 	_cache_mntrel(nch->mount);
974 	best->ticks = ticks;
975 	nch->mount = NULL;
976 	nch->ncp = NULL;
977 	if (ncpr)
978 		_cache_drop(ncpr);
979 }
980 
981 void
982 cache_changemount(struct nchandle *nch, struct mount *mp)
983 {
984 	_cache_mntref(mp);
985 	_cache_mntrel(nch->mount);
986 	nch->mount = mp;
987 }
988 
989 void
990 cache_drop(struct nchandle *nch)
991 {
992 	_cache_mntrel(nch->mount);
993 	_cache_drop(nch->ncp);
994 	nch->ncp = NULL;
995 	nch->mount = NULL;
996 }
997 
998 int
999 cache_lockstatus(struct nchandle *nch)
1000 {
1001 	return(_cache_lockstatus(nch->ncp));
1002 }
1003 
1004 void
1005 cache_lock(struct nchandle *nch)
1006 {
1007 	_cache_lock(nch->ncp);
1008 }
1009 
1010 void
1011 cache_lock_maybe_shared(struct nchandle *nch, int excl)
1012 {
1013 	struct namecache *ncp = nch->ncp;
1014 
1015 	if (ncp_shared_lock_disable || excl ||
1016 	    (ncp->nc_flag & NCF_UNRESOLVED)) {
1017 		_cache_lock(ncp);
1018 	} else {
1019 		_cache_lock_shared(ncp);
1020 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1021 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
1022 				_cache_unlock(ncp);
1023 				_cache_lock(ncp);
1024 			}
1025 		} else {
1026 			_cache_unlock(ncp);
1027 			_cache_lock(ncp);
1028 		}
1029 	}
1030 }
1031 
1032 /*
1033  * Lock fncpd, fncp, tncpd, and tncp.  tncp is already locked but may
1034  * have to be cycled to avoid deadlocks.  Make sure all four are resolved.
1035  *
1036  * The caller is responsible for checking the validity upon return as
1037  * the records may have been flagged DESTROYED in the interim.
1038  *
1039  * Namecache lock ordering is leaf first, then parent.  However, complex
1040  * interactions may occur between the source and target because there is
1041  * no ordering guarantee between (fncpd, fncp) and (tncpd and tncp).
1042  */
1043 void
1044 cache_lock4_tondlocked(struct nchandle *fncpd, struct nchandle *fncp,
1045 		       struct nchandle *tncpd, struct nchandle *tncp,
1046 		       struct ucred *fcred, struct ucred *tcred)
1047 {
1048 	int tlocked = 1;
1049 
1050 	/*
1051 	 * Lock tncp and tncpd
1052 	 *
1053 	 * NOTE: Because these ncps are not locked to begin with, it is
1054 	 *	 possible for other rename races to cause the normal lock
1055 	 *	 order assumptions to fail.
1056 	 *
1057 	 * NOTE: Lock ordering assumptions are valid if a leaf's parent
1058 	 *	 matches after the leaf has been locked.  However, ordering
1059 	 *	 between the 'from' and the 'to' is not and an overlapping
1060 	 *	 lock order reversal is still possible.
1061 	 */
1062 again:
1063 	if (__predict_false(tlocked == 0)) {
1064 		cache_lock(tncp);
1065 	}
1066 	if (__predict_false(cache_lock_nonblock(tncpd) != 0)) {
1067 		cache_unlock(tncp);
1068 		cache_lock(tncpd); cache_unlock(tncpd); /* cycle */
1069 		tlocked = 0;
1070 		goto again;
1071 	}
1072 
1073 	/*
1074 	 * Lock fncp and fncpd
1075 	 *
1076 	 * NOTE: Because these ncps are not locked to begin with, it is
1077 	 *	 possible for other rename races to cause the normal lock
1078 	 *	 order assumptions to fail.
1079 	 *
1080 	 * NOTE: Lock ordering assumptions are valid if a leaf's parent
1081 	 *	 matches after the leaf has been locked.  However, ordering
1082 	 *	 between the 'from' and the 'to' is not and an overlapping
1083 	 *	 lock order reversal is still possible.
1084 	 */
1085 	if (__predict_false(cache_lock_nonblock(fncp) != 0)) {
1086 		cache_unlock(tncpd);
1087 		cache_unlock(tncp);
1088 		cache_lock(fncp); cache_unlock(fncp); /* cycle */
1089 		tlocked = 0;
1090 		goto again;
1091 	}
1092 	if (__predict_false(cache_lock_nonblock(fncpd) != 0)) {
1093 		cache_unlock(fncp);
1094 		cache_unlock(tncpd);
1095 		cache_unlock(tncp);
1096 		cache_lock(fncpd); cache_unlock(fncpd); /* cycle */
1097 		tlocked = 0;
1098 		goto again;
1099 	}
1100 	if (__predict_true((fncpd->ncp->nc_flag & NCF_DESTROYED) == 0))
1101 		cache_resolve(fncpd, fcred);
1102 	if (__predict_true((tncpd->ncp->nc_flag & NCF_DESTROYED) == 0))
1103 		cache_resolve(tncpd, tcred);
1104 	if (__predict_true((fncp->ncp->nc_flag & NCF_DESTROYED) == 0))
1105 		cache_resolve(fncp, fcred);
1106 	if (__predict_true((tncp->ncp->nc_flag & NCF_DESTROYED) == 0))
1107 		cache_resolve(tncp, tcred);
1108 }
1109 
1110 int
1111 cache_lock_nonblock(struct nchandle *nch)
1112 {
1113 	return(_cache_lock_nonblock(nch->ncp));
1114 }
1115 
1116 void
1117 cache_unlock(struct nchandle *nch)
1118 {
1119 	_cache_unlock(nch->ncp);
1120 }
1121 
1122 /*
1123  * ref-and-lock, unlock-and-deref functions.
1124  *
1125  * This function is primarily used by nlookup.  Even though cache_lock
1126  * holds the vnode, it is possible that the vnode may have already
1127  * initiated a recyclement.
1128  *
1129  * We want cache_get() to return a definitively usable vnode or a
1130  * definitively unresolved ncp.
1131  */
1132 static
1133 struct namecache *
1134 _cache_get(struct namecache *ncp)
1135 {
1136 	_cache_hold(ncp);
1137 	_cache_lock(ncp);
1138 	if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1139 		_cache_setunresolved(ncp);
1140 	return(ncp);
1141 }
1142 
1143 /*
1144  * Attempt to obtain a shared lock on the ncp.  A shared lock will only
1145  * be obtained if the ncp is resolved and the vnode (if not ENOENT) is
1146  * valid.  Otherwise an exclusive lock will be acquired instead.
1147  */
1148 static
1149 struct namecache *
1150 _cache_get_maybe_shared(struct namecache *ncp, int excl)
1151 {
1152 	if (ncp_shared_lock_disable || excl ||
1153 	    (ncp->nc_flag & NCF_UNRESOLVED)) {
1154 		return(_cache_get(ncp));
1155 	}
1156 	_cache_hold(ncp);
1157 	_cache_lock_shared(ncp);
1158 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1159 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
1160 			_cache_unlock(ncp);
1161 			ncp = _cache_get(ncp);
1162 			_cache_drop(ncp);
1163 		}
1164 	} else {
1165 		_cache_unlock(ncp);
1166 		ncp = _cache_get(ncp);
1167 		_cache_drop(ncp);
1168 	}
1169 	return(ncp);
1170 }
1171 
1172 /*
1173  * NOTE: The same nchandle can be passed for both arguments.
1174  */
1175 void
1176 cache_get(struct nchandle *nch, struct nchandle *target)
1177 {
1178 	KKASSERT(nch->ncp->nc_refs > 0);
1179 	target->mount = nch->mount;
1180 	target->ncp = _cache_get(nch->ncp);
1181 	_cache_mntref(target->mount);
1182 }
1183 
1184 void
1185 cache_get_maybe_shared(struct nchandle *nch, struct nchandle *target, int excl)
1186 {
1187 	KKASSERT(nch->ncp->nc_refs > 0);
1188 	target->mount = nch->mount;
1189 	target->ncp = _cache_get_maybe_shared(nch->ncp, excl);
1190 	_cache_mntref(target->mount);
1191 }
1192 
1193 /*
1194  * Release a held and locked ncp
1195  */
1196 static __inline
1197 void
1198 _cache_put(struct namecache *ncp)
1199 {
1200 	_cache_unlock(ncp);
1201 	_cache_drop(ncp);
1202 }
1203 
1204 void
1205 cache_put(struct nchandle *nch)
1206 {
1207 	_cache_mntrel(nch->mount);
1208 	_cache_put(nch->ncp);
1209 	nch->ncp = NULL;
1210 	nch->mount = NULL;
1211 }
1212 
1213 /*
1214  * Resolve an unresolved ncp by associating a vnode with it.  If the
1215  * vnode is NULL, a negative cache entry is created.
1216  *
1217  * The ncp should be locked on entry and will remain locked on return.
1218  */
1219 static
1220 void
1221 _cache_setvp(struct mount *mp, struct namecache *ncp, struct vnode *vp)
1222 {
1223 	KKASSERT((ncp->nc_flag & NCF_UNRESOLVED) &&
1224 		 (_cache_lockstatus(ncp) == LK_EXCLUSIVE) &&
1225 		 ncp->nc_vp == NULL);
1226 
1227 	if (vp) {
1228 		/*
1229 		 * Any vp associated with an ncp which has children must
1230 		 * be held.  Any vp associated with a locked ncp must be held.
1231 		 */
1232 		if (!TAILQ_EMPTY(&ncp->nc_list))
1233 			vhold(vp);
1234 		spin_lock(&vp->v_spin);
1235 		ncp->nc_vp = vp;
1236 		TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
1237 		++vp->v_namecache_count;
1238 		_cache_hold(ncp);		/* v_namecache assoc */
1239 		spin_unlock(&vp->v_spin);
1240 		vhold(vp);			/* nc_vp */
1241 
1242 		/*
1243 		 * Set auxiliary flags
1244 		 */
1245 		switch(vp->v_type) {
1246 		case VDIR:
1247 			ncp->nc_flag |= NCF_ISDIR;
1248 			break;
1249 		case VLNK:
1250 			ncp->nc_flag |= NCF_ISSYMLINK;
1251 			/* XXX cache the contents of the symlink */
1252 			break;
1253 		default:
1254 			break;
1255 		}
1256 
1257 		ncp->nc_error = 0;
1258 
1259 		/*
1260 		 * XXX: this is a hack to work-around the lack of a real pfs vfs
1261 		 * implementation
1262 		 */
1263 		if (mp) {
1264 			if (strncmp(mp->mnt_stat.f_fstypename, "null", 5) == 0)
1265 				vp->v_pfsmp = mp;
1266 		}
1267 	} else {
1268 		/*
1269 		 * When creating a negative cache hit we set the
1270 		 * namecache_gen.  A later resolve will clean out the
1271 		 * negative cache hit if the mount point's namecache_gen
1272 		 * has changed.  Used by devfs, could also be used by
1273 		 * other remote FSs.
1274 		 */
1275 		struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
1276 
1277 		ncp->nc_vp = NULL;
1278 		ncp->nc_negcpu = mycpu->gd_cpuid;
1279 		spin_lock(&pn->neg_spin);
1280 		TAILQ_INSERT_TAIL(&pn->neg_list, ncp, nc_vnode);
1281 		_cache_hold(ncp);	/* neg_list assoc */
1282 		++pn->neg_count;
1283 		spin_unlock(&pn->neg_spin);
1284 		atomic_add_long(&pn->vfscache_negs, 1);
1285 
1286 		ncp->nc_error = ENOENT;
1287 		if (mp)
1288 			VFS_NCPGEN_SET(mp, ncp);
1289 	}
1290 	ncp->nc_flag &= ~(NCF_UNRESOLVED | NCF_DEFEREDZAP);
1291 }
1292 
1293 void
1294 cache_setvp(struct nchandle *nch, struct vnode *vp)
1295 {
1296 	_cache_setvp(nch->mount, nch->ncp, vp);
1297 }
1298 
1299 /*
1300  * Used for NFS
1301  */
1302 void
1303 cache_settimeout(struct nchandle *nch, int nticks)
1304 {
1305 	struct namecache *ncp = nch->ncp;
1306 
1307 	if ((ncp->nc_timeout = ticks + nticks) == 0)
1308 		ncp->nc_timeout = 1;
1309 }
1310 
1311 /*
1312  * Disassociate the vnode or negative-cache association and mark a
1313  * namecache entry as unresolved again.  Note that the ncp is still
1314  * left in the hash table and still linked to its parent.
1315  *
1316  * The ncp should be locked and refd on entry and will remain locked and refd
1317  * on return.
1318  *
1319  * This routine is normally never called on a directory containing children.
1320  * However, NFS often does just that in its rename() code as a cop-out to
1321  * avoid complex namespace operations.  This disconnects a directory vnode
1322  * from its namecache and can cause the OLDAPI and NEWAPI to get out of
1323  * sync.
1324  *
1325  */
1326 static
1327 void
1328 _cache_setunresolved(struct namecache *ncp)
1329 {
1330 	struct vnode *vp;
1331 
1332 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1333 		ncp->nc_flag |= NCF_UNRESOLVED;
1334 		ncp->nc_timeout = 0;
1335 		ncp->nc_error = ENOTCONN;
1336 		if ((vp = ncp->nc_vp) != NULL) {
1337 			spin_lock(&vp->v_spin);
1338 			ncp->nc_vp = NULL;
1339 			TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
1340 			--vp->v_namecache_count;
1341 			spin_unlock(&vp->v_spin);
1342 
1343 			/*
1344 			 * Any vp associated with an ncp with children is
1345 			 * held by that ncp.  Any vp associated with  ncp
1346 			 * is held by that ncp.  These conditions must be
1347 			 * undone when the vp is cleared out from the ncp.
1348 			 */
1349 			if (!TAILQ_EMPTY(&ncp->nc_list))
1350 				vdrop(vp);
1351 			vdrop(vp);
1352 		} else {
1353 			struct pcpu_ncache *pn;
1354 
1355 			pn = &pcpu_ncache[ncp->nc_negcpu];
1356 
1357 			atomic_add_long(&pn->vfscache_negs, -1);
1358 			spin_lock(&pn->neg_spin);
1359 			TAILQ_REMOVE(&pn->neg_list, ncp, nc_vnode);
1360 			--pn->neg_count;
1361 			spin_unlock(&pn->neg_spin);
1362 		}
1363 		ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK);
1364 		_cache_drop(ncp);	/* from v_namecache or neg_list */
1365 	}
1366 }
1367 
1368 /*
1369  * The cache_nresolve() code calls this function to automatically
1370  * set a resolved cache element to unresolved if it has timed out
1371  * or if it is a negative cache hit and the mount point namecache_gen
1372  * has changed.
1373  */
1374 static __inline int
1375 _cache_auto_unresolve_test(struct mount *mp, struct namecache *ncp)
1376 {
1377 	/*
1378 	 * Try to zap entries that have timed out.  We have
1379 	 * to be careful here because locked leafs may depend
1380 	 * on the vnode remaining intact in a parent, so only
1381 	 * do this under very specific conditions.
1382 	 */
1383 	if (ncp->nc_timeout && (int)(ncp->nc_timeout - ticks) < 0 &&
1384 	    TAILQ_EMPTY(&ncp->nc_list)) {
1385 		return 1;
1386 	}
1387 
1388 	/*
1389 	 * If a resolved negative cache hit is invalid due to
1390 	 * the mount's namecache generation being bumped, zap it.
1391 	 */
1392 	if (ncp->nc_vp == NULL && VFS_NCPGEN_TEST(mp, ncp)) {
1393 		return 1;
1394 	}
1395 
1396 	/*
1397 	 * Otherwise we are good
1398 	 */
1399 	return 0;
1400 }
1401 
1402 static __inline void
1403 _cache_auto_unresolve(struct mount *mp, struct namecache *ncp)
1404 {
1405 	/*
1406 	 * Already in an unresolved state, nothing to do.
1407 	 */
1408 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1409 		if (_cache_auto_unresolve_test(mp, ncp))
1410 			_cache_setunresolved(ncp);
1411 	}
1412 }
1413 
1414 void
1415 cache_setunresolved(struct nchandle *nch)
1416 {
1417 	_cache_setunresolved(nch->ncp);
1418 }
1419 
1420 /*
1421  * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
1422  * looking for matches.  This flag tells the lookup code when it must
1423  * check for a mount linkage and also prevents the directories in question
1424  * from being deleted or renamed.
1425  */
1426 static
1427 int
1428 cache_clrmountpt_callback(struct mount *mp, void *data)
1429 {
1430 	struct nchandle *nch = data;
1431 
1432 	if (mp->mnt_ncmounton.ncp == nch->ncp)
1433 		return(1);
1434 	if (mp->mnt_ncmountpt.ncp == nch->ncp)
1435 		return(1);
1436 	return(0);
1437 }
1438 
1439 /*
1440  * Clear NCF_ISMOUNTPT on nch->ncp if it is no longer associated
1441  * with a mount point.
1442  */
1443 void
1444 cache_clrmountpt(struct nchandle *nch)
1445 {
1446 	int count;
1447 
1448 	count = mountlist_scan(cache_clrmountpt_callback, nch,
1449 			       MNTSCAN_FORWARD | MNTSCAN_NOBUSY |
1450 			       MNTSCAN_NOUNLOCK);
1451 	if (count == 0)
1452 		nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
1453 }
1454 
1455 /*
1456  * Invalidate portions of the namecache topology given a starting entry.
1457  * The passed ncp is set to an unresolved state and:
1458  *
1459  * The passed ncp must be referenced and locked.  The routine may unlock
1460  * and relock ncp several times, and will recheck the children and loop
1461  * to catch races.  When done the passed ncp will be returned with the
1462  * reference and lock intact.
1463  *
1464  * CINV_DESTROY		- Set a flag in the passed ncp entry indicating
1465  *			  that the physical underlying nodes have been
1466  *			  destroyed... as in deleted.  For example, when
1467  *			  a directory is removed.  This will cause record
1468  *			  lookups on the name to no longer be able to find
1469  *			  the record and tells the resolver to return failure
1470  *			  rather then trying to resolve through the parent.
1471  *
1472  *			  The topology itself, including ncp->nc_name,
1473  *			  remains intact.
1474  *
1475  *			  This only applies to the passed ncp, if CINV_CHILDREN
1476  *			  is specified the children are not flagged.
1477  *
1478  * CINV_CHILDREN	- Set all children (recursively) to an unresolved
1479  *			  state as well.
1480  *
1481  *			  Note that this will also have the side effect of
1482  *			  cleaning out any unreferenced nodes in the topology
1483  *			  from the leaves up as the recursion backs out.
1484  *
1485  * Note that the topology for any referenced nodes remains intact, but
1486  * the nodes will be marked as having been destroyed and will be set
1487  * to an unresolved state.
1488  *
1489  * It is possible for cache_inval() to race a cache_resolve(), meaning that
1490  * the namecache entry may not actually be invalidated on return if it was
1491  * revalidated while recursing down into its children.  This code guarentees
1492  * that the node(s) will go through an invalidation cycle, but does not
1493  * guarentee that they will remain in an invalidated state.
1494  *
1495  * Returns non-zero if a revalidation was detected during the invalidation
1496  * recursion, zero otherwise.  Note that since only the original ncp is
1497  * locked the revalidation ultimately can only indicate that the original ncp
1498  * *MIGHT* no have been reresolved.
1499  *
1500  * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
1501  * have to avoid blowing out the kernel stack.  We do this by saving the
1502  * deep namecache node and aborting the recursion, then re-recursing at that
1503  * node using a depth-first algorithm in order to allow multiple deep
1504  * recursions to chain through each other, then we restart the invalidation
1505  * from scratch.
1506  */
1507 
1508 struct cinvtrack {
1509 	struct namecache *resume_ncp;
1510 	int depth;
1511 };
1512 
1513 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
1514 
1515 static
1516 int
1517 _cache_inval(struct namecache *ncp, int flags)
1518 {
1519 	struct cinvtrack track;
1520 	struct namecache *ncp2;
1521 	int r;
1522 
1523 	track.depth = 0;
1524 	track.resume_ncp = NULL;
1525 
1526 	for (;;) {
1527 		r = _cache_inval_internal(ncp, flags, &track);
1528 		if (track.resume_ncp == NULL)
1529 			break;
1530 		_cache_unlock(ncp);
1531 		while ((ncp2 = track.resume_ncp) != NULL) {
1532 			track.resume_ncp = NULL;
1533 			_cache_lock(ncp2);
1534 			_cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
1535 					     &track);
1536 			/*_cache_put(ncp2);*/
1537 			cache_zap(ncp2);
1538 		}
1539 		_cache_lock(ncp);
1540 	}
1541 	return(r);
1542 }
1543 
1544 int
1545 cache_inval(struct nchandle *nch, int flags)
1546 {
1547 	return(_cache_inval(nch->ncp, flags));
1548 }
1549 
1550 /*
1551  * Helper for _cache_inval().  The passed ncp is refd and locked and
1552  * remains that way on return, but may be unlocked/relocked multiple
1553  * times by the routine.
1554  */
1555 static int
1556 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
1557 {
1558 	struct namecache *nextkid;
1559 	int rcnt = 0;
1560 
1561 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
1562 
1563 	_cache_setunresolved(ncp);
1564 	if (flags & CINV_DESTROY) {
1565 		ncp->nc_flag |= NCF_DESTROYED;
1566 		++ncp->nc_generation;
1567 	}
1568 
1569 	while ((flags & CINV_CHILDREN) &&
1570 	       (nextkid = TAILQ_FIRST(&ncp->nc_list)) != NULL
1571 	) {
1572 		struct namecache *kid;
1573 		int restart;
1574 
1575 		restart = 0;
1576 		_cache_hold(nextkid);
1577 		if (++track->depth > MAX_RECURSION_DEPTH) {
1578 			track->resume_ncp = ncp;
1579 			_cache_hold(ncp);
1580 			++rcnt;
1581 		}
1582 		while ((kid = nextkid) != NULL) {
1583 			/*
1584 			 * Parent (ncp) must be locked for the iteration.
1585 			 */
1586 			nextkid = NULL;
1587 			if (kid->nc_parent != ncp) {
1588 				_cache_drop(kid);
1589 				kprintf("cache_inval_internal restartA %s\n",
1590 					ncp->nc_name);
1591 				restart = 1;
1592 				break;
1593 			}
1594 			if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
1595 				_cache_hold(nextkid);
1596 
1597 			/*
1598 			 * Parent unlocked for this section to avoid
1599 			 * deadlocks.  Then lock the kid and check for
1600 			 * races.
1601 			 */
1602 			_cache_unlock(ncp);
1603 			if (track->resume_ncp) {
1604 				_cache_drop(kid);
1605 				_cache_lock(ncp);
1606 				break;
1607 			}
1608 			_cache_lock(kid);
1609 			if (kid->nc_parent != ncp) {
1610 				kprintf("cache_inval_internal "
1611 					"restartB %s\n",
1612 					ncp->nc_name);
1613 				restart = 1;
1614 				_cache_unlock(kid);
1615 				_cache_drop(kid);
1616 				_cache_lock(ncp);
1617 				break;
1618 			}
1619 			if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
1620 			    TAILQ_FIRST(&kid->nc_list)
1621 			) {
1622 
1623 				rcnt += _cache_inval_internal(kid,
1624 						flags & ~CINV_DESTROY, track);
1625 				/*_cache_unlock(kid);*/
1626 				/*_cache_drop(kid);*/
1627 				cache_zap(kid);
1628 			} else {
1629 				cache_zap(kid);
1630 			}
1631 
1632 			/*
1633 			 * Relock parent to continue scan
1634 			 */
1635 			_cache_lock(ncp);
1636 		}
1637 		if (nextkid)
1638 			_cache_drop(nextkid);
1639 		--track->depth;
1640 		if (restart == 0)
1641 			break;
1642 	}
1643 
1644 	/*
1645 	 * Someone could have gotten in there while ncp was unlocked,
1646 	 * retry if so.
1647 	 */
1648 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1649 		++rcnt;
1650 	return (rcnt);
1651 }
1652 
1653 /*
1654  * Invalidate a vnode's namecache associations.  To avoid races against
1655  * the resolver we do not invalidate a node which we previously invalidated
1656  * but which was then re-resolved while we were in the invalidation loop.
1657  *
1658  * Returns non-zero if any namecache entries remain after the invalidation
1659  * loop completed.
1660  *
1661  * NOTE: Unlike the namecache topology which guarentees that ncp's will not
1662  *	 be ripped out of the topology while held, the vnode's v_namecache
1663  *	 list has no such restriction.  NCP's can be ripped out of the list
1664  *	 at virtually any time if not locked, even if held.
1665  *
1666  *	 In addition, the v_namecache list itself must be locked via
1667  *	 the vnode's spinlock.
1668  */
1669 int
1670 cache_inval_vp(struct vnode *vp, int flags)
1671 {
1672 	struct namecache *ncp;
1673 	struct namecache *next;
1674 
1675 restart:
1676 	spin_lock(&vp->v_spin);
1677 	ncp = TAILQ_FIRST(&vp->v_namecache);
1678 	if (ncp)
1679 		_cache_hold(ncp);
1680 	while (ncp) {
1681 		/* loop entered with ncp held and vp spin-locked */
1682 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1683 			_cache_hold(next);
1684 		spin_unlock(&vp->v_spin);
1685 		_cache_lock(ncp);
1686 		if (ncp->nc_vp != vp) {
1687 			kprintf("Warning: cache_inval_vp: race-A detected on "
1688 				"%s\n", ncp->nc_name);
1689 			_cache_put(ncp);
1690 			if (next)
1691 				_cache_drop(next);
1692 			goto restart;
1693 		}
1694 		_cache_inval(ncp, flags);
1695 		_cache_put(ncp);		/* also releases reference */
1696 		ncp = next;
1697 		spin_lock(&vp->v_spin);
1698 		if (ncp && ncp->nc_vp != vp) {
1699 			spin_unlock(&vp->v_spin);
1700 			kprintf("Warning: cache_inval_vp: race-B detected on "
1701 				"%s\n", ncp->nc_name);
1702 			_cache_drop(ncp);
1703 			goto restart;
1704 		}
1705 	}
1706 	spin_unlock(&vp->v_spin);
1707 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1708 }
1709 
1710 /*
1711  * This routine is used instead of the normal cache_inval_vp() when we
1712  * are trying to recycle otherwise good vnodes.
1713  *
1714  * Return 0 on success, non-zero if not all namecache records could be
1715  * disassociated from the vnode (for various reasons).
1716  */
1717 int
1718 cache_inval_vp_nonblock(struct vnode *vp)
1719 {
1720 	struct namecache *ncp;
1721 	struct namecache *next;
1722 
1723 	spin_lock(&vp->v_spin);
1724 	ncp = TAILQ_FIRST(&vp->v_namecache);
1725 	if (ncp)
1726 		_cache_hold(ncp);
1727 	while (ncp) {
1728 		/* loop entered with ncp held */
1729 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1730 			_cache_hold(next);
1731 		spin_unlock(&vp->v_spin);
1732 		if (_cache_lock_nonblock(ncp)) {
1733 			_cache_drop(ncp);
1734 			if (next)
1735 				_cache_drop(next);
1736 			goto done;
1737 		}
1738 		if (ncp->nc_vp != vp) {
1739 			kprintf("Warning: cache_inval_vp: race-A detected on "
1740 				"%s\n", ncp->nc_name);
1741 			_cache_put(ncp);
1742 			if (next)
1743 				_cache_drop(next);
1744 			goto done;
1745 		}
1746 		_cache_inval(ncp, 0);
1747 		_cache_put(ncp);		/* also releases reference */
1748 		ncp = next;
1749 		spin_lock(&vp->v_spin);
1750 		if (ncp && ncp->nc_vp != vp) {
1751 			spin_unlock(&vp->v_spin);
1752 			kprintf("Warning: cache_inval_vp: race-B detected on "
1753 				"%s\n", ncp->nc_name);
1754 			_cache_drop(ncp);
1755 			goto done;
1756 		}
1757 	}
1758 	spin_unlock(&vp->v_spin);
1759 done:
1760 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1761 }
1762 
1763 /*
1764  * Clears the universal directory search 'ok' flag.  This flag allows
1765  * nlookup() to bypass normal vnode checks.  This flag is a cached flag
1766  * so clearing it simply forces revalidation.
1767  */
1768 void
1769 cache_inval_wxok(struct vnode *vp)
1770 {
1771 	struct namecache *ncp;
1772 
1773 	spin_lock(&vp->v_spin);
1774 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1775 		if (ncp->nc_flag & (NCF_WXOK | NCF_NOTX))
1776 			atomic_clear_short(&ncp->nc_flag, NCF_WXOK | NCF_NOTX);
1777 	}
1778 	spin_unlock(&vp->v_spin);
1779 }
1780 
1781 /*
1782  * The source ncp has been renamed to the target ncp.  All elements have been
1783  * locked, including the parent ncp's.
1784  *
1785  * The target ncp is destroyed (as a normal rename-over would destroy the
1786  * target file or directory).
1787  *
1788  * Because there may be references to the source ncp we cannot copy its
1789  * contents to the target.  Instead the source ncp is relinked as the target
1790  * and the target ncp is removed from the namecache topology.
1791  */
1792 void
1793 cache_rename(struct nchandle *fnch, struct nchandle *tnch)
1794 {
1795 	struct namecache *fncp = fnch->ncp;
1796 	struct namecache *tncp = tnch->ncp;
1797 	struct namecache *tncp_par;
1798 	struct nchash_head *nchpp;
1799 	u_int32_t hash;
1800 	char *oname;
1801 	char *nname;
1802 
1803 	++fncp->nc_generation;
1804 	++tncp->nc_generation;
1805 	if (tncp->nc_nlen) {
1806 		nname = kmalloc(tncp->nc_nlen + 1, M_VFSCACHEAUX, M_WAITOK);
1807 		bcopy(tncp->nc_name, nname, tncp->nc_nlen);
1808 		nname[tncp->nc_nlen] = 0;
1809 	} else {
1810 		nname = NULL;
1811 	}
1812 
1813 	/*
1814 	 * Rename fncp (unlink)
1815 	 */
1816 	_cache_unlink_parent(fncp);
1817 	oname = fncp->nc_name;
1818 	fncp->nc_name = nname;
1819 	fncp->nc_nlen = tncp->nc_nlen;
1820 	if (oname)
1821 		kfree(oname, M_VFSCACHEAUX);
1822 
1823 	tncp_par = tncp->nc_parent;
1824 	KKASSERT(tncp_par->nc_lock.lk_lockholder == curthread);
1825 
1826 	/*
1827 	 * Rename fncp (relink)
1828 	 */
1829 	hash = fnv_32_buf(fncp->nc_name, fncp->nc_nlen, FNV1_32_INIT);
1830 	hash = fnv_32_buf(&tncp_par, sizeof(tncp_par), hash);
1831 	nchpp = NCHHASH(hash);
1832 
1833 	spin_lock(&nchpp->spin);
1834 	_cache_link_parent(fncp, tncp_par, nchpp);
1835 	spin_unlock(&nchpp->spin);
1836 
1837 	/*
1838 	 * Get rid of the overwritten tncp (unlink)
1839 	 */
1840 	_cache_unlink(tncp);
1841 }
1842 
1843 /*
1844  * Perform actions consistent with unlinking a file.  The passed-in ncp
1845  * must be locked.
1846  *
1847  * The ncp is marked DESTROYED so it no longer shows up in searches,
1848  * and will be physically deleted when the vnode goes away.
1849  *
1850  * If the related vnode has no refs then we cycle it through vget()/vput()
1851  * to (possibly if we don't have a ref race) trigger a deactivation,
1852  * allowing the VFS to trivially detect and recycle the deleted vnode
1853  * via VOP_INACTIVE().
1854  *
1855  * NOTE: _cache_rename() will automatically call _cache_unlink() on the
1856  *	 target ncp.
1857  */
1858 void
1859 cache_unlink(struct nchandle *nch)
1860 {
1861 	_cache_unlink(nch->ncp);
1862 }
1863 
1864 static void
1865 _cache_unlink(struct namecache *ncp)
1866 {
1867 	struct vnode *vp;
1868 
1869 	/*
1870 	 * Causes lookups to fail and allows another ncp with the same
1871 	 * name to be created under ncp->nc_parent.
1872 	 */
1873 	ncp->nc_flag |= NCF_DESTROYED;
1874 	++ncp->nc_generation;
1875 
1876 	/*
1877 	 * Attempt to trigger a deactivation.  Set VREF_FINALIZE to
1878 	 * force action on the 1->0 transition.
1879 	 */
1880 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
1881 	    (vp = ncp->nc_vp) != NULL) {
1882 		atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1883 		if (VREFCNT(vp) <= 0) {
1884 			if (vget(vp, LK_SHARED) == 0)
1885 				vput(vp);
1886 		}
1887 	}
1888 }
1889 
1890 /*
1891  * Return non-zero if the nch might be associated with an open and/or mmap()'d
1892  * file.  The easy solution is to just return non-zero if the vnode has refs.
1893  * Used to interlock hammer2 reclaims (VREF_FINALIZE should already be set to
1894  * force the reclaim).
1895  */
1896 int
1897 cache_isopen(struct nchandle *nch)
1898 {
1899 	struct vnode *vp;
1900 	struct namecache *ncp = nch->ncp;
1901 
1902 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
1903 	    (vp = ncp->nc_vp) != NULL &&
1904 	    VREFCNT(vp)) {
1905 		return 1;
1906 	}
1907 	return 0;
1908 }
1909 
1910 
1911 /*
1912  * vget the vnode associated with the namecache entry.  Resolve the namecache
1913  * entry if necessary.  The passed ncp must be referenced and locked.  If
1914  * the ncp is resolved it might be locked shared.
1915  *
1916  * lk_type may be LK_SHARED, LK_EXCLUSIVE.  A ref'd, possibly locked
1917  * (depending on the passed lk_type) will be returned in *vpp with an error
1918  * of 0, or NULL will be returned in *vpp with a non-0 error code.  The
1919  * most typical error is ENOENT, meaning that the ncp represents a negative
1920  * cache hit and there is no vnode to retrieve, but other errors can occur
1921  * too.
1922  *
1923  * The vget() can race a reclaim.  If this occurs we re-resolve the
1924  * namecache entry.
1925  *
1926  * There are numerous places in the kernel where vget() is called on a
1927  * vnode while one or more of its namecache entries is locked.  Releasing
1928  * a vnode never deadlocks against locked namecache entries (the vnode
1929  * will not get recycled while referenced ncp's exist).  This means we
1930  * can safely acquire the vnode.  In fact, we MUST NOT release the ncp
1931  * lock when acquiring the vp lock or we might cause a deadlock.
1932  *
1933  * NOTE: The passed-in ncp must be locked exclusively if it is initially
1934  *	 unresolved.  If a reclaim race occurs the passed-in ncp will be
1935  *	 relocked exclusively before being re-resolved.
1936  */
1937 int
1938 cache_vget(struct nchandle *nch, struct ucred *cred,
1939 	   int lk_type, struct vnode **vpp)
1940 {
1941 	struct namecache *ncp;
1942 	struct vnode *vp;
1943 	int error;
1944 
1945 	ncp = nch->ncp;
1946 again:
1947 	vp = NULL;
1948 	if (ncp->nc_flag & NCF_UNRESOLVED)
1949 		error = cache_resolve(nch, cred);
1950 	else
1951 		error = 0;
1952 
1953 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1954 		error = vget(vp, lk_type);
1955 		if (error) {
1956 			/*
1957 			 * VRECLAIM race
1958 			 *
1959 			 * The ncp may have been locked shared, we must relock
1960 			 * it exclusively before we can set it to unresolved.
1961 			 */
1962 			if (error == ENOENT) {
1963 				kprintf("Warning: vnode reclaim race detected "
1964 					"in cache_vget on %p (%s)\n",
1965 					vp, ncp->nc_name);
1966 				_cache_unlock(ncp);
1967 				_cache_lock(ncp);
1968 				_cache_setunresolved(ncp);
1969 				goto again;
1970 			}
1971 
1972 			/*
1973 			 * Not a reclaim race, some other error.
1974 			 */
1975 			KKASSERT(ncp->nc_vp == vp);
1976 			vp = NULL;
1977 		} else {
1978 			KKASSERT(ncp->nc_vp == vp);
1979 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1980 		}
1981 	}
1982 	if (error == 0 && vp == NULL)
1983 		error = ENOENT;
1984 	*vpp = vp;
1985 	return(error);
1986 }
1987 
1988 /*
1989  * Similar to cache_vget() but only acquires a ref on the vnode.  The vnode
1990  * is already held by virtuue of the ncp being locked, but it might not be
1991  * referenced and while it is not referenced it can transition into the
1992  * VRECLAIMED state.
1993  *
1994  * NOTE: The passed-in ncp must be locked exclusively if it is initially
1995  *	 unresolved.  If a reclaim race occurs the passed-in ncp will be
1996  *	 relocked exclusively before being re-resolved.
1997  *
1998  * NOTE: At the moment we have to issue a vget() on the vnode, even though
1999  *	 we are going to immediately release the lock, in order to resolve
2000  *	 potential reclamation races.  Once we have a solid vnode ref that
2001  *	 was (at some point) interlocked via a vget(), the vnode will not
2002  *	 be reclaimed.
2003  *
2004  * NOTE: vhold counts (v_auxrefs) do not prevent reclamation.
2005  */
2006 int
2007 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
2008 {
2009 	struct namecache *ncp;
2010 	struct vnode *vp;
2011 	int error;
2012 	int v;
2013 
2014 	ncp = nch->ncp;
2015 again:
2016 	vp = NULL;
2017 	if (ncp->nc_flag & NCF_UNRESOLVED)
2018 		error = cache_resolve(nch, cred);
2019 	else
2020 		error = 0;
2021 
2022 	while (error == 0 && (vp = ncp->nc_vp) != NULL) {
2023 		/*
2024 		 * Try a lockless ref of the vnode.  VRECLAIMED transitions
2025 		 * use the vx_lock state and update-counter mechanism so we
2026 		 * can detect if one is in-progress or occurred.
2027 		 *
2028 		 * If we can successfully ref the vnode and interlock against
2029 		 * the update-counter mechanism, and VRECLAIMED is found to
2030 		 * not be set after that, we should be good.
2031 		 */
2032 		v = spin_access_start_only(&vp->v_spin);
2033 		if (__predict_true(spin_access_check_inprog(v) == 0)) {
2034 			vref_special(vp);
2035 			if (__predict_false(
2036 				    spin_access_end_only(&vp->v_spin, v))) {
2037 				vrele(vp);
2038 				continue;
2039 			}
2040 			if (__predict_true((vp->v_flag & VRECLAIMED) == 0)) {
2041 				break;
2042 			}
2043 			vrele(vp);
2044 			kprintf("CACHE_VREF: IN-RECLAIM\n");
2045 		}
2046 
2047 		/*
2048 		 * Do it the slow way
2049 		 */
2050 		error = vget(vp, LK_SHARED);
2051 		if (error) {
2052 			/*
2053 			 * VRECLAIM race
2054 			 */
2055 			if (error == ENOENT) {
2056 				kprintf("Warning: vnode reclaim race detected "
2057 					"in cache_vget on %p (%s)\n",
2058 					vp, ncp->nc_name);
2059 				_cache_unlock(ncp);
2060 				_cache_lock(ncp);
2061 				_cache_setunresolved(ncp);
2062 				goto again;
2063 			}
2064 
2065 			/*
2066 			 * Not a reclaim race, some other error.
2067 			 */
2068 			KKASSERT(ncp->nc_vp == vp);
2069 			vp = NULL;
2070 		} else {
2071 			KKASSERT(ncp->nc_vp == vp);
2072 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
2073 			/* caller does not want a lock */
2074 			vn_unlock(vp);
2075 		}
2076 		break;
2077 	}
2078 	if (error == 0 && vp == NULL)
2079 		error = ENOENT;
2080 	*vpp = vp;
2081 
2082 	return(error);
2083 }
2084 
2085 /*
2086  * Return a referenced vnode representing the parent directory of
2087  * ncp.
2088  *
2089  * Because the caller has locked the ncp it should not be possible for
2090  * the parent ncp to go away.  However, the parent can unresolve its
2091  * dvp at any time so we must be able to acquire a lock on the parent
2092  * to safely access nc_vp.
2093  *
2094  * We have to leave par unlocked when vget()ing dvp to avoid a deadlock,
2095  * so use vhold()/vdrop() while holding the lock to prevent dvp from
2096  * getting destroyed.
2097  *
2098  * NOTE: vhold() is allowed when dvp has 0 refs if we hold a
2099  *	 lock on the ncp in question..
2100  */
2101 struct vnode *
2102 cache_dvpref(struct namecache *ncp)
2103 {
2104 	struct namecache *par;
2105 	struct vnode *dvp;
2106 
2107 	dvp = NULL;
2108 	if ((par = ncp->nc_parent) != NULL) {
2109 		_cache_hold(par);
2110 		_cache_lock(par);
2111 		if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
2112 			if ((dvp = par->nc_vp) != NULL)
2113 				vhold(dvp);
2114 		}
2115 		_cache_unlock(par);
2116 		if (dvp) {
2117 			if (vget(dvp, LK_SHARED) == 0) {
2118 				vn_unlock(dvp);
2119 				vdrop(dvp);
2120 				/* return refd, unlocked dvp */
2121 			} else {
2122 				vdrop(dvp);
2123 				dvp = NULL;
2124 			}
2125 		}
2126 		_cache_drop(par);
2127 	}
2128 	return(dvp);
2129 }
2130 
2131 /*
2132  * Convert a directory vnode to a namecache record without any other
2133  * knowledge of the topology.  This ONLY works with directory vnodes and
2134  * is ONLY used by the NFS server.  dvp must be refd but unlocked, and the
2135  * returned ncp (if not NULL) will be held and unlocked.
2136  *
2137  * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
2138  * If 'makeit' is 1 we attempt to track-down and create the namecache topology
2139  * for dvp.  This will fail only if the directory has been deleted out from
2140  * under the caller.
2141  *
2142  * Callers must always check for a NULL return no matter the value of 'makeit'.
2143  *
2144  * To avoid underflowing the kernel stack each recursive call increments
2145  * the makeit variable.
2146  */
2147 
2148 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
2149 				  struct vnode *dvp, char *fakename);
2150 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
2151 				  struct vnode **saved_dvp);
2152 
2153 int
2154 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
2155 	      struct nchandle *nch)
2156 {
2157 	struct vnode *saved_dvp;
2158 	struct vnode *pvp;
2159 	char *fakename;
2160 	int error;
2161 
2162 	nch->ncp = NULL;
2163 	nch->mount = dvp->v_mount;
2164 	saved_dvp = NULL;
2165 	fakename = NULL;
2166 
2167 	/*
2168 	 * Handle the makeit == 0 degenerate case
2169 	 */
2170 	if (makeit == 0) {
2171 		spin_lock_shared(&dvp->v_spin);
2172 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
2173 		if (nch->ncp)
2174 			cache_hold(nch);
2175 		spin_unlock_shared(&dvp->v_spin);
2176 	}
2177 
2178 	/*
2179 	 * Loop until resolution, inside code will break out on error.
2180 	 */
2181 	while (makeit) {
2182 		/*
2183 		 * Break out if we successfully acquire a working ncp.
2184 		 */
2185 		spin_lock_shared(&dvp->v_spin);
2186 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
2187 		if (nch->ncp) {
2188 			cache_hold(nch);
2189 			spin_unlock_shared(&dvp->v_spin);
2190 			break;
2191 		}
2192 		spin_unlock_shared(&dvp->v_spin);
2193 
2194 		/*
2195 		 * If dvp is the root of its filesystem it should already
2196 		 * have a namecache pointer associated with it as a side
2197 		 * effect of the mount, but it may have been disassociated.
2198 		 */
2199 		if (dvp->v_flag & VROOT) {
2200 			nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
2201 			error = cache_resolve_mp(nch->mount);
2202 			_cache_put(nch->ncp);
2203 			if (ncvp_debug) {
2204 				kprintf("cache_fromdvp: resolve root of mount %p error %d",
2205 					dvp->v_mount, error);
2206 			}
2207 			if (error) {
2208 				if (ncvp_debug)
2209 					kprintf(" failed\n");
2210 				nch->ncp = NULL;
2211 				break;
2212 			}
2213 			if (ncvp_debug)
2214 				kprintf(" succeeded\n");
2215 			continue;
2216 		}
2217 
2218 		/*
2219 		 * If we are recursed too deeply resort to an O(n^2)
2220 		 * algorithm to resolve the namecache topology.  The
2221 		 * resolved pvp is left referenced in saved_dvp to
2222 		 * prevent the tree from being destroyed while we loop.
2223 		 */
2224 		if (makeit > 20) {
2225 			error = cache_fromdvp_try(dvp, cred, &saved_dvp);
2226 			if (error) {
2227 				kprintf("lookupdotdot(longpath) failed %d "
2228 				       "dvp %p\n", error, dvp);
2229 				nch->ncp = NULL;
2230 				break;
2231 			}
2232 			continue;
2233 		}
2234 
2235 		/*
2236 		 * Get the parent directory and resolve its ncp.
2237 		 */
2238 		if (fakename) {
2239 			kfree(fakename, M_TEMP);
2240 			fakename = NULL;
2241 		}
2242 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2243 					  &fakename);
2244 		if (error) {
2245 			kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
2246 			break;
2247 		}
2248 		vn_unlock(pvp);
2249 
2250 		/*
2251 		 * Reuse makeit as a recursion depth counter.  On success
2252 		 * nch will be fully referenced.
2253 		 */
2254 		cache_fromdvp(pvp, cred, makeit + 1, nch);
2255 		vrele(pvp);
2256 		if (nch->ncp == NULL)
2257 			break;
2258 
2259 		/*
2260 		 * Do an inefficient scan of pvp (embodied by ncp) to look
2261 		 * for dvp.  This will create a namecache record for dvp on
2262 		 * success.  We loop up to recheck on success.
2263 		 *
2264 		 * ncp and dvp are both held but not locked.
2265 		 */
2266 		error = cache_inefficient_scan(nch, cred, dvp, fakename);
2267 		if (error) {
2268 			kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
2269 				pvp, nch->ncp->nc_name, dvp);
2270 			cache_drop(nch);
2271 			/* nch was NULLed out, reload mount */
2272 			nch->mount = dvp->v_mount;
2273 			break;
2274 		}
2275 		if (ncvp_debug) {
2276 			kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
2277 				pvp, nch->ncp->nc_name);
2278 		}
2279 		cache_drop(nch);
2280 		/* nch was NULLed out, reload mount */
2281 		nch->mount = dvp->v_mount;
2282 	}
2283 
2284 	/*
2285 	 * If nch->ncp is non-NULL it will have been held already.
2286 	 */
2287 	if (fakename)
2288 		kfree(fakename, M_TEMP);
2289 	if (saved_dvp)
2290 		vrele(saved_dvp);
2291 	if (nch->ncp)
2292 		return (0);
2293 	return (EINVAL);
2294 }
2295 
2296 /*
2297  * Go up the chain of parent directories until we find something
2298  * we can resolve into the namecache.  This is very inefficient.
2299  */
2300 static
2301 int
2302 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
2303 		  struct vnode **saved_dvp)
2304 {
2305 	struct nchandle nch;
2306 	struct vnode *pvp;
2307 	int error;
2308 	static time_t last_fromdvp_report;
2309 	char *fakename;
2310 
2311 	/*
2312 	 * Loop getting the parent directory vnode until we get something we
2313 	 * can resolve in the namecache.
2314 	 */
2315 	vref(dvp);
2316 	nch.mount = dvp->v_mount;
2317 	nch.ncp = NULL;
2318 	fakename = NULL;
2319 
2320 	for (;;) {
2321 		if (fakename) {
2322 			kfree(fakename, M_TEMP);
2323 			fakename = NULL;
2324 		}
2325 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2326 					  &fakename);
2327 		if (error) {
2328 			vrele(dvp);
2329 			break;
2330 		}
2331 		vn_unlock(pvp);
2332 		spin_lock_shared(&pvp->v_spin);
2333 		if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
2334 			_cache_hold(nch.ncp);
2335 			spin_unlock_shared(&pvp->v_spin);
2336 			vrele(pvp);
2337 			break;
2338 		}
2339 		spin_unlock_shared(&pvp->v_spin);
2340 		if (pvp->v_flag & VROOT) {
2341 			nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
2342 			error = cache_resolve_mp(nch.mount);
2343 			_cache_unlock(nch.ncp);
2344 			vrele(pvp);
2345 			if (error) {
2346 				_cache_drop(nch.ncp);
2347 				nch.ncp = NULL;
2348 				vrele(dvp);
2349 			}
2350 			break;
2351 		}
2352 		vrele(dvp);
2353 		dvp = pvp;
2354 	}
2355 	if (error == 0) {
2356 		if (last_fromdvp_report != time_uptime) {
2357 			last_fromdvp_report = time_uptime;
2358 			kprintf("Warning: extremely inefficient path "
2359 				"resolution on %s\n",
2360 				nch.ncp->nc_name);
2361 		}
2362 		error = cache_inefficient_scan(&nch, cred, dvp, fakename);
2363 
2364 		/*
2365 		 * Hopefully dvp now has a namecache record associated with
2366 		 * it.  Leave it referenced to prevent the kernel from
2367 		 * recycling the vnode.  Otherwise extremely long directory
2368 		 * paths could result in endless recycling.
2369 		 */
2370 		if (*saved_dvp)
2371 		    vrele(*saved_dvp);
2372 		*saved_dvp = dvp;
2373 		_cache_drop(nch.ncp);
2374 	}
2375 	if (fakename)
2376 		kfree(fakename, M_TEMP);
2377 	return (error);
2378 }
2379 
2380 /*
2381  * Do an inefficient scan of the directory represented by ncp looking for
2382  * the directory vnode dvp.  ncp must be held but not locked on entry and
2383  * will be held on return.  dvp must be refd but not locked on entry and
2384  * will remain refd on return.
2385  *
2386  * Why do this at all?  Well, due to its stateless nature the NFS server
2387  * converts file handles directly to vnodes without necessarily going through
2388  * the namecache ops that would otherwise create the namecache topology
2389  * leading to the vnode.  We could either (1) Change the namecache algorithms
2390  * to allow disconnect namecache records that are re-merged opportunistically,
2391  * or (2) Make the NFS server backtrack and scan to recover a connected
2392  * namecache topology in order to then be able to issue new API lookups.
2393  *
2394  * It turns out that (1) is a huge mess.  It takes a nice clean set of
2395  * namecache algorithms and introduces a lot of complication in every subsystem
2396  * that calls into the namecache to deal with the re-merge case, especially
2397  * since we are using the namecache to placehold negative lookups and the
2398  * vnode might not be immediately assigned. (2) is certainly far less
2399  * efficient then (1), but since we are only talking about directories here
2400  * (which are likely to remain cached), the case does not actually run all
2401  * that often and has the supreme advantage of not polluting the namecache
2402  * algorithms.
2403  *
2404  * If a fakename is supplied just construct a namecache entry using the
2405  * fake name.
2406  */
2407 static int
2408 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
2409 		       struct vnode *dvp, char *fakename)
2410 {
2411 	struct nlcomponent nlc;
2412 	struct nchandle rncp;
2413 	struct dirent *den;
2414 	struct vnode *pvp;
2415 	struct vattr vat;
2416 	struct iovec iov;
2417 	struct uio uio;
2418 	int blksize;
2419 	int eofflag;
2420 	int bytes;
2421 	char *rbuf;
2422 	int error;
2423 
2424 	vat.va_blocksize = 0;
2425 	if ((error = VOP_GETATTR(dvp, &vat)) != 0)
2426 		return (error);
2427 	cache_lock(nch);
2428 	error = cache_vref(nch, cred, &pvp);
2429 	cache_unlock(nch);
2430 	if (error)
2431 		return (error);
2432 	if (ncvp_debug) {
2433 		kprintf("inefficient_scan of (%p,%s): directory iosize %ld "
2434 			"vattr fileid = %lld\n",
2435 			nch->ncp, nch->ncp->nc_name,
2436 			vat.va_blocksize,
2437 			(long long)vat.va_fileid);
2438 	}
2439 
2440 	/*
2441 	 * Use the supplied fakename if not NULL.  Fake names are typically
2442 	 * not in the actual filesystem hierarchy.  This is used by HAMMER
2443 	 * to glue @@timestamp recursions together.
2444 	 */
2445 	if (fakename) {
2446 		nlc.nlc_nameptr = fakename;
2447 		nlc.nlc_namelen = strlen(fakename);
2448 		rncp = cache_nlookup(nch, &nlc);
2449 		goto done;
2450 	}
2451 
2452 	if ((blksize = vat.va_blocksize) == 0)
2453 		blksize = DEV_BSIZE;
2454 	rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
2455 	rncp.ncp = NULL;
2456 
2457 	eofflag = 0;
2458 	uio.uio_offset = 0;
2459 again:
2460 	iov.iov_base = rbuf;
2461 	iov.iov_len = blksize;
2462 	uio.uio_iov = &iov;
2463 	uio.uio_iovcnt = 1;
2464 	uio.uio_resid = blksize;
2465 	uio.uio_segflg = UIO_SYSSPACE;
2466 	uio.uio_rw = UIO_READ;
2467 	uio.uio_td = curthread;
2468 
2469 	if (ncvp_debug >= 2)
2470 		kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
2471 	error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
2472 	if (error == 0) {
2473 		den = (struct dirent *)rbuf;
2474 		bytes = blksize - uio.uio_resid;
2475 
2476 		while (bytes > 0) {
2477 			if (ncvp_debug >= 2) {
2478 				kprintf("cache_inefficient_scan: %*.*s\n",
2479 					den->d_namlen, den->d_namlen,
2480 					den->d_name);
2481 			}
2482 			if (den->d_type != DT_WHT &&
2483 			    den->d_ino == vat.va_fileid) {
2484 				if (ncvp_debug) {
2485 					kprintf("cache_inefficient_scan: "
2486 					       "MATCHED inode %lld path %s/%*.*s\n",
2487 					       (long long)vat.va_fileid,
2488 					       nch->ncp->nc_name,
2489 					       den->d_namlen, den->d_namlen,
2490 					       den->d_name);
2491 				}
2492 				nlc.nlc_nameptr = den->d_name;
2493 				nlc.nlc_namelen = den->d_namlen;
2494 				rncp = cache_nlookup(nch, &nlc);
2495 				KKASSERT(rncp.ncp != NULL);
2496 				break;
2497 			}
2498 			bytes -= _DIRENT_DIRSIZ(den);
2499 			den = _DIRENT_NEXT(den);
2500 		}
2501 		if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
2502 			goto again;
2503 	}
2504 	kfree(rbuf, M_TEMP);
2505 done:
2506 	vrele(pvp);
2507 	if (rncp.ncp) {
2508 		if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
2509 			_cache_setvp(rncp.mount, rncp.ncp, dvp);
2510 			if (ncvp_debug >= 2) {
2511 				kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
2512 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
2513 			}
2514 		} else {
2515 			if (ncvp_debug >= 2) {
2516 				kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
2517 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
2518 					rncp.ncp->nc_vp);
2519 			}
2520 		}
2521 		if (rncp.ncp->nc_vp == NULL)
2522 			error = rncp.ncp->nc_error;
2523 		/*
2524 		 * Release rncp after a successful nlookup.  rncp was fully
2525 		 * referenced.
2526 		 */
2527 		cache_put(&rncp);
2528 	} else {
2529 		kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
2530 			dvp, nch->ncp->nc_name);
2531 		error = ENOENT;
2532 	}
2533 	return (error);
2534 }
2535 
2536 /*
2537  * This function must be called with the ncp held and locked and will unlock
2538  * and drop it during zapping.
2539  *
2540  * Zap a namecache entry.  The ncp is unconditionally set to an unresolved
2541  * state, which disassociates it from its vnode or pcpu_ncache[n].neg_list
2542  * and removes the related reference.  If the ncp can be removed, and the
2543  * parent can be zapped non-blocking, this function loops up.
2544  *
2545  * There will be one ref from the caller (which we now own).  The only
2546  * remaining autonomous refs to the ncp will then be due to nc_parent->nc_list,
2547  * so possibly 2 refs left.  Taking this into account, if there are no
2548  * additional refs and no children, the ncp will be removed from the topology
2549  * and destroyed.
2550  *
2551  * References and/or children may exist if the ncp is in the middle of the
2552  * topology, preventing the ncp from being destroyed.
2553  *
2554  * If nonblock is non-zero and the parent ncp cannot be locked we give up.
2555  *
2556  * This function may return a held (but NOT locked) parent node which the
2557  * caller must drop in a loop.  Looping is one way to avoid unbounded recursion
2558  * due to deep namecache trees.
2559  *
2560  * WARNING!  For MPSAFE operation this routine must acquire up to three
2561  *	     spin locks to be able to safely test nc_refs.  Lock order is
2562  *	     very important.
2563  *
2564  *	     hash spinlock if on hash list
2565  *	     parent spinlock if child of parent
2566  *	     (the ncp is unresolved so there is no vnode association)
2567  */
2568 static void
2569 cache_zap(struct namecache *ncp)
2570 {
2571 	struct namecache *par;
2572 	struct vnode *dropvp;
2573 	struct nchash_head *nchpp;
2574 	int refcmp;
2575 	int nonblock = 1;	/* XXX cleanup */
2576 
2577 again:
2578 	/*
2579 	 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
2580 	 * This gets rid of any vp->v_namecache list or negative list and
2581 	 * the related ref.
2582 	 */
2583 	_cache_setunresolved(ncp);
2584 
2585 	/*
2586 	 * Try to scrap the entry and possibly tail-recurse on its parent.
2587 	 * We only scrap unref'd (other then our ref) unresolved entries,
2588 	 * we do not scrap 'live' entries.
2589 	 *
2590 	 * If nc_parent is non NULL we expect 2 references, else just 1.
2591 	 * If there are more, someone else also holds the ncp and we cannot
2592 	 * destroy it.
2593 	 */
2594 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
2595 	KKASSERT(ncp->nc_refs > 0);
2596 
2597 	/*
2598 	 * If the ncp is linked to its parent it will also be in the hash
2599 	 * table.  We have to be able to lock the parent and the hash table.
2600 	 *
2601 	 * Acquire locks.  Note that the parent can't go away while we hold
2602 	 * a child locked.  If nc_parent is present, expect 2 refs instead
2603 	 * of 1.
2604 	 */
2605 	nchpp = NULL;
2606 	if ((par = ncp->nc_parent) != NULL) {
2607 		if (nonblock) {
2608 			if (_cache_lock_nonblock(par)) {
2609 				/* lock failed */
2610 				ncp->nc_flag |= NCF_DEFEREDZAP;
2611 				atomic_add_long(
2612 				    &pcpu_ncache[mycpu->gd_cpuid].numdefered,
2613 				    1);
2614 				_cache_unlock(ncp);
2615 				_cache_drop(ncp);	/* caller's ref */
2616 				return;
2617 			}
2618 			_cache_hold(par);
2619 		} else {
2620 			_cache_hold(par);
2621 			_cache_lock(par);
2622 		}
2623 		nchpp = ncp->nc_head;
2624 		spin_lock(&nchpp->spin);
2625 	}
2626 
2627 	/*
2628 	 * With the parent and nchpp locked, and the vnode removed
2629 	 * (no vp->v_namecache), we expect 1 or 2 refs.  If there are
2630 	 * more someone else has a ref and we cannot zap the entry.
2631 	 *
2632 	 * one for our hold
2633 	 * one for our parent link (parent also has one from the linkage)
2634 	 */
2635 	if (par)
2636 		refcmp = 2;
2637 	else
2638 		refcmp = 1;
2639 
2640 	/*
2641 	 * On failure undo the work we've done so far and drop the
2642 	 * caller's ref and ncp.
2643 	 */
2644 	if (ncp->nc_refs != refcmp || TAILQ_FIRST(&ncp->nc_list)) {
2645 		if (par) {
2646 			spin_unlock(&nchpp->spin);
2647 			_cache_put(par);
2648 		}
2649 		_cache_unlock(ncp);
2650 		_cache_drop(ncp);
2651 		return;
2652 	}
2653 
2654 	/*
2655 	 * We own all the refs and with the spinlocks held no further
2656 	 * refs can be acquired by others.
2657 	 *
2658 	 * Remove us from the hash list and parent list.  We have to
2659 	 * drop a ref on the parent's vp if the parent's list becomes
2660 	 * empty.
2661 	 */
2662 	dropvp = NULL;
2663 	if (par) {
2664 		struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
2665 
2666 		KKASSERT(nchpp == ncp->nc_head);
2667 		TAILQ_REMOVE(&ncp->nc_head->list, ncp, nc_hash);
2668 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
2669 		atomic_add_long(&pn->vfscache_count, -1);
2670 		if (TAILQ_EMPTY(&ncp->nc_list))
2671 			atomic_add_long(&pn->vfscache_leafs, -1);
2672 
2673 		if (TAILQ_EMPTY(&par->nc_list)) {
2674 			atomic_add_long(&pn->vfscache_leafs, 1);
2675 			if (par->nc_vp)
2676 				dropvp = par->nc_vp;
2677 		}
2678 		ncp->nc_parent = NULL;
2679 		ncp->nc_head = NULL;
2680 		spin_unlock(&nchpp->spin);
2681 		_cache_drop(par);	/* removal of ncp from par->nc_list */
2682 		/*_cache_unlock(par);*/
2683 	} else {
2684 		KKASSERT(ncp->nc_head == NULL);
2685 	}
2686 
2687 	/*
2688 	 * ncp should not have picked up any refs.  Physically
2689 	 * destroy the ncp.
2690 	 */
2691 	if (ncp->nc_refs != refcmp) {
2692 		panic("cache_zap: %p bad refs %d (expected %d)\n",
2693 			ncp, ncp->nc_refs, refcmp);
2694 	}
2695 	/* _cache_unlock(ncp) not required */
2696 	ncp->nc_refs = -1;	/* safety */
2697 	if (ncp->nc_name)
2698 		kfree(ncp->nc_name, M_VFSCACHEAUX);
2699 	kfree_obj(ncp, M_VFSCACHE);
2700 
2701 	/*
2702 	 * Delayed drop (we had to release our spinlocks)
2703 	 */
2704 	if (dropvp)
2705 		vdrop(dropvp);
2706 
2707 	/*
2708 	 * Loop up if we can recursively clean out the parent.
2709 	 */
2710 	if (par) {
2711 		refcmp = 1;		/* ref on parent */
2712 		if (par->nc_parent)	/* par->par */
2713 			++refcmp;
2714 		par->nc_flag &= ~NCF_DEFEREDZAP;
2715 		if ((par->nc_flag & NCF_UNRESOLVED) &&
2716 		    par->nc_refs == refcmp &&
2717 		    TAILQ_EMPTY(&par->nc_list)) {
2718 			ncp = par;
2719 			goto again;
2720 		}
2721 		_cache_unlock(par);
2722 		_cache_drop(par);
2723 	}
2724 }
2725 
2726 /*
2727  * Clean up dangling negative cache and defered-drop entries in the
2728  * namecache.
2729  *
2730  * This routine is called in the critical path and also called from
2731  * vnlru().  When called from vnlru we use a lower limit to try to
2732  * deal with the negative cache before the critical path has to start
2733  * dealing with it.
2734  */
2735 typedef enum { CHI_LOW, CHI_HIGH } cache_hs_t;
2736 
2737 static cache_hs_t neg_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
2738 static cache_hs_t pos_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
2739 
2740 void
2741 cache_hysteresis(int critpath)
2742 {
2743 	long poslimit;
2744 	long neglimit = maxvnodes / ncnegfactor;
2745 	long xnumcache = vfscache_leafs;
2746 
2747 	if (critpath == 0)
2748 		neglimit = neglimit * 8 / 10;
2749 
2750 	/*
2751 	 * Don't cache too many negative hits.  We use hysteresis to reduce
2752 	 * the impact on the critical path.
2753 	 */
2754 	switch(neg_cache_hysteresis_state[critpath]) {
2755 	case CHI_LOW:
2756 		if (vfscache_negs > MINNEG && vfscache_negs > neglimit) {
2757 			if (critpath)
2758 				_cache_cleanneg(ncnegflush);
2759 			else
2760 				_cache_cleanneg(ncnegflush +
2761 						vfscache_negs - neglimit);
2762 			neg_cache_hysteresis_state[critpath] = CHI_HIGH;
2763 		}
2764 		break;
2765 	case CHI_HIGH:
2766 		if (vfscache_negs > MINNEG * 9 / 10 &&
2767 		    vfscache_negs * 9 / 10 > neglimit
2768 		) {
2769 			if (critpath)
2770 				_cache_cleanneg(ncnegflush);
2771 			else
2772 				_cache_cleanneg(ncnegflush +
2773 						vfscache_negs * 9 / 10 -
2774 						neglimit);
2775 		} else {
2776 			neg_cache_hysteresis_state[critpath] = CHI_LOW;
2777 		}
2778 		break;
2779 	}
2780 
2781 	/*
2782 	 * Don't cache too many positive hits.  We use hysteresis to reduce
2783 	 * the impact on the critical path.
2784 	 *
2785 	 * Excessive positive hits can accumulate due to large numbers of
2786 	 * hardlinks (the vnode cache will not prevent hl ncps from growing
2787 	 * into infinity).
2788 	 */
2789 	if ((poslimit = ncposlimit) == 0)
2790 		poslimit = maxvnodes * 2;
2791 	if (critpath == 0)
2792 		poslimit = poslimit * 8 / 10;
2793 
2794 	switch(pos_cache_hysteresis_state[critpath]) {
2795 	case CHI_LOW:
2796 		if (xnumcache > poslimit && xnumcache > MINPOS) {
2797 			if (critpath)
2798 				_cache_cleanpos(ncposflush);
2799 			else
2800 				_cache_cleanpos(ncposflush +
2801 						xnumcache - poslimit);
2802 			pos_cache_hysteresis_state[critpath] = CHI_HIGH;
2803 		}
2804 		break;
2805 	case CHI_HIGH:
2806 		if (xnumcache > poslimit * 5 / 6 && xnumcache > MINPOS) {
2807 			if (critpath)
2808 				_cache_cleanpos(ncposflush);
2809 			else
2810 				_cache_cleanpos(ncposflush +
2811 						xnumcache - poslimit * 5 / 6);
2812 		} else {
2813 			pos_cache_hysteresis_state[critpath] = CHI_LOW;
2814 		}
2815 		break;
2816 	}
2817 
2818 	/*
2819 	 * Clean out dangling defered-zap ncps which could not be cleanly
2820 	 * dropped if too many build up.  Note that numdefered is
2821 	 * heuristical.  Make sure we are real-time for the current cpu,
2822 	 * plus the global rollup.
2823 	 */
2824 	if (pcpu_ncache[mycpu->gd_cpuid].numdefered + numdefered > neglimit) {
2825 		_cache_cleandefered();
2826 	}
2827 }
2828 
2829 /*
2830  * NEW NAMECACHE LOOKUP API
2831  *
2832  * Lookup an entry in the namecache.  The passed par_nch must be referenced
2833  * and unlocked.  A referenced and locked nchandle with a non-NULL nch.ncp
2834  * is ALWAYS returned, eve if the supplied component is illegal.
2835  *
2836  * The resulting namecache entry should be returned to the system with
2837  * cache_put() or cache_unlock() + cache_drop().
2838  *
2839  * namecache locks are recursive but care must be taken to avoid lock order
2840  * reversals (hence why the passed par_nch must be unlocked).  Locking
2841  * rules are to order for parent traversals, not for child traversals.
2842  *
2843  * Nobody else will be able to manipulate the associated namespace (e.g.
2844  * create, delete, rename, rename-target) until the caller unlocks the
2845  * entry.
2846  *
2847  * The returned entry will be in one of three states:  positive hit (non-null
2848  * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
2849  * Unresolved entries must be resolved through the filesystem to associate the
2850  * vnode and/or determine whether a positive or negative hit has occured.
2851  *
2852  * It is not necessary to lock a directory in order to lock namespace under
2853  * that directory.  In fact, it is explicitly not allowed to do that.  A
2854  * directory is typically only locked when being created, renamed, or
2855  * destroyed.
2856  *
2857  * The directory (par) may be unresolved, in which case any returned child
2858  * will likely also be marked unresolved.  Likely but not guarenteed.  Since
2859  * the filesystem lookup requires a resolved directory vnode the caller is
2860  * responsible for resolving the namecache chain top-down.  This API
2861  * specifically allows whole chains to be created in an unresolved state.
2862  */
2863 struct nchandle
2864 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
2865 {
2866 	struct nchandle nch;
2867 	struct namecache *ncp;
2868 	struct namecache *new_ncp;
2869 	struct namecache *rep_ncp;	/* reuse a destroyed ncp */
2870 	struct nchash_head *nchpp;
2871 	struct mount *mp;
2872 	u_int32_t hash;
2873 	globaldata_t gd;
2874 	int par_locked;
2875 	int use_excl;
2876 
2877 	gd = mycpu;
2878 	mp = par_nch->mount;
2879 	par_locked = 0;
2880 
2881 	/*
2882 	 * This is a good time to call it, no ncp's are locked by
2883 	 * the caller or us.
2884 	 */
2885 	cache_hysteresis(1);
2886 
2887 	/*
2888 	 * Try to locate an existing entry
2889 	 */
2890 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2891 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2892 	new_ncp = NULL;
2893 	use_excl = 0;
2894 	nchpp = NCHHASH(hash);
2895 restart:
2896 	rep_ncp = NULL;
2897 	if (use_excl)
2898 		spin_lock(&nchpp->spin);
2899 	else
2900 		spin_lock_shared(&nchpp->spin);
2901 
2902 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
2903 		/*
2904 		 * Break out if we find a matching entry.  Note that
2905 		 * UNRESOLVED entries may match, but DESTROYED entries
2906 		 * do not.
2907 		 *
2908 		 * We may be able to reuse DESTROYED entries that we come
2909 		 * across, even if the name does not match, as long as
2910 		 * nc_nlen is correct and the only hold ref is from the nchpp
2911 		 * list itself.
2912 		 */
2913 		if (ncp->nc_parent == par_nch->ncp &&
2914 		    ncp->nc_nlen == nlc->nlc_namelen) {
2915 			if (ncp->nc_flag & NCF_DESTROYED) {
2916 				if (ncp->nc_refs == 1 && rep_ncp == NULL)
2917 					rep_ncp = ncp;
2918 				continue;
2919 			}
2920 			if (bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen))
2921 				continue;
2922 			_cache_hold(ncp);
2923 			if (use_excl)
2924 				spin_unlock(&nchpp->spin);
2925 			else
2926 				spin_unlock_shared(&nchpp->spin);
2927 			if (par_locked) {
2928 				_cache_unlock(par_nch->ncp);
2929 				par_locked = 0;
2930 			}
2931 			if (_cache_lock_special(ncp) == 0) {
2932 				/*
2933 				 * Successfully locked but we must re-test
2934 				 * conditions that might have changed since
2935 				 * we did not have the lock before.
2936 				 */
2937 				if (ncp->nc_parent != par_nch->ncp ||
2938 				    ncp->nc_nlen != nlc->nlc_namelen ||
2939 				    bcmp(ncp->nc_name, nlc->nlc_nameptr,
2940 					 ncp->nc_nlen) ||
2941 				    (ncp->nc_flag & NCF_DESTROYED)) {
2942 					_cache_put(ncp);
2943 					goto restart;
2944 				}
2945 				_cache_auto_unresolve(mp, ncp);
2946 				if (new_ncp) {
2947 					_cache_free(new_ncp);
2948 					new_ncp = NULL; /* safety */
2949 				}
2950 				goto found;
2951 			}
2952 			_cache_get(ncp);	/* cycle the lock to block */
2953 			_cache_put(ncp);
2954 			_cache_drop(ncp);
2955 			goto restart;
2956 		}
2957 	}
2958 
2959 	/*
2960 	 * We failed to locate the entry, try to resurrect a destroyed
2961 	 * entry that we did find that is already correctly linked into
2962 	 * nchpp and the parent.  We must re-test conditions after
2963 	 * successfully locking rep_ncp.
2964 	 *
2965 	 * This case can occur under heavy loads due to not being able
2966 	 * to safely lock the parent in cache_zap().  Nominally a repeated
2967 	 * create/unlink load, but only the namelen needs to match.
2968 	 *
2969 	 * An exclusive lock on the nchpp is required to process this case,
2970 	 * otherwise a race can cause duplicate entries to be created with
2971 	 * one cpu reusing a DESTROYED ncp while another creates a new_ncp.
2972 	 */
2973 	if (rep_ncp && use_excl) {
2974 		if (_cache_lock_nonblock(rep_ncp) == 0) {
2975 			_cache_hold(rep_ncp);
2976 			if (rep_ncp->nc_parent == par_nch->ncp &&
2977 			    rep_ncp->nc_nlen == nlc->nlc_namelen &&
2978 			    (rep_ncp->nc_flag & NCF_DESTROYED) &&
2979 			    rep_ncp->nc_refs == 2) {
2980 				/*
2981 				 * Update nc_name.
2982 				 */
2983 				ncp = rep_ncp;
2984 				bcopy(nlc->nlc_nameptr, ncp->nc_name,
2985 				      nlc->nlc_namelen);
2986 
2987 				/*
2988 				 * This takes some care.  We must clear the
2989 				 * NCF_DESTROYED flag before unlocking the
2990 				 * hash chain so other concurrent searches
2991 				 * do not skip this element.
2992 				 *
2993 				 * We must also unlock the hash chain before
2994 				 * unresolving the ncp to avoid deadlocks.
2995 				 * We hold the lock on the ncp so we can safely
2996 				 * reinitialize nc_flag after that.
2997 				 */
2998 				ncp->nc_flag &= ~NCF_DESTROYED;
2999 				spin_unlock(&nchpp->spin);	/* use_excl */
3000 
3001 				_cache_setunresolved(ncp);
3002 				ncp->nc_flag = NCF_UNRESOLVED;
3003 				ncp->nc_error = ENOTCONN;
3004 				if (par_locked) {
3005 					_cache_unlock(par_nch->ncp);
3006 					par_locked = 0;
3007 				}
3008 				if (new_ncp) {
3009 					_cache_free(new_ncp);
3010 					new_ncp = NULL; /* safety */
3011 				}
3012 				goto found;
3013 			}
3014 			_cache_put(rep_ncp);
3015 		}
3016 	}
3017 
3018 	/*
3019 	 * Otherwise create a new entry and add it to the cache.  The parent
3020 	 * ncp must also be locked so we can link into it.
3021 	 *
3022 	 * We have to relookup after possibly blocking in kmalloc or
3023 	 * when locking par_nch.
3024 	 *
3025 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
3026 	 *	 mount case, in which case nc_name will be NULL.
3027 	 *
3028 	 * NOTE: In the rep_ncp != NULL case we are trying to reuse
3029 	 *	 a DESTROYED entry, but didn't have an exclusive lock.
3030 	 *	 In this situation we do not create a new_ncp.
3031 	 */
3032 	if (new_ncp == NULL) {
3033 		if (use_excl)
3034 			spin_unlock(&nchpp->spin);
3035 		else
3036 			spin_unlock_shared(&nchpp->spin);
3037 		if (rep_ncp == NULL) {
3038 			new_ncp = cache_alloc(nlc->nlc_namelen);
3039 			if (nlc->nlc_namelen) {
3040 				bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
3041 				      nlc->nlc_namelen);
3042 				new_ncp->nc_name[nlc->nlc_namelen] = 0;
3043 			}
3044 		}
3045 		use_excl = 1;
3046 		goto restart;
3047 	}
3048 
3049 	/*
3050 	 * NOTE! The spinlock is held exclusively here because new_ncp
3051 	 *	 is non-NULL.
3052 	 */
3053 	if (par_locked == 0) {
3054 		spin_unlock(&nchpp->spin);
3055 		_cache_lock(par_nch->ncp);
3056 		par_locked = 1;
3057 		goto restart;
3058 	}
3059 
3060 	/*
3061 	 * Link to parent (requires another ref, the one already in new_ncp
3062 	 * is what we wil lreturn).
3063 	 *
3064 	 * WARNING!  We still hold the spinlock.  We have to set the hash
3065 	 *	     table entry atomically.
3066 	 */
3067 	ncp = new_ncp;
3068 	++ncp->nc_refs;
3069 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
3070 	spin_unlock(&nchpp->spin);
3071 	_cache_unlock(par_nch->ncp);
3072 	/* par_locked = 0 - not used */
3073 found:
3074 	/*
3075 	 * stats and namecache size management
3076 	 */
3077 	if (ncp->nc_flag & NCF_UNRESOLVED)
3078 		++gd->gd_nchstats->ncs_miss;
3079 	else if (ncp->nc_vp)
3080 		++gd->gd_nchstats->ncs_goodhits;
3081 	else
3082 		++gd->gd_nchstats->ncs_neghits;
3083 	nch.mount = mp;
3084 	nch.ncp = ncp;
3085 	_cache_mntref(nch.mount);
3086 
3087 	return(nch);
3088 }
3089 
3090 /*
3091  * Attempt to lookup a namecache entry and return with a shared namecache
3092  * lock.  This operates non-blocking.  EWOULDBLOCK is returned if excl is
3093  * set or we are unable to lock.
3094  */
3095 int
3096 cache_nlookup_maybe_shared(struct nchandle *par_nch,
3097 			   struct nlcomponent *nlc,
3098 			   int excl, struct nchandle *res_nch)
3099 {
3100 	struct namecache *ncp;
3101 	struct nchash_head *nchpp;
3102 	struct mount *mp;
3103 	u_int32_t hash;
3104 	globaldata_t gd;
3105 
3106 	/*
3107 	 * If exclusive requested or shared namecache locks are disabled,
3108 	 * return failure.
3109 	 */
3110 	if (ncp_shared_lock_disable || excl)
3111 		return(EWOULDBLOCK);
3112 
3113 	gd = mycpu;
3114 	mp = par_nch->mount;
3115 
3116 	/*
3117 	 * This is a good time to call it, no ncp's are locked by
3118 	 * the caller or us.
3119 	 */
3120 	cache_hysteresis(1);
3121 
3122 	/*
3123 	 * Try to locate an existing entry
3124 	 */
3125 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3126 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3127 	nchpp = NCHHASH(hash);
3128 
3129 	spin_lock_shared(&nchpp->spin);
3130 
3131 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
3132 		/*
3133 		 * Break out if we find a matching entry.  Note that
3134 		 * UNRESOLVED entries may match, but DESTROYED entries
3135 		 * do not.
3136 		 */
3137 		if (ncp->nc_parent == par_nch->ncp &&
3138 		    ncp->nc_nlen == nlc->nlc_namelen &&
3139 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
3140 		    (ncp->nc_flag & NCF_DESTROYED) == 0
3141 		) {
3142 			_cache_hold(ncp);
3143 			spin_unlock_shared(&nchpp->spin);
3144 
3145 			if (_cache_lock_shared_special(ncp) == 0) {
3146 				if (ncp->nc_parent == par_nch->ncp &&
3147 				    ncp->nc_nlen == nlc->nlc_namelen &&
3148 				    bcmp(ncp->nc_name, nlc->nlc_nameptr,
3149 					 ncp->nc_nlen) == 0 &&
3150 				    (ncp->nc_flag & NCF_DESTROYED) == 0 &&
3151 				    (ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
3152 				    _cache_auto_unresolve_test(mp, ncp) == 0) {
3153 					goto found;
3154 				}
3155 				_cache_unlock(ncp);
3156 			}
3157 			_cache_drop(ncp);
3158 			return(EWOULDBLOCK);
3159 		}
3160 	}
3161 
3162 	/*
3163 	 * Failure
3164 	 */
3165 	spin_unlock_shared(&nchpp->spin);
3166 	return(EWOULDBLOCK);
3167 
3168 	/*
3169 	 * Success
3170 	 *
3171 	 * Note that nc_error might be non-zero (e.g ENOENT).
3172 	 */
3173 found:
3174 	res_nch->mount = mp;
3175 	res_nch->ncp = ncp;
3176 	++gd->gd_nchstats->ncs_goodhits;
3177 	_cache_mntref(res_nch->mount);
3178 
3179 	KKASSERT(ncp->nc_error != EWOULDBLOCK);
3180 	return(ncp->nc_error);
3181 }
3182 
3183 /*
3184  * This is a non-blocking verison of cache_nlookup() used by
3185  * nfs_readdirplusrpc_uio().  It can fail for any reason and
3186  * will return nch.ncp == NULL in that case.
3187  */
3188 struct nchandle
3189 cache_nlookup_nonblock(struct nchandle *par_nch, struct nlcomponent *nlc)
3190 {
3191 	struct nchandle nch;
3192 	struct namecache *ncp;
3193 	struct namecache *new_ncp;
3194 	struct nchash_head *nchpp;
3195 	struct mount *mp;
3196 	u_int32_t hash;
3197 	globaldata_t gd;
3198 	int par_locked;
3199 
3200 	gd = mycpu;
3201 	mp = par_nch->mount;
3202 	par_locked = 0;
3203 
3204 	/*
3205 	 * Try to locate an existing entry
3206 	 */
3207 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3208 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3209 	new_ncp = NULL;
3210 	nchpp = NCHHASH(hash);
3211 restart:
3212 	spin_lock(&nchpp->spin);
3213 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
3214 		/*
3215 		 * Break out if we find a matching entry.  Note that
3216 		 * UNRESOLVED entries may match, but DESTROYED entries
3217 		 * do not.
3218 		 */
3219 		if (ncp->nc_parent == par_nch->ncp &&
3220 		    ncp->nc_nlen == nlc->nlc_namelen &&
3221 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
3222 		    (ncp->nc_flag & NCF_DESTROYED) == 0
3223 		) {
3224 			_cache_hold(ncp);
3225 			spin_unlock(&nchpp->spin);
3226 			if (par_locked) {
3227 				_cache_unlock(par_nch->ncp);
3228 				par_locked = 0;
3229 			}
3230 			if (_cache_lock_special(ncp) == 0) {
3231 				if (ncp->nc_parent != par_nch->ncp ||
3232 				    ncp->nc_nlen != nlc->nlc_namelen ||
3233 				    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) ||
3234 				    (ncp->nc_flag & NCF_DESTROYED)) {
3235 					kprintf("cache_lookup_nonblock: "
3236 						"ncp-race %p %*.*s\n",
3237 						ncp,
3238 						nlc->nlc_namelen,
3239 						nlc->nlc_namelen,
3240 						nlc->nlc_nameptr);
3241 					_cache_unlock(ncp);
3242 					_cache_drop(ncp);
3243 					goto failed;
3244 				}
3245 				_cache_auto_unresolve(mp, ncp);
3246 				if (new_ncp) {
3247 					_cache_free(new_ncp);
3248 					new_ncp = NULL;
3249 				}
3250 				goto found;
3251 			}
3252 			_cache_drop(ncp);
3253 			goto failed;
3254 		}
3255 	}
3256 
3257 	/*
3258 	 * We failed to locate an entry, create a new entry and add it to
3259 	 * the cache.  The parent ncp must also be locked so we
3260 	 * can link into it.
3261 	 *
3262 	 * We have to relookup after possibly blocking in kmalloc or
3263 	 * when locking par_nch.
3264 	 *
3265 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
3266 	 *	 mount case, in which case nc_name will be NULL.
3267 	 */
3268 	if (new_ncp == NULL) {
3269 		spin_unlock(&nchpp->spin);
3270 		new_ncp = cache_alloc(nlc->nlc_namelen);
3271 		if (nlc->nlc_namelen) {
3272 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
3273 			      nlc->nlc_namelen);
3274 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
3275 		}
3276 		goto restart;
3277 	}
3278 	if (par_locked == 0) {
3279 		spin_unlock(&nchpp->spin);
3280 		if (_cache_lock_nonblock(par_nch->ncp) == 0) {
3281 			par_locked = 1;
3282 			goto restart;
3283 		}
3284 		goto failed;
3285 	}
3286 
3287 	/*
3288 	 * Link to parent (requires another ref, the one already in new_ncp
3289 	 * is what we wil lreturn).
3290 	 *
3291 	 * WARNING!  We still hold the spinlock.  We have to set the hash
3292 	 *	     table entry atomically.
3293 	 */
3294 	ncp = new_ncp;
3295 	++ncp->nc_refs;
3296 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
3297 	spin_unlock(&nchpp->spin);
3298 	_cache_unlock(par_nch->ncp);
3299 	/* par_locked = 0 - not used */
3300 found:
3301 	/*
3302 	 * stats and namecache size management
3303 	 */
3304 	if (ncp->nc_flag & NCF_UNRESOLVED)
3305 		++gd->gd_nchstats->ncs_miss;
3306 	else if (ncp->nc_vp)
3307 		++gd->gd_nchstats->ncs_goodhits;
3308 	else
3309 		++gd->gd_nchstats->ncs_neghits;
3310 	nch.mount = mp;
3311 	nch.ncp = ncp;
3312 	_cache_mntref(nch.mount);
3313 
3314 	return(nch);
3315 failed:
3316 	if (new_ncp) {
3317 		_cache_free(new_ncp);
3318 		new_ncp = NULL;
3319 	}
3320 	nch.mount = NULL;
3321 	nch.ncp = NULL;
3322 	return(nch);
3323 }
3324 
3325 /*
3326  * This version is non-locking.  The caller must validate the result
3327  * for parent-to-child continuity.
3328  *
3329  * It can fail for any reason and will return nch.ncp == NULL in that case.
3330  */
3331 struct nchandle
3332 cache_nlookup_nonlocked(struct nchandle *par_nch, struct nlcomponent *nlc)
3333 {
3334 	struct nchandle nch;
3335 	struct namecache *ncp;
3336 	struct nchash_head *nchpp;
3337 	struct mount *mp;
3338 	u_int32_t hash;
3339 	globaldata_t gd;
3340 
3341 	gd = mycpu;
3342 	mp = par_nch->mount;
3343 
3344 	/*
3345 	 * Try to locate an existing entry
3346 	 */
3347 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3348 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3349 	nchpp = NCHHASH(hash);
3350 
3351 	spin_lock_shared(&nchpp->spin);
3352 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
3353 		/*
3354 		 * Break out if we find a matching entry.  Note that
3355 		 * UNRESOLVED entries may match, but DESTROYED entries
3356 		 * do not.
3357 		 *
3358 		 * Resolved NFS entries which have timed out fail so the
3359 		 * caller can rerun with normal locking.
3360 		 */
3361 		if (ncp->nc_parent == par_nch->ncp &&
3362 		    ncp->nc_nlen == nlc->nlc_namelen &&
3363 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
3364 		    (ncp->nc_flag & NCF_DESTROYED) == 0
3365 		) {
3366 			if (_cache_auto_unresolve_test(par_nch->mount, ncp))
3367 				break;
3368 			_cache_hold(ncp);
3369 			spin_unlock_shared(&nchpp->spin);
3370 			goto found;
3371 		}
3372 	}
3373 	spin_unlock_shared(&nchpp->spin);
3374 	nch.mount = NULL;
3375 	nch.ncp = NULL;
3376 	return nch;
3377 found:
3378 	/*
3379 	 * stats and namecache size management
3380 	 */
3381 	if (ncp->nc_flag & NCF_UNRESOLVED)
3382 		++gd->gd_nchstats->ncs_miss;
3383 	else if (ncp->nc_vp)
3384 		++gd->gd_nchstats->ncs_goodhits;
3385 	else
3386 		++gd->gd_nchstats->ncs_neghits;
3387 	nch.mount = mp;
3388 	nch.ncp = ncp;
3389 	_cache_mntref(nch.mount);
3390 
3391 	return(nch);
3392 }
3393 
3394 /*
3395  * The namecache entry is marked as being used as a mount point.
3396  * Locate the mount if it is visible to the caller.  The DragonFly
3397  * mount system allows arbitrary loops in the topology and disentangles
3398  * those loops by matching against (mp, ncp) rather than just (ncp).
3399  * This means any given ncp can dive any number of mounts, depending
3400  * on the relative mount (e.g. nullfs) the caller is at in the topology.
3401  *
3402  * We use a very simple frontend cache to reduce SMP conflicts,
3403  * which we have to do because the mountlist scan needs an exclusive
3404  * lock around its ripout info list.  Not to mention that there might
3405  * be a lot of mounts.
3406  *
3407  * Because all mounts can potentially be accessed by all cpus, break the cpu's
3408  * down a bit to allow some contention rather than making the cache
3409  * excessively huge.
3410  *
3411  * The hash table is split into per-cpu areas, is 4-way set-associative.
3412  */
3413 struct findmount_info {
3414 	struct mount *result;
3415 	struct mount *nch_mount;
3416 	struct namecache *nch_ncp;
3417 };
3418 
3419 static __inline
3420 struct ncmount_cache *
3421 ncmount_cache_lookup4(struct mount *mp, struct namecache *ncp)
3422 {
3423 	uint32_t hash;
3424 
3425 	hash = iscsi_crc32(&mp, sizeof(mp));
3426 	hash = iscsi_crc32_ext(&ncp, sizeof(ncp), hash);
3427 	hash ^= hash >> 16;
3428 	hash = hash & ((NCMOUNT_NUMCACHE - 1) & ~(NCMOUNT_SET - 1));
3429 
3430 	return (&ncmount_cache[hash]);
3431 }
3432 
3433 static
3434 struct ncmount_cache *
3435 ncmount_cache_lookup(struct mount *mp, struct namecache *ncp)
3436 {
3437 	struct ncmount_cache *ncc;
3438 	struct ncmount_cache *best;
3439 	int delta;
3440 	int best_delta;
3441 	int i;
3442 
3443 	ncc = ncmount_cache_lookup4(mp, ncp);
3444 
3445 	/*
3446 	 * NOTE: When checking for a ticks overflow implement a slop of
3447 	 *	 2 ticks just to be safe, because ticks is accessed
3448 	 *	 non-atomically one CPU can increment it while another
3449 	 *	 is still using the old value.
3450 	 */
3451 	if (ncc->ncp == ncp && ncc->mp == mp)	/* 0 */
3452 		return ncc;
3453 	delta = (int)(ticks - ncc->ticks);	/* beware GCC opts */
3454 	if (delta < -2)				/* overflow reset */
3455 		ncc->ticks = ticks;
3456 	best = ncc;
3457 	best_delta = delta;
3458 
3459 	for (i = 1; i < NCMOUNT_SET; ++i) {	/* 1, 2, 3 */
3460 		++ncc;
3461 		if (ncc->ncp == ncp && ncc->mp == mp)
3462 			return ncc;
3463 		delta = (int)(ticks - ncc->ticks);
3464 		if (delta < -2)
3465 			ncc->ticks = ticks;
3466 		if (delta > best_delta) {
3467 			best_delta = delta;
3468 			best = ncc;
3469 		}
3470 	}
3471 	return best;
3472 }
3473 
3474 /*
3475  * pcpu-optimized mount search.  Locate the recursive mountpoint, avoid
3476  * doing an expensive mountlist_scan*() if possible.
3477  *
3478  * (mp, ncp) -> mountonpt.k
3479  *
3480  * Returns a referenced mount pointer or NULL
3481  *
3482  * General SMP operation uses a per-cpu umount_spin to interlock unmount
3483  * operations (that is, where the mp_target can be freed out from under us).
3484  *
3485  * Lookups use the ncc->updating counter to validate the contents in order
3486  * to avoid having to obtain the per cache-element spin-lock.  In addition,
3487  * the ticks field is only updated when it changes.  However, if our per-cpu
3488  * lock fails due to an unmount-in-progress, we fall-back to the
3489  * cache-element's spin-lock.
3490  */
3491 struct mount *
3492 cache_findmount(struct nchandle *nch)
3493 {
3494 	struct findmount_info info;
3495 	struct ncmount_cache *ncc;
3496 	struct ncmount_cache ncc_copy;
3497 	struct mount *target;
3498 	struct pcpu_ncache *pcpu;
3499 	struct spinlock *spinlk;
3500 	int update;
3501 
3502 	pcpu = pcpu_ncache;
3503 	if (ncmount_cache_enable == 0 || pcpu == NULL) {
3504 		ncc = NULL;
3505 		goto skip;
3506 	}
3507 	pcpu += mycpu->gd_cpuid;
3508 
3509 again:
3510 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3511 	if (ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3512 found:
3513 		/*
3514 		 * This is a bit messy for now because we do not yet have
3515 		 * safe disposal of mount structures.  We have to ref
3516 		 * ncc->mp_target but the 'update' counter only tell us
3517 		 * whether the cache has changed after the fact.
3518 		 *
3519 		 * For now get a per-cpu spinlock that will only contend
3520 		 * against umount's.  This is the best path.  If it fails,
3521 		 * instead of waiting on the umount we fall-back to a
3522 		 * shared ncc->spin lock, which will generally only cost a
3523 		 * cache ping-pong.
3524 		 */
3525 		update = ncc->updating;
3526 		if (__predict_true(spin_trylock(&pcpu->umount_spin))) {
3527 			spinlk = &pcpu->umount_spin;
3528 		} else {
3529 			spinlk = &ncc->spin;
3530 			spin_lock_shared(spinlk);
3531 		}
3532 		if (update & 1) {		/* update in progress */
3533 			spin_unlock_any(spinlk);
3534 			goto skip;
3535 		}
3536 		ncc_copy = *ncc;
3537 		cpu_lfence();
3538 		if (ncc->updating != update) {	/* content changed */
3539 			spin_unlock_any(spinlk);
3540 			goto again;
3541 		}
3542 		if (ncc_copy.ncp != nch->ncp || ncc_copy.mp != nch->mount) {
3543 			spin_unlock_any(spinlk);
3544 			goto again;
3545 		}
3546 		if (ncc_copy.isneg == 0) {
3547 			target = ncc_copy.mp_target;
3548 			if (target->mnt_ncmounton.mount == nch->mount &&
3549 			    target->mnt_ncmounton.ncp == nch->ncp) {
3550 				/*
3551 				 * Cache hit (positive) (avoid dirtying
3552 				 * the cache line if possible)
3553 				 */
3554 				if (ncc->ticks != (int)ticks)
3555 					ncc->ticks = (int)ticks;
3556 				_cache_mntref(target);
3557 			}
3558 		} else {
3559 			/*
3560 			 * Cache hit (negative) (avoid dirtying
3561 			 * the cache line if possible)
3562 			 */
3563 			if (ncc->ticks != (int)ticks)
3564 				ncc->ticks = (int)ticks;
3565 			target = NULL;
3566 		}
3567 		spin_unlock_any(spinlk);
3568 
3569 		return target;
3570 	}
3571 skip:
3572 
3573 	/*
3574 	 * Slow
3575 	 */
3576 	info.result = NULL;
3577 	info.nch_mount = nch->mount;
3578 	info.nch_ncp = nch->ncp;
3579 	mountlist_scan(cache_findmount_callback, &info,
3580 		       MNTSCAN_FORWARD | MNTSCAN_NOBUSY | MNTSCAN_NOUNLOCK);
3581 
3582 	/*
3583 	 * To reduce multi-re-entry on the cache, relookup in the cache.
3584 	 * This can still race, obviously, but that's ok.
3585 	 */
3586 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3587 	if (ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3588 		if (info.result)
3589 			atomic_add_int(&info.result->mnt_refs, -1);
3590 		goto found;
3591 	}
3592 
3593 	/*
3594 	 * Cache the result.
3595 	 */
3596 	if ((info.result == NULL ||
3597 	    (info.result->mnt_kern_flag & MNTK_UNMOUNT) == 0)) {
3598 		spin_lock(&ncc->spin);
3599 		atomic_add_int_nonlocked(&ncc->updating, 1);
3600 		cpu_sfence();
3601 		KKASSERT(ncc->updating & 1);
3602 		if (ncc->mp != nch->mount) {
3603 			if (ncc->mp)
3604 				atomic_add_int(&ncc->mp->mnt_refs, -1);
3605 			atomic_add_int(&nch->mount->mnt_refs, 1);
3606 			ncc->mp = nch->mount;
3607 		}
3608 		ncc->ncp = nch->ncp;	/* ptr compares only, not refd*/
3609 		ncc->ticks = (int)ticks;
3610 
3611 		if (info.result) {
3612 			ncc->isneg = 0;
3613 			if (ncc->mp_target != info.result) {
3614 				if (ncc->mp_target)
3615 					atomic_add_int(&ncc->mp_target->mnt_refs, -1);
3616 				ncc->mp_target = info.result;
3617 				atomic_add_int(&info.result->mnt_refs, 1);
3618 			}
3619 		} else {
3620 			ncc->isneg = 1;
3621 			if (ncc->mp_target) {
3622 				atomic_add_int(&ncc->mp_target->mnt_refs, -1);
3623 				ncc->mp_target = NULL;
3624 			}
3625 		}
3626 		cpu_sfence();
3627 		atomic_add_int_nonlocked(&ncc->updating, 1);
3628 		spin_unlock(&ncc->spin);
3629 	}
3630 	return(info.result);
3631 }
3632 
3633 static
3634 int
3635 cache_findmount_callback(struct mount *mp, void *data)
3636 {
3637 	struct findmount_info *info = data;
3638 
3639 	/*
3640 	 * Check the mount's mounted-on point against the passed nch.
3641 	 */
3642 	if (mp->mnt_ncmounton.mount == info->nch_mount &&
3643 	    mp->mnt_ncmounton.ncp == info->nch_ncp
3644 	) {
3645 	    info->result = mp;
3646 	    _cache_mntref(mp);
3647 	    return(-1);
3648 	}
3649 	return(0);
3650 }
3651 
3652 void
3653 cache_dropmount(struct mount *mp)
3654 {
3655 	_cache_mntrel(mp);
3656 }
3657 
3658 /*
3659  * mp is being mounted, scrap entries matching mp->mnt_ncmounton (positive
3660  * or negative).
3661  *
3662  * A full scan is not required, but for now just do it anyway.
3663  */
3664 void
3665 cache_ismounting(struct mount *mp)
3666 {
3667 	struct ncmount_cache *ncc;
3668 	struct mount *ncc_mp;
3669 	int i;
3670 
3671 	if (pcpu_ncache == NULL)
3672 		return;
3673 
3674 	for (i = 0; i < NCMOUNT_NUMCACHE; ++i) {
3675 		ncc = &ncmount_cache[i];
3676 		if (ncc->mp != mp->mnt_ncmounton.mount ||
3677 		    ncc->ncp != mp->mnt_ncmounton.ncp) {
3678 			continue;
3679 		}
3680 		spin_lock(&ncc->spin);
3681 		atomic_add_int_nonlocked(&ncc->updating, 1);
3682 		cpu_sfence();
3683 		KKASSERT(ncc->updating & 1);
3684 		if (ncc->mp != mp->mnt_ncmounton.mount ||
3685 		    ncc->ncp != mp->mnt_ncmounton.ncp) {
3686 			cpu_sfence();
3687 			++ncc->updating;
3688 			spin_unlock(&ncc->spin);
3689 			continue;
3690 		}
3691 		ncc_mp = ncc->mp;
3692 		ncc->ncp = NULL;
3693 		ncc->mp = NULL;
3694 		if (ncc_mp)
3695 			atomic_add_int(&ncc_mp->mnt_refs, -1);
3696 		ncc_mp = ncc->mp_target;
3697 		ncc->mp_target = NULL;
3698 		if (ncc_mp)
3699 			atomic_add_int(&ncc_mp->mnt_refs, -1);
3700 		ncc->ticks = (int)ticks - hz * 120;
3701 
3702 		cpu_sfence();
3703 		atomic_add_int_nonlocked(&ncc->updating, 1);
3704 		spin_unlock(&ncc->spin);
3705 	}
3706 
3707 	/*
3708 	 * Pre-cache the mount point
3709 	 */
3710 	ncc = ncmount_cache_lookup(mp->mnt_ncmounton.mount,
3711 				   mp->mnt_ncmounton.ncp);
3712 
3713 	spin_lock(&ncc->spin);
3714 	atomic_add_int_nonlocked(&ncc->updating, 1);
3715 	cpu_sfence();
3716 	KKASSERT(ncc->updating & 1);
3717 
3718 	if (ncc->mp)
3719 		atomic_add_int(&ncc->mp->mnt_refs, -1);
3720 	atomic_add_int(&mp->mnt_ncmounton.mount->mnt_refs, 1);
3721 	ncc->mp = mp->mnt_ncmounton.mount;
3722 	ncc->ncp = mp->mnt_ncmounton.ncp;	/* ptr compares only */
3723 	ncc->ticks = (int)ticks;
3724 
3725 	ncc->isneg = 0;
3726 	if (ncc->mp_target != mp) {
3727 		if (ncc->mp_target)
3728 			atomic_add_int(&ncc->mp_target->mnt_refs, -1);
3729 		ncc->mp_target = mp;
3730 		atomic_add_int(&mp->mnt_refs, 1);
3731 	}
3732 	cpu_sfence();
3733 	atomic_add_int_nonlocked(&ncc->updating, 1);
3734 	spin_unlock(&ncc->spin);
3735 }
3736 
3737 /*
3738  * Scrap any ncmount_cache entries related to mp.  Not only do we need to
3739  * scrap entries matching mp->mnt_ncmounton, but we also need to scrap any
3740  * negative hits involving (mp, <any>).
3741  *
3742  * A full scan is required.
3743  */
3744 void
3745 cache_unmounting(struct mount *mp)
3746 {
3747 	struct ncmount_cache *ncc;
3748 	struct pcpu_ncache *pcpu;
3749 	struct mount *ncc_mp;
3750 	int i;
3751 
3752 	pcpu = pcpu_ncache;
3753 	if (pcpu == NULL)
3754 		return;
3755 
3756 	for (i = 0; i < ncpus; ++i)
3757 		spin_lock(&pcpu[i].umount_spin);
3758 
3759 	for (i = 0; i < NCMOUNT_NUMCACHE; ++i) {
3760 		ncc = &ncmount_cache[i];
3761 		if (ncc->mp != mp && ncc->mp_target != mp)
3762 			continue;
3763 		spin_lock(&ncc->spin);
3764 		atomic_add_int_nonlocked(&ncc->updating, 1);
3765 		cpu_sfence();
3766 
3767 		if (ncc->mp != mp && ncc->mp_target != mp) {
3768 			atomic_add_int_nonlocked(&ncc->updating, 1);
3769 			cpu_sfence();
3770 			spin_unlock(&ncc->spin);
3771 			continue;
3772 		}
3773 		ncc_mp = ncc->mp;
3774 		ncc->ncp = NULL;
3775 		ncc->mp = NULL;
3776 		if (ncc_mp)
3777 			atomic_add_int(&ncc_mp->mnt_refs, -1);
3778 		ncc_mp = ncc->mp_target;
3779 		ncc->mp_target = NULL;
3780 		if (ncc_mp)
3781 			atomic_add_int(&ncc_mp->mnt_refs, -1);
3782 		ncc->ticks = (int)ticks - hz * 120;
3783 
3784 		cpu_sfence();
3785 		atomic_add_int_nonlocked(&ncc->updating, 1);
3786 		spin_unlock(&ncc->spin);
3787 	}
3788 
3789 	for (i = 0; i < ncpus; ++i)
3790 		spin_unlock(&pcpu[i].umount_spin);
3791 }
3792 
3793 /*
3794  * Resolve an unresolved namecache entry, generally by looking it up.
3795  * The passed ncp must be locked and refd.
3796  *
3797  * Theoretically since a vnode cannot be recycled while held, and since
3798  * the nc_parent chain holds its vnode as long as children exist, the
3799  * direct parent of the cache entry we are trying to resolve should
3800  * have a valid vnode.  If not then generate an error that we can
3801  * determine is related to a resolver bug.
3802  *
3803  * However, if a vnode was in the middle of a recyclement when the NCP
3804  * got locked, ncp->nc_vp might point to a vnode that is about to become
3805  * invalid.  cache_resolve() handles this case by unresolving the entry
3806  * and then re-resolving it.
3807  *
3808  * Note that successful resolution does not necessarily return an error
3809  * code of 0.  If the ncp resolves to a negative cache hit then ENOENT
3810  * will be returned.
3811  */
3812 int
3813 cache_resolve(struct nchandle *nch, struct ucred *cred)
3814 {
3815 	struct namecache *par_tmp;
3816 	struct namecache *par;
3817 	struct namecache *ncp;
3818 	struct nchandle nctmp;
3819 	struct mount *mp;
3820 	struct vnode *dvp;
3821 	int error;
3822 
3823 	ncp = nch->ncp;
3824 	mp = nch->mount;
3825 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
3826 restart:
3827 	/*
3828 	 * If the ncp is already resolved we have nothing to do.  However,
3829 	 * we do want to guarentee that a usable vnode is returned when
3830 	 * a vnode is present, so make sure it hasn't been reclaimed.
3831 	 */
3832 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3833 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
3834 			_cache_setunresolved(ncp);
3835 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
3836 			return (ncp->nc_error);
3837 	}
3838 
3839 	/*
3840 	 * If the ncp was destroyed it will never resolve again.  This
3841 	 * can basically only happen when someone is chdir'd into an
3842 	 * empty directory which is then rmdir'd.  We want to catch this
3843 	 * here and not dive the VFS because the VFS might actually
3844 	 * have a way to re-resolve the disconnected ncp, which will
3845 	 * result in inconsistencies in the cdir/nch for proc->p_fd.
3846 	 */
3847 	if (ncp->nc_flag & NCF_DESTROYED)
3848 		return(EINVAL);
3849 
3850 	/*
3851 	 * Mount points need special handling because the parent does not
3852 	 * belong to the same filesystem as the ncp.
3853 	 */
3854 	if (ncp == mp->mnt_ncmountpt.ncp)
3855 		return (cache_resolve_mp(mp));
3856 
3857 	/*
3858 	 * We expect an unbroken chain of ncps to at least the mount point,
3859 	 * and even all the way to root (but this code doesn't have to go
3860 	 * past the mount point).
3861 	 */
3862 	if (ncp->nc_parent == NULL) {
3863 		kprintf("EXDEV case 1 %p %*.*s\n", ncp,
3864 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
3865 		ncp->nc_error = EXDEV;
3866 		return(ncp->nc_error);
3867 	}
3868 
3869 	/*
3870 	 * The vp's of the parent directories in the chain are held via vhold()
3871 	 * due to the existance of the child, and should not disappear.
3872 	 * However, there are cases where they can disappear:
3873 	 *
3874 	 *	- due to filesystem I/O errors.
3875 	 *	- due to NFS being stupid about tracking the namespace and
3876 	 *	  destroys the namespace for entire directories quite often.
3877 	 *	- due to forced unmounts.
3878 	 *	- due to an rmdir (parent will be marked DESTROYED)
3879 	 *
3880 	 * When this occurs we have to track the chain backwards and resolve
3881 	 * it, looping until the resolver catches up to the current node.  We
3882 	 * could recurse here but we might run ourselves out of kernel stack
3883 	 * so we do it in a more painful manner.  This situation really should
3884 	 * not occur all that often, or if it does not have to go back too
3885 	 * many nodes to resolve the ncp.
3886 	 */
3887 	while ((dvp = cache_dvpref(ncp)) == NULL) {
3888 		/*
3889 		 * This case can occur if a process is CD'd into a
3890 		 * directory which is then rmdir'd.  If the parent is marked
3891 		 * destroyed there is no point trying to resolve it.
3892 		 */
3893 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
3894 			return(ENOENT);
3895 		par = ncp->nc_parent;
3896 		_cache_hold(par);
3897 		_cache_lock(par);
3898 		while ((par_tmp = par->nc_parent) != NULL &&
3899 		       par_tmp->nc_vp == NULL) {
3900 			_cache_hold(par_tmp);
3901 			_cache_lock(par_tmp);
3902 			_cache_put(par);
3903 			par = par_tmp;
3904 		}
3905 		if (par->nc_parent == NULL) {
3906 			kprintf("EXDEV case 2 %*.*s\n",
3907 				par->nc_nlen, par->nc_nlen, par->nc_name);
3908 			_cache_put(par);
3909 			return (EXDEV);
3910 		}
3911 		/*
3912 		 * The parent is not set in stone, ref and lock it to prevent
3913 		 * it from disappearing.  Also note that due to renames it
3914 		 * is possible for our ncp to move and for par to no longer
3915 		 * be one of its parents.  We resolve it anyway, the loop
3916 		 * will handle any moves.
3917 		 */
3918 		_cache_get(par);	/* additional hold/lock */
3919 		_cache_put(par);	/* from earlier hold/lock */
3920 		if (par == nch->mount->mnt_ncmountpt.ncp) {
3921 			cache_resolve_mp(nch->mount);
3922 		} else if ((dvp = cache_dvpref(par)) == NULL) {
3923 			kprintf("[diagnostic] cache_resolve: raced on %*.*s\n",
3924 				par->nc_nlen, par->nc_nlen, par->nc_name);
3925 			_cache_put(par);
3926 			continue;
3927 		} else {
3928 			if (par->nc_flag & NCF_UNRESOLVED) {
3929 				nctmp.mount = mp;
3930 				nctmp.ncp = par;
3931 				par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
3932 			}
3933 			vrele(dvp);
3934 		}
3935 		if ((error = par->nc_error) != 0) {
3936 			if (par->nc_error != EAGAIN) {
3937 				kprintf("EXDEV case 3 %*.*s error %d\n",
3938 				    par->nc_nlen, par->nc_nlen, par->nc_name,
3939 				    par->nc_error);
3940 				_cache_put(par);
3941 				return(error);
3942 			}
3943 			kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
3944 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
3945 		}
3946 		_cache_put(par);
3947 		/* loop */
3948 	}
3949 
3950 	/*
3951 	 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
3952 	 * ncp's and reattach them.  If this occurs the original ncp is marked
3953 	 * EAGAIN to force a relookup.
3954 	 *
3955 	 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
3956 	 * ncp must already be resolved.
3957 	 */
3958 	if (dvp) {
3959 		nctmp.mount = mp;
3960 		nctmp.ncp = ncp;
3961 		ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
3962 		vrele(dvp);
3963 	} else {
3964 		ncp->nc_error = EPERM;
3965 	}
3966 	if (ncp->nc_error == EAGAIN) {
3967 		kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
3968 			ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
3969 		goto restart;
3970 	}
3971 	return(ncp->nc_error);
3972 }
3973 
3974 /*
3975  * Resolve the ncp associated with a mount point.  Such ncp's almost always
3976  * remain resolved and this routine is rarely called.  NFS MPs tends to force
3977  * re-resolution more often due to its mac-truck-smash-the-namecache
3978  * method of tracking namespace changes.
3979  *
3980  * The semantics for this call is that the passed ncp must be locked on
3981  * entry and will be locked on return.  However, if we actually have to
3982  * resolve the mount point we temporarily unlock the entry in order to
3983  * avoid race-to-root deadlocks due to e.g. dead NFS mounts.  Because of
3984  * the unlock we have to recheck the flags after we relock.
3985  */
3986 static int
3987 cache_resolve_mp(struct mount *mp)
3988 {
3989 	struct namecache *ncp = mp->mnt_ncmountpt.ncp;
3990 	struct vnode *vp;
3991 	int error;
3992 
3993 	KKASSERT(mp != NULL);
3994 
3995 	/*
3996 	 * If the ncp is already resolved we have nothing to do.  However,
3997 	 * we do want to guarentee that a usable vnode is returned when
3998 	 * a vnode is present, so make sure it hasn't been reclaimed.
3999 	 */
4000 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
4001 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
4002 			_cache_setunresolved(ncp);
4003 	}
4004 
4005 	if (ncp->nc_flag & NCF_UNRESOLVED) {
4006 		_cache_unlock(ncp);
4007 		while (vfs_busy(mp, 0))
4008 			;
4009 		error = VFS_ROOT(mp, &vp);
4010 		_cache_lock(ncp);
4011 
4012 		/*
4013 		 * recheck the ncp state after relocking.
4014 		 */
4015 		if (ncp->nc_flag & NCF_UNRESOLVED) {
4016 			ncp->nc_error = error;
4017 			if (error == 0) {
4018 				_cache_setvp(mp, ncp, vp);
4019 				vput(vp);
4020 			} else {
4021 				kprintf("[diagnostic] cache_resolve_mp: failed"
4022 					" to resolve mount %p err=%d ncp=%p\n",
4023 					mp, error, ncp);
4024 				_cache_setvp(mp, ncp, NULL);
4025 			}
4026 		} else if (error == 0) {
4027 			vput(vp);
4028 		}
4029 		vfs_unbusy(mp);
4030 	}
4031 	return(ncp->nc_error);
4032 }
4033 
4034 /*
4035  * Clean out negative cache entries when too many have accumulated.
4036  */
4037 static void
4038 _cache_cleanneg(long count)
4039 {
4040 	struct pcpu_ncache *pn;
4041 	struct namecache *ncp;
4042 	static uint32_t neg_rover;
4043 	uint32_t n;
4044 	long vnegs;
4045 
4046 	n = neg_rover++;	/* SMP heuristical, race ok */
4047 	cpu_ccfence();
4048 	n = n % (uint32_t)ncpus;
4049 
4050 	/*
4051 	 * Normalize vfscache_negs and count.  count is sometimes based
4052 	 * on vfscache_negs.  vfscache_negs is heuristical and can sometimes
4053 	 * have crazy values.
4054 	 */
4055 	vnegs = vfscache_negs;
4056 	cpu_ccfence();
4057 	if (vnegs <= MINNEG)
4058 		vnegs = MINNEG;
4059 	if (count < 1)
4060 		count = 1;
4061 
4062 	pn = &pcpu_ncache[n];
4063 	spin_lock(&pn->neg_spin);
4064 	count = pn->neg_count * count / vnegs + 1;
4065 	spin_unlock(&pn->neg_spin);
4066 
4067 	/*
4068 	 * Attempt to clean out the specified number of negative cache
4069 	 * entries.
4070 	 */
4071 	while (count > 0) {
4072 		spin_lock(&pn->neg_spin);
4073 		ncp = TAILQ_FIRST(&pn->neg_list);
4074 		if (ncp == NULL) {
4075 			spin_unlock(&pn->neg_spin);
4076 			break;
4077 		}
4078 		TAILQ_REMOVE(&pn->neg_list, ncp, nc_vnode);
4079 		TAILQ_INSERT_TAIL(&pn->neg_list, ncp, nc_vnode);
4080 		_cache_hold(ncp);
4081 		spin_unlock(&pn->neg_spin);
4082 
4083 		/*
4084 		 * This can race, so we must re-check that the ncp
4085 		 * is on the ncneg.list after successfully locking it.
4086 		 */
4087 		if (_cache_lock_special(ncp) == 0) {
4088 			if (ncp->nc_vp == NULL &&
4089 			    (ncp->nc_flag & NCF_UNRESOLVED) == 0) {
4090 				cache_zap(ncp);
4091 			} else {
4092 				_cache_unlock(ncp);
4093 				_cache_drop(ncp);
4094 			}
4095 		} else {
4096 			_cache_drop(ncp);
4097 		}
4098 		--count;
4099 	}
4100 }
4101 
4102 /*
4103  * Clean out positive cache entries when too many have accumulated.
4104  */
4105 static void
4106 _cache_cleanpos(long count)
4107 {
4108 	static volatile int rover;
4109 	struct nchash_head *nchpp;
4110 	struct namecache *ncp;
4111 	int rover_copy;
4112 
4113 	/*
4114 	 * Attempt to clean out the specified number of negative cache
4115 	 * entries.
4116 	 */
4117 	while (count > 0) {
4118 		rover_copy = ++rover;	/* MPSAFEENOUGH */
4119 		cpu_ccfence();
4120 		nchpp = NCHHASH(rover_copy);
4121 
4122 		if (TAILQ_FIRST(&nchpp->list) == NULL) {
4123 			--count;
4124 			continue;
4125 		}
4126 
4127 		/*
4128 		 * Cycle ncp on list, ignore and do not move DUMMY
4129 		 * ncps.  These are temporary list iterators.
4130 		 *
4131 		 * We must cycle the ncp to the end of the list to
4132 		 * ensure that all ncp's have an equal chance of
4133 		 * being removed.
4134 		 */
4135 		spin_lock(&nchpp->spin);
4136 		ncp = TAILQ_FIRST(&nchpp->list);
4137 		while (ncp && (ncp->nc_flag & NCF_DUMMY))
4138 			ncp = TAILQ_NEXT(ncp, nc_hash);
4139 		if (ncp) {
4140 			TAILQ_REMOVE(&nchpp->list, ncp, nc_hash);
4141 			TAILQ_INSERT_TAIL(&nchpp->list, ncp, nc_hash);
4142 			_cache_hold(ncp);
4143 		}
4144 		spin_unlock(&nchpp->spin);
4145 
4146 		if (ncp) {
4147 			if (_cache_lock_special(ncp) == 0) {
4148 				cache_zap(ncp);
4149 			} else {
4150 				_cache_drop(ncp);
4151 			}
4152 		}
4153 		--count;
4154 	}
4155 }
4156 
4157 /*
4158  * This is a kitchen sink function to clean out ncps which we
4159  * tried to zap from cache_drop() but failed because we were
4160  * unable to acquire the parent lock.
4161  *
4162  * Such entries can also be removed via cache_inval_vp(), such
4163  * as when unmounting.
4164  */
4165 static void
4166 _cache_cleandefered(void)
4167 {
4168 	struct nchash_head *nchpp;
4169 	struct namecache *ncp;
4170 	struct namecache dummy;
4171 	int i;
4172 
4173 	/*
4174 	 * Create a list iterator.  DUMMY indicates that this is a list
4175 	 * iterator, DESTROYED prevents matches by lookup functions.
4176 	 */
4177 	numdefered = 0;
4178 	pcpu_ncache[mycpu->gd_cpuid].numdefered = 0;
4179 	bzero(&dummy, sizeof(dummy));
4180 	dummy.nc_flag = NCF_DESTROYED | NCF_DUMMY;
4181 	dummy.nc_refs = 1;
4182 
4183 	for (i = 0; i <= nchash; ++i) {
4184 		nchpp = &nchashtbl[i];
4185 
4186 		spin_lock(&nchpp->spin);
4187 		TAILQ_INSERT_HEAD(&nchpp->list, &dummy, nc_hash);
4188 		ncp = &dummy;
4189 		while ((ncp = TAILQ_NEXT(ncp, nc_hash)) != NULL) {
4190 			if ((ncp->nc_flag & NCF_DEFEREDZAP) == 0)
4191 				continue;
4192 			TAILQ_REMOVE(&nchpp->list, &dummy, nc_hash);
4193 			TAILQ_INSERT_AFTER(&nchpp->list, ncp, &dummy, nc_hash);
4194 			_cache_hold(ncp);
4195 			spin_unlock(&nchpp->spin);
4196 			if (_cache_lock_nonblock(ncp) == 0) {
4197 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
4198 				_cache_unlock(ncp);
4199 			}
4200 			_cache_drop(ncp);
4201 			spin_lock(&nchpp->spin);
4202 			ncp = &dummy;
4203 		}
4204 		TAILQ_REMOVE(&nchpp->list, &dummy, nc_hash);
4205 		spin_unlock(&nchpp->spin);
4206 	}
4207 }
4208 
4209 /*
4210  * Name cache initialization, from vfsinit() when we are booting
4211  */
4212 void
4213 nchinit(void)
4214 {
4215 	struct pcpu_ncache *pn;
4216 	globaldata_t gd;
4217 	int i;
4218 
4219 	/*
4220 	 * Per-cpu accounting and negative hit list
4221 	 */
4222 	pcpu_ncache = kmalloc(sizeof(*pcpu_ncache) * ncpus,
4223 			      M_VFSCACHEAUX, M_WAITOK|M_ZERO);
4224 	for (i = 0; i < ncpus; ++i) {
4225 		pn = &pcpu_ncache[i];
4226 		TAILQ_INIT(&pn->neg_list);
4227 		spin_init(&pn->neg_spin, "ncneg");
4228 		spin_init(&pn->umount_spin, "ncumm");
4229 	}
4230 
4231 	/*
4232 	 * Initialise per-cpu namecache effectiveness statistics.
4233 	 */
4234 	for (i = 0; i < ncpus; ++i) {
4235 		gd = globaldata_find(i);
4236 		gd->gd_nchstats = &nchstats[i];
4237 	}
4238 
4239 	/*
4240 	 * Create a generous namecache hash table
4241 	 */
4242 	nchashtbl = hashinit_ext(vfs_inodehashsize(),
4243 				 sizeof(struct nchash_head),
4244 				 M_VFSCACHEAUX, &nchash);
4245 	for (i = 0; i <= (int)nchash; ++i) {
4246 		TAILQ_INIT(&nchashtbl[i].list);
4247 		spin_init(&nchashtbl[i].spin, "nchinit_hash");
4248 	}
4249 	for (i = 0; i < NCMOUNT_NUMCACHE; ++i)
4250 		spin_init(&ncmount_cache[i].spin, "nchinit_cache");
4251 	nclockwarn = 5 * hz;
4252 }
4253 
4254 /*
4255  * Called from start_init() to bootstrap the root filesystem.  Returns
4256  * a referenced, unlocked namecache record.
4257  */
4258 void
4259 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
4260 {
4261 	nch->ncp = cache_alloc(0);
4262 	nch->mount = mp;
4263 	_cache_mntref(mp);
4264 	if (vp)
4265 		_cache_setvp(nch->mount, nch->ncp, vp);
4266 }
4267 
4268 /*
4269  * vfs_cache_setroot()
4270  *
4271  *	Create an association between the root of our namecache and
4272  *	the root vnode.  This routine may be called several times during
4273  *	booting.
4274  *
4275  *	If the caller intends to save the returned namecache pointer somewhere
4276  *	it must cache_hold() it.
4277  */
4278 void
4279 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
4280 {
4281 	struct vnode *ovp;
4282 	struct nchandle onch;
4283 
4284 	ovp = rootvnode;
4285 	onch = rootnch;
4286 	rootvnode = nvp;
4287 	if (nch)
4288 		rootnch = *nch;
4289 	else
4290 		cache_zero(&rootnch);
4291 	if (ovp)
4292 		vrele(ovp);
4293 	if (onch.ncp)
4294 		cache_drop(&onch);
4295 }
4296 
4297 /*
4298  * XXX OLD API COMPAT FUNCTION.  This really messes up the new namecache
4299  * topology and is being removed as quickly as possible.  The new VOP_N*()
4300  * API calls are required to make specific adjustments using the supplied
4301  * ncp pointers rather then just bogusly purging random vnodes.
4302  *
4303  * Invalidate all namecache entries to a particular vnode as well as
4304  * any direct children of that vnode in the namecache.  This is a
4305  * 'catch all' purge used by filesystems that do not know any better.
4306  *
4307  * Note that the linkage between the vnode and its namecache entries will
4308  * be removed, but the namecache entries themselves might stay put due to
4309  * active references from elsewhere in the system or due to the existance of
4310  * the children.   The namecache topology is left intact even if we do not
4311  * know what the vnode association is.  Such entries will be marked
4312  * NCF_UNRESOLVED.
4313  */
4314 void
4315 cache_purge(struct vnode *vp)
4316 {
4317 	cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
4318 }
4319 
4320 __read_mostly static int disablecwd;
4321 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0,
4322     "Disable getcwd");
4323 
4324 /*
4325  * MPALMOSTSAFE
4326  */
4327 int
4328 sys___getcwd(struct sysmsg *sysmsg, const struct __getcwd_args *uap)
4329 {
4330 	u_int buflen;
4331 	int error;
4332 	char *buf;
4333 	char *bp;
4334 
4335 	if (disablecwd)
4336 		return (ENODEV);
4337 
4338 	buflen = uap->buflen;
4339 	if (buflen == 0)
4340 		return (EINVAL);
4341 	if (buflen > MAXPATHLEN)
4342 		buflen = MAXPATHLEN;
4343 
4344 	buf = kmalloc(buflen, M_TEMP, M_WAITOK);
4345 	bp = kern_getcwd(buf, buflen, &error);
4346 	if (error == 0)
4347 		error = copyout(bp, uap->buf, strlen(bp) + 1);
4348 	kfree(buf, M_TEMP);
4349 	return (error);
4350 }
4351 
4352 char *
4353 kern_getcwd(char *buf, size_t buflen, int *error)
4354 {
4355 	struct proc *p = curproc;
4356 	char *bp;
4357 	int i, slash_prefixed;
4358 	struct filedesc *fdp;
4359 	struct nchandle nch;
4360 	struct namecache *ncp;
4361 
4362 	bp = buf;
4363 	bp += buflen - 1;
4364 	*bp = '\0';
4365 	fdp = p->p_fd;
4366 	slash_prefixed = 0;
4367 
4368 	nch = fdp->fd_ncdir;
4369 	ncp = nch.ncp;
4370 	if (ncp)
4371 		_cache_hold(ncp);
4372 
4373 	while (ncp && (ncp != fdp->fd_nrdir.ncp ||
4374 	       nch.mount != fdp->fd_nrdir.mount)
4375 	) {
4376 		if (ncp->nc_flag & NCF_DESTROYED) {
4377 			_cache_drop(ncp);
4378 			ncp = NULL;
4379 			break;
4380 		}
4381 		/*
4382 		 * While traversing upwards if we encounter the root
4383 		 * of the current mount we have to skip to the mount point
4384 		 * in the underlying filesystem.
4385 		 */
4386 		if (ncp == nch.mount->mnt_ncmountpt.ncp) {
4387 			nch = nch.mount->mnt_ncmounton;
4388 			_cache_drop(ncp);
4389 			ncp = nch.ncp;
4390 			if (ncp)
4391 				_cache_hold(ncp);
4392 			continue;
4393 		}
4394 
4395 		/*
4396 		 * Prepend the path segment
4397 		 */
4398 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
4399 			if (bp == buf) {
4400 				*error = ERANGE;
4401 				bp = NULL;
4402 				goto done;
4403 			}
4404 			*--bp = ncp->nc_name[i];
4405 		}
4406 		if (bp == buf) {
4407 			*error = ERANGE;
4408 			bp = NULL;
4409 			goto done;
4410 		}
4411 		*--bp = '/';
4412 		slash_prefixed = 1;
4413 
4414 		/*
4415 		 * Go up a directory.  This isn't a mount point so we don't
4416 		 * have to check again.
4417 		 */
4418 		while ((nch.ncp = ncp->nc_parent) != NULL) {
4419 			if (ncp_shared_lock_disable)
4420 				_cache_lock(ncp);
4421 			else
4422 				_cache_lock_shared(ncp);
4423 			if (nch.ncp != ncp->nc_parent) {
4424 				_cache_unlock(ncp);
4425 				continue;
4426 			}
4427 			_cache_hold(nch.ncp);
4428 			_cache_unlock(ncp);
4429 			break;
4430 		}
4431 		_cache_drop(ncp);
4432 		ncp = nch.ncp;
4433 	}
4434 	if (ncp == NULL) {
4435 		*error = ENOENT;
4436 		bp = NULL;
4437 		goto done;
4438 	}
4439 	if (!slash_prefixed) {
4440 		if (bp == buf) {
4441 			*error = ERANGE;
4442 			bp = NULL;
4443 			goto done;
4444 		}
4445 		*--bp = '/';
4446 	}
4447 	*error = 0;
4448 done:
4449 	if (ncp)
4450 		_cache_drop(ncp);
4451 	return (bp);
4452 }
4453 
4454 /*
4455  * Thus begins the fullpath magic.
4456  *
4457  * The passed nchp is referenced but not locked.
4458  */
4459 __read_mostly static int disablefullpath;
4460 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
4461     &disablefullpath, 0,
4462     "Disable fullpath lookups");
4463 
4464 int
4465 cache_fullpath(struct proc *p, struct nchandle *nchp, struct nchandle *nchbase,
4466 	       char **retbuf, char **freebuf, int guess)
4467 {
4468 	struct nchandle fd_nrdir;
4469 	struct nchandle nch;
4470 	struct namecache *ncp;
4471 	struct mount *mp, *new_mp;
4472 	char *bp, *buf;
4473 	int slash_prefixed;
4474 	int error = 0;
4475 	int i;
4476 
4477 	*retbuf = NULL;
4478 	*freebuf = NULL;
4479 
4480 	buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
4481 	bp = buf + MAXPATHLEN - 1;
4482 	*bp = '\0';
4483 	if (nchbase)
4484 		fd_nrdir = *nchbase;
4485 	else if (p != NULL)
4486 		fd_nrdir = p->p_fd->fd_nrdir;
4487 	else
4488 		fd_nrdir = rootnch;
4489 	slash_prefixed = 0;
4490 	nch = *nchp;
4491 	ncp = nch.ncp;
4492 	if (ncp)
4493 		_cache_hold(ncp);
4494 	mp = nch.mount;
4495 
4496 	while (ncp && (ncp != fd_nrdir.ncp || mp != fd_nrdir.mount)) {
4497 		new_mp = NULL;
4498 
4499 		/*
4500 		 * If we are asked to guess the upwards path, we do so whenever
4501 		 * we encounter an ncp marked as a mountpoint. We try to find
4502 		 * the actual mountpoint by finding the mountpoint with this
4503 		 * ncp.
4504 		 */
4505 		if (guess && (ncp->nc_flag & NCF_ISMOUNTPT)) {
4506 			new_mp = mount_get_by_nc(ncp);
4507 		}
4508 		/*
4509 		 * While traversing upwards if we encounter the root
4510 		 * of the current mount we have to skip to the mount point.
4511 		 */
4512 		if (ncp == mp->mnt_ncmountpt.ncp) {
4513 			new_mp = mp;
4514 		}
4515 		if (new_mp) {
4516 			nch = new_mp->mnt_ncmounton;
4517 			_cache_drop(ncp);
4518 			ncp = nch.ncp;
4519 			if (ncp)
4520 				_cache_hold(ncp);
4521 			mp = nch.mount;
4522 			continue;
4523 		}
4524 
4525 		/*
4526 		 * Prepend the path segment
4527 		 */
4528 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
4529 			if (bp == buf) {
4530 				kfree(buf, M_TEMP);
4531 				error = ENOMEM;
4532 				goto done;
4533 			}
4534 			*--bp = ncp->nc_name[i];
4535 		}
4536 		if (bp == buf) {
4537 			kfree(buf, M_TEMP);
4538 			error = ENOMEM;
4539 			goto done;
4540 		}
4541 		*--bp = '/';
4542 		slash_prefixed = 1;
4543 
4544 		/*
4545 		 * Go up a directory.  This isn't a mount point so we don't
4546 		 * have to check again.
4547 		 *
4548 		 * We can only safely access nc_parent with ncp held locked.
4549 		 */
4550 		while ((nch.ncp = ncp->nc_parent) != NULL) {
4551 			_cache_lock_shared(ncp);
4552 			if (nch.ncp != ncp->nc_parent) {
4553 				_cache_unlock(ncp);
4554 				continue;
4555 			}
4556 			_cache_hold(nch.ncp);
4557 			_cache_unlock(ncp);
4558 			break;
4559 		}
4560 		_cache_drop(ncp);
4561 		ncp = nch.ncp;
4562 	}
4563 	if (ncp == NULL) {
4564 		kfree(buf, M_TEMP);
4565 		error = ENOENT;
4566 		goto done;
4567 	}
4568 
4569 	if (!slash_prefixed) {
4570 		if (bp == buf) {
4571 			kfree(buf, M_TEMP);
4572 			error = ENOMEM;
4573 			goto done;
4574 		}
4575 		*--bp = '/';
4576 	}
4577 	*retbuf = bp;
4578 	*freebuf = buf;
4579 	error = 0;
4580 done:
4581 	if (ncp)
4582 		_cache_drop(ncp);
4583 	return(error);
4584 }
4585 
4586 int
4587 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf,
4588 	    char **freebuf, int guess)
4589 {
4590 	struct namecache *ncp;
4591 	struct nchandle nch;
4592 	int error;
4593 
4594 	*freebuf = NULL;
4595 	if (disablefullpath)
4596 		return (ENODEV);
4597 
4598 	if (p == NULL)
4599 		return (EINVAL);
4600 
4601 	/* vn is NULL, client wants us to use p->p_textvp */
4602 	if (vn == NULL) {
4603 		if ((vn = p->p_textvp) == NULL)
4604 			return (EINVAL);
4605 	}
4606 	spin_lock_shared(&vn->v_spin);
4607 	TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
4608 		if (ncp->nc_nlen)
4609 			break;
4610 	}
4611 	if (ncp == NULL) {
4612 		spin_unlock_shared(&vn->v_spin);
4613 		return (EINVAL);
4614 	}
4615 	_cache_hold(ncp);
4616 	spin_unlock_shared(&vn->v_spin);
4617 
4618 	nch.ncp = ncp;
4619 	nch.mount = vn->v_mount;
4620 	error = cache_fullpath(p, &nch, NULL, retbuf, freebuf, guess);
4621 	_cache_drop(ncp);
4622 	return (error);
4623 }
4624 
4625 void
4626 vfscache_rollup_cpu(struct globaldata *gd)
4627 {
4628 	struct pcpu_ncache *pn;
4629 	long count;
4630 
4631 	if (pcpu_ncache == NULL)
4632 		return;
4633 	pn = &pcpu_ncache[gd->gd_cpuid];
4634 
4635 	if (pn->vfscache_count) {
4636 		count = atomic_swap_long(&pn->vfscache_count, 0);
4637 		atomic_add_long(&vfscache_count, count);
4638 	}
4639 	if (pn->vfscache_leafs) {
4640 		count = atomic_swap_long(&pn->vfscache_leafs, 0);
4641 		atomic_add_long(&vfscache_leafs, count);
4642 	}
4643 	if (pn->vfscache_negs) {
4644 		count = atomic_swap_long(&pn->vfscache_negs, 0);
4645 		atomic_add_long(&vfscache_negs, count);
4646 	}
4647 	if (pn->numdefered) {
4648 		count = atomic_swap_long(&pn->numdefered, 0);
4649 		atomic_add_long(&numdefered, count);
4650 	}
4651 }
4652