xref: /dragonfly/sys/kern/vfs_cache.c (revision 678e8cc6)
1 /*
2  * Copyright (c) 2003,2004,2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993, 1995
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * Poul-Henning Kamp of the FreeBSD Project.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the University of
51  *	California, Berkeley and its contributors.
52  * 4. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  */
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/sysctl.h>
73 #include <sys/mount.h>
74 #include <sys/vnode.h>
75 #include <sys/malloc.h>
76 #include <sys/sysproto.h>
77 #include <sys/spinlock.h>
78 #include <sys/proc.h>
79 #include <sys/namei.h>
80 #include <sys/nlookup.h>
81 #include <sys/filedesc.h>
82 #include <sys/fnv_hash.h>
83 #include <sys/globaldata.h>
84 #include <sys/kern_syscall.h>
85 #include <sys/dirent.h>
86 #include <ddb/ddb.h>
87 
88 #include <sys/sysref2.h>
89 #include <sys/spinlock2.h>
90 #include <sys/mplock2.h>
91 
92 #define MAX_RECURSION_DEPTH	64
93 
94 /*
95  * Random lookups in the cache are accomplished with a hash table using
96  * a hash key of (nc_src_vp, name).  Each hash chain has its own spin lock.
97  *
98  * Negative entries may exist and correspond to resolved namecache
99  * structures where nc_vp is NULL.  In a negative entry, NCF_WHITEOUT
100  * will be set if the entry corresponds to a whited-out directory entry
101  * (verses simply not finding the entry at all).   ncneglist is locked
102  * with a global spinlock (ncspin).
103  *
104  * MPSAFE RULES:
105  *
106  * (1) A ncp must be referenced before it can be locked.
107  *
108  * (2) A ncp must be locked in order to modify it.
109  *
110  * (3) ncp locks are always ordered child -> parent.  That may seem
111  *     backwards but forward scans use the hash table and thus can hold
112  *     the parent unlocked when traversing downward.
113  *
114  *     This allows insert/rename/delete/dot-dot and other operations
115  *     to use ncp->nc_parent links.
116  *
117  *     This also prevents a locked up e.g. NFS node from creating a
118  *     chain reaction all the way back to the root vnode / namecache.
119  *
120  * (4) parent linkages require both the parent and child to be locked.
121  */
122 
123 /*
124  * Structures associated with name cacheing.
125  */
126 #define NCHHASH(hash)	(&nchashtbl[(hash) & nchash])
127 #define MINNEG		1024
128 #define MINPOS		1024
129 
130 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
131 
132 LIST_HEAD(nchash_list, namecache);
133 
134 struct nchash_head {
135        struct nchash_list list;
136        struct spinlock	spin;
137 };
138 
139 static struct nchash_head	*nchashtbl;
140 static struct namecache_list	ncneglist;
141 static struct spinlock		ncspin;
142 
143 /*
144  * ncvp_debug - debug cache_fromvp().  This is used by the NFS server
145  * to create the namecache infrastructure leading to a dangling vnode.
146  *
147  * 0	Only errors are reported
148  * 1	Successes are reported
149  * 2	Successes + the whole directory scan is reported
150  * 3	Force the directory scan code run as if the parent vnode did not
151  *	have a namecache record, even if it does have one.
152  */
153 static int	ncvp_debug;
154 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0,
155     "Namecache debug level (0-3)");
156 
157 static u_long	nchash;			/* size of hash table */
158 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
159     "Size of namecache hash table");
160 
161 static int	ncnegfactor = 16;	/* ratio of negative entries */
162 SYSCTL_INT(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0,
163     "Ratio of namecache negative entries");
164 
165 static int	nclockwarn;		/* warn on locked entries in ticks */
166 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0,
167     "Warn on locked namecache entries in ticks");
168 
169 static int	numdefered;		/* number of cache entries allocated */
170 SYSCTL_INT(_debug, OID_AUTO, numdefered, CTLFLAG_RD, &numdefered, 0,
171     "Number of cache entries allocated");
172 
173 static int	ncposlimit;		/* number of cache entries allocated */
174 SYSCTL_INT(_debug, OID_AUTO, ncposlimit, CTLFLAG_RW, &ncposlimit, 0,
175     "Number of cache entries allocated");
176 
177 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode),
178     "sizeof(struct vnode)");
179 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache),
180     "sizeof(struct namecache)");
181 
182 static int cache_resolve_mp(struct mount *mp);
183 static struct vnode *cache_dvpref(struct namecache *ncp);
184 static void _cache_lock(struct namecache *ncp);
185 static void _cache_setunresolved(struct namecache *ncp);
186 static void _cache_cleanneg(int count);
187 static void _cache_cleanpos(int count);
188 static void _cache_cleandefered(void);
189 
190 /*
191  * The new name cache statistics
192  */
193 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
194 static int numneg;
195 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numneg, CTLFLAG_RD, &numneg, 0,
196     "Number of negative namecache entries");
197 static int numcache;
198 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcache, CTLFLAG_RD, &numcache, 0,
199     "Number of namecaches entries");
200 static u_long numcalls;
201 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcalls, CTLFLAG_RD, &numcalls, 0,
202     "Number of namecache lookups");
203 static u_long numchecks;
204 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numchecks, CTLFLAG_RD, &numchecks, 0,
205     "Number of checked entries in namecache lookups");
206 
207 struct nchstats nchstats[SMP_MAXCPU];
208 /*
209  * Export VFS cache effectiveness statistics to user-land.
210  *
211  * The statistics are left for aggregation to user-land so
212  * neat things can be achieved, like observing per-CPU cache
213  * distribution.
214  */
215 static int
216 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
217 {
218 	struct globaldata *gd;
219 	int i, error;
220 
221 	error = 0;
222 	for (i = 0; i < ncpus; ++i) {
223 		gd = globaldata_find(i);
224 		if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
225 			sizeof(struct nchstats))))
226 			break;
227 	}
228 
229 	return (error);
230 }
231 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
232   0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
233 
234 static struct namecache *cache_zap(struct namecache *ncp, int nonblock);
235 
236 /*
237  * Namespace locking.  The caller must already hold a reference to the
238  * namecache structure in order to lock/unlock it.  This function prevents
239  * the namespace from being created or destroyed by accessors other then
240  * the lock holder.
241  *
242  * Note that holding a locked namecache structure prevents other threads
243  * from making namespace changes (e.g. deleting or creating), prevents
244  * vnode association state changes by other threads, and prevents the
245  * namecache entry from being resolved or unresolved by other threads.
246  *
247  * The lock owner has full authority to associate/disassociate vnodes
248  * and resolve/unresolve the locked ncp.
249  *
250  * The primary lock field is nc_exlocks.  nc_locktd is set after the
251  * fact (when locking) or cleared prior to unlocking.
252  *
253  * WARNING!  Holding a locked ncp will prevent a vnode from being destroyed
254  *	     or recycled, but it does NOT help you if the vnode had already
255  *	     initiated a recyclement.  If this is important, use cache_get()
256  *	     rather then cache_lock() (and deal with the differences in the
257  *	     way the refs counter is handled).  Or, alternatively, make an
258  *	     unconditional call to cache_validate() or cache_resolve()
259  *	     after cache_lock() returns.
260  *
261  * MPSAFE
262  */
263 static
264 void
265 _cache_lock(struct namecache *ncp)
266 {
267 	thread_t td;
268 	int didwarn;
269 	int error;
270 	u_int count;
271 
272 	KKASSERT(ncp->nc_refs != 0);
273 	didwarn = 0;
274 	td = curthread;
275 
276 	for (;;) {
277 		count = ncp->nc_exlocks;
278 
279 		if (count == 0) {
280 			if (atomic_cmpset_int(&ncp->nc_exlocks, 0, 1)) {
281 				/*
282 				 * The vp associated with a locked ncp must
283 				 * be held to prevent it from being recycled.
284 				 *
285 				 * WARNING!  If VRECLAIMED is set the vnode
286 				 * could already be in the middle of a recycle.
287 				 * Callers must use cache_vref() or
288 				 * cache_vget() on the locked ncp to
289 				 * validate the vp or set the cache entry
290 				 * to unresolved.
291 				 *
292 				 * NOTE! vhold() is allowed if we hold a
293 				 *	 lock on the ncp (which we do).
294 				 */
295 				ncp->nc_locktd = td;
296 				if (ncp->nc_vp)
297 					vhold(ncp->nc_vp);	/* MPSAFE */
298 				break;
299 			}
300 			/* cmpset failed */
301 			continue;
302 		}
303 		if (ncp->nc_locktd == td) {
304 			if (atomic_cmpset_int(&ncp->nc_exlocks, count,
305 					      count + 1)) {
306 				break;
307 			}
308 			/* cmpset failed */
309 			continue;
310 		}
311 		tsleep_interlock(ncp, 0);
312 		if (atomic_cmpset_int(&ncp->nc_exlocks, count,
313 				      count | NC_EXLOCK_REQ) == 0) {
314 			/* cmpset failed */
315 			continue;
316 		}
317 		error = tsleep(ncp, PINTERLOCKED, "clock", nclockwarn);
318 		if (error == EWOULDBLOCK) {
319 			if (didwarn == 0) {
320 				didwarn = ticks;
321 				kprintf("[diagnostic] cache_lock: blocked "
322 					"on %p",
323 					ncp);
324 				kprintf(" \"%*.*s\"\n",
325 					ncp->nc_nlen, ncp->nc_nlen,
326 					ncp->nc_name);
327 			}
328 		}
329 	}
330 	if (didwarn) {
331 		kprintf("[diagnostic] cache_lock: unblocked %*.*s after "
332 			"%d secs\n",
333 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
334 			(int)(ticks - didwarn) / hz);
335 	}
336 }
337 
338 /*
339  * NOTE: nc_refs may be zero if the ncp is interlocked by circumstance,
340  *	 such as the case where one of its children is locked.
341  *
342  * MPSAFE
343  */
344 static
345 int
346 _cache_lock_nonblock(struct namecache *ncp)
347 {
348 	thread_t td;
349 	u_int count;
350 
351 	td = curthread;
352 
353 	for (;;) {
354 		count = ncp->nc_exlocks;
355 
356 		if (count == 0) {
357 			if (atomic_cmpset_int(&ncp->nc_exlocks, 0, 1)) {
358 				/*
359 				 * The vp associated with a locked ncp must
360 				 * be held to prevent it from being recycled.
361 				 *
362 				 * WARNING!  If VRECLAIMED is set the vnode
363 				 * could already be in the middle of a recycle.
364 				 * Callers must use cache_vref() or
365 				 * cache_vget() on the locked ncp to
366 				 * validate the vp or set the cache entry
367 				 * to unresolved.
368 				 *
369 				 * NOTE! vhold() is allowed if we hold a
370 				 *	 lock on the ncp (which we do).
371 				 */
372 				ncp->nc_locktd = td;
373 				if (ncp->nc_vp)
374 					vhold(ncp->nc_vp);	/* MPSAFE */
375 				break;
376 			}
377 			/* cmpset failed */
378 			continue;
379 		}
380 		if (ncp->nc_locktd == td) {
381 			if (atomic_cmpset_int(&ncp->nc_exlocks, count,
382 					      count + 1)) {
383 				break;
384 			}
385 			/* cmpset failed */
386 			continue;
387 		}
388 		return(EWOULDBLOCK);
389 	}
390 	return(0);
391 }
392 
393 /*
394  * Helper function
395  *
396  * NOTE: nc_refs can be 0 (degenerate case during _cache_drop).
397  *
398  *	 nc_locktd must be NULLed out prior to nc_exlocks getting cleared.
399  *
400  * MPSAFE
401  */
402 static
403 void
404 _cache_unlock(struct namecache *ncp)
405 {
406 	thread_t td __debugvar = curthread;
407 	u_int count;
408 
409 	KKASSERT(ncp->nc_refs >= 0);
410 	KKASSERT(ncp->nc_exlocks > 0);
411 	KKASSERT(ncp->nc_locktd == td);
412 
413 	count = ncp->nc_exlocks;
414 	if ((count & ~NC_EXLOCK_REQ) == 1) {
415 		ncp->nc_locktd = NULL;
416 		if (ncp->nc_vp)
417 			vdrop(ncp->nc_vp);
418 	}
419 	for (;;) {
420 		if ((count & ~NC_EXLOCK_REQ) == 1) {
421 			if (atomic_cmpset_int(&ncp->nc_exlocks, count, 0)) {
422 				if (count & NC_EXLOCK_REQ)
423 					wakeup(ncp);
424 				break;
425 			}
426 		} else {
427 			if (atomic_cmpset_int(&ncp->nc_exlocks, count,
428 					      count - 1)) {
429 				break;
430 			}
431 		}
432 		count = ncp->nc_exlocks;
433 	}
434 }
435 
436 
437 /*
438  * cache_hold() and cache_drop() prevent the premature deletion of a
439  * namecache entry but do not prevent operations (such as zapping) on
440  * that namecache entry.
441  *
442  * This routine may only be called from outside this source module if
443  * nc_refs is already at least 1.
444  *
445  * This is a rare case where callers are allowed to hold a spinlock,
446  * so we can't ourselves.
447  *
448  * MPSAFE
449  */
450 static __inline
451 struct namecache *
452 _cache_hold(struct namecache *ncp)
453 {
454 	atomic_add_int(&ncp->nc_refs, 1);
455 	return(ncp);
456 }
457 
458 /*
459  * Drop a cache entry, taking care to deal with races.
460  *
461  * For potential 1->0 transitions we must hold the ncp lock to safely
462  * test its flags.  An unresolved entry with no children must be zapped
463  * to avoid leaks.
464  *
465  * The call to cache_zap() itself will handle all remaining races and
466  * will decrement the ncp's refs regardless.  If we are resolved or
467  * have children nc_refs can safely be dropped to 0 without having to
468  * zap the entry.
469  *
470  * NOTE: cache_zap() will re-check nc_refs and nc_list in a MPSAFE fashion.
471  *
472  * NOTE: cache_zap() may return a non-NULL referenced parent which must
473  *	 be dropped in a loop.
474  *
475  * MPSAFE
476  */
477 static __inline
478 void
479 _cache_drop(struct namecache *ncp)
480 {
481 	int refs;
482 
483 	while (ncp) {
484 		KKASSERT(ncp->nc_refs > 0);
485 		refs = ncp->nc_refs;
486 
487 		if (refs == 1) {
488 			if (_cache_lock_nonblock(ncp) == 0) {
489 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
490 				if ((ncp->nc_flag & NCF_UNRESOLVED) &&
491 				    TAILQ_EMPTY(&ncp->nc_list)) {
492 					ncp = cache_zap(ncp, 1);
493 					continue;
494 				}
495 				if (atomic_cmpset_int(&ncp->nc_refs, 1, 0)) {
496 					_cache_unlock(ncp);
497 					break;
498 				}
499 				_cache_unlock(ncp);
500 			}
501 		} else {
502 			if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1))
503 				break;
504 		}
505 		cpu_pause();
506 	}
507 }
508 
509 /*
510  * Link a new namecache entry to its parent and to the hash table.  Be
511  * careful to avoid races if vhold() blocks in the future.
512  *
513  * Both ncp and par must be referenced and locked.
514  *
515  * NOTE: The hash table spinlock is likely held during this call, we
516  *	 can't do anything fancy.
517  *
518  * MPSAFE
519  */
520 static void
521 _cache_link_parent(struct namecache *ncp, struct namecache *par,
522 		   struct nchash_head *nchpp)
523 {
524 	KKASSERT(ncp->nc_parent == NULL);
525 	ncp->nc_parent = par;
526 	ncp->nc_head = nchpp;
527 
528 	/*
529 	 * Set inheritance flags.  Note that the parent flags may be
530 	 * stale due to getattr potentially not having been run yet
531 	 * (it gets run during nlookup()'s).
532 	 */
533 	ncp->nc_flag &= ~(NCF_SF_PNOCACHE | NCF_UF_PCACHE);
534 	if (par->nc_flag & (NCF_SF_NOCACHE | NCF_SF_PNOCACHE))
535 		ncp->nc_flag |= NCF_SF_PNOCACHE;
536 	if (par->nc_flag & (NCF_UF_CACHE | NCF_UF_PCACHE))
537 		ncp->nc_flag |= NCF_UF_PCACHE;
538 
539 	LIST_INSERT_HEAD(&nchpp->list, ncp, nc_hash);
540 
541 	if (TAILQ_EMPTY(&par->nc_list)) {
542 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
543 		/*
544 		 * Any vp associated with an ncp which has children must
545 		 * be held to prevent it from being recycled.
546 		 */
547 		if (par->nc_vp)
548 			vhold(par->nc_vp);
549 	} else {
550 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
551 	}
552 }
553 
554 /*
555  * Remove the parent and hash associations from a namecache structure.
556  * If this is the last child of the parent the cache_drop(par) will
557  * attempt to recursively zap the parent.
558  *
559  * ncp must be locked.  This routine will acquire a temporary lock on
560  * the parent as wlel as the appropriate hash chain.
561  *
562  * MPSAFE
563  */
564 static void
565 _cache_unlink_parent(struct namecache *ncp)
566 {
567 	struct namecache *par;
568 	struct vnode *dropvp;
569 
570 	if ((par = ncp->nc_parent) != NULL) {
571 		KKASSERT(ncp->nc_parent == par);
572 		_cache_hold(par);
573 		_cache_lock(par);
574 		spin_lock(&ncp->nc_head->spin);
575 		LIST_REMOVE(ncp, nc_hash);
576 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
577 		dropvp = NULL;
578 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
579 			dropvp = par->nc_vp;
580 		spin_unlock(&ncp->nc_head->spin);
581 		ncp->nc_parent = NULL;
582 		ncp->nc_head = NULL;
583 		_cache_unlock(par);
584 		_cache_drop(par);
585 
586 		/*
587 		 * We can only safely vdrop with no spinlocks held.
588 		 */
589 		if (dropvp)
590 			vdrop(dropvp);
591 	}
592 }
593 
594 /*
595  * Allocate a new namecache structure.  Most of the code does not require
596  * zero-termination of the string but it makes vop_compat_ncreate() easier.
597  *
598  * MPSAFE
599  */
600 static struct namecache *
601 cache_alloc(int nlen)
602 {
603 	struct namecache *ncp;
604 
605 	ncp = kmalloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
606 	if (nlen)
607 		ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHE, M_WAITOK);
608 	ncp->nc_nlen = nlen;
609 	ncp->nc_flag = NCF_UNRESOLVED;
610 	ncp->nc_error = ENOTCONN;	/* needs to be resolved */
611 	ncp->nc_refs = 1;
612 
613 	TAILQ_INIT(&ncp->nc_list);
614 	_cache_lock(ncp);
615 	return(ncp);
616 }
617 
618 /*
619  * Can only be called for the case where the ncp has never been
620  * associated with anything (so no spinlocks are needed).
621  *
622  * MPSAFE
623  */
624 static void
625 _cache_free(struct namecache *ncp)
626 {
627 	KKASSERT(ncp->nc_refs == 1 && ncp->nc_exlocks == 1);
628 	if (ncp->nc_name)
629 		kfree(ncp->nc_name, M_VFSCACHE);
630 	kfree(ncp, M_VFSCACHE);
631 }
632 
633 /*
634  * MPSAFE
635  */
636 void
637 cache_zero(struct nchandle *nch)
638 {
639 	nch->ncp = NULL;
640 	nch->mount = NULL;
641 }
642 
643 /*
644  * Ref and deref a namecache structure.
645  *
646  * The caller must specify a stable ncp pointer, typically meaning the
647  * ncp is already referenced but this can also occur indirectly through
648  * e.g. holding a lock on a direct child.
649  *
650  * WARNING: Caller may hold an unrelated read spinlock, which means we can't
651  *	    use read spinlocks here.
652  *
653  * MPSAFE if nch is
654  */
655 struct nchandle *
656 cache_hold(struct nchandle *nch)
657 {
658 	_cache_hold(nch->ncp);
659 	atomic_add_int(&nch->mount->mnt_refs, 1);
660 	return(nch);
661 }
662 
663 /*
664  * Create a copy of a namecache handle for an already-referenced
665  * entry.
666  *
667  * MPSAFE if nch is
668  */
669 void
670 cache_copy(struct nchandle *nch, struct nchandle *target)
671 {
672 	*target = *nch;
673 	if (target->ncp)
674 		_cache_hold(target->ncp);
675 	atomic_add_int(&nch->mount->mnt_refs, 1);
676 }
677 
678 /*
679  * MPSAFE if nch is
680  */
681 void
682 cache_changemount(struct nchandle *nch, struct mount *mp)
683 {
684 	atomic_add_int(&nch->mount->mnt_refs, -1);
685 	nch->mount = mp;
686 	atomic_add_int(&nch->mount->mnt_refs, 1);
687 }
688 
689 /*
690  * MPSAFE
691  */
692 void
693 cache_drop(struct nchandle *nch)
694 {
695 	atomic_add_int(&nch->mount->mnt_refs, -1);
696 	_cache_drop(nch->ncp);
697 	nch->ncp = NULL;
698 	nch->mount = NULL;
699 }
700 
701 /*
702  * MPSAFE
703  */
704 void
705 cache_lock(struct nchandle *nch)
706 {
707 	_cache_lock(nch->ncp);
708 }
709 
710 /*
711  * Relock nch1 given an unlocked nch1 and a locked nch2.  The caller
712  * is responsible for checking both for validity on return as they
713  * may have become invalid.
714  *
715  * We have to deal with potential deadlocks here, just ping pong
716  * the lock until we get it (we will always block somewhere when
717  * looping so this is not cpu-intensive).
718  *
719  * which = 0	nch1 not locked, nch2 is locked
720  * which = 1	nch1 is locked, nch2 is not locked
721  */
722 void
723 cache_relock(struct nchandle *nch1, struct ucred *cred1,
724 	     struct nchandle *nch2, struct ucred *cred2)
725 {
726 	int which;
727 
728 	which = 0;
729 
730 	for (;;) {
731 		if (which == 0) {
732 			if (cache_lock_nonblock(nch1) == 0) {
733 				cache_resolve(nch1, cred1);
734 				break;
735 			}
736 			cache_unlock(nch2);
737 			cache_lock(nch1);
738 			cache_resolve(nch1, cred1);
739 			which = 1;
740 		} else {
741 			if (cache_lock_nonblock(nch2) == 0) {
742 				cache_resolve(nch2, cred2);
743 				break;
744 			}
745 			cache_unlock(nch1);
746 			cache_lock(nch2);
747 			cache_resolve(nch2, cred2);
748 			which = 0;
749 		}
750 	}
751 }
752 
753 /*
754  * MPSAFE
755  */
756 int
757 cache_lock_nonblock(struct nchandle *nch)
758 {
759 	return(_cache_lock_nonblock(nch->ncp));
760 }
761 
762 
763 /*
764  * MPSAFE
765  */
766 void
767 cache_unlock(struct nchandle *nch)
768 {
769 	_cache_unlock(nch->ncp);
770 }
771 
772 /*
773  * ref-and-lock, unlock-and-deref functions.
774  *
775  * This function is primarily used by nlookup.  Even though cache_lock
776  * holds the vnode, it is possible that the vnode may have already
777  * initiated a recyclement.
778  *
779  * We want cache_get() to return a definitively usable vnode or a
780  * definitively unresolved ncp.
781  *
782  * MPSAFE
783  */
784 static
785 struct namecache *
786 _cache_get(struct namecache *ncp)
787 {
788 	_cache_hold(ncp);
789 	_cache_lock(ncp);
790 	if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
791 		_cache_setunresolved(ncp);
792 	return(ncp);
793 }
794 
795 /*
796  * This is a special form of _cache_lock() which only succeeds if
797  * it can get a pristine, non-recursive lock.  The caller must have
798  * already ref'd the ncp.
799  *
800  * On success the ncp will be locked, on failure it will not.  The
801  * ref count does not change either way.
802  *
803  * We want _cache_lock_special() (on success) to return a definitively
804  * usable vnode or a definitively unresolved ncp.
805  *
806  * MPSAFE
807  */
808 static int
809 _cache_lock_special(struct namecache *ncp)
810 {
811 	if (_cache_lock_nonblock(ncp) == 0) {
812 		if ((ncp->nc_exlocks & ~NC_EXLOCK_REQ) == 1) {
813 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
814 				_cache_setunresolved(ncp);
815 			return(0);
816 		}
817 		_cache_unlock(ncp);
818 	}
819 	return(EWOULDBLOCK);
820 }
821 
822 
823 /*
824  * NOTE: The same nchandle can be passed for both arguments.
825  *
826  * MPSAFE
827  */
828 void
829 cache_get(struct nchandle *nch, struct nchandle *target)
830 {
831 	KKASSERT(nch->ncp->nc_refs > 0);
832 	target->mount = nch->mount;
833 	target->ncp = _cache_get(nch->ncp);
834 	atomic_add_int(&target->mount->mnt_refs, 1);
835 }
836 
837 /*
838  * MPSAFE
839  */
840 static __inline
841 void
842 _cache_put(struct namecache *ncp)
843 {
844 	_cache_unlock(ncp);
845 	_cache_drop(ncp);
846 }
847 
848 /*
849  * MPSAFE
850  */
851 void
852 cache_put(struct nchandle *nch)
853 {
854 	atomic_add_int(&nch->mount->mnt_refs, -1);
855 	_cache_put(nch->ncp);
856 	nch->ncp = NULL;
857 	nch->mount = NULL;
858 }
859 
860 /*
861  * Resolve an unresolved ncp by associating a vnode with it.  If the
862  * vnode is NULL, a negative cache entry is created.
863  *
864  * The ncp should be locked on entry and will remain locked on return.
865  *
866  * MPSAFE
867  */
868 static
869 void
870 _cache_setvp(struct mount *mp, struct namecache *ncp, struct vnode *vp)
871 {
872 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
873 
874 	if (vp != NULL) {
875 		/*
876 		 * Any vp associated with an ncp which has children must
877 		 * be held.  Any vp associated with a locked ncp must be held.
878 		 */
879 		if (!TAILQ_EMPTY(&ncp->nc_list))
880 			vhold(vp);
881 		spin_lock(&vp->v_spin);
882 		ncp->nc_vp = vp;
883 		TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
884 		spin_unlock(&vp->v_spin);
885 		if (ncp->nc_exlocks)
886 			vhold(vp);
887 
888 		/*
889 		 * Set auxiliary flags
890 		 */
891 		switch(vp->v_type) {
892 		case VDIR:
893 			ncp->nc_flag |= NCF_ISDIR;
894 			break;
895 		case VLNK:
896 			ncp->nc_flag |= NCF_ISSYMLINK;
897 			/* XXX cache the contents of the symlink */
898 			break;
899 		default:
900 			break;
901 		}
902 		atomic_add_int(&numcache, 1);
903 		ncp->nc_error = 0;
904 		/* XXX: this is a hack to work-around the lack of a real pfs vfs
905 		 * implementation*/
906 		if (mp != NULL)
907 			vp->v_pfsmp = mp;
908 	} else {
909 		/*
910 		 * When creating a negative cache hit we set the
911 		 * namecache_gen.  A later resolve will clean out the
912 		 * negative cache hit if the mount point's namecache_gen
913 		 * has changed.  Used by devfs, could also be used by
914 		 * other remote FSs.
915 		 */
916 		ncp->nc_vp = NULL;
917 		spin_lock(&ncspin);
918 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
919 		++numneg;
920 		spin_unlock(&ncspin);
921 		ncp->nc_error = ENOENT;
922 		if (mp)
923 			VFS_NCPGEN_SET(mp, ncp);
924 	}
925 	ncp->nc_flag &= ~(NCF_UNRESOLVED | NCF_DEFEREDZAP);
926 }
927 
928 /*
929  * MPSAFE
930  */
931 void
932 cache_setvp(struct nchandle *nch, struct vnode *vp)
933 {
934 	_cache_setvp(nch->mount, nch->ncp, vp);
935 }
936 
937 /*
938  * MPSAFE
939  */
940 void
941 cache_settimeout(struct nchandle *nch, int nticks)
942 {
943 	struct namecache *ncp = nch->ncp;
944 
945 	if ((ncp->nc_timeout = ticks + nticks) == 0)
946 		ncp->nc_timeout = 1;
947 }
948 
949 /*
950  * Disassociate the vnode or negative-cache association and mark a
951  * namecache entry as unresolved again.  Note that the ncp is still
952  * left in the hash table and still linked to its parent.
953  *
954  * The ncp should be locked and refd on entry and will remain locked and refd
955  * on return.
956  *
957  * This routine is normally never called on a directory containing children.
958  * However, NFS often does just that in its rename() code as a cop-out to
959  * avoid complex namespace operations.  This disconnects a directory vnode
960  * from its namecache and can cause the OLDAPI and NEWAPI to get out of
961  * sync.
962  *
963  * MPSAFE
964  */
965 static
966 void
967 _cache_setunresolved(struct namecache *ncp)
968 {
969 	struct vnode *vp;
970 
971 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
972 		ncp->nc_flag |= NCF_UNRESOLVED;
973 		ncp->nc_timeout = 0;
974 		ncp->nc_error = ENOTCONN;
975 		if ((vp = ncp->nc_vp) != NULL) {
976 			atomic_add_int(&numcache, -1);
977 			spin_lock(&vp->v_spin);
978 			ncp->nc_vp = NULL;
979 			TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
980 			spin_unlock(&vp->v_spin);
981 
982 			/*
983 			 * Any vp associated with an ncp with children is
984 			 * held by that ncp.  Any vp associated with a locked
985 			 * ncp is held by that ncp.  These conditions must be
986 			 * undone when the vp is cleared out from the ncp.
987 			 */
988 			if (!TAILQ_EMPTY(&ncp->nc_list))
989 				vdrop(vp);
990 			if (ncp->nc_exlocks)
991 				vdrop(vp);
992 		} else {
993 			spin_lock(&ncspin);
994 			TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
995 			--numneg;
996 			spin_unlock(&ncspin);
997 		}
998 		ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK);
999 	}
1000 }
1001 
1002 /*
1003  * The cache_nresolve() code calls this function to automatically
1004  * set a resolved cache element to unresolved if it has timed out
1005  * or if it is a negative cache hit and the mount point namecache_gen
1006  * has changed.
1007  *
1008  * MPSAFE
1009  */
1010 static __inline void
1011 _cache_auto_unresolve(struct mount *mp, struct namecache *ncp)
1012 {
1013 	/*
1014 	 * Already in an unresolved state, nothing to do.
1015 	 */
1016 	if (ncp->nc_flag & NCF_UNRESOLVED)
1017 		return;
1018 
1019 	/*
1020 	 * Try to zap entries that have timed out.  We have
1021 	 * to be careful here because locked leafs may depend
1022 	 * on the vnode remaining intact in a parent, so only
1023 	 * do this under very specific conditions.
1024 	 */
1025 	if (ncp->nc_timeout && (int)(ncp->nc_timeout - ticks) < 0 &&
1026 	    TAILQ_EMPTY(&ncp->nc_list)) {
1027 		_cache_setunresolved(ncp);
1028 		return;
1029 	}
1030 
1031 	/*
1032 	 * If a resolved negative cache hit is invalid due to
1033 	 * the mount's namecache generation being bumped, zap it.
1034 	 */
1035 	if (ncp->nc_vp == NULL && VFS_NCPGEN_TEST(mp, ncp)) {
1036 		_cache_setunresolved(ncp);
1037 		return;
1038 	}
1039 }
1040 
1041 /*
1042  * MPSAFE
1043  */
1044 void
1045 cache_setunresolved(struct nchandle *nch)
1046 {
1047 	_cache_setunresolved(nch->ncp);
1048 }
1049 
1050 /*
1051  * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
1052  * looking for matches.  This flag tells the lookup code when it must
1053  * check for a mount linkage and also prevents the directories in question
1054  * from being deleted or renamed.
1055  *
1056  * MPSAFE
1057  */
1058 static
1059 int
1060 cache_clrmountpt_callback(struct mount *mp, void *data)
1061 {
1062 	struct nchandle *nch = data;
1063 
1064 	if (mp->mnt_ncmounton.ncp == nch->ncp)
1065 		return(1);
1066 	if (mp->mnt_ncmountpt.ncp == nch->ncp)
1067 		return(1);
1068 	return(0);
1069 }
1070 
1071 /*
1072  * MPSAFE
1073  */
1074 void
1075 cache_clrmountpt(struct nchandle *nch)
1076 {
1077 	int count;
1078 
1079 	count = mountlist_scan(cache_clrmountpt_callback, nch,
1080 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1081 	if (count == 0)
1082 		nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
1083 }
1084 
1085 /*
1086  * Invalidate portions of the namecache topology given a starting entry.
1087  * The passed ncp is set to an unresolved state and:
1088  *
1089  * The passed ncp must be referencxed and locked.  The routine may unlock
1090  * and relock ncp several times, and will recheck the children and loop
1091  * to catch races.  When done the passed ncp will be returned with the
1092  * reference and lock intact.
1093  *
1094  * CINV_DESTROY		- Set a flag in the passed ncp entry indicating
1095  *			  that the physical underlying nodes have been
1096  *			  destroyed... as in deleted.  For example, when
1097  *			  a directory is removed.  This will cause record
1098  *			  lookups on the name to no longer be able to find
1099  *			  the record and tells the resolver to return failure
1100  *			  rather then trying to resolve through the parent.
1101  *
1102  *			  The topology itself, including ncp->nc_name,
1103  *			  remains intact.
1104  *
1105  *			  This only applies to the passed ncp, if CINV_CHILDREN
1106  *			  is specified the children are not flagged.
1107  *
1108  * CINV_CHILDREN	- Set all children (recursively) to an unresolved
1109  *			  state as well.
1110  *
1111  *			  Note that this will also have the side effect of
1112  *			  cleaning out any unreferenced nodes in the topology
1113  *			  from the leaves up as the recursion backs out.
1114  *
1115  * Note that the topology for any referenced nodes remains intact, but
1116  * the nodes will be marked as having been destroyed and will be set
1117  * to an unresolved state.
1118  *
1119  * It is possible for cache_inval() to race a cache_resolve(), meaning that
1120  * the namecache entry may not actually be invalidated on return if it was
1121  * revalidated while recursing down into its children.  This code guarentees
1122  * that the node(s) will go through an invalidation cycle, but does not
1123  * guarentee that they will remain in an invalidated state.
1124  *
1125  * Returns non-zero if a revalidation was detected during the invalidation
1126  * recursion, zero otherwise.  Note that since only the original ncp is
1127  * locked the revalidation ultimately can only indicate that the original ncp
1128  * *MIGHT* no have been reresolved.
1129  *
1130  * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
1131  * have to avoid blowing out the kernel stack.  We do this by saving the
1132  * deep namecache node and aborting the recursion, then re-recursing at that
1133  * node using a depth-first algorithm in order to allow multiple deep
1134  * recursions to chain through each other, then we restart the invalidation
1135  * from scratch.
1136  *
1137  * MPSAFE
1138  */
1139 
1140 struct cinvtrack {
1141 	struct namecache *resume_ncp;
1142 	int depth;
1143 };
1144 
1145 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
1146 
1147 static
1148 int
1149 _cache_inval(struct namecache *ncp, int flags)
1150 {
1151 	struct cinvtrack track;
1152 	struct namecache *ncp2;
1153 	int r;
1154 
1155 	track.depth = 0;
1156 	track.resume_ncp = NULL;
1157 
1158 	for (;;) {
1159 		r = _cache_inval_internal(ncp, flags, &track);
1160 		if (track.resume_ncp == NULL)
1161 			break;
1162 		kprintf("Warning: deep namecache recursion at %s\n",
1163 			ncp->nc_name);
1164 		_cache_unlock(ncp);
1165 		while ((ncp2 = track.resume_ncp) != NULL) {
1166 			track.resume_ncp = NULL;
1167 			_cache_lock(ncp2);
1168 			_cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
1169 					     &track);
1170 			_cache_put(ncp2);
1171 		}
1172 		_cache_lock(ncp);
1173 	}
1174 	return(r);
1175 }
1176 
1177 int
1178 cache_inval(struct nchandle *nch, int flags)
1179 {
1180 	return(_cache_inval(nch->ncp, flags));
1181 }
1182 
1183 /*
1184  * Helper for _cache_inval().  The passed ncp is refd and locked and
1185  * remains that way on return, but may be unlocked/relocked multiple
1186  * times by the routine.
1187  */
1188 static int
1189 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
1190 {
1191 	struct namecache *kid;
1192 	struct namecache *nextkid;
1193 	int rcnt = 0;
1194 
1195 	KKASSERT(ncp->nc_exlocks);
1196 
1197 	_cache_setunresolved(ncp);
1198 	if (flags & CINV_DESTROY)
1199 		ncp->nc_flag |= NCF_DESTROYED;
1200 	if ((flags & CINV_CHILDREN) &&
1201 	    (kid = TAILQ_FIRST(&ncp->nc_list)) != NULL
1202 	) {
1203 		_cache_hold(kid);
1204 		if (++track->depth > MAX_RECURSION_DEPTH) {
1205 			track->resume_ncp = ncp;
1206 			_cache_hold(ncp);
1207 			++rcnt;
1208 		}
1209 		_cache_unlock(ncp);
1210 		while (kid) {
1211 			if (track->resume_ncp) {
1212 				_cache_drop(kid);
1213 				break;
1214 			}
1215 			if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
1216 				_cache_hold(nextkid);
1217 			if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
1218 			    TAILQ_FIRST(&kid->nc_list)
1219 			) {
1220 				_cache_lock(kid);
1221 				rcnt += _cache_inval_internal(kid, flags & ~CINV_DESTROY, track);
1222 				_cache_unlock(kid);
1223 			}
1224 			_cache_drop(kid);
1225 			kid = nextkid;
1226 		}
1227 		--track->depth;
1228 		_cache_lock(ncp);
1229 	}
1230 
1231 	/*
1232 	 * Someone could have gotten in there while ncp was unlocked,
1233 	 * retry if so.
1234 	 */
1235 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1236 		++rcnt;
1237 	return (rcnt);
1238 }
1239 
1240 /*
1241  * Invalidate a vnode's namecache associations.  To avoid races against
1242  * the resolver we do not invalidate a node which we previously invalidated
1243  * but which was then re-resolved while we were in the invalidation loop.
1244  *
1245  * Returns non-zero if any namecache entries remain after the invalidation
1246  * loop completed.
1247  *
1248  * NOTE: Unlike the namecache topology which guarentees that ncp's will not
1249  *	 be ripped out of the topology while held, the vnode's v_namecache
1250  *	 list has no such restriction.  NCP's can be ripped out of the list
1251  *	 at virtually any time if not locked, even if held.
1252  *
1253  *	 In addition, the v_namecache list itself must be locked via
1254  *	 the vnode's spinlock.
1255  *
1256  * MPSAFE
1257  */
1258 int
1259 cache_inval_vp(struct vnode *vp, int flags)
1260 {
1261 	struct namecache *ncp;
1262 	struct namecache *next;
1263 
1264 restart:
1265 	spin_lock(&vp->v_spin);
1266 	ncp = TAILQ_FIRST(&vp->v_namecache);
1267 	if (ncp)
1268 		_cache_hold(ncp);
1269 	while (ncp) {
1270 		/* loop entered with ncp held and vp spin-locked */
1271 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1272 			_cache_hold(next);
1273 		spin_unlock(&vp->v_spin);
1274 		_cache_lock(ncp);
1275 		if (ncp->nc_vp != vp) {
1276 			kprintf("Warning: cache_inval_vp: race-A detected on "
1277 				"%s\n", ncp->nc_name);
1278 			_cache_put(ncp);
1279 			if (next)
1280 				_cache_drop(next);
1281 			goto restart;
1282 		}
1283 		_cache_inval(ncp, flags);
1284 		_cache_put(ncp);		/* also releases reference */
1285 		ncp = next;
1286 		spin_lock(&vp->v_spin);
1287 		if (ncp && ncp->nc_vp != vp) {
1288 			spin_unlock(&vp->v_spin);
1289 			kprintf("Warning: cache_inval_vp: race-B detected on "
1290 				"%s\n", ncp->nc_name);
1291 			_cache_drop(ncp);
1292 			goto restart;
1293 		}
1294 	}
1295 	spin_unlock(&vp->v_spin);
1296 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1297 }
1298 
1299 /*
1300  * This routine is used instead of the normal cache_inval_vp() when we
1301  * are trying to recycle otherwise good vnodes.
1302  *
1303  * Return 0 on success, non-zero if not all namecache records could be
1304  * disassociated from the vnode (for various reasons).
1305  *
1306  * MPSAFE
1307  */
1308 int
1309 cache_inval_vp_nonblock(struct vnode *vp)
1310 {
1311 	struct namecache *ncp;
1312 	struct namecache *next;
1313 
1314 	spin_lock(&vp->v_spin);
1315 	ncp = TAILQ_FIRST(&vp->v_namecache);
1316 	if (ncp)
1317 		_cache_hold(ncp);
1318 	while (ncp) {
1319 		/* loop entered with ncp held */
1320 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1321 			_cache_hold(next);
1322 		spin_unlock(&vp->v_spin);
1323 		if (_cache_lock_nonblock(ncp)) {
1324 			_cache_drop(ncp);
1325 			if (next)
1326 				_cache_drop(next);
1327 			goto done;
1328 		}
1329 		if (ncp->nc_vp != vp) {
1330 			kprintf("Warning: cache_inval_vp: race-A detected on "
1331 				"%s\n", ncp->nc_name);
1332 			_cache_put(ncp);
1333 			if (next)
1334 				_cache_drop(next);
1335 			goto done;
1336 		}
1337 		_cache_inval(ncp, 0);
1338 		_cache_put(ncp);		/* also releases reference */
1339 		ncp = next;
1340 		spin_lock(&vp->v_spin);
1341 		if (ncp && ncp->nc_vp != vp) {
1342 			spin_unlock(&vp->v_spin);
1343 			kprintf("Warning: cache_inval_vp: race-B detected on "
1344 				"%s\n", ncp->nc_name);
1345 			_cache_drop(ncp);
1346 			goto done;
1347 		}
1348 	}
1349 	spin_unlock(&vp->v_spin);
1350 done:
1351 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1352 }
1353 
1354 /*
1355  * The source ncp has been renamed to the target ncp.  Both fncp and tncp
1356  * must be locked.  The target ncp is destroyed (as a normal rename-over
1357  * would destroy the target file or directory).
1358  *
1359  * Because there may be references to the source ncp we cannot copy its
1360  * contents to the target.  Instead the source ncp is relinked as the target
1361  * and the target ncp is removed from the namecache topology.
1362  *
1363  * MPSAFE
1364  */
1365 void
1366 cache_rename(struct nchandle *fnch, struct nchandle *tnch)
1367 {
1368 	struct namecache *fncp = fnch->ncp;
1369 	struct namecache *tncp = tnch->ncp;
1370 	struct namecache *tncp_par;
1371 	struct nchash_head *nchpp;
1372 	u_int32_t hash;
1373 	char *oname;
1374 
1375 	/*
1376 	 * Rename fncp (unlink)
1377 	 */
1378 	_cache_unlink_parent(fncp);
1379 	oname = fncp->nc_name;
1380 	fncp->nc_name = tncp->nc_name;
1381 	fncp->nc_nlen = tncp->nc_nlen;
1382 	tncp_par = tncp->nc_parent;
1383 	_cache_hold(tncp_par);
1384 	_cache_lock(tncp_par);
1385 
1386 	/*
1387 	 * Rename fncp (relink)
1388 	 */
1389 	hash = fnv_32_buf(fncp->nc_name, fncp->nc_nlen, FNV1_32_INIT);
1390 	hash = fnv_32_buf(&tncp_par, sizeof(tncp_par), hash);
1391 	nchpp = NCHHASH(hash);
1392 
1393 	spin_lock(&nchpp->spin);
1394 	_cache_link_parent(fncp, tncp_par, nchpp);
1395 	spin_unlock(&nchpp->spin);
1396 
1397 	_cache_put(tncp_par);
1398 
1399 	/*
1400 	 * Get rid of the overwritten tncp (unlink)
1401 	 */
1402 	_cache_setunresolved(tncp);
1403 	_cache_unlink_parent(tncp);
1404 	tncp->nc_name = NULL;
1405 	tncp->nc_nlen = 0;
1406 
1407 	if (oname)
1408 		kfree(oname, M_VFSCACHE);
1409 }
1410 
1411 /*
1412  * vget the vnode associated with the namecache entry.  Resolve the namecache
1413  * entry if necessary.  The passed ncp must be referenced and locked.
1414  *
1415  * lk_type may be LK_SHARED, LK_EXCLUSIVE.  A ref'd, possibly locked
1416  * (depending on the passed lk_type) will be returned in *vpp with an error
1417  * of 0, or NULL will be returned in *vpp with a non-0 error code.  The
1418  * most typical error is ENOENT, meaning that the ncp represents a negative
1419  * cache hit and there is no vnode to retrieve, but other errors can occur
1420  * too.
1421  *
1422  * The vget() can race a reclaim.  If this occurs we re-resolve the
1423  * namecache entry.
1424  *
1425  * There are numerous places in the kernel where vget() is called on a
1426  * vnode while one or more of its namecache entries is locked.  Releasing
1427  * a vnode never deadlocks against locked namecache entries (the vnode
1428  * will not get recycled while referenced ncp's exist).  This means we
1429  * can safely acquire the vnode.  In fact, we MUST NOT release the ncp
1430  * lock when acquiring the vp lock or we might cause a deadlock.
1431  *
1432  * MPSAFE
1433  */
1434 int
1435 cache_vget(struct nchandle *nch, struct ucred *cred,
1436 	   int lk_type, struct vnode **vpp)
1437 {
1438 	struct namecache *ncp;
1439 	struct vnode *vp;
1440 	int error;
1441 
1442 	ncp = nch->ncp;
1443 	KKASSERT(ncp->nc_locktd == curthread);
1444 again:
1445 	vp = NULL;
1446 	if (ncp->nc_flag & NCF_UNRESOLVED)
1447 		error = cache_resolve(nch, cred);
1448 	else
1449 		error = 0;
1450 
1451 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1452 		error = vget(vp, lk_type);
1453 		if (error) {
1454 			/*
1455 			 * VRECLAIM race
1456 			 */
1457 			if (error == ENOENT) {
1458 				kprintf("Warning: vnode reclaim race detected "
1459 					"in cache_vget on %p (%s)\n",
1460 					vp, ncp->nc_name);
1461 				_cache_setunresolved(ncp);
1462 				goto again;
1463 			}
1464 
1465 			/*
1466 			 * Not a reclaim race, some other error.
1467 			 */
1468 			KKASSERT(ncp->nc_vp == vp);
1469 			vp = NULL;
1470 		} else {
1471 			KKASSERT(ncp->nc_vp == vp);
1472 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1473 		}
1474 	}
1475 	if (error == 0 && vp == NULL)
1476 		error = ENOENT;
1477 	*vpp = vp;
1478 	return(error);
1479 }
1480 
1481 int
1482 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
1483 {
1484 	struct namecache *ncp;
1485 	struct vnode *vp;
1486 	int error;
1487 
1488 	ncp = nch->ncp;
1489 	KKASSERT(ncp->nc_locktd == curthread);
1490 again:
1491 	vp = NULL;
1492 	if (ncp->nc_flag & NCF_UNRESOLVED)
1493 		error = cache_resolve(nch, cred);
1494 	else
1495 		error = 0;
1496 
1497 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1498 		error = vget(vp, LK_SHARED);
1499 		if (error) {
1500 			/*
1501 			 * VRECLAIM race
1502 			 */
1503 			if (error == ENOENT) {
1504 				kprintf("Warning: vnode reclaim race detected "
1505 					"in cache_vget on %p (%s)\n",
1506 					vp, ncp->nc_name);
1507 				_cache_setunresolved(ncp);
1508 				goto again;
1509 			}
1510 
1511 			/*
1512 			 * Not a reclaim race, some other error.
1513 			 */
1514 			KKASSERT(ncp->nc_vp == vp);
1515 			vp = NULL;
1516 		} else {
1517 			KKASSERT(ncp->nc_vp == vp);
1518 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1519 			/* caller does not want a lock */
1520 			vn_unlock(vp);
1521 		}
1522 	}
1523 	if (error == 0 && vp == NULL)
1524 		error = ENOENT;
1525 	*vpp = vp;
1526 	return(error);
1527 }
1528 
1529 /*
1530  * Return a referenced vnode representing the parent directory of
1531  * ncp.
1532  *
1533  * Because the caller has locked the ncp it should not be possible for
1534  * the parent ncp to go away.  However, the parent can unresolve its
1535  * dvp at any time so we must be able to acquire a lock on the parent
1536  * to safely access nc_vp.
1537  *
1538  * We have to leave par unlocked when vget()ing dvp to avoid a deadlock,
1539  * so use vhold()/vdrop() while holding the lock to prevent dvp from
1540  * getting destroyed.
1541  *
1542  * MPSAFE - Note vhold() is allowed when dvp has 0 refs if we hold a
1543  *	    lock on the ncp in question..
1544  */
1545 static struct vnode *
1546 cache_dvpref(struct namecache *ncp)
1547 {
1548 	struct namecache *par;
1549 	struct vnode *dvp;
1550 
1551 	dvp = NULL;
1552 	if ((par = ncp->nc_parent) != NULL) {
1553 		_cache_hold(par);
1554 		_cache_lock(par);
1555 		if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
1556 			if ((dvp = par->nc_vp) != NULL)
1557 				vhold(dvp);
1558 		}
1559 		_cache_unlock(par);
1560 		if (dvp) {
1561 			if (vget(dvp, LK_SHARED) == 0) {
1562 				vn_unlock(dvp);
1563 				vdrop(dvp);
1564 				/* return refd, unlocked dvp */
1565 			} else {
1566 				vdrop(dvp);
1567 				dvp = NULL;
1568 			}
1569 		}
1570 		_cache_drop(par);
1571 	}
1572 	return(dvp);
1573 }
1574 
1575 /*
1576  * Convert a directory vnode to a namecache record without any other
1577  * knowledge of the topology.  This ONLY works with directory vnodes and
1578  * is ONLY used by the NFS server.  dvp must be refd but unlocked, and the
1579  * returned ncp (if not NULL) will be held and unlocked.
1580  *
1581  * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
1582  * If 'makeit' is 1 we attempt to track-down and create the namecache topology
1583  * for dvp.  This will fail only if the directory has been deleted out from
1584  * under the caller.
1585  *
1586  * Callers must always check for a NULL return no matter the value of 'makeit'.
1587  *
1588  * To avoid underflowing the kernel stack each recursive call increments
1589  * the makeit variable.
1590  */
1591 
1592 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1593 				  struct vnode *dvp, char *fakename);
1594 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1595 				  struct vnode **saved_dvp);
1596 
1597 int
1598 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
1599 	      struct nchandle *nch)
1600 {
1601 	struct vnode *saved_dvp;
1602 	struct vnode *pvp;
1603 	char *fakename;
1604 	int error;
1605 
1606 	nch->ncp = NULL;
1607 	nch->mount = dvp->v_mount;
1608 	saved_dvp = NULL;
1609 	fakename = NULL;
1610 
1611 	/*
1612 	 * Handle the makeit == 0 degenerate case
1613 	 */
1614 	if (makeit == 0) {
1615 		spin_lock(&dvp->v_spin);
1616 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
1617 		if (nch->ncp)
1618 			cache_hold(nch);
1619 		spin_unlock(&dvp->v_spin);
1620 	}
1621 
1622 	/*
1623 	 * Loop until resolution, inside code will break out on error.
1624 	 */
1625 	while (makeit) {
1626 		/*
1627 		 * Break out if we successfully acquire a working ncp.
1628 		 */
1629 		spin_lock(&dvp->v_spin);
1630 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
1631 		if (nch->ncp) {
1632 			cache_hold(nch);
1633 			spin_unlock(&dvp->v_spin);
1634 			break;
1635 		}
1636 		spin_unlock(&dvp->v_spin);
1637 
1638 		/*
1639 		 * If dvp is the root of its filesystem it should already
1640 		 * have a namecache pointer associated with it as a side
1641 		 * effect of the mount, but it may have been disassociated.
1642 		 */
1643 		if (dvp->v_flag & VROOT) {
1644 			nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
1645 			error = cache_resolve_mp(nch->mount);
1646 			_cache_put(nch->ncp);
1647 			if (ncvp_debug) {
1648 				kprintf("cache_fromdvp: resolve root of mount %p error %d",
1649 					dvp->v_mount, error);
1650 			}
1651 			if (error) {
1652 				if (ncvp_debug)
1653 					kprintf(" failed\n");
1654 				nch->ncp = NULL;
1655 				break;
1656 			}
1657 			if (ncvp_debug)
1658 				kprintf(" succeeded\n");
1659 			continue;
1660 		}
1661 
1662 		/*
1663 		 * If we are recursed too deeply resort to an O(n^2)
1664 		 * algorithm to resolve the namecache topology.  The
1665 		 * resolved pvp is left referenced in saved_dvp to
1666 		 * prevent the tree from being destroyed while we loop.
1667 		 */
1668 		if (makeit > 20) {
1669 			error = cache_fromdvp_try(dvp, cred, &saved_dvp);
1670 			if (error) {
1671 				kprintf("lookupdotdot(longpath) failed %d "
1672 				       "dvp %p\n", error, dvp);
1673 				nch->ncp = NULL;
1674 				break;
1675 			}
1676 			continue;
1677 		}
1678 
1679 		/*
1680 		 * Get the parent directory and resolve its ncp.
1681 		 */
1682 		if (fakename) {
1683 			kfree(fakename, M_TEMP);
1684 			fakename = NULL;
1685 		}
1686 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1687 					  &fakename);
1688 		if (error) {
1689 			kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
1690 			break;
1691 		}
1692 		vn_unlock(pvp);
1693 
1694 		/*
1695 		 * Reuse makeit as a recursion depth counter.  On success
1696 		 * nch will be fully referenced.
1697 		 */
1698 		cache_fromdvp(pvp, cred, makeit + 1, nch);
1699 		vrele(pvp);
1700 		if (nch->ncp == NULL)
1701 			break;
1702 
1703 		/*
1704 		 * Do an inefficient scan of pvp (embodied by ncp) to look
1705 		 * for dvp.  This will create a namecache record for dvp on
1706 		 * success.  We loop up to recheck on success.
1707 		 *
1708 		 * ncp and dvp are both held but not locked.
1709 		 */
1710 		error = cache_inefficient_scan(nch, cred, dvp, fakename);
1711 		if (error) {
1712 			kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
1713 				pvp, nch->ncp->nc_name, dvp);
1714 			cache_drop(nch);
1715 			/* nch was NULLed out, reload mount */
1716 			nch->mount = dvp->v_mount;
1717 			break;
1718 		}
1719 		if (ncvp_debug) {
1720 			kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
1721 				pvp, nch->ncp->nc_name);
1722 		}
1723 		cache_drop(nch);
1724 		/* nch was NULLed out, reload mount */
1725 		nch->mount = dvp->v_mount;
1726 	}
1727 
1728 	/*
1729 	 * If nch->ncp is non-NULL it will have been held already.
1730 	 */
1731 	if (fakename)
1732 		kfree(fakename, M_TEMP);
1733 	if (saved_dvp)
1734 		vrele(saved_dvp);
1735 	if (nch->ncp)
1736 		return (0);
1737 	return (EINVAL);
1738 }
1739 
1740 /*
1741  * Go up the chain of parent directories until we find something
1742  * we can resolve into the namecache.  This is very inefficient.
1743  */
1744 static
1745 int
1746 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1747 		  struct vnode **saved_dvp)
1748 {
1749 	struct nchandle nch;
1750 	struct vnode *pvp;
1751 	int error;
1752 	static time_t last_fromdvp_report;
1753 	char *fakename;
1754 
1755 	/*
1756 	 * Loop getting the parent directory vnode until we get something we
1757 	 * can resolve in the namecache.
1758 	 */
1759 	vref(dvp);
1760 	nch.mount = dvp->v_mount;
1761 	nch.ncp = NULL;
1762 	fakename = NULL;
1763 
1764 	for (;;) {
1765 		if (fakename) {
1766 			kfree(fakename, M_TEMP);
1767 			fakename = NULL;
1768 		}
1769 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1770 					  &fakename);
1771 		if (error) {
1772 			vrele(dvp);
1773 			break;
1774 		}
1775 		vn_unlock(pvp);
1776 		spin_lock(&pvp->v_spin);
1777 		if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
1778 			_cache_hold(nch.ncp);
1779 			spin_unlock(&pvp->v_spin);
1780 			vrele(pvp);
1781 			break;
1782 		}
1783 		spin_unlock(&pvp->v_spin);
1784 		if (pvp->v_flag & VROOT) {
1785 			nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
1786 			error = cache_resolve_mp(nch.mount);
1787 			_cache_unlock(nch.ncp);
1788 			vrele(pvp);
1789 			if (error) {
1790 				_cache_drop(nch.ncp);
1791 				nch.ncp = NULL;
1792 				vrele(dvp);
1793 			}
1794 			break;
1795 		}
1796 		vrele(dvp);
1797 		dvp = pvp;
1798 	}
1799 	if (error == 0) {
1800 		if (last_fromdvp_report != time_second) {
1801 			last_fromdvp_report = time_second;
1802 			kprintf("Warning: extremely inefficient path "
1803 				"resolution on %s\n",
1804 				nch.ncp->nc_name);
1805 		}
1806 		error = cache_inefficient_scan(&nch, cred, dvp, fakename);
1807 
1808 		/*
1809 		 * Hopefully dvp now has a namecache record associated with
1810 		 * it.  Leave it referenced to prevent the kernel from
1811 		 * recycling the vnode.  Otherwise extremely long directory
1812 		 * paths could result in endless recycling.
1813 		 */
1814 		if (*saved_dvp)
1815 		    vrele(*saved_dvp);
1816 		*saved_dvp = dvp;
1817 		_cache_drop(nch.ncp);
1818 	}
1819 	if (fakename)
1820 		kfree(fakename, M_TEMP);
1821 	return (error);
1822 }
1823 
1824 /*
1825  * Do an inefficient scan of the directory represented by ncp looking for
1826  * the directory vnode dvp.  ncp must be held but not locked on entry and
1827  * will be held on return.  dvp must be refd but not locked on entry and
1828  * will remain refd on return.
1829  *
1830  * Why do this at all?  Well, due to its stateless nature the NFS server
1831  * converts file handles directly to vnodes without necessarily going through
1832  * the namecache ops that would otherwise create the namecache topology
1833  * leading to the vnode.  We could either (1) Change the namecache algorithms
1834  * to allow disconnect namecache records that are re-merged opportunistically,
1835  * or (2) Make the NFS server backtrack and scan to recover a connected
1836  * namecache topology in order to then be able to issue new API lookups.
1837  *
1838  * It turns out that (1) is a huge mess.  It takes a nice clean set of
1839  * namecache algorithms and introduces a lot of complication in every subsystem
1840  * that calls into the namecache to deal with the re-merge case, especially
1841  * since we are using the namecache to placehold negative lookups and the
1842  * vnode might not be immediately assigned. (2) is certainly far less
1843  * efficient then (1), but since we are only talking about directories here
1844  * (which are likely to remain cached), the case does not actually run all
1845  * that often and has the supreme advantage of not polluting the namecache
1846  * algorithms.
1847  *
1848  * If a fakename is supplied just construct a namecache entry using the
1849  * fake name.
1850  */
1851 static int
1852 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1853 		       struct vnode *dvp, char *fakename)
1854 {
1855 	struct nlcomponent nlc;
1856 	struct nchandle rncp;
1857 	struct dirent *den;
1858 	struct vnode *pvp;
1859 	struct vattr vat;
1860 	struct iovec iov;
1861 	struct uio uio;
1862 	int blksize;
1863 	int eofflag;
1864 	int bytes;
1865 	char *rbuf;
1866 	int error;
1867 
1868 	vat.va_blocksize = 0;
1869 	if ((error = VOP_GETATTR(dvp, &vat)) != 0)
1870 		return (error);
1871 	cache_lock(nch);
1872 	error = cache_vref(nch, cred, &pvp);
1873 	cache_unlock(nch);
1874 	if (error)
1875 		return (error);
1876 	if (ncvp_debug) {
1877 		kprintf("inefficient_scan: directory iosize %ld "
1878 			"vattr fileid = %lld\n",
1879 			vat.va_blocksize,
1880 			(long long)vat.va_fileid);
1881 	}
1882 
1883 	/*
1884 	 * Use the supplied fakename if not NULL.  Fake names are typically
1885 	 * not in the actual filesystem hierarchy.  This is used by HAMMER
1886 	 * to glue @@timestamp recursions together.
1887 	 */
1888 	if (fakename) {
1889 		nlc.nlc_nameptr = fakename;
1890 		nlc.nlc_namelen = strlen(fakename);
1891 		rncp = cache_nlookup(nch, &nlc);
1892 		goto done;
1893 	}
1894 
1895 	if ((blksize = vat.va_blocksize) == 0)
1896 		blksize = DEV_BSIZE;
1897 	rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
1898 	rncp.ncp = NULL;
1899 
1900 	eofflag = 0;
1901 	uio.uio_offset = 0;
1902 again:
1903 	iov.iov_base = rbuf;
1904 	iov.iov_len = blksize;
1905 	uio.uio_iov = &iov;
1906 	uio.uio_iovcnt = 1;
1907 	uio.uio_resid = blksize;
1908 	uio.uio_segflg = UIO_SYSSPACE;
1909 	uio.uio_rw = UIO_READ;
1910 	uio.uio_td = curthread;
1911 
1912 	if (ncvp_debug >= 2)
1913 		kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
1914 	error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
1915 	if (error == 0) {
1916 		den = (struct dirent *)rbuf;
1917 		bytes = blksize - uio.uio_resid;
1918 
1919 		while (bytes > 0) {
1920 			if (ncvp_debug >= 2) {
1921 				kprintf("cache_inefficient_scan: %*.*s\n",
1922 					den->d_namlen, den->d_namlen,
1923 					den->d_name);
1924 			}
1925 			if (den->d_type != DT_WHT &&
1926 			    den->d_ino == vat.va_fileid) {
1927 				if (ncvp_debug) {
1928 					kprintf("cache_inefficient_scan: "
1929 					       "MATCHED inode %lld path %s/%*.*s\n",
1930 					       (long long)vat.va_fileid,
1931 					       nch->ncp->nc_name,
1932 					       den->d_namlen, den->d_namlen,
1933 					       den->d_name);
1934 				}
1935 				nlc.nlc_nameptr = den->d_name;
1936 				nlc.nlc_namelen = den->d_namlen;
1937 				rncp = cache_nlookup(nch, &nlc);
1938 				KKASSERT(rncp.ncp != NULL);
1939 				break;
1940 			}
1941 			bytes -= _DIRENT_DIRSIZ(den);
1942 			den = _DIRENT_NEXT(den);
1943 		}
1944 		if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
1945 			goto again;
1946 	}
1947 	kfree(rbuf, M_TEMP);
1948 done:
1949 	vrele(pvp);
1950 	if (rncp.ncp) {
1951 		if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
1952 			_cache_setvp(rncp.mount, rncp.ncp, dvp);
1953 			if (ncvp_debug >= 2) {
1954 				kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
1955 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
1956 			}
1957 		} else {
1958 			if (ncvp_debug >= 2) {
1959 				kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
1960 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
1961 					rncp.ncp->nc_vp);
1962 			}
1963 		}
1964 		if (rncp.ncp->nc_vp == NULL)
1965 			error = rncp.ncp->nc_error;
1966 		/*
1967 		 * Release rncp after a successful nlookup.  rncp was fully
1968 		 * referenced.
1969 		 */
1970 		cache_put(&rncp);
1971 	} else {
1972 		kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
1973 			dvp, nch->ncp->nc_name);
1974 		error = ENOENT;
1975 	}
1976 	return (error);
1977 }
1978 
1979 /*
1980  * Zap a namecache entry.  The ncp is unconditionally set to an unresolved
1981  * state, which disassociates it from its vnode or ncneglist.
1982  *
1983  * Then, if there are no additional references to the ncp and no children,
1984  * the ncp is removed from the topology and destroyed.
1985  *
1986  * References and/or children may exist if the ncp is in the middle of the
1987  * topology, preventing the ncp from being destroyed.
1988  *
1989  * This function must be called with the ncp held and locked and will unlock
1990  * and drop it during zapping.
1991  *
1992  * If nonblock is non-zero and the parent ncp cannot be locked we give up.
1993  * This case can occur in the cache_drop() path.
1994  *
1995  * This function may returned a held (but NOT locked) parent node which the
1996  * caller must drop.  We do this so _cache_drop() can loop, to avoid
1997  * blowing out the kernel stack.
1998  *
1999  * WARNING!  For MPSAFE operation this routine must acquire up to three
2000  *	     spin locks to be able to safely test nc_refs.  Lock order is
2001  *	     very important.
2002  *
2003  *	     hash spinlock if on hash list
2004  *	     parent spinlock if child of parent
2005  *	     (the ncp is unresolved so there is no vnode association)
2006  */
2007 static struct namecache *
2008 cache_zap(struct namecache *ncp, int nonblock)
2009 {
2010 	struct namecache *par;
2011 	struct vnode *dropvp;
2012 	int refs;
2013 
2014 	/*
2015 	 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
2016 	 */
2017 	_cache_setunresolved(ncp);
2018 
2019 	/*
2020 	 * Try to scrap the entry and possibly tail-recurse on its parent.
2021 	 * We only scrap unref'd (other then our ref) unresolved entries,
2022 	 * we do not scrap 'live' entries.
2023 	 *
2024 	 * Note that once the spinlocks are acquired if nc_refs == 1 no
2025 	 * other references are possible.  If it isn't, however, we have
2026 	 * to decrement but also be sure to avoid a 1->0 transition.
2027 	 */
2028 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
2029 	KKASSERT(ncp->nc_refs > 0);
2030 
2031 	/*
2032 	 * Acquire locks.  Note that the parent can't go away while we hold
2033 	 * a child locked.
2034 	 */
2035 	if ((par = ncp->nc_parent) != NULL) {
2036 		if (nonblock) {
2037 			for (;;) {
2038 				if (_cache_lock_nonblock(par) == 0)
2039 					break;
2040 				refs = ncp->nc_refs;
2041 				ncp->nc_flag |= NCF_DEFEREDZAP;
2042 				++numdefered;	/* MP race ok */
2043 				if (atomic_cmpset_int(&ncp->nc_refs,
2044 						      refs, refs - 1)) {
2045 					_cache_unlock(ncp);
2046 					return(NULL);
2047 				}
2048 				cpu_pause();
2049 			}
2050 			_cache_hold(par);
2051 		} else {
2052 			_cache_hold(par);
2053 			_cache_lock(par);
2054 		}
2055 		spin_lock(&ncp->nc_head->spin);
2056 	}
2057 
2058 	/*
2059 	 * If someone other then us has a ref or we have children
2060 	 * we cannot zap the entry.  The 1->0 transition and any
2061 	 * further list operation is protected by the spinlocks
2062 	 * we have acquired but other transitions are not.
2063 	 */
2064 	for (;;) {
2065 		refs = ncp->nc_refs;
2066 		if (refs == 1 && TAILQ_EMPTY(&ncp->nc_list))
2067 			break;
2068 		if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1)) {
2069 			if (par) {
2070 				spin_unlock(&ncp->nc_head->spin);
2071 				_cache_put(par);
2072 			}
2073 			_cache_unlock(ncp);
2074 			return(NULL);
2075 		}
2076 		cpu_pause();
2077 	}
2078 
2079 	/*
2080 	 * We are the only ref and with the spinlocks held no further
2081 	 * refs can be acquired by others.
2082 	 *
2083 	 * Remove us from the hash list and parent list.  We have to
2084 	 * drop a ref on the parent's vp if the parent's list becomes
2085 	 * empty.
2086 	 */
2087 	dropvp = NULL;
2088 	if (par) {
2089 		struct nchash_head *nchpp = ncp->nc_head;
2090 
2091 		KKASSERT(nchpp != NULL);
2092 		LIST_REMOVE(ncp, nc_hash);
2093 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
2094 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
2095 			dropvp = par->nc_vp;
2096 		ncp->nc_head = NULL;
2097 		ncp->nc_parent = NULL;
2098 		spin_unlock(&nchpp->spin);
2099 		_cache_unlock(par);
2100 	} else {
2101 		KKASSERT(ncp->nc_head == NULL);
2102 	}
2103 
2104 	/*
2105 	 * ncp should not have picked up any refs.  Physically
2106 	 * destroy the ncp.
2107 	 */
2108 	KKASSERT(ncp->nc_refs == 1);
2109 	/* _cache_unlock(ncp) not required */
2110 	ncp->nc_refs = -1;	/* safety */
2111 	if (ncp->nc_name)
2112 		kfree(ncp->nc_name, M_VFSCACHE);
2113 	kfree(ncp, M_VFSCACHE);
2114 
2115 	/*
2116 	 * Delayed drop (we had to release our spinlocks)
2117 	 *
2118 	 * The refed parent (if not  NULL) must be dropped.  The
2119 	 * caller is responsible for looping.
2120 	 */
2121 	if (dropvp)
2122 		vdrop(dropvp);
2123 	return(par);
2124 }
2125 
2126 /*
2127  * Clean up dangling negative cache and defered-drop entries in the
2128  * namecache.
2129  */
2130 typedef enum { CHI_LOW, CHI_HIGH } cache_hs_t;
2131 
2132 static cache_hs_t neg_cache_hysteresis_state = CHI_LOW;
2133 static cache_hs_t pos_cache_hysteresis_state = CHI_LOW;
2134 
2135 void
2136 cache_hysteresis(void)
2137 {
2138 	int poslimit;
2139 
2140 	/*
2141 	 * Don't cache too many negative hits.  We use hysteresis to reduce
2142 	 * the impact on the critical path.
2143 	 */
2144 	switch(neg_cache_hysteresis_state) {
2145 	case CHI_LOW:
2146 		if (numneg > MINNEG && numneg * ncnegfactor > numcache) {
2147 			_cache_cleanneg(10);
2148 			neg_cache_hysteresis_state = CHI_HIGH;
2149 		}
2150 		break;
2151 	case CHI_HIGH:
2152 		if (numneg > MINNEG * 9 / 10 &&
2153 		    numneg * ncnegfactor * 9 / 10 > numcache
2154 		) {
2155 			_cache_cleanneg(10);
2156 		} else {
2157 			neg_cache_hysteresis_state = CHI_LOW;
2158 		}
2159 		break;
2160 	}
2161 
2162 	/*
2163 	 * Don't cache too many positive hits.  We use hysteresis to reduce
2164 	 * the impact on the critical path.
2165 	 *
2166 	 * Excessive positive hits can accumulate due to large numbers of
2167 	 * hardlinks (the vnode cache will not prevent hl ncps from growing
2168 	 * into infinity).
2169 	 */
2170 	if ((poslimit = ncposlimit) == 0)
2171 		poslimit = desiredvnodes * 2;
2172 
2173 	switch(pos_cache_hysteresis_state) {
2174 	case CHI_LOW:
2175 		if (numcache > poslimit && numcache > MINPOS) {
2176 			_cache_cleanpos(10);
2177 			pos_cache_hysteresis_state = CHI_HIGH;
2178 		}
2179 		break;
2180 	case CHI_HIGH:
2181 		if (numcache > poslimit * 5 / 6 && numcache > MINPOS) {
2182 			_cache_cleanpos(10);
2183 		} else {
2184 			pos_cache_hysteresis_state = CHI_LOW;
2185 		}
2186 		break;
2187 	}
2188 
2189 	/*
2190 	 * Clean out dangling defered-zap ncps which could not
2191 	 * be cleanly dropped if too many build up.  Note
2192 	 * that numdefered is not an exact number as such ncps
2193 	 * can be reused and the counter is not handled in a MP
2194 	 * safe manner by design.
2195 	 */
2196 	if (numdefered * ncnegfactor > numcache) {
2197 		_cache_cleandefered();
2198 	}
2199 }
2200 
2201 /*
2202  * NEW NAMECACHE LOOKUP API
2203  *
2204  * Lookup an entry in the namecache.  The passed par_nch must be referenced
2205  * and unlocked.  A referenced and locked nchandle with a non-NULL nch.ncp
2206  * is ALWAYS returned, eve if the supplied component is illegal.
2207  *
2208  * The resulting namecache entry should be returned to the system with
2209  * cache_put() or cache_unlock() + cache_drop().
2210  *
2211  * namecache locks are recursive but care must be taken to avoid lock order
2212  * reversals (hence why the passed par_nch must be unlocked).  Locking
2213  * rules are to order for parent traversals, not for child traversals.
2214  *
2215  * Nobody else will be able to manipulate the associated namespace (e.g.
2216  * create, delete, rename, rename-target) until the caller unlocks the
2217  * entry.
2218  *
2219  * The returned entry will be in one of three states:  positive hit (non-null
2220  * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
2221  * Unresolved entries must be resolved through the filesystem to associate the
2222  * vnode and/or determine whether a positive or negative hit has occured.
2223  *
2224  * It is not necessary to lock a directory in order to lock namespace under
2225  * that directory.  In fact, it is explicitly not allowed to do that.  A
2226  * directory is typically only locked when being created, renamed, or
2227  * destroyed.
2228  *
2229  * The directory (par) may be unresolved, in which case any returned child
2230  * will likely also be marked unresolved.  Likely but not guarenteed.  Since
2231  * the filesystem lookup requires a resolved directory vnode the caller is
2232  * responsible for resolving the namecache chain top-down.  This API
2233  * specifically allows whole chains to be created in an unresolved state.
2234  */
2235 struct nchandle
2236 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
2237 {
2238 	struct nchandle nch;
2239 	struct namecache *ncp;
2240 	struct namecache *new_ncp;
2241 	struct nchash_head *nchpp;
2242 	struct mount *mp;
2243 	u_int32_t hash;
2244 	globaldata_t gd;
2245 	int par_locked;
2246 
2247 	numcalls++;
2248 	gd = mycpu;
2249 	mp = par_nch->mount;
2250 	par_locked = 0;
2251 
2252 	/*
2253 	 * This is a good time to call it, no ncp's are locked by
2254 	 * the caller or us.
2255 	 */
2256 	cache_hysteresis();
2257 
2258 	/*
2259 	 * Try to locate an existing entry
2260 	 */
2261 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2262 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2263 	new_ncp = NULL;
2264 	nchpp = NCHHASH(hash);
2265 restart:
2266 	spin_lock(&nchpp->spin);
2267 	LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2268 		numchecks++;
2269 
2270 		/*
2271 		 * Break out if we find a matching entry.  Note that
2272 		 * UNRESOLVED entries may match, but DESTROYED entries
2273 		 * do not.
2274 		 */
2275 		if (ncp->nc_parent == par_nch->ncp &&
2276 		    ncp->nc_nlen == nlc->nlc_namelen &&
2277 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2278 		    (ncp->nc_flag & NCF_DESTROYED) == 0
2279 		) {
2280 			_cache_hold(ncp);
2281 			spin_unlock(&nchpp->spin);
2282 			if (par_locked) {
2283 				_cache_unlock(par_nch->ncp);
2284 				par_locked = 0;
2285 			}
2286 			if (_cache_lock_special(ncp) == 0) {
2287 				_cache_auto_unresolve(mp, ncp);
2288 				if (new_ncp)
2289 					_cache_free(new_ncp);
2290 				goto found;
2291 			}
2292 			_cache_get(ncp);
2293 			_cache_put(ncp);
2294 			_cache_drop(ncp);
2295 			goto restart;
2296 		}
2297 	}
2298 
2299 	/*
2300 	 * We failed to locate an entry, create a new entry and add it to
2301 	 * the cache.  The parent ncp must also be locked so we
2302 	 * can link into it.
2303 	 *
2304 	 * We have to relookup after possibly blocking in kmalloc or
2305 	 * when locking par_nch.
2306 	 *
2307 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
2308 	 *	 mount case, in which case nc_name will be NULL.
2309 	 */
2310 	if (new_ncp == NULL) {
2311 		spin_unlock(&nchpp->spin);
2312 		new_ncp = cache_alloc(nlc->nlc_namelen);
2313 		if (nlc->nlc_namelen) {
2314 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
2315 			      nlc->nlc_namelen);
2316 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
2317 		}
2318 		goto restart;
2319 	}
2320 	if (par_locked == 0) {
2321 		spin_unlock(&nchpp->spin);
2322 		_cache_lock(par_nch->ncp);
2323 		par_locked = 1;
2324 		goto restart;
2325 	}
2326 
2327 	/*
2328 	 * WARNING!  We still hold the spinlock.  We have to set the hash
2329 	 *	     table entry atomically.
2330 	 */
2331 	ncp = new_ncp;
2332 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
2333 	spin_unlock(&nchpp->spin);
2334 	_cache_unlock(par_nch->ncp);
2335 	/* par_locked = 0 - not used */
2336 found:
2337 	/*
2338 	 * stats and namecache size management
2339 	 */
2340 	if (ncp->nc_flag & NCF_UNRESOLVED)
2341 		++gd->gd_nchstats->ncs_miss;
2342 	else if (ncp->nc_vp)
2343 		++gd->gd_nchstats->ncs_goodhits;
2344 	else
2345 		++gd->gd_nchstats->ncs_neghits;
2346 	nch.mount = mp;
2347 	nch.ncp = ncp;
2348 	atomic_add_int(&nch.mount->mnt_refs, 1);
2349 	return(nch);
2350 }
2351 
2352 /*
2353  * This is a non-blocking verison of cache_nlookup() used by
2354  * nfs_readdirplusrpc_uio().  It can fail for any reason and
2355  * will return nch.ncp == NULL in that case.
2356  */
2357 struct nchandle
2358 cache_nlookup_nonblock(struct nchandle *par_nch, struct nlcomponent *nlc)
2359 {
2360 	struct nchandle nch;
2361 	struct namecache *ncp;
2362 	struct namecache *new_ncp;
2363 	struct nchash_head *nchpp;
2364 	struct mount *mp;
2365 	u_int32_t hash;
2366 	globaldata_t gd;
2367 	int par_locked;
2368 
2369 	numcalls++;
2370 	gd = mycpu;
2371 	mp = par_nch->mount;
2372 	par_locked = 0;
2373 
2374 	/*
2375 	 * Try to locate an existing entry
2376 	 */
2377 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2378 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2379 	new_ncp = NULL;
2380 	nchpp = NCHHASH(hash);
2381 restart:
2382 	spin_lock(&nchpp->spin);
2383 	LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2384 		numchecks++;
2385 
2386 		/*
2387 		 * Break out if we find a matching entry.  Note that
2388 		 * UNRESOLVED entries may match, but DESTROYED entries
2389 		 * do not.
2390 		 */
2391 		if (ncp->nc_parent == par_nch->ncp &&
2392 		    ncp->nc_nlen == nlc->nlc_namelen &&
2393 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2394 		    (ncp->nc_flag & NCF_DESTROYED) == 0
2395 		) {
2396 			_cache_hold(ncp);
2397 			spin_unlock(&nchpp->spin);
2398 			if (par_locked) {
2399 				_cache_unlock(par_nch->ncp);
2400 				par_locked = 0;
2401 			}
2402 			if (_cache_lock_special(ncp) == 0) {
2403 				_cache_auto_unresolve(mp, ncp);
2404 				if (new_ncp) {
2405 					_cache_free(new_ncp);
2406 					new_ncp = NULL;
2407 				}
2408 				goto found;
2409 			}
2410 			_cache_drop(ncp);
2411 			goto failed;
2412 		}
2413 	}
2414 
2415 	/*
2416 	 * We failed to locate an entry, create a new entry and add it to
2417 	 * the cache.  The parent ncp must also be locked so we
2418 	 * can link into it.
2419 	 *
2420 	 * We have to relookup after possibly blocking in kmalloc or
2421 	 * when locking par_nch.
2422 	 *
2423 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
2424 	 *	 mount case, in which case nc_name will be NULL.
2425 	 */
2426 	if (new_ncp == NULL) {
2427 		spin_unlock(&nchpp->spin);
2428 		new_ncp = cache_alloc(nlc->nlc_namelen);
2429 		if (nlc->nlc_namelen) {
2430 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
2431 			      nlc->nlc_namelen);
2432 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
2433 		}
2434 		goto restart;
2435 	}
2436 	if (par_locked == 0) {
2437 		spin_unlock(&nchpp->spin);
2438 		if (_cache_lock_nonblock(par_nch->ncp) == 0) {
2439 			par_locked = 1;
2440 			goto restart;
2441 		}
2442 		goto failed;
2443 	}
2444 
2445 	/*
2446 	 * WARNING!  We still hold the spinlock.  We have to set the hash
2447 	 *	     table entry atomically.
2448 	 */
2449 	ncp = new_ncp;
2450 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
2451 	spin_unlock(&nchpp->spin);
2452 	_cache_unlock(par_nch->ncp);
2453 	/* par_locked = 0 - not used */
2454 found:
2455 	/*
2456 	 * stats and namecache size management
2457 	 */
2458 	if (ncp->nc_flag & NCF_UNRESOLVED)
2459 		++gd->gd_nchstats->ncs_miss;
2460 	else if (ncp->nc_vp)
2461 		++gd->gd_nchstats->ncs_goodhits;
2462 	else
2463 		++gd->gd_nchstats->ncs_neghits;
2464 	nch.mount = mp;
2465 	nch.ncp = ncp;
2466 	atomic_add_int(&nch.mount->mnt_refs, 1);
2467 	return(nch);
2468 failed:
2469 	if (new_ncp) {
2470 		_cache_free(new_ncp);
2471 		new_ncp = NULL;
2472 	}
2473 	nch.mount = NULL;
2474 	nch.ncp = NULL;
2475 	return(nch);
2476 }
2477 
2478 /*
2479  * The namecache entry is marked as being used as a mount point.
2480  * Locate the mount if it is visible to the caller.
2481  */
2482 struct findmount_info {
2483 	struct mount *result;
2484 	struct mount *nch_mount;
2485 	struct namecache *nch_ncp;
2486 };
2487 
2488 static
2489 int
2490 cache_findmount_callback(struct mount *mp, void *data)
2491 {
2492 	struct findmount_info *info = data;
2493 
2494 	/*
2495 	 * Check the mount's mounted-on point against the passed nch.
2496 	 */
2497 	if (mp->mnt_ncmounton.mount == info->nch_mount &&
2498 	    mp->mnt_ncmounton.ncp == info->nch_ncp
2499 	) {
2500 	    info->result = mp;
2501 	    return(-1);
2502 	}
2503 	return(0);
2504 }
2505 
2506 struct mount *
2507 cache_findmount(struct nchandle *nch)
2508 {
2509 	struct findmount_info info;
2510 
2511 	info.result = NULL;
2512 	info.nch_mount = nch->mount;
2513 	info.nch_ncp = nch->ncp;
2514 	mountlist_scan(cache_findmount_callback, &info,
2515 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
2516 	return(info.result);
2517 }
2518 
2519 /*
2520  * Resolve an unresolved namecache entry, generally by looking it up.
2521  * The passed ncp must be locked and refd.
2522  *
2523  * Theoretically since a vnode cannot be recycled while held, and since
2524  * the nc_parent chain holds its vnode as long as children exist, the
2525  * direct parent of the cache entry we are trying to resolve should
2526  * have a valid vnode.  If not then generate an error that we can
2527  * determine is related to a resolver bug.
2528  *
2529  * However, if a vnode was in the middle of a recyclement when the NCP
2530  * got locked, ncp->nc_vp might point to a vnode that is about to become
2531  * invalid.  cache_resolve() handles this case by unresolving the entry
2532  * and then re-resolving it.
2533  *
2534  * Note that successful resolution does not necessarily return an error
2535  * code of 0.  If the ncp resolves to a negative cache hit then ENOENT
2536  * will be returned.
2537  *
2538  * MPSAFE
2539  */
2540 int
2541 cache_resolve(struct nchandle *nch, struct ucred *cred)
2542 {
2543 	struct namecache *par_tmp;
2544 	struct namecache *par;
2545 	struct namecache *ncp;
2546 	struct nchandle nctmp;
2547 	struct mount *mp;
2548 	struct vnode *dvp;
2549 	int error;
2550 
2551 	ncp = nch->ncp;
2552 	mp = nch->mount;
2553 restart:
2554 	/*
2555 	 * If the ncp is already resolved we have nothing to do.  However,
2556 	 * we do want to guarentee that a usable vnode is returned when
2557 	 * a vnode is present, so make sure it hasn't been reclaimed.
2558 	 */
2559 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
2560 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
2561 			_cache_setunresolved(ncp);
2562 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
2563 			return (ncp->nc_error);
2564 	}
2565 
2566 	/*
2567 	 * Mount points need special handling because the parent does not
2568 	 * belong to the same filesystem as the ncp.
2569 	 */
2570 	if (ncp == mp->mnt_ncmountpt.ncp)
2571 		return (cache_resolve_mp(mp));
2572 
2573 	/*
2574 	 * We expect an unbroken chain of ncps to at least the mount point,
2575 	 * and even all the way to root (but this code doesn't have to go
2576 	 * past the mount point).
2577 	 */
2578 	if (ncp->nc_parent == NULL) {
2579 		kprintf("EXDEV case 1 %p %*.*s\n", ncp,
2580 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2581 		ncp->nc_error = EXDEV;
2582 		return(ncp->nc_error);
2583 	}
2584 
2585 	/*
2586 	 * The vp's of the parent directories in the chain are held via vhold()
2587 	 * due to the existance of the child, and should not disappear.
2588 	 * However, there are cases where they can disappear:
2589 	 *
2590 	 *	- due to filesystem I/O errors.
2591 	 *	- due to NFS being stupid about tracking the namespace and
2592 	 *	  destroys the namespace for entire directories quite often.
2593 	 *	- due to forced unmounts.
2594 	 *	- due to an rmdir (parent will be marked DESTROYED)
2595 	 *
2596 	 * When this occurs we have to track the chain backwards and resolve
2597 	 * it, looping until the resolver catches up to the current node.  We
2598 	 * could recurse here but we might run ourselves out of kernel stack
2599 	 * so we do it in a more painful manner.  This situation really should
2600 	 * not occur all that often, or if it does not have to go back too
2601 	 * many nodes to resolve the ncp.
2602 	 */
2603 	while ((dvp = cache_dvpref(ncp)) == NULL) {
2604 		/*
2605 		 * This case can occur if a process is CD'd into a
2606 		 * directory which is then rmdir'd.  If the parent is marked
2607 		 * destroyed there is no point trying to resolve it.
2608 		 */
2609 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
2610 			return(ENOENT);
2611 		par = ncp->nc_parent;
2612 		_cache_hold(par);
2613 		_cache_lock(par);
2614 		while ((par_tmp = par->nc_parent) != NULL &&
2615 		       par_tmp->nc_vp == NULL) {
2616 			_cache_hold(par_tmp);
2617 			_cache_lock(par_tmp);
2618 			_cache_put(par);
2619 			par = par_tmp;
2620 		}
2621 		if (par->nc_parent == NULL) {
2622 			kprintf("EXDEV case 2 %*.*s\n",
2623 				par->nc_nlen, par->nc_nlen, par->nc_name);
2624 			_cache_put(par);
2625 			return (EXDEV);
2626 		}
2627 		kprintf("[diagnostic] cache_resolve: had to recurse on %*.*s\n",
2628 			par->nc_nlen, par->nc_nlen, par->nc_name);
2629 		/*
2630 		 * The parent is not set in stone, ref and lock it to prevent
2631 		 * it from disappearing.  Also note that due to renames it
2632 		 * is possible for our ncp to move and for par to no longer
2633 		 * be one of its parents.  We resolve it anyway, the loop
2634 		 * will handle any moves.
2635 		 */
2636 		_cache_get(par);	/* additional hold/lock */
2637 		_cache_put(par);	/* from earlier hold/lock */
2638 		if (par == nch->mount->mnt_ncmountpt.ncp) {
2639 			cache_resolve_mp(nch->mount);
2640 		} else if ((dvp = cache_dvpref(par)) == NULL) {
2641 			kprintf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name);
2642 			_cache_put(par);
2643 			continue;
2644 		} else {
2645 			if (par->nc_flag & NCF_UNRESOLVED) {
2646 				nctmp.mount = mp;
2647 				nctmp.ncp = par;
2648 				par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2649 			}
2650 			vrele(dvp);
2651 		}
2652 		if ((error = par->nc_error) != 0) {
2653 			if (par->nc_error != EAGAIN) {
2654 				kprintf("EXDEV case 3 %*.*s error %d\n",
2655 				    par->nc_nlen, par->nc_nlen, par->nc_name,
2656 				    par->nc_error);
2657 				_cache_put(par);
2658 				return(error);
2659 			}
2660 			kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
2661 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
2662 		}
2663 		_cache_put(par);
2664 		/* loop */
2665 	}
2666 
2667 	/*
2668 	 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
2669 	 * ncp's and reattach them.  If this occurs the original ncp is marked
2670 	 * EAGAIN to force a relookup.
2671 	 *
2672 	 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
2673 	 * ncp must already be resolved.
2674 	 */
2675 	if (dvp) {
2676 		nctmp.mount = mp;
2677 		nctmp.ncp = ncp;
2678 		ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2679 		vrele(dvp);
2680 	} else {
2681 		ncp->nc_error = EPERM;
2682 	}
2683 	if (ncp->nc_error == EAGAIN) {
2684 		kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
2685 			ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2686 		goto restart;
2687 	}
2688 	return(ncp->nc_error);
2689 }
2690 
2691 /*
2692  * Resolve the ncp associated with a mount point.  Such ncp's almost always
2693  * remain resolved and this routine is rarely called.  NFS MPs tends to force
2694  * re-resolution more often due to its mac-truck-smash-the-namecache
2695  * method of tracking namespace changes.
2696  *
2697  * The semantics for this call is that the passed ncp must be locked on
2698  * entry and will be locked on return.  However, if we actually have to
2699  * resolve the mount point we temporarily unlock the entry in order to
2700  * avoid race-to-root deadlocks due to e.g. dead NFS mounts.  Because of
2701  * the unlock we have to recheck the flags after we relock.
2702  */
2703 static int
2704 cache_resolve_mp(struct mount *mp)
2705 {
2706 	struct namecache *ncp = mp->mnt_ncmountpt.ncp;
2707 	struct vnode *vp;
2708 	int error;
2709 
2710 	KKASSERT(mp != NULL);
2711 
2712 	/*
2713 	 * If the ncp is already resolved we have nothing to do.  However,
2714 	 * we do want to guarentee that a usable vnode is returned when
2715 	 * a vnode is present, so make sure it hasn't been reclaimed.
2716 	 */
2717 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
2718 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
2719 			_cache_setunresolved(ncp);
2720 	}
2721 
2722 	if (ncp->nc_flag & NCF_UNRESOLVED) {
2723 		_cache_unlock(ncp);
2724 		while (vfs_busy(mp, 0))
2725 			;
2726 		error = VFS_ROOT(mp, &vp);
2727 		_cache_lock(ncp);
2728 
2729 		/*
2730 		 * recheck the ncp state after relocking.
2731 		 */
2732 		if (ncp->nc_flag & NCF_UNRESOLVED) {
2733 			ncp->nc_error = error;
2734 			if (error == 0) {
2735 				_cache_setvp(mp, ncp, vp);
2736 				vput(vp);
2737 			} else {
2738 				kprintf("[diagnostic] cache_resolve_mp: failed"
2739 					" to resolve mount %p err=%d ncp=%p\n",
2740 					mp, error, ncp);
2741 				_cache_setvp(mp, ncp, NULL);
2742 			}
2743 		} else if (error == 0) {
2744 			vput(vp);
2745 		}
2746 		vfs_unbusy(mp);
2747 	}
2748 	return(ncp->nc_error);
2749 }
2750 
2751 /*
2752  * Clean out negative cache entries when too many have accumulated.
2753  *
2754  * MPSAFE
2755  */
2756 static void
2757 _cache_cleanneg(int count)
2758 {
2759 	struct namecache *ncp;
2760 
2761 	/*
2762 	 * Attempt to clean out the specified number of negative cache
2763 	 * entries.
2764 	 */
2765 	while (count) {
2766 		spin_lock(&ncspin);
2767 		ncp = TAILQ_FIRST(&ncneglist);
2768 		if (ncp == NULL) {
2769 			spin_unlock(&ncspin);
2770 			break;
2771 		}
2772 		TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
2773 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
2774 		_cache_hold(ncp);
2775 		spin_unlock(&ncspin);
2776 		if (_cache_lock_special(ncp) == 0) {
2777 			ncp = cache_zap(ncp, 1);
2778 			if (ncp)
2779 				_cache_drop(ncp);
2780 		} else {
2781 			_cache_drop(ncp);
2782 		}
2783 		--count;
2784 	}
2785 }
2786 
2787 /*
2788  * Clean out positive cache entries when too many have accumulated.
2789  *
2790  * MPSAFE
2791  */
2792 static void
2793 _cache_cleanpos(int count)
2794 {
2795 	static volatile int rover;
2796 	struct nchash_head *nchpp;
2797 	struct namecache *ncp;
2798 	int rover_copy;
2799 
2800 	/*
2801 	 * Attempt to clean out the specified number of negative cache
2802 	 * entries.
2803 	 */
2804 	while (count) {
2805 		rover_copy = ++rover;	/* MPSAFEENOUGH */
2806 		cpu_ccfence();
2807 		nchpp = NCHHASH(rover_copy);
2808 
2809 		spin_lock(&nchpp->spin);
2810 		ncp = LIST_FIRST(&nchpp->list);
2811 		if (ncp)
2812 			_cache_hold(ncp);
2813 		spin_unlock(&nchpp->spin);
2814 
2815 		if (ncp) {
2816 			if (_cache_lock_special(ncp) == 0) {
2817 				ncp = cache_zap(ncp, 1);
2818 				if (ncp)
2819 					_cache_drop(ncp);
2820 			} else {
2821 				_cache_drop(ncp);
2822 			}
2823 		}
2824 		--count;
2825 	}
2826 }
2827 
2828 /*
2829  * This is a kitchen sink function to clean out ncps which we
2830  * tried to zap from cache_drop() but failed because we were
2831  * unable to acquire the parent lock.
2832  *
2833  * Such entries can also be removed via cache_inval_vp(), such
2834  * as when unmounting.
2835  *
2836  * MPSAFE
2837  */
2838 static void
2839 _cache_cleandefered(void)
2840 {
2841 	struct nchash_head *nchpp;
2842 	struct namecache *ncp;
2843 	struct namecache dummy;
2844 	int i;
2845 
2846 	numdefered = 0;
2847 	bzero(&dummy, sizeof(dummy));
2848 	dummy.nc_flag = NCF_DESTROYED;
2849 
2850 	for (i = 0; i <= nchash; ++i) {
2851 		nchpp = &nchashtbl[i];
2852 
2853 		spin_lock(&nchpp->spin);
2854 		LIST_INSERT_HEAD(&nchpp->list, &dummy, nc_hash);
2855 		ncp = &dummy;
2856 		while ((ncp = LIST_NEXT(ncp, nc_hash)) != NULL) {
2857 			if ((ncp->nc_flag & NCF_DEFEREDZAP) == 0)
2858 				continue;
2859 			LIST_REMOVE(&dummy, nc_hash);
2860 			LIST_INSERT_AFTER(ncp, &dummy, nc_hash);
2861 			_cache_hold(ncp);
2862 			spin_unlock(&nchpp->spin);
2863 			if (_cache_lock_nonblock(ncp) == 0) {
2864 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
2865 				_cache_unlock(ncp);
2866 			}
2867 			_cache_drop(ncp);
2868 			spin_lock(&nchpp->spin);
2869 			ncp = &dummy;
2870 		}
2871 		LIST_REMOVE(&dummy, nc_hash);
2872 		spin_unlock(&nchpp->spin);
2873 	}
2874 }
2875 
2876 /*
2877  * Name cache initialization, from vfsinit() when we are booting
2878  */
2879 void
2880 nchinit(void)
2881 {
2882 	int i;
2883 	globaldata_t gd;
2884 
2885 	/* initialise per-cpu namecache effectiveness statistics. */
2886 	for (i = 0; i < ncpus; ++i) {
2887 		gd = globaldata_find(i);
2888 		gd->gd_nchstats = &nchstats[i];
2889 	}
2890 	TAILQ_INIT(&ncneglist);
2891 	spin_init(&ncspin);
2892 	nchashtbl = hashinit_ext(desiredvnodes / 2,
2893 				 sizeof(struct nchash_head),
2894 				 M_VFSCACHE, &nchash);
2895 	for (i = 0; i <= (int)nchash; ++i) {
2896 		LIST_INIT(&nchashtbl[i].list);
2897 		spin_init(&nchashtbl[i].spin);
2898 	}
2899 	nclockwarn = 5 * hz;
2900 }
2901 
2902 /*
2903  * Called from start_init() to bootstrap the root filesystem.  Returns
2904  * a referenced, unlocked namecache record.
2905  */
2906 void
2907 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
2908 {
2909 	nch->ncp = cache_alloc(0);
2910 	nch->mount = mp;
2911 	atomic_add_int(&mp->mnt_refs, 1);
2912 	if (vp)
2913 		_cache_setvp(nch->mount, nch->ncp, vp);
2914 }
2915 
2916 /*
2917  * vfs_cache_setroot()
2918  *
2919  *	Create an association between the root of our namecache and
2920  *	the root vnode.  This routine may be called several times during
2921  *	booting.
2922  *
2923  *	If the caller intends to save the returned namecache pointer somewhere
2924  *	it must cache_hold() it.
2925  */
2926 void
2927 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
2928 {
2929 	struct vnode *ovp;
2930 	struct nchandle onch;
2931 
2932 	ovp = rootvnode;
2933 	onch = rootnch;
2934 	rootvnode = nvp;
2935 	if (nch)
2936 		rootnch = *nch;
2937 	else
2938 		cache_zero(&rootnch);
2939 	if (ovp)
2940 		vrele(ovp);
2941 	if (onch.ncp)
2942 		cache_drop(&onch);
2943 }
2944 
2945 /*
2946  * XXX OLD API COMPAT FUNCTION.  This really messes up the new namecache
2947  * topology and is being removed as quickly as possible.  The new VOP_N*()
2948  * API calls are required to make specific adjustments using the supplied
2949  * ncp pointers rather then just bogusly purging random vnodes.
2950  *
2951  * Invalidate all namecache entries to a particular vnode as well as
2952  * any direct children of that vnode in the namecache.  This is a
2953  * 'catch all' purge used by filesystems that do not know any better.
2954  *
2955  * Note that the linkage between the vnode and its namecache entries will
2956  * be removed, but the namecache entries themselves might stay put due to
2957  * active references from elsewhere in the system or due to the existance of
2958  * the children.   The namecache topology is left intact even if we do not
2959  * know what the vnode association is.  Such entries will be marked
2960  * NCF_UNRESOLVED.
2961  */
2962 void
2963 cache_purge(struct vnode *vp)
2964 {
2965 	cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
2966 }
2967 
2968 /*
2969  * Flush all entries referencing a particular filesystem.
2970  *
2971  * Since we need to check it anyway, we will flush all the invalid
2972  * entries at the same time.
2973  */
2974 #if 0
2975 
2976 void
2977 cache_purgevfs(struct mount *mp)
2978 {
2979 	struct nchash_head *nchpp;
2980 	struct namecache *ncp, *nnp;
2981 
2982 	/*
2983 	 * Scan hash tables for applicable entries.
2984 	 */
2985 	for (nchpp = &nchashtbl[nchash]; nchpp >= nchashtbl; nchpp--) {
2986 		spin_lock_wr(&nchpp->spin); XXX
2987 		ncp = LIST_FIRST(&nchpp->list);
2988 		if (ncp)
2989 			_cache_hold(ncp);
2990 		while (ncp) {
2991 			nnp = LIST_NEXT(ncp, nc_hash);
2992 			if (nnp)
2993 				_cache_hold(nnp);
2994 			if (ncp->nc_mount == mp) {
2995 				_cache_lock(ncp);
2996 				ncp = cache_zap(ncp, 0);
2997 				if (ncp)
2998 					_cache_drop(ncp);
2999 			} else {
3000 				_cache_drop(ncp);
3001 			}
3002 			ncp = nnp;
3003 		}
3004 		spin_unlock_wr(&nchpp->spin); XXX
3005 	}
3006 }
3007 
3008 #endif
3009 
3010 static int disablecwd;
3011 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0,
3012     "Disable getcwd");
3013 
3014 static u_long numcwdcalls;
3015 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdcalls, CTLFLAG_RD, &numcwdcalls, 0,
3016     "Number of current directory resolution calls");
3017 static u_long numcwdfailnf;
3018 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfailnf, CTLFLAG_RD, &numcwdfailnf, 0,
3019     "Number of current directory failures due to lack of file");
3020 static u_long numcwdfailsz;
3021 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfailsz, CTLFLAG_RD, &numcwdfailsz, 0,
3022     "Number of current directory failures due to large result");
3023 static u_long numcwdfound;
3024 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfound, CTLFLAG_RD, &numcwdfound, 0,
3025     "Number of current directory resolution successes");
3026 
3027 /*
3028  * MPALMOSTSAFE
3029  */
3030 int
3031 sys___getcwd(struct __getcwd_args *uap)
3032 {
3033 	u_int buflen;
3034 	int error;
3035 	char *buf;
3036 	char *bp;
3037 
3038 	if (disablecwd)
3039 		return (ENODEV);
3040 
3041 	buflen = uap->buflen;
3042 	if (buflen == 0)
3043 		return (EINVAL);
3044 	if (buflen > MAXPATHLEN)
3045 		buflen = MAXPATHLEN;
3046 
3047 	buf = kmalloc(buflen, M_TEMP, M_WAITOK);
3048 	get_mplock();
3049 	bp = kern_getcwd(buf, buflen, &error);
3050 	rel_mplock();
3051 	if (error == 0)
3052 		error = copyout(bp, uap->buf, strlen(bp) + 1);
3053 	kfree(buf, M_TEMP);
3054 	return (error);
3055 }
3056 
3057 char *
3058 kern_getcwd(char *buf, size_t buflen, int *error)
3059 {
3060 	struct proc *p = curproc;
3061 	char *bp;
3062 	int i, slash_prefixed;
3063 	struct filedesc *fdp;
3064 	struct nchandle nch;
3065 	struct namecache *ncp;
3066 
3067 	numcwdcalls++;
3068 	bp = buf;
3069 	bp += buflen - 1;
3070 	*bp = '\0';
3071 	fdp = p->p_fd;
3072 	slash_prefixed = 0;
3073 
3074 	nch = fdp->fd_ncdir;
3075 	ncp = nch.ncp;
3076 	if (ncp)
3077 		_cache_hold(ncp);
3078 
3079 	while (ncp && (ncp != fdp->fd_nrdir.ncp ||
3080 	       nch.mount != fdp->fd_nrdir.mount)
3081 	) {
3082 		/*
3083 		 * While traversing upwards if we encounter the root
3084 		 * of the current mount we have to skip to the mount point
3085 		 * in the underlying filesystem.
3086 		 */
3087 		if (ncp == nch.mount->mnt_ncmountpt.ncp) {
3088 			nch = nch.mount->mnt_ncmounton;
3089 			_cache_drop(ncp);
3090 			ncp = nch.ncp;
3091 			if (ncp)
3092 				_cache_hold(ncp);
3093 			continue;
3094 		}
3095 
3096 		/*
3097 		 * Prepend the path segment
3098 		 */
3099 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
3100 			if (bp == buf) {
3101 				numcwdfailsz++;
3102 				*error = ERANGE;
3103 				bp = NULL;
3104 				goto done;
3105 			}
3106 			*--bp = ncp->nc_name[i];
3107 		}
3108 		if (bp == buf) {
3109 			numcwdfailsz++;
3110 			*error = ERANGE;
3111 			bp = NULL;
3112 			goto done;
3113 		}
3114 		*--bp = '/';
3115 		slash_prefixed = 1;
3116 
3117 		/*
3118 		 * Go up a directory.  This isn't a mount point so we don't
3119 		 * have to check again.
3120 		 */
3121 		while ((nch.ncp = ncp->nc_parent) != NULL) {
3122 			_cache_lock(ncp);
3123 			if (nch.ncp != ncp->nc_parent) {
3124 				_cache_unlock(ncp);
3125 				continue;
3126 			}
3127 			_cache_hold(nch.ncp);
3128 			_cache_unlock(ncp);
3129 			break;
3130 		}
3131 		_cache_drop(ncp);
3132 		ncp = nch.ncp;
3133 	}
3134 	if (ncp == NULL) {
3135 		numcwdfailnf++;
3136 		*error = ENOENT;
3137 		bp = NULL;
3138 		goto done;
3139 	}
3140 	if (!slash_prefixed) {
3141 		if (bp == buf) {
3142 			numcwdfailsz++;
3143 			*error = ERANGE;
3144 			bp = NULL;
3145 			goto done;
3146 		}
3147 		*--bp = '/';
3148 	}
3149 	numcwdfound++;
3150 	*error = 0;
3151 done:
3152 	if (ncp)
3153 		_cache_drop(ncp);
3154 	return (bp);
3155 }
3156 
3157 /*
3158  * Thus begins the fullpath magic.
3159  *
3160  * The passed nchp is referenced but not locked.
3161  */
3162 static int disablefullpath;
3163 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
3164     &disablefullpath, 0,
3165     "Disable fullpath lookups");
3166 
3167 static u_int numfullpathcalls;
3168 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathcalls, CTLFLAG_RD,
3169     &numfullpathcalls, 0,
3170     "Number of full path resolutions in progress");
3171 static u_int numfullpathfailnf;
3172 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfailnf, CTLFLAG_RD,
3173     &numfullpathfailnf, 0,
3174     "Number of full path resolution failures due to lack of file");
3175 static u_int numfullpathfailsz;
3176 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfailsz, CTLFLAG_RD,
3177     &numfullpathfailsz, 0,
3178     "Number of full path resolution failures due to insufficient memory");
3179 static u_int numfullpathfound;
3180 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfound, CTLFLAG_RD,
3181     &numfullpathfound, 0,
3182     "Number of full path resolution successes");
3183 
3184 int
3185 cache_fullpath(struct proc *p, struct nchandle *nchp,
3186 	       char **retbuf, char **freebuf, int guess)
3187 {
3188 	struct nchandle fd_nrdir;
3189 	struct nchandle nch;
3190 	struct namecache *ncp;
3191 	struct mount *mp, *new_mp;
3192 	char *bp, *buf;
3193 	int slash_prefixed;
3194 	int error = 0;
3195 	int i;
3196 
3197 	atomic_add_int(&numfullpathcalls, -1);
3198 
3199 	*retbuf = NULL;
3200 	*freebuf = NULL;
3201 
3202 	buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
3203 	bp = buf + MAXPATHLEN - 1;
3204 	*bp = '\0';
3205 	if (p != NULL)
3206 		fd_nrdir = p->p_fd->fd_nrdir;
3207 	else
3208 		fd_nrdir = rootnch;
3209 	slash_prefixed = 0;
3210 	nch = *nchp;
3211 	ncp = nch.ncp;
3212 	if (ncp)
3213 		_cache_hold(ncp);
3214 	mp = nch.mount;
3215 
3216 	while (ncp && (ncp != fd_nrdir.ncp || mp != fd_nrdir.mount)) {
3217 		new_mp = NULL;
3218 
3219 		/*
3220 		 * If we are asked to guess the upwards path, we do so whenever
3221 		 * we encounter an ncp marked as a mountpoint. We try to find
3222 		 * the actual mountpoint by finding the mountpoint with this ncp.
3223 		 */
3224 		if (guess && (ncp->nc_flag & NCF_ISMOUNTPT)) {
3225 			new_mp = mount_get_by_nc(ncp);
3226 		}
3227 		/*
3228 		 * While traversing upwards if we encounter the root
3229 		 * of the current mount we have to skip to the mount point.
3230 		 */
3231 		if (ncp == mp->mnt_ncmountpt.ncp) {
3232 			new_mp = mp;
3233 		}
3234 		if (new_mp) {
3235 			nch = new_mp->mnt_ncmounton;
3236 			_cache_drop(ncp);
3237 			ncp = nch.ncp;
3238 			if (ncp)
3239 				_cache_hold(ncp);
3240 			mp = nch.mount;
3241 			continue;
3242 		}
3243 
3244 		/*
3245 		 * Prepend the path segment
3246 		 */
3247 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
3248 			if (bp == buf) {
3249 				numfullpathfailsz++;
3250 				kfree(buf, M_TEMP);
3251 				error = ENOMEM;
3252 				goto done;
3253 			}
3254 			*--bp = ncp->nc_name[i];
3255 		}
3256 		if (bp == buf) {
3257 			numfullpathfailsz++;
3258 			kfree(buf, M_TEMP);
3259 			error = ENOMEM;
3260 			goto done;
3261 		}
3262 		*--bp = '/';
3263 		slash_prefixed = 1;
3264 
3265 		/*
3266 		 * Go up a directory.  This isn't a mount point so we don't
3267 		 * have to check again.
3268 		 *
3269 		 * We can only safely access nc_parent with ncp held locked.
3270 		 */
3271 		while ((nch.ncp = ncp->nc_parent) != NULL) {
3272 			_cache_lock(ncp);
3273 			if (nch.ncp != ncp->nc_parent) {
3274 				_cache_unlock(ncp);
3275 				continue;
3276 			}
3277 			_cache_hold(nch.ncp);
3278 			_cache_unlock(ncp);
3279 			break;
3280 		}
3281 		_cache_drop(ncp);
3282 		ncp = nch.ncp;
3283 	}
3284 	if (ncp == NULL) {
3285 		numfullpathfailnf++;
3286 		kfree(buf, M_TEMP);
3287 		error = ENOENT;
3288 		goto done;
3289 	}
3290 
3291 	if (!slash_prefixed) {
3292 		if (bp == buf) {
3293 			numfullpathfailsz++;
3294 			kfree(buf, M_TEMP);
3295 			error = ENOMEM;
3296 			goto done;
3297 		}
3298 		*--bp = '/';
3299 	}
3300 	numfullpathfound++;
3301 	*retbuf = bp;
3302 	*freebuf = buf;
3303 	error = 0;
3304 done:
3305 	if (ncp)
3306 		_cache_drop(ncp);
3307 	return(error);
3308 }
3309 
3310 int
3311 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf, char **freebuf,
3312     int guess)
3313 {
3314 	struct namecache *ncp;
3315 	struct nchandle nch;
3316 	int error;
3317 
3318 	*freebuf = NULL;
3319 	atomic_add_int(&numfullpathcalls, 1);
3320 	if (disablefullpath)
3321 		return (ENODEV);
3322 
3323 	if (p == NULL)
3324 		return (EINVAL);
3325 
3326 	/* vn is NULL, client wants us to use p->p_textvp */
3327 	if (vn == NULL) {
3328 		if ((vn = p->p_textvp) == NULL)
3329 			return (EINVAL);
3330 	}
3331 	spin_lock(&vn->v_spin);
3332 	TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
3333 		if (ncp->nc_nlen)
3334 			break;
3335 	}
3336 	if (ncp == NULL) {
3337 		spin_unlock(&vn->v_spin);
3338 		return (EINVAL);
3339 	}
3340 	_cache_hold(ncp);
3341 	spin_unlock(&vn->v_spin);
3342 
3343 	atomic_add_int(&numfullpathcalls, -1);
3344 	nch.ncp = ncp;;
3345 	nch.mount = vn->v_mount;
3346 	error = cache_fullpath(p, &nch, retbuf, freebuf, guess);
3347 	_cache_drop(ncp);
3348 	return (error);
3349 }
3350