xref: /dragonfly/sys/kern/vfs_cache.c (revision 63e03116)
1 /*
2  * Copyright (c) 2003-2020 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993, 1995
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * Poul-Henning Kamp of the FreeBSD Project.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. Neither the name of the University nor the names of its contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/uio.h>
68 #include <sys/kernel.h>
69 #include <sys/sysctl.h>
70 #include <sys/mount.h>
71 #include <sys/vnode.h>
72 #include <sys/malloc.h>
73 #include <sys/sysmsg.h>
74 #include <sys/spinlock.h>
75 #include <sys/proc.h>
76 #include <sys/nlookup.h>
77 #include <sys/filedesc.h>
78 #include <sys/fnv_hash.h>
79 #include <sys/globaldata.h>
80 #include <sys/kern_syscall.h>
81 #include <sys/dirent.h>
82 #include <ddb/ddb.h>
83 
84 #include <sys/spinlock2.h>
85 
86 #define MAX_RECURSION_DEPTH	64
87 
88 /*
89  * Random lookups in the cache are accomplished with a hash table using
90  * a hash key of (nc_src_vp, name).  Each hash chain has its own spin lock,
91  * but we use the ncp->update counter trick to avoid acquiring any
92  * contestable spin-locks during a lookup.
93  *
94  * Negative entries may exist and correspond to resolved namecache
95  * structures where nc_vp is NULL.  In a negative entry, NCF_WHITEOUT
96  * will be set if the entry corresponds to a whited-out directory entry
97  * (verses simply not finding the entry at all).  pcpu_ncache[n].neg_list
98  * is locked via pcpu_ncache[n].neg_spin;
99  *
100  * MPSAFE RULES:
101  *
102  * (1) ncp's typically have at least a nc_refs of 1, and usually 2.  One
103  *     is applicable to direct lookups via the hash table nchpp or via
104  *     nc_list (the two are added or removed together).  Removal of the ncp
105  *     from the hash table drops this reference.  The second is applicable
106  *     to vp->v_namecache linkages (or negative list linkages), and removal
107  *     of the ncp from these lists drops this reference.
108  *
109  *     On the 1->0 transition of nc_refs the ncp can no longer be referenced
110  *     and must be destroyed.  No other thread should have access to it at
111  *     this point so it can be safely locked and freed without any deadlock
112  *     fears.
113  *
114  *     The 1->0 transition can occur at almost any juncture and so cache_drop()
115  *     deals with it directly.
116  *
117  * (2) Once the 1->0 transition occurs, the entity that caused the transition
118  *     will be responsible for destroying the ncp.  The ncp cannot be on any
119  *     list or hash at this time, or be held by anyone other than the caller
120  *     responsible for the transition.
121  *
122  * (3) A ncp must be locked in order to modify it.
123  *
124  * (5) ncp locks are ordered, child-to-parent.  Child first, then parent.
125  *     This may seem backwards but forward-scans use the hash table and thus
126  *     can hold the parent unlocked while traversing downward.  Deletions,
127  *     on the other-hand, tend to propagate bottom-up since the ref on the
128  *     is dropped as the children go away.
129  *
130  * (6) Both parent and child must be locked in order to enter the child onto
131  *     the parent's nc_list.
132  */
133 
134 /*
135  * Structures associated with name cacheing.
136  */
137 #define NCHHASH(hash)		(&nchashtbl[(hash) & nchash])
138 #define MINNEG			1024
139 #define MINPOS			1024
140 #define NCMOUNT_NUMCACHE	(16384)	/* power of 2 */
141 #define NCMOUNT_SET		(8)	/* power of 2 */
142 
143 MALLOC_DEFINE_OBJ(M_VFSCACHE, sizeof(struct namecache),
144 		  "namecache", "namecache entries");
145 MALLOC_DEFINE(M_VFSCACHEAUX, "namecachestr", "namecache strings");
146 
147 TAILQ_HEAD(nchash_list, namecache);
148 
149 /*
150  * Don't cachealign, but at least pad to 32 bytes so entries
151  * don't cross a cache line.
152  */
153 struct nchash_head {
154        struct nchash_list list;	/* 16 bytes */
155        struct spinlock	spin;	/* 8 bytes */
156        long	pad01;		/* 8 bytes */
157 };
158 
159 struct ncmount_cache {
160 	struct spinlock	spin;
161 	struct namecache *ncp;
162 	struct mount *mp;
163 	struct mount *mp_target;
164 	int isneg;
165 	int ticks;
166 	int updating;
167 	int unused01;
168 };
169 
170 struct pcpu_ncache {
171 	struct spinlock		umount_spin;	/* cache_findmount/interlock */
172 	struct spinlock		neg_spin;	/* for neg_list and neg_count */
173 	struct namecache_list	neg_list;
174 	long			neg_count;
175 	long			vfscache_negs;
176 	long			vfscache_count;
177 	long			vfscache_leafs;
178 	long			numdefered;
179 } __cachealign;
180 
181 __read_mostly static struct nchash_head	*nchashtbl;
182 __read_mostly static struct pcpu_ncache	*pcpu_ncache;
183 static struct ncmount_cache	ncmount_cache[NCMOUNT_NUMCACHE];
184 
185 /*
186  * ncvp_debug - debug cache_fromvp().  This is used by the NFS server
187  * to create the namecache infrastructure leading to a dangling vnode.
188  *
189  * 0	Only errors are reported
190  * 1	Successes are reported
191  * 2	Successes + the whole directory scan is reported
192  * 3	Force the directory scan code run as if the parent vnode did not
193  *	have a namecache record, even if it does have one.
194  */
195 __read_mostly static int	ncvp_debug;
196 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0,
197     "Namecache debug level (0-3)");
198 
199 __read_mostly static u_long nchash;		/* size of hash table */
200 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
201     "Size of namecache hash table");
202 
203 __read_mostly static int ncnegflush = 10;	/* burst for negative flush */
204 SYSCTL_INT(_debug, OID_AUTO, ncnegflush, CTLFLAG_RW, &ncnegflush, 0,
205     "Batch flush negative entries");
206 
207 __read_mostly static int ncposflush = 10;	/* burst for positive flush */
208 SYSCTL_INT(_debug, OID_AUTO, ncposflush, CTLFLAG_RW, &ncposflush, 0,
209     "Batch flush positive entries");
210 
211 __read_mostly static int ncnegfactor = 16;	/* ratio of negative entries */
212 SYSCTL_INT(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0,
213     "Ratio of namecache negative entries");
214 
215 __read_mostly static int nclockwarn;	/* warn on locked entries in ticks */
216 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0,
217     "Warn on locked namecache entries in ticks");
218 
219 __read_mostly static int ncposlimit;	/* number of cache entries allocated */
220 SYSCTL_INT(_debug, OID_AUTO, ncposlimit, CTLFLAG_RW, &ncposlimit, 0,
221     "Number of cache entries allocated");
222 
223 __read_mostly static int ncp_shared_lock_disable = 0;
224 SYSCTL_INT(_debug, OID_AUTO, ncp_shared_lock_disable, CTLFLAG_RW,
225 	   &ncp_shared_lock_disable, 0, "Disable shared namecache locks");
226 
227 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode),
228     "sizeof(struct vnode)");
229 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache),
230     "sizeof(struct namecache)");
231 
232 __read_mostly static int ncmount_cache_enable = 1;
233 SYSCTL_INT(_debug, OID_AUTO, ncmount_cache_enable, CTLFLAG_RW,
234 	   &ncmount_cache_enable, 0, "mount point cache");
235 
236 static __inline void _cache_drop(struct namecache *ncp);
237 static int cache_resolve_mp(struct mount *mp);
238 static int cache_findmount_callback(struct mount *mp, void *data);
239 static void _cache_setunresolved(struct namecache *ncp);
240 static void _cache_cleanneg(long count);
241 static void _cache_cleanpos(long count);
242 static void _cache_cleandefered(void);
243 static void _cache_unlink(struct namecache *ncp);
244 
245 /*
246  * The new name cache statistics (these are rolled up globals and not
247  * modified in the critical path, see struct pcpu_ncache).
248  */
249 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
250 static long vfscache_negs;
251 SYSCTL_LONG(_vfs_cache, OID_AUTO, numneg, CTLFLAG_RD, &vfscache_negs, 0,
252     "Number of negative namecache entries");
253 static long vfscache_count;
254 SYSCTL_LONG(_vfs_cache, OID_AUTO, numcache, CTLFLAG_RD, &vfscache_count, 0,
255     "Number of namecaches entries");
256 static long vfscache_leafs;
257 SYSCTL_LONG(_vfs_cache, OID_AUTO, numleafs, CTLFLAG_RD, &vfscache_leafs, 0,
258     "Number of namecaches entries");
259 static long	numdefered;
260 SYSCTL_LONG(_debug, OID_AUTO, numdefered, CTLFLAG_RD, &numdefered, 0,
261     "Number of cache entries allocated");
262 
263 
264 struct nchstats nchstats[SMP_MAXCPU];
265 /*
266  * Export VFS cache effectiveness statistics to user-land.
267  *
268  * The statistics are left for aggregation to user-land so
269  * neat things can be achieved, like observing per-CPU cache
270  * distribution.
271  */
272 static int
273 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
274 {
275 	struct globaldata *gd;
276 	int i, error;
277 
278 	error = 0;
279 	for (i = 0; i < ncpus; ++i) {
280 		gd = globaldata_find(i);
281 		if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
282 			sizeof(struct nchstats))))
283 			break;
284 	}
285 
286 	return (error);
287 }
288 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
289   0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
290 
291 static int cache_zap(struct namecache *ncp);
292 
293 /*
294  * Cache mount points and namecache records in order to avoid unnecessary
295  * atomic ops on mnt_refs and ncp->refs.  This improves concurrent SMP
296  * performance and is particularly important on multi-socket systems to
297  * reduce cache-line ping-ponging.
298  *
299  * Try to keep the pcpu structure within one cache line (~64 bytes).
300  */
301 #define MNTCACHE_COUNT	32	/* power of 2, multiple of SET */
302 #define MNTCACHE_SET	8	/* set associativity */
303 
304 struct mntcache_elm {
305 	struct namecache *ncp;
306 	struct mount	 *mp;
307 	int	ticks;
308 	int	unused01;
309 };
310 
311 struct mntcache {
312 	struct mntcache_elm array[MNTCACHE_COUNT];
313 } __cachealign;
314 
315 static struct mntcache	pcpu_mntcache[MAXCPU];
316 
317 static __inline
318 struct mntcache_elm *
319 _cache_mntcache_hash(void *ptr)
320 {
321 	struct mntcache_elm *elm;
322 	int hv;
323 
324 	hv = iscsi_crc32(&ptr, sizeof(ptr)) & (MNTCACHE_COUNT - 1);
325 	elm = &pcpu_mntcache[mycpu->gd_cpuid].array[hv & ~(MNTCACHE_SET - 1)];
326 
327 	return elm;
328 }
329 
330 static
331 void
332 _cache_mntref(struct mount *mp)
333 {
334 	struct mntcache_elm *elm;
335 	struct mount *mpr;
336 	int i;
337 
338 	elm = _cache_mntcache_hash(mp);
339 	for (i = 0; i < MNTCACHE_SET; ++i) {
340 		if (elm->mp == mp) {
341 			mpr = atomic_swap_ptr((void *)&elm->mp, NULL);
342 			if (__predict_true(mpr == mp))
343 				return;
344 			if (mpr)
345 				atomic_add_int(&mpr->mnt_refs, -1);
346 		}
347 		++elm;
348 	}
349 	atomic_add_int(&mp->mnt_refs, 1);
350 }
351 
352 static
353 void
354 _cache_mntrel(struct mount *mp)
355 {
356 	struct mntcache_elm *elm;
357 	struct mntcache_elm *best;
358 	struct mount *mpr;
359 	int delta1;
360 	int delta2;
361 	int i;
362 
363 	elm = _cache_mntcache_hash(mp);
364 	best = elm;
365 	for (i = 0; i < MNTCACHE_SET; ++i) {
366 		if (elm->mp == NULL) {
367 			mpr = atomic_swap_ptr((void *)&elm->mp, mp);
368 			if (__predict_false(mpr != NULL)) {
369 				atomic_add_int(&mpr->mnt_refs, -1);
370 			}
371 			elm->ticks = ticks;
372 			return;
373 		}
374 		delta1 = ticks - best->ticks;
375 		delta2 = ticks - elm->ticks;
376 		if (delta2 > delta1 || delta1 < -1 || delta2 < -1)
377 			best = elm;
378 		++elm;
379 	}
380 	mpr = atomic_swap_ptr((void *)&best->mp, mp);
381 	best->ticks = ticks;
382 	if (mpr)
383 		atomic_add_int(&mpr->mnt_refs, -1);
384 }
385 
386 /*
387  * Clears all cached mount points on all cpus.  This routine should only
388  * be called when we are waiting for a mount to clear, e.g. so we can
389  * unmount.
390  */
391 void
392 cache_clearmntcache(struct mount *target __unused)
393 {
394 	int n;
395 
396 	for (n = 0; n < ncpus; ++n) {
397 		struct mntcache *cache = &pcpu_mntcache[n];
398 		struct mntcache_elm *elm;
399 		struct namecache *ncp;
400 		struct mount *mp;
401 		int i;
402 
403 		for (i = 0; i < MNTCACHE_COUNT; ++i) {
404 			elm = &cache->array[i];
405 			if (elm->mp) {
406 				mp = atomic_swap_ptr((void *)&elm->mp, NULL);
407 				if (mp)
408 					atomic_add_int(&mp->mnt_refs, -1);
409 			}
410 			if (elm->ncp) {
411 				ncp = atomic_swap_ptr((void *)&elm->ncp, NULL);
412 				if (ncp)
413 					_cache_drop(ncp);
414 			}
415 		}
416 	}
417 }
418 
419 /*
420  * Namespace locking.  The caller must already hold a reference to the
421  * namecache structure in order to lock/unlock it.  The controlling entity
422  * in a 1->0 transition does not need to lock the ncp to dispose of it,
423  * as nobody else will have visibility to it at that point.
424  *
425  * Note that holding a locked namecache structure prevents other threads
426  * from making namespace changes (e.g. deleting or creating), prevents
427  * vnode association state changes by other threads, and prevents the
428  * namecache entry from being resolved or unresolved by other threads.
429  *
430  * An exclusive lock owner has full authority to associate/disassociate
431  * vnodes and resolve/unresolve the locked ncp.
432  *
433  * A shared lock owner only has authority to acquire the underlying vnode,
434  * if any.
435  *
436  * The primary lock field is nc_lockstatus.  nc_locktd is set after the
437  * fact (when locking) or cleared prior to unlocking.
438  *
439  * WARNING!  Holding a locked ncp will prevent a vnode from being destroyed
440  *	     or recycled, but it does NOT help you if the vnode had already
441  *	     initiated a recyclement.  If this is important, use cache_get()
442  *	     rather then cache_lock() (and deal with the differences in the
443  *	     way the refs counter is handled).  Or, alternatively, make an
444  *	     unconditional call to cache_validate() or cache_resolve()
445  *	     after cache_lock() returns.
446  */
447 static __inline
448 void
449 _cache_lock(struct namecache *ncp)
450 {
451 	int didwarn = 0;
452 	int error;
453 
454 	error = lockmgr(&ncp->nc_lock, LK_EXCLUSIVE);
455 	while (__predict_false(error == EWOULDBLOCK)) {
456 		if (didwarn == 0) {
457 			didwarn = ticks - nclockwarn;
458 			kprintf("[diagnostic] cache_lock: "
459 				"%s blocked on %p "
460 				"\"%*.*s\"\n",
461 				curthread->td_comm, ncp,
462 				ncp->nc_nlen, ncp->nc_nlen,
463 				ncp->nc_name);
464 		}
465 		error = lockmgr(&ncp->nc_lock, LK_EXCLUSIVE | LK_TIMELOCK);
466 	}
467 	if (__predict_false(didwarn)) {
468 		kprintf("[diagnostic] cache_lock: "
469 			"%s unblocked %*.*s after %d secs\n",
470 			curthread->td_comm,
471 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
472 			(int)(ticks - didwarn) / hz);
473 	}
474 }
475 
476 /*
477  * Release a previously acquired lock.
478  *
479  * A concurrent shared-lock acquisition or acquisition/release can
480  * race bit 31 so only drop the ncp if bit 31 was set.
481  */
482 static __inline
483 void
484 _cache_unlock(struct namecache *ncp)
485 {
486 	lockmgr(&ncp->nc_lock, LK_RELEASE);
487 }
488 
489 /*
490  * Lock ncp exclusively, non-blocking.  Return 0 on success.
491  */
492 static __inline
493 int
494 _cache_lock_nonblock(struct namecache *ncp)
495 {
496 	int error;
497 
498 	error = lockmgr(&ncp->nc_lock, LK_EXCLUSIVE | LK_NOWAIT);
499 	if (__predict_false(error != 0)) {
500 		return(EWOULDBLOCK);
501 	}
502 	return 0;
503 }
504 
505 /*
506  * This is a special form of _cache_lock() which only succeeds if
507  * it can get a pristine, non-recursive lock.  The caller must have
508  * already ref'd the ncp.
509  *
510  * On success the ncp will be locked, on failure it will not.  The
511  * ref count does not change either way.
512  *
513  * We want _cache_lock_special() (on success) to return a definitively
514  * usable vnode or a definitively unresolved ncp.
515  */
516 static __inline
517 int
518 _cache_lock_special(struct namecache *ncp)
519 {
520 	if (_cache_lock_nonblock(ncp) == 0) {
521 		if (lockmgr_oneexcl(&ncp->nc_lock)) {
522 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
523 				_cache_setunresolved(ncp);
524 			return 0;
525 		}
526 		_cache_unlock(ncp);
527 	}
528 	return EWOULDBLOCK;
529 }
530 
531 /*
532  * Shared lock, guarantees vp held
533  *
534  * The shared lock holds vp on the 0->1 transition.  It is possible to race
535  * another shared lock release, preventing the other release from dropping
536  * the vnode and clearing bit 31.
537  *
538  * If it is not set then we are responsible for setting it, and this
539  * responsibility does not race with anyone else.
540  */
541 static __inline
542 void
543 _cache_lock_shared(struct namecache *ncp)
544 {
545 	int didwarn = 0;
546 	int error;
547 
548 	error = lockmgr(&ncp->nc_lock, LK_SHARED | LK_TIMELOCK);
549 	while (__predict_false(error == EWOULDBLOCK)) {
550 		if (didwarn == 0) {
551 			didwarn = ticks - nclockwarn;
552 			kprintf("[diagnostic] cache_lock_shared: "
553 				"%s blocked on %p "
554 				"\"%*.*s\"\n",
555 				curthread->td_comm, ncp,
556 				ncp->nc_nlen, ncp->nc_nlen,
557 				ncp->nc_name);
558 		}
559 		error = lockmgr(&ncp->nc_lock, LK_SHARED | LK_TIMELOCK);
560 	}
561 	if (__predict_false(didwarn)) {
562 		kprintf("[diagnostic] cache_lock_shared: "
563 			"%s unblocked %*.*s after %d secs\n",
564 			curthread->td_comm,
565 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
566 			(int)(ticks - didwarn) / hz);
567 	}
568 }
569 
570 /*
571  * Shared lock, guarantees vp held.  Non-blocking.  Returns 0 on success
572  */
573 static __inline
574 int
575 _cache_lock_shared_nonblock(struct namecache *ncp)
576 {
577 	int error;
578 
579 	error = lockmgr(&ncp->nc_lock, LK_SHARED | LK_NOWAIT);
580 	if (__predict_false(error != 0)) {
581 		return(EWOULDBLOCK);
582 	}
583 	return 0;
584 }
585 
586 /*
587  * This function tries to get a shared lock but will back-off to an
588  * exclusive lock if:
589  *
590  * (1) Some other thread is trying to obtain an exclusive lock
591  *     (to prevent the exclusive requester from getting livelocked out
592  *     by many shared locks).
593  *
594  * (2) The current thread already owns an exclusive lock (to avoid
595  *     deadlocking).
596  *
597  * WARNING! On machines with lots of cores we really want to try hard to
598  *	    get a shared lock or concurrent path lookups can chain-react
599  *	    into a very high-latency exclusive lock.
600  *
601  *	    This is very evident in dsynth's initial scans.
602  */
603 static __inline
604 int
605 _cache_lock_shared_special(struct namecache *ncp)
606 {
607 	/*
608 	 * Only honor a successful shared lock (returning 0) if there is
609 	 * no exclusive request pending and the vnode, if present, is not
610 	 * in a reclaimed state.
611 	 */
612 	if (_cache_lock_shared_nonblock(ncp) == 0) {
613 		if (__predict_true(!lockmgr_exclpending(&ncp->nc_lock))) {
614 			if (ncp->nc_vp == NULL ||
615 			    (ncp->nc_vp->v_flag & VRECLAIMED) == 0) {
616 				return(0);
617 			}
618 		}
619 		_cache_unlock(ncp);
620 		return(EWOULDBLOCK);
621 	}
622 
623 	/*
624 	 * Non-blocking shared lock failed.  If we already own the exclusive
625 	 * lock just acquire another exclusive lock (instead of deadlocking).
626 	 * Otherwise acquire a shared lock.
627 	 */
628 	if (lockstatus(&ncp->nc_lock, curthread) == LK_EXCLUSIVE) {
629 		_cache_lock(ncp);
630 		return(0);
631 	}
632 	_cache_lock_shared(ncp);
633 	return(0);
634 }
635 
636 static __inline
637 int
638 _cache_lockstatus(struct namecache *ncp)
639 {
640 	int status;
641 
642 	status = lockstatus(&ncp->nc_lock, curthread);
643 	if (status == 0 || status == LK_EXCLOTHER)
644 		status = -1;
645 	return status;
646 }
647 
648 /*
649  * cache_hold() and cache_drop() prevent the premature deletion of a
650  * namecache entry but do not prevent operations (such as zapping) on
651  * that namecache entry.
652  *
653  * This routine may only be called from outside this source module if
654  * nc_refs is already deterministically at least 1, such as being
655  * associated with e.g. a process, file descriptor, or some other entity.
656  *
657  * Only the above situations, similar situations within this module where
658  * the ref count is deterministically at least 1, or when the ncp is found
659  * via the nchpp (hash table) lookup, can bump nc_refs.
660  *
661  * Very specifically, a ncp found via nc_list CANNOT bump nc_refs.  It
662  * can still be removed from the nc_list, however, as long as the caller
663  * can acquire its lock (in the wrong order).
664  *
665  * This is a rare case where callers are allowed to hold a spinlock,
666  * so we can't ourselves.
667  */
668 static __inline
669 struct namecache *
670 _cache_hold(struct namecache *ncp)
671 {
672 	KKASSERT(ncp->nc_refs > 0);
673 	atomic_add_int(&ncp->nc_refs, 1);
674 
675 	return(ncp);
676 }
677 
678 /*
679  * Drop a cache entry.
680  *
681  * The 1->0 transition is special and requires the caller to destroy the
682  * entry.  It means that the ncp is no longer on a nchpp list (since that
683  * would mean there was stilla ref).  The ncp could still be on a nc_list
684  * but will not have any child of its own, again because nc_refs is now 0
685  * and children would have a ref to their parent.
686  *
687  * Once the 1->0 transition is made, nc_refs cannot be incremented again.
688  */
689 static __inline
690 void
691 _cache_drop(struct namecache *ncp)
692 {
693 	if (atomic_fetchadd_int(&ncp->nc_refs, -1) == 1) {
694 		/*
695 		 * Executed unlocked (no need to lock on last drop)
696 		 */
697 		_cache_setunresolved(ncp);
698 
699 		/*
700 		 * Scrap it.
701 		 */
702 		ncp->nc_refs = -1;	/* safety */
703 		if (ncp->nc_name)
704 			kfree(ncp->nc_name, M_VFSCACHEAUX);
705 		kfree_obj(ncp, M_VFSCACHE);
706 	}
707 }
708 
709 /*
710  * Link a new namecache entry to its parent and to the hash table.  Be
711  * careful to avoid races if vhold() blocks in the future.
712  *
713  * Both ncp and par must be referenced and locked.  The reference is
714  * transfered to the nchpp (and, most notably, NOT to the parent list).
715  *
716  * NOTE: The hash table spinlock is held across this call, we can't do
717  *	 anything fancy.
718  */
719 static void
720 _cache_link_parent(struct namecache *ncp, struct namecache *par,
721 		   struct nchash_head *nchpp)
722 {
723 	struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
724 
725 	KKASSERT(ncp->nc_parent == NULL);
726 	ncp->nc_parent = par;
727 	ncp->nc_head = nchpp;
728 
729 	/*
730 	 * Set inheritance flags.  Note that the parent flags may be
731 	 * stale due to getattr potentially not having been run yet
732 	 * (it gets run during nlookup()'s).
733 	 */
734 	ncp->nc_flag &= ~(NCF_SF_PNOCACHE | NCF_UF_PCACHE);
735 	if (par->nc_flag & (NCF_SF_NOCACHE | NCF_SF_PNOCACHE))
736 		ncp->nc_flag |= NCF_SF_PNOCACHE;
737 	if (par->nc_flag & (NCF_UF_CACHE | NCF_UF_PCACHE))
738 		ncp->nc_flag |= NCF_UF_PCACHE;
739 
740 	/*
741 	 * Add to hash table and parent, adjust accounting
742 	 */
743 	TAILQ_INSERT_HEAD(&nchpp->list, ncp, nc_hash);
744 	atomic_add_long(&pn->vfscache_count, 1);
745 	if (TAILQ_EMPTY(&ncp->nc_list))
746 		atomic_add_long(&pn->vfscache_leafs, 1);
747 
748 	if (TAILQ_EMPTY(&par->nc_list)) {
749 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
750 		atomic_add_long(&pn->vfscache_leafs, -1);
751 		/*
752 		 * Any vp associated with an ncp which has children must
753 		 * be held to prevent it from being recycled.
754 		 */
755 		if (par->nc_vp)
756 			vhold(par->nc_vp);
757 	} else {
758 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
759 	}
760 	_cache_hold(par);	/* add nc_parent ref */
761 }
762 
763 /*
764  * Remove the parent and hash associations from a namecache structure.
765  * Drop the ref-count on the parent.  The caller receives the ref
766  * from the ncp's nchpp linkage that was removed and may forward that
767  * ref to a new linkage.
768 
769  * The caller usually holds an additional ref * on the ncp so the unlink
770  * cannot be the final drop.  XXX should not be necessary now since the
771  * caller receives the ref from the nchpp linkage, assuming the ncp
772  * was linked in the first place.
773  *
774  * ncp must be locked, which means that there won't be any nc_parent
775  * removal races.  This routine will acquire a temporary lock on
776  * the parent as well as the appropriate hash chain.
777  */
778 static void
779 _cache_unlink_parent(struct namecache *ncp)
780 {
781 	struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
782 	struct namecache *par;
783 	struct vnode *dropvp;
784 	struct nchash_head *nchpp;
785 
786 	if ((par = ncp->nc_parent) != NULL) {
787 		cpu_ccfence();
788 		KKASSERT(ncp->nc_parent == par);
789 
790 		/* don't add a ref, we drop the nchpp ref later */
791 		_cache_lock(par);
792 		nchpp = ncp->nc_head;
793 		spin_lock(&nchpp->spin);
794 
795 		/*
796 		 * Remove from hash table and parent, adjust accounting
797 		 */
798 		TAILQ_REMOVE(&ncp->nc_head->list, ncp, nc_hash);
799 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
800 		atomic_add_long(&pn->vfscache_count, -1);
801 		if (TAILQ_EMPTY(&ncp->nc_list))
802 			atomic_add_long(&pn->vfscache_leafs, -1);
803 
804 		dropvp = NULL;
805 		if (TAILQ_EMPTY(&par->nc_list)) {
806 			atomic_add_long(&pn->vfscache_leafs, 1);
807 			if (par->nc_vp)
808 				dropvp = par->nc_vp;
809 		}
810 		ncp->nc_parent = NULL;
811 		ncp->nc_head = NULL;
812 		spin_unlock(&nchpp->spin);
813 		_cache_unlock(par);
814 		_cache_drop(par);	/* drop nc_parent ref */
815 
816 		/*
817 		 * We can only safely vdrop with no spinlocks held.
818 		 */
819 		if (dropvp)
820 			vdrop(dropvp);
821 	}
822 }
823 
824 /*
825  * Allocate a new namecache structure.  Most of the code does not require
826  * zero-termination of the string but it makes vop_compat_ncreate() easier.
827  *
828  * The returned ncp will be locked and referenced.  The ref is generally meant
829  * to be transfered to the nchpp linkage.
830  */
831 static struct namecache *
832 cache_alloc(int nlen)
833 {
834 	struct namecache *ncp;
835 
836 	ncp = kmalloc_obj(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
837 	if (nlen)
838 		ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHEAUX, M_WAITOK);
839 	ncp->nc_nlen = nlen;
840 	ncp->nc_flag = NCF_UNRESOLVED;
841 	ncp->nc_error = ENOTCONN;	/* needs to be resolved */
842 	ncp->nc_refs = 1;
843 	TAILQ_INIT(&ncp->nc_list);
844 	lockinit(&ncp->nc_lock, "ncplk", hz, LK_CANRECURSE);
845 	lockmgr(&ncp->nc_lock, LK_EXCLUSIVE);
846 
847 	return(ncp);
848 }
849 
850 /*
851  * Can only be called for the case where the ncp has never been
852  * associated with anything (so no spinlocks are needed).
853  */
854 static void
855 _cache_free(struct namecache *ncp)
856 {
857 	KKASSERT(ncp->nc_refs == 1);
858 	if (ncp->nc_name)
859 		kfree(ncp->nc_name, M_VFSCACHEAUX);
860 	kfree_obj(ncp, M_VFSCACHE);
861 }
862 
863 /*
864  * [re]initialize a nchandle.
865  */
866 void
867 cache_zero(struct nchandle *nch)
868 {
869 	nch->ncp = NULL;
870 	nch->mount = NULL;
871 }
872 
873 /*
874  * Ref and deref a nchandle structure (ncp + mp)
875  *
876  * The caller must specify a stable ncp pointer, typically meaning the
877  * ncp is already referenced but this can also occur indirectly through
878  * e.g. holding a lock on a direct child.
879  *
880  * WARNING: Caller may hold an unrelated read spinlock, which means we can't
881  *	    use read spinlocks here.
882  */
883 struct nchandle *
884 cache_hold(struct nchandle *nch)
885 {
886 	_cache_hold(nch->ncp);
887 	_cache_mntref(nch->mount);
888 	return(nch);
889 }
890 
891 /*
892  * Create a copy of a namecache handle for an already-referenced
893  * entry.
894  */
895 void
896 cache_copy(struct nchandle *nch, struct nchandle *target)
897 {
898 	struct namecache *ncp;
899 	struct mount *mp;
900 	struct mntcache_elm *elm;
901 	struct namecache *ncpr;
902 	int i;
903 
904 	ncp = nch->ncp;
905 	mp = nch->mount;
906 	target->ncp = ncp;
907 	target->mount = mp;
908 
909 	elm = _cache_mntcache_hash(ncp);
910 	for (i = 0; i < MNTCACHE_SET; ++i) {
911 		if (elm->ncp == ncp) {
912 			ncpr = atomic_swap_ptr((void *)&elm->ncp, NULL);
913 			if (ncpr == ncp) {
914 				_cache_mntref(mp);
915 				return;
916 			}
917 			if (ncpr)
918 				_cache_drop(ncpr);
919 		}
920 		++elm;
921 	}
922 	if (ncp)
923 		_cache_hold(ncp);
924 	_cache_mntref(mp);
925 }
926 
927 /*
928  * Drop the nchandle, but try to cache the ref to avoid global atomic
929  * ops.  This is typically done on the system root and jail root nchandles.
930  */
931 void
932 cache_drop_and_cache(struct nchandle *nch, int elmno)
933 {
934 	struct mntcache_elm *elm;
935 	struct mntcache_elm *best;
936 	struct namecache *ncpr;
937 	int delta1;
938 	int delta2;
939 	int i;
940 
941 	if (elmno > 4) {
942 		if (nch->ncp) {
943 			_cache_drop(nch->ncp);
944 			nch->ncp = NULL;
945 		}
946 		if (nch->mount) {
947 			_cache_mntrel(nch->mount);
948 			nch->mount = NULL;
949 		}
950 		return;
951 	}
952 
953 	elm = _cache_mntcache_hash(nch->ncp);
954 	best = elm;
955 	for (i = 0; i < MNTCACHE_SET; ++i) {
956 		if (elm->ncp == NULL) {
957 			ncpr = atomic_swap_ptr((void *)&elm->ncp, nch->ncp);
958 			_cache_mntrel(nch->mount);
959 			elm->ticks = ticks;
960 			nch->mount = NULL;
961 			nch->ncp = NULL;
962 			if (ncpr)
963 				_cache_drop(ncpr);
964 			return;
965 		}
966 		delta1 = ticks - best->ticks;
967 		delta2 = ticks - elm->ticks;
968 		if (delta2 > delta1 || delta1 < -1 || delta2 < -1)
969 			best = elm;
970 		++elm;
971 	}
972 	ncpr = atomic_swap_ptr((void *)&best->ncp, nch->ncp);
973 	_cache_mntrel(nch->mount);
974 	best->ticks = ticks;
975 	nch->mount = NULL;
976 	nch->ncp = NULL;
977 	if (ncpr)
978 		_cache_drop(ncpr);
979 }
980 
981 void
982 cache_changemount(struct nchandle *nch, struct mount *mp)
983 {
984 	_cache_mntref(mp);
985 	_cache_mntrel(nch->mount);
986 	nch->mount = mp;
987 }
988 
989 void
990 cache_drop(struct nchandle *nch)
991 {
992 	_cache_mntrel(nch->mount);
993 	_cache_drop(nch->ncp);
994 	nch->ncp = NULL;
995 	nch->mount = NULL;
996 }
997 
998 int
999 cache_lockstatus(struct nchandle *nch)
1000 {
1001 	return(_cache_lockstatus(nch->ncp));
1002 }
1003 
1004 void
1005 cache_lock(struct nchandle *nch)
1006 {
1007 	_cache_lock(nch->ncp);
1008 }
1009 
1010 void
1011 cache_lock_maybe_shared(struct nchandle *nch, int excl)
1012 {
1013 	struct namecache *ncp = nch->ncp;
1014 
1015 	if (ncp_shared_lock_disable || excl ||
1016 	    (ncp->nc_flag & NCF_UNRESOLVED)) {
1017 		_cache_lock(ncp);
1018 	} else {
1019 		_cache_lock_shared(ncp);
1020 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1021 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
1022 				_cache_unlock(ncp);
1023 				_cache_lock(ncp);
1024 			}
1025 		} else {
1026 			_cache_unlock(ncp);
1027 			_cache_lock(ncp);
1028 		}
1029 	}
1030 }
1031 
1032 /*
1033  * Lock fncpd, fncp, tncpd, and tncp.  tncp is already locked but may
1034  * have to be cycled to avoid deadlocks.  Make sure all four are resolved.
1035  *
1036  * The caller is responsible for checking the validity upon return as
1037  * the records may have been flagged DESTROYED in the interim.
1038  *
1039  * Namecache lock ordering is leaf first, then parent.  However, complex
1040  * interactions may occur between the source and target because there is
1041  * no ordering guarantee between (fncpd, fncp) and (tncpd and tncp).
1042  */
1043 void
1044 cache_lock4_tondlocked(struct nchandle *fncpd, struct nchandle *fncp,
1045 		       struct nchandle *tncpd, struct nchandle *tncp,
1046 		       struct ucred *fcred, struct ucred *tcred)
1047 {
1048 	int tlocked = 1;
1049 
1050 	/*
1051 	 * Lock tncp and tncpd
1052 	 *
1053 	 * NOTE: Because these ncps are not locked to begin with, it is
1054 	 *	 possible for other rename races to cause the normal lock
1055 	 *	 order assumptions to fail.
1056 	 *
1057 	 * NOTE: Lock ordering assumptions are valid if a leaf's parent
1058 	 *	 matches after the leaf has been locked.  However, ordering
1059 	 *	 between the 'from' and the 'to' is not and an overlapping
1060 	 *	 lock order reversal is still possible.
1061 	 */
1062 again:
1063 	if (__predict_false(tlocked == 0)) {
1064 		cache_lock(tncp);
1065 	}
1066 	if (__predict_false(cache_lock_nonblock(tncpd) != 0)) {
1067 		cache_unlock(tncp);
1068 		cache_lock(tncpd); cache_unlock(tncpd); /* cycle */
1069 		tlocked = 0;
1070 		goto again;
1071 	}
1072 
1073 	/*
1074 	 * Lock fncp and fncpd
1075 	 *
1076 	 * NOTE: Because these ncps are not locked to begin with, it is
1077 	 *	 possible for other rename races to cause the normal lock
1078 	 *	 order assumptions to fail.
1079 	 *
1080 	 * NOTE: Lock ordering assumptions are valid if a leaf's parent
1081 	 *	 matches after the leaf has been locked.  However, ordering
1082 	 *	 between the 'from' and the 'to' is not and an overlapping
1083 	 *	 lock order reversal is still possible.
1084 	 */
1085 	if (__predict_false(cache_lock_nonblock(fncp) != 0)) {
1086 		cache_unlock(tncpd);
1087 		cache_unlock(tncp);
1088 		cache_lock(fncp); cache_unlock(fncp); /* cycle */
1089 		tlocked = 0;
1090 		goto again;
1091 	}
1092 	if (__predict_false(cache_lock_nonblock(fncpd) != 0)) {
1093 		cache_unlock(fncp);
1094 		cache_unlock(tncpd);
1095 		cache_unlock(tncp);
1096 		cache_lock(fncpd); cache_unlock(fncpd); /* cycle */
1097 		tlocked = 0;
1098 		goto again;
1099 	}
1100 	if (__predict_true((fncpd->ncp->nc_flag & NCF_DESTROYED) == 0))
1101 		cache_resolve(fncpd, fcred);
1102 	if (__predict_true((tncpd->ncp->nc_flag & NCF_DESTROYED) == 0))
1103 		cache_resolve(tncpd, tcred);
1104 	if (__predict_true((fncp->ncp->nc_flag & NCF_DESTROYED) == 0))
1105 		cache_resolve(fncp, fcred);
1106 	if (__predict_true((tncp->ncp->nc_flag & NCF_DESTROYED) == 0))
1107 		cache_resolve(tncp, tcred);
1108 }
1109 
1110 int
1111 cache_lock_nonblock(struct nchandle *nch)
1112 {
1113 	return(_cache_lock_nonblock(nch->ncp));
1114 }
1115 
1116 void
1117 cache_unlock(struct nchandle *nch)
1118 {
1119 	_cache_unlock(nch->ncp);
1120 }
1121 
1122 /*
1123  * ref-and-lock, unlock-and-deref functions.
1124  *
1125  * This function is primarily used by nlookup.  Even though cache_lock
1126  * holds the vnode, it is possible that the vnode may have already
1127  * initiated a recyclement.
1128  *
1129  * We want cache_get() to return a definitively usable vnode or a
1130  * definitively unresolved ncp.
1131  */
1132 static
1133 struct namecache *
1134 _cache_get(struct namecache *ncp)
1135 {
1136 	_cache_hold(ncp);
1137 	_cache_lock(ncp);
1138 	if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1139 		_cache_setunresolved(ncp);
1140 	return(ncp);
1141 }
1142 
1143 /*
1144  * Attempt to obtain a shared lock on the ncp.  A shared lock will only
1145  * be obtained if the ncp is resolved and the vnode (if not ENOENT) is
1146  * valid.  Otherwise an exclusive lock will be acquired instead.
1147  */
1148 static
1149 struct namecache *
1150 _cache_get_maybe_shared(struct namecache *ncp, int excl)
1151 {
1152 	if (ncp_shared_lock_disable || excl ||
1153 	    (ncp->nc_flag & NCF_UNRESOLVED)) {
1154 		return(_cache_get(ncp));
1155 	}
1156 	_cache_hold(ncp);
1157 	_cache_lock_shared(ncp);
1158 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1159 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
1160 			_cache_unlock(ncp);
1161 			ncp = _cache_get(ncp);
1162 			_cache_drop(ncp);
1163 		}
1164 	} else {
1165 		_cache_unlock(ncp);
1166 		ncp = _cache_get(ncp);
1167 		_cache_drop(ncp);
1168 	}
1169 	return(ncp);
1170 }
1171 
1172 /*
1173  * NOTE: The same nchandle can be passed for both arguments.
1174  */
1175 void
1176 cache_get(struct nchandle *nch, struct nchandle *target)
1177 {
1178 	KKASSERT(nch->ncp->nc_refs > 0);
1179 	target->mount = nch->mount;
1180 	target->ncp = _cache_get(nch->ncp);
1181 	_cache_mntref(target->mount);
1182 }
1183 
1184 void
1185 cache_get_maybe_shared(struct nchandle *nch, struct nchandle *target, int excl)
1186 {
1187 	KKASSERT(nch->ncp->nc_refs > 0);
1188 	target->mount = nch->mount;
1189 	target->ncp = _cache_get_maybe_shared(nch->ncp, excl);
1190 	_cache_mntref(target->mount);
1191 }
1192 
1193 /*
1194  * Release a held and locked ncp
1195  */
1196 static __inline
1197 void
1198 _cache_put(struct namecache *ncp)
1199 {
1200 	_cache_unlock(ncp);
1201 	_cache_drop(ncp);
1202 }
1203 
1204 void
1205 cache_put(struct nchandle *nch)
1206 {
1207 	_cache_mntrel(nch->mount);
1208 	_cache_put(nch->ncp);
1209 	nch->ncp = NULL;
1210 	nch->mount = NULL;
1211 }
1212 
1213 /*
1214  * Resolve an unresolved ncp by associating a vnode with it.  If the
1215  * vnode is NULL, a negative cache entry is created.
1216  *
1217  * The ncp should be locked on entry and will remain locked on return.
1218  */
1219 static
1220 void
1221 _cache_setvp(struct mount *mp, struct namecache *ncp, struct vnode *vp)
1222 {
1223 	KKASSERT((ncp->nc_flag & NCF_UNRESOLVED) &&
1224 		 (_cache_lockstatus(ncp) == LK_EXCLUSIVE) &&
1225 		 ncp->nc_vp == NULL);
1226 
1227 	if (vp) {
1228 		/*
1229 		 * Any vp associated with an ncp which has children must
1230 		 * be held.  Any vp associated with a locked ncp must be held.
1231 		 */
1232 		if (!TAILQ_EMPTY(&ncp->nc_list))
1233 			vhold(vp);
1234 		spin_lock(&vp->v_spin);
1235 		ncp->nc_vp = vp;
1236 		TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
1237 		++vp->v_namecache_count;
1238 		_cache_hold(ncp);		/* v_namecache assoc */
1239 		spin_unlock(&vp->v_spin);
1240 		vhold(vp);			/* nc_vp */
1241 
1242 		/*
1243 		 * Set auxiliary flags
1244 		 */
1245 		switch(vp->v_type) {
1246 		case VDIR:
1247 			ncp->nc_flag |= NCF_ISDIR;
1248 			break;
1249 		case VLNK:
1250 			ncp->nc_flag |= NCF_ISSYMLINK;
1251 			/* XXX cache the contents of the symlink */
1252 			break;
1253 		default:
1254 			break;
1255 		}
1256 
1257 		ncp->nc_error = 0;
1258 
1259 		/*
1260 		 * XXX: this is a hack to work-around the lack of a real pfs vfs
1261 		 * implementation
1262 		 */
1263 		if (mp) {
1264 			if (strncmp(mp->mnt_stat.f_fstypename, "null", 5) == 0)
1265 				vp->v_pfsmp = mp;
1266 		}
1267 	} else {
1268 		/*
1269 		 * When creating a negative cache hit we set the
1270 		 * namecache_gen.  A later resolve will clean out the
1271 		 * negative cache hit if the mount point's namecache_gen
1272 		 * has changed.  Used by devfs, could also be used by
1273 		 * other remote FSs.
1274 		 */
1275 		struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
1276 
1277 		ncp->nc_vp = NULL;
1278 		ncp->nc_negcpu = mycpu->gd_cpuid;
1279 		spin_lock(&pn->neg_spin);
1280 		TAILQ_INSERT_TAIL(&pn->neg_list, ncp, nc_vnode);
1281 		_cache_hold(ncp);	/* neg_list assoc */
1282 		++pn->neg_count;
1283 		spin_unlock(&pn->neg_spin);
1284 		atomic_add_long(&pn->vfscache_negs, 1);
1285 
1286 		ncp->nc_error = ENOENT;
1287 		if (mp)
1288 			VFS_NCPGEN_SET(mp, ncp);
1289 	}
1290 	ncp->nc_flag &= ~(NCF_UNRESOLVED | NCF_DEFEREDZAP);
1291 }
1292 
1293 void
1294 cache_setvp(struct nchandle *nch, struct vnode *vp)
1295 {
1296 	_cache_setvp(nch->mount, nch->ncp, vp);
1297 }
1298 
1299 /*
1300  * Used for NFS
1301  */
1302 void
1303 cache_settimeout(struct nchandle *nch, int nticks)
1304 {
1305 	struct namecache *ncp = nch->ncp;
1306 
1307 	if ((ncp->nc_timeout = ticks + nticks) == 0)
1308 		ncp->nc_timeout = 1;
1309 }
1310 
1311 /*
1312  * Disassociate the vnode or negative-cache association and mark a
1313  * namecache entry as unresolved again.  Note that the ncp is still
1314  * left in the hash table and still linked to its parent.
1315  *
1316  * The ncp should be locked and refd on entry and will remain locked and refd
1317  * on return.
1318  *
1319  * This routine is normally never called on a directory containing children.
1320  * However, NFS often does just that in its rename() code as a cop-out to
1321  * avoid complex namespace operations.  This disconnects a directory vnode
1322  * from its namecache and can cause the OLDAPI and NEWAPI to get out of
1323  * sync.
1324  *
1325  */
1326 static
1327 void
1328 _cache_setunresolved(struct namecache *ncp)
1329 {
1330 	struct vnode *vp;
1331 
1332 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1333 		ncp->nc_flag |= NCF_UNRESOLVED;
1334 		ncp->nc_timeout = 0;
1335 		ncp->nc_error = ENOTCONN;
1336 		if ((vp = ncp->nc_vp) != NULL) {
1337 			spin_lock(&vp->v_spin);
1338 			ncp->nc_vp = NULL;
1339 			TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
1340 			--vp->v_namecache_count;
1341 			spin_unlock(&vp->v_spin);
1342 
1343 			/*
1344 			 * Any vp associated with an ncp with children is
1345 			 * held by that ncp.  Any vp associated with  ncp
1346 			 * is held by that ncp.  These conditions must be
1347 			 * undone when the vp is cleared out from the ncp.
1348 			 */
1349 			if (!TAILQ_EMPTY(&ncp->nc_list))
1350 				vdrop(vp);
1351 			vdrop(vp);
1352 		} else {
1353 			struct pcpu_ncache *pn;
1354 
1355 			pn = &pcpu_ncache[ncp->nc_negcpu];
1356 
1357 			atomic_add_long(&pn->vfscache_negs, -1);
1358 			spin_lock(&pn->neg_spin);
1359 			TAILQ_REMOVE(&pn->neg_list, ncp, nc_vnode);
1360 			--pn->neg_count;
1361 			spin_unlock(&pn->neg_spin);
1362 		}
1363 		ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK);
1364 		_cache_drop(ncp);	/* from v_namecache or neg_list */
1365 	}
1366 }
1367 
1368 /*
1369  * The cache_nresolve() code calls this function to automatically
1370  * set a resolved cache element to unresolved if it has timed out
1371  * or if it is a negative cache hit and the mount point namecache_gen
1372  * has changed.
1373  */
1374 static __inline int
1375 _cache_auto_unresolve_test(struct mount *mp, struct namecache *ncp)
1376 {
1377 	/*
1378 	 * Try to zap entries that have timed out.  We have
1379 	 * to be careful here because locked leafs may depend
1380 	 * on the vnode remaining intact in a parent, so only
1381 	 * do this under very specific conditions.
1382 	 */
1383 	if (ncp->nc_timeout && (int)(ncp->nc_timeout - ticks) < 0 &&
1384 	    TAILQ_EMPTY(&ncp->nc_list)) {
1385 		return 1;
1386 	}
1387 
1388 	/*
1389 	 * If a resolved negative cache hit is invalid due to
1390 	 * the mount's namecache generation being bumped, zap it.
1391 	 */
1392 	if (ncp->nc_vp == NULL && VFS_NCPGEN_TEST(mp, ncp)) {
1393 		return 1;
1394 	}
1395 
1396 	/*
1397 	 * Otherwise we are good
1398 	 */
1399 	return 0;
1400 }
1401 
1402 static __inline void
1403 _cache_auto_unresolve(struct mount *mp, struct namecache *ncp)
1404 {
1405 	/*
1406 	 * Already in an unresolved state, nothing to do.
1407 	 */
1408 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1409 		if (_cache_auto_unresolve_test(mp, ncp))
1410 			_cache_setunresolved(ncp);
1411 	}
1412 }
1413 
1414 void
1415 cache_setunresolved(struct nchandle *nch)
1416 {
1417 	_cache_setunresolved(nch->ncp);
1418 }
1419 
1420 /*
1421  * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
1422  * looking for matches.  This flag tells the lookup code when it must
1423  * check for a mount linkage and also prevents the directories in question
1424  * from being deleted or renamed.
1425  */
1426 static
1427 int
1428 cache_clrmountpt_callback(struct mount *mp, void *data)
1429 {
1430 	struct nchandle *nch = data;
1431 
1432 	if (mp->mnt_ncmounton.ncp == nch->ncp)
1433 		return(1);
1434 	if (mp->mnt_ncmountpt.ncp == nch->ncp)
1435 		return(1);
1436 	return(0);
1437 }
1438 
1439 /*
1440  * Clear NCF_ISMOUNTPT on nch->ncp if it is no longer associated
1441  * with a mount point.
1442  */
1443 void
1444 cache_clrmountpt(struct nchandle *nch)
1445 {
1446 	int count;
1447 
1448 	count = mountlist_scan(cache_clrmountpt_callback, nch,
1449 			       MNTSCAN_FORWARD | MNTSCAN_NOBUSY |
1450 			       MNTSCAN_NOUNLOCK);
1451 	if (count == 0)
1452 		nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
1453 }
1454 
1455 /*
1456  * Invalidate portions of the namecache topology given a starting entry.
1457  * The passed ncp is set to an unresolved state and:
1458  *
1459  * The passed ncp must be referenced and locked.  The routine may unlock
1460  * and relock ncp several times, and will recheck the children and loop
1461  * to catch races.  When done the passed ncp will be returned with the
1462  * reference and lock intact.
1463  *
1464  * CINV_DESTROY		- Set a flag in the passed ncp entry indicating
1465  *			  that the physical underlying nodes have been
1466  *			  destroyed... as in deleted.  For example, when
1467  *			  a directory is removed.  This will cause record
1468  *			  lookups on the name to no longer be able to find
1469  *			  the record and tells the resolver to return failure
1470  *			  rather then trying to resolve through the parent.
1471  *
1472  *			  The topology itself, including ncp->nc_name,
1473  *			  remains intact.
1474  *
1475  *			  This only applies to the passed ncp, if CINV_CHILDREN
1476  *			  is specified the children are not flagged.
1477  *
1478  * CINV_CHILDREN	- Set all children (recursively) to an unresolved
1479  *			  state as well.
1480  *
1481  *			  Note that this will also have the side effect of
1482  *			  cleaning out any unreferenced nodes in the topology
1483  *			  from the leaves up as the recursion backs out.
1484  *
1485  * Note that the topology for any referenced nodes remains intact, but
1486  * the nodes will be marked as having been destroyed and will be set
1487  * to an unresolved state.
1488  *
1489  * It is possible for cache_inval() to race a cache_resolve(), meaning that
1490  * the namecache entry may not actually be invalidated on return if it was
1491  * revalidated while recursing down into its children.  This code guarentees
1492  * that the node(s) will go through an invalidation cycle, but does not
1493  * guarentee that they will remain in an invalidated state.
1494  *
1495  * Returns non-zero if a revalidation was detected during the invalidation
1496  * recursion, zero otherwise.  Note that since only the original ncp is
1497  * locked the revalidation ultimately can only indicate that the original ncp
1498  * *MIGHT* no have been reresolved.
1499  *
1500  * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
1501  * have to avoid blowing out the kernel stack.  We do this by saving the
1502  * deep namecache node and aborting the recursion, then re-recursing at that
1503  * node using a depth-first algorithm in order to allow multiple deep
1504  * recursions to chain through each other, then we restart the invalidation
1505  * from scratch.
1506  */
1507 
1508 struct cinvtrack {
1509 	struct namecache *resume_ncp;
1510 	int depth;
1511 };
1512 
1513 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
1514 
1515 static
1516 int
1517 _cache_inval(struct namecache *ncp, int flags)
1518 {
1519 	struct cinvtrack track;
1520 	struct namecache *ncp2;
1521 	int r;
1522 
1523 	track.depth = 0;
1524 	track.resume_ncp = NULL;
1525 
1526 	for (;;) {
1527 		r = _cache_inval_internal(ncp, flags, &track);
1528 		if (track.resume_ncp == NULL)
1529 			break;
1530 		_cache_unlock(ncp);
1531 		while ((ncp2 = track.resume_ncp) != NULL) {
1532 			track.resume_ncp = NULL;
1533 			_cache_lock(ncp2);
1534 			_cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
1535 					     &track);
1536 			/*_cache_put(ncp2);*/
1537 			cache_zap(ncp2);
1538 		}
1539 		_cache_lock(ncp);
1540 	}
1541 	return(r);
1542 }
1543 
1544 int
1545 cache_inval(struct nchandle *nch, int flags)
1546 {
1547 	return(_cache_inval(nch->ncp, flags));
1548 }
1549 
1550 /*
1551  * Helper for _cache_inval().  The passed ncp is refd and locked and
1552  * remains that way on return, but may be unlocked/relocked multiple
1553  * times by the routine.
1554  */
1555 static int
1556 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
1557 {
1558 	struct namecache *nextkid;
1559 	int rcnt = 0;
1560 
1561 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
1562 
1563 	_cache_setunresolved(ncp);
1564 	if (flags & CINV_DESTROY) {
1565 		ncp->nc_flag |= NCF_DESTROYED;
1566 		++ncp->nc_generation;
1567 	}
1568 
1569 	while ((flags & CINV_CHILDREN) &&
1570 	       (nextkid = TAILQ_FIRST(&ncp->nc_list)) != NULL
1571 	) {
1572 		struct namecache *kid;
1573 		int restart;
1574 
1575 		restart = 0;
1576 		_cache_hold(nextkid);
1577 		if (++track->depth > MAX_RECURSION_DEPTH) {
1578 			track->resume_ncp = ncp;
1579 			_cache_hold(ncp);
1580 			++rcnt;
1581 		}
1582 		while ((kid = nextkid) != NULL) {
1583 			/*
1584 			 * Parent (ncp) must be locked for the iteration.
1585 			 */
1586 			nextkid = NULL;
1587 			if (kid->nc_parent != ncp) {
1588 				_cache_drop(kid);
1589 				kprintf("cache_inval_internal restartA %s\n",
1590 					ncp->nc_name);
1591 				restart = 1;
1592 				break;
1593 			}
1594 			if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
1595 				_cache_hold(nextkid);
1596 
1597 			/*
1598 			 * Parent unlocked for this section to avoid
1599 			 * deadlocks.  Then lock the kid and check for
1600 			 * races.
1601 			 */
1602 			_cache_unlock(ncp);
1603 			if (track->resume_ncp) {
1604 				_cache_drop(kid);
1605 				_cache_lock(ncp);
1606 				break;
1607 			}
1608 			_cache_lock(kid);
1609 			if (kid->nc_parent != ncp) {
1610 				kprintf("cache_inval_internal "
1611 					"restartB %s\n",
1612 					ncp->nc_name);
1613 				restart = 1;
1614 				_cache_unlock(kid);
1615 				_cache_drop(kid);
1616 				_cache_lock(ncp);
1617 				break;
1618 			}
1619 			if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
1620 			    TAILQ_FIRST(&kid->nc_list)
1621 			) {
1622 
1623 				rcnt += _cache_inval_internal(kid,
1624 						flags & ~CINV_DESTROY, track);
1625 				/*_cache_unlock(kid);*/
1626 				/*_cache_drop(kid);*/
1627 				cache_zap(kid);
1628 			} else {
1629 				cache_zap(kid);
1630 			}
1631 
1632 			/*
1633 			 * Relock parent to continue scan
1634 			 */
1635 			_cache_lock(ncp);
1636 		}
1637 		if (nextkid)
1638 			_cache_drop(nextkid);
1639 		--track->depth;
1640 		if (restart == 0)
1641 			break;
1642 	}
1643 
1644 	/*
1645 	 * Someone could have gotten in there while ncp was unlocked,
1646 	 * retry if so.
1647 	 */
1648 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1649 		++rcnt;
1650 	return (rcnt);
1651 }
1652 
1653 /*
1654  * Invalidate a vnode's namecache associations.  To avoid races against
1655  * the resolver we do not invalidate a node which we previously invalidated
1656  * but which was then re-resolved while we were in the invalidation loop.
1657  *
1658  * Returns non-zero if any namecache entries remain after the invalidation
1659  * loop completed.
1660  *
1661  * NOTE: Unlike the namecache topology which guarentees that ncp's will not
1662  *	 be ripped out of the topology while held, the vnode's v_namecache
1663  *	 list has no such restriction.  NCP's can be ripped out of the list
1664  *	 at virtually any time if not locked, even if held.
1665  *
1666  *	 In addition, the v_namecache list itself must be locked via
1667  *	 the vnode's spinlock.
1668  */
1669 int
1670 cache_inval_vp(struct vnode *vp, int flags)
1671 {
1672 	struct namecache *ncp;
1673 	struct namecache *next;
1674 
1675 restart:
1676 	spin_lock(&vp->v_spin);
1677 	ncp = TAILQ_FIRST(&vp->v_namecache);
1678 	if (ncp)
1679 		_cache_hold(ncp);
1680 	while (ncp) {
1681 		/* loop entered with ncp held and vp spin-locked */
1682 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1683 			_cache_hold(next);
1684 		spin_unlock(&vp->v_spin);
1685 		_cache_lock(ncp);
1686 		if (ncp->nc_vp != vp) {
1687 			kprintf("Warning: cache_inval_vp: race-A detected on "
1688 				"%s\n", ncp->nc_name);
1689 			_cache_put(ncp);
1690 			if (next)
1691 				_cache_drop(next);
1692 			goto restart;
1693 		}
1694 		_cache_inval(ncp, flags);
1695 		_cache_put(ncp);		/* also releases reference */
1696 		ncp = next;
1697 		spin_lock(&vp->v_spin);
1698 		if (ncp && ncp->nc_vp != vp) {
1699 			spin_unlock(&vp->v_spin);
1700 			kprintf("Warning: cache_inval_vp: race-B detected on "
1701 				"%s\n", ncp->nc_name);
1702 			_cache_drop(ncp);
1703 			goto restart;
1704 		}
1705 	}
1706 	spin_unlock(&vp->v_spin);
1707 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1708 }
1709 
1710 /*
1711  * This routine is used instead of the normal cache_inval_vp() when we
1712  * are trying to recycle otherwise good vnodes.
1713  *
1714  * Return 0 on success, non-zero if not all namecache records could be
1715  * disassociated from the vnode (for various reasons).
1716  */
1717 int
1718 cache_inval_vp_nonblock(struct vnode *vp)
1719 {
1720 	struct namecache *ncp;
1721 	struct namecache *next;
1722 
1723 	spin_lock(&vp->v_spin);
1724 	ncp = TAILQ_FIRST(&vp->v_namecache);
1725 	if (ncp)
1726 		_cache_hold(ncp);
1727 	while (ncp) {
1728 		/* loop entered with ncp held */
1729 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1730 			_cache_hold(next);
1731 		spin_unlock(&vp->v_spin);
1732 		if (_cache_lock_nonblock(ncp)) {
1733 			_cache_drop(ncp);
1734 			if (next)
1735 				_cache_drop(next);
1736 			goto done;
1737 		}
1738 		if (ncp->nc_vp != vp) {
1739 			kprintf("Warning: cache_inval_vp: race-A detected on "
1740 				"%s\n", ncp->nc_name);
1741 			_cache_put(ncp);
1742 			if (next)
1743 				_cache_drop(next);
1744 			goto done;
1745 		}
1746 		_cache_inval(ncp, 0);
1747 		_cache_put(ncp);		/* also releases reference */
1748 		ncp = next;
1749 		spin_lock(&vp->v_spin);
1750 		if (ncp && ncp->nc_vp != vp) {
1751 			spin_unlock(&vp->v_spin);
1752 			kprintf("Warning: cache_inval_vp: race-B detected on "
1753 				"%s\n", ncp->nc_name);
1754 			_cache_drop(ncp);
1755 			goto done;
1756 		}
1757 	}
1758 	spin_unlock(&vp->v_spin);
1759 done:
1760 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1761 }
1762 
1763 /*
1764  * Clears the universal directory search 'ok' flag.  This flag allows
1765  * nlookup() to bypass normal vnode checks.  This flag is a cached flag
1766  * so clearing it simply forces revalidation.
1767  */
1768 void
1769 cache_inval_wxok(struct vnode *vp)
1770 {
1771 	struct namecache *ncp;
1772 
1773 	spin_lock(&vp->v_spin);
1774 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1775 		if (ncp->nc_flag & (NCF_WXOK | NCF_NOTX))
1776 			atomic_clear_short(&ncp->nc_flag, NCF_WXOK | NCF_NOTX);
1777 	}
1778 	spin_unlock(&vp->v_spin);
1779 }
1780 
1781 /*
1782  * The source ncp has been renamed to the target ncp.  All elements have been
1783  * locked, including the parent ncp's.
1784  *
1785  * The target ncp is destroyed (as a normal rename-over would destroy the
1786  * target file or directory).
1787  *
1788  * Because there may be references to the source ncp we cannot copy its
1789  * contents to the target.  Instead the source ncp is relinked as the target
1790  * and the target ncp is removed from the namecache topology.
1791  */
1792 void
1793 cache_rename(struct nchandle *fnch, struct nchandle *tnch)
1794 {
1795 	struct namecache *fncp = fnch->ncp;
1796 	struct namecache *tncp = tnch->ncp;
1797 	struct namecache *tncp_par;
1798 	struct nchash_head *nchpp;
1799 	u_int32_t hash;
1800 	char *oname;
1801 	char *nname;
1802 
1803 	++fncp->nc_generation;
1804 	++tncp->nc_generation;
1805 	if (tncp->nc_nlen) {
1806 		nname = kmalloc(tncp->nc_nlen + 1, M_VFSCACHEAUX, M_WAITOK);
1807 		bcopy(tncp->nc_name, nname, tncp->nc_nlen);
1808 		nname[tncp->nc_nlen] = 0;
1809 	} else {
1810 		nname = NULL;
1811 	}
1812 
1813 	/*
1814 	 * Rename fncp (unlink)
1815 	 */
1816 	_cache_unlink_parent(fncp);
1817 	oname = fncp->nc_name;
1818 	fncp->nc_name = nname;
1819 	fncp->nc_nlen = tncp->nc_nlen;
1820 	if (oname)
1821 		kfree(oname, M_VFSCACHEAUX);
1822 
1823 	tncp_par = tncp->nc_parent;
1824 	KKASSERT(tncp_par->nc_lock.lk_lockholder == curthread);
1825 
1826 	/*
1827 	 * Rename fncp (relink)
1828 	 */
1829 	hash = fnv_32_buf(fncp->nc_name, fncp->nc_nlen, FNV1_32_INIT);
1830 	hash = fnv_32_buf(&tncp_par, sizeof(tncp_par), hash);
1831 	nchpp = NCHHASH(hash);
1832 
1833 	spin_lock(&nchpp->spin);
1834 	_cache_link_parent(fncp, tncp_par, nchpp);
1835 	spin_unlock(&nchpp->spin);
1836 
1837 	/*
1838 	 * Get rid of the overwritten tncp (unlink)
1839 	 */
1840 	_cache_unlink(tncp);
1841 }
1842 
1843 /*
1844  * Perform actions consistent with unlinking a file.  The passed-in ncp
1845  * must be locked.
1846  *
1847  * The ncp is marked DESTROYED so it no longer shows up in searches,
1848  * and will be physically deleted when the vnode goes away.
1849  *
1850  * If the related vnode has no refs then we cycle it through vget()/vput()
1851  * to (possibly if we don't have a ref race) trigger a deactivation,
1852  * allowing the VFS to trivially detect and recycle the deleted vnode
1853  * via VOP_INACTIVE().
1854  *
1855  * NOTE: _cache_rename() will automatically call _cache_unlink() on the
1856  *	 target ncp.
1857  */
1858 void
1859 cache_unlink(struct nchandle *nch)
1860 {
1861 	_cache_unlink(nch->ncp);
1862 }
1863 
1864 static void
1865 _cache_unlink(struct namecache *ncp)
1866 {
1867 	struct vnode *vp;
1868 
1869 	/*
1870 	 * Causes lookups to fail and allows another ncp with the same
1871 	 * name to be created under ncp->nc_parent.
1872 	 */
1873 	ncp->nc_flag |= NCF_DESTROYED;
1874 	++ncp->nc_generation;
1875 
1876 	/*
1877 	 * Attempt to trigger a deactivation.  Set VREF_FINALIZE to
1878 	 * force action on the 1->0 transition.  Do not destroy the
1879 	 * vp association if a vp is present (leave the destroyed ncp
1880 	 * resolved through the vp finalization).
1881 	 *
1882 	 * Cleanup the refs in the resolved-not-found case by setting
1883 	 * the ncp to an unresolved state.  This improves our ability
1884 	 * to get rid of dead ncp elements in other cache_*() routines.
1885 	 */
1886 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1887 		vp = ncp->nc_vp;
1888 		if (vp) {
1889 			atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1890 			if (VREFCNT(vp) <= 0) {
1891 				if (vget(vp, LK_SHARED) == 0)
1892 					vput(vp);
1893 			}
1894 		} else {
1895 			_cache_setunresolved(ncp);
1896 		}
1897 	}
1898 }
1899 
1900 /*
1901  * Return non-zero if the nch might be associated with an open and/or mmap()'d
1902  * file.  The easy solution is to just return non-zero if the vnode has refs.
1903  * Used to interlock hammer2 reclaims (VREF_FINALIZE should already be set to
1904  * force the reclaim).
1905  */
1906 int
1907 cache_isopen(struct nchandle *nch)
1908 {
1909 	struct vnode *vp;
1910 	struct namecache *ncp = nch->ncp;
1911 
1912 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
1913 	    (vp = ncp->nc_vp) != NULL &&
1914 	    VREFCNT(vp)) {
1915 		return 1;
1916 	}
1917 	return 0;
1918 }
1919 
1920 
1921 /*
1922  * vget the vnode associated with the namecache entry.  Resolve the namecache
1923  * entry if necessary.  The passed ncp must be referenced and locked.  If
1924  * the ncp is resolved it might be locked shared.
1925  *
1926  * lk_type may be LK_SHARED, LK_EXCLUSIVE.  A ref'd, possibly locked
1927  * (depending on the passed lk_type) will be returned in *vpp with an error
1928  * of 0, or NULL will be returned in *vpp with a non-0 error code.  The
1929  * most typical error is ENOENT, meaning that the ncp represents a negative
1930  * cache hit and there is no vnode to retrieve, but other errors can occur
1931  * too.
1932  *
1933  * The vget() can race a reclaim.  If this occurs we re-resolve the
1934  * namecache entry.
1935  *
1936  * There are numerous places in the kernel where vget() is called on a
1937  * vnode while one or more of its namecache entries is locked.  Releasing
1938  * a vnode never deadlocks against locked namecache entries (the vnode
1939  * will not get recycled while referenced ncp's exist).  This means we
1940  * can safely acquire the vnode.  In fact, we MUST NOT release the ncp
1941  * lock when acquiring the vp lock or we might cause a deadlock.
1942  *
1943  * NOTE: The passed-in ncp must be locked exclusively if it is initially
1944  *	 unresolved.  If a reclaim race occurs the passed-in ncp will be
1945  *	 relocked exclusively before being re-resolved.
1946  */
1947 int
1948 cache_vget(struct nchandle *nch, struct ucred *cred,
1949 	   int lk_type, struct vnode **vpp)
1950 {
1951 	struct namecache *ncp;
1952 	struct vnode *vp;
1953 	int error;
1954 
1955 	ncp = nch->ncp;
1956 again:
1957 	vp = NULL;
1958 	if (ncp->nc_flag & NCF_UNRESOLVED)
1959 		error = cache_resolve(nch, cred);
1960 	else
1961 		error = 0;
1962 
1963 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1964 		error = vget(vp, lk_type);
1965 		if (error) {
1966 			/*
1967 			 * VRECLAIM race
1968 			 *
1969 			 * The ncp may have been locked shared, we must relock
1970 			 * it exclusively before we can set it to unresolved.
1971 			 */
1972 			if (error == ENOENT) {
1973 				kprintf("Warning: vnode reclaim race detected "
1974 					"in cache_vget on %p (%s)\n",
1975 					vp, ncp->nc_name);
1976 				_cache_unlock(ncp);
1977 				_cache_lock(ncp);
1978 				_cache_setunresolved(ncp);
1979 				goto again;
1980 			}
1981 
1982 			/*
1983 			 * Not a reclaim race, some other error.
1984 			 */
1985 			KKASSERT(ncp->nc_vp == vp);
1986 			vp = NULL;
1987 		} else {
1988 			KKASSERT(ncp->nc_vp == vp);
1989 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1990 		}
1991 	}
1992 	if (error == 0 && vp == NULL)
1993 		error = ENOENT;
1994 	*vpp = vp;
1995 	return(error);
1996 }
1997 
1998 /*
1999  * Similar to cache_vget() but only acquires a ref on the vnode.  The vnode
2000  * is already held by virtuue of the ncp being locked, but it might not be
2001  * referenced and while it is not referenced it can transition into the
2002  * VRECLAIMED state.
2003  *
2004  * NOTE: The passed-in ncp must be locked exclusively if it is initially
2005  *	 unresolved.  If a reclaim race occurs the passed-in ncp will be
2006  *	 relocked exclusively before being re-resolved.
2007  *
2008  * NOTE: At the moment we have to issue a vget() on the vnode, even though
2009  *	 we are going to immediately release the lock, in order to resolve
2010  *	 potential reclamation races.  Once we have a solid vnode ref that
2011  *	 was (at some point) interlocked via a vget(), the vnode will not
2012  *	 be reclaimed.
2013  *
2014  * NOTE: vhold counts (v_auxrefs) do not prevent reclamation.
2015  */
2016 int
2017 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
2018 {
2019 	struct namecache *ncp;
2020 	struct vnode *vp;
2021 	int error;
2022 	int v;
2023 
2024 	ncp = nch->ncp;
2025 again:
2026 	vp = NULL;
2027 	if (ncp->nc_flag & NCF_UNRESOLVED)
2028 		error = cache_resolve(nch, cred);
2029 	else
2030 		error = 0;
2031 
2032 	while (error == 0 && (vp = ncp->nc_vp) != NULL) {
2033 		/*
2034 		 * Try a lockless ref of the vnode.  VRECLAIMED transitions
2035 		 * use the vx_lock state and update-counter mechanism so we
2036 		 * can detect if one is in-progress or occurred.
2037 		 *
2038 		 * If we can successfully ref the vnode and interlock against
2039 		 * the update-counter mechanism, and VRECLAIMED is found to
2040 		 * not be set after that, we should be good.
2041 		 */
2042 		v = spin_access_start_only(&vp->v_spin);
2043 		if (__predict_true(spin_access_check_inprog(v) == 0)) {
2044 			vref_special(vp);
2045 			if (__predict_false(
2046 				    spin_access_end_only(&vp->v_spin, v))) {
2047 				vrele(vp);
2048 				continue;
2049 			}
2050 			if (__predict_true((vp->v_flag & VRECLAIMED) == 0)) {
2051 				break;
2052 			}
2053 			vrele(vp);
2054 			kprintf("CACHE_VREF: IN-RECLAIM\n");
2055 		}
2056 
2057 		/*
2058 		 * Do it the slow way
2059 		 */
2060 		error = vget(vp, LK_SHARED);
2061 		if (error) {
2062 			/*
2063 			 * VRECLAIM race
2064 			 */
2065 			if (error == ENOENT) {
2066 				kprintf("Warning: vnode reclaim race detected "
2067 					"in cache_vget on %p (%s)\n",
2068 					vp, ncp->nc_name);
2069 				_cache_unlock(ncp);
2070 				_cache_lock(ncp);
2071 				_cache_setunresolved(ncp);
2072 				goto again;
2073 			}
2074 
2075 			/*
2076 			 * Not a reclaim race, some other error.
2077 			 */
2078 			KKASSERT(ncp->nc_vp == vp);
2079 			vp = NULL;
2080 		} else {
2081 			KKASSERT(ncp->nc_vp == vp);
2082 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
2083 			/* caller does not want a lock */
2084 			vn_unlock(vp);
2085 		}
2086 		break;
2087 	}
2088 	if (error == 0 && vp == NULL)
2089 		error = ENOENT;
2090 	*vpp = vp;
2091 
2092 	return(error);
2093 }
2094 
2095 /*
2096  * Return a referenced vnode representing the parent directory of
2097  * ncp.
2098  *
2099  * Because the caller has locked the ncp it should not be possible for
2100  * the parent ncp to go away.  However, the parent can unresolve its
2101  * dvp at any time so we must be able to acquire a lock on the parent
2102  * to safely access nc_vp.
2103  *
2104  * We have to leave par unlocked when vget()ing dvp to avoid a deadlock,
2105  * so use vhold()/vdrop() while holding the lock to prevent dvp from
2106  * getting destroyed.
2107  *
2108  * NOTE: vhold() is allowed when dvp has 0 refs if we hold a
2109  *	 lock on the ncp in question..
2110  */
2111 struct vnode *
2112 cache_dvpref(struct namecache *ncp)
2113 {
2114 	struct namecache *par;
2115 	struct vnode *dvp;
2116 
2117 	dvp = NULL;
2118 	if ((par = ncp->nc_parent) != NULL) {
2119 		_cache_hold(par);
2120 		_cache_lock(par);
2121 		if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
2122 			if ((dvp = par->nc_vp) != NULL)
2123 				vhold(dvp);
2124 		}
2125 		_cache_unlock(par);
2126 		if (dvp) {
2127 			if (vget(dvp, LK_SHARED) == 0) {
2128 				vn_unlock(dvp);
2129 				vdrop(dvp);
2130 				/* return refd, unlocked dvp */
2131 			} else {
2132 				vdrop(dvp);
2133 				dvp = NULL;
2134 			}
2135 		}
2136 		_cache_drop(par);
2137 	}
2138 	return(dvp);
2139 }
2140 
2141 /*
2142  * Convert a directory vnode to a namecache record without any other
2143  * knowledge of the topology.  This ONLY works with directory vnodes and
2144  * is ONLY used by the NFS server.  dvp must be refd but unlocked, and the
2145  * returned ncp (if not NULL) will be held and unlocked.
2146  *
2147  * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
2148  * If 'makeit' is 1 we attempt to track-down and create the namecache topology
2149  * for dvp.  This will fail only if the directory has been deleted out from
2150  * under the caller.
2151  *
2152  * Callers must always check for a NULL return no matter the value of 'makeit'.
2153  *
2154  * To avoid underflowing the kernel stack each recursive call increments
2155  * the makeit variable.
2156  */
2157 
2158 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
2159 				  struct vnode *dvp, char *fakename);
2160 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
2161 				  struct vnode **saved_dvp);
2162 
2163 int
2164 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
2165 	      struct nchandle *nch)
2166 {
2167 	struct vnode *saved_dvp;
2168 	struct vnode *pvp;
2169 	char *fakename;
2170 	int error;
2171 
2172 	nch->ncp = NULL;
2173 	nch->mount = dvp->v_mount;
2174 	saved_dvp = NULL;
2175 	fakename = NULL;
2176 
2177 	/*
2178 	 * Handle the makeit == 0 degenerate case
2179 	 */
2180 	if (makeit == 0) {
2181 		spin_lock_shared(&dvp->v_spin);
2182 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
2183 		if (nch->ncp)
2184 			cache_hold(nch);
2185 		spin_unlock_shared(&dvp->v_spin);
2186 	}
2187 
2188 	/*
2189 	 * Loop until resolution, inside code will break out on error.
2190 	 */
2191 	while (makeit) {
2192 		/*
2193 		 * Break out if we successfully acquire a working ncp.
2194 		 */
2195 		spin_lock_shared(&dvp->v_spin);
2196 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
2197 		if (nch->ncp) {
2198 			cache_hold(nch);
2199 			spin_unlock_shared(&dvp->v_spin);
2200 			break;
2201 		}
2202 		spin_unlock_shared(&dvp->v_spin);
2203 
2204 		/*
2205 		 * If dvp is the root of its filesystem it should already
2206 		 * have a namecache pointer associated with it as a side
2207 		 * effect of the mount, but it may have been disassociated.
2208 		 */
2209 		if (dvp->v_flag & VROOT) {
2210 			nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
2211 			error = cache_resolve_mp(nch->mount);
2212 			_cache_put(nch->ncp);
2213 			if (ncvp_debug) {
2214 				kprintf("cache_fromdvp: resolve root of mount %p error %d",
2215 					dvp->v_mount, error);
2216 			}
2217 			if (error) {
2218 				if (ncvp_debug)
2219 					kprintf(" failed\n");
2220 				nch->ncp = NULL;
2221 				break;
2222 			}
2223 			if (ncvp_debug)
2224 				kprintf(" succeeded\n");
2225 			continue;
2226 		}
2227 
2228 		/*
2229 		 * If we are recursed too deeply resort to an O(n^2)
2230 		 * algorithm to resolve the namecache topology.  The
2231 		 * resolved pvp is left referenced in saved_dvp to
2232 		 * prevent the tree from being destroyed while we loop.
2233 		 */
2234 		if (makeit > 20) {
2235 			error = cache_fromdvp_try(dvp, cred, &saved_dvp);
2236 			if (error) {
2237 				kprintf("lookupdotdot(longpath) failed %d "
2238 				       "dvp %p\n", error, dvp);
2239 				nch->ncp = NULL;
2240 				break;
2241 			}
2242 			continue;
2243 		}
2244 
2245 		/*
2246 		 * Get the parent directory and resolve its ncp.
2247 		 */
2248 		if (fakename) {
2249 			kfree(fakename, M_TEMP);
2250 			fakename = NULL;
2251 		}
2252 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2253 					  &fakename);
2254 		if (error) {
2255 			kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
2256 			break;
2257 		}
2258 		vn_unlock(pvp);
2259 
2260 		/*
2261 		 * Reuse makeit as a recursion depth counter.  On success
2262 		 * nch will be fully referenced.
2263 		 */
2264 		cache_fromdvp(pvp, cred, makeit + 1, nch);
2265 		vrele(pvp);
2266 		if (nch->ncp == NULL)
2267 			break;
2268 
2269 		/*
2270 		 * Do an inefficient scan of pvp (embodied by ncp) to look
2271 		 * for dvp.  This will create a namecache record for dvp on
2272 		 * success.  We loop up to recheck on success.
2273 		 *
2274 		 * ncp and dvp are both held but not locked.
2275 		 */
2276 		error = cache_inefficient_scan(nch, cred, dvp, fakename);
2277 		if (error) {
2278 			kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
2279 				pvp, nch->ncp->nc_name, dvp);
2280 			cache_drop(nch);
2281 			/* nch was NULLed out, reload mount */
2282 			nch->mount = dvp->v_mount;
2283 			break;
2284 		}
2285 		if (ncvp_debug) {
2286 			kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
2287 				pvp, nch->ncp->nc_name);
2288 		}
2289 		cache_drop(nch);
2290 		/* nch was NULLed out, reload mount */
2291 		nch->mount = dvp->v_mount;
2292 	}
2293 
2294 	/*
2295 	 * If nch->ncp is non-NULL it will have been held already.
2296 	 */
2297 	if (fakename)
2298 		kfree(fakename, M_TEMP);
2299 	if (saved_dvp)
2300 		vrele(saved_dvp);
2301 	if (nch->ncp)
2302 		return (0);
2303 	return (EINVAL);
2304 }
2305 
2306 /*
2307  * Go up the chain of parent directories until we find something
2308  * we can resolve into the namecache.  This is very inefficient.
2309  */
2310 static
2311 int
2312 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
2313 		  struct vnode **saved_dvp)
2314 {
2315 	struct nchandle nch;
2316 	struct vnode *pvp;
2317 	int error;
2318 	static time_t last_fromdvp_report;
2319 	char *fakename;
2320 
2321 	/*
2322 	 * Loop getting the parent directory vnode until we get something we
2323 	 * can resolve in the namecache.
2324 	 */
2325 	vref(dvp);
2326 	nch.mount = dvp->v_mount;
2327 	nch.ncp = NULL;
2328 	fakename = NULL;
2329 
2330 	for (;;) {
2331 		if (fakename) {
2332 			kfree(fakename, M_TEMP);
2333 			fakename = NULL;
2334 		}
2335 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2336 					  &fakename);
2337 		if (error) {
2338 			vrele(dvp);
2339 			break;
2340 		}
2341 		vn_unlock(pvp);
2342 		spin_lock_shared(&pvp->v_spin);
2343 		if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
2344 			_cache_hold(nch.ncp);
2345 			spin_unlock_shared(&pvp->v_spin);
2346 			vrele(pvp);
2347 			break;
2348 		}
2349 		spin_unlock_shared(&pvp->v_spin);
2350 		if (pvp->v_flag & VROOT) {
2351 			nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
2352 			error = cache_resolve_mp(nch.mount);
2353 			_cache_unlock(nch.ncp);
2354 			vrele(pvp);
2355 			if (error) {
2356 				_cache_drop(nch.ncp);
2357 				nch.ncp = NULL;
2358 				vrele(dvp);
2359 			}
2360 			break;
2361 		}
2362 		vrele(dvp);
2363 		dvp = pvp;
2364 	}
2365 	if (error == 0) {
2366 		if (last_fromdvp_report != time_uptime) {
2367 			last_fromdvp_report = time_uptime;
2368 			kprintf("Warning: extremely inefficient path "
2369 				"resolution on %s\n",
2370 				nch.ncp->nc_name);
2371 		}
2372 		error = cache_inefficient_scan(&nch, cred, dvp, fakename);
2373 
2374 		/*
2375 		 * Hopefully dvp now has a namecache record associated with
2376 		 * it.  Leave it referenced to prevent the kernel from
2377 		 * recycling the vnode.  Otherwise extremely long directory
2378 		 * paths could result in endless recycling.
2379 		 */
2380 		if (*saved_dvp)
2381 		    vrele(*saved_dvp);
2382 		*saved_dvp = dvp;
2383 		_cache_drop(nch.ncp);
2384 	}
2385 	if (fakename)
2386 		kfree(fakename, M_TEMP);
2387 	return (error);
2388 }
2389 
2390 /*
2391  * Do an inefficient scan of the directory represented by ncp looking for
2392  * the directory vnode dvp.  ncp must be held but not locked on entry and
2393  * will be held on return.  dvp must be refd but not locked on entry and
2394  * will remain refd on return.
2395  *
2396  * Why do this at all?  Well, due to its stateless nature the NFS server
2397  * converts file handles directly to vnodes without necessarily going through
2398  * the namecache ops that would otherwise create the namecache topology
2399  * leading to the vnode.  We could either (1) Change the namecache algorithms
2400  * to allow disconnect namecache records that are re-merged opportunistically,
2401  * or (2) Make the NFS server backtrack and scan to recover a connected
2402  * namecache topology in order to then be able to issue new API lookups.
2403  *
2404  * It turns out that (1) is a huge mess.  It takes a nice clean set of
2405  * namecache algorithms and introduces a lot of complication in every subsystem
2406  * that calls into the namecache to deal with the re-merge case, especially
2407  * since we are using the namecache to placehold negative lookups and the
2408  * vnode might not be immediately assigned. (2) is certainly far less
2409  * efficient then (1), but since we are only talking about directories here
2410  * (which are likely to remain cached), the case does not actually run all
2411  * that often and has the supreme advantage of not polluting the namecache
2412  * algorithms.
2413  *
2414  * If a fakename is supplied just construct a namecache entry using the
2415  * fake name.
2416  */
2417 static int
2418 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
2419 		       struct vnode *dvp, char *fakename)
2420 {
2421 	struct nlcomponent nlc;
2422 	struct nchandle rncp;
2423 	struct dirent *den;
2424 	struct vnode *pvp;
2425 	struct vattr vat;
2426 	struct iovec iov;
2427 	struct uio uio;
2428 	int blksize;
2429 	int eofflag;
2430 	int bytes;
2431 	char *rbuf;
2432 	int error;
2433 
2434 	vat.va_blocksize = 0;
2435 	if ((error = VOP_GETATTR(dvp, &vat)) != 0)
2436 		return (error);
2437 	cache_lock(nch);
2438 	error = cache_vref(nch, cred, &pvp);
2439 	cache_unlock(nch);
2440 	if (error)
2441 		return (error);
2442 	if (ncvp_debug) {
2443 		kprintf("inefficient_scan of (%p,%s): directory iosize %ld "
2444 			"vattr fileid = %lld\n",
2445 			nch->ncp, nch->ncp->nc_name,
2446 			vat.va_blocksize,
2447 			(long long)vat.va_fileid);
2448 	}
2449 
2450 	/*
2451 	 * Use the supplied fakename if not NULL.  Fake names are typically
2452 	 * not in the actual filesystem hierarchy.  This is used by HAMMER
2453 	 * to glue @@timestamp recursions together.
2454 	 */
2455 	if (fakename) {
2456 		nlc.nlc_nameptr = fakename;
2457 		nlc.nlc_namelen = strlen(fakename);
2458 		rncp = cache_nlookup(nch, &nlc);
2459 		goto done;
2460 	}
2461 
2462 	if ((blksize = vat.va_blocksize) == 0)
2463 		blksize = DEV_BSIZE;
2464 	rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
2465 	rncp.ncp = NULL;
2466 
2467 	eofflag = 0;
2468 	uio.uio_offset = 0;
2469 again:
2470 	iov.iov_base = rbuf;
2471 	iov.iov_len = blksize;
2472 	uio.uio_iov = &iov;
2473 	uio.uio_iovcnt = 1;
2474 	uio.uio_resid = blksize;
2475 	uio.uio_segflg = UIO_SYSSPACE;
2476 	uio.uio_rw = UIO_READ;
2477 	uio.uio_td = curthread;
2478 
2479 	if (ncvp_debug >= 2)
2480 		kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
2481 	error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
2482 	if (error == 0) {
2483 		den = (struct dirent *)rbuf;
2484 		bytes = blksize - uio.uio_resid;
2485 
2486 		while (bytes > 0) {
2487 			if (ncvp_debug >= 2) {
2488 				kprintf("cache_inefficient_scan: %*.*s\n",
2489 					den->d_namlen, den->d_namlen,
2490 					den->d_name);
2491 			}
2492 			if (den->d_type != DT_WHT &&
2493 			    den->d_ino == vat.va_fileid) {
2494 				if (ncvp_debug) {
2495 					kprintf("cache_inefficient_scan: "
2496 					       "MATCHED inode %lld path %s/%*.*s\n",
2497 					       (long long)vat.va_fileid,
2498 					       nch->ncp->nc_name,
2499 					       den->d_namlen, den->d_namlen,
2500 					       den->d_name);
2501 				}
2502 				nlc.nlc_nameptr = den->d_name;
2503 				nlc.nlc_namelen = den->d_namlen;
2504 				rncp = cache_nlookup(nch, &nlc);
2505 				KKASSERT(rncp.ncp != NULL);
2506 				break;
2507 			}
2508 			bytes -= _DIRENT_DIRSIZ(den);
2509 			den = _DIRENT_NEXT(den);
2510 		}
2511 		if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
2512 			goto again;
2513 	}
2514 	kfree(rbuf, M_TEMP);
2515 done:
2516 	vrele(pvp);
2517 	if (rncp.ncp) {
2518 		if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
2519 			_cache_setvp(rncp.mount, rncp.ncp, dvp);
2520 			if (ncvp_debug >= 2) {
2521 				kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
2522 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
2523 			}
2524 		} else {
2525 			if (ncvp_debug >= 2) {
2526 				kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
2527 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
2528 					rncp.ncp->nc_vp);
2529 			}
2530 		}
2531 		if (rncp.ncp->nc_vp == NULL)
2532 			error = rncp.ncp->nc_error;
2533 		/*
2534 		 * Release rncp after a successful nlookup.  rncp was fully
2535 		 * referenced.
2536 		 */
2537 		cache_put(&rncp);
2538 	} else {
2539 		kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
2540 			dvp, nch->ncp->nc_name);
2541 		error = ENOENT;
2542 	}
2543 	return (error);
2544 }
2545 
2546 /*
2547  * This function must be called with the ncp held and locked and will unlock
2548  * and drop it during zapping.
2549  *
2550  * Zap a namecache entry.  The ncp is unconditionally set to an unresolved
2551  * state, which disassociates it from its vnode or pcpu_ncache[n].neg_list
2552  * and removes the related reference.  If the ncp can be removed, and the
2553  * parent can be zapped non-blocking, this function loops up.
2554  *
2555  * There will be one ref from the caller (which we now own).  The only
2556  * remaining autonomous refs to the ncp will then be due to nc_parent->nc_list,
2557  * so possibly 2 refs left.  Taking this into account, if there are no
2558  * additional refs and no children, the ncp will be removed from the topology
2559  * and destroyed.
2560  *
2561  * References and/or children may exist if the ncp is in the middle of the
2562  * topology, preventing the ncp from being destroyed.
2563  *
2564  * If nonblock is non-zero and the parent ncp cannot be locked we give up.
2565  *
2566  * This function may return a held (but NOT locked) parent node which the
2567  * caller must drop in a loop.  Looping is one way to avoid unbounded recursion
2568  * due to deep namecache trees.
2569  *
2570  * WARNING!  For MPSAFE operation this routine must acquire up to three
2571  *	     spin locks to be able to safely test nc_refs.  Lock order is
2572  *	     very important.
2573  *
2574  *	     hash spinlock if on hash list
2575  *	     parent spinlock if child of parent
2576  *	     (the ncp is unresolved so there is no vnode association)
2577  */
2578 static int
2579 cache_zap(struct namecache *ncp)
2580 {
2581 	struct namecache *par;
2582 	struct vnode *dropvp;
2583 	struct nchash_head *nchpp;
2584 	int refcmp;
2585 	int nonblock = 1;	/* XXX cleanup */
2586 	int res = 0;
2587 
2588 again:
2589 	/*
2590 	 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
2591 	 * This gets rid of any vp->v_namecache list or negative list and
2592 	 * the related ref.
2593 	 */
2594 	_cache_setunresolved(ncp);
2595 
2596 	/*
2597 	 * Try to scrap the entry and possibly tail-recurse on its parent.
2598 	 * We only scrap unref'd (other then our ref) unresolved entries,
2599 	 * we do not scrap 'live' entries.
2600 	 *
2601 	 * If nc_parent is non NULL we expect 2 references, else just 1.
2602 	 * If there are more, someone else also holds the ncp and we cannot
2603 	 * destroy it.
2604 	 */
2605 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
2606 	KKASSERT(ncp->nc_refs > 0);
2607 
2608 	/*
2609 	 * If the ncp is linked to its parent it will also be in the hash
2610 	 * table.  We have to be able to lock the parent and the hash table.
2611 	 *
2612 	 * Acquire locks.  Note that the parent can't go away while we hold
2613 	 * a child locked.  If nc_parent is present, expect 2 refs instead
2614 	 * of 1.
2615 	 */
2616 	nchpp = NULL;
2617 	if ((par = ncp->nc_parent) != NULL) {
2618 		if (nonblock) {
2619 			if (_cache_lock_nonblock(par)) {
2620 				/* lock failed */
2621 				ncp->nc_flag |= NCF_DEFEREDZAP;
2622 				atomic_add_long(
2623 				    &pcpu_ncache[mycpu->gd_cpuid].numdefered,
2624 				    1);
2625 				_cache_unlock(ncp);
2626 				_cache_drop(ncp);	/* caller's ref */
2627 				return res;
2628 			}
2629 			_cache_hold(par);
2630 		} else {
2631 			_cache_hold(par);
2632 			_cache_lock(par);
2633 		}
2634 		nchpp = ncp->nc_head;
2635 		spin_lock(&nchpp->spin);
2636 	}
2637 
2638 	/*
2639 	 * With the parent and nchpp locked, and the vnode removed
2640 	 * (no vp->v_namecache), we expect 1 or 2 refs.  If there are
2641 	 * more someone else has a ref and we cannot zap the entry.
2642 	 *
2643 	 * one for our hold
2644 	 * one for our parent link (parent also has one from the linkage)
2645 	 */
2646 	if (par)
2647 		refcmp = 2;
2648 	else
2649 		refcmp = 1;
2650 
2651 	/*
2652 	 * On failure undo the work we've done so far and drop the
2653 	 * caller's ref and ncp.
2654 	 */
2655 	if (ncp->nc_refs != refcmp || TAILQ_FIRST(&ncp->nc_list)) {
2656 		if (par) {
2657 			spin_unlock(&nchpp->spin);
2658 			_cache_put(par);
2659 		}
2660 		_cache_unlock(ncp);
2661 		_cache_drop(ncp);
2662 		return res;
2663 	}
2664 
2665 	/*
2666 	 * We own all the refs and with the spinlocks held no further
2667 	 * refs can be acquired by others.
2668 	 *
2669 	 * Remove us from the hash list and parent list.  We have to
2670 	 * drop a ref on the parent's vp if the parent's list becomes
2671 	 * empty.
2672 	 */
2673 	dropvp = NULL;
2674 	if (par) {
2675 		struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
2676 
2677 		KKASSERT(nchpp == ncp->nc_head);
2678 		TAILQ_REMOVE(&ncp->nc_head->list, ncp, nc_hash);
2679 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
2680 		atomic_add_long(&pn->vfscache_count, -1);
2681 		if (TAILQ_EMPTY(&ncp->nc_list))
2682 			atomic_add_long(&pn->vfscache_leafs, -1);
2683 
2684 		if (TAILQ_EMPTY(&par->nc_list)) {
2685 			atomic_add_long(&pn->vfscache_leafs, 1);
2686 			if (par->nc_vp)
2687 				dropvp = par->nc_vp;
2688 		}
2689 		ncp->nc_parent = NULL;
2690 		ncp->nc_head = NULL;
2691 		spin_unlock(&nchpp->spin);
2692 		_cache_drop(par);	/* removal of ncp from par->nc_list */
2693 		/*_cache_unlock(par);*/
2694 	} else {
2695 		KKASSERT(ncp->nc_head == NULL);
2696 	}
2697 
2698 	/*
2699 	 * ncp should not have picked up any refs.  Physically
2700 	 * destroy the ncp.
2701 	 */
2702 	if (ncp->nc_refs != refcmp) {
2703 		panic("cache_zap: %p bad refs %d (expected %d)\n",
2704 			ncp, ncp->nc_refs, refcmp);
2705 	}
2706 	/* _cache_unlock(ncp) not required */
2707 	ncp->nc_refs = -1;	/* safety */
2708 	if (ncp->nc_name)
2709 		kfree(ncp->nc_name, M_VFSCACHEAUX);
2710 	kfree_obj(ncp, M_VFSCACHE);
2711 	res = 1;
2712 
2713 	/*
2714 	 * Delayed drop (we had to release our spinlocks)
2715 	 */
2716 	if (dropvp)
2717 		vdrop(dropvp);
2718 
2719 	/*
2720 	 * Loop up if we can recursively clean out the parent.
2721 	 */
2722 	if (par) {
2723 		refcmp = 1;		/* ref on parent */
2724 		if (par->nc_parent)	/* par->par */
2725 			++refcmp;
2726 		par->nc_flag &= ~NCF_DEFEREDZAP;
2727 		if ((par->nc_flag & NCF_UNRESOLVED) &&
2728 		    par->nc_refs == refcmp &&
2729 		    TAILQ_EMPTY(&par->nc_list))
2730 		{
2731 			ncp = par;
2732 			goto again;
2733 		}
2734 		_cache_unlock(par);
2735 		_cache_drop(par);
2736 	}
2737 	return 1;
2738 }
2739 
2740 /*
2741  * Clean up dangling negative cache and defered-drop entries in the
2742  * namecache.
2743  *
2744  * This routine is called in the critical path and also called from
2745  * vnlru().  When called from vnlru we use a lower limit to try to
2746  * deal with the negative cache before the critical path has to start
2747  * dealing with it.
2748  */
2749 typedef enum { CHI_LOW, CHI_HIGH } cache_hs_t;
2750 
2751 static cache_hs_t neg_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
2752 static cache_hs_t pos_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
2753 
2754 void
2755 cache_hysteresis(int critpath)
2756 {
2757 	long poslimit;
2758 	long neglimit = maxvnodes / ncnegfactor;
2759 	long xnumcache = vfscache_leafs;
2760 
2761 	if (critpath == 0)
2762 		neglimit = neglimit * 8 / 10;
2763 
2764 	/*
2765 	 * Don't cache too many negative hits.  We use hysteresis to reduce
2766 	 * the impact on the critical path.
2767 	 */
2768 	switch(neg_cache_hysteresis_state[critpath]) {
2769 	case CHI_LOW:
2770 		if (vfscache_negs > MINNEG && vfscache_negs > neglimit) {
2771 			if (critpath)
2772 				_cache_cleanneg(ncnegflush);
2773 			else
2774 				_cache_cleanneg(ncnegflush +
2775 						vfscache_negs - neglimit);
2776 			neg_cache_hysteresis_state[critpath] = CHI_HIGH;
2777 		}
2778 		break;
2779 	case CHI_HIGH:
2780 		if (vfscache_negs > MINNEG * 9 / 10 &&
2781 		    vfscache_negs * 9 / 10 > neglimit
2782 		) {
2783 			if (critpath)
2784 				_cache_cleanneg(ncnegflush);
2785 			else
2786 				_cache_cleanneg(ncnegflush +
2787 						vfscache_negs * 9 / 10 -
2788 						neglimit);
2789 		} else {
2790 			neg_cache_hysteresis_state[critpath] = CHI_LOW;
2791 		}
2792 		break;
2793 	}
2794 
2795 	/*
2796 	 * Don't cache too many positive hits.  We use hysteresis to reduce
2797 	 * the impact on the critical path.
2798 	 *
2799 	 * Excessive positive hits can accumulate due to large numbers of
2800 	 * hardlinks (the vnode cache will not prevent hl ncps from growing
2801 	 * into infinity).
2802 	 */
2803 	if ((poslimit = ncposlimit) == 0)
2804 		poslimit = maxvnodes * 2;
2805 	if (critpath == 0)
2806 		poslimit = poslimit * 8 / 10;
2807 
2808 	switch(pos_cache_hysteresis_state[critpath]) {
2809 	case CHI_LOW:
2810 		if (xnumcache > poslimit && xnumcache > MINPOS) {
2811 			if (critpath)
2812 				_cache_cleanpos(ncposflush);
2813 			else
2814 				_cache_cleanpos(ncposflush +
2815 						xnumcache - poslimit);
2816 			pos_cache_hysteresis_state[critpath] = CHI_HIGH;
2817 		}
2818 		break;
2819 	case CHI_HIGH:
2820 		if (xnumcache > poslimit * 5 / 6 && xnumcache > MINPOS) {
2821 			if (critpath)
2822 				_cache_cleanpos(ncposflush);
2823 			else
2824 				_cache_cleanpos(ncposflush +
2825 						xnumcache - poslimit * 5 / 6);
2826 		} else {
2827 			pos_cache_hysteresis_state[critpath] = CHI_LOW;
2828 		}
2829 		break;
2830 	}
2831 
2832 	/*
2833 	 * Clean out dangling defered-zap ncps which could not be cleanly
2834 	 * dropped if too many build up.  Note that numdefered is
2835 	 * heuristical.  Make sure we are real-time for the current cpu,
2836 	 * plus the global rollup.
2837 	 */
2838 	if (pcpu_ncache[mycpu->gd_cpuid].numdefered + numdefered > neglimit) {
2839 		_cache_cleandefered();
2840 	}
2841 }
2842 
2843 /*
2844  * NEW NAMECACHE LOOKUP API
2845  *
2846  * Lookup an entry in the namecache.  The passed par_nch must be referenced
2847  * and unlocked.  A referenced and locked nchandle with a non-NULL nch.ncp
2848  * is ALWAYS returned, eve if the supplied component is illegal.
2849  *
2850  * The resulting namecache entry should be returned to the system with
2851  * cache_put() or cache_unlock() + cache_drop().
2852  *
2853  * namecache locks are recursive but care must be taken to avoid lock order
2854  * reversals (hence why the passed par_nch must be unlocked).  Locking
2855  * rules are to order for parent traversals, not for child traversals.
2856  *
2857  * Nobody else will be able to manipulate the associated namespace (e.g.
2858  * create, delete, rename, rename-target) until the caller unlocks the
2859  * entry.
2860  *
2861  * The returned entry will be in one of three states:  positive hit (non-null
2862  * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
2863  * Unresolved entries must be resolved through the filesystem to associate the
2864  * vnode and/or determine whether a positive or negative hit has occured.
2865  *
2866  * It is not necessary to lock a directory in order to lock namespace under
2867  * that directory.  In fact, it is explicitly not allowed to do that.  A
2868  * directory is typically only locked when being created, renamed, or
2869  * destroyed.
2870  *
2871  * The directory (par) may be unresolved, in which case any returned child
2872  * will likely also be marked unresolved.  Likely but not guarenteed.  Since
2873  * the filesystem lookup requires a resolved directory vnode the caller is
2874  * responsible for resolving the namecache chain top-down.  This API
2875  * specifically allows whole chains to be created in an unresolved state.
2876  */
2877 struct nchandle
2878 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
2879 {
2880 	struct nchandle nch;
2881 	struct namecache *ncp;
2882 	struct namecache *new_ncp;
2883 	struct namecache *rep_ncp;	/* reuse a destroyed ncp */
2884 	struct nchash_head *nchpp;
2885 	struct mount *mp;
2886 	u_int32_t hash;
2887 	globaldata_t gd;
2888 	int par_locked;
2889 	int use_excl;
2890 
2891 	gd = mycpu;
2892 	mp = par_nch->mount;
2893 	par_locked = 0;
2894 
2895 	/*
2896 	 * This is a good time to call it, no ncp's are locked by
2897 	 * the caller or us.
2898 	 */
2899 	cache_hysteresis(1);
2900 
2901 	/*
2902 	 * Try to locate an existing entry
2903 	 */
2904 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2905 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2906 	new_ncp = NULL;
2907 	use_excl = 0;
2908 	nchpp = NCHHASH(hash);
2909 restart:
2910 	rep_ncp = NULL;
2911 	if (use_excl)
2912 		spin_lock(&nchpp->spin);
2913 	else
2914 		spin_lock_shared(&nchpp->spin);
2915 
2916 	/*
2917 	 * Do a reverse scan to collect any DESTROYED ncps prior to matching
2918 	 * an existing entry.
2919 	 */
2920 	TAILQ_FOREACH_REVERSE(ncp, &nchpp->list, nchash_list, nc_hash) {
2921 		/*
2922 		 * Break out if we find a matching entry.  Note that
2923 		 * UNRESOLVED entries may match, but DESTROYED entries
2924 		 * do not.
2925 		 *
2926 		 * We may be able to reuse DESTROYED entries that we come
2927 		 * across, even if the name does not match, as long as
2928 		 * nc_nlen is correct and the only hold ref is from the nchpp
2929 		 * list itself.
2930 		 */
2931 		if (ncp->nc_parent == par_nch->ncp &&
2932 		    ncp->nc_nlen == nlc->nlc_namelen) {
2933 			if (ncp->nc_flag & NCF_DESTROYED) {
2934 				if (ncp->nc_refs == 1 && rep_ncp == NULL)
2935 					rep_ncp = ncp;
2936 				continue;
2937 			}
2938 			if (bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen))
2939 				continue;
2940 
2941 			/*
2942 			 * Matched ncp
2943 			 */
2944 			_cache_hold(ncp);
2945 			if (rep_ncp)
2946 				_cache_hold(rep_ncp);
2947 
2948 			if (use_excl)
2949 				spin_unlock(&nchpp->spin);
2950 			else
2951 				spin_unlock_shared(&nchpp->spin);
2952 
2953 			if (par_locked) {
2954 				_cache_unlock(par_nch->ncp);
2955 				par_locked = 0;
2956 			}
2957 
2958 			/*
2959 			 * Really try to destroy rep_ncp if encountered.
2960 			 * Various edge cases can build up more than one,
2961 			 * so loop if we succeed.  This isn't perfect, but
2962 			 * we can't afford to have tons of entries build
2963 			 * up on a single nhcpp list due to rename-over
2964 			 * operations.  If that were to happen, the system
2965 			 * would bog down quickly.
2966 			 */
2967 			if (rep_ncp) {
2968 				if (_cache_lock_nonblock(rep_ncp) == 0) {
2969 					if (rep_ncp->nc_flag & NCF_DESTROYED) {
2970 						if (cache_zap(rep_ncp)) {
2971 							_cache_drop(ncp);
2972 							goto restart;
2973 						}
2974 					} else {
2975 						_cache_unlock(rep_ncp);
2976 						_cache_drop(rep_ncp);
2977 					}
2978 				} else {
2979 					_cache_drop(rep_ncp);
2980 				}
2981 			}
2982 
2983 			/*
2984 			 * Continue processing the matched entry
2985 			 */
2986 			if (_cache_lock_special(ncp) == 0) {
2987 				/*
2988 				 * Successfully locked but we must re-test
2989 				 * conditions that might have changed since
2990 				 * we did not have the lock before.
2991 				 */
2992 				if (ncp->nc_parent != par_nch->ncp ||
2993 				    ncp->nc_nlen != nlc->nlc_namelen ||
2994 				    bcmp(ncp->nc_name, nlc->nlc_nameptr,
2995 					 ncp->nc_nlen) ||
2996 				    (ncp->nc_flag & NCF_DESTROYED)) {
2997 					_cache_put(ncp);
2998 					goto restart;
2999 				}
3000 				_cache_auto_unresolve(mp, ncp);
3001 				if (new_ncp) {
3002 					_cache_free(new_ncp);
3003 					new_ncp = NULL; /* safety */
3004 				}
3005 				goto found;
3006 			}
3007 			_cache_get(ncp);	/* cycle the lock to block */
3008 			_cache_put(ncp);
3009 			_cache_drop(ncp);
3010 			goto restart;
3011 		}
3012 	}
3013 
3014 	/*
3015 	 * We failed to locate the entry, try to resurrect a destroyed
3016 	 * entry that we did find that is already correctly linked into
3017 	 * nchpp and the parent.  We must re-test conditions after
3018 	 * successfully locking rep_ncp.
3019 	 *
3020 	 * This case can occur under heavy loads due to not being able
3021 	 * to safely lock the parent in cache_zap().  Nominally a repeated
3022 	 * create/unlink load, but only the namelen needs to match.
3023 	 *
3024 	 * An exclusive lock on the nchpp is required to process this case,
3025 	 * otherwise a race can cause duplicate entries to be created with
3026 	 * one cpu reusing a DESTROYED ncp while another creates a new_ncp.
3027 	 */
3028 	if (rep_ncp && use_excl) {
3029 		if (_cache_lock_nonblock(rep_ncp) == 0) {
3030 			_cache_hold(rep_ncp);
3031 			if (rep_ncp->nc_parent == par_nch->ncp &&
3032 			    rep_ncp->nc_nlen == nlc->nlc_namelen &&
3033 			    (rep_ncp->nc_flag & NCF_DESTROYED) &&
3034 			    rep_ncp->nc_refs == 2) {
3035 				/*
3036 				 * Update nc_name.
3037 				 */
3038 				ncp = rep_ncp;
3039 				bcopy(nlc->nlc_nameptr, ncp->nc_name,
3040 				      nlc->nlc_namelen);
3041 
3042 				/*
3043 				 * This takes some care.  We must clear the
3044 				 * NCF_DESTROYED flag before unlocking the
3045 				 * hash chain so other concurrent searches
3046 				 * do not skip this element.
3047 				 *
3048 				 * We must also unlock the hash chain before
3049 				 * unresolving the ncp to avoid deadlocks.
3050 				 * We hold the lock on the ncp so we can safely
3051 				 * reinitialize nc_flag after that.
3052 				 */
3053 				ncp->nc_flag &= ~NCF_DESTROYED;
3054 				spin_unlock(&nchpp->spin);	/* use_excl */
3055 
3056 				_cache_setunresolved(ncp);
3057 				ncp->nc_flag = NCF_UNRESOLVED;
3058 				ncp->nc_error = ENOTCONN;
3059 				if (par_locked) {
3060 					_cache_unlock(par_nch->ncp);
3061 					par_locked = 0;
3062 				}
3063 				if (new_ncp) {
3064 					_cache_free(new_ncp);
3065 					new_ncp = NULL; /* safety */
3066 				}
3067 				goto found;
3068 			}
3069 			_cache_put(rep_ncp);
3070 		}
3071 	}
3072 
3073 	/*
3074 	 * Otherwise create a new entry and add it to the cache.  The parent
3075 	 * ncp must also be locked so we can link into it.
3076 	 *
3077 	 * We have to relookup after possibly blocking in kmalloc or
3078 	 * when locking par_nch.
3079 	 *
3080 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
3081 	 *	 mount case, in which case nc_name will be NULL.
3082 	 *
3083 	 * NOTE: In the rep_ncp != NULL case we are trying to reuse
3084 	 *	 a DESTROYED entry, but didn't have an exclusive lock.
3085 	 *	 In this situation we do not create a new_ncp.
3086 	 */
3087 	if (new_ncp == NULL) {
3088 		if (use_excl)
3089 			spin_unlock(&nchpp->spin);
3090 		else
3091 			spin_unlock_shared(&nchpp->spin);
3092 		if (rep_ncp == NULL) {
3093 			new_ncp = cache_alloc(nlc->nlc_namelen);
3094 			if (nlc->nlc_namelen) {
3095 				bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
3096 				      nlc->nlc_namelen);
3097 				new_ncp->nc_name[nlc->nlc_namelen] = 0;
3098 			}
3099 		}
3100 		use_excl = 1;
3101 		goto restart;
3102 	}
3103 
3104 	/*
3105 	 * NOTE! The spinlock is held exclusively here because new_ncp
3106 	 *	 is non-NULL.
3107 	 */
3108 	if (par_locked == 0) {
3109 		spin_unlock(&nchpp->spin);
3110 		_cache_lock(par_nch->ncp);
3111 		par_locked = 1;
3112 		goto restart;
3113 	}
3114 
3115 	/*
3116 	 * Link to parent (requires another ref, the one already in new_ncp
3117 	 * is what we wil lreturn).
3118 	 *
3119 	 * WARNING!  We still hold the spinlock.  We have to set the hash
3120 	 *	     table entry atomically.
3121 	 */
3122 	ncp = new_ncp;
3123 	++ncp->nc_refs;
3124 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
3125 	spin_unlock(&nchpp->spin);
3126 	_cache_unlock(par_nch->ncp);
3127 	/* par_locked = 0 - not used */
3128 found:
3129 	/*
3130 	 * stats and namecache size management
3131 	 */
3132 	if (ncp->nc_flag & NCF_UNRESOLVED)
3133 		++gd->gd_nchstats->ncs_miss;
3134 	else if (ncp->nc_vp)
3135 		++gd->gd_nchstats->ncs_goodhits;
3136 	else
3137 		++gd->gd_nchstats->ncs_neghits;
3138 	nch.mount = mp;
3139 	nch.ncp = ncp;
3140 	_cache_mntref(nch.mount);
3141 
3142 	return(nch);
3143 }
3144 
3145 /*
3146  * Attempt to lookup a namecache entry and return with a shared namecache
3147  * lock.  This operates non-blocking.  EWOULDBLOCK is returned if excl is
3148  * set or we are unable to lock.
3149  */
3150 int
3151 cache_nlookup_maybe_shared(struct nchandle *par_nch,
3152 			   struct nlcomponent *nlc,
3153 			   int excl, struct nchandle *res_nch)
3154 {
3155 	struct namecache *ncp;
3156 	struct nchash_head *nchpp;
3157 	struct mount *mp;
3158 	u_int32_t hash;
3159 	globaldata_t gd;
3160 
3161 	/*
3162 	 * If exclusive requested or shared namecache locks are disabled,
3163 	 * return failure.
3164 	 */
3165 	if (ncp_shared_lock_disable || excl)
3166 		return(EWOULDBLOCK);
3167 
3168 	gd = mycpu;
3169 	mp = par_nch->mount;
3170 
3171 	/*
3172 	 * This is a good time to call it, no ncp's are locked by
3173 	 * the caller or us.
3174 	 */
3175 	cache_hysteresis(1);
3176 
3177 	/*
3178 	 * Try to locate an existing entry
3179 	 */
3180 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3181 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3182 	nchpp = NCHHASH(hash);
3183 
3184 	spin_lock_shared(&nchpp->spin);
3185 
3186 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
3187 		/*
3188 		 * Break out if we find a matching entry.  Note that
3189 		 * UNRESOLVED entries may match, but DESTROYED entries
3190 		 * do not.
3191 		 */
3192 		if (ncp->nc_parent == par_nch->ncp &&
3193 		    ncp->nc_nlen == nlc->nlc_namelen &&
3194 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
3195 		    (ncp->nc_flag & NCF_DESTROYED) == 0
3196 		) {
3197 			_cache_hold(ncp);
3198 			spin_unlock_shared(&nchpp->spin);
3199 
3200 			if (_cache_lock_shared_special(ncp) == 0) {
3201 				if (ncp->nc_parent == par_nch->ncp &&
3202 				    ncp->nc_nlen == nlc->nlc_namelen &&
3203 				    bcmp(ncp->nc_name, nlc->nlc_nameptr,
3204 					 ncp->nc_nlen) == 0 &&
3205 				    (ncp->nc_flag & NCF_DESTROYED) == 0 &&
3206 				    (ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
3207 				    _cache_auto_unresolve_test(mp, ncp) == 0) {
3208 					goto found;
3209 				}
3210 				_cache_unlock(ncp);
3211 			}
3212 			_cache_drop(ncp);
3213 			return(EWOULDBLOCK);
3214 		}
3215 	}
3216 
3217 	/*
3218 	 * Failure
3219 	 */
3220 	spin_unlock_shared(&nchpp->spin);
3221 	return(EWOULDBLOCK);
3222 
3223 	/*
3224 	 * Success
3225 	 *
3226 	 * Note that nc_error might be non-zero (e.g ENOENT).
3227 	 */
3228 found:
3229 	res_nch->mount = mp;
3230 	res_nch->ncp = ncp;
3231 	++gd->gd_nchstats->ncs_goodhits;
3232 	_cache_mntref(res_nch->mount);
3233 
3234 	KKASSERT(ncp->nc_error != EWOULDBLOCK);
3235 	return(ncp->nc_error);
3236 }
3237 
3238 /*
3239  * This is a non-blocking verison of cache_nlookup() used by
3240  * nfs_readdirplusrpc_uio().  It can fail for any reason and
3241  * will return nch.ncp == NULL in that case.
3242  */
3243 struct nchandle
3244 cache_nlookup_nonblock(struct nchandle *par_nch, struct nlcomponent *nlc)
3245 {
3246 	struct nchandle nch;
3247 	struct namecache *ncp;
3248 	struct namecache *new_ncp;
3249 	struct nchash_head *nchpp;
3250 	struct mount *mp;
3251 	u_int32_t hash;
3252 	globaldata_t gd;
3253 	int par_locked;
3254 
3255 	gd = mycpu;
3256 	mp = par_nch->mount;
3257 	par_locked = 0;
3258 
3259 	/*
3260 	 * Try to locate an existing entry
3261 	 */
3262 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3263 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3264 	new_ncp = NULL;
3265 	nchpp = NCHHASH(hash);
3266 restart:
3267 	spin_lock(&nchpp->spin);
3268 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
3269 		/*
3270 		 * Break out if we find a matching entry.  Note that
3271 		 * UNRESOLVED entries may match, but DESTROYED entries
3272 		 * do not.
3273 		 */
3274 		if (ncp->nc_parent == par_nch->ncp &&
3275 		    ncp->nc_nlen == nlc->nlc_namelen &&
3276 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
3277 		    (ncp->nc_flag & NCF_DESTROYED) == 0
3278 		) {
3279 			_cache_hold(ncp);
3280 			spin_unlock(&nchpp->spin);
3281 			if (par_locked) {
3282 				_cache_unlock(par_nch->ncp);
3283 				par_locked = 0;
3284 			}
3285 			if (_cache_lock_special(ncp) == 0) {
3286 				if (ncp->nc_parent != par_nch->ncp ||
3287 				    ncp->nc_nlen != nlc->nlc_namelen ||
3288 				    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) ||
3289 				    (ncp->nc_flag & NCF_DESTROYED)) {
3290 					kprintf("cache_lookup_nonblock: "
3291 						"ncp-race %p %*.*s\n",
3292 						ncp,
3293 						nlc->nlc_namelen,
3294 						nlc->nlc_namelen,
3295 						nlc->nlc_nameptr);
3296 					_cache_unlock(ncp);
3297 					_cache_drop(ncp);
3298 					goto failed;
3299 				}
3300 				_cache_auto_unresolve(mp, ncp);
3301 				if (new_ncp) {
3302 					_cache_free(new_ncp);
3303 					new_ncp = NULL;
3304 				}
3305 				goto found;
3306 			}
3307 			_cache_drop(ncp);
3308 			goto failed;
3309 		}
3310 	}
3311 
3312 	/*
3313 	 * We failed to locate an entry, create a new entry and add it to
3314 	 * the cache.  The parent ncp must also be locked so we
3315 	 * can link into it.
3316 	 *
3317 	 * We have to relookup after possibly blocking in kmalloc or
3318 	 * when locking par_nch.
3319 	 *
3320 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
3321 	 *	 mount case, in which case nc_name will be NULL.
3322 	 */
3323 	if (new_ncp == NULL) {
3324 		spin_unlock(&nchpp->spin);
3325 		new_ncp = cache_alloc(nlc->nlc_namelen);
3326 		if (nlc->nlc_namelen) {
3327 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
3328 			      nlc->nlc_namelen);
3329 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
3330 		}
3331 		goto restart;
3332 	}
3333 	if (par_locked == 0) {
3334 		spin_unlock(&nchpp->spin);
3335 		if (_cache_lock_nonblock(par_nch->ncp) == 0) {
3336 			par_locked = 1;
3337 			goto restart;
3338 		}
3339 		goto failed;
3340 	}
3341 
3342 	/*
3343 	 * Link to parent (requires another ref, the one already in new_ncp
3344 	 * is what we wil lreturn).
3345 	 *
3346 	 * WARNING!  We still hold the spinlock.  We have to set the hash
3347 	 *	     table entry atomically.
3348 	 */
3349 	ncp = new_ncp;
3350 	++ncp->nc_refs;
3351 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
3352 	spin_unlock(&nchpp->spin);
3353 	_cache_unlock(par_nch->ncp);
3354 	/* par_locked = 0 - not used */
3355 found:
3356 	/*
3357 	 * stats and namecache size management
3358 	 */
3359 	if (ncp->nc_flag & NCF_UNRESOLVED)
3360 		++gd->gd_nchstats->ncs_miss;
3361 	else if (ncp->nc_vp)
3362 		++gd->gd_nchstats->ncs_goodhits;
3363 	else
3364 		++gd->gd_nchstats->ncs_neghits;
3365 	nch.mount = mp;
3366 	nch.ncp = ncp;
3367 	_cache_mntref(nch.mount);
3368 
3369 	return(nch);
3370 failed:
3371 	if (new_ncp) {
3372 		_cache_free(new_ncp);
3373 		new_ncp = NULL;
3374 	}
3375 	nch.mount = NULL;
3376 	nch.ncp = NULL;
3377 	return(nch);
3378 }
3379 
3380 /*
3381  * This version is non-locking.  The caller must validate the result
3382  * for parent-to-child continuity.
3383  *
3384  * It can fail for any reason and will return nch.ncp == NULL in that case.
3385  */
3386 struct nchandle
3387 cache_nlookup_nonlocked(struct nchandle *par_nch, struct nlcomponent *nlc)
3388 {
3389 	struct nchandle nch;
3390 	struct namecache *ncp;
3391 	struct nchash_head *nchpp;
3392 	struct mount *mp;
3393 	u_int32_t hash;
3394 	globaldata_t gd;
3395 
3396 	gd = mycpu;
3397 	mp = par_nch->mount;
3398 
3399 	/*
3400 	 * Try to locate an existing entry
3401 	 */
3402 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3403 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3404 	nchpp = NCHHASH(hash);
3405 
3406 	spin_lock_shared(&nchpp->spin);
3407 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
3408 		/*
3409 		 * Break out if we find a matching entry.  Note that
3410 		 * UNRESOLVED entries may match, but DESTROYED entries
3411 		 * do not.
3412 		 *
3413 		 * Resolved NFS entries which have timed out fail so the
3414 		 * caller can rerun with normal locking.
3415 		 */
3416 		if (ncp->nc_parent == par_nch->ncp &&
3417 		    ncp->nc_nlen == nlc->nlc_namelen &&
3418 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
3419 		    (ncp->nc_flag & NCF_DESTROYED) == 0
3420 		) {
3421 			if (_cache_auto_unresolve_test(par_nch->mount, ncp))
3422 				break;
3423 			_cache_hold(ncp);
3424 			spin_unlock_shared(&nchpp->spin);
3425 			goto found;
3426 		}
3427 	}
3428 	spin_unlock_shared(&nchpp->spin);
3429 	nch.mount = NULL;
3430 	nch.ncp = NULL;
3431 	return nch;
3432 found:
3433 	/*
3434 	 * stats and namecache size management
3435 	 */
3436 	if (ncp->nc_flag & NCF_UNRESOLVED)
3437 		++gd->gd_nchstats->ncs_miss;
3438 	else if (ncp->nc_vp)
3439 		++gd->gd_nchstats->ncs_goodhits;
3440 	else
3441 		++gd->gd_nchstats->ncs_neghits;
3442 	nch.mount = mp;
3443 	nch.ncp = ncp;
3444 	_cache_mntref(nch.mount);
3445 
3446 	return(nch);
3447 }
3448 
3449 /*
3450  * The namecache entry is marked as being used as a mount point.
3451  * Locate the mount if it is visible to the caller.  The DragonFly
3452  * mount system allows arbitrary loops in the topology and disentangles
3453  * those loops by matching against (mp, ncp) rather than just (ncp).
3454  * This means any given ncp can dive any number of mounts, depending
3455  * on the relative mount (e.g. nullfs) the caller is at in the topology.
3456  *
3457  * We use a very simple frontend cache to reduce SMP conflicts,
3458  * which we have to do because the mountlist scan needs an exclusive
3459  * lock around its ripout info list.  Not to mention that there might
3460  * be a lot of mounts.
3461  *
3462  * Because all mounts can potentially be accessed by all cpus, break the cpu's
3463  * down a bit to allow some contention rather than making the cache
3464  * excessively huge.
3465  *
3466  * The hash table is split into per-cpu areas, is 4-way set-associative.
3467  */
3468 struct findmount_info {
3469 	struct mount *result;
3470 	struct mount *nch_mount;
3471 	struct namecache *nch_ncp;
3472 };
3473 
3474 static __inline
3475 struct ncmount_cache *
3476 ncmount_cache_lookup4(struct mount *mp, struct namecache *ncp)
3477 {
3478 	uint32_t hash;
3479 
3480 	hash = iscsi_crc32(&mp, sizeof(mp));
3481 	hash = iscsi_crc32_ext(&ncp, sizeof(ncp), hash);
3482 	hash ^= hash >> 16;
3483 	hash = hash & ((NCMOUNT_NUMCACHE - 1) & ~(NCMOUNT_SET - 1));
3484 
3485 	return (&ncmount_cache[hash]);
3486 }
3487 
3488 static
3489 struct ncmount_cache *
3490 ncmount_cache_lookup(struct mount *mp, struct namecache *ncp)
3491 {
3492 	struct ncmount_cache *ncc;
3493 	struct ncmount_cache *best;
3494 	int delta;
3495 	int best_delta;
3496 	int i;
3497 
3498 	ncc = ncmount_cache_lookup4(mp, ncp);
3499 
3500 	/*
3501 	 * NOTE: When checking for a ticks overflow implement a slop of
3502 	 *	 2 ticks just to be safe, because ticks is accessed
3503 	 *	 non-atomically one CPU can increment it while another
3504 	 *	 is still using the old value.
3505 	 */
3506 	if (ncc->ncp == ncp && ncc->mp == mp)	/* 0 */
3507 		return ncc;
3508 	delta = (int)(ticks - ncc->ticks);	/* beware GCC opts */
3509 	if (delta < -2)				/* overflow reset */
3510 		ncc->ticks = ticks;
3511 	best = ncc;
3512 	best_delta = delta;
3513 
3514 	for (i = 1; i < NCMOUNT_SET; ++i) {	/* 1, 2, 3 */
3515 		++ncc;
3516 		if (ncc->ncp == ncp && ncc->mp == mp)
3517 			return ncc;
3518 		delta = (int)(ticks - ncc->ticks);
3519 		if (delta < -2)
3520 			ncc->ticks = ticks;
3521 		if (delta > best_delta) {
3522 			best_delta = delta;
3523 			best = ncc;
3524 		}
3525 	}
3526 	return best;
3527 }
3528 
3529 /*
3530  * pcpu-optimized mount search.  Locate the recursive mountpoint, avoid
3531  * doing an expensive mountlist_scan*() if possible.
3532  *
3533  * (mp, ncp) -> mountonpt.k
3534  *
3535  * Returns a referenced mount pointer or NULL
3536  *
3537  * General SMP operation uses a per-cpu umount_spin to interlock unmount
3538  * operations (that is, where the mp_target can be freed out from under us).
3539  *
3540  * Lookups use the ncc->updating counter to validate the contents in order
3541  * to avoid having to obtain the per cache-element spin-lock.  In addition,
3542  * the ticks field is only updated when it changes.  However, if our per-cpu
3543  * lock fails due to an unmount-in-progress, we fall-back to the
3544  * cache-element's spin-lock.
3545  */
3546 struct mount *
3547 cache_findmount(struct nchandle *nch)
3548 {
3549 	struct findmount_info info;
3550 	struct ncmount_cache *ncc;
3551 	struct ncmount_cache ncc_copy;
3552 	struct mount *target;
3553 	struct pcpu_ncache *pcpu;
3554 	struct spinlock *spinlk;
3555 	int update;
3556 
3557 	pcpu = pcpu_ncache;
3558 	if (ncmount_cache_enable == 0 || pcpu == NULL) {
3559 		ncc = NULL;
3560 		goto skip;
3561 	}
3562 	pcpu += mycpu->gd_cpuid;
3563 
3564 again:
3565 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3566 	if (ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3567 found:
3568 		/*
3569 		 * This is a bit messy for now because we do not yet have
3570 		 * safe disposal of mount structures.  We have to ref
3571 		 * ncc->mp_target but the 'update' counter only tell us
3572 		 * whether the cache has changed after the fact.
3573 		 *
3574 		 * For now get a per-cpu spinlock that will only contend
3575 		 * against umount's.  This is the best path.  If it fails,
3576 		 * instead of waiting on the umount we fall-back to a
3577 		 * shared ncc->spin lock, which will generally only cost a
3578 		 * cache ping-pong.
3579 		 */
3580 		update = ncc->updating;
3581 		if (__predict_true(spin_trylock(&pcpu->umount_spin))) {
3582 			spinlk = &pcpu->umount_spin;
3583 		} else {
3584 			spinlk = &ncc->spin;
3585 			spin_lock_shared(spinlk);
3586 		}
3587 		if (update & 1) {		/* update in progress */
3588 			spin_unlock_any(spinlk);
3589 			goto skip;
3590 		}
3591 		ncc_copy = *ncc;
3592 		cpu_lfence();
3593 		if (ncc->updating != update) {	/* content changed */
3594 			spin_unlock_any(spinlk);
3595 			goto again;
3596 		}
3597 		if (ncc_copy.ncp != nch->ncp || ncc_copy.mp != nch->mount) {
3598 			spin_unlock_any(spinlk);
3599 			goto again;
3600 		}
3601 		if (ncc_copy.isneg == 0) {
3602 			target = ncc_copy.mp_target;
3603 			if (target->mnt_ncmounton.mount == nch->mount &&
3604 			    target->mnt_ncmounton.ncp == nch->ncp) {
3605 				/*
3606 				 * Cache hit (positive) (avoid dirtying
3607 				 * the cache line if possible)
3608 				 */
3609 				if (ncc->ticks != (int)ticks)
3610 					ncc->ticks = (int)ticks;
3611 				_cache_mntref(target);
3612 			}
3613 		} else {
3614 			/*
3615 			 * Cache hit (negative) (avoid dirtying
3616 			 * the cache line if possible)
3617 			 */
3618 			if (ncc->ticks != (int)ticks)
3619 				ncc->ticks = (int)ticks;
3620 			target = NULL;
3621 		}
3622 		spin_unlock_any(spinlk);
3623 
3624 		return target;
3625 	}
3626 skip:
3627 
3628 	/*
3629 	 * Slow
3630 	 */
3631 	info.result = NULL;
3632 	info.nch_mount = nch->mount;
3633 	info.nch_ncp = nch->ncp;
3634 	mountlist_scan(cache_findmount_callback, &info,
3635 		       MNTSCAN_FORWARD | MNTSCAN_NOBUSY | MNTSCAN_NOUNLOCK);
3636 
3637 	/*
3638 	 * To reduce multi-re-entry on the cache, relookup in the cache.
3639 	 * This can still race, obviously, but that's ok.
3640 	 */
3641 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3642 	if (ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3643 		if (info.result)
3644 			atomic_add_int(&info.result->mnt_refs, -1);
3645 		goto found;
3646 	}
3647 
3648 	/*
3649 	 * Cache the result.
3650 	 */
3651 	if ((info.result == NULL ||
3652 	    (info.result->mnt_kern_flag & MNTK_UNMOUNT) == 0)) {
3653 		spin_lock(&ncc->spin);
3654 		atomic_add_int_nonlocked(&ncc->updating, 1);
3655 		cpu_sfence();
3656 		KKASSERT(ncc->updating & 1);
3657 		if (ncc->mp != nch->mount) {
3658 			if (ncc->mp)
3659 				atomic_add_int(&ncc->mp->mnt_refs, -1);
3660 			atomic_add_int(&nch->mount->mnt_refs, 1);
3661 			ncc->mp = nch->mount;
3662 		}
3663 		ncc->ncp = nch->ncp;	/* ptr compares only, not refd*/
3664 		ncc->ticks = (int)ticks;
3665 
3666 		if (info.result) {
3667 			ncc->isneg = 0;
3668 			if (ncc->mp_target != info.result) {
3669 				if (ncc->mp_target)
3670 					atomic_add_int(&ncc->mp_target->mnt_refs, -1);
3671 				ncc->mp_target = info.result;
3672 				atomic_add_int(&info.result->mnt_refs, 1);
3673 			}
3674 		} else {
3675 			ncc->isneg = 1;
3676 			if (ncc->mp_target) {
3677 				atomic_add_int(&ncc->mp_target->mnt_refs, -1);
3678 				ncc->mp_target = NULL;
3679 			}
3680 		}
3681 		cpu_sfence();
3682 		atomic_add_int_nonlocked(&ncc->updating, 1);
3683 		spin_unlock(&ncc->spin);
3684 	}
3685 	return(info.result);
3686 }
3687 
3688 static
3689 int
3690 cache_findmount_callback(struct mount *mp, void *data)
3691 {
3692 	struct findmount_info *info = data;
3693 
3694 	/*
3695 	 * Check the mount's mounted-on point against the passed nch.
3696 	 */
3697 	if (mp->mnt_ncmounton.mount == info->nch_mount &&
3698 	    mp->mnt_ncmounton.ncp == info->nch_ncp
3699 	) {
3700 	    info->result = mp;
3701 	    _cache_mntref(mp);
3702 	    return(-1);
3703 	}
3704 	return(0);
3705 }
3706 
3707 void
3708 cache_dropmount(struct mount *mp)
3709 {
3710 	_cache_mntrel(mp);
3711 }
3712 
3713 /*
3714  * mp is being mounted, scrap entries matching mp->mnt_ncmounton (positive
3715  * or negative).
3716  *
3717  * A full scan is not required, but for now just do it anyway.
3718  */
3719 void
3720 cache_ismounting(struct mount *mp)
3721 {
3722 	struct ncmount_cache *ncc;
3723 	struct mount *ncc_mp;
3724 	int i;
3725 
3726 	if (pcpu_ncache == NULL)
3727 		return;
3728 
3729 	for (i = 0; i < NCMOUNT_NUMCACHE; ++i) {
3730 		ncc = &ncmount_cache[i];
3731 		if (ncc->mp != mp->mnt_ncmounton.mount ||
3732 		    ncc->ncp != mp->mnt_ncmounton.ncp) {
3733 			continue;
3734 		}
3735 		spin_lock(&ncc->spin);
3736 		atomic_add_int_nonlocked(&ncc->updating, 1);
3737 		cpu_sfence();
3738 		KKASSERT(ncc->updating & 1);
3739 		if (ncc->mp != mp->mnt_ncmounton.mount ||
3740 		    ncc->ncp != mp->mnt_ncmounton.ncp) {
3741 			cpu_sfence();
3742 			++ncc->updating;
3743 			spin_unlock(&ncc->spin);
3744 			continue;
3745 		}
3746 		ncc_mp = ncc->mp;
3747 		ncc->ncp = NULL;
3748 		ncc->mp = NULL;
3749 		if (ncc_mp)
3750 			atomic_add_int(&ncc_mp->mnt_refs, -1);
3751 		ncc_mp = ncc->mp_target;
3752 		ncc->mp_target = NULL;
3753 		if (ncc_mp)
3754 			atomic_add_int(&ncc_mp->mnt_refs, -1);
3755 		ncc->ticks = (int)ticks - hz * 120;
3756 
3757 		cpu_sfence();
3758 		atomic_add_int_nonlocked(&ncc->updating, 1);
3759 		spin_unlock(&ncc->spin);
3760 	}
3761 
3762 	/*
3763 	 * Pre-cache the mount point
3764 	 */
3765 	ncc = ncmount_cache_lookup(mp->mnt_ncmounton.mount,
3766 				   mp->mnt_ncmounton.ncp);
3767 
3768 	spin_lock(&ncc->spin);
3769 	atomic_add_int_nonlocked(&ncc->updating, 1);
3770 	cpu_sfence();
3771 	KKASSERT(ncc->updating & 1);
3772 
3773 	if (ncc->mp)
3774 		atomic_add_int(&ncc->mp->mnt_refs, -1);
3775 	atomic_add_int(&mp->mnt_ncmounton.mount->mnt_refs, 1);
3776 	ncc->mp = mp->mnt_ncmounton.mount;
3777 	ncc->ncp = mp->mnt_ncmounton.ncp;	/* ptr compares only */
3778 	ncc->ticks = (int)ticks;
3779 
3780 	ncc->isneg = 0;
3781 	if (ncc->mp_target != mp) {
3782 		if (ncc->mp_target)
3783 			atomic_add_int(&ncc->mp_target->mnt_refs, -1);
3784 		ncc->mp_target = mp;
3785 		atomic_add_int(&mp->mnt_refs, 1);
3786 	}
3787 	cpu_sfence();
3788 	atomic_add_int_nonlocked(&ncc->updating, 1);
3789 	spin_unlock(&ncc->spin);
3790 }
3791 
3792 /*
3793  * Scrap any ncmount_cache entries related to mp.  Not only do we need to
3794  * scrap entries matching mp->mnt_ncmounton, but we also need to scrap any
3795  * negative hits involving (mp, <any>).
3796  *
3797  * A full scan is required.
3798  */
3799 void
3800 cache_unmounting(struct mount *mp)
3801 {
3802 	struct ncmount_cache *ncc;
3803 	struct pcpu_ncache *pcpu;
3804 	struct mount *ncc_mp;
3805 	int i;
3806 
3807 	pcpu = pcpu_ncache;
3808 	if (pcpu == NULL)
3809 		return;
3810 
3811 	for (i = 0; i < ncpus; ++i)
3812 		spin_lock(&pcpu[i].umount_spin);
3813 
3814 	for (i = 0; i < NCMOUNT_NUMCACHE; ++i) {
3815 		ncc = &ncmount_cache[i];
3816 		if (ncc->mp != mp && ncc->mp_target != mp)
3817 			continue;
3818 		spin_lock(&ncc->spin);
3819 		atomic_add_int_nonlocked(&ncc->updating, 1);
3820 		cpu_sfence();
3821 
3822 		if (ncc->mp != mp && ncc->mp_target != mp) {
3823 			atomic_add_int_nonlocked(&ncc->updating, 1);
3824 			cpu_sfence();
3825 			spin_unlock(&ncc->spin);
3826 			continue;
3827 		}
3828 		ncc_mp = ncc->mp;
3829 		ncc->ncp = NULL;
3830 		ncc->mp = NULL;
3831 		if (ncc_mp)
3832 			atomic_add_int(&ncc_mp->mnt_refs, -1);
3833 		ncc_mp = ncc->mp_target;
3834 		ncc->mp_target = NULL;
3835 		if (ncc_mp)
3836 			atomic_add_int(&ncc_mp->mnt_refs, -1);
3837 		ncc->ticks = (int)ticks - hz * 120;
3838 
3839 		cpu_sfence();
3840 		atomic_add_int_nonlocked(&ncc->updating, 1);
3841 		spin_unlock(&ncc->spin);
3842 	}
3843 
3844 	for (i = 0; i < ncpus; ++i)
3845 		spin_unlock(&pcpu[i].umount_spin);
3846 }
3847 
3848 /*
3849  * Resolve an unresolved namecache entry, generally by looking it up.
3850  * The passed ncp must be locked and refd.
3851  *
3852  * Theoretically since a vnode cannot be recycled while held, and since
3853  * the nc_parent chain holds its vnode as long as children exist, the
3854  * direct parent of the cache entry we are trying to resolve should
3855  * have a valid vnode.  If not then generate an error that we can
3856  * determine is related to a resolver bug.
3857  *
3858  * However, if a vnode was in the middle of a recyclement when the NCP
3859  * got locked, ncp->nc_vp might point to a vnode that is about to become
3860  * invalid.  cache_resolve() handles this case by unresolving the entry
3861  * and then re-resolving it.
3862  *
3863  * Note that successful resolution does not necessarily return an error
3864  * code of 0.  If the ncp resolves to a negative cache hit then ENOENT
3865  * will be returned.
3866  */
3867 int
3868 cache_resolve(struct nchandle *nch, struct ucred *cred)
3869 {
3870 	struct namecache *par_tmp;
3871 	struct namecache *par;
3872 	struct namecache *ncp;
3873 	struct nchandle nctmp;
3874 	struct mount *mp;
3875 	struct vnode *dvp;
3876 	int error;
3877 
3878 	ncp = nch->ncp;
3879 	mp = nch->mount;
3880 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
3881 restart:
3882 	/*
3883 	 * If the ncp is already resolved we have nothing to do.  However,
3884 	 * we do want to guarentee that a usable vnode is returned when
3885 	 * a vnode is present, so make sure it hasn't been reclaimed.
3886 	 */
3887 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3888 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
3889 			_cache_setunresolved(ncp);
3890 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
3891 			return (ncp->nc_error);
3892 	}
3893 
3894 	/*
3895 	 * If the ncp was destroyed it will never resolve again.  This
3896 	 * can basically only happen when someone is chdir'd into an
3897 	 * empty directory which is then rmdir'd.  We want to catch this
3898 	 * here and not dive the VFS because the VFS might actually
3899 	 * have a way to re-resolve the disconnected ncp, which will
3900 	 * result in inconsistencies in the cdir/nch for proc->p_fd.
3901 	 */
3902 	if (ncp->nc_flag & NCF_DESTROYED)
3903 		return(EINVAL);
3904 
3905 	/*
3906 	 * Mount points need special handling because the parent does not
3907 	 * belong to the same filesystem as the ncp.
3908 	 */
3909 	if (ncp == mp->mnt_ncmountpt.ncp)
3910 		return (cache_resolve_mp(mp));
3911 
3912 	/*
3913 	 * We expect an unbroken chain of ncps to at least the mount point,
3914 	 * and even all the way to root (but this code doesn't have to go
3915 	 * past the mount point).
3916 	 */
3917 	if (ncp->nc_parent == NULL) {
3918 		kprintf("EXDEV case 1 %p %*.*s\n", ncp,
3919 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
3920 		ncp->nc_error = EXDEV;
3921 		return(ncp->nc_error);
3922 	}
3923 
3924 	/*
3925 	 * The vp's of the parent directories in the chain are held via vhold()
3926 	 * due to the existance of the child, and should not disappear.
3927 	 * However, there are cases where they can disappear:
3928 	 *
3929 	 *	- due to filesystem I/O errors.
3930 	 *	- due to NFS being stupid about tracking the namespace and
3931 	 *	  destroys the namespace for entire directories quite often.
3932 	 *	- due to forced unmounts.
3933 	 *	- due to an rmdir (parent will be marked DESTROYED)
3934 	 *
3935 	 * When this occurs we have to track the chain backwards and resolve
3936 	 * it, looping until the resolver catches up to the current node.  We
3937 	 * could recurse here but we might run ourselves out of kernel stack
3938 	 * so we do it in a more painful manner.  This situation really should
3939 	 * not occur all that often, or if it does not have to go back too
3940 	 * many nodes to resolve the ncp.
3941 	 */
3942 	while ((dvp = cache_dvpref(ncp)) == NULL) {
3943 		/*
3944 		 * This case can occur if a process is CD'd into a
3945 		 * directory which is then rmdir'd.  If the parent is marked
3946 		 * destroyed there is no point trying to resolve it.
3947 		 */
3948 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
3949 			return(ENOENT);
3950 		par = ncp->nc_parent;
3951 		_cache_hold(par);
3952 		_cache_lock(par);
3953 		while ((par_tmp = par->nc_parent) != NULL &&
3954 		       par_tmp->nc_vp == NULL) {
3955 			_cache_hold(par_tmp);
3956 			_cache_lock(par_tmp);
3957 			_cache_put(par);
3958 			par = par_tmp;
3959 		}
3960 		if (par->nc_parent == NULL) {
3961 			kprintf("EXDEV case 2 %*.*s\n",
3962 				par->nc_nlen, par->nc_nlen, par->nc_name);
3963 			_cache_put(par);
3964 			return (EXDEV);
3965 		}
3966 		/*
3967 		 * The parent is not set in stone, ref and lock it to prevent
3968 		 * it from disappearing.  Also note that due to renames it
3969 		 * is possible for our ncp to move and for par to no longer
3970 		 * be one of its parents.  We resolve it anyway, the loop
3971 		 * will handle any moves.
3972 		 */
3973 		_cache_get(par);	/* additional hold/lock */
3974 		_cache_put(par);	/* from earlier hold/lock */
3975 		if (par == nch->mount->mnt_ncmountpt.ncp) {
3976 			cache_resolve_mp(nch->mount);
3977 		} else if ((dvp = cache_dvpref(par)) == NULL) {
3978 			kprintf("[diagnostic] cache_resolve: raced on %*.*s\n",
3979 				par->nc_nlen, par->nc_nlen, par->nc_name);
3980 			_cache_put(par);
3981 			continue;
3982 		} else {
3983 			if (par->nc_flag & NCF_UNRESOLVED) {
3984 				nctmp.mount = mp;
3985 				nctmp.ncp = par;
3986 				par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
3987 			}
3988 			vrele(dvp);
3989 		}
3990 		if ((error = par->nc_error) != 0) {
3991 			if (par->nc_error != EAGAIN) {
3992 				kprintf("EXDEV case 3 %*.*s error %d\n",
3993 				    par->nc_nlen, par->nc_nlen, par->nc_name,
3994 				    par->nc_error);
3995 				_cache_put(par);
3996 				return(error);
3997 			}
3998 			kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
3999 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
4000 		}
4001 		_cache_put(par);
4002 		/* loop */
4003 	}
4004 
4005 	/*
4006 	 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
4007 	 * ncp's and reattach them.  If this occurs the original ncp is marked
4008 	 * EAGAIN to force a relookup.
4009 	 *
4010 	 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
4011 	 * ncp must already be resolved.
4012 	 */
4013 	if (dvp) {
4014 		nctmp.mount = mp;
4015 		nctmp.ncp = ncp;
4016 		ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
4017 		vrele(dvp);
4018 	} else {
4019 		ncp->nc_error = EPERM;
4020 	}
4021 	if (ncp->nc_error == EAGAIN) {
4022 		kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
4023 			ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
4024 		goto restart;
4025 	}
4026 	return(ncp->nc_error);
4027 }
4028 
4029 /*
4030  * Resolve the ncp associated with a mount point.  Such ncp's almost always
4031  * remain resolved and this routine is rarely called.  NFS MPs tends to force
4032  * re-resolution more often due to its mac-truck-smash-the-namecache
4033  * method of tracking namespace changes.
4034  *
4035  * The semantics for this call is that the passed ncp must be locked on
4036  * entry and will be locked on return.  However, if we actually have to
4037  * resolve the mount point we temporarily unlock the entry in order to
4038  * avoid race-to-root deadlocks due to e.g. dead NFS mounts.  Because of
4039  * the unlock we have to recheck the flags after we relock.
4040  */
4041 static int
4042 cache_resolve_mp(struct mount *mp)
4043 {
4044 	struct namecache *ncp = mp->mnt_ncmountpt.ncp;
4045 	struct vnode *vp;
4046 	int error;
4047 
4048 	KKASSERT(mp != NULL);
4049 
4050 	/*
4051 	 * If the ncp is already resolved we have nothing to do.  However,
4052 	 * we do want to guarentee that a usable vnode is returned when
4053 	 * a vnode is present, so make sure it hasn't been reclaimed.
4054 	 */
4055 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
4056 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
4057 			_cache_setunresolved(ncp);
4058 	}
4059 
4060 	if (ncp->nc_flag & NCF_UNRESOLVED) {
4061 		_cache_unlock(ncp);
4062 		while (vfs_busy(mp, 0))
4063 			;
4064 		error = VFS_ROOT(mp, &vp);
4065 		_cache_lock(ncp);
4066 
4067 		/*
4068 		 * recheck the ncp state after relocking.
4069 		 */
4070 		if (ncp->nc_flag & NCF_UNRESOLVED) {
4071 			ncp->nc_error = error;
4072 			if (error == 0) {
4073 				_cache_setvp(mp, ncp, vp);
4074 				vput(vp);
4075 			} else {
4076 				kprintf("[diagnostic] cache_resolve_mp: failed"
4077 					" to resolve mount %p err=%d ncp=%p\n",
4078 					mp, error, ncp);
4079 				_cache_setvp(mp, ncp, NULL);
4080 			}
4081 		} else if (error == 0) {
4082 			vput(vp);
4083 		}
4084 		vfs_unbusy(mp);
4085 	}
4086 	return(ncp->nc_error);
4087 }
4088 
4089 /*
4090  * Resolve the parent vnode
4091  */
4092 int
4093 cache_resolve_dvp(struct nchandle *nch, struct ucred *cred, struct vnode **dvpp)
4094 {
4095 	struct namecache *par_tmp;
4096 	struct namecache *par;
4097 	struct namecache *ncp;
4098 	struct nchandle nctmp;
4099 	struct mount *mp;
4100 	struct vnode *dvp;
4101 	int error;
4102 
4103 	*dvpp = NULL;
4104 	ncp = nch->ncp;
4105 	mp = nch->mount;
4106 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
4107 
4108 	/*
4109 	 * Treat this as a mount point even if it has a parent (e.g.
4110 	 * null-mount).  Return a NULL dvp and no error.
4111 	 */
4112 	if (ncp == mp->mnt_ncmountpt.ncp)
4113 		return 0;
4114 
4115 	/*
4116 	 * If the ncp was destroyed there is no parent directory, return
4117 	 * EINVAL.
4118 	 */
4119 	if (ncp->nc_flag & NCF_DESTROYED)
4120 		return(EINVAL);
4121 
4122 	/*
4123 	 * No parent if at the root of a filesystem, no error.  Typically
4124 	 * not applicable to null-mounts.  This case should have been caught
4125 	 * in the above ncmountpt check.
4126 	 */
4127 	if (ncp->nc_parent == NULL)
4128 		return 0;
4129 
4130 	/*
4131 	 * Resolve the parent dvp.
4132 	 *
4133 	 * The vp's of the parent directories in the chain are held via vhold()
4134 	 * due to the existance of the child, and should not disappear.
4135 	 * However, there are cases where they can disappear:
4136 	 *
4137 	 *	- due to filesystem I/O errors.
4138 	 *	- due to NFS being stupid about tracking the namespace and
4139 	 *	  destroys the namespace for entire directories quite often.
4140 	 *	- due to forced unmounts.
4141 	 *	- due to an rmdir (parent will be marked DESTROYED)
4142 	 *
4143 	 * When this occurs we have to track the chain backwards and resolve
4144 	 * it, looping until the resolver catches up to the current node.  We
4145 	 * could recurse here but we might run ourselves out of kernel stack
4146 	 * so we do it in a more painful manner.  This situation really should
4147 	 * not occur all that often, or if it does not have to go back too
4148 	 * many nodes to resolve the ncp.
4149 	 */
4150 	while ((dvp = cache_dvpref(ncp)) == NULL) {
4151 		/*
4152 		 * This case can occur if a process is CD'd into a
4153 		 * directory which is then rmdir'd.  If the parent is marked
4154 		 * destroyed there is no point trying to resolve it.
4155 		 */
4156 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
4157 			return(ENOENT);
4158 		par = ncp->nc_parent;
4159 		_cache_hold(par);
4160 		_cache_lock(par);
4161 		while ((par_tmp = par->nc_parent) != NULL &&
4162 		       par_tmp->nc_vp == NULL) {
4163 			_cache_hold(par_tmp);
4164 			_cache_lock(par_tmp);
4165 			_cache_put(par);
4166 			par = par_tmp;
4167 		}
4168 		if (par->nc_parent == NULL) {
4169 			kprintf("EXDEV case 2 %*.*s\n",
4170 				par->nc_nlen, par->nc_nlen, par->nc_name);
4171 			_cache_put(par);
4172 			return (EXDEV);
4173 		}
4174 
4175 		/*
4176 		 * The parent is not set in stone, ref and lock it to prevent
4177 		 * it from disappearing.  Also note that due to renames it
4178 		 * is possible for our ncp to move and for par to no longer
4179 		 * be one of its parents.  We resolve it anyway, the loop
4180 		 * will handle any moves.
4181 		 */
4182 		_cache_get(par);	/* additional hold/lock */
4183 		_cache_put(par);	/* from earlier hold/lock */
4184 		if (par == nch->mount->mnt_ncmountpt.ncp) {
4185 			cache_resolve_mp(nch->mount);
4186 		} else if ((dvp = cache_dvpref(par)) == NULL) {
4187 			kprintf("[diagnostic] cache_resolve: raced on %*.*s\n",
4188 				par->nc_nlen, par->nc_nlen, par->nc_name);
4189 			_cache_put(par);
4190 			continue;
4191 		} else {
4192 			if (par->nc_flag & NCF_UNRESOLVED) {
4193 				nctmp.mount = mp;
4194 				nctmp.ncp = par;
4195 				par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
4196 			}
4197 			vrele(dvp);
4198 		}
4199 		if ((error = par->nc_error) != 0) {
4200 			if (par->nc_error != EAGAIN) {
4201 				kprintf("EXDEV case 3 %*.*s error %d\n",
4202 				    par->nc_nlen, par->nc_nlen, par->nc_name,
4203 				    par->nc_error);
4204 				_cache_put(par);
4205 				return(error);
4206 			}
4207 			kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
4208 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
4209 		}
4210 		_cache_put(par);
4211 		/* loop */
4212 	}
4213 
4214 	/*
4215 	 * We have a referenced dvp
4216 	 */
4217 	*dvpp = dvp;
4218 	return 0;
4219 }
4220 
4221 /*
4222  * Clean out negative cache entries when too many have accumulated.
4223  */
4224 static void
4225 _cache_cleanneg(long count)
4226 {
4227 	struct pcpu_ncache *pn;
4228 	struct namecache *ncp;
4229 	static uint32_t neg_rover;
4230 	uint32_t n;
4231 	long vnegs;
4232 
4233 	n = neg_rover++;	/* SMP heuristical, race ok */
4234 	cpu_ccfence();
4235 	n = n % (uint32_t)ncpus;
4236 
4237 	/*
4238 	 * Normalize vfscache_negs and count.  count is sometimes based
4239 	 * on vfscache_negs.  vfscache_negs is heuristical and can sometimes
4240 	 * have crazy values.
4241 	 */
4242 	vnegs = vfscache_negs;
4243 	cpu_ccfence();
4244 	if (vnegs <= MINNEG)
4245 		vnegs = MINNEG;
4246 	if (count < 1)
4247 		count = 1;
4248 
4249 	pn = &pcpu_ncache[n];
4250 	spin_lock(&pn->neg_spin);
4251 	count = pn->neg_count * count / vnegs + 1;
4252 	spin_unlock(&pn->neg_spin);
4253 
4254 	/*
4255 	 * Attempt to clean out the specified number of negative cache
4256 	 * entries.
4257 	 */
4258 	while (count > 0) {
4259 		spin_lock(&pn->neg_spin);
4260 		ncp = TAILQ_FIRST(&pn->neg_list);
4261 		if (ncp == NULL) {
4262 			spin_unlock(&pn->neg_spin);
4263 			break;
4264 		}
4265 		TAILQ_REMOVE(&pn->neg_list, ncp, nc_vnode);
4266 		TAILQ_INSERT_TAIL(&pn->neg_list, ncp, nc_vnode);
4267 		_cache_hold(ncp);
4268 		spin_unlock(&pn->neg_spin);
4269 
4270 		/*
4271 		 * This can race, so we must re-check that the ncp
4272 		 * is on the ncneg.list after successfully locking it.
4273 		 */
4274 		if (_cache_lock_special(ncp) == 0) {
4275 			if (ncp->nc_vp == NULL &&
4276 			    (ncp->nc_flag & NCF_UNRESOLVED) == 0)
4277 			{
4278 				cache_zap(ncp);
4279 			} else {
4280 				_cache_unlock(ncp);
4281 				_cache_drop(ncp);
4282 			}
4283 		} else {
4284 			_cache_drop(ncp);
4285 		}
4286 		--count;
4287 	}
4288 }
4289 
4290 /*
4291  * Clean out positive cache entries when too many have accumulated.
4292  */
4293 static void
4294 _cache_cleanpos(long count)
4295 {
4296 	static volatile int rover;
4297 	struct nchash_head *nchpp;
4298 	struct namecache *ncp;
4299 	int rover_copy;
4300 
4301 	/*
4302 	 * Attempt to clean out the specified number of negative cache
4303 	 * entries.
4304 	 */
4305 	while (count > 0) {
4306 		rover_copy = ++rover;	/* MPSAFEENOUGH */
4307 		cpu_ccfence();
4308 		nchpp = NCHHASH(rover_copy);
4309 
4310 		if (TAILQ_FIRST(&nchpp->list) == NULL) {
4311 			--count;
4312 			continue;
4313 		}
4314 
4315 		/*
4316 		 * Cycle ncp on list, ignore and do not move DUMMY
4317 		 * ncps.  These are temporary list iterators.
4318 		 *
4319 		 * We must cycle the ncp to the end of the list to
4320 		 * ensure that all ncp's have an equal chance of
4321 		 * being removed.
4322 		 */
4323 		spin_lock(&nchpp->spin);
4324 		ncp = TAILQ_FIRST(&nchpp->list);
4325 		while (ncp && (ncp->nc_flag & NCF_DUMMY))
4326 			ncp = TAILQ_NEXT(ncp, nc_hash);
4327 		if (ncp) {
4328 			TAILQ_REMOVE(&nchpp->list, ncp, nc_hash);
4329 			TAILQ_INSERT_TAIL(&nchpp->list, ncp, nc_hash);
4330 			_cache_hold(ncp);
4331 		}
4332 		spin_unlock(&nchpp->spin);
4333 
4334 		if (ncp) {
4335 			if (_cache_lock_special(ncp) == 0) {
4336 				cache_zap(ncp);
4337 			} else {
4338 				_cache_drop(ncp);
4339 			}
4340 		}
4341 		--count;
4342 	}
4343 }
4344 
4345 /*
4346  * This is a kitchen sink function to clean out ncps which we
4347  * tried to zap from cache_drop() but failed because we were
4348  * unable to acquire the parent lock.
4349  *
4350  * Such entries can also be removed via cache_inval_vp(), such
4351  * as when unmounting.
4352  */
4353 static void
4354 _cache_cleandefered(void)
4355 {
4356 	struct nchash_head *nchpp;
4357 	struct namecache *ncp;
4358 	struct namecache dummy;
4359 	int i;
4360 
4361 	/*
4362 	 * Create a list iterator.  DUMMY indicates that this is a list
4363 	 * iterator, DESTROYED prevents matches by lookup functions.
4364 	 */
4365 	numdefered = 0;
4366 	pcpu_ncache[mycpu->gd_cpuid].numdefered = 0;
4367 	bzero(&dummy, sizeof(dummy));
4368 	dummy.nc_flag = NCF_DESTROYED | NCF_DUMMY;
4369 	dummy.nc_refs = 1;
4370 
4371 	for (i = 0; i <= nchash; ++i) {
4372 		nchpp = &nchashtbl[i];
4373 
4374 		spin_lock(&nchpp->spin);
4375 		TAILQ_INSERT_HEAD(&nchpp->list, &dummy, nc_hash);
4376 		ncp = &dummy;
4377 		while ((ncp = TAILQ_NEXT(ncp, nc_hash)) != NULL) {
4378 			if ((ncp->nc_flag & NCF_DEFEREDZAP) == 0)
4379 				continue;
4380 			TAILQ_REMOVE(&nchpp->list, &dummy, nc_hash);
4381 			TAILQ_INSERT_AFTER(&nchpp->list, ncp, &dummy, nc_hash);
4382 			_cache_hold(ncp);
4383 			spin_unlock(&nchpp->spin);
4384 			if (_cache_lock_nonblock(ncp) == 0) {
4385 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
4386 				_cache_unlock(ncp);
4387 			}
4388 			_cache_drop(ncp);
4389 			spin_lock(&nchpp->spin);
4390 			ncp = &dummy;
4391 		}
4392 		TAILQ_REMOVE(&nchpp->list, &dummy, nc_hash);
4393 		spin_unlock(&nchpp->spin);
4394 	}
4395 }
4396 
4397 /*
4398  * Name cache initialization, from vfsinit() when we are booting
4399  */
4400 void
4401 nchinit(void)
4402 {
4403 	struct pcpu_ncache *pn;
4404 	globaldata_t gd;
4405 	int i;
4406 
4407 	/*
4408 	 * Per-cpu accounting and negative hit list
4409 	 */
4410 	pcpu_ncache = kmalloc(sizeof(*pcpu_ncache) * ncpus,
4411 			      M_VFSCACHEAUX, M_WAITOK|M_ZERO);
4412 	for (i = 0; i < ncpus; ++i) {
4413 		pn = &pcpu_ncache[i];
4414 		TAILQ_INIT(&pn->neg_list);
4415 		spin_init(&pn->neg_spin, "ncneg");
4416 		spin_init(&pn->umount_spin, "ncumm");
4417 	}
4418 
4419 	/*
4420 	 * Initialise per-cpu namecache effectiveness statistics.
4421 	 */
4422 	for (i = 0; i < ncpus; ++i) {
4423 		gd = globaldata_find(i);
4424 		gd->gd_nchstats = &nchstats[i];
4425 	}
4426 
4427 	/*
4428 	 * Create a generous namecache hash table
4429 	 */
4430 	nchashtbl = hashinit_ext(vfs_inodehashsize(),
4431 				 sizeof(struct nchash_head),
4432 				 M_VFSCACHEAUX, &nchash);
4433 	for (i = 0; i <= (int)nchash; ++i) {
4434 		TAILQ_INIT(&nchashtbl[i].list);
4435 		spin_init(&nchashtbl[i].spin, "nchinit_hash");
4436 	}
4437 	for (i = 0; i < NCMOUNT_NUMCACHE; ++i)
4438 		spin_init(&ncmount_cache[i].spin, "nchinit_cache");
4439 	nclockwarn = 5 * hz;
4440 }
4441 
4442 /*
4443  * Called from start_init() to bootstrap the root filesystem.  Returns
4444  * a referenced, unlocked namecache record.
4445  */
4446 void
4447 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
4448 {
4449 	nch->ncp = cache_alloc(0);
4450 	nch->mount = mp;
4451 	_cache_mntref(mp);
4452 	if (vp)
4453 		_cache_setvp(nch->mount, nch->ncp, vp);
4454 }
4455 
4456 /*
4457  * vfs_cache_setroot()
4458  *
4459  *	Create an association between the root of our namecache and
4460  *	the root vnode.  This routine may be called several times during
4461  *	booting.
4462  *
4463  *	If the caller intends to save the returned namecache pointer somewhere
4464  *	it must cache_hold() it.
4465  */
4466 void
4467 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
4468 {
4469 	struct vnode *ovp;
4470 	struct nchandle onch;
4471 
4472 	ovp = rootvnode;
4473 	onch = rootnch;
4474 	rootvnode = nvp;
4475 	if (nch)
4476 		rootnch = *nch;
4477 	else
4478 		cache_zero(&rootnch);
4479 	if (ovp)
4480 		vrele(ovp);
4481 	if (onch.ncp)
4482 		cache_drop(&onch);
4483 }
4484 
4485 /*
4486  * XXX OLD API COMPAT FUNCTION.  This really messes up the new namecache
4487  * topology and is being removed as quickly as possible.  The new VOP_N*()
4488  * API calls are required to make specific adjustments using the supplied
4489  * ncp pointers rather then just bogusly purging random vnodes.
4490  *
4491  * Invalidate all namecache entries to a particular vnode as well as
4492  * any direct children of that vnode in the namecache.  This is a
4493  * 'catch all' purge used by filesystems that do not know any better.
4494  *
4495  * Note that the linkage between the vnode and its namecache entries will
4496  * be removed, but the namecache entries themselves might stay put due to
4497  * active references from elsewhere in the system or due to the existance of
4498  * the children.   The namecache topology is left intact even if we do not
4499  * know what the vnode association is.  Such entries will be marked
4500  * NCF_UNRESOLVED.
4501  */
4502 void
4503 cache_purge(struct vnode *vp)
4504 {
4505 	cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
4506 }
4507 
4508 __read_mostly static int disablecwd;
4509 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0,
4510     "Disable getcwd");
4511 
4512 /*
4513  * MPALMOSTSAFE
4514  */
4515 int
4516 sys___getcwd(struct sysmsg *sysmsg, const struct __getcwd_args *uap)
4517 {
4518 	u_int buflen;
4519 	int error;
4520 	char *buf;
4521 	char *bp;
4522 
4523 	if (disablecwd)
4524 		return (ENODEV);
4525 
4526 	buflen = uap->buflen;
4527 	if (buflen == 0)
4528 		return (EINVAL);
4529 	if (buflen > MAXPATHLEN)
4530 		buflen = MAXPATHLEN;
4531 
4532 	buf = kmalloc(buflen, M_TEMP, M_WAITOK);
4533 	bp = kern_getcwd(buf, buflen, &error);
4534 	if (error == 0)
4535 		error = copyout(bp, uap->buf, strlen(bp) + 1);
4536 	kfree(buf, M_TEMP);
4537 	return (error);
4538 }
4539 
4540 char *
4541 kern_getcwd(char *buf, size_t buflen, int *error)
4542 {
4543 	struct proc *p = curproc;
4544 	char *bp;
4545 	int i, slash_prefixed;
4546 	struct filedesc *fdp;
4547 	struct nchandle nch;
4548 	struct namecache *ncp;
4549 
4550 	bp = buf;
4551 	bp += buflen - 1;
4552 	*bp = '\0';
4553 	fdp = p->p_fd;
4554 	slash_prefixed = 0;
4555 
4556 	nch = fdp->fd_ncdir;
4557 	ncp = nch.ncp;
4558 	if (ncp)
4559 		_cache_hold(ncp);
4560 
4561 	while (ncp && (ncp != fdp->fd_nrdir.ncp ||
4562 	       nch.mount != fdp->fd_nrdir.mount)
4563 	) {
4564 		if (ncp->nc_flag & NCF_DESTROYED) {
4565 			_cache_drop(ncp);
4566 			ncp = NULL;
4567 			break;
4568 		}
4569 		/*
4570 		 * While traversing upwards if we encounter the root
4571 		 * of the current mount we have to skip to the mount point
4572 		 * in the underlying filesystem.
4573 		 */
4574 		if (ncp == nch.mount->mnt_ncmountpt.ncp) {
4575 			nch = nch.mount->mnt_ncmounton;
4576 			_cache_drop(ncp);
4577 			ncp = nch.ncp;
4578 			if (ncp)
4579 				_cache_hold(ncp);
4580 			continue;
4581 		}
4582 
4583 		/*
4584 		 * Prepend the path segment
4585 		 */
4586 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
4587 			if (bp == buf) {
4588 				*error = ERANGE;
4589 				bp = NULL;
4590 				goto done;
4591 			}
4592 			*--bp = ncp->nc_name[i];
4593 		}
4594 		if (bp == buf) {
4595 			*error = ERANGE;
4596 			bp = NULL;
4597 			goto done;
4598 		}
4599 		*--bp = '/';
4600 		slash_prefixed = 1;
4601 
4602 		/*
4603 		 * Go up a directory.  This isn't a mount point so we don't
4604 		 * have to check again.
4605 		 */
4606 		while ((nch.ncp = ncp->nc_parent) != NULL) {
4607 			if (ncp_shared_lock_disable)
4608 				_cache_lock(ncp);
4609 			else
4610 				_cache_lock_shared(ncp);
4611 			if (nch.ncp != ncp->nc_parent) {
4612 				_cache_unlock(ncp);
4613 				continue;
4614 			}
4615 			_cache_hold(nch.ncp);
4616 			_cache_unlock(ncp);
4617 			break;
4618 		}
4619 		_cache_drop(ncp);
4620 		ncp = nch.ncp;
4621 	}
4622 	if (ncp == NULL) {
4623 		*error = ENOENT;
4624 		bp = NULL;
4625 		goto done;
4626 	}
4627 	if (!slash_prefixed) {
4628 		if (bp == buf) {
4629 			*error = ERANGE;
4630 			bp = NULL;
4631 			goto done;
4632 		}
4633 		*--bp = '/';
4634 	}
4635 	*error = 0;
4636 done:
4637 	if (ncp)
4638 		_cache_drop(ncp);
4639 	return (bp);
4640 }
4641 
4642 /*
4643  * Thus begins the fullpath magic.
4644  *
4645  * The passed nchp is referenced but not locked.
4646  */
4647 __read_mostly static int disablefullpath;
4648 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
4649     &disablefullpath, 0,
4650     "Disable fullpath lookups");
4651 
4652 int
4653 cache_fullpath(struct proc *p, struct nchandle *nchp, struct nchandle *nchbase,
4654 	       char **retbuf, char **freebuf, int guess)
4655 {
4656 	struct nchandle fd_nrdir;
4657 	struct nchandle nch;
4658 	struct namecache *ncp;
4659 	struct mount *mp, *new_mp;
4660 	char *bp, *buf;
4661 	int slash_prefixed;
4662 	int error = 0;
4663 	int i;
4664 
4665 	*retbuf = NULL;
4666 	*freebuf = NULL;
4667 
4668 	buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
4669 	bp = buf + MAXPATHLEN - 1;
4670 	*bp = '\0';
4671 	if (nchbase)
4672 		fd_nrdir = *nchbase;
4673 	else if (p != NULL)
4674 		fd_nrdir = p->p_fd->fd_nrdir;
4675 	else
4676 		fd_nrdir = rootnch;
4677 	slash_prefixed = 0;
4678 	nch = *nchp;
4679 	ncp = nch.ncp;
4680 	if (ncp)
4681 		_cache_hold(ncp);
4682 	mp = nch.mount;
4683 
4684 	while (ncp && (ncp != fd_nrdir.ncp || mp != fd_nrdir.mount)) {
4685 		new_mp = NULL;
4686 
4687 		/*
4688 		 * If we are asked to guess the upwards path, we do so whenever
4689 		 * we encounter an ncp marked as a mountpoint. We try to find
4690 		 * the actual mountpoint by finding the mountpoint with this
4691 		 * ncp.
4692 		 */
4693 		if (guess && (ncp->nc_flag & NCF_ISMOUNTPT)) {
4694 			new_mp = mount_get_by_nc(ncp);
4695 		}
4696 		/*
4697 		 * While traversing upwards if we encounter the root
4698 		 * of the current mount we have to skip to the mount point.
4699 		 */
4700 		if (ncp == mp->mnt_ncmountpt.ncp) {
4701 			new_mp = mp;
4702 		}
4703 		if (new_mp) {
4704 			nch = new_mp->mnt_ncmounton;
4705 			_cache_drop(ncp);
4706 			ncp = nch.ncp;
4707 			if (ncp)
4708 				_cache_hold(ncp);
4709 			mp = nch.mount;
4710 			continue;
4711 		}
4712 
4713 		/*
4714 		 * Prepend the path segment
4715 		 */
4716 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
4717 			if (bp == buf) {
4718 				kfree(buf, M_TEMP);
4719 				error = ENOMEM;
4720 				goto done;
4721 			}
4722 			*--bp = ncp->nc_name[i];
4723 		}
4724 		if (bp == buf) {
4725 			kfree(buf, M_TEMP);
4726 			error = ENOMEM;
4727 			goto done;
4728 		}
4729 		*--bp = '/';
4730 		slash_prefixed = 1;
4731 
4732 		/*
4733 		 * Go up a directory.  This isn't a mount point so we don't
4734 		 * have to check again.
4735 		 *
4736 		 * We can only safely access nc_parent with ncp held locked.
4737 		 */
4738 		while ((nch.ncp = ncp->nc_parent) != NULL) {
4739 			_cache_lock_shared(ncp);
4740 			if (nch.ncp != ncp->nc_parent) {
4741 				_cache_unlock(ncp);
4742 				continue;
4743 			}
4744 			_cache_hold(nch.ncp);
4745 			_cache_unlock(ncp);
4746 			break;
4747 		}
4748 		_cache_drop(ncp);
4749 		ncp = nch.ncp;
4750 	}
4751 	if (ncp == NULL) {
4752 		kfree(buf, M_TEMP);
4753 		error = ENOENT;
4754 		goto done;
4755 	}
4756 
4757 	if (!slash_prefixed) {
4758 		if (bp == buf) {
4759 			kfree(buf, M_TEMP);
4760 			error = ENOMEM;
4761 			goto done;
4762 		}
4763 		*--bp = '/';
4764 	}
4765 	*retbuf = bp;
4766 	*freebuf = buf;
4767 	error = 0;
4768 done:
4769 	if (ncp)
4770 		_cache_drop(ncp);
4771 	return(error);
4772 }
4773 
4774 int
4775 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf,
4776 	    char **freebuf, int guess)
4777 {
4778 	struct namecache *ncp;
4779 	struct nchandle nch;
4780 	int error;
4781 
4782 	*freebuf = NULL;
4783 	if (disablefullpath)
4784 		return (ENODEV);
4785 
4786 	if (p == NULL)
4787 		return (EINVAL);
4788 
4789 	/* vn is NULL, client wants us to use p->p_textvp */
4790 	if (vn == NULL) {
4791 		if ((vn = p->p_textvp) == NULL)
4792 			return (EINVAL);
4793 	}
4794 	spin_lock_shared(&vn->v_spin);
4795 	TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
4796 		if (ncp->nc_nlen)
4797 			break;
4798 	}
4799 	if (ncp == NULL) {
4800 		spin_unlock_shared(&vn->v_spin);
4801 		return (EINVAL);
4802 	}
4803 	_cache_hold(ncp);
4804 	spin_unlock_shared(&vn->v_spin);
4805 
4806 	nch.ncp = ncp;
4807 	nch.mount = vn->v_mount;
4808 	error = cache_fullpath(p, &nch, NULL, retbuf, freebuf, guess);
4809 	_cache_drop(ncp);
4810 	return (error);
4811 }
4812 
4813 void
4814 vfscache_rollup_cpu(struct globaldata *gd)
4815 {
4816 	struct pcpu_ncache *pn;
4817 	long count;
4818 
4819 	if (pcpu_ncache == NULL)
4820 		return;
4821 	pn = &pcpu_ncache[gd->gd_cpuid];
4822 
4823 	if (pn->vfscache_count) {
4824 		count = atomic_swap_long(&pn->vfscache_count, 0);
4825 		atomic_add_long(&vfscache_count, count);
4826 	}
4827 	if (pn->vfscache_leafs) {
4828 		count = atomic_swap_long(&pn->vfscache_leafs, 0);
4829 		atomic_add_long(&vfscache_leafs, count);
4830 	}
4831 	if (pn->vfscache_negs) {
4832 		count = atomic_swap_long(&pn->vfscache_negs, 0);
4833 		atomic_add_long(&vfscache_negs, count);
4834 	}
4835 	if (pn->numdefered) {
4836 		count = atomic_swap_long(&pn->numdefered, 0);
4837 		atomic_add_long(&numdefered, count);
4838 	}
4839 }
4840