xref: /dragonfly/sys/kern/vfs_cache.c (revision 8f2ce533)
1 /*
2  * Copyright (c) 2003-2020 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993, 1995
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * Poul-Henning Kamp of the FreeBSD Project.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. Neither the name of the University nor the names of its contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/uio.h>
68 #include <sys/kernel.h>
69 #include <sys/sysctl.h>
70 #include <sys/mount.h>
71 #include <sys/vnode.h>
72 #include <sys/malloc.h>
73 #include <sys/sysmsg.h>
74 #include <sys/spinlock.h>
75 #include <sys/proc.h>
76 #include <sys/nlookup.h>
77 #include <sys/filedesc.h>
78 #include <sys/fnv_hash.h>
79 #include <sys/globaldata.h>
80 #include <sys/kern_syscall.h>
81 #include <sys/dirent.h>
82 #include <ddb/ddb.h>
83 
84 #include <sys/spinlock2.h>
85 
86 #define MAX_RECURSION_DEPTH	64
87 
88 /*
89  * Random lookups in the cache are accomplished with a hash table using
90  * a hash key of (nc_src_vp, name).  Each hash chain has its own spin lock,
91  * but we use the ncp->update counter trick to avoid acquiring any
92  * contestable spin-locks during a lookup.
93  *
94  * Negative entries may exist and correspond to resolved namecache
95  * structures where nc_vp is NULL.  In a negative entry, NCF_WHITEOUT
96  * will be set if the entry corresponds to a whited-out directory entry
97  * (verses simply not finding the entry at all).  pcpu_ncache[n].neg_list
98  * is locked via pcpu_ncache[n].neg_spin;
99  *
100  * MPSAFE RULES:
101  *
102  * (1) ncp's typically have at least a nc_refs of 1, and usually 2.  One
103  *     is applicable to direct lookups via the hash table nchpp or via
104  *     nc_list (the two are added or removed together).  Removal of the ncp
105  *     from the hash table drops this reference.  The second is applicable
106  *     to vp->v_namecache linkages (or negative list linkages), and removal
107  *     of the ncp from these lists drops this reference.
108  *
109  *     On the 1->0 transition of nc_refs the ncp can no longer be referenced
110  *     and must be destroyed.  No other thread should have access to it at
111  *     this point so it can be safely locked and freed without any deadlock
112  *     fears.
113  *
114  *     The 1->0 transition can occur at almost any juncture and so cache_drop()
115  *     deals with it directly.
116  *
117  * (2) Once the 1->0 transition occurs, the entity that caused the transition
118  *     will be responsible for destroying the ncp.  The ncp cannot be on any
119  *     list or hash at this time, or be held by anyone other than the caller
120  *     responsible for the transition.
121  *
122  * (3) A ncp must be locked in order to modify it.
123  *
124  * (5) ncp locks are ordered, child-to-parent.  Child first, then parent.
125  *     This may seem backwards but forward-scans use the hash table and thus
126  *     can hold the parent unlocked while traversing downward.  Deletions,
127  *     on the other-hand, tend to propagate bottom-up since the ref on the
128  *     is dropped as the children go away.
129  *
130  * (6) Both parent and child must be locked in order to enter the child onto
131  *     the parent's nc_list.
132  */
133 
134 /*
135  * Structures associated with name cacheing.
136  */
137 #define NCHHASH(hash)		(&nchashtbl[(hash) & nchash])
138 #define MINNEG			1024
139 #define MINPOS			1024
140 #define NCMOUNT_NUMCACHE	(16384)	/* power of 2 */
141 #define NCMOUNT_SET		(8)	/* power of 2 */
142 
143 MALLOC_DEFINE_OBJ(M_VFSCACHE, sizeof(struct namecache),
144 		  "namecache", "namecache entries");
145 MALLOC_DEFINE(M_VFSCACHEAUX, "namecachestr", "namecache strings");
146 
147 TAILQ_HEAD(nchash_list, namecache);
148 
149 /*
150  * Don't cachealign, but at least pad to 32 bytes so entries
151  * don't cross a cache line.
152  */
153 struct nchash_head {
154        struct nchash_list list;	/* 16 bytes */
155        struct spinlock	spin;	/* 8 bytes */
156        long	pad01;		/* 8 bytes */
157 };
158 
159 struct ncmount_cache {
160 	struct spinlock	spin;
161 	struct namecache *ncp;
162 	struct mount *mp;
163 	struct mount *mp_target;
164 	int isneg;
165 	int ticks;
166 	int updating;
167 	int unused01;
168 };
169 
170 struct pcpu_ncache {
171 	struct spinlock		umount_spin;	/* cache_findmount/interlock */
172 	struct spinlock		neg_spin;	/* for neg_list and neg_count */
173 	struct namecache_list	neg_list;
174 	long			neg_count;
175 	long			vfscache_negs;
176 	long			vfscache_count;
177 	long			vfscache_leafs;
178 	long			vfscache_unres;
179 	long			numdefered;
180 	long			inv_kid_quick_count;
181 	long			inv_ncp_quick_count;
182 	long			clean_pos_count;
183 	long			clean_neg_count;
184 } __cachealign;
185 
186 __read_mostly static struct nchash_head	*nchashtbl;
187 __read_mostly static struct pcpu_ncache	*pcpu_ncache;
188 static struct ncmount_cache	ncmount_cache[NCMOUNT_NUMCACHE];
189 
190 /*
191  * ncvp_debug - debug cache_fromvp().  This is used by the NFS server
192  * to create the namecache infrastructure leading to a dangling vnode.
193  *
194  * 0	Only errors are reported
195  * 1	Successes are reported
196  * 2	Successes + the whole directory scan is reported
197  * 3	Force the directory scan code run as if the parent vnode did not
198  *	have a namecache record, even if it does have one.
199  */
200 __read_mostly int	ncvp_debug;
201 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0,
202     "Namecache debug level (0-3)");
203 
204 __read_mostly static u_long nchash;		/* size of hash table */
205 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
206     "Size of namecache hash table");
207 
208 __read_mostly static int ncnegflush = 10;	/* burst for negative flush */
209 SYSCTL_INT(_debug, OID_AUTO, ncnegflush, CTLFLAG_RW, &ncnegflush, 0,
210     "Batch flush negative entries");
211 
212 __read_mostly static int ncposflush = 10;	/* burst for positive flush */
213 SYSCTL_INT(_debug, OID_AUTO, ncposflush, CTLFLAG_RW, &ncposflush, 0,
214     "Batch flush positive entries");
215 
216 __read_mostly static int ncnegfactor = 16;	/* ratio of negative entries */
217 SYSCTL_INT(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0,
218     "Ratio of negative namecache entries");
219 
220 __read_mostly static int ncposfactor = 16;    /* ratio of unres+leaf entries */
221 SYSCTL_INT(_debug, OID_AUTO, ncposfactor, CTLFLAG_RW, &ncposfactor, 0,
222     "Ratio of unresolved leaf namecache entries");
223 
224 __read_mostly static int nclockwarn;	/* warn on locked entries in ticks */
225 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0,
226     "Warn on locked namecache entries in ticks");
227 
228 __read_mostly static int ncposlimit;	/* number of cache entries allocated */
229 SYSCTL_INT(_debug, OID_AUTO, ncposlimit, CTLFLAG_RW, &ncposlimit, 0,
230     "Number of cache entries allocated");
231 
232 __read_mostly static int ncp_shared_lock_disable = 0;
233 SYSCTL_INT(_debug, OID_AUTO, ncp_shared_lock_disable, CTLFLAG_RW,
234 	   &ncp_shared_lock_disable, 0, "Disable shared namecache locks");
235 
236 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode),
237     "sizeof(struct vnode)");
238 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache),
239     "sizeof(struct namecache)");
240 
241 __read_mostly static int ncmount_cache_enable = 1;
242 SYSCTL_INT(_debug, OID_AUTO, ncmount_cache_enable, CTLFLAG_RW,
243 	   &ncmount_cache_enable, 0, "mount point cache");
244 
245 static __inline void _cache_drop(struct namecache *ncp);
246 static int cache_resolve_mp(struct mount *mp, int adjgen);
247 static int cache_findmount_callback(struct mount *mp, void *data);
248 static void _cache_setunresolved(struct namecache *ncp, int adjgen);
249 static void _cache_cleanneg(long count);
250 static void _cache_cleanpos(long ucount, long xcount);
251 static void _cache_cleandefered(void);
252 static void _cache_unlink(struct namecache *ncp);
253 
254 /*
255  * The new name cache statistics (these are rolled up globals and not
256  * modified in the critical path, see struct pcpu_ncache).
257  */
258 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
259 static long vfscache_negs;
260 SYSCTL_LONG(_vfs_cache, OID_AUTO, numneg, CTLFLAG_RD, &vfscache_negs, 0,
261     "Number of negative namecache entries");
262 static long vfscache_count;
263 SYSCTL_LONG(_vfs_cache, OID_AUTO, numcache, CTLFLAG_RD, &vfscache_count, 0,
264     "Number of namecaches entries");
265 static long vfscache_leafs;
266 SYSCTL_LONG(_vfs_cache, OID_AUTO, numleafs, CTLFLAG_RD, &vfscache_leafs, 0,
267     "Number of leaf namecaches entries");
268 static long vfscache_unres;
269 SYSCTL_LONG(_vfs_cache, OID_AUTO, numunres, CTLFLAG_RD, &vfscache_unres, 0,
270     "Number of unresolved leaf namecaches entries");
271 
272 static long	inv_kid_quick_count;
273 SYSCTL_LONG(_vfs_cache, OID_AUTO, inv_kid_quick_count, CTLFLAG_RD,
274 	    &inv_kid_quick_count, 0,
275 	    "quick kid invalidations");
276 static long	inv_ncp_quick_count;
277 SYSCTL_LONG(_vfs_cache, OID_AUTO, inv_ncp_quick_count, CTLFLAG_RD,
278 	    &inv_ncp_quick_count, 0,
279 	    "quick ncp invalidations");
280 static long	clean_pos_count;
281 SYSCTL_LONG(_vfs_cache, OID_AUTO, clean_pos_count, CTLFLAG_RD,
282 	    &clean_pos_count, 0,
283 	    "positive ncp cleanings");
284 static long	clean_neg_count;
285 SYSCTL_LONG(_vfs_cache, OID_AUTO, clean_neg_count, CTLFLAG_RD,
286 	    &clean_neg_count, 0,
287 	    "negative ncp cleanings");
288 
289 static long	numdefered;
290 SYSCTL_LONG(_debug, OID_AUTO, numdefered, CTLFLAG_RD, &numdefered, 0,
291     "Number of cache entries allocated");
292 
293 /*
294  * Returns the number of basic references expected on the ncp, not
295  * including any children.  1 for the natural ref, and an addition ref
296  * if the ncp is resolved (representing a positive or negative hit).
297  */
298 static __inline int
299 ncpbaserefs(struct namecache *ncp)
300 {
301 	return (1 + ((ncp->nc_flag & NCF_UNRESOLVED) == 0));
302 }
303 
304 struct nchstats nchstats[SMP_MAXCPU];
305 /*
306  * Export VFS cache effectiveness statistics to user-land.
307  *
308  * The statistics are left for aggregation to user-land so
309  * neat things can be achieved, like observing per-CPU cache
310  * distribution.
311  */
312 static int
313 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
314 {
315 	struct globaldata *gd;
316 	int i, error;
317 
318 	error = 0;
319 	for (i = 0; i < ncpus; ++i) {
320 		gd = globaldata_find(i);
321 		if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
322 			sizeof(struct nchstats))))
323 			break;
324 	}
325 
326 	return (error);
327 }
328 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
329   0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
330 
331 static int cache_zap(struct namecache *ncp);
332 
333 /*
334  * Cache mount points and namecache records in order to avoid unnecessary
335  * atomic ops on mnt_refs and ncp->refs.  This improves concurrent SMP
336  * performance and is particularly important on multi-socket systems to
337  * reduce cache-line ping-ponging.
338  *
339  * Try to keep the pcpu structure within one cache line (~64 bytes).
340  */
341 #define MNTCACHE_COUNT	32	/* power of 2, multiple of SET */
342 #define MNTCACHE_SET	8	/* set associativity */
343 
344 struct mntcache_elm {
345 	struct namecache *ncp;
346 	struct mount	 *mp;
347 	int	ticks;
348 	int	unused01;
349 };
350 
351 struct mntcache {
352 	struct mntcache_elm array[MNTCACHE_COUNT];
353 } __cachealign;
354 
355 static struct mntcache	pcpu_mntcache[MAXCPU];
356 
357 static __inline
358 void
359 _cache_ncp_gen_enter(struct namecache *ncp)
360 {
361 	ncp->nc_generation += 2;
362 	cpu_sfence();
363 }
364 
365 static __inline
366 void
367 _cache_ncp_gen_exit(struct namecache *ncp)
368 {
369 	cpu_sfence();
370 	ncp->nc_generation += 2;
371 	cpu_sfence();
372 }
373 
374 static __inline
375 struct mntcache_elm *
376 _cache_mntcache_hash(void *ptr)
377 {
378 	struct mntcache_elm *elm;
379 	int hv;
380 
381 	hv = iscsi_crc32(&ptr, sizeof(ptr)) & (MNTCACHE_COUNT - 1);
382 	elm = &pcpu_mntcache[mycpu->gd_cpuid].array[hv & ~(MNTCACHE_SET - 1)];
383 
384 	return elm;
385 }
386 
387 static
388 void
389 _cache_mntref(struct mount *mp)
390 {
391 	struct mntcache_elm *elm;
392 	struct mount *mpr;
393 	int i;
394 
395 	elm = _cache_mntcache_hash(mp);
396 	for (i = 0; i < MNTCACHE_SET; ++i) {
397 		if (elm->mp == mp) {
398 			mpr = atomic_swap_ptr((void *)&elm->mp, NULL);
399 			if (__predict_true(mpr == mp))
400 				return;
401 			if (mpr)
402 				atomic_add_int(&mpr->mnt_refs, -1);
403 		}
404 		++elm;
405 	}
406 	atomic_add_int(&mp->mnt_refs, 1);
407 }
408 
409 static
410 void
411 _cache_mntrel(struct mount *mp)
412 {
413 	struct mntcache_elm *elm;
414 	struct mntcache_elm *best;
415 	struct mount *mpr;
416 	int delta1;
417 	int delta2;
418 	int i;
419 
420 	elm = _cache_mntcache_hash(mp);
421 	best = elm;
422 	for (i = 0; i < MNTCACHE_SET; ++i) {
423 		if (elm->mp == NULL) {
424 			mpr = atomic_swap_ptr((void *)&elm->mp, mp);
425 			if (__predict_false(mpr != NULL)) {
426 				atomic_add_int(&mpr->mnt_refs, -1);
427 			}
428 			elm->ticks = ticks;
429 			return;
430 		}
431 		delta1 = ticks - best->ticks;
432 		delta2 = ticks - elm->ticks;
433 		if (delta2 > delta1 || delta1 < -1 || delta2 < -1)
434 			best = elm;
435 		++elm;
436 	}
437 	mpr = atomic_swap_ptr((void *)&best->mp, mp);
438 	best->ticks = ticks;
439 	if (mpr)
440 		atomic_add_int(&mpr->mnt_refs, -1);
441 }
442 
443 /*
444  * Clears all cached mount points on all cpus.  This routine should only
445  * be called when we are waiting for a mount to clear, e.g. so we can
446  * unmount.
447  */
448 void
449 cache_clearmntcache(struct mount *target __unused)
450 {
451 	int n;
452 
453 	for (n = 0; n < ncpus; ++n) {
454 		struct mntcache *cache = &pcpu_mntcache[n];
455 		struct mntcache_elm *elm;
456 		struct namecache *ncp;
457 		struct mount *mp;
458 		int i;
459 
460 		for (i = 0; i < MNTCACHE_COUNT; ++i) {
461 			elm = &cache->array[i];
462 			if (elm->mp) {
463 				mp = atomic_swap_ptr((void *)&elm->mp, NULL);
464 				if (mp)
465 					atomic_add_int(&mp->mnt_refs, -1);
466 			}
467 			if (elm->ncp) {
468 				ncp = atomic_swap_ptr((void *)&elm->ncp, NULL);
469 				if (ncp)
470 					_cache_drop(ncp);
471 			}
472 		}
473 	}
474 }
475 
476 /*
477  * Namespace locking.  The caller must already hold a reference to the
478  * namecache structure in order to lock/unlock it.  The controlling entity
479  * in a 1->0 transition does not need to lock the ncp to dispose of it,
480  * as nobody else will have visibility to it at that point.
481  *
482  * Note that holding a locked namecache structure prevents other threads
483  * from making namespace changes (e.g. deleting or creating), prevents
484  * vnode association state changes by other threads, and prevents the
485  * namecache entry from being resolved or unresolved by other threads.
486  *
487  * An exclusive lock owner has full authority to associate/disassociate
488  * vnodes and resolve/unresolve the locked ncp.
489  *
490  * A shared lock owner only has authority to acquire the underlying vnode,
491  * if any.
492  *
493  * The primary lock field is nc_lockstatus.  nc_locktd is set after the
494  * fact (when locking) or cleared prior to unlocking.
495  *
496  * WARNING!  Holding a locked ncp will prevent a vnode from being destroyed
497  *	     or recycled, but it does NOT help you if the vnode had already
498  *	     initiated a recyclement.  If this is important, use cache_get()
499  *	     rather then cache_lock() (and deal with the differences in the
500  *	     way the refs counter is handled).  Or, alternatively, make an
501  *	     unconditional call to cache_validate() or cache_resolve()
502  *	     after cache_lock() returns.
503  */
504 static __inline
505 void
506 _cache_lock(struct namecache *ncp)
507 {
508 	int didwarn = 0;
509 	int error;
510 
511 	error = lockmgr(&ncp->nc_lock, LK_EXCLUSIVE);
512 	while (__predict_false(error == EWOULDBLOCK)) {
513 		if (didwarn == 0) {
514 			didwarn = ticks - nclockwarn;
515 			kprintf("[diagnostic] cache_lock: "
516 				"%s blocked on %p "
517 				"\"%*.*s\"\n",
518 				curthread->td_comm, ncp,
519 				ncp->nc_nlen, ncp->nc_nlen,
520 				ncp->nc_name);
521 		}
522 		error = lockmgr(&ncp->nc_lock, LK_EXCLUSIVE | LK_TIMELOCK);
523 	}
524 	if (__predict_false(didwarn)) {
525 		kprintf("[diagnostic] cache_lock: "
526 			"%s unblocked %*.*s after %d secs\n",
527 			curthread->td_comm,
528 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
529 			(int)(ticks - didwarn) / hz);
530 	}
531 }
532 
533 /*
534  * Release a previously acquired lock.
535  *
536  * A concurrent shared-lock acquisition or acquisition/release can
537  * race bit 31 so only drop the ncp if bit 31 was set.
538  */
539 static __inline
540 void
541 _cache_unlock(struct namecache *ncp)
542 {
543 	lockmgr(&ncp->nc_lock, LK_RELEASE);
544 }
545 
546 /*
547  * Lock ncp exclusively, non-blocking.  Return 0 on success.
548  */
549 static __inline
550 int
551 _cache_lock_nonblock(struct namecache *ncp)
552 {
553 	int error;
554 
555 	error = lockmgr(&ncp->nc_lock, LK_EXCLUSIVE | LK_NOWAIT);
556 	if (__predict_false(error != 0)) {
557 		return(EWOULDBLOCK);
558 	}
559 	return 0;
560 }
561 
562 /*
563  * This is a special form of _cache_lock() which only succeeds if
564  * it can get a pristine, non-recursive lock.  The caller must have
565  * already ref'd the ncp.
566  *
567  * On success the ncp will be locked, on failure it will not.  The
568  * ref count does not change either way.
569  *
570  * We want _cache_lock_special() (on success) to return a definitively
571  * usable vnode or a definitively unresolved ncp.
572  */
573 static __inline
574 int
575 _cache_lock_special(struct namecache *ncp)
576 {
577 	if (_cache_lock_nonblock(ncp) == 0) {
578 		if (lockmgr_oneexcl(&ncp->nc_lock)) {
579 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
580 				_cache_setunresolved(ncp, 1);
581 			return 0;
582 		}
583 		_cache_unlock(ncp);
584 	}
585 	return EWOULDBLOCK;
586 }
587 
588 /*
589  * Shared lock, guarantees vp held
590  *
591  * The shared lock holds vp on the 0->1 transition.  It is possible to race
592  * another shared lock release, preventing the other release from dropping
593  * the vnode and clearing bit 31.
594  *
595  * If it is not set then we are responsible for setting it, and this
596  * responsibility does not race with anyone else.
597  */
598 static __inline
599 void
600 _cache_lock_shared(struct namecache *ncp)
601 {
602 	int didwarn = 0;
603 	int error;
604 
605 	error = lockmgr(&ncp->nc_lock, LK_SHARED | LK_TIMELOCK);
606 	while (__predict_false(error == EWOULDBLOCK)) {
607 		if (didwarn == 0) {
608 			didwarn = ticks - nclockwarn;
609 			kprintf("[diagnostic] cache_lock_shared: "
610 				"%s blocked on %p "
611 				"\"%*.*s\"\n",
612 				curthread->td_comm, ncp,
613 				ncp->nc_nlen, ncp->nc_nlen,
614 				ncp->nc_name);
615 		}
616 		error = lockmgr(&ncp->nc_lock, LK_SHARED | LK_TIMELOCK);
617 	}
618 	if (__predict_false(didwarn)) {
619 		kprintf("[diagnostic] cache_lock_shared: "
620 			"%s unblocked %*.*s after %d secs\n",
621 			curthread->td_comm,
622 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
623 			(int)(ticks - didwarn) / hz);
624 	}
625 }
626 
627 /*
628  * Shared lock, guarantees vp held.  Non-blocking.  Returns 0 on success
629  */
630 static __inline
631 int
632 _cache_lock_shared_nonblock(struct namecache *ncp)
633 {
634 	int error;
635 
636 	error = lockmgr(&ncp->nc_lock, LK_SHARED | LK_NOWAIT);
637 	if (__predict_false(error != 0)) {
638 		return(EWOULDBLOCK);
639 	}
640 	return 0;
641 }
642 
643 /*
644  * This function tries to get a shared lock but will back-off to an
645  * exclusive lock if:
646  *
647  * (1) Some other thread is trying to obtain an exclusive lock
648  *     (to prevent the exclusive requester from getting livelocked out
649  *     by many shared locks).
650  *
651  * (2) The current thread already owns an exclusive lock (to avoid
652  *     deadlocking).
653  *
654  * WARNING! On machines with lots of cores we really want to try hard to
655  *	    get a shared lock or concurrent path lookups can chain-react
656  *	    into a very high-latency exclusive lock.
657  *
658  *	    This is very evident in dsynth's initial scans.
659  */
660 static __inline
661 int
662 _cache_lock_shared_special(struct namecache *ncp)
663 {
664 	/*
665 	 * Only honor a successful shared lock (returning 0) if there is
666 	 * no exclusive request pending and the vnode, if present, is not
667 	 * in a reclaimed state.
668 	 */
669 	if (_cache_lock_shared_nonblock(ncp) == 0) {
670 		if (__predict_true(!lockmgr_exclpending(&ncp->nc_lock))) {
671 			if (ncp->nc_vp == NULL ||
672 			    (ncp->nc_vp->v_flag & VRECLAIMED) == 0) {
673 				return(0);
674 			}
675 		}
676 		_cache_unlock(ncp);
677 		return(EWOULDBLOCK);
678 	}
679 
680 	/*
681 	 * Non-blocking shared lock failed.  If we already own the exclusive
682 	 * lock just acquire another exclusive lock (instead of deadlocking).
683 	 * Otherwise acquire a shared lock.
684 	 */
685 	if (lockstatus(&ncp->nc_lock, curthread) == LK_EXCLUSIVE) {
686 		_cache_lock(ncp);
687 		return(0);
688 	}
689 	_cache_lock_shared(ncp);
690 	return(0);
691 }
692 
693 /*
694  * Returns:
695  *	-1	Locked by other
696  *	 0	Not locked
697  *	(v)	LK_SHARED or LK_EXCLUSIVE
698  */
699 static __inline
700 int
701 _cache_lockstatus(struct namecache *ncp)
702 {
703 	int status;
704 
705 	status = lockstatus(&ncp->nc_lock, curthread);
706 	if (status == LK_EXCLOTHER)
707 		status = -1;
708 	return status;
709 }
710 
711 /*
712  * cache_hold() and cache_drop() prevent the premature deletion of a
713  * namecache entry but do not prevent operations (such as zapping) on
714  * that namecache entry.
715  *
716  * This routine may only be called from outside this source module if
717  * nc_refs is already deterministically at least 1, such as being
718  * associated with e.g. a process, file descriptor, or some other entity.
719  *
720  * Only the above situations, similar situations within this module where
721  * the ref count is deterministically at least 1, or when the ncp is found
722  * via the nchpp (hash table) lookup, can bump nc_refs.
723  *
724  * Very specifically, a ncp found via nc_list CANNOT bump nc_refs.  It
725  * can still be removed from the nc_list, however, as long as the caller
726  * can acquire its lock (in the wrong order).
727  *
728  * This is a rare case where callers are allowed to hold a spinlock,
729  * so we can't ourselves.
730  */
731 static __inline
732 struct namecache *
733 _cache_hold(struct namecache *ncp)
734 {
735 	KKASSERT(ncp->nc_refs > 0);
736 	atomic_add_int(&ncp->nc_refs, 1);
737 
738 	return(ncp);
739 }
740 
741 /*
742  * Drop a cache entry.
743  *
744  * The 1->0 transition can only occur after or because the natural ref
745  * is being dropped.  If another thread had a temporary ref during the
746  * ncp's destruction, then that other thread might wind up being the
747  * one to drop the last ref.
748  */
749 static __inline
750 void
751 _cache_drop(struct namecache *ncp)
752 {
753 	if (atomic_fetchadd_int(&ncp->nc_refs, -1) == 1) {
754 		KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
755 
756 		/*
757 		 * Scrap it.
758 		 */
759 		ncp->nc_refs = -1;	/* safety */
760 		if (ncp->nc_name)
761 			kfree(ncp->nc_name, M_VFSCACHEAUX);
762 		kfree_obj(ncp, M_VFSCACHE);
763 	}
764 }
765 
766 /*
767  * Link a new namecache entry to its parent and to the hash table.  Be
768  * careful to avoid races if vhold() blocks in the future.
769  *
770  * Both ncp and par must be referenced and locked.  The reference is
771  * transfered to the nchpp (and, most notably, NOT to the parent list).
772  *
773  * NOTE: The hash table spinlock is held across this call, we can't do
774  *	 anything fancy.
775  */
776 static void
777 _cache_link_parent(struct namecache *ncp, struct namecache *par,
778 		   struct nchash_head *nchpp)
779 {
780 	struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
781 
782 	KKASSERT(ncp->nc_parent == NULL);
783 	_cache_ncp_gen_enter(ncp);
784 	ncp->nc_parent = par;
785 	ncp->nc_head = nchpp;
786 
787 	/*
788 	 * Set inheritance flags.  Note that the parent flags may be
789 	 * stale due to getattr potentially not having been run yet
790 	 * (it gets run during nlookup()'s).
791 	 */
792 	ncp->nc_flag &= ~(NCF_SF_PNOCACHE | NCF_UF_PCACHE);
793 	if (par->nc_flag & (NCF_SF_NOCACHE | NCF_SF_PNOCACHE))
794 		ncp->nc_flag |= NCF_SF_PNOCACHE;
795 	if (par->nc_flag & (NCF_UF_CACHE | NCF_UF_PCACHE))
796 		ncp->nc_flag |= NCF_UF_PCACHE;
797 
798 	/*
799 	 * Add to hash table and parent, adjust accounting
800 	 */
801 	TAILQ_INSERT_HEAD(&nchpp->list, ncp, nc_hash);
802 	atomic_add_long(&pn->vfscache_count, 1);
803 
804 	/*
805 	 * ncp is a new leaf being added to the tree
806 	 */
807 	if (TAILQ_EMPTY(&ncp->nc_list)) {
808 		atomic_add_long(&pn->vfscache_leafs, 1);
809 		if (ncp->nc_flag & NCF_UNRESOLVED)
810 			atomic_add_long(&pn->vfscache_unres, 1);
811 	}
812 
813 	if (TAILQ_EMPTY(&par->nc_list)) {
814 		/*
815 		 * Parent was, but now is no longer a leaf
816 		 */
817 		/*
818 		 * XXX for now don't mess with par's gen, it causes
819 		 * unnecessary nlookup retries (though not many)
820 		 */
821 		/*_cache_ncp_gen_enter(par);*/
822 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
823 		if (par->nc_flag & NCF_UNRESOLVED)
824 			atomic_add_long(&pn->vfscache_unres, -1);
825 		atomic_add_long(&pn->vfscache_leafs, -1);
826 
827 		/*
828 		 * Any vp associated with an ncp which has children must
829 		 * be held to prevent it from being recycled.
830 		 */
831 		if (par->nc_vp)
832 			vhold(par->nc_vp);
833 		/*_cache_ncp_gen_exit(par);*/
834 	} else {
835 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
836 	}
837 	_cache_hold(par);	/* add nc_parent ref */
838 	_cache_ncp_gen_exit(ncp);
839 }
840 
841 /*
842  * Remove the parent and hash associations from a namecache structure.
843  * Drop the ref-count on the parent.  The caller receives the ref
844  * from the ncp's nchpp linkage that was removed and may forward that
845  * ref to a new linkage.
846 
847  * The caller usually holds an additional ref * on the ncp so the unlink
848  * cannot be the final drop.  XXX should not be necessary now since the
849  * caller receives the ref from the nchpp linkage, assuming the ncp
850  * was linked in the first place.
851  *
852  * ncp must be locked, which means that there won't be any nc_parent
853  * removal races.  This routine will acquire a temporary lock on
854  * the parent as well as the appropriate hash chain.
855  *
856  * par must be locked and will remain locked on return.
857  *
858  * nhcpp must be spin-locked.  This routine eats the spin-lock.
859  */
860 static __inline void
861 _cache_unlink_parent(struct namecache *par, struct namecache *ncp,
862 		     struct nchash_head *nchpp)
863 {
864 	struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
865 	struct vnode *dropvp;
866 
867 	KKASSERT(ncp->nc_parent == par);
868 	cpu_ccfence();
869 	_cache_ncp_gen_enter(ncp);
870 
871 	/* don't add a ref, we drop the nchpp ref later */
872 
873 	/*
874 	 * Remove from hash table and parent, adjust accounting
875 	 */
876 	TAILQ_REMOVE(&ncp->nc_head->list, ncp, nc_hash);
877 	TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
878 	atomic_add_long(&pn->vfscache_count, -1);
879 
880 	/*
881 	 * Removing leaf from tree
882 	 */
883 	if (TAILQ_EMPTY(&ncp->nc_list)) {
884 		if (ncp->nc_flag & NCF_UNRESOLVED)
885 			atomic_add_long(&pn->vfscache_unres, -1);
886 		atomic_add_long(&pn->vfscache_leafs, -1);
887 	}
888 
889 	/*
890 	 * Parent is now a leaf?
891 	 */
892 	dropvp = NULL;
893 	if (TAILQ_EMPTY(&par->nc_list)) {
894 		/*
895 		 * XXX for now don't mess with par's gen, it causes
896 		 * unnecessary nlookup retries (though not many)
897 		 */
898 		/*_cache_ncp_gen_enter(par);*/
899 		if (par->nc_flag & NCF_UNRESOLVED)
900 			atomic_add_long(&pn->vfscache_unres, 1);
901 		atomic_add_long(&pn->vfscache_leafs, 1);
902 		if (par->nc_vp)
903 			dropvp = par->nc_vp;
904 		/*_cache_ncp_gen_exit(par);*/
905 	}
906 	ncp->nc_parent = NULL;
907 	ncp->nc_head = NULL;
908 	spin_unlock(&nchpp->spin);
909 	_cache_drop(par);	/* drop ncp's nc_parent ref from (par) */
910 
911 	/*
912 	 * We can only safely vdrop with no spinlocks held.
913 	 */
914 	if (dropvp)
915 		vdrop(dropvp);
916 	_cache_ncp_gen_exit(ncp);
917 }
918 
919 /*
920  * Allocate a new namecache structure.  Most of the code does not require
921  * zero-termination of the string but it makes vop_compat_ncreate() easier.
922  *
923  * The returned ncp will be locked and referenced.  The ref is generally meant
924  * to be transfered to the nchpp linkage.
925  */
926 static struct namecache *
927 cache_alloc(int nlen)
928 {
929 	struct namecache *ncp;
930 
931 	ncp = kmalloc_obj(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
932 	if (nlen)
933 		ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHEAUX, M_WAITOK);
934 	ncp->nc_nlen = nlen;
935 	ncp->nc_flag = NCF_UNRESOLVED;
936 	ncp->nc_error = ENOTCONN;	/* needs to be resolved */
937 	ncp->nc_refs = 1;		/* natural ref */
938 	ncp->nc_generation = 0;		/* link/unlink/res/unres op */
939 	TAILQ_INIT(&ncp->nc_list);
940 	lockinit(&ncp->nc_lock, "ncplk", hz, LK_CANRECURSE);
941 	lockmgr(&ncp->nc_lock, LK_EXCLUSIVE);
942 
943 	return(ncp);
944 }
945 
946 /*
947  * Can only be called for the case where the ncp has never been
948  * associated with anything (so no spinlocks are needed).
949  */
950 static void
951 _cache_free(struct namecache *ncp)
952 {
953 	KKASSERT(ncp->nc_refs == 1);
954 	if (ncp->nc_name)
955 		kfree(ncp->nc_name, M_VFSCACHEAUX);
956 	kfree_obj(ncp, M_VFSCACHE);
957 }
958 
959 /*
960  * [re]initialize a nchandle.
961  */
962 void
963 cache_zero(struct nchandle *nch)
964 {
965 	nch->ncp = NULL;
966 	nch->mount = NULL;
967 }
968 
969 /*
970  * Ref and deref a nchandle structure (ncp + mp)
971  *
972  * The caller must specify a stable ncp pointer, typically meaning the
973  * ncp is already referenced but this can also occur indirectly through
974  * e.g. holding a lock on a direct child.
975  *
976  * WARNING: Caller may hold an unrelated read spinlock, which means we can't
977  *	    use read spinlocks here.
978  */
979 struct nchandle *
980 cache_hold(struct nchandle *nch)
981 {
982 	_cache_hold(nch->ncp);
983 	_cache_mntref(nch->mount);
984 	return(nch);
985 }
986 
987 /*
988  * Create a copy of a namecache handle for an already-referenced
989  * entry.
990  */
991 void
992 cache_copy(struct nchandle *nch, struct nchandle *target)
993 {
994 	struct namecache *ncp;
995 	struct mount *mp;
996 	struct mntcache_elm *elm;
997 	struct namecache *ncpr;
998 	int i;
999 
1000 	ncp = nch->ncp;
1001 	mp = nch->mount;
1002 	target->ncp = ncp;
1003 	target->mount = mp;
1004 
1005 	elm = _cache_mntcache_hash(ncp);
1006 	for (i = 0; i < MNTCACHE_SET; ++i) {
1007 		if (elm->ncp == ncp) {
1008 			ncpr = atomic_swap_ptr((void *)&elm->ncp, NULL);
1009 			if (ncpr == ncp) {
1010 				_cache_mntref(mp);
1011 				return;
1012 			}
1013 			if (ncpr)
1014 				_cache_drop(ncpr);
1015 		}
1016 		++elm;
1017 	}
1018 	if (ncp)
1019 		_cache_hold(ncp);
1020 	_cache_mntref(mp);
1021 }
1022 
1023 /*
1024  * Drop the nchandle, but try to cache the ref to avoid global atomic
1025  * ops.  This is typically done on the system root and jail root nchandles.
1026  */
1027 void
1028 cache_drop_and_cache(struct nchandle *nch, int elmno)
1029 {
1030 	struct mntcache_elm *elm;
1031 	struct mntcache_elm *best;
1032 	struct namecache *ncpr;
1033 	int delta1;
1034 	int delta2;
1035 	int i;
1036 
1037 	if (elmno > 4) {
1038 		if (nch->ncp) {
1039 			_cache_drop(nch->ncp);
1040 			nch->ncp = NULL;
1041 		}
1042 		if (nch->mount) {
1043 			_cache_mntrel(nch->mount);
1044 			nch->mount = NULL;
1045 		}
1046 		return;
1047 	}
1048 
1049 	elm = _cache_mntcache_hash(nch->ncp);
1050 	best = elm;
1051 	for (i = 0; i < MNTCACHE_SET; ++i) {
1052 		if (elm->ncp == NULL) {
1053 			ncpr = atomic_swap_ptr((void *)&elm->ncp, nch->ncp);
1054 			_cache_mntrel(nch->mount);
1055 			elm->ticks = ticks;
1056 			nch->mount = NULL;
1057 			nch->ncp = NULL;
1058 			if (ncpr)
1059 				_cache_drop(ncpr);
1060 			return;
1061 		}
1062 		delta1 = ticks - best->ticks;
1063 		delta2 = ticks - elm->ticks;
1064 		if (delta2 > delta1 || delta1 < -1 || delta2 < -1)
1065 			best = elm;
1066 		++elm;
1067 	}
1068 	ncpr = atomic_swap_ptr((void *)&best->ncp, nch->ncp);
1069 	_cache_mntrel(nch->mount);
1070 	best->ticks = ticks;
1071 	nch->mount = NULL;
1072 	nch->ncp = NULL;
1073 	if (ncpr)
1074 		_cache_drop(ncpr);
1075 }
1076 
1077 void
1078 cache_changemount(struct nchandle *nch, struct mount *mp)
1079 {
1080 	_cache_mntref(mp);
1081 	_cache_mntrel(nch->mount);
1082 	nch->mount = mp;
1083 }
1084 
1085 void
1086 cache_drop(struct nchandle *nch)
1087 {
1088 	_cache_mntrel(nch->mount);
1089 	_cache_drop(nch->ncp);
1090 	nch->ncp = NULL;
1091 	nch->mount = NULL;
1092 }
1093 
1094 /*
1095  * Returns:
1096  *	-1	Locked by other
1097  *	 0	Not locked
1098  *	(v)	LK_SHARED or LK_EXCLUSIVE
1099  */
1100 int
1101 cache_lockstatus(struct nchandle *nch)
1102 {
1103 	return(_cache_lockstatus(nch->ncp));
1104 }
1105 
1106 void
1107 cache_lock(struct nchandle *nch)
1108 {
1109 	_cache_lock(nch->ncp);
1110 }
1111 
1112 /*
1113  * Returns a shared or exclusive-locked ncp.  The ncp will only be
1114  * shared-locked if it is already resolved.
1115  */
1116 void
1117 cache_lock_maybe_shared(struct nchandle *nch, int excl)
1118 {
1119 	struct namecache *ncp = nch->ncp;
1120 
1121 	if (ncp_shared_lock_disable || excl ||
1122 	    (ncp->nc_flag & NCF_UNRESOLVED)) {
1123 		_cache_lock(ncp);
1124 	} else {
1125 		_cache_lock_shared(ncp);
1126 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1127 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
1128 				_cache_unlock(ncp);
1129 				_cache_lock(ncp);
1130 			}
1131 		} else {
1132 			_cache_unlock(ncp);
1133 			_cache_lock(ncp);
1134 		}
1135 	}
1136 }
1137 
1138 /*
1139  * Lock fncpd, fncp, tncpd, and tncp.  tncp is already locked but may
1140  * have to be cycled to avoid deadlocks.  Make sure all four are resolved.
1141  *
1142  * The caller is responsible for checking the validity upon return as
1143  * the records may have been flagged DESTROYED in the interim.
1144  *
1145  * Namecache lock ordering is leaf first, then parent.  However, complex
1146  * interactions may occur between the source and target because there is
1147  * no ordering guarantee between (fncpd, fncp) and (tncpd and tncp).
1148  */
1149 void
1150 cache_lock4_tondlocked(struct nchandle *fncpd, struct nchandle *fncp,
1151 		       struct nchandle *tncpd, struct nchandle *tncp,
1152 		       struct ucred *fcred, struct ucred *tcred)
1153 {
1154 	int tlocked = 1;
1155 	u_int dummy_gen = 0;
1156 
1157 	/*
1158 	 * Lock tncp and tncpd
1159 	 *
1160 	 * NOTE: Because these ncps are not locked to begin with, it is
1161 	 *	 possible for other rename races to cause the normal lock
1162 	 *	 order assumptions to fail.
1163 	 *
1164 	 * NOTE: Lock ordering assumptions are valid if a leaf's parent
1165 	 *	 matches after the leaf has been locked.  However, ordering
1166 	 *	 between the 'from' and the 'to' is not and an overlapping
1167 	 *	 lock order reversal is still possible.
1168 	 */
1169 again:
1170 	if (__predict_false(tlocked == 0)) {
1171 		cache_lock(tncp);
1172 	}
1173 	if (__predict_false(cache_lock_nonblock(tncpd) != 0)) {
1174 		cache_unlock(tncp);
1175 		cache_lock(tncpd);	/* cycle tncpd lock */
1176 		cache_unlock(tncpd);
1177 		tlocked = 0;
1178 		goto again;
1179 	}
1180 
1181 	/*
1182 	 * Lock fncp and fncpd
1183 	 *
1184 	 * NOTE: Because these ncps are not locked to begin with, it is
1185 	 *	 possible for other rename races to cause the normal lock
1186 	 *	 order assumptions to fail.
1187 	 *
1188 	 * NOTE: Lock ordering assumptions are valid if a leaf's parent
1189 	 *	 matches after the leaf has been locked.  However, ordering
1190 	 *	 between the 'from' and the 'to' is not and an overlapping
1191 	 *	 lock order reversal is still possible.
1192 	 */
1193 	if (__predict_false(cache_lock_nonblock(fncp) != 0)) {
1194 		cache_unlock(tncpd);
1195 		cache_unlock(tncp);
1196 		cache_lock(fncp);	/* cycle fncp lock */
1197 		cache_unlock(fncp);
1198 		tlocked = 0;
1199 		goto again;
1200 	}
1201 
1202 	if (__predict_false(cache_lock_nonblock(fncpd) != 0)) {
1203 		cache_unlock(fncp);
1204 		cache_unlock(tncpd);
1205 		cache_unlock(tncp);
1206 		cache_lock(fncpd);
1207 		cache_unlock(fncpd);	/* cycle fncpd lock */
1208 		tlocked = 0;
1209 		goto again;
1210 	}
1211 
1212 	if (__predict_true((fncpd->ncp->nc_flag & NCF_DESTROYED) == 0))
1213 		cache_resolve(fncpd, &dummy_gen, fcred);
1214 	if (__predict_true((tncpd->ncp->nc_flag & NCF_DESTROYED) == 0))
1215 		cache_resolve(tncpd, &dummy_gen, tcred);
1216 	if (__predict_true((fncp->ncp->nc_flag & NCF_DESTROYED) == 0))
1217 		cache_resolve(fncp, &dummy_gen, fcred);
1218 	if (__predict_true((tncp->ncp->nc_flag & NCF_DESTROYED) == 0))
1219 		cache_resolve(tncp, &dummy_gen, tcred);
1220 }
1221 
1222 int
1223 cache_lock_nonblock(struct nchandle *nch)
1224 {
1225 	return(_cache_lock_nonblock(nch->ncp));
1226 }
1227 
1228 void
1229 cache_unlock(struct nchandle *nch)
1230 {
1231 	_cache_unlock(nch->ncp);
1232 }
1233 
1234 /*
1235  * ref-and-lock, unlock-and-deref functions.
1236  *
1237  * This function is primarily used by nlookup.  Even though cache_lock
1238  * holds the vnode, it is possible that the vnode may have already
1239  * initiated a recyclement.
1240  *
1241  * We want cache_get() to return a definitively usable vnode or a
1242  * definitively unresolved ncp.
1243  */
1244 static
1245 struct namecache *
1246 _cache_get(struct namecache *ncp)
1247 {
1248 	_cache_hold(ncp);
1249 	_cache_lock(ncp);
1250 	if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1251 		_cache_setunresolved(ncp, 1);
1252 	return(ncp);
1253 }
1254 
1255 /*
1256  * Attempt to obtain a shared lock on the ncp.  A shared lock will only
1257  * be obtained if the ncp is resolved and the vnode (if not ENOENT) is
1258  * valid.  Otherwise an exclusive lock will be acquired instead.
1259  */
1260 static
1261 struct namecache *
1262 _cache_get_maybe_shared(struct namecache *ncp, int excl)
1263 {
1264 	if (ncp_shared_lock_disable || excl ||
1265 	    (ncp->nc_flag & NCF_UNRESOLVED))
1266 	{
1267 		return(_cache_get(ncp));
1268 	}
1269 	_cache_hold(ncp);
1270 	_cache_lock_shared(ncp);
1271 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1272 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
1273 			_cache_unlock(ncp);
1274 			ncp = _cache_get(ncp);
1275 			_cache_drop(ncp);
1276 		}
1277 	} else {
1278 		_cache_unlock(ncp);
1279 		ncp = _cache_get(ncp);
1280 		_cache_drop(ncp);
1281 	}
1282 	return(ncp);
1283 }
1284 
1285 /*
1286  * NOTE: The same nchandle can be passed for both arguments.
1287  */
1288 void
1289 cache_get(struct nchandle *nch, struct nchandle *target)
1290 {
1291 	KKASSERT(nch->ncp->nc_refs > 0);
1292 	target->mount = nch->mount;
1293 	target->ncp = _cache_get(nch->ncp);
1294 	_cache_mntref(target->mount);
1295 }
1296 
1297 void
1298 cache_get_maybe_shared(struct nchandle *nch, struct nchandle *target, int excl)
1299 {
1300 	KKASSERT(nch->ncp->nc_refs > 0);
1301 	target->mount = nch->mount;
1302 	target->ncp = _cache_get_maybe_shared(nch->ncp, excl);
1303 	_cache_mntref(target->mount);
1304 }
1305 
1306 /*
1307  * Release a held and locked ncp
1308  */
1309 static __inline
1310 void
1311 _cache_put(struct namecache *ncp)
1312 {
1313 	_cache_unlock(ncp);
1314 	_cache_drop(ncp);
1315 }
1316 
1317 void
1318 cache_put(struct nchandle *nch)
1319 {
1320 	_cache_mntrel(nch->mount);
1321 	_cache_put(nch->ncp);
1322 	nch->ncp = NULL;
1323 	nch->mount = NULL;
1324 }
1325 
1326 /*
1327  * Resolve an unresolved ncp by associating a vnode with it.  If the
1328  * vnode is NULL, a negative cache entry is created.
1329  *
1330  * The ncp should be locked on entry and will remain locked on return.
1331  */
1332 static
1333 void
1334 _cache_setvp(struct mount *mp, struct namecache *ncp, struct vnode *vp,
1335 	     int adjgen)
1336 {
1337 	struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
1338 
1339 	KKASSERT((ncp->nc_flag & NCF_UNRESOLVED) &&
1340 		 (_cache_lockstatus(ncp) == LK_EXCLUSIVE) &&
1341 		 ncp->nc_vp == NULL);
1342 
1343 	if (adjgen)
1344 		_cache_ncp_gen_enter(ncp);
1345 
1346 	if (vp) {
1347 		/*
1348 		 * Any vp associated with an ncp which has children must
1349 		 * be held.  Any vp associated with a locked ncp must be held.
1350 		 */
1351 		if (!TAILQ_EMPTY(&ncp->nc_list))
1352 			vhold(vp);
1353 		spin_lock(&vp->v_spin);
1354 		ncp->nc_vp = vp;
1355 		TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
1356 		++vp->v_namecache_count;
1357 		_cache_hold(ncp);		/* v_namecache assoc */
1358 		spin_unlock(&vp->v_spin);
1359 		vhold(vp);			/* nc_vp */
1360 
1361 		/*
1362 		 * Set auxiliary flags
1363 		 */
1364 		switch(vp->v_type) {
1365 		case VDIR:
1366 			ncp->nc_flag |= NCF_ISDIR;
1367 			break;
1368 		case VLNK:
1369 			ncp->nc_flag |= NCF_ISSYMLINK;
1370 			/* XXX cache the contents of the symlink */
1371 			break;
1372 		default:
1373 			break;
1374 		}
1375 
1376 		ncp->nc_error = 0;
1377 
1378 		/*
1379 		 * XXX: this is a hack to work-around the lack of a real pfs vfs
1380 		 * implementation
1381 		 */
1382 		if (mp) {
1383 			if (strncmp(mp->mnt_stat.f_fstypename, "null", 5) == 0)
1384 				vp->v_pfsmp = mp;
1385 		}
1386 	} else {
1387 		/*
1388 		 * When creating a negative cache hit we set the
1389 		 * namecache_gen.  A later resolve will clean out the
1390 		 * negative cache hit if the mount point's namecache_gen
1391 		 * has changed.  Used by devfs, could also be used by
1392 		 * other remote FSs.
1393 		 */
1394 		ncp->nc_vp = NULL;
1395 		ncp->nc_negcpu = mycpu->gd_cpuid;
1396 		spin_lock(&pn->neg_spin);
1397 		TAILQ_INSERT_TAIL(&pn->neg_list, ncp, nc_vnode);
1398 		_cache_hold(ncp);	/* neg_list assoc */
1399 		++pn->neg_count;
1400 		spin_unlock(&pn->neg_spin);
1401 		atomic_add_long(&pn->vfscache_negs, 1);
1402 
1403 		ncp->nc_error = ENOENT;
1404 		if (mp)
1405 			VFS_NCPGEN_SET(mp, ncp);
1406 	}
1407 
1408 	/*
1409 	 * Previously unresolved leaf is now resolved.
1410 	 *
1411 	 * Clear the NCF_UNRESOLVED flag last (see cache_nlookup_nonlocked()).
1412 	 * We only adjust vfscache_unres for ncp's that are in the tree.
1413 	 */
1414 	if (TAILQ_EMPTY(&ncp->nc_list) && ncp->nc_parent)
1415 		atomic_add_long(&pn->vfscache_unres, -1);
1416 	ncp->nc_flag &= ~(NCF_UNRESOLVED | NCF_DEFEREDZAP);
1417 	if (adjgen)
1418 		_cache_ncp_gen_exit(ncp);
1419 }
1420 
1421 void
1422 cache_setvp(struct nchandle *nch, struct vnode *vp)
1423 {
1424 	_cache_setvp(nch->mount, nch->ncp, vp, 1);
1425 }
1426 
1427 /*
1428  * Used for NFS
1429  */
1430 void
1431 cache_settimeout(struct nchandle *nch, int nticks)
1432 {
1433 	struct namecache *ncp = nch->ncp;
1434 
1435 	if ((ncp->nc_timeout = ticks + nticks) == 0)
1436 		ncp->nc_timeout = 1;
1437 }
1438 
1439 /*
1440  * Disassociate the vnode or negative-cache association and mark a
1441  * namecache entry as unresolved again.  Note that the ncp is still
1442  * left in the hash table and still linked to its parent.
1443  *
1444  * The ncp should be locked and refd on entry and will remain locked and refd
1445  * on return.
1446  *
1447  * This routine is normally never called on a directory containing children.
1448  * However, NFS often does just that in its rename() code as a cop-out to
1449  * avoid complex namespace operations.  This disconnects a directory vnode
1450  * from its namecache and can cause the OLDAPI and NEWAPI to get out of
1451  * sync.
1452  *
1453  */
1454 static
1455 void
1456 _cache_setunresolved(struct namecache *ncp, int adjgen)
1457 {
1458 	struct vnode *vp;
1459 
1460 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1461 		struct pcpu_ncache *pn;
1462 
1463 		if (adjgen)
1464 			_cache_ncp_gen_enter(ncp);
1465 
1466 		/*
1467 		 * Is a resolved or destroyed leaf now becoming unresolved?
1468 		 * Only adjust vfscache_unres for linked ncp's.
1469 		 */
1470 		if (TAILQ_EMPTY(&ncp->nc_list) && ncp->nc_parent) {
1471 			pn = &pcpu_ncache[mycpu->gd_cpuid];
1472 			atomic_add_long(&pn->vfscache_unres, 1);
1473 		}
1474 
1475 		ncp->nc_flag |= NCF_UNRESOLVED;
1476 		ncp->nc_timeout = 0;
1477 		ncp->nc_error = ENOTCONN;
1478 		if ((vp = ncp->nc_vp) != NULL) {
1479 			spin_lock(&vp->v_spin);
1480 			ncp->nc_vp = NULL;
1481 			TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
1482 			--vp->v_namecache_count;
1483 			spin_unlock(&vp->v_spin);
1484 
1485 			/*
1486 			 * Any vp associated with an ncp with children is
1487 			 * held by that ncp.  Any vp associated with  ncp
1488 			 * is held by that ncp.  These conditions must be
1489 			 * undone when the vp is cleared out from the ncp.
1490 			 */
1491 			if (!TAILQ_EMPTY(&ncp->nc_list))
1492 				vdrop(vp);
1493 			vdrop(vp);
1494 		} else {
1495 			pn = &pcpu_ncache[ncp->nc_negcpu];
1496 
1497 			atomic_add_long(&pn->vfscache_negs, -1);
1498 			spin_lock(&pn->neg_spin);
1499 			TAILQ_REMOVE(&pn->neg_list, ncp, nc_vnode);
1500 			--pn->neg_count;
1501 			spin_unlock(&pn->neg_spin);
1502 		}
1503 		ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK);
1504 
1505 		if (adjgen)
1506 			_cache_ncp_gen_exit(ncp);
1507 		_cache_drop(ncp);	/* from v_namecache or neg_list */
1508 	}
1509 }
1510 
1511 /*
1512  * The cache_nresolve() code calls this function to automatically
1513  * set a resolved cache element to unresolved if it has timed out
1514  * or if it is a negative cache hit and the mount point namecache_gen
1515  * has changed.
1516  */
1517 static __inline int
1518 _cache_auto_unresolve_test(struct mount *mp, struct namecache *ncp)
1519 {
1520 	/*
1521 	 * Try to zap entries that have timed out.  We have
1522 	 * to be careful here because locked leafs may depend
1523 	 * on the vnode remaining intact in a parent, so only
1524 	 * do this under very specific conditions.
1525 	 */
1526 	if (ncp->nc_timeout && (int)(ncp->nc_timeout - ticks) < 0 &&
1527 	    TAILQ_EMPTY(&ncp->nc_list)) {
1528 		return 1;
1529 	}
1530 
1531 	/*
1532 	 * If a resolved negative cache hit is invalid due to
1533 	 * the mount's namecache generation being bumped, zap it.
1534 	 */
1535 	if (ncp->nc_vp == NULL && VFS_NCPGEN_TEST(mp, ncp)) {
1536 		return 1;
1537 	}
1538 
1539 	/*
1540 	 * Otherwise we are good
1541 	 */
1542 	return 0;
1543 }
1544 
1545 static __inline void
1546 _cache_auto_unresolve(struct mount *mp, struct namecache *ncp)
1547 {
1548 	/*
1549 	 * Already in an unresolved state, nothing to do.
1550 	 */
1551 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1552 		if (_cache_auto_unresolve_test(mp, ncp))
1553 			_cache_setunresolved(ncp, 1);
1554 	}
1555 }
1556 
1557 void
1558 cache_setunresolved(struct nchandle *nch)
1559 {
1560 	_cache_setunresolved(nch->ncp, 1);
1561 }
1562 
1563 /*
1564  * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
1565  * looking for matches.  This flag tells the lookup code when it must
1566  * check for a mount linkage and also prevents the directories in question
1567  * from being deleted or renamed.
1568  */
1569 static
1570 int
1571 cache_clrmountpt_callback(struct mount *mp, void *data)
1572 {
1573 	struct nchandle *nch = data;
1574 
1575 	if (mp->mnt_ncmounton.ncp == nch->ncp)
1576 		return(1);
1577 	if (mp->mnt_ncmountpt.ncp == nch->ncp)
1578 		return(1);
1579 	return(0);
1580 }
1581 
1582 /*
1583  * Clear NCF_ISMOUNTPT on nch->ncp if it is no longer associated
1584  * with a mount point.
1585  */
1586 void
1587 cache_clrmountpt(struct nchandle *nch)
1588 {
1589 	int count;
1590 
1591 	count = mountlist_scan(cache_clrmountpt_callback, nch,
1592 			       MNTSCAN_FORWARD | MNTSCAN_NOBUSY |
1593 			       MNTSCAN_NOUNLOCK);
1594 	if (count == 0)
1595 		nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
1596 }
1597 
1598 /*
1599  * Invalidate portions of the namecache topology given a starting entry.
1600  * The passed ncp is set to an unresolved state and:
1601  *
1602  * The passed ncp must be referenced and locked.  The routine may unlock
1603  * and relock ncp several times, and will recheck the children and loop
1604  * to catch races.  When done the passed ncp will be returned with the
1605  * reference and lock intact.
1606  *
1607  * CINV_DESTROY		- Set a flag in the passed ncp entry indicating
1608  *			  that the physical underlying nodes have been
1609  *			  destroyed... as in deleted.  For example, when
1610  *			  a directory is removed.  This will cause record
1611  *			  lookups on the name to no longer be able to find
1612  *			  the record and tells the resolver to return failure
1613  *			  rather then trying to resolve through the parent.
1614  *
1615  *			  The topology itself, including ncp->nc_name,
1616  *			  remains intact.
1617  *
1618  *			  This only applies to the passed ncp, if CINV_CHILDREN
1619  *			  is specified the children are not flagged.
1620  *
1621  * CINV_CHILDREN	- Set all children (recursively) to an unresolved
1622  *			  state as well.
1623  *
1624  *			  Note that this will also have the side effect of
1625  *			  cleaning out any unreferenced nodes in the topology
1626  *			  from the leaves up as the recursion backs out.
1627  *
1628  * Note that the topology for any referenced nodes remains intact, but
1629  * the nodes will be marked as having been destroyed and will be set
1630  * to an unresolved state.
1631  *
1632  * It is possible for cache_inval() to race a cache_resolve(), meaning that
1633  * the namecache entry may not actually be invalidated on return if it was
1634  * revalidated while recursing down into its children.  This code guarentees
1635  * that the node(s) will go through an invalidation cycle, but does not
1636  * guarentee that they will remain in an invalidated state.
1637  *
1638  * Returns non-zero if a revalidation was detected during the invalidation
1639  * recursion, zero otherwise.  Note that since only the original ncp is
1640  * locked the revalidation ultimately can only indicate that the original ncp
1641  * *MIGHT* no have been reresolved.
1642  *
1643  * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
1644  * have to avoid blowing out the kernel stack.  We do this by saving the
1645  * deep namecache node and aborting the recursion, then re-recursing at that
1646  * node using a depth-first algorithm in order to allow multiple deep
1647  * recursions to chain through each other, then we restart the invalidation
1648  * from scratch.
1649  */
1650 
1651 struct cinvtrack {
1652 	struct namecache *resume_ncp;
1653 	int depth;
1654 };
1655 
1656 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
1657 
1658 static
1659 int
1660 _cache_inval(struct namecache *ncp, int flags)
1661 {
1662 	struct cinvtrack track;
1663 	struct namecache *ncp2;
1664 	int r;
1665 
1666 	track.depth = 0;
1667 	track.resume_ncp = NULL;
1668 
1669 	for (;;) {
1670 		r = _cache_inval_internal(ncp, flags, &track);
1671 		if (track.resume_ncp == NULL)
1672 			break;
1673 		_cache_unlock(ncp);
1674 		while ((ncp2 = track.resume_ncp) != NULL) {
1675 			track.resume_ncp = NULL;
1676 			_cache_lock(ncp2);
1677 			_cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
1678 					     &track);
1679 			/*_cache_put(ncp2);*/
1680 			cache_zap(ncp2);
1681 		}
1682 		_cache_lock(ncp);
1683 	}
1684 	return(r);
1685 }
1686 
1687 int
1688 cache_inval(struct nchandle *nch, int flags)
1689 {
1690 	return(_cache_inval(nch->ncp, flags));
1691 }
1692 
1693 /*
1694  * Helper for _cache_inval().  The passed ncp is refd and locked and
1695  * remains that way on return, but may be unlocked/relocked multiple
1696  * times by the routine.
1697  */
1698 static int
1699 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
1700 {
1701 	struct namecache *nextkid;
1702 	int rcnt = 0;
1703 
1704 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
1705 
1706 	_cache_ncp_gen_enter(ncp);
1707 	_cache_setunresolved(ncp, 0);
1708 	if (flags & CINV_DESTROY) {
1709 		ncp->nc_flag |= NCF_DESTROYED;
1710 		cpu_sfence();
1711 	}
1712 
1713 	while ((flags & CINV_CHILDREN) &&
1714 	       (nextkid = TAILQ_FIRST(&ncp->nc_list)) != NULL
1715 	) {
1716 		struct namecache *kid;
1717 		int restart;
1718 
1719 		restart = 0;
1720 		_cache_hold(nextkid);
1721 		if (++track->depth > MAX_RECURSION_DEPTH) {
1722 			track->resume_ncp = ncp;
1723 			_cache_hold(ncp);
1724 			++rcnt;
1725 		}
1726 		while ((kid = nextkid) != NULL) {
1727 			/*
1728 			 * Parent (ncp) must be locked for the iteration.
1729 			 */
1730 			nextkid = NULL;
1731 			if (kid->nc_parent != ncp) {
1732 				_cache_drop(kid);
1733 				kprintf("cache_inval_internal restartA %s\n",
1734 					ncp->nc_name);
1735 				restart = 1;
1736 				break;
1737 			}
1738 			if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
1739 				_cache_hold(nextkid);
1740 
1741 			/*
1742 			 * Parent unlocked for this section to avoid
1743 			 * deadlocks.  Then lock the kid and check for
1744 			 * races.
1745 			 */
1746 			_cache_unlock(ncp);
1747 			if (track->resume_ncp) {
1748 				_cache_drop(kid);
1749 				_cache_lock(ncp);
1750 				break;
1751 			}
1752 			_cache_lock(kid);
1753 			if (kid->nc_parent != ncp) {
1754 				kprintf("cache_inval_internal "
1755 					"restartB %s\n",
1756 					ncp->nc_name);
1757 				restart = 1;
1758 				_cache_unlock(kid);
1759 				_cache_drop(kid);
1760 				_cache_lock(ncp);
1761 				break;
1762 			}
1763 			if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
1764 			    TAILQ_FIRST(&kid->nc_list)
1765 			) {
1766 
1767 				rcnt += _cache_inval_internal(kid,
1768 						flags & ~CINV_DESTROY, track);
1769 				/*_cache_unlock(kid);*/
1770 				/*_cache_drop(kid);*/
1771 				cache_zap(kid);
1772 			} else {
1773 				cache_zap(kid);
1774 			}
1775 
1776 			/*
1777 			 * Relock parent to continue scan
1778 			 */
1779 			_cache_lock(ncp);
1780 		}
1781 		if (nextkid)
1782 			_cache_drop(nextkid);
1783 		--track->depth;
1784 		if (restart == 0)
1785 			break;
1786 	}
1787 
1788 	/*
1789 	 * Someone could have gotten in there while ncp was unlocked,
1790 	 * retry if so.
1791 	 */
1792 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1793 		++rcnt;
1794 	_cache_ncp_gen_exit(ncp);
1795 
1796 	return (rcnt);
1797 }
1798 
1799 /*
1800  * Invalidate a vnode's namecache associations.  To avoid races against
1801  * the resolver we do not invalidate a node which we previously invalidated
1802  * but which was then re-resolved while we were in the invalidation loop.
1803  *
1804  * Returns non-zero if any namecache entries remain after the invalidation
1805  * loop completed.
1806  *
1807  * NOTE: Unlike the namecache topology which guarentees that ncp's will not
1808  *	 be ripped out of the topology while held, the vnode's v_namecache
1809  *	 list has no such restriction.  NCP's can be ripped out of the list
1810  *	 at virtually any time if not locked, even if held.
1811  *
1812  *	 In addition, the v_namecache list itself must be locked via
1813  *	 the vnode's spinlock.
1814  */
1815 int
1816 cache_inval_vp(struct vnode *vp, int flags)
1817 {
1818 	struct namecache *ncp;
1819 	struct namecache *next;
1820 
1821 restart:
1822 	spin_lock(&vp->v_spin);
1823 	ncp = TAILQ_FIRST(&vp->v_namecache);
1824 	if (ncp)
1825 		_cache_hold(ncp);
1826 	while (ncp) {
1827 		/* loop entered with ncp held and vp spin-locked */
1828 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1829 			_cache_hold(next);
1830 		spin_unlock(&vp->v_spin);
1831 		_cache_lock(ncp);
1832 		if (ncp->nc_vp != vp) {
1833 			kprintf("Warning: cache_inval_vp: race-A detected on "
1834 				"%s\n", ncp->nc_name);
1835 			_cache_put(ncp);
1836 			if (next)
1837 				_cache_drop(next);
1838 			goto restart;
1839 		}
1840 		_cache_inval(ncp, flags);
1841 		_cache_put(ncp);		/* also releases reference */
1842 		ncp = next;
1843 		spin_lock(&vp->v_spin);
1844 		if (ncp && ncp->nc_vp != vp) {
1845 			spin_unlock(&vp->v_spin);
1846 			kprintf("Warning: cache_inval_vp: race-B detected on "
1847 				"%s\n", ncp->nc_name);
1848 			_cache_drop(ncp);
1849 			goto restart;
1850 		}
1851 	}
1852 	spin_unlock(&vp->v_spin);
1853 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1854 }
1855 
1856 /*
1857  * This routine is used instead of the normal cache_inval_vp() when we
1858  * are trying to recycle otherwise good vnodes.
1859  *
1860  * Return 0 on success, non-zero if not all namecache records could be
1861  * disassociated from the vnode (for various reasons).
1862  */
1863 int
1864 cache_inval_vp_nonblock(struct vnode *vp)
1865 {
1866 	struct namecache *ncp;
1867 	struct namecache *next;
1868 
1869 	spin_lock(&vp->v_spin);
1870 
1871 	ncp = TAILQ_FIRST(&vp->v_namecache);
1872 	if (ncp)
1873 		_cache_hold(ncp);
1874 
1875 	while (ncp) {
1876 		/* loop entered with ncp held */
1877 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1878 			_cache_hold(next);
1879 		spin_unlock(&vp->v_spin);
1880 		if (_cache_lock_nonblock(ncp)) {
1881 			_cache_drop(ncp);
1882 			if (next)
1883 				_cache_drop(next);
1884 			goto done;
1885 		}
1886 		if (ncp->nc_vp != vp) {
1887 			kprintf("Warning: cache_inval_vp: race-A detected on "
1888 				"%s\n", ncp->nc_name);
1889 			_cache_put(ncp);
1890 			if (next)
1891 				_cache_drop(next);
1892 			goto done;
1893 		}
1894 		_cache_inval(ncp, 0);
1895 		_cache_put(ncp);		/* also releases reference */
1896 		ncp = next;
1897 		spin_lock(&vp->v_spin);
1898 		if (ncp && ncp->nc_vp != vp) {
1899 			spin_unlock(&vp->v_spin);
1900 			kprintf("Warning: cache_inval_vp: race-B detected on "
1901 				"%s\n", ncp->nc_name);
1902 			_cache_drop(ncp);
1903 			goto done;
1904 		}
1905 	}
1906 	spin_unlock(&vp->v_spin);
1907 done:
1908 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1909 }
1910 
1911 /*
1912  * Attempt to quickly invalidate the vnode's namecache entry.  This function
1913  * will also dive the ncp and free its children but only if they are trivial.
1914  * All locks are non-blocking and the function will fail if required locks
1915  * cannot be obtained.
1916  *
1917  * We want this sort of function to be able to guarantee progress when vnlru
1918  * wants to recycle a vnode.  Directories could otherwise get stuck and not
1919  * be able to recycle due to destroyed or unresolved children in the
1920  * namecache.
1921  */
1922 void
1923 cache_inval_vp_quick(struct vnode *vp)
1924 {
1925 	struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
1926         struct namecache *ncp;
1927         struct namecache *kid;
1928 
1929         spin_lock(&vp->v_spin);
1930         while ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL) {
1931                 _cache_hold(ncp);
1932                 spin_unlock(&vp->v_spin);
1933                 if (_cache_lock_nonblock(ncp)) {
1934                         _cache_drop(ncp);
1935 			return;
1936                 }
1937 
1938 		/*
1939 		 * Try to trivially destroy any children.
1940 		 */
1941 		while ((kid = TAILQ_FIRST(&ncp->nc_list)) != NULL) {
1942 			struct nchash_head *nchpp;
1943 
1944 			/*
1945 			 * Early test without the lock.  Give-up if the
1946 			 * child has children of its own, the child is
1947 			 * positively-resolved, or the ref-count is
1948 			 * unexpected.
1949 			 */
1950 			if (TAILQ_FIRST(&kid->nc_list) ||
1951 			    kid->nc_vp ||
1952 			    kid->nc_refs != ncpbaserefs(kid))
1953 			{
1954 				_cache_put(ncp);
1955 				return;
1956 			}
1957 
1958 			_cache_hold(kid);
1959 			if (_cache_lock_nonblock(kid)) {
1960 				_cache_drop(kid);
1961 				_cache_put(ncp);
1962 				return;
1963 			}
1964 
1965 			/*
1966 			 * A destruction/free test requires the parent,
1967 			 * the kid, and the hash table to be locked.  Note
1968 			 * that the kid may still be on the negative cache
1969 			 * list.
1970 			 */
1971 			nchpp = kid->nc_head;
1972 			spin_lock(&nchpp->spin);
1973 
1974 			/*
1975 			 * Give up if the child isn't trivial.  It can be
1976 			 * resolved or unresolved but must not have a vp.
1977 			 */
1978 			if (kid->nc_parent != ncp ||
1979 			    kid->nc_vp ||
1980 			    TAILQ_FIRST(&kid->nc_list) ||
1981 			    kid->nc_refs != 1 + ncpbaserefs(kid))
1982 			{
1983 				spin_unlock(&nchpp->spin);
1984 				_cache_put(kid);
1985 				_cache_put(ncp);
1986 				return;
1987 			}
1988 
1989 			++pn->inv_kid_quick_count;
1990 
1991 			/*
1992 			 * We can safely destroy the kid.  It may still
1993 			 * have extra refs due to ncneglist races, but since
1994 			 * we checked above with the lock held those races
1995 			 * will self-resolve.
1996 			 *
1997 			 * With these actions the kid should nominally
1998 			 * have just its natural ref plus our ref.
1999 			 *
2000 			 * This is only safe because we hold locks on
2001 			 * the parent, the kid, and the nchpp.  The only
2002 			 * lock we don't have is on the ncneglist and that
2003 			 * can race a ref, but as long as we unresolve the
2004 			 * kid before executing our final drop the ncneglist
2005 			 * code path(s) will just drop their own ref so all
2006 			 * is good.
2007 			 */
2008 			_cache_unlink_parent(ncp, kid, nchpp);
2009 			_cache_setunresolved(kid, 1);
2010 			if (kid->nc_refs != 2) {
2011 				kprintf("Warning: kid %p unexpected refs=%d "
2012 					"%08x %s\n",
2013 					kid, kid->nc_refs,
2014 					kid->nc_flag, kid->nc_name);
2015 			}
2016 			_cache_put(kid);    /* drop our ref and lock */
2017 			_cache_drop(kid);   /* drop natural ref to destroy */
2018 		}
2019 
2020 		/*
2021 		 * Now check ncp itself against our expectations.  With
2022 		 * no children left we have our ref plus whether it is
2023 		 * resolved or not (which it has to be, actually, since it
2024 		 * is hanging off the vp->v_namecache).
2025 		 */
2026 		if (ncp->nc_refs != 1 + ncpbaserefs(ncp)) {
2027 			_cache_put(ncp);
2028 			spin_lock(&vp->v_spin);
2029 			break;
2030 		}
2031 
2032 		++pn->inv_ncp_quick_count;
2033 
2034 		/*
2035 		 * Success, disassociate and release the ncp.  Do not
2036 		 * try to zap it here.
2037 		 *
2038 		 * NOTE: Releasing the ncp here leaves it in the tree,
2039 		 *	 but since we have disassociated the vnode this
2040 		 *	 ncp entry becomes 'trivial' and successive calls
2041 		 *	 to cache_inval_vp_quick() will be able to continue
2042 		 *	 to make progress.
2043 		 */
2044 		_cache_setunresolved(ncp, 1);
2045                 _cache_put(ncp);
2046                 spin_lock(&vp->v_spin);
2047         }
2048         spin_unlock(&vp->v_spin);
2049 }
2050 
2051 /*
2052  * Clears the universal directory search 'ok' flag.  This flag allows
2053  * nlookup() to bypass normal vnode checks.  This flag is a cached flag
2054  * so clearing it simply forces revalidation.
2055  */
2056 void
2057 cache_inval_wxok(struct vnode *vp)
2058 {
2059 	struct namecache *ncp;
2060 
2061 	spin_lock(&vp->v_spin);
2062 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
2063 		if (ncp->nc_flag & (NCF_WXOK | NCF_NOTX))
2064 			atomic_clear_short(&ncp->nc_flag, NCF_WXOK | NCF_NOTX);
2065 	}
2066 	spin_unlock(&vp->v_spin);
2067 }
2068 
2069 /*
2070  * The source ncp has been renamed to the target ncp.  All elements have been
2071  * locked, including the parent ncp's.
2072  *
2073  * The target ncp is destroyed (as a normal rename-over would destroy the
2074  * target file or directory).
2075  *
2076  * Because there may be references to the source ncp we cannot copy its
2077  * contents to the target.  Instead the source ncp is relinked as the target
2078  * and the target ncp is removed from the namecache topology.
2079  */
2080 void
2081 cache_rename(struct nchandle *fnch, struct nchandle *tnch)
2082 {
2083 	struct namecache *fncp = fnch->ncp;
2084 	struct namecache *tncp = tnch->ncp;
2085 	struct namecache *par;
2086 	struct nchash_head *nchpp;
2087 	u_int32_t hash;
2088 	char *oname;
2089 	char *nname;
2090 
2091 	if (tncp->nc_nlen) {
2092 		nname = kmalloc(tncp->nc_nlen + 1, M_VFSCACHEAUX, M_WAITOK);
2093 		bcopy(tncp->nc_name, nname, tncp->nc_nlen);
2094 		nname[tncp->nc_nlen] = 0;
2095 	} else {
2096 		nname = NULL;
2097 	}
2098 
2099 	/*
2100 	 * Rename fncp (unlink)
2101 	 */
2102 	if (fncp->nc_parent) {
2103 		par = fncp->nc_parent;
2104 		_cache_hold(par);
2105 		_cache_lock(par);
2106 		nchpp = fncp->nc_head;
2107 		spin_lock(&nchpp->spin);
2108 		_cache_unlink_parent(par, fncp, nchpp); /* eats nchpp */
2109 		_cache_put(par);
2110 	} else {
2111 		par = NULL;
2112 		nchpp = NULL;
2113 	}
2114 	oname = fncp->nc_name;
2115 	fncp->nc_name = nname;
2116 	fncp->nc_nlen = tncp->nc_nlen;
2117 	if (oname)
2118 		kfree(oname, M_VFSCACHEAUX);
2119 
2120 	par = tncp->nc_parent;
2121 	KKASSERT(par->nc_lock.lk_lockholder == curthread);
2122 
2123 	/*
2124 	 * Rename fncp (relink)
2125 	 */
2126 	hash = fnv_32_buf(fncp->nc_name, fncp->nc_nlen, FNV1_32_INIT);
2127 	hash = fnv_32_buf(&par, sizeof(par), hash);
2128 	nchpp = NCHHASH(hash);
2129 
2130 	spin_lock(&nchpp->spin);
2131 	_cache_link_parent(fncp, par, nchpp);
2132 	spin_unlock(&nchpp->spin);
2133 
2134 	/*
2135 	 * Get rid of the overwritten tncp (unlink)
2136 	 */
2137 	_cache_unlink(tncp);
2138 }
2139 
2140 /*
2141  * Perform actions consistent with unlinking a file.  The passed-in ncp
2142  * must be locked.
2143  *
2144  * The ncp is marked DESTROYED so it no longer shows up in searches,
2145  * and will be physically deleted when the vnode goes away.
2146  *
2147  * If the related vnode has no refs then we cycle it through vget()/vput()
2148  * to (possibly if we don't have a ref race) trigger a deactivation,
2149  * allowing the VFS to trivially detect and recycle the deleted vnode
2150  * via VOP_INACTIVE().
2151  *
2152  * NOTE: _cache_rename() will automatically call _cache_unlink() on the
2153  *	 target ncp.
2154  */
2155 void
2156 cache_unlink(struct nchandle *nch)
2157 {
2158 	_cache_unlink(nch->ncp);
2159 }
2160 
2161 static void
2162 _cache_unlink(struct namecache *ncp)
2163 {
2164 	struct vnode *vp;
2165 
2166 	/*
2167 	 * Causes lookups to fail and allows another ncp with the same
2168 	 * name to be created under ncp->nc_parent.
2169 	 */
2170 	_cache_ncp_gen_enter(ncp);
2171 	ncp->nc_flag |= NCF_DESTROYED;
2172 
2173 	/*
2174 	 * Attempt to trigger a deactivation.  Set VREF_FINALIZE to
2175 	 * force action on the 1->0 transition.  Do not destroy the
2176 	 * vp association if a vp is present (leave the destroyed ncp
2177 	 * resolved through the vp finalization).
2178 	 *
2179 	 * Cleanup the refs in the resolved-not-found case by setting
2180 	 * the ncp to an unresolved state.  This improves our ability
2181 	 * to get rid of dead ncp elements in other cache_*() routines.
2182 	 */
2183 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
2184 		vp = ncp->nc_vp;
2185 		if (vp) {
2186 			atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
2187 			if (VREFCNT(vp) <= 0) {
2188 				if (vget(vp, LK_SHARED) == 0)
2189 					vput(vp);
2190 			}
2191 		} else {
2192 			_cache_setunresolved(ncp, 0);
2193 		}
2194 	}
2195 	_cache_ncp_gen_exit(ncp);
2196 }
2197 
2198 /*
2199  * Return non-zero if the nch might be associated with an open and/or mmap()'d
2200  * file.  The easy solution is to just return non-zero if the vnode has refs.
2201  * Used to interlock hammer2 reclaims (VREF_FINALIZE should already be set to
2202  * force the reclaim).
2203  */
2204 int
2205 cache_isopen(struct nchandle *nch)
2206 {
2207 	struct vnode *vp;
2208 	struct namecache *ncp = nch->ncp;
2209 
2210 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
2211 	    (vp = ncp->nc_vp) != NULL &&
2212 	    VREFCNT(vp)) {
2213 		return 1;
2214 	}
2215 	return 0;
2216 }
2217 
2218 
2219 /*
2220  * vget the vnode associated with the namecache entry.  Resolve the namecache
2221  * entry if necessary.  The passed ncp must be referenced and locked.  If
2222  * the ncp is resolved it might be locked shared.
2223  *
2224  * lk_type may be LK_SHARED, LK_EXCLUSIVE.  A ref'd, possibly locked
2225  * (depending on the passed lk_type) will be returned in *vpp with an error
2226  * of 0, or NULL will be returned in *vpp with a non-0 error code.  The
2227  * most typical error is ENOENT, meaning that the ncp represents a negative
2228  * cache hit and there is no vnode to retrieve, but other errors can occur
2229  * too.
2230  *
2231  * The vget() can race a reclaim.  If this occurs we re-resolve the
2232  * namecache entry.
2233  *
2234  * There are numerous places in the kernel where vget() is called on a
2235  * vnode while one or more of its namecache entries is locked.  Releasing
2236  * a vnode never deadlocks against locked namecache entries (the vnode
2237  * will not get recycled while referenced ncp's exist).  This means we
2238  * can safely acquire the vnode.  In fact, we MUST NOT release the ncp
2239  * lock when acquiring the vp lock or we might cause a deadlock.
2240  *
2241  * NOTE: The passed-in ncp must be locked exclusively if it is initially
2242  *	 unresolved.  If a reclaim race occurs the passed-in ncp will be
2243  *	 relocked exclusively before being re-resolved.
2244  */
2245 int
2246 cache_vget(struct nchandle *nch, struct ucred *cred,
2247 	   int lk_type, struct vnode **vpp)
2248 {
2249 	struct namecache *ncp;
2250 	struct vnode *vp;
2251 	int error;
2252 	u_int dummy_gen = 0;
2253 
2254 	ncp = nch->ncp;
2255 again:
2256 	vp = NULL;
2257 	if (ncp->nc_flag & NCF_UNRESOLVED)
2258 		error = cache_resolve(nch, &dummy_gen, cred);
2259 	else
2260 		error = 0;
2261 
2262 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
2263 		error = vget(vp, lk_type);
2264 		if (error) {
2265 			/*
2266 			 * VRECLAIM race
2267 			 *
2268 			 * The ncp may have been locked shared, we must relock
2269 			 * it exclusively before we can set it to unresolved.
2270 			 */
2271 			if (error == ENOENT) {
2272 				kprintf("Warning: vnode reclaim race detected "
2273 					"in cache_vget on %p (%s)\n",
2274 					vp, ncp->nc_name);
2275 				_cache_unlock(ncp);
2276 				_cache_lock(ncp);
2277 				_cache_setunresolved(ncp, 1);
2278 				goto again;
2279 			}
2280 
2281 			/*
2282 			 * Not a reclaim race, some other error.
2283 			 */
2284 			KKASSERT(ncp->nc_vp == vp);
2285 			vp = NULL;
2286 		} else {
2287 			KKASSERT(ncp->nc_vp == vp);
2288 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
2289 		}
2290 	}
2291 	if (error == 0 && vp == NULL)
2292 		error = ENOENT;
2293 	*vpp = vp;
2294 	return(error);
2295 }
2296 
2297 /*
2298  * Similar to cache_vget() but only acquires a ref on the vnode.  The vnode
2299  * is already held by virtuue of the ncp being locked, but it might not be
2300  * referenced and while it is not referenced it can transition into the
2301  * VRECLAIMED state.
2302  *
2303  * NOTE: The passed-in ncp must be locked exclusively if it is initially
2304  *	 unresolved.  If a reclaim race occurs the passed-in ncp will be
2305  *	 relocked exclusively before being re-resolved.
2306  *
2307  * NOTE: At the moment we have to issue a vget() on the vnode, even though
2308  *	 we are going to immediately release the lock, in order to resolve
2309  *	 potential reclamation races.  Once we have a solid vnode ref that
2310  *	 was (at some point) interlocked via a vget(), the vnode will not
2311  *	 be reclaimed.
2312  *
2313  * NOTE: vhold counts (v_auxrefs) do not prevent reclamation.
2314  */
2315 int
2316 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
2317 {
2318 	struct namecache *ncp;
2319 	struct vnode *vp;
2320 	int error;
2321 	int v;
2322 	u_int dummy_gen = 0;
2323 
2324 	ncp = nch->ncp;
2325 again:
2326 	vp = NULL;
2327 	if (ncp->nc_flag & NCF_UNRESOLVED)
2328 		error = cache_resolve(nch, &dummy_gen, cred);
2329 	else
2330 		error = 0;
2331 
2332 	while (error == 0 && (vp = ncp->nc_vp) != NULL) {
2333 		/*
2334 		 * Try a lockless ref of the vnode.  VRECLAIMED transitions
2335 		 * use the vx_lock state and update-counter mechanism so we
2336 		 * can detect if one is in-progress or occurred.
2337 		 *
2338 		 * If we can successfully ref the vnode and interlock against
2339 		 * the update-counter mechanism, and VRECLAIMED is found to
2340 		 * not be set after that, we should be good.
2341 		 */
2342 		v = spin_access_start_only(&vp->v_spin);
2343 		if (__predict_true(spin_access_check_inprog(v) == 0)) {
2344 			vref_special(vp);
2345 			if (__predict_false(
2346 				    spin_access_end_only(&vp->v_spin, v))) {
2347 				vrele(vp);
2348 				continue;
2349 			}
2350 			if (__predict_true((vp->v_flag & VRECLAIMED) == 0)) {
2351 				break;
2352 			}
2353 			vrele(vp);
2354 			kprintf("CACHE_VREF: IN-RECLAIM\n");
2355 		}
2356 
2357 		/*
2358 		 * Do it the slow way
2359 		 */
2360 		error = vget(vp, LK_SHARED);
2361 		if (error) {
2362 			/*
2363 			 * VRECLAIM race
2364 			 */
2365 			if (error == ENOENT) {
2366 				kprintf("Warning: vnode reclaim race detected "
2367 					"in cache_vget on %p (%s)\n",
2368 					vp, ncp->nc_name);
2369 				_cache_unlock(ncp);
2370 				_cache_lock(ncp);
2371 				_cache_setunresolved(ncp, 1);
2372 				goto again;
2373 			}
2374 
2375 			/*
2376 			 * Not a reclaim race, some other error.
2377 			 */
2378 			KKASSERT(ncp->nc_vp == vp);
2379 			vp = NULL;
2380 		} else {
2381 			KKASSERT(ncp->nc_vp == vp);
2382 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
2383 			/* caller does not want a lock */
2384 			vn_unlock(vp);
2385 		}
2386 		break;
2387 	}
2388 	if (error == 0 && vp == NULL)
2389 		error = ENOENT;
2390 	*vpp = vp;
2391 
2392 	return(error);
2393 }
2394 
2395 /*
2396  * Return a referenced vnode representing the parent directory of
2397  * ncp.
2398  *
2399  * Because the caller has locked the ncp it should not be possible for
2400  * the parent ncp to go away.  However, the parent can unresolve its
2401  * dvp at any time so we must be able to acquire a lock on the parent
2402  * to safely access nc_vp.
2403  *
2404  * We have to leave par unlocked when vget()ing dvp to avoid a deadlock,
2405  * so use vhold()/vdrop() while holding the lock to prevent dvp from
2406  * getting destroyed.
2407  *
2408  * NOTE: vhold() is allowed when dvp has 0 refs if we hold a
2409  *	 lock on the ncp in question..
2410  */
2411 struct vnode *
2412 cache_dvpref(struct namecache *ncp)
2413 {
2414 	struct namecache *par;
2415 	struct vnode *dvp;
2416 
2417 	dvp = NULL;
2418 	if ((par = ncp->nc_parent) != NULL) {
2419 		_cache_hold(par);
2420 		_cache_lock(par);
2421 		if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
2422 			if ((dvp = par->nc_vp) != NULL)
2423 				vhold(dvp);
2424 		}
2425 		_cache_unlock(par);
2426 		if (dvp) {
2427 			if (vget(dvp, LK_SHARED) == 0) {
2428 				vn_unlock(dvp);
2429 				vdrop(dvp);
2430 				/* return refd, unlocked dvp */
2431 			} else {
2432 				vdrop(dvp);
2433 				dvp = NULL;
2434 			}
2435 		}
2436 		_cache_drop(par);
2437 	}
2438 	return(dvp);
2439 }
2440 
2441 /*
2442  * Convert a directory vnode to a namecache record without any other
2443  * knowledge of the topology.  This ONLY works with directory vnodes and
2444  * is ONLY used by the NFS server.  dvp must be refd but unlocked, and the
2445  * returned ncp (if not NULL) will be held and unlocked.
2446  *
2447  * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
2448  * If 'makeit' is 1 we attempt to track-down and create the namecache topology
2449  * for dvp.  This will fail only if the directory has been deleted out from
2450  * under the caller.
2451  *
2452  * Callers must always check for a NULL return no matter the value of 'makeit'.
2453  *
2454  * To avoid underflowing the kernel stack each recursive call increments
2455  * the makeit variable.
2456  */
2457 
2458 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
2459 				  struct vnode *dvp, char *fakename);
2460 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
2461 				  struct vnode **saved_dvp);
2462 
2463 int
2464 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
2465 	      struct nchandle *nch)
2466 {
2467 	struct vnode *saved_dvp;
2468 	struct vnode *pvp;
2469 	char *fakename;
2470 	int error;
2471 
2472 	nch->ncp = NULL;
2473 	nch->mount = dvp->v_mount;
2474 	saved_dvp = NULL;
2475 	fakename = NULL;
2476 
2477 	/*
2478 	 * Handle the makeit == 0 degenerate case
2479 	 */
2480 	if (makeit == 0) {
2481 		spin_lock_shared(&dvp->v_spin);
2482 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
2483 		if (nch->ncp)
2484 			cache_hold(nch);
2485 		spin_unlock_shared(&dvp->v_spin);
2486 	}
2487 
2488 	/*
2489 	 * Loop until resolution, inside code will break out on error.
2490 	 */
2491 	while (makeit) {
2492 		/*
2493 		 * Break out if we successfully acquire a working ncp.
2494 		 */
2495 		spin_lock_shared(&dvp->v_spin);
2496 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
2497 		if (nch->ncp) {
2498 			cache_hold(nch);
2499 			spin_unlock_shared(&dvp->v_spin);
2500 			break;
2501 		}
2502 		spin_unlock_shared(&dvp->v_spin);
2503 
2504 		/*
2505 		 * If dvp is the root of its filesystem it should already
2506 		 * have a namecache pointer associated with it as a side
2507 		 * effect of the mount, but it may have been disassociated.
2508 		 */
2509 		if (dvp->v_flag & VROOT) {
2510 			nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
2511 			error = cache_resolve_mp(nch->mount, 1);
2512 			_cache_put(nch->ncp);
2513 			if (ncvp_debug & 1) {
2514 				kprintf("cache_fromdvp: resolve root of "
2515 					"mount %p error %d",
2516 					dvp->v_mount, error);
2517 			}
2518 			if (error) {
2519 				if (ncvp_debug & 1)
2520 					kprintf(" failed\n");
2521 				nch->ncp = NULL;
2522 				break;
2523 			}
2524 			if (ncvp_debug & 1)
2525 				kprintf(" succeeded\n");
2526 			continue;
2527 		}
2528 
2529 		/*
2530 		 * If we are recursed too deeply resort to an O(n^2)
2531 		 * algorithm to resolve the namecache topology.  The
2532 		 * resolved pvp is left referenced in saved_dvp to
2533 		 * prevent the tree from being destroyed while we loop.
2534 		 */
2535 		if (makeit > 20) {
2536 			error = cache_fromdvp_try(dvp, cred, &saved_dvp);
2537 			if (error) {
2538 				kprintf("lookupdotdot(longpath) failed %d "
2539 				       "dvp %p\n", error, dvp);
2540 				nch->ncp = NULL;
2541 				break;
2542 			}
2543 			continue;
2544 		}
2545 
2546 		/*
2547 		 * Get the parent directory and resolve its ncp.
2548 		 */
2549 		if (fakename) {
2550 			kfree(fakename, M_TEMP);
2551 			fakename = NULL;
2552 		}
2553 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2554 					  &fakename);
2555 		if (error) {
2556 			kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
2557 			break;
2558 		}
2559 		vn_unlock(pvp);
2560 
2561 		/*
2562 		 * Reuse makeit as a recursion depth counter.  On success
2563 		 * nch will be fully referenced.
2564 		 */
2565 		cache_fromdvp(pvp, cred, makeit + 1, nch);
2566 		vrele(pvp);
2567 		if (nch->ncp == NULL)
2568 			break;
2569 
2570 		/*
2571 		 * Do an inefficient scan of pvp (embodied by ncp) to look
2572 		 * for dvp.  This will create a namecache record for dvp on
2573 		 * success.  We loop up to recheck on success.
2574 		 *
2575 		 * ncp and dvp are both held but not locked.
2576 		 */
2577 		error = cache_inefficient_scan(nch, cred, dvp, fakename);
2578 		if (error) {
2579 			kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
2580 				pvp, nch->ncp->nc_name, dvp);
2581 			cache_drop(nch);
2582 			/* nch was NULLed out, reload mount */
2583 			nch->mount = dvp->v_mount;
2584 			break;
2585 		}
2586 		if (ncvp_debug & 1) {
2587 			kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
2588 				pvp, nch->ncp->nc_name);
2589 		}
2590 		cache_drop(nch);
2591 		/* nch was NULLed out, reload mount */
2592 		nch->mount = dvp->v_mount;
2593 	}
2594 
2595 	/*
2596 	 * If nch->ncp is non-NULL it will have been held already.
2597 	 */
2598 	if (fakename)
2599 		kfree(fakename, M_TEMP);
2600 	if (saved_dvp)
2601 		vrele(saved_dvp);
2602 	if (nch->ncp)
2603 		return (0);
2604 	return (EINVAL);
2605 }
2606 
2607 /*
2608  * Go up the chain of parent directories until we find something
2609  * we can resolve into the namecache.  This is very inefficient.
2610  */
2611 static
2612 int
2613 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
2614 		  struct vnode **saved_dvp)
2615 {
2616 	struct nchandle nch;
2617 	struct vnode *pvp;
2618 	int error;
2619 	static time_t last_fromdvp_report;
2620 	char *fakename;
2621 
2622 	/*
2623 	 * Loop getting the parent directory vnode until we get something we
2624 	 * can resolve in the namecache.
2625 	 */
2626 	vref(dvp);
2627 	nch.mount = dvp->v_mount;
2628 	nch.ncp = NULL;
2629 	fakename = NULL;
2630 
2631 	for (;;) {
2632 		if (fakename) {
2633 			kfree(fakename, M_TEMP);
2634 			fakename = NULL;
2635 		}
2636 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2637 					  &fakename);
2638 		if (error) {
2639 			vrele(dvp);
2640 			break;
2641 		}
2642 		vn_unlock(pvp);
2643 		spin_lock_shared(&pvp->v_spin);
2644 		if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
2645 			_cache_hold(nch.ncp);
2646 			spin_unlock_shared(&pvp->v_spin);
2647 			vrele(pvp);
2648 			break;
2649 		}
2650 		spin_unlock_shared(&pvp->v_spin);
2651 		if (pvp->v_flag & VROOT) {
2652 			nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
2653 			error = cache_resolve_mp(nch.mount, 1);
2654 			_cache_unlock(nch.ncp);
2655 			vrele(pvp);
2656 			if (error) {
2657 				_cache_drop(nch.ncp);
2658 				nch.ncp = NULL;
2659 				vrele(dvp);
2660 			}
2661 			break;
2662 		}
2663 		vrele(dvp);
2664 		dvp = pvp;
2665 	}
2666 	if (error == 0) {
2667 		if (last_fromdvp_report != time_uptime) {
2668 			last_fromdvp_report = time_uptime;
2669 			kprintf("Warning: extremely inefficient path "
2670 				"resolution on %s\n",
2671 				nch.ncp->nc_name);
2672 		}
2673 		error = cache_inefficient_scan(&nch, cred, dvp, fakename);
2674 
2675 		/*
2676 		 * Hopefully dvp now has a namecache record associated with
2677 		 * it.  Leave it referenced to prevent the kernel from
2678 		 * recycling the vnode.  Otherwise extremely long directory
2679 		 * paths could result in endless recycling.
2680 		 */
2681 		if (*saved_dvp)
2682 		    vrele(*saved_dvp);
2683 		*saved_dvp = dvp;
2684 		_cache_drop(nch.ncp);
2685 	}
2686 	if (fakename)
2687 		kfree(fakename, M_TEMP);
2688 	return (error);
2689 }
2690 
2691 /*
2692  * Do an inefficient scan of the directory represented by ncp looking for
2693  * the directory vnode dvp.  ncp must be held but not locked on entry and
2694  * will be held on return.  dvp must be refd but not locked on entry and
2695  * will remain refd on return.
2696  *
2697  * Why do this at all?  Well, due to its stateless nature the NFS server
2698  * converts file handles directly to vnodes without necessarily going through
2699  * the namecache ops that would otherwise create the namecache topology
2700  * leading to the vnode.  We could either (1) Change the namecache algorithms
2701  * to allow disconnect namecache records that are re-merged opportunistically,
2702  * or (2) Make the NFS server backtrack and scan to recover a connected
2703  * namecache topology in order to then be able to issue new API lookups.
2704  *
2705  * It turns out that (1) is a huge mess.  It takes a nice clean set of
2706  * namecache algorithms and introduces a lot of complication in every subsystem
2707  * that calls into the namecache to deal with the re-merge case, especially
2708  * since we are using the namecache to placehold negative lookups and the
2709  * vnode might not be immediately assigned. (2) is certainly far less
2710  * efficient then (1), but since we are only talking about directories here
2711  * (which are likely to remain cached), the case does not actually run all
2712  * that often and has the supreme advantage of not polluting the namecache
2713  * algorithms.
2714  *
2715  * If a fakename is supplied just construct a namecache entry using the
2716  * fake name.
2717  */
2718 static int
2719 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
2720 		       struct vnode *dvp, char *fakename)
2721 {
2722 	struct nlcomponent nlc;
2723 	struct nchandle rncp;
2724 	struct dirent *den;
2725 	struct vnode *pvp;
2726 	struct vattr vat;
2727 	struct iovec iov;
2728 	struct uio uio;
2729 	int blksize;
2730 	int eofflag;
2731 	int bytes;
2732 	char *rbuf;
2733 	int error;
2734 
2735 	vat.va_blocksize = 0;
2736 	if ((error = VOP_GETATTR(dvp, &vat)) != 0)
2737 		return (error);
2738 	cache_lock(nch);
2739 	error = cache_vref(nch, cred, &pvp);
2740 	cache_unlock(nch);
2741 	if (error)
2742 		return (error);
2743 	if (ncvp_debug & 1) {
2744 		kprintf("inefficient_scan of (%p,%s): directory iosize %ld "
2745 			"vattr fileid = %lld\n",
2746 			nch->ncp, nch->ncp->nc_name,
2747 			vat.va_blocksize,
2748 			(long long)vat.va_fileid);
2749 	}
2750 
2751 	/*
2752 	 * Use the supplied fakename if not NULL.  Fake names are typically
2753 	 * not in the actual filesystem hierarchy.  This is used by HAMMER
2754 	 * to glue @@timestamp recursions together.
2755 	 */
2756 	if (fakename) {
2757 		nlc.nlc_nameptr = fakename;
2758 		nlc.nlc_namelen = strlen(fakename);
2759 		rncp = cache_nlookup(nch, &nlc);
2760 		goto done;
2761 	}
2762 
2763 	if ((blksize = vat.va_blocksize) == 0)
2764 		blksize = DEV_BSIZE;
2765 	rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
2766 	rncp.ncp = NULL;
2767 
2768 	eofflag = 0;
2769 	uio.uio_offset = 0;
2770 again:
2771 	iov.iov_base = rbuf;
2772 	iov.iov_len = blksize;
2773 	uio.uio_iov = &iov;
2774 	uio.uio_iovcnt = 1;
2775 	uio.uio_resid = blksize;
2776 	uio.uio_segflg = UIO_SYSSPACE;
2777 	uio.uio_rw = UIO_READ;
2778 	uio.uio_td = curthread;
2779 
2780 	if (ncvp_debug & 2)
2781 		kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
2782 	error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
2783 	if (error == 0) {
2784 		den = (struct dirent *)rbuf;
2785 		bytes = blksize - uio.uio_resid;
2786 
2787 		while (bytes > 0) {
2788 			if (ncvp_debug & 2) {
2789 				kprintf("cache_inefficient_scan: %*.*s\n",
2790 					den->d_namlen, den->d_namlen,
2791 					den->d_name);
2792 			}
2793 			if (den->d_type != DT_WHT &&
2794 			    den->d_ino == vat.va_fileid) {
2795 				if (ncvp_debug & 1) {
2796 					kprintf("cache_inefficient_scan: "
2797 					       "MATCHED inode %lld path %s/%*.*s\n",
2798 					       (long long)vat.va_fileid,
2799 					       nch->ncp->nc_name,
2800 					       den->d_namlen, den->d_namlen,
2801 					       den->d_name);
2802 				}
2803 				nlc.nlc_nameptr = den->d_name;
2804 				nlc.nlc_namelen = den->d_namlen;
2805 				rncp = cache_nlookup(nch, &nlc);
2806 				KKASSERT(rncp.ncp != NULL);
2807 				break;
2808 			}
2809 			bytes -= _DIRENT_DIRSIZ(den);
2810 			den = _DIRENT_NEXT(den);
2811 		}
2812 		if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
2813 			goto again;
2814 	}
2815 	kfree(rbuf, M_TEMP);
2816 done:
2817 	vrele(pvp);
2818 	if (rncp.ncp) {
2819 		if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
2820 			_cache_setvp(rncp.mount, rncp.ncp, dvp, 1);
2821 			if (ncvp_debug & 2) {
2822 				kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
2823 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
2824 			}
2825 		} else {
2826 			if (ncvp_debug & 2) {
2827 				kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
2828 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
2829 					rncp.ncp->nc_vp);
2830 			}
2831 		}
2832 		if (rncp.ncp->nc_vp == NULL)
2833 			error = rncp.ncp->nc_error;
2834 		/*
2835 		 * Release rncp after a successful nlookup.  rncp was fully
2836 		 * referenced.
2837 		 */
2838 		cache_put(&rncp);
2839 	} else {
2840 		kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
2841 			dvp, nch->ncp->nc_name);
2842 		error = ENOENT;
2843 	}
2844 	return (error);
2845 }
2846 
2847 /*
2848  * This function must be called with the ncp held and locked and will unlock
2849  * and drop it during zapping.
2850  *
2851  * Zap a namecache entry.  The ncp is unconditionally set to an unresolved
2852  * state, which disassociates it from its vnode or pcpu_ncache[n].neg_list
2853  * and removes the related reference.  If the ncp can be removed, and the
2854  * parent can be zapped non-blocking, this function loops up.
2855  *
2856  * There will be one ref from the caller (which we now own).  The only
2857  * remaining autonomous refs to the ncp will then be due to nc_parent->nc_list,
2858  * so possibly 2 refs left.  Taking this into account, if there are no
2859  * additional refs and no children, the ncp will be removed from the topology
2860  * and destroyed.
2861  *
2862  * References and/or children may exist if the ncp is in the middle of the
2863  * topology, preventing the ncp from being destroyed.
2864  *
2865  * If nonblock is non-zero and the parent ncp cannot be locked we give up.
2866  *
2867  * This function may return a held (but NOT locked) parent node which the
2868  * caller must drop in a loop.  Looping is one way to avoid unbounded recursion
2869  * due to deep namecache trees.
2870  *
2871  * WARNING!  For MPSAFE operation this routine must acquire up to three
2872  *	     spin locks to be able to safely test nc_refs.  Lock order is
2873  *	     very important.
2874  *
2875  *	     hash spinlock if on hash list
2876  *	     parent spinlock if child of parent
2877  *	     (the ncp is unresolved so there is no vnode association)
2878  */
2879 static int
2880 cache_zap(struct namecache *ncp)
2881 {
2882 	struct namecache *par;
2883 	struct nchash_head *nchpp;
2884 	int refcmp;
2885 	int nonblock = 1;	/* XXX cleanup */
2886 	int res = 0;
2887 
2888 again:
2889 	/*
2890 	 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
2891 	 * This gets rid of any vp->v_namecache list or negative list and
2892 	 * the related ref.
2893 	 */
2894 	_cache_setunresolved(ncp, 1);
2895 
2896 	/*
2897 	 * Try to scrap the entry and possibly tail-recurse on its parent.
2898 	 * We only scrap unref'd (other then our ref) unresolved entries,
2899 	 * we do not scrap 'live' entries.
2900 	 *
2901 	 * If nc_parent is non NULL we expect 2 references, else just 1.
2902 	 * If there are more, someone else also holds the ncp and we cannot
2903 	 * destroy it.
2904 	 */
2905 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
2906 	KKASSERT(ncp->nc_refs > 0);
2907 
2908 	/*
2909 	 * If the ncp is linked to its parent it will also be in the hash
2910 	 * table.  We have to be able to lock the parent and the hash table.
2911 	 *
2912 	 * Acquire locks.  Note that the parent can't go away while we hold
2913 	 * a child locked.  If nc_parent is present, expect 2 refs instead
2914 	 * of 1.
2915 	 */
2916 	nchpp = NULL;
2917 	if ((par = ncp->nc_parent) != NULL) {
2918 		if (nonblock) {
2919 			if (_cache_lock_nonblock(par)) {
2920 				/* lock failed */
2921 				ncp->nc_flag |= NCF_DEFEREDZAP;
2922 				atomic_add_long(
2923 				    &pcpu_ncache[mycpu->gd_cpuid].numdefered,
2924 				    1);
2925 				_cache_unlock(ncp);
2926 				_cache_drop(ncp);	/* caller's ref */
2927 				return res;
2928 			}
2929 			_cache_hold(par);
2930 		} else {
2931 			_cache_hold(par);
2932 			_cache_lock(par);
2933 		}
2934 		nchpp = ncp->nc_head;
2935 		spin_lock(&nchpp->spin);
2936 	}
2937 
2938 	/*
2939 	 * With the parent and nchpp locked, and the vnode removed
2940 	 * (no vp->v_namecache), we expect 1 or 2 refs.  If there are
2941 	 * more someone else has a ref and we cannot zap the entry.
2942 	 *
2943 	 * one for our hold
2944 	 * one for our parent link (parent also has one from the linkage)
2945 	 */
2946 	if (par)
2947 		refcmp = 2;
2948 	else
2949 		refcmp = 1;
2950 
2951 	/*
2952 	 * On failure undo the work we've done so far and drop the
2953 	 * caller's ref and ncp.
2954 	 */
2955 	if (ncp->nc_refs != refcmp || TAILQ_FIRST(&ncp->nc_list)) {
2956 		if (par) {
2957 			spin_unlock(&nchpp->spin);
2958 			_cache_put(par);
2959 		}
2960 		_cache_unlock(ncp);
2961 		_cache_drop(ncp);
2962 		return res;
2963 	}
2964 
2965 	/*
2966 	 * We own all the refs and with the spinlocks held no further
2967 	 * refs can be acquired by others.
2968 	 *
2969 	 * Remove us from the hash list and parent list.  We have to
2970 	 * drop a ref on the parent's vp if the parent's list becomes
2971 	 * empty.
2972 	 */
2973 	if (par) {
2974 		KKASSERT(nchpp == ncp->nc_head);
2975 		_cache_unlink_parent(par, ncp, nchpp); /* eats nhcpp */
2976 		/*_cache_unlock(par);*/
2977 		/* &nchpp->spin is unlocked by call */
2978 	} else {
2979 		KKASSERT(ncp->nc_head == NULL);
2980 	}
2981 
2982 	/*
2983 	 * ncp should not have picked up any refs.  Physically
2984 	 * destroy the ncp.
2985 	 */
2986 	if (ncp->nc_refs != refcmp) {
2987 		panic("cache_zap: %p bad refs %d (expected %d)\n",
2988 			ncp, ncp->nc_refs, refcmp);
2989 	}
2990 	/* _cache_unlock(ncp) not required */
2991 	ncp->nc_refs = -1;	/* safety */
2992 	if (ncp->nc_name)
2993 		kfree(ncp->nc_name, M_VFSCACHEAUX);
2994 	kfree_obj(ncp, M_VFSCACHE);
2995 	res = 1;
2996 
2997 	/*
2998 	 * Loop up if we can recursively clean out the parent.
2999 	 */
3000 	if (par) {
3001 		refcmp = 1;		/* ref on parent */
3002 		if (par->nc_parent)	/* par->par */
3003 			++refcmp;
3004 		par->nc_flag &= ~NCF_DEFEREDZAP;
3005 		if ((par->nc_flag & NCF_UNRESOLVED) &&
3006 		    par->nc_refs == refcmp &&
3007 		    TAILQ_EMPTY(&par->nc_list))
3008 		{
3009 			ncp = par;
3010 			goto again;
3011 		}
3012 		_cache_unlock(par);
3013 		_cache_drop(par);
3014 	}
3015 	return 1;
3016 }
3017 
3018 /*
3019  * Clean up dangling negative cache and defered-drop entries in the
3020  * namecache.
3021  *
3022  * This routine is called in the critical path and also called from
3023  * vnlru().  When called from vnlru we use a lower limit to try to
3024  * deal with the negative cache before the critical path has to start
3025  * dealing with it.
3026  */
3027 typedef enum { CHI_LOW, CHI_HIGH } cache_hs_t;
3028 
3029 static cache_hs_t neg_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
3030 static cache_hs_t pos_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
3031 static cache_hs_t exc_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
3032 
3033 void
3034 cache_hysteresis(int critpath)
3035 {
3036 	long poslimit;
3037 	long exclimit;
3038 	long neglimit;
3039 	long xnumunres;
3040 	long xnumleafs;
3041 	long clean_neg;
3042 	long clean_unres;
3043 	long clean_excess;
3044 
3045 	/*
3046 	 * Calculate negative ncp limit
3047 	 */
3048 	neglimit = maxvnodes / ncnegfactor;
3049 	if (critpath == 0)
3050 		neglimit = neglimit * 8 / 10;
3051 
3052 	/*
3053 	 * Don't cache too many negative hits.  We use hysteresis to reduce
3054 	 * the impact on the critical path.
3055 	 */
3056 	clean_neg = 0;
3057 
3058 	switch(neg_cache_hysteresis_state[critpath]) {
3059 	case CHI_LOW:
3060 		if (vfscache_negs > MINNEG && vfscache_negs > neglimit) {
3061 			if (critpath)
3062 				clean_neg = ncnegflush;
3063 			else
3064 				clean_neg = ncnegflush +
3065 					    vfscache_negs - neglimit;
3066 			neg_cache_hysteresis_state[critpath] = CHI_HIGH;
3067 		}
3068 		break;
3069 	case CHI_HIGH:
3070 		if (vfscache_negs > MINNEG * 9 / 10 &&
3071 		    vfscache_negs * 9 / 10 > neglimit
3072 		) {
3073 			if (critpath)
3074 				clean_neg = ncnegflush;
3075 			else
3076 				clean_neg = ncnegflush +
3077 					    vfscache_negs * 9 / 10 -
3078 					    neglimit;
3079 		} else {
3080 			neg_cache_hysteresis_state[critpath] = CHI_LOW;
3081 		}
3082 		break;
3083 	}
3084 	if (clean_neg)
3085 		_cache_cleanneg(clean_neg);
3086 
3087 	/*
3088 	 * Don't cache too many unresolved elements.  We use hysteresis to
3089 	 * reduce the impact on the critical path.
3090 	 */
3091 	if ((poslimit = ncposlimit) == 0)
3092 		poslimit = maxvnodes / ncposfactor;
3093 	if (critpath == 0)
3094 		poslimit = poslimit * 8 / 10;
3095 
3096 	/*
3097 	 * Number of unresolved leaf elements in the namecache.  These
3098 	 * can build-up for various reasons and may have to be disposed
3099 	 * of to allow the inactive list to be cleaned out by vnlru_proc()
3100 	 *
3101 	 * Collect count
3102 	 */
3103 	xnumunres = vfscache_unres;
3104 	clean_unres = 0;
3105 
3106 	switch(pos_cache_hysteresis_state[critpath]) {
3107 	case CHI_LOW:
3108 		if (xnumunres > poslimit && xnumunres > MINPOS) {
3109 			if (critpath)
3110 				clean_unres = ncposflush;
3111 			else
3112 				clean_unres = ncposflush + xnumunres -
3113 					      poslimit;
3114 			pos_cache_hysteresis_state[critpath] = CHI_HIGH;
3115 		}
3116 		break;
3117 	case CHI_HIGH:
3118 		if (xnumunres > poslimit * 5 / 6 && xnumunres > MINPOS) {
3119 			if (critpath)
3120 				clean_unres = ncposflush;
3121 			else
3122 				clean_unres = ncposflush + xnumunres -
3123 					      poslimit * 5 / 6;
3124 		} else {
3125 			pos_cache_hysteresis_state[critpath] = CHI_LOW;
3126 		}
3127 		break;
3128 	}
3129 
3130 	/*
3131 	 * Excessive positive hits can accumulate due to large numbers of
3132 	 * hardlinks (the vnode cache will not prevent ncps representing
3133 	 * hardlinks from growing into infinity).
3134 	 */
3135 	exclimit = maxvnodes * 2;
3136 	if (critpath == 0)
3137 		exclimit = exclimit * 8 / 10;
3138 	xnumleafs = vfscache_leafs;
3139 	clean_excess = 0;
3140 
3141 	switch(exc_cache_hysteresis_state[critpath]) {
3142 	case CHI_LOW:
3143 		if (xnumleafs > exclimit && xnumleafs > MINPOS) {
3144 			if (critpath)
3145 				clean_excess = ncposflush;
3146 			else
3147 				clean_excess = ncposflush + xnumleafs -
3148 					       exclimit;
3149 			exc_cache_hysteresis_state[critpath] = CHI_HIGH;
3150 		}
3151 		break;
3152 	case CHI_HIGH:
3153 		if (xnumleafs > exclimit * 5 / 6 && xnumleafs > MINPOS) {
3154 			if (critpath)
3155 				clean_excess = ncposflush;
3156 			else
3157 				clean_excess = ncposflush + xnumleafs -
3158 					       exclimit * 5 / 6;
3159 		} else {
3160 			exc_cache_hysteresis_state[critpath] = CHI_LOW;
3161 		}
3162 		break;
3163 	}
3164 
3165 	if (clean_unres || clean_excess)
3166 		_cache_cleanpos(clean_unres, clean_excess);
3167 
3168 	/*
3169 	 * Clean out dangling defered-zap ncps which could not be cleanly
3170 	 * dropped if too many build up.  Note that numdefered is
3171 	 * heuristical.  Make sure we are real-time for the current cpu,
3172 	 * plus the global rollup.
3173 	 */
3174 	if (pcpu_ncache[mycpu->gd_cpuid].numdefered + numdefered > neglimit) {
3175 		_cache_cleandefered();
3176 	}
3177 }
3178 
3179 /*
3180  * NEW NAMECACHE LOOKUP API
3181  *
3182  * Lookup an entry in the namecache.  The passed par_nch must be referenced
3183  * and unlocked.  A referenced and locked nchandle with a non-NULL nch.ncp
3184  * is ALWAYS returned, eve if the supplied component is illegal.
3185  *
3186  * The resulting namecache entry should be returned to the system with
3187  * cache_put() or cache_unlock() + cache_drop().
3188  *
3189  * namecache locks are recursive but care must be taken to avoid lock order
3190  * reversals (hence why the passed par_nch must be unlocked).  Locking
3191  * rules are to order for parent traversals, not for child traversals.
3192  *
3193  * Nobody else will be able to manipulate the associated namespace (e.g.
3194  * create, delete, rename, rename-target) until the caller unlocks the
3195  * entry.
3196  *
3197  * The returned entry will be in one of three states:  positive hit (non-null
3198  * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
3199  * Unresolved entries must be resolved through the filesystem to associate the
3200  * vnode and/or determine whether a positive or negative hit has occured.
3201  *
3202  * It is not necessary to lock a directory in order to lock namespace under
3203  * that directory.  In fact, it is explicitly not allowed to do that.  A
3204  * directory is typically only locked when being created, renamed, or
3205  * destroyed.
3206  *
3207  * The directory (par) may be unresolved, in which case any returned child
3208  * will likely also be marked unresolved.  Likely but not guarenteed.  Since
3209  * the filesystem lookup requires a resolved directory vnode the caller is
3210  * responsible for resolving the namecache chain top-down.  This API
3211  * specifically allows whole chains to be created in an unresolved state.
3212  */
3213 struct nchandle
3214 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
3215 {
3216 	struct nchandle nch;
3217 	struct namecache *ncp;
3218 	struct namecache *new_ncp;
3219 	struct namecache *rep_ncp;	/* reuse a destroyed ncp */
3220 	struct nchash_head *nchpp;
3221 	struct mount *mp;
3222 	u_int32_t hash;
3223 	globaldata_t gd;
3224 	int par_locked;
3225 	int use_excl;
3226 
3227 	gd = mycpu;
3228 	mp = par_nch->mount;
3229 	par_locked = 0;
3230 
3231 	/*
3232 	 * This is a good time to call it, no ncp's are locked by
3233 	 * the caller or us.
3234 	 */
3235 	cache_hysteresis(1);
3236 
3237 	/*
3238 	 * Try to locate an existing entry
3239 	 */
3240 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3241 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3242 	new_ncp = NULL;
3243 	use_excl = 0;
3244 	nchpp = NCHHASH(hash);
3245 restart:
3246 	rep_ncp = NULL;
3247 	if (use_excl)
3248 		spin_lock(&nchpp->spin);
3249 	else
3250 		spin_lock_shared(&nchpp->spin);
3251 
3252 	/*
3253 	 * Do a reverse scan to collect any DESTROYED ncps prior to matching
3254 	 * an existing entry.
3255 	 */
3256 	TAILQ_FOREACH_REVERSE(ncp, &nchpp->list, nchash_list, nc_hash) {
3257 		/*
3258 		 * Break out if we find a matching entry.  Note that
3259 		 * UNRESOLVED entries may match, but DESTROYED entries
3260 		 * do not.
3261 		 *
3262 		 * We may be able to reuse DESTROYED entries that we come
3263 		 * across, even if the name does not match, as long as
3264 		 * nc_nlen is correct and the only hold ref is from the nchpp
3265 		 * list itself.
3266 		 */
3267 		if (ncp->nc_parent == par_nch->ncp &&
3268 		    ncp->nc_nlen == nlc->nlc_namelen) {
3269 			if (ncp->nc_flag & NCF_DESTROYED) {
3270 				if (ncp->nc_refs == 1 && rep_ncp == NULL)
3271 					rep_ncp = ncp;
3272 				continue;
3273 			}
3274 			if (bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen))
3275 				continue;
3276 
3277 			/*
3278 			 * Matched ncp
3279 			 */
3280 			_cache_hold(ncp);
3281 			if (rep_ncp)
3282 				_cache_hold(rep_ncp);
3283 
3284 			if (use_excl)
3285 				spin_unlock(&nchpp->spin);
3286 			else
3287 				spin_unlock_shared(&nchpp->spin);
3288 
3289 			if (par_locked) {
3290 				_cache_unlock(par_nch->ncp);
3291 				par_locked = 0;
3292 			}
3293 
3294 			/*
3295 			 * Really try to destroy rep_ncp if encountered.
3296 			 * Various edge cases can build up more than one,
3297 			 * so loop if we succeed.  This isn't perfect, but
3298 			 * we can't afford to have tons of entries build
3299 			 * up on a single nhcpp list due to rename-over
3300 			 * operations.  If that were to happen, the system
3301 			 * would bog down quickly.
3302 			 */
3303 			if (rep_ncp) {
3304 				if (_cache_lock_nonblock(rep_ncp) == 0) {
3305 					if (rep_ncp->nc_flag & NCF_DESTROYED) {
3306 						if (cache_zap(rep_ncp)) {
3307 							_cache_drop(ncp);
3308 							goto restart;
3309 						}
3310 					} else {
3311 						_cache_unlock(rep_ncp);
3312 						_cache_drop(rep_ncp);
3313 					}
3314 				} else {
3315 					_cache_drop(rep_ncp);
3316 				}
3317 			}
3318 
3319 			/*
3320 			 * Continue processing the matched entry
3321 			 */
3322 			if (_cache_lock_special(ncp) == 0) {
3323 				/*
3324 				 * Successfully locked but we must re-test
3325 				 * conditions that might have changed since
3326 				 * we did not have the lock before.
3327 				 */
3328 				if (ncp->nc_parent != par_nch->ncp ||
3329 				    ncp->nc_nlen != nlc->nlc_namelen ||
3330 				    bcmp(ncp->nc_name, nlc->nlc_nameptr,
3331 					 ncp->nc_nlen) ||
3332 				    (ncp->nc_flag & NCF_DESTROYED)) {
3333 					_cache_put(ncp);
3334 					goto restart;
3335 				}
3336 				_cache_auto_unresolve(mp, ncp);
3337 				if (new_ncp) {
3338 					_cache_free(new_ncp);
3339 					new_ncp = NULL; /* safety */
3340 				}
3341 				goto found;
3342 			}
3343 			_cache_get(ncp);	/* cycle the lock to block */
3344 			_cache_put(ncp);
3345 			_cache_drop(ncp);
3346 			goto restart;
3347 		}
3348 	}
3349 
3350 	/*
3351 	 * We failed to locate the entry, try to resurrect a destroyed
3352 	 * entry that we did find that is already correctly linked into
3353 	 * nchpp and the parent.  We must re-test conditions after
3354 	 * successfully locking rep_ncp.
3355 	 *
3356 	 * This case can occur under heavy loads due to not being able
3357 	 * to safely lock the parent in cache_zap().  Nominally a repeated
3358 	 * create/unlink load, but only the namelen needs to match.
3359 	 *
3360 	 * An exclusive lock on the nchpp is required to process this case,
3361 	 * otherwise a race can cause duplicate entries to be created with
3362 	 * one cpu reusing a DESTROYED ncp while another creates a new_ncp.
3363 	 */
3364 	if (rep_ncp && use_excl) {
3365 		if (_cache_lock_nonblock(rep_ncp) == 0) {
3366 			_cache_hold(rep_ncp);
3367 			if (rep_ncp->nc_parent == par_nch->ncp &&
3368 			    rep_ncp->nc_nlen == nlc->nlc_namelen &&
3369 			    (rep_ncp->nc_flag & NCF_DESTROYED) &&
3370 			    rep_ncp->nc_refs == 2)
3371 			{
3372 				/*
3373 				 * Update nc_name.
3374 				 */
3375 				ncp = rep_ncp;
3376 
3377 				_cache_ncp_gen_enter(ncp);
3378 
3379 				bcopy(nlc->nlc_nameptr, ncp->nc_name,
3380 				      nlc->nlc_namelen);
3381 
3382 				/*
3383 				 * This takes some care.  We must clear the
3384 				 * NCF_DESTROYED flag before unlocking the
3385 				 * hash chain so other concurrent searches
3386 				 * do not skip this element.
3387 				 *
3388 				 * We must also unlock the hash chain before
3389 				 * unresolving the ncp to avoid deadlocks.
3390 				 * We hold the lock on the ncp so we can safely
3391 				 * reinitialize nc_flag after that.
3392 				 */
3393 				ncp->nc_flag &= ~NCF_DESTROYED;
3394 				spin_unlock(&nchpp->spin);	/* use_excl */
3395 
3396 				_cache_setunresolved(ncp, 0);
3397 				ncp->nc_flag = NCF_UNRESOLVED;
3398 				ncp->nc_error = ENOTCONN;
3399 
3400 				_cache_ncp_gen_exit(ncp);
3401 
3402 				if (par_locked) {
3403 					_cache_unlock(par_nch->ncp);
3404 					par_locked = 0;
3405 				}
3406 				if (new_ncp) {
3407 					_cache_free(new_ncp);
3408 					new_ncp = NULL; /* safety */
3409 				}
3410 				goto found;
3411 			}
3412 			_cache_put(rep_ncp);
3413 		}
3414 	}
3415 
3416 	/*
3417 	 * Otherwise create a new entry and add it to the cache.  The parent
3418 	 * ncp must also be locked so we can link into it.
3419 	 *
3420 	 * We have to relookup after possibly blocking in kmalloc or
3421 	 * when locking par_nch.
3422 	 *
3423 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
3424 	 *	 mount case, in which case nc_name will be NULL.
3425 	 *
3426 	 * NOTE: In the rep_ncp != NULL case we are trying to reuse
3427 	 *	 a DESTROYED entry, but didn't have an exclusive lock.
3428 	 *	 In this situation we do not create a new_ncp.
3429 	 */
3430 	if (new_ncp == NULL) {
3431 		if (use_excl)
3432 			spin_unlock(&nchpp->spin);
3433 		else
3434 			spin_unlock_shared(&nchpp->spin);
3435 		if (rep_ncp == NULL) {
3436 			new_ncp = cache_alloc(nlc->nlc_namelen);
3437 			if (nlc->nlc_namelen) {
3438 				bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
3439 				      nlc->nlc_namelen);
3440 				new_ncp->nc_name[nlc->nlc_namelen] = 0;
3441 			}
3442 		}
3443 		use_excl = 1;
3444 		goto restart;
3445 	}
3446 
3447 	/*
3448 	 * NOTE! The spinlock is held exclusively here because new_ncp
3449 	 *	 is non-NULL.
3450 	 */
3451 	if (par_locked == 0) {
3452 		spin_unlock(&nchpp->spin);
3453 		_cache_lock(par_nch->ncp);
3454 		par_locked = 1;
3455 		goto restart;
3456 	}
3457 
3458 	/*
3459 	 * Link to parent (requires another ref, the one already in new_ncp
3460 	 * is what we wil lreturn).
3461 	 *
3462 	 * WARNING!  We still hold the spinlock.  We have to set the hash
3463 	 *	     table entry atomically.
3464 	 */
3465 	ncp = new_ncp;
3466 	++ncp->nc_refs;
3467 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
3468 	spin_unlock(&nchpp->spin);
3469 	_cache_unlock(par_nch->ncp);
3470 	/* par_locked = 0 - not used */
3471 found:
3472 	/*
3473 	 * stats and namecache size management
3474 	 */
3475 	if (ncp->nc_flag & NCF_UNRESOLVED)
3476 		++gd->gd_nchstats->ncs_miss;
3477 	else if (ncp->nc_vp)
3478 		++gd->gd_nchstats->ncs_goodhits;
3479 	else
3480 		++gd->gd_nchstats->ncs_neghits;
3481 	nch.mount = mp;
3482 	nch.ncp = ncp;
3483 	_cache_mntref(nch.mount);
3484 
3485 	return(nch);
3486 }
3487 
3488 /*
3489  * Attempt to lookup a namecache entry and return with a shared namecache
3490  * lock.  This operates non-blocking.  EWOULDBLOCK is returned if excl is
3491  * set or we are unable to lock.
3492  */
3493 int
3494 cache_nlookup_maybe_shared(struct nchandle *par_nch,
3495 			   struct nlcomponent *nlc,
3496 			   int excl, struct nchandle *res_nch)
3497 {
3498 	struct namecache *ncp;
3499 	struct nchash_head *nchpp;
3500 	struct mount *mp;
3501 	u_int32_t hash;
3502 	globaldata_t gd;
3503 
3504 	/*
3505 	 * If exclusive requested or shared namecache locks are disabled,
3506 	 * return failure.
3507 	 */
3508 	if (ncp_shared_lock_disable || excl)
3509 		return(EWOULDBLOCK);
3510 
3511 	gd = mycpu;
3512 	mp = par_nch->mount;
3513 
3514 	/*
3515 	 * This is a good time to call it, no ncp's are locked by
3516 	 * the caller or us.
3517 	 */
3518 	cache_hysteresis(1);
3519 
3520 	/*
3521 	 * Try to locate an existing entry
3522 	 */
3523 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3524 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3525 	nchpp = NCHHASH(hash);
3526 
3527 	spin_lock_shared(&nchpp->spin);
3528 
3529 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
3530 		/*
3531 		 * Break out if we find a matching entry.  Note that
3532 		 * UNRESOLVED entries may match, but DESTROYED entries
3533 		 * do not.
3534 		 */
3535 		if (ncp->nc_parent == par_nch->ncp &&
3536 		    ncp->nc_nlen == nlc->nlc_namelen &&
3537 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
3538 		    (ncp->nc_flag & NCF_DESTROYED) == 0
3539 		) {
3540 			_cache_hold(ncp);
3541 			spin_unlock_shared(&nchpp->spin);
3542 
3543 			if (_cache_lock_shared_special(ncp) == 0) {
3544 				if (ncp->nc_parent == par_nch->ncp &&
3545 				    ncp->nc_nlen == nlc->nlc_namelen &&
3546 				    bcmp(ncp->nc_name, nlc->nlc_nameptr,
3547 					 ncp->nc_nlen) == 0 &&
3548 				    (ncp->nc_flag & NCF_DESTROYED) == 0 &&
3549 				    (ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
3550 				    _cache_auto_unresolve_test(mp, ncp) == 0)
3551 				{
3552 					goto found;
3553 				}
3554 				_cache_unlock(ncp);
3555 			}
3556 			_cache_drop(ncp);
3557 			return(EWOULDBLOCK);
3558 		}
3559 	}
3560 
3561 	/*
3562 	 * Failure
3563 	 */
3564 	spin_unlock_shared(&nchpp->spin);
3565 	return(EWOULDBLOCK);
3566 
3567 	/*
3568 	 * Success
3569 	 *
3570 	 * Note that nc_error might be non-zero (e.g ENOENT).
3571 	 */
3572 found:
3573 	res_nch->mount = mp;
3574 	res_nch->ncp = ncp;
3575 	++gd->gd_nchstats->ncs_goodhits;
3576 	_cache_mntref(res_nch->mount);
3577 
3578 	KKASSERT(ncp->nc_error != EWOULDBLOCK);
3579 	return(ncp->nc_error);
3580 }
3581 
3582 /*
3583  * This is a non-blocking verison of cache_nlookup() used by
3584  * nfs_readdirplusrpc_uio().  It can fail for any reason and
3585  * will return nch.ncp == NULL in that case.
3586  */
3587 struct nchandle
3588 cache_nlookup_nonblock(struct nchandle *par_nch, struct nlcomponent *nlc)
3589 {
3590 	struct nchandle nch;
3591 	struct namecache *ncp;
3592 	struct namecache *new_ncp;
3593 	struct nchash_head *nchpp;
3594 	struct mount *mp;
3595 	u_int32_t hash;
3596 	globaldata_t gd;
3597 	int par_locked;
3598 
3599 	gd = mycpu;
3600 	mp = par_nch->mount;
3601 	par_locked = 0;
3602 
3603 	/*
3604 	 * Try to locate an existing entry
3605 	 */
3606 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3607 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3608 	new_ncp = NULL;
3609 	nchpp = NCHHASH(hash);
3610 restart:
3611 	spin_lock(&nchpp->spin);
3612 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
3613 		/*
3614 		 * Break out if we find a matching entry.  Note that
3615 		 * UNRESOLVED entries may match, but DESTROYED entries
3616 		 * do not.
3617 		 */
3618 		if (ncp->nc_parent == par_nch->ncp &&
3619 		    ncp->nc_nlen == nlc->nlc_namelen &&
3620 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
3621 		    (ncp->nc_flag & NCF_DESTROYED) == 0
3622 		) {
3623 			_cache_hold(ncp);
3624 			spin_unlock(&nchpp->spin);
3625 			if (par_locked) {
3626 				_cache_unlock(par_nch->ncp);
3627 				par_locked = 0;
3628 			}
3629 			if (_cache_lock_special(ncp) == 0) {
3630 				if (ncp->nc_parent != par_nch->ncp ||
3631 				    ncp->nc_nlen != nlc->nlc_namelen ||
3632 				    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) ||
3633 				    (ncp->nc_flag & NCF_DESTROYED)) {
3634 					kprintf("cache_lookup_nonblock: "
3635 						"ncp-race %p %*.*s\n",
3636 						ncp,
3637 						nlc->nlc_namelen,
3638 						nlc->nlc_namelen,
3639 						nlc->nlc_nameptr);
3640 					_cache_unlock(ncp);
3641 					_cache_drop(ncp);
3642 					goto failed;
3643 				}
3644 				_cache_auto_unresolve(mp, ncp);
3645 				if (new_ncp) {
3646 					_cache_free(new_ncp);
3647 					new_ncp = NULL;
3648 				}
3649 				goto found;
3650 			}
3651 			_cache_drop(ncp);
3652 			goto failed;
3653 		}
3654 	}
3655 
3656 	/*
3657 	 * We failed to locate an entry, create a new entry and add it to
3658 	 * the cache.  The parent ncp must also be locked so we
3659 	 * can link into it.
3660 	 *
3661 	 * We have to relookup after possibly blocking in kmalloc or
3662 	 * when locking par_nch.
3663 	 *
3664 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
3665 	 *	 mount case, in which case nc_name will be NULL.
3666 	 */
3667 	if (new_ncp == NULL) {
3668 		spin_unlock(&nchpp->spin);
3669 		new_ncp = cache_alloc(nlc->nlc_namelen);
3670 		if (nlc->nlc_namelen) {
3671 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
3672 			      nlc->nlc_namelen);
3673 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
3674 		}
3675 		goto restart;
3676 	}
3677 	if (par_locked == 0) {
3678 		spin_unlock(&nchpp->spin);
3679 		if (_cache_lock_nonblock(par_nch->ncp) == 0) {
3680 			par_locked = 1;
3681 			goto restart;
3682 		}
3683 		goto failed;
3684 	}
3685 
3686 	/*
3687 	 * Link to parent (requires another ref, the one already in new_ncp
3688 	 * is what we wil lreturn).
3689 	 *
3690 	 * WARNING!  We still hold the spinlock.  We have to set the hash
3691 	 *	     table entry atomically.
3692 	 */
3693 	ncp = new_ncp;
3694 	++ncp->nc_refs;
3695 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
3696 	spin_unlock(&nchpp->spin);
3697 	_cache_unlock(par_nch->ncp);
3698 	/* par_locked = 0 - not used */
3699 found:
3700 	/*
3701 	 * stats and namecache size management
3702 	 */
3703 	if (ncp->nc_flag & NCF_UNRESOLVED)
3704 		++gd->gd_nchstats->ncs_miss;
3705 	else if (ncp->nc_vp)
3706 		++gd->gd_nchstats->ncs_goodhits;
3707 	else
3708 		++gd->gd_nchstats->ncs_neghits;
3709 	nch.mount = mp;
3710 	nch.ncp = ncp;
3711 	_cache_mntref(nch.mount);
3712 
3713 	return(nch);
3714 failed:
3715 	if (new_ncp) {
3716 		_cache_free(new_ncp);
3717 		new_ncp = NULL;
3718 	}
3719 	nch.mount = NULL;
3720 	nch.ncp = NULL;
3721 	return(nch);
3722 }
3723 
3724 /*
3725  * This is a non-locking optimized lookup that depends on adding a ref
3726  * to prevent normal eviction.  nch.ncp can be returned as NULL for any
3727  * reason and the caller will retry with normal locking in that case.
3728  *
3729  * This function only returns resolved entries so callers do not accidentally
3730  * race doing out of order / unfenced field checks.
3731  *
3732  * The caller must validate the result for parent-to-child continuity.
3733  */
3734 struct nchandle
3735 cache_nlookup_nonlocked(struct nchandle *par_nch, struct nlcomponent *nlc)
3736 {
3737 	struct nchandle nch;
3738 	struct namecache *ncp;
3739 	struct nchash_head *nchpp;
3740 	struct mount *mp;
3741 	u_int32_t hash;
3742 	globaldata_t gd;
3743 
3744 	gd = mycpu;
3745 	mp = par_nch->mount;
3746 
3747 	/*
3748 	 * Try to locate an existing entry
3749 	 */
3750 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3751 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3752 	nchpp = NCHHASH(hash);
3753 
3754 	spin_lock_shared(&nchpp->spin);
3755 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
3756 		/*
3757 		 * Break out if we find a matching entry.  Note that
3758 		 * UNRESOLVED entries may match, but DESTROYED entries
3759 		 * do not.  However, UNRESOLVED entries still return failure.
3760 		 */
3761 		if (ncp->nc_parent == par_nch->ncp &&
3762 		    ncp->nc_nlen == nlc->nlc_namelen &&
3763 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
3764 		    (ncp->nc_flag & NCF_DESTROYED) == 0
3765 		) {
3766 			/*
3767 			 * Test NFS timeout for auto-unresolve.  Give up if
3768 			 * the entry is not resolved.
3769 			 *
3770 			 * Getting the ref with the nchpp locked prevents
3771 			 * any transition to NCF_DESTROYED.
3772 			 */
3773 			if (_cache_auto_unresolve_test(par_nch->mount, ncp))
3774 				break;
3775 			if (ncp->nc_flag & NCF_UNRESOLVED)
3776 				break;
3777 			_cache_hold(ncp);
3778 			spin_unlock_shared(&nchpp->spin);
3779 
3780 			/*
3781 			 * We need an additional test to ensure that the ref
3782 			 * we got above prevents transitions to NCF_UNRESOLVED.
3783 			 * This can occur if another thread is currently
3784 			 * holding the ncp exclusively locked or (if we raced
3785 			 * that and it unlocked before our test) the flag
3786 			 * has been set.
3787 			 *
3788 			 * XXX check if superceeded by nc_generation XXX
3789 			 */
3790 			if (_cache_lockstatus(ncp) < 0 ||
3791 			    (ncp->nc_flag & (NCF_DESTROYED | NCF_UNRESOLVED)))
3792 			{
3793 				if ((ncvp_debug & 4) &&
3794 				    (ncp->nc_flag &
3795 				     (NCF_DESTROYED | NCF_UNRESOLVED)))
3796 				{
3797 				    kprintf("ncp state change: %p %08x %d %s\n",
3798 					    ncp, ncp->nc_flag, ncp->nc_error,
3799 					    ncp->nc_name);
3800 				}
3801 				_cache_drop(ncp);
3802 				spin_lock_shared(&nchpp->spin);
3803 				break;
3804 			}
3805 
3806 			/*
3807 			 * Return the ncp bundled into a nch on success.
3808 			 * The ref should passively prevent the ncp from
3809 			 * becoming unresolved without having to hold a lock.
3810 			 * (XXX this may not be entirely true)
3811 			 */
3812 			goto found;
3813 		}
3814 	}
3815 	spin_unlock_shared(&nchpp->spin);
3816 	nch.mount = NULL;
3817 	nch.ncp = NULL;
3818 
3819 	return nch;
3820 found:
3821 	/*
3822 	 * stats and namecache size management
3823 	 */
3824 	if (ncp->nc_flag & NCF_UNRESOLVED)
3825 		++gd->gd_nchstats->ncs_miss;
3826 	else if (ncp->nc_vp)
3827 		++gd->gd_nchstats->ncs_goodhits;
3828 	else
3829 		++gd->gd_nchstats->ncs_neghits;
3830 	nch.mount = mp;
3831 	nch.ncp = ncp;
3832 	_cache_mntref(nch.mount);
3833 
3834 	return(nch);
3835 }
3836 
3837 /*
3838  * The namecache entry is marked as being used as a mount point.
3839  * Locate the mount if it is visible to the caller.  The DragonFly
3840  * mount system allows arbitrary loops in the topology and disentangles
3841  * those loops by matching against (mp, ncp) rather than just (ncp).
3842  * This means any given ncp can dive any number of mounts, depending
3843  * on the relative mount (e.g. nullfs) the caller is at in the topology.
3844  *
3845  * We use a very simple frontend cache to reduce SMP conflicts,
3846  * which we have to do because the mountlist scan needs an exclusive
3847  * lock around its ripout info list.  Not to mention that there might
3848  * be a lot of mounts.
3849  *
3850  * Because all mounts can potentially be accessed by all cpus, break the cpu's
3851  * down a bit to allow some contention rather than making the cache
3852  * excessively huge.
3853  *
3854  * The hash table is split into per-cpu areas, is 4-way set-associative.
3855  */
3856 struct findmount_info {
3857 	struct mount *result;
3858 	struct mount *nch_mount;
3859 	struct namecache *nch_ncp;
3860 };
3861 
3862 static __inline
3863 struct ncmount_cache *
3864 ncmount_cache_lookup4(struct mount *mp, struct namecache *ncp)
3865 {
3866 	uint32_t hash;
3867 
3868 	hash = iscsi_crc32(&mp, sizeof(mp));
3869 	hash = iscsi_crc32_ext(&ncp, sizeof(ncp), hash);
3870 	hash ^= hash >> 16;
3871 	hash = hash & ((NCMOUNT_NUMCACHE - 1) & ~(NCMOUNT_SET - 1));
3872 
3873 	return (&ncmount_cache[hash]);
3874 }
3875 
3876 static
3877 struct ncmount_cache *
3878 ncmount_cache_lookup(struct mount *mp, struct namecache *ncp)
3879 {
3880 	struct ncmount_cache *ncc;
3881 	struct ncmount_cache *best;
3882 	int delta;
3883 	int best_delta;
3884 	int i;
3885 
3886 	ncc = ncmount_cache_lookup4(mp, ncp);
3887 
3888 	/*
3889 	 * NOTE: When checking for a ticks overflow implement a slop of
3890 	 *	 2 ticks just to be safe, because ticks is accessed
3891 	 *	 non-atomically one CPU can increment it while another
3892 	 *	 is still using the old value.
3893 	 */
3894 	if (ncc->ncp == ncp && ncc->mp == mp)	/* 0 */
3895 		return ncc;
3896 	delta = (int)(ticks - ncc->ticks);	/* beware GCC opts */
3897 	if (delta < -2)				/* overflow reset */
3898 		ncc->ticks = ticks;
3899 	best = ncc;
3900 	best_delta = delta;
3901 
3902 	for (i = 1; i < NCMOUNT_SET; ++i) {	/* 1, 2, 3 */
3903 		++ncc;
3904 		if (ncc->ncp == ncp && ncc->mp == mp)
3905 			return ncc;
3906 		delta = (int)(ticks - ncc->ticks);
3907 		if (delta < -2)
3908 			ncc->ticks = ticks;
3909 		if (delta > best_delta) {
3910 			best_delta = delta;
3911 			best = ncc;
3912 		}
3913 	}
3914 	return best;
3915 }
3916 
3917 /*
3918  * pcpu-optimized mount search.  Locate the recursive mountpoint, avoid
3919  * doing an expensive mountlist_scan*() if possible.
3920  *
3921  * (mp, ncp) -> mountonpt.k
3922  *
3923  * Returns a referenced mount pointer or NULL
3924  *
3925  * General SMP operation uses a per-cpu umount_spin to interlock unmount
3926  * operations (that is, where the mp_target can be freed out from under us).
3927  *
3928  * Lookups use the ncc->updating counter to validate the contents in order
3929  * to avoid having to obtain the per cache-element spin-lock.  In addition,
3930  * the ticks field is only updated when it changes.  However, if our per-cpu
3931  * lock fails due to an unmount-in-progress, we fall-back to the
3932  * cache-element's spin-lock.
3933  */
3934 struct mount *
3935 cache_findmount(struct nchandle *nch)
3936 {
3937 	struct findmount_info info;
3938 	struct ncmount_cache *ncc;
3939 	struct ncmount_cache ncc_copy;
3940 	struct mount *target;
3941 	struct pcpu_ncache *pcpu;
3942 	struct spinlock *spinlk;
3943 	int update;
3944 
3945 	pcpu = pcpu_ncache;
3946 	if (ncmount_cache_enable == 0 || pcpu == NULL) {
3947 		ncc = NULL;
3948 		goto skip;
3949 	}
3950 	pcpu += mycpu->gd_cpuid;
3951 
3952 again:
3953 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3954 	if (ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3955 found:
3956 		/*
3957 		 * This is a bit messy for now because we do not yet have
3958 		 * safe disposal of mount structures.  We have to ref
3959 		 * ncc->mp_target but the 'update' counter only tell us
3960 		 * whether the cache has changed after the fact.
3961 		 *
3962 		 * For now get a per-cpu spinlock that will only contend
3963 		 * against umount's.  This is the best path.  If it fails,
3964 		 * instead of waiting on the umount we fall-back to a
3965 		 * shared ncc->spin lock, which will generally only cost a
3966 		 * cache ping-pong.
3967 		 */
3968 		update = ncc->updating;
3969 		if (__predict_true(spin_trylock(&pcpu->umount_spin))) {
3970 			spinlk = &pcpu->umount_spin;
3971 		} else {
3972 			spinlk = &ncc->spin;
3973 			spin_lock_shared(spinlk);
3974 		}
3975 		if (update & 1) {		/* update in progress */
3976 			spin_unlock_any(spinlk);
3977 			goto skip;
3978 		}
3979 		ncc_copy = *ncc;
3980 		cpu_lfence();
3981 		if (ncc->updating != update) {	/* content changed */
3982 			spin_unlock_any(spinlk);
3983 			goto again;
3984 		}
3985 		if (ncc_copy.ncp != nch->ncp || ncc_copy.mp != nch->mount) {
3986 			spin_unlock_any(spinlk);
3987 			goto again;
3988 		}
3989 		if (ncc_copy.isneg == 0) {
3990 			target = ncc_copy.mp_target;
3991 			if (target->mnt_ncmounton.mount == nch->mount &&
3992 			    target->mnt_ncmounton.ncp == nch->ncp) {
3993 				/*
3994 				 * Cache hit (positive) (avoid dirtying
3995 				 * the cache line if possible)
3996 				 */
3997 				if (ncc->ticks != (int)ticks)
3998 					ncc->ticks = (int)ticks;
3999 				_cache_mntref(target);
4000 			}
4001 		} else {
4002 			/*
4003 			 * Cache hit (negative) (avoid dirtying
4004 			 * the cache line if possible)
4005 			 */
4006 			if (ncc->ticks != (int)ticks)
4007 				ncc->ticks = (int)ticks;
4008 			target = NULL;
4009 		}
4010 		spin_unlock_any(spinlk);
4011 
4012 		return target;
4013 	}
4014 skip:
4015 
4016 	/*
4017 	 * Slow
4018 	 */
4019 	info.result = NULL;
4020 	info.nch_mount = nch->mount;
4021 	info.nch_ncp = nch->ncp;
4022 	mountlist_scan(cache_findmount_callback, &info,
4023 		       MNTSCAN_FORWARD | MNTSCAN_NOBUSY | MNTSCAN_NOUNLOCK);
4024 
4025 	/*
4026 	 * To reduce multi-re-entry on the cache, relookup in the cache.
4027 	 * This can still race, obviously, but that's ok.
4028 	 */
4029 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
4030 	if (ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
4031 		if (info.result)
4032 			atomic_add_int(&info.result->mnt_refs, -1);
4033 		goto found;
4034 	}
4035 
4036 	/*
4037 	 * Cache the result.
4038 	 */
4039 	if ((info.result == NULL ||
4040 	    (info.result->mnt_kern_flag & MNTK_UNMOUNT) == 0)) {
4041 		spin_lock(&ncc->spin);
4042 		atomic_add_int_nonlocked(&ncc->updating, 1);
4043 		cpu_sfence();
4044 		KKASSERT(ncc->updating & 1);
4045 		if (ncc->mp != nch->mount) {
4046 			if (ncc->mp)
4047 				atomic_add_int(&ncc->mp->mnt_refs, -1);
4048 			atomic_add_int(&nch->mount->mnt_refs, 1);
4049 			ncc->mp = nch->mount;
4050 		}
4051 		ncc->ncp = nch->ncp;	/* ptr compares only, not refd*/
4052 		ncc->ticks = (int)ticks;
4053 
4054 		if (info.result) {
4055 			ncc->isneg = 0;
4056 			if (ncc->mp_target != info.result) {
4057 				if (ncc->mp_target)
4058 					atomic_add_int(&ncc->mp_target->mnt_refs, -1);
4059 				ncc->mp_target = info.result;
4060 				atomic_add_int(&info.result->mnt_refs, 1);
4061 			}
4062 		} else {
4063 			ncc->isneg = 1;
4064 			if (ncc->mp_target) {
4065 				atomic_add_int(&ncc->mp_target->mnt_refs, -1);
4066 				ncc->mp_target = NULL;
4067 			}
4068 		}
4069 		cpu_sfence();
4070 		atomic_add_int_nonlocked(&ncc->updating, 1);
4071 		spin_unlock(&ncc->spin);
4072 	}
4073 	return(info.result);
4074 }
4075 
4076 static
4077 int
4078 cache_findmount_callback(struct mount *mp, void *data)
4079 {
4080 	struct findmount_info *info = data;
4081 
4082 	/*
4083 	 * Check the mount's mounted-on point against the passed nch.
4084 	 */
4085 	if (mp->mnt_ncmounton.mount == info->nch_mount &&
4086 	    mp->mnt_ncmounton.ncp == info->nch_ncp
4087 	) {
4088 	    info->result = mp;
4089 	    _cache_mntref(mp);
4090 	    return(-1);
4091 	}
4092 	return(0);
4093 }
4094 
4095 void
4096 cache_dropmount(struct mount *mp)
4097 {
4098 	_cache_mntrel(mp);
4099 }
4100 
4101 /*
4102  * mp is being mounted, scrap entries matching mp->mnt_ncmounton (positive
4103  * or negative).
4104  *
4105  * A full scan is not required, but for now just do it anyway.
4106  */
4107 void
4108 cache_ismounting(struct mount *mp)
4109 {
4110 	struct ncmount_cache *ncc;
4111 	struct mount *ncc_mp;
4112 	int i;
4113 
4114 	if (pcpu_ncache == NULL)
4115 		return;
4116 
4117 	for (i = 0; i < NCMOUNT_NUMCACHE; ++i) {
4118 		ncc = &ncmount_cache[i];
4119 		if (ncc->mp != mp->mnt_ncmounton.mount ||
4120 		    ncc->ncp != mp->mnt_ncmounton.ncp) {
4121 			continue;
4122 		}
4123 		spin_lock(&ncc->spin);
4124 		atomic_add_int_nonlocked(&ncc->updating, 1);
4125 		cpu_sfence();
4126 		KKASSERT(ncc->updating & 1);
4127 		if (ncc->mp != mp->mnt_ncmounton.mount ||
4128 		    ncc->ncp != mp->mnt_ncmounton.ncp) {
4129 			cpu_sfence();
4130 			++ncc->updating;
4131 			spin_unlock(&ncc->spin);
4132 			continue;
4133 		}
4134 		ncc_mp = ncc->mp;
4135 		ncc->ncp = NULL;
4136 		ncc->mp = NULL;
4137 		if (ncc_mp)
4138 			atomic_add_int(&ncc_mp->mnt_refs, -1);
4139 		ncc_mp = ncc->mp_target;
4140 		ncc->mp_target = NULL;
4141 		if (ncc_mp)
4142 			atomic_add_int(&ncc_mp->mnt_refs, -1);
4143 		ncc->ticks = (int)ticks - hz * 120;
4144 
4145 		cpu_sfence();
4146 		atomic_add_int_nonlocked(&ncc->updating, 1);
4147 		spin_unlock(&ncc->spin);
4148 	}
4149 
4150 	/*
4151 	 * Pre-cache the mount point
4152 	 */
4153 	ncc = ncmount_cache_lookup(mp->mnt_ncmounton.mount,
4154 				   mp->mnt_ncmounton.ncp);
4155 
4156 	spin_lock(&ncc->spin);
4157 	atomic_add_int_nonlocked(&ncc->updating, 1);
4158 	cpu_sfence();
4159 	KKASSERT(ncc->updating & 1);
4160 
4161 	if (ncc->mp)
4162 		atomic_add_int(&ncc->mp->mnt_refs, -1);
4163 	atomic_add_int(&mp->mnt_ncmounton.mount->mnt_refs, 1);
4164 	ncc->mp = mp->mnt_ncmounton.mount;
4165 	ncc->ncp = mp->mnt_ncmounton.ncp;	/* ptr compares only */
4166 	ncc->ticks = (int)ticks;
4167 
4168 	ncc->isneg = 0;
4169 	if (ncc->mp_target != mp) {
4170 		if (ncc->mp_target)
4171 			atomic_add_int(&ncc->mp_target->mnt_refs, -1);
4172 		ncc->mp_target = mp;
4173 		atomic_add_int(&mp->mnt_refs, 1);
4174 	}
4175 	cpu_sfence();
4176 	atomic_add_int_nonlocked(&ncc->updating, 1);
4177 	spin_unlock(&ncc->spin);
4178 }
4179 
4180 /*
4181  * Scrap any ncmount_cache entries related to mp.  Not only do we need to
4182  * scrap entries matching mp->mnt_ncmounton, but we also need to scrap any
4183  * negative hits involving (mp, <any>).
4184  *
4185  * A full scan is required.
4186  */
4187 void
4188 cache_unmounting(struct mount *mp)
4189 {
4190 	struct ncmount_cache *ncc;
4191 	struct pcpu_ncache *pcpu;
4192 	struct mount *ncc_mp;
4193 	int i;
4194 
4195 	pcpu = pcpu_ncache;
4196 	if (pcpu == NULL)
4197 		return;
4198 
4199 	for (i = 0; i < ncpus; ++i)
4200 		spin_lock(&pcpu[i].umount_spin);
4201 
4202 	for (i = 0; i < NCMOUNT_NUMCACHE; ++i) {
4203 		ncc = &ncmount_cache[i];
4204 		if (ncc->mp != mp && ncc->mp_target != mp)
4205 			continue;
4206 		spin_lock(&ncc->spin);
4207 		atomic_add_int_nonlocked(&ncc->updating, 1);
4208 		cpu_sfence();
4209 
4210 		if (ncc->mp != mp && ncc->mp_target != mp) {
4211 			atomic_add_int_nonlocked(&ncc->updating, 1);
4212 			cpu_sfence();
4213 			spin_unlock(&ncc->spin);
4214 			continue;
4215 		}
4216 		ncc_mp = ncc->mp;
4217 		ncc->ncp = NULL;
4218 		ncc->mp = NULL;
4219 		if (ncc_mp)
4220 			atomic_add_int(&ncc_mp->mnt_refs, -1);
4221 		ncc_mp = ncc->mp_target;
4222 		ncc->mp_target = NULL;
4223 		if (ncc_mp)
4224 			atomic_add_int(&ncc_mp->mnt_refs, -1);
4225 		ncc->ticks = (int)ticks - hz * 120;
4226 
4227 		cpu_sfence();
4228 		atomic_add_int_nonlocked(&ncc->updating, 1);
4229 		spin_unlock(&ncc->spin);
4230 	}
4231 
4232 	for (i = 0; i < ncpus; ++i)
4233 		spin_unlock(&pcpu[i].umount_spin);
4234 }
4235 
4236 /*
4237  * Resolve an unresolved namecache entry, generally by looking it up.
4238  * The passed ncp must be locked and refd.
4239  *
4240  * Theoretically since a vnode cannot be recycled while held, and since
4241  * the nc_parent chain holds its vnode as long as children exist, the
4242  * direct parent of the cache entry we are trying to resolve should
4243  * have a valid vnode.  If not then generate an error that we can
4244  * determine is related to a resolver bug.
4245  *
4246  * However, if a vnode was in the middle of a recyclement when the NCP
4247  * got locked, ncp->nc_vp might point to a vnode that is about to become
4248  * invalid.  cache_resolve() handles this case by unresolving the entry
4249  * and then re-resolving it.
4250  *
4251  * Note that successful resolution does not necessarily return an error
4252  * code of 0.  If the ncp resolves to a negative cache hit then ENOENT
4253  * will be returned.
4254  *
4255  * (*genp) is adjusted based on our resolution operation.  If it is already
4256  * wrong, that's ok... it will still be wrong on return.
4257  */
4258 int
4259 cache_resolve(struct nchandle *nch, u_int *genp, struct ucred *cred)
4260 {
4261 	struct namecache *par_tmp;
4262 	struct namecache *par;
4263 	struct namecache *ncp;
4264 	struct nchandle nctmp;
4265 	struct mount *mp;
4266 	struct vnode *dvp;
4267 	int error;
4268 
4269 	ncp = nch->ncp;
4270 	mp = nch->mount;
4271 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
4272 
4273 restart:
4274 	/*
4275 	 * If the ncp is already resolved we have nothing to do.  However,
4276 	 * we do want to guarentee that a usable vnode is returned when
4277 	 * a vnode is present, so make sure it hasn't been reclaimed.
4278 	 */
4279 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
4280 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
4281 			_cache_ncp_gen_enter(ncp);
4282 			_cache_setunresolved(ncp, 0);
4283 			if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
4284 				_cache_ncp_gen_exit(ncp);
4285 				*genp += 4;
4286 				return (ncp->nc_error);
4287 			}
4288 		} else if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
4289 			return (ncp->nc_error);
4290 		} else {
4291 			_cache_ncp_gen_enter(ncp);
4292 		}
4293 	} else {
4294 		_cache_ncp_gen_enter(ncp);
4295 	}
4296 	/* in gen_enter state */
4297 	*genp += 4;
4298 
4299 	/*
4300 	 * If the ncp was destroyed it will never resolve again.  This
4301 	 * can basically only happen when someone is chdir'd into an
4302 	 * empty directory which is then rmdir'd.  We want to catch this
4303 	 * here and not dive the VFS because the VFS might actually
4304 	 * have a way to re-resolve the disconnected ncp, which will
4305 	 * result in inconsistencies in the cdir/nch for proc->p_fd.
4306 	 */
4307 	if (ncp->nc_flag & NCF_DESTROYED) {
4308 		_cache_ncp_gen_exit(ncp);
4309 		return(EINVAL);
4310 	}
4311 
4312 	/*
4313 	 * Mount points need special handling because the parent does not
4314 	 * belong to the same filesystem as the ncp.
4315 	 */
4316 	if (ncp == mp->mnt_ncmountpt.ncp) {
4317 		error = cache_resolve_mp(mp, 0);
4318 		_cache_ncp_gen_exit(ncp);
4319 		return error;
4320 	}
4321 
4322 	/*
4323 	 * We expect an unbroken chain of ncps to at least the mount point,
4324 	 * and even all the way to root (but this code doesn't have to go
4325 	 * past the mount point).
4326 	 */
4327 	if (ncp->nc_parent == NULL) {
4328 		kprintf("EXDEV case 1 %p %*.*s\n", ncp,
4329 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
4330 		ncp->nc_error = EXDEV;
4331 		_cache_ncp_gen_exit(ncp);
4332 		return(ncp->nc_error);
4333 	}
4334 
4335 	/*
4336 	 * The vp's of the parent directories in the chain are held via vhold()
4337 	 * due to the existance of the child, and should not disappear.
4338 	 * However, there are cases where they can disappear:
4339 	 *
4340 	 *	- due to filesystem I/O errors.
4341 	 *	- due to NFS being stupid about tracking the namespace and
4342 	 *	  destroys the namespace for entire directories quite often.
4343 	 *	- due to forced unmounts.
4344 	 *	- due to an rmdir (parent will be marked DESTROYED)
4345 	 *
4346 	 * When this occurs we have to track the chain backwards and resolve
4347 	 * it, looping until the resolver catches up to the current node.  We
4348 	 * could recurse here but we might run ourselves out of kernel stack
4349 	 * so we do it in a more painful manner.  This situation really should
4350 	 * not occur all that often, or if it does not have to go back too
4351 	 * many nodes to resolve the ncp.
4352 	 */
4353 	while ((dvp = cache_dvpref(ncp)) == NULL) {
4354 		/*
4355 		 * This case can occur if a process is CD'd into a
4356 		 * directory which is then rmdir'd.  If the parent is marked
4357 		 * destroyed there is no point trying to resolve it.
4358 		 */
4359 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED) {
4360 			if (ncvp_debug & 8) {
4361 				kprintf("nc_parent destroyed: %s/%s\n",
4362 					ncp->nc_parent->nc_name, ncp->nc_name);
4363 			}
4364 			_cache_ncp_gen_exit(ncp);
4365 			return(ENOENT);
4366 		}
4367 		par = ncp->nc_parent;
4368 		_cache_hold(par);
4369 		_cache_lock(par);
4370 		while ((par_tmp = par->nc_parent) != NULL &&
4371 		       par_tmp->nc_vp == NULL) {
4372 			_cache_hold(par_tmp);
4373 			_cache_lock(par_tmp);
4374 			_cache_put(par);
4375 			par = par_tmp;
4376 		}
4377 		if (par->nc_parent == NULL) {
4378 			kprintf("EXDEV case 2 %*.*s\n",
4379 				par->nc_nlen, par->nc_nlen, par->nc_name);
4380 			_cache_put(par);
4381 			_cache_ncp_gen_exit(ncp);
4382 			return (EXDEV);
4383 		}
4384 		/*
4385 		 * The parent is not set in stone, ref and lock it to prevent
4386 		 * it from disappearing.  Also note that due to renames it
4387 		 * is possible for our ncp to move and for par to no longer
4388 		 * be one of its parents.  We resolve it anyway, the loop
4389 		 * will handle any moves.
4390 		 */
4391 		_cache_get(par);	/* additional hold/lock */
4392 		_cache_put(par);	/* from earlier hold/lock */
4393 		if (par == nch->mount->mnt_ncmountpt.ncp) {
4394 			cache_resolve_mp(nch->mount, 0);
4395 		} else if ((dvp = cache_dvpref(par)) == NULL) {
4396 			kprintf("[diagnostic] cache_resolve: raced on %*.*s\n",
4397 				par->nc_nlen, par->nc_nlen, par->nc_name);
4398 			_cache_put(par);
4399 			continue;
4400 		} else {
4401 			if (par->nc_flag & NCF_UNRESOLVED) {
4402 				nctmp.mount = mp;
4403 				nctmp.ncp = par;
4404 				par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
4405 			}
4406 			vrele(dvp);
4407 		}
4408 		if ((error = par->nc_error) != 0) {
4409 			if (par->nc_error != EAGAIN) {
4410 				kprintf("EXDEV case 3 %*.*s error %d\n",
4411 				    par->nc_nlen, par->nc_nlen, par->nc_name,
4412 				    par->nc_error);
4413 				_cache_put(par);
4414 				_cache_ncp_gen_exit(ncp);
4415 				return(error);
4416 			}
4417 			kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
4418 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
4419 		}
4420 		_cache_put(par);
4421 		/* loop */
4422 	}
4423 
4424 	/*
4425 	 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
4426 	 * ncp's and reattach them.  If this occurs the original ncp is marked
4427 	 * EAGAIN to force a relookup.
4428 	 *
4429 	 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
4430 	 * ncp must already be resolved.
4431 	 */
4432 	if (dvp) {
4433 		nctmp.mount = mp;
4434 		nctmp.ncp = ncp;
4435 		*genp += 4;	/* setvp bumps the generation */
4436 		ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
4437 		vrele(dvp);
4438 	} else {
4439 		ncp->nc_error = EPERM;
4440 	}
4441 
4442 	if (ncp->nc_error == EAGAIN) {
4443 		kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
4444 			ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
4445 		goto restart;
4446 	}
4447 	_cache_ncp_gen_exit(ncp);
4448 
4449 	return(ncp->nc_error);
4450 }
4451 
4452 /*
4453  * Resolve the ncp associated with a mount point.  Such ncp's almost always
4454  * remain resolved and this routine is rarely called.  NFS MPs tends to force
4455  * re-resolution more often due to its mac-truck-smash-the-namecache
4456  * method of tracking namespace changes.
4457  *
4458  * The semantics for this call is that the passed ncp must be locked on
4459  * entry and will be locked on return.  However, if we actually have to
4460  * resolve the mount point we temporarily unlock the entry in order to
4461  * avoid race-to-root deadlocks due to e.g. dead NFS mounts.  Because of
4462  * the unlock we have to recheck the flags after we relock.
4463  */
4464 static int
4465 cache_resolve_mp(struct mount *mp, int adjgen)
4466 {
4467 	struct namecache *ncp = mp->mnt_ncmountpt.ncp;
4468 	struct vnode *vp;
4469 	int error;
4470 
4471 	KKASSERT(mp != NULL);
4472 
4473 	/*
4474 	 * If the ncp is already resolved we have nothing to do.  However,
4475 	 * we do want to guarentee that a usable vnode is returned when
4476 	 * a vnode is present, so make sure it hasn't been reclaimed.
4477 	 */
4478 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
4479 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
4480 			_cache_setunresolved(ncp, adjgen);
4481 	}
4482 
4483 	if (ncp->nc_flag & NCF_UNRESOLVED) {
4484 		/*
4485 		 * ncp must be unlocked across the vfs_busy(), but
4486 		 * once busied lock ordering is ncp(s), then vnodes,
4487 		 * so we must relock the ncp before issuing the VFS_ROOT().
4488 		 */
4489 		_cache_unlock(ncp);
4490 		while (vfs_busy(mp, 0))
4491 			;
4492 		_cache_lock(ncp);
4493 		error = VFS_ROOT(mp, &vp);
4494 
4495 		/*
4496 		 * recheck the ncp state after relocking.
4497 		 */
4498 		if (ncp->nc_flag & NCF_UNRESOLVED) {
4499 			ncp->nc_error = error;
4500 			if (error == 0) {
4501 				_cache_setvp(mp, ncp, vp, adjgen);
4502 				vput(vp);
4503 			} else {
4504 				kprintf("[diagnostic] cache_resolve_mp: failed"
4505 					" to resolve mount %p err=%d ncp=%p\n",
4506 					mp, error, ncp);
4507 				_cache_setvp(mp, ncp, NULL, adjgen);
4508 			}
4509 		} else if (error == 0) {
4510 			vput(vp);
4511 		}
4512 		vfs_unbusy(mp);
4513 	}
4514 	return(ncp->nc_error);
4515 }
4516 
4517 /*
4518  * Resolve the parent vnode
4519  */
4520 int
4521 cache_resolve_dvp(struct nchandle *nch, struct ucred *cred, struct vnode **dvpp)
4522 {
4523 	struct namecache *par_tmp;
4524 	struct namecache *par;
4525 	struct namecache *ncp;
4526 	struct nchandle nctmp;
4527 	struct mount *mp;
4528 	struct vnode *dvp;
4529 	int error;
4530 
4531 	*dvpp = NULL;
4532 	ncp = nch->ncp;
4533 	mp = nch->mount;
4534 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
4535 
4536 	/*
4537 	 * Treat this as a mount point even if it has a parent (e.g.
4538 	 * null-mount).  Return a NULL dvp and no error.
4539 	 */
4540 	if (ncp == mp->mnt_ncmountpt.ncp)
4541 		return 0;
4542 
4543 	/*
4544 	 * If the ncp was destroyed there is no parent directory, return
4545 	 * EINVAL.
4546 	 */
4547 	if (ncp->nc_flag & NCF_DESTROYED)
4548 		return(EINVAL);
4549 
4550 	/*
4551 	 * No parent if at the root of a filesystem, no error.  Typically
4552 	 * not applicable to null-mounts.  This case should have been caught
4553 	 * in the above ncmountpt check.
4554 	 */
4555 	if (ncp->nc_parent == NULL)
4556 		return 0;
4557 
4558 	/*
4559 	 * Resolve the parent dvp.
4560 	 *
4561 	 * The vp's of the parent directories in the chain are held via vhold()
4562 	 * due to the existance of the child, and should not disappear.
4563 	 * However, there are cases where they can disappear:
4564 	 *
4565 	 *	- due to filesystem I/O errors.
4566 	 *	- due to NFS being stupid about tracking the namespace and
4567 	 *	  destroys the namespace for entire directories quite often.
4568 	 *	- due to forced unmounts.
4569 	 *	- due to an rmdir (parent will be marked DESTROYED)
4570 	 *
4571 	 * When this occurs we have to track the chain backwards and resolve
4572 	 * it, looping until the resolver catches up to the current node.  We
4573 	 * could recurse here but we might run ourselves out of kernel stack
4574 	 * so we do it in a more painful manner.  This situation really should
4575 	 * not occur all that often, or if it does not have to go back too
4576 	 * many nodes to resolve the ncp.
4577 	 */
4578 	while ((dvp = cache_dvpref(ncp)) == NULL) {
4579 		/*
4580 		 * This case can occur if a process is CD'd into a
4581 		 * directory which is then rmdir'd.  If the parent is marked
4582 		 * destroyed there is no point trying to resolve it.
4583 		 */
4584 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
4585 			return(ENOENT);
4586 		par = ncp->nc_parent;
4587 		_cache_hold(par);
4588 		_cache_lock(par);
4589 		while ((par_tmp = par->nc_parent) != NULL &&
4590 		       par_tmp->nc_vp == NULL) {
4591 			_cache_hold(par_tmp);
4592 			_cache_lock(par_tmp);
4593 			_cache_put(par);
4594 			par = par_tmp;
4595 		}
4596 		if (par->nc_parent == NULL) {
4597 			kprintf("EXDEV case 2 %*.*s\n",
4598 				par->nc_nlen, par->nc_nlen, par->nc_name);
4599 			_cache_put(par);
4600 			return (EXDEV);
4601 		}
4602 
4603 		/*
4604 		 * The parent is not set in stone, ref and lock it to prevent
4605 		 * it from disappearing.  Also note that due to renames it
4606 		 * is possible for our ncp to move and for par to no longer
4607 		 * be one of its parents.  We resolve it anyway, the loop
4608 		 * will handle any moves.
4609 		 */
4610 		_cache_get(par);	/* additional hold/lock */
4611 		_cache_put(par);	/* from earlier hold/lock */
4612 		if (par == nch->mount->mnt_ncmountpt.ncp) {
4613 			cache_resolve_mp(nch->mount, 1);
4614 		} else if ((dvp = cache_dvpref(par)) == NULL) {
4615 			kprintf("[diagnostic] cache_resolve: raced on %*.*s\n",
4616 				par->nc_nlen, par->nc_nlen, par->nc_name);
4617 			_cache_put(par);
4618 			continue;
4619 		} else {
4620 			if (par->nc_flag & NCF_UNRESOLVED) {
4621 				nctmp.mount = mp;
4622 				nctmp.ncp = par;
4623 				par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
4624 			}
4625 			vrele(dvp);
4626 		}
4627 		if ((error = par->nc_error) != 0) {
4628 			if (par->nc_error != EAGAIN) {
4629 				kprintf("EXDEV case 3 %*.*s error %d\n",
4630 				    par->nc_nlen, par->nc_nlen, par->nc_name,
4631 				    par->nc_error);
4632 				_cache_put(par);
4633 				return(error);
4634 			}
4635 			kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
4636 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
4637 		}
4638 		_cache_put(par);
4639 		/* loop */
4640 	}
4641 
4642 	/*
4643 	 * We have a referenced dvp
4644 	 */
4645 	*dvpp = dvp;
4646 	return 0;
4647 }
4648 
4649 /*
4650  * Clean out negative cache entries when too many have accumulated.
4651  */
4652 static void
4653 _cache_cleanneg(long count)
4654 {
4655 	struct pcpu_ncache *pn;
4656 	struct namecache *ncp;
4657 	static uint32_t neg_rover;
4658 	uint32_t n;
4659 	long vnegs;
4660 
4661 	n = neg_rover++;	/* SMP heuristical, race ok */
4662 	cpu_ccfence();
4663 	n = n % (uint32_t)ncpus;
4664 
4665 	/*
4666 	 * Normalize vfscache_negs and count.  count is sometimes based
4667 	 * on vfscache_negs.  vfscache_negs is heuristical and can sometimes
4668 	 * have crazy values.
4669 	 */
4670 	vnegs = vfscache_negs;
4671 	cpu_ccfence();
4672 	if (vnegs <= MINNEG)
4673 		vnegs = MINNEG;
4674 	if (count < 1)
4675 		count = 1;
4676 
4677 	pn = &pcpu_ncache[n];
4678 	spin_lock(&pn->neg_spin);
4679 	count = pn->neg_count * count / vnegs + 1;
4680 	spin_unlock(&pn->neg_spin);
4681 
4682 	/*
4683 	 * Attempt to clean out the specified number of negative cache
4684 	 * entries.
4685 	 */
4686 	while (count > 0) {
4687 		spin_lock(&pn->neg_spin);
4688 		ncp = TAILQ_FIRST(&pn->neg_list);
4689 		if (ncp == NULL) {
4690 			spin_unlock(&pn->neg_spin);
4691 			break;
4692 		}
4693 		TAILQ_REMOVE(&pn->neg_list, ncp, nc_vnode);
4694 		TAILQ_INSERT_TAIL(&pn->neg_list, ncp, nc_vnode);
4695 		_cache_hold(ncp);
4696 		spin_unlock(&pn->neg_spin);
4697 
4698 		/*
4699 		 * This can race, so we must re-check that the ncp
4700 		 * is on the ncneg.list after successfully locking it.
4701 		 *
4702 		 * Don't scrap actively referenced ncps.  There should be
4703 		 * 3 refs.  The natural ref, one from being on the neg list,
4704 		 * and one from us.
4705 		 *
4706 		 * Recheck fields after successfully locking to ensure
4707 		 * that it is in-fact still on the negative list with no
4708 		 * extra refs.
4709 		 *
4710 		 * WARNING! On the ncneglist scan any race against other
4711 		 *	    destructors (zaps or cache_inval_vp_quick() calls)
4712 		 *	    will have already unresolved the ncp and cause
4713 		 *	    us to drop instead of zap.  This fine, if
4714 		 *	    our drop winds up being the last one it will
4715 		 *	    kfree() the ncp.
4716 		 */
4717 		if (_cache_lock_special(ncp) == 0) {
4718 			if (ncp->nc_vp == NULL &&
4719 			    ncp->nc_refs == 3 &&
4720 			    (ncp->nc_flag & NCF_UNRESOLVED) == 0)
4721 			{
4722 				++pcpu_ncache[mycpu->gd_cpuid].clean_neg_count;
4723 				cache_zap(ncp);
4724 			} else {
4725 				_cache_unlock(ncp);
4726 				_cache_drop(ncp);
4727 			}
4728 		} else {
4729 			_cache_drop(ncp);
4730 		}
4731 		--count;
4732 	}
4733 }
4734 
4735 /*
4736  * Clean out unresolved cache entries when too many have accumulated.
4737  * Resolved cache entries are cleaned out via the vnode reclamation
4738  * mechanism and by _cache_cleanneg().
4739  */
4740 static void
4741 _cache_cleanpos(long ucount, long xcount)
4742 {
4743 	static volatile int rover;
4744 	struct nchash_head *nchpp;
4745 	struct namecache *ncp;
4746 	long count;
4747 	int rover_copy;
4748 
4749 	/*
4750 	 * Don't burn too much cpu looking for stuff
4751 	 */
4752 	count = (ucount > xcount) ? ucount : xcount;
4753 	count = count * 4;
4754 
4755 	/*
4756 	 * Attempt to clean out the specified number of cache entries.
4757 	 */
4758 	while (count > 0 && (ucount > 0 || xcount > 0)) {
4759 		rover_copy = ++rover;	/* MPSAFEENOUGH */
4760 		cpu_ccfence();
4761 		nchpp = NCHHASH(rover_copy);
4762 
4763 		if (TAILQ_FIRST(&nchpp->list) == NULL) {
4764 			--count;
4765 			continue;
4766 		}
4767 
4768 		/*
4769 		 * Get the next ncp
4770 		 */
4771 		spin_lock(&nchpp->spin);
4772 		ncp = TAILQ_FIRST(&nchpp->list);
4773 
4774 		/*
4775 		 * Skip placeholder ncp's.  Do not shift their
4776 		 * position in the list.
4777 		 */
4778 		while (ncp && (ncp->nc_flag & NCF_DUMMY))
4779 			ncp = TAILQ_NEXT(ncp, nc_hash);
4780 
4781 		if (ncp) {
4782 			/*
4783 			 * Move to end of list
4784 			 */
4785 			TAILQ_REMOVE(&nchpp->list, ncp, nc_hash);
4786 			TAILQ_INSERT_TAIL(&nchpp->list, ncp, nc_hash);
4787 
4788 			if (ncp->nc_refs != ncpbaserefs(ncp)) {
4789 				/*
4790 				 * Do not destroy internal nodes that have
4791 				 * children or nodes which have thread
4792 				 * references.
4793 				 */
4794 				ncp = NULL;
4795 			} else if (ucount > 0 &&
4796 				   (ncp->nc_flag & NCF_UNRESOLVED))
4797 			{
4798 				/*
4799 				 * Destroy unresolved nodes if asked.
4800 				 */
4801 				--ucount;
4802 				--xcount;
4803 				_cache_hold(ncp);
4804 			} else if (xcount > 0) {
4805 				/*
4806 				 * Destroy any other node if asked.
4807 				 */
4808 				--xcount;
4809 				_cache_hold(ncp);
4810 			} else {
4811 				/*
4812 				 * Otherwise don't
4813 				 */
4814 				ncp = NULL;
4815 			}
4816 		}
4817 		spin_unlock(&nchpp->spin);
4818 
4819 		/*
4820 		 * Try to scap the ncp if we can do so non-blocking.
4821 		 * We must re-check nc_refs after locking, and it will
4822 		 * have one additional ref from above.
4823 		 */
4824 		if (ncp) {
4825 			if (_cache_lock_special(ncp) == 0) {
4826 				if (ncp->nc_refs == 1 + ncpbaserefs(ncp)) {
4827 					++pcpu_ncache[mycpu->gd_cpuid].
4828 						clean_pos_count;
4829 					cache_zap(ncp);
4830 				} else {
4831 					_cache_unlock(ncp);
4832 					_cache_drop(ncp);
4833 				}
4834 			} else {
4835 				_cache_drop(ncp);
4836 			}
4837 		}
4838 		--count;
4839 	}
4840 }
4841 
4842 /*
4843  * This is a kitchen sink function to clean out ncps which we
4844  * tried to zap from cache_drop() but failed because we were
4845  * unable to acquire the parent lock.
4846  *
4847  * Such entries can also be removed via cache_inval_vp(), such
4848  * as when unmounting.
4849  */
4850 static void
4851 _cache_cleandefered(void)
4852 {
4853 	struct nchash_head *nchpp;
4854 	struct namecache *ncp;
4855 	struct namecache dummy;
4856 	int i;
4857 
4858 	/*
4859 	 * Create a list iterator.  DUMMY indicates that this is a list
4860 	 * iterator, DESTROYED prevents matches by lookup functions.
4861 	 */
4862 	numdefered = 0;
4863 	pcpu_ncache[mycpu->gd_cpuid].numdefered = 0;
4864 	bzero(&dummy, sizeof(dummy));
4865 	dummy.nc_flag = NCF_DESTROYED | NCF_DUMMY;
4866 	dummy.nc_refs = 1;
4867 
4868 	for (i = 0; i <= nchash; ++i) {
4869 		nchpp = &nchashtbl[i];
4870 
4871 		spin_lock(&nchpp->spin);
4872 		TAILQ_INSERT_HEAD(&nchpp->list, &dummy, nc_hash);
4873 		ncp = &dummy;
4874 		while ((ncp = TAILQ_NEXT(ncp, nc_hash)) != NULL) {
4875 			if ((ncp->nc_flag & NCF_DEFEREDZAP) == 0)
4876 				continue;
4877 			TAILQ_REMOVE(&nchpp->list, &dummy, nc_hash);
4878 			TAILQ_INSERT_AFTER(&nchpp->list, ncp, &dummy, nc_hash);
4879 			_cache_hold(ncp);
4880 			spin_unlock(&nchpp->spin);
4881 			if (_cache_lock_nonblock(ncp) == 0) {
4882 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
4883 				_cache_unlock(ncp);
4884 			}
4885 			_cache_drop(ncp);
4886 			spin_lock(&nchpp->spin);
4887 			ncp = &dummy;
4888 		}
4889 		TAILQ_REMOVE(&nchpp->list, &dummy, nc_hash);
4890 		spin_unlock(&nchpp->spin);
4891 	}
4892 }
4893 
4894 /*
4895  * Name cache initialization, from vfsinit() when we are booting
4896  */
4897 void
4898 nchinit(void)
4899 {
4900 	struct pcpu_ncache *pn;
4901 	globaldata_t gd;
4902 	int i;
4903 
4904 	/*
4905 	 * Per-cpu accounting and negative hit list
4906 	 */
4907 	pcpu_ncache = kmalloc(sizeof(*pcpu_ncache) * ncpus,
4908 			      M_VFSCACHEAUX, M_WAITOK|M_ZERO);
4909 	for (i = 0; i < ncpus; ++i) {
4910 		pn = &pcpu_ncache[i];
4911 		TAILQ_INIT(&pn->neg_list);
4912 		spin_init(&pn->neg_spin, "ncneg");
4913 		spin_init(&pn->umount_spin, "ncumm");
4914 	}
4915 
4916 	/*
4917 	 * Initialise per-cpu namecache effectiveness statistics.
4918 	 */
4919 	for (i = 0; i < ncpus; ++i) {
4920 		gd = globaldata_find(i);
4921 		gd->gd_nchstats = &nchstats[i];
4922 	}
4923 
4924 	/*
4925 	 * Create a generous namecache hash table
4926 	 */
4927 	nchashtbl = hashinit_ext(vfs_inodehashsize(),
4928 				 sizeof(struct nchash_head),
4929 				 M_VFSCACHEAUX, &nchash);
4930 	for (i = 0; i <= (int)nchash; ++i) {
4931 		TAILQ_INIT(&nchashtbl[i].list);
4932 		spin_init(&nchashtbl[i].spin, "nchinit_hash");
4933 	}
4934 	for (i = 0; i < NCMOUNT_NUMCACHE; ++i)
4935 		spin_init(&ncmount_cache[i].spin, "nchinit_cache");
4936 	nclockwarn = 5 * hz;
4937 }
4938 
4939 /*
4940  * Called from start_init() to bootstrap the root filesystem.  Returns
4941  * a referenced, unlocked namecache record to serve as a root or the
4942  * root of the system.
4943  *
4944  * Adjust our namecache counts
4945  */
4946 void
4947 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
4948 {
4949 	struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
4950 
4951 	atomic_add_long(&pn->vfscache_leafs, 1);
4952 	atomic_add_long(&pn->vfscache_unres, 1);
4953 
4954 	nch->ncp = cache_alloc(0);
4955 	nch->mount = mp;
4956 	_cache_mntref(mp);
4957 	if (vp)
4958 		_cache_setvp(nch->mount, nch->ncp, vp, 1);
4959 }
4960 
4961 /*
4962  * vfs_cache_setroot()
4963  *
4964  *	Create an association between the root of our namecache and
4965  *	the root vnode.  This routine may be called several times during
4966  *	booting.
4967  *
4968  *	If the caller intends to save the returned namecache pointer somewhere
4969  *	it must cache_hold() it.
4970  */
4971 void
4972 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
4973 {
4974 	struct vnode *ovp;
4975 	struct nchandle onch;
4976 
4977 	ovp = rootvnode;
4978 	onch = rootnch;
4979 	rootvnode = nvp;
4980 	if (nch)
4981 		rootnch = *nch;
4982 	else
4983 		cache_zero(&rootnch);
4984 	if (ovp)
4985 		vrele(ovp);
4986 	if (onch.ncp)
4987 		cache_drop(&onch);
4988 }
4989 
4990 /*
4991  * XXX OLD API COMPAT FUNCTION.  This really messes up the new namecache
4992  * topology and is being removed as quickly as possible.  The new VOP_N*()
4993  * API calls are required to make specific adjustments using the supplied
4994  * ncp pointers rather then just bogusly purging random vnodes.
4995  *
4996  * Invalidate all namecache entries to a particular vnode as well as
4997  * any direct children of that vnode in the namecache.  This is a
4998  * 'catch all' purge used by filesystems that do not know any better.
4999  *
5000  * Note that the linkage between the vnode and its namecache entries will
5001  * be removed, but the namecache entries themselves might stay put due to
5002  * active references from elsewhere in the system or due to the existance of
5003  * the children.   The namecache topology is left intact even if we do not
5004  * know what the vnode association is.  Such entries will be marked
5005  * NCF_UNRESOLVED.
5006  */
5007 void
5008 cache_purge(struct vnode *vp)
5009 {
5010 	cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
5011 }
5012 
5013 __read_mostly static int disablecwd;
5014 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0,
5015     "Disable getcwd");
5016 
5017 /*
5018  * MPALMOSTSAFE
5019  */
5020 int
5021 sys___getcwd(struct sysmsg *sysmsg, const struct __getcwd_args *uap)
5022 {
5023 	u_int buflen;
5024 	int error;
5025 	char *buf;
5026 	char *bp;
5027 
5028 	if (disablecwd)
5029 		return (ENODEV);
5030 
5031 	buflen = uap->buflen;
5032 	if (buflen == 0)
5033 		return (EINVAL);
5034 	if (buflen > MAXPATHLEN)
5035 		buflen = MAXPATHLEN;
5036 
5037 	buf = kmalloc(buflen, M_TEMP, M_WAITOK);
5038 	bp = kern_getcwd(buf, buflen, &error);
5039 	if (error == 0)
5040 		error = copyout(bp, uap->buf, strlen(bp) + 1);
5041 	kfree(buf, M_TEMP);
5042 	return (error);
5043 }
5044 
5045 char *
5046 kern_getcwd(char *buf, size_t buflen, int *error)
5047 {
5048 	struct proc *p = curproc;
5049 	char *bp;
5050 	int i, slash_prefixed;
5051 	struct filedesc *fdp;
5052 	struct nchandle nch;
5053 	struct namecache *ncp;
5054 
5055 	bp = buf;
5056 	bp += buflen - 1;
5057 	*bp = '\0';
5058 	fdp = p->p_fd;
5059 	slash_prefixed = 0;
5060 
5061 	nch = fdp->fd_ncdir;
5062 	ncp = nch.ncp;
5063 	if (ncp)
5064 		_cache_hold(ncp);
5065 
5066 	while (ncp && (ncp != fdp->fd_nrdir.ncp ||
5067 	       nch.mount != fdp->fd_nrdir.mount)
5068 	) {
5069 		if (ncp->nc_flag & NCF_DESTROYED) {
5070 			_cache_drop(ncp);
5071 			ncp = NULL;
5072 			break;
5073 		}
5074 		/*
5075 		 * While traversing upwards if we encounter the root
5076 		 * of the current mount we have to skip to the mount point
5077 		 * in the underlying filesystem.
5078 		 */
5079 		if (ncp == nch.mount->mnt_ncmountpt.ncp) {
5080 			nch = nch.mount->mnt_ncmounton;
5081 			_cache_drop(ncp);
5082 			ncp = nch.ncp;
5083 			if (ncp)
5084 				_cache_hold(ncp);
5085 			continue;
5086 		}
5087 
5088 		/*
5089 		 * Prepend the path segment
5090 		 */
5091 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
5092 			if (bp == buf) {
5093 				*error = ERANGE;
5094 				bp = NULL;
5095 				goto done;
5096 			}
5097 			*--bp = ncp->nc_name[i];
5098 		}
5099 		if (bp == buf) {
5100 			*error = ERANGE;
5101 			bp = NULL;
5102 			goto done;
5103 		}
5104 		*--bp = '/';
5105 		slash_prefixed = 1;
5106 
5107 		/*
5108 		 * Go up a directory.  This isn't a mount point so we don't
5109 		 * have to check again.
5110 		 */
5111 		while ((nch.ncp = ncp->nc_parent) != NULL) {
5112 			if (ncp_shared_lock_disable)
5113 				_cache_lock(ncp);
5114 			else
5115 				_cache_lock_shared(ncp);
5116 			if (nch.ncp != ncp->nc_parent) {
5117 				_cache_unlock(ncp);
5118 				continue;
5119 			}
5120 			_cache_hold(nch.ncp);
5121 			_cache_unlock(ncp);
5122 			break;
5123 		}
5124 		_cache_drop(ncp);
5125 		ncp = nch.ncp;
5126 	}
5127 	if (ncp == NULL) {
5128 		*error = ENOENT;
5129 		bp = NULL;
5130 		goto done;
5131 	}
5132 	if (!slash_prefixed) {
5133 		if (bp == buf) {
5134 			*error = ERANGE;
5135 			bp = NULL;
5136 			goto done;
5137 		}
5138 		*--bp = '/';
5139 	}
5140 	*error = 0;
5141 done:
5142 	if (ncp)
5143 		_cache_drop(ncp);
5144 	return (bp);
5145 }
5146 
5147 /*
5148  * Thus begins the fullpath magic.
5149  *
5150  * The passed nchp is referenced but not locked.
5151  */
5152 __read_mostly static int disablefullpath;
5153 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
5154     &disablefullpath, 0,
5155     "Disable fullpath lookups");
5156 
5157 int
5158 cache_fullpath(struct proc *p, struct nchandle *nchp, struct nchandle *nchbase,
5159 	       char **retbuf, char **freebuf, int guess)
5160 {
5161 	struct nchandle fd_nrdir;
5162 	struct nchandle nch;
5163 	struct namecache *ncp;
5164 	struct mount *mp, *new_mp;
5165 	char *bp, *buf;
5166 	int slash_prefixed;
5167 	int error = 0;
5168 	int i;
5169 
5170 	*retbuf = NULL;
5171 	*freebuf = NULL;
5172 
5173 	buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
5174 	bp = buf + MAXPATHLEN - 1;
5175 	*bp = '\0';
5176 	if (nchbase)
5177 		fd_nrdir = *nchbase;
5178 	else if (p != NULL)
5179 		fd_nrdir = p->p_fd->fd_nrdir;
5180 	else
5181 		fd_nrdir = rootnch;
5182 	slash_prefixed = 0;
5183 	nch = *nchp;
5184 	ncp = nch.ncp;
5185 	if (ncp)
5186 		_cache_hold(ncp);
5187 	mp = nch.mount;
5188 
5189 	while (ncp && (ncp != fd_nrdir.ncp || mp != fd_nrdir.mount)) {
5190 		new_mp = NULL;
5191 
5192 		/*
5193 		 * If we are asked to guess the upwards path, we do so whenever
5194 		 * we encounter an ncp marked as a mountpoint. We try to find
5195 		 * the actual mountpoint by finding the mountpoint with this
5196 		 * ncp.
5197 		 */
5198 		if (guess && (ncp->nc_flag & NCF_ISMOUNTPT)) {
5199 			new_mp = mount_get_by_nc(ncp);
5200 		}
5201 		/*
5202 		 * While traversing upwards if we encounter the root
5203 		 * of the current mount we have to skip to the mount point.
5204 		 */
5205 		if (ncp == mp->mnt_ncmountpt.ncp) {
5206 			new_mp = mp;
5207 		}
5208 		if (new_mp) {
5209 			nch = new_mp->mnt_ncmounton;
5210 			_cache_drop(ncp);
5211 			ncp = nch.ncp;
5212 			if (ncp)
5213 				_cache_hold(ncp);
5214 			mp = nch.mount;
5215 			continue;
5216 		}
5217 
5218 		/*
5219 		 * Prepend the path segment
5220 		 */
5221 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
5222 			if (bp == buf) {
5223 				kfree(buf, M_TEMP);
5224 				error = ENOMEM;
5225 				goto done;
5226 			}
5227 			*--bp = ncp->nc_name[i];
5228 		}
5229 		if (bp == buf) {
5230 			kfree(buf, M_TEMP);
5231 			error = ENOMEM;
5232 			goto done;
5233 		}
5234 		*--bp = '/';
5235 		slash_prefixed = 1;
5236 
5237 		/*
5238 		 * Go up a directory.  This isn't a mount point so we don't
5239 		 * have to check again.
5240 		 *
5241 		 * We can only safely access nc_parent with ncp held locked.
5242 		 */
5243 		while ((nch.ncp = ncp->nc_parent) != NULL) {
5244 			_cache_lock_shared(ncp);
5245 			if (nch.ncp != ncp->nc_parent) {
5246 				_cache_unlock(ncp);
5247 				continue;
5248 			}
5249 			_cache_hold(nch.ncp);
5250 			_cache_unlock(ncp);
5251 			break;
5252 		}
5253 		_cache_drop(ncp);
5254 		ncp = nch.ncp;
5255 	}
5256 	if (ncp == NULL) {
5257 		kfree(buf, M_TEMP);
5258 		error = ENOENT;
5259 		goto done;
5260 	}
5261 
5262 	if (!slash_prefixed) {
5263 		if (bp == buf) {
5264 			kfree(buf, M_TEMP);
5265 			error = ENOMEM;
5266 			goto done;
5267 		}
5268 		*--bp = '/';
5269 	}
5270 	*retbuf = bp;
5271 	*freebuf = buf;
5272 	error = 0;
5273 done:
5274 	if (ncp)
5275 		_cache_drop(ncp);
5276 	return(error);
5277 }
5278 
5279 int
5280 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf,
5281 	    char **freebuf, int guess)
5282 {
5283 	struct namecache *ncp;
5284 	struct nchandle nch;
5285 	int error;
5286 
5287 	*freebuf = NULL;
5288 	if (disablefullpath)
5289 		return (ENODEV);
5290 
5291 	if (p == NULL)
5292 		return (EINVAL);
5293 
5294 	/* vn is NULL, client wants us to use p->p_textvp */
5295 	if (vn == NULL) {
5296 		if ((vn = p->p_textvp) == NULL)
5297 			return (EINVAL);
5298 	}
5299 	spin_lock_shared(&vn->v_spin);
5300 	TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
5301 		if (ncp->nc_nlen)
5302 			break;
5303 	}
5304 	if (ncp == NULL) {
5305 		spin_unlock_shared(&vn->v_spin);
5306 		return (EINVAL);
5307 	}
5308 	_cache_hold(ncp);
5309 	spin_unlock_shared(&vn->v_spin);
5310 
5311 	nch.ncp = ncp;
5312 	nch.mount = vn->v_mount;
5313 	error = cache_fullpath(p, &nch, NULL, retbuf, freebuf, guess);
5314 	_cache_drop(ncp);
5315 	return (error);
5316 }
5317 
5318 void
5319 vfscache_rollup_cpu(struct globaldata *gd)
5320 {
5321 	struct pcpu_ncache *pn;
5322 	long count;
5323 
5324 	if (pcpu_ncache == NULL)
5325 		return;
5326 	pn = &pcpu_ncache[gd->gd_cpuid];
5327 
5328 	/*
5329 	 * namecache statistics
5330 	 */
5331 	if (pn->vfscache_count) {
5332 		count = atomic_swap_long(&pn->vfscache_count, 0);
5333 		atomic_add_long(&vfscache_count, count);
5334 	}
5335 	if (pn->vfscache_leafs) {
5336 		count = atomic_swap_long(&pn->vfscache_leafs, 0);
5337 		atomic_add_long(&vfscache_leafs, count);
5338 	}
5339 	if (pn->vfscache_unres) {
5340 		count = atomic_swap_long(&pn->vfscache_unres, 0);
5341 		atomic_add_long(&vfscache_unres, count);
5342 	}
5343 	if (pn->vfscache_negs) {
5344 		count = atomic_swap_long(&pn->vfscache_negs, 0);
5345 		atomic_add_long(&vfscache_negs, count);
5346 	}
5347 
5348 	/*
5349 	 * hysteresis based cleanings
5350 	 */
5351 	if (pn->inv_kid_quick_count) {
5352 		count = atomic_swap_long(&pn->inv_kid_quick_count, 0);
5353 		atomic_add_long(&inv_kid_quick_count, count);
5354 	}
5355 	if (pn->inv_ncp_quick_count) {
5356 		count = atomic_swap_long(&pn->inv_ncp_quick_count, 0);
5357 		atomic_add_long(&inv_ncp_quick_count, count);
5358 	}
5359 	if (pn->clean_pos_count) {
5360 		count = atomic_swap_long(&pn->clean_pos_count, 0);
5361 		atomic_add_long(&clean_pos_count, count);
5362 	}
5363 	if (pn->clean_neg_count) {
5364 		count = atomic_swap_long(&pn->clean_neg_count, 0);
5365 		atomic_add_long(&clean_neg_count, count);
5366 	}
5367 
5368 	if (pn->numdefered) {
5369 		count = atomic_swap_long(&pn->numdefered, 0);
5370 		atomic_add_long(&numdefered, count);
5371 	}
5372 }
5373