xref: /dragonfly/sys/kern/vfs_cache.c (revision 9f3fc534)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993, 1995
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * Poul-Henning Kamp of the FreeBSD Project.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the University of
51  *	California, Berkeley and its contributors.
52  * 4. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  *
68  *	@(#)vfs_cache.c	8.5 (Berkeley) 3/22/95
69  * $FreeBSD: src/sys/kern/vfs_cache.c,v 1.42.2.6 2001/10/05 20:07:03 dillon Exp $
70  * $DragonFly: src/sys/kern/vfs_cache.c,v 1.91 2008/06/14 05:34:06 dillon Exp $
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mount.h>
78 #include <sys/vnode.h>
79 #include <sys/malloc.h>
80 #include <sys/sysproto.h>
81 #include <sys/proc.h>
82 #include <sys/namei.h>
83 #include <sys/nlookup.h>
84 #include <sys/filedesc.h>
85 #include <sys/fnv_hash.h>
86 #include <sys/globaldata.h>
87 #include <sys/kern_syscall.h>
88 #include <sys/dirent.h>
89 #include <ddb/ddb.h>
90 
91 #include <sys/sysref2.h>
92 
93 #define MAX_RECURSION_DEPTH	64
94 
95 /*
96  * Random lookups in the cache are accomplished with a hash table using
97  * a hash key of (nc_src_vp, name).
98  *
99  * Negative entries may exist and correspond to structures where nc_vp
100  * is NULL.  In a negative entry, NCF_WHITEOUT will be set if the entry
101  * corresponds to a whited-out directory entry (verses simply not finding the
102  * entry at all).
103  *
104  * Upon reaching the last segment of a path, if the reference is for DELETE,
105  * or NOCACHE is set (rewrite), and the name is located in the cache, it
106  * will be dropped.
107  */
108 
109 /*
110  * Structures associated with name cacheing.
111  */
112 #define NCHHASH(hash)	(&nchashtbl[(hash) & nchash])
113 #define MINNEG		1024
114 
115 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
116 
117 static LIST_HEAD(nchashhead, namecache) *nchashtbl;	/* Hash Table */
118 static struct namecache_list	ncneglist;		/* instead of vnode */
119 
120 /*
121  * ncvp_debug - debug cache_fromvp().  This is used by the NFS server
122  * to create the namecache infrastructure leading to a dangling vnode.
123  *
124  * 0	Only errors are reported
125  * 1	Successes are reported
126  * 2	Successes + the whole directory scan is reported
127  * 3	Force the directory scan code run as if the parent vnode did not
128  *	have a namecache record, even if it does have one.
129  */
130 static int	ncvp_debug;
131 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0, "");
132 
133 static u_long	nchash;			/* size of hash table */
134 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0, "");
135 
136 static u_long	ncnegfactor = 16;	/* ratio of negative entries */
137 SYSCTL_ULONG(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0, "");
138 
139 static int	nclockwarn;		/* warn on locked entries in ticks */
140 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0, "");
141 
142 static u_long	numneg;		/* number of cache entries allocated */
143 SYSCTL_ULONG(_debug, OID_AUTO, numneg, CTLFLAG_RD, &numneg, 0, "");
144 
145 static u_long	numcache;		/* number of cache entries allocated */
146 SYSCTL_ULONG(_debug, OID_AUTO, numcache, CTLFLAG_RD, &numcache, 0, "");
147 
148 static u_long	numunres;		/* number of unresolved entries */
149 SYSCTL_ULONG(_debug, OID_AUTO, numunres, CTLFLAG_RD, &numunres, 0, "");
150 
151 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode), "");
152 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache), "");
153 
154 static int cache_resolve_mp(struct mount *mp);
155 static struct vnode *cache_dvpref(struct namecache *ncp);
156 static void _cache_rehash(struct namecache *ncp);
157 static void _cache_lock(struct namecache *ncp);
158 static void _cache_setunresolved(struct namecache *ncp);
159 
160 /*
161  * The new name cache statistics
162  */
163 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
164 #define STATNODE(mode, name, var) \
165 	SYSCTL_ULONG(_vfs_cache, OID_AUTO, name, mode, var, 0, "");
166 STATNODE(CTLFLAG_RD, numneg, &numneg);
167 STATNODE(CTLFLAG_RD, numcache, &numcache);
168 static u_long numcalls; STATNODE(CTLFLAG_RD, numcalls, &numcalls);
169 static u_long dothits; STATNODE(CTLFLAG_RD, dothits, &dothits);
170 static u_long dotdothits; STATNODE(CTLFLAG_RD, dotdothits, &dotdothits);
171 static u_long numchecks; STATNODE(CTLFLAG_RD, numchecks, &numchecks);
172 static u_long nummiss; STATNODE(CTLFLAG_RD, nummiss, &nummiss);
173 static u_long nummisszap; STATNODE(CTLFLAG_RD, nummisszap, &nummisszap);
174 static u_long numposzaps; STATNODE(CTLFLAG_RD, numposzaps, &numposzaps);
175 static u_long numposhits; STATNODE(CTLFLAG_RD, numposhits, &numposhits);
176 static u_long numnegzaps; STATNODE(CTLFLAG_RD, numnegzaps, &numnegzaps);
177 static u_long numneghits; STATNODE(CTLFLAG_RD, numneghits, &numneghits);
178 
179 struct nchstats nchstats[SMP_MAXCPU];
180 /*
181  * Export VFS cache effectiveness statistics to user-land.
182  *
183  * The statistics are left for aggregation to user-land so
184  * neat things can be achieved, like observing per-CPU cache
185  * distribution.
186  */
187 static int
188 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
189 {
190 	struct globaldata *gd;
191 	int i, error;
192 
193 	error = 0;
194 	for (i = 0; i < ncpus; ++i) {
195 		gd = globaldata_find(i);
196 		if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
197 			sizeof(struct nchstats))))
198 			break;
199 	}
200 
201 	return (error);
202 }
203 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
204   0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
205 
206 static void cache_zap(struct namecache *ncp);
207 
208 /*
209  * cache_hold() and cache_drop() prevent the premature deletion of a
210  * namecache entry but do not prevent operations (such as zapping) on
211  * that namecache entry.
212  *
213  * This routine may only be called from outside this source module if
214  * nc_refs is already at least 1.
215  *
216  * This is a rare case where callers are allowed to hold a spinlock,
217  * so we can't ourselves.
218  */
219 static __inline
220 struct namecache *
221 _cache_hold(struct namecache *ncp)
222 {
223 	atomic_add_int(&ncp->nc_refs, 1);
224 	return(ncp);
225 }
226 
227 /*
228  * When dropping an entry, if only one ref remains and the entry has not
229  * been resolved, zap it.  Since the one reference is being dropped the
230  * entry had better not be locked.
231  */
232 static __inline
233 void
234 _cache_drop(struct namecache *ncp)
235 {
236 	KKASSERT(ncp->nc_refs > 0);
237 	if (ncp->nc_refs == 1 &&
238 	    (ncp->nc_flag & NCF_UNRESOLVED) &&
239 	    TAILQ_EMPTY(&ncp->nc_list)
240 	) {
241 		KKASSERT(ncp->nc_exlocks == 0);
242 		_cache_lock(ncp);
243 		cache_zap(ncp);
244 	} else {
245 		atomic_subtract_int(&ncp->nc_refs, 1);
246 	}
247 }
248 
249 /*
250  * Link a new namecache entry to its parent.  Be careful to avoid races
251  * if vhold() blocks in the future.
252  */
253 static void
254 cache_link_parent(struct namecache *ncp, struct namecache *par)
255 {
256 	KKASSERT(ncp->nc_parent == NULL);
257 	ncp->nc_parent = par;
258 	if (TAILQ_EMPTY(&par->nc_list)) {
259 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
260 		/*
261 		 * Any vp associated with an ncp which has children must
262 		 * be held to prevent it from being recycled.
263 		 */
264 		if (par->nc_vp)
265 			vhold(par->nc_vp);
266 	} else {
267 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
268 	}
269 }
270 
271 /*
272  * Remove the parent association from a namecache structure.  If this is
273  * the last child of the parent the cache_drop(par) will attempt to
274  * recursively zap the parent.
275  */
276 static void
277 cache_unlink_parent(struct namecache *ncp)
278 {
279 	struct namecache *par;
280 
281 	if ((par = ncp->nc_parent) != NULL) {
282 		ncp->nc_parent = NULL;
283 		par = _cache_hold(par);
284 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
285 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
286 			vdrop(par->nc_vp);
287 		_cache_drop(par);
288 	}
289 }
290 
291 /*
292  * Allocate a new namecache structure.  Most of the code does not require
293  * zero-termination of the string but it makes vop_compat_ncreate() easier.
294  */
295 static struct namecache *
296 cache_alloc(int nlen)
297 {
298 	struct namecache *ncp;
299 
300 	ncp = kmalloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
301 	if (nlen)
302 		ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHE, M_WAITOK);
303 	ncp->nc_nlen = nlen;
304 	ncp->nc_flag = NCF_UNRESOLVED;
305 	ncp->nc_error = ENOTCONN;	/* needs to be resolved */
306 	ncp->nc_refs = 1;
307 
308 	/*
309 	 * Construct a fake FSMID based on the time of day and a 32 bit
310 	 * roller for uniqueness.  This is used to generate a useful
311 	 * FSMID for filesystems which do not support it.
312 	 */
313 	ncp->nc_fsmid = cache_getnewfsmid();
314 	TAILQ_INIT(&ncp->nc_list);
315 	_cache_lock(ncp);
316 	return(ncp);
317 }
318 
319 static void
320 _cache_free(struct namecache *ncp)
321 {
322 	KKASSERT(ncp->nc_refs == 1 && ncp->nc_exlocks == 1);
323 	if (ncp->nc_name)
324 		kfree(ncp->nc_name, M_VFSCACHE);
325 	kfree(ncp, M_VFSCACHE);
326 }
327 
328 void
329 cache_zero(struct nchandle *nch)
330 {
331 	nch->ncp = NULL;
332 	nch->mount = NULL;
333 }
334 
335 /*
336  * Ref and deref a namecache structure.
337  *
338  * Warning: caller may hold an unrelated read spinlock, which means we can't
339  * use read spinlocks here.
340  */
341 struct nchandle *
342 cache_hold(struct nchandle *nch)
343 {
344 	_cache_hold(nch->ncp);
345 	++nch->mount->mnt_refs;
346 	return(nch);
347 }
348 
349 void
350 cache_copy(struct nchandle *nch, struct nchandle *target)
351 {
352 	*target = *nch;
353 	_cache_hold(target->ncp);
354 	++nch->mount->mnt_refs;
355 }
356 
357 void
358 cache_changemount(struct nchandle *nch, struct mount *mp)
359 {
360 	--nch->mount->mnt_refs;
361 	nch->mount = mp;
362 	++nch->mount->mnt_refs;
363 }
364 
365 void
366 cache_drop(struct nchandle *nch)
367 {
368 	--nch->mount->mnt_refs;
369 	_cache_drop(nch->ncp);
370 	nch->ncp = NULL;
371 	nch->mount = NULL;
372 }
373 
374 /*
375  * Namespace locking.  The caller must already hold a reference to the
376  * namecache structure in order to lock/unlock it.  This function prevents
377  * the namespace from being created or destroyed by accessors other then
378  * the lock holder.
379  *
380  * Note that holding a locked namecache structure prevents other threads
381  * from making namespace changes (e.g. deleting or creating), prevents
382  * vnode association state changes by other threads, and prevents the
383  * namecache entry from being resolved or unresolved by other threads.
384  *
385  * The lock owner has full authority to associate/disassociate vnodes
386  * and resolve/unresolve the locked ncp.
387  *
388  * WARNING!  Holding a locked ncp will prevent a vnode from being destroyed
389  * or recycled, but it does NOT help you if the vnode had already initiated
390  * a recyclement.  If this is important, use cache_get() rather then
391  * cache_lock() (and deal with the differences in the way the refs counter
392  * is handled).  Or, alternatively, make an unconditional call to
393  * cache_validate() or cache_resolve() after cache_lock() returns.
394  */
395 static
396 void
397 _cache_lock(struct namecache *ncp)
398 {
399 	thread_t td;
400 	int didwarn;
401 
402 	KKASSERT(ncp->nc_refs != 0);
403 	didwarn = 0;
404 	td = curthread;
405 
406 	for (;;) {
407 		if (ncp->nc_exlocks == 0) {
408 			ncp->nc_exlocks = 1;
409 			ncp->nc_locktd = td;
410 			/*
411 			 * The vp associated with a locked ncp must be held
412 			 * to prevent it from being recycled (which would
413 			 * cause the ncp to become unresolved).
414 			 *
415 			 * WARNING!  If VRECLAIMED is set the vnode could
416 			 * already be in the middle of a recycle.  Callers
417 			 * should not assume that nc_vp is usable when
418 			 * not NULL.  cache_vref() or cache_vget() must be
419 			 * called.
420 			 *
421 			 * XXX loop on race for later MPSAFE work.
422 			 */
423 			if (ncp->nc_vp)
424 				vhold(ncp->nc_vp);
425 			break;
426 		}
427 		if (ncp->nc_locktd == td) {
428 			++ncp->nc_exlocks;
429 			break;
430 		}
431 		ncp->nc_flag |= NCF_LOCKREQ;
432 		if (tsleep(ncp, 0, "clock", nclockwarn) == EWOULDBLOCK) {
433 			if (didwarn)
434 				continue;
435 			didwarn = 1;
436 			kprintf("[diagnostic] cache_lock: blocked on %p", ncp);
437 			kprintf(" \"%*.*s\"\n",
438 				ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
439 		}
440 	}
441 
442 	if (didwarn == 1) {
443 		kprintf("[diagnostic] cache_lock: unblocked %*.*s\n",
444 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
445 	}
446 }
447 
448 void
449 cache_lock(struct nchandle *nch)
450 {
451 	_cache_lock(nch->ncp);
452 }
453 
454 static
455 int
456 _cache_lock_nonblock(struct namecache *ncp)
457 {
458 	thread_t td;
459 
460 	KKASSERT(ncp->nc_refs != 0);
461 	td = curthread;
462 	if (ncp->nc_exlocks == 0) {
463 		ncp->nc_exlocks = 1;
464 		ncp->nc_locktd = td;
465 		/*
466 		 * The vp associated with a locked ncp must be held
467 		 * to prevent it from being recycled (which would
468 		 * cause the ncp to become unresolved).
469 		 *
470 		 * WARNING!  If VRECLAIMED is set the vnode could
471 		 * already be in the middle of a recycle.  Callers
472 		 * should not assume that nc_vp is usable when
473 		 * not NULL.  cache_vref() or cache_vget() must be
474 		 * called.
475 		 *
476 		 * XXX loop on race for later MPSAFE work.
477 		 */
478 		if (ncp->nc_vp)
479 			vhold(ncp->nc_vp);
480 		return(0);
481 	} else {
482 		return(EWOULDBLOCK);
483 	}
484 }
485 
486 int
487 cache_lock_nonblock(struct nchandle *nch)
488 {
489 	return(_cache_lock_nonblock(nch->ncp));
490 }
491 
492 static
493 void
494 _cache_unlock(struct namecache *ncp)
495 {
496 	thread_t td = curthread;
497 
498 	KKASSERT(ncp->nc_refs > 0);
499 	KKASSERT(ncp->nc_exlocks > 0);
500 	KKASSERT(ncp->nc_locktd == td);
501 	if (--ncp->nc_exlocks == 0) {
502 		if (ncp->nc_vp)
503 			vdrop(ncp->nc_vp);
504 		ncp->nc_locktd = NULL;
505 		if (ncp->nc_flag & NCF_LOCKREQ) {
506 			ncp->nc_flag &= ~NCF_LOCKREQ;
507 			wakeup(ncp);
508 		}
509 	}
510 }
511 
512 void
513 cache_unlock(struct nchandle *nch)
514 {
515 	_cache_unlock(nch->ncp);
516 }
517 
518 /*
519  * ref-and-lock, unlock-and-deref functions.
520  *
521  * This function is primarily used by nlookup.  Even though cache_lock
522  * holds the vnode, it is possible that the vnode may have already
523  * initiated a recyclement.  We want cache_get() to return a definitively
524  * usable vnode or a definitively unresolved ncp.
525  */
526 static
527 struct namecache *
528 _cache_get(struct namecache *ncp)
529 {
530 	_cache_hold(ncp);
531 	_cache_lock(ncp);
532 	if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
533 		_cache_setunresolved(ncp);
534 	return(ncp);
535 }
536 
537 /*
538  * note: the same nchandle can be passed for both arguments.
539  */
540 void
541 cache_get(struct nchandle *nch, struct nchandle *target)
542 {
543 	target->mount = nch->mount;
544 	target->ncp = _cache_get(nch->ncp);
545 	++target->mount->mnt_refs;
546 }
547 
548 static int
549 _cache_get_nonblock(struct namecache *ncp)
550 {
551 	/* XXX MP */
552 	if (ncp->nc_exlocks == 0 || ncp->nc_locktd == curthread) {
553 		_cache_hold(ncp);
554 		_cache_lock(ncp);
555 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
556 			_cache_setunresolved(ncp);
557 		return(0);
558 	}
559 	return(EWOULDBLOCK);
560 }
561 
562 int
563 cache_get_nonblock(struct nchandle *nch)
564 {
565 	int error;
566 
567 	if ((error = _cache_get_nonblock(nch->ncp)) == 0)
568 		++nch->mount->mnt_refs;
569 	return (error);
570 }
571 
572 static __inline
573 void
574 _cache_put(struct namecache *ncp)
575 {
576 	_cache_unlock(ncp);
577 	_cache_drop(ncp);
578 }
579 
580 void
581 cache_put(struct nchandle *nch)
582 {
583 	--nch->mount->mnt_refs;
584 	_cache_put(nch->ncp);
585 	nch->ncp = NULL;
586 	nch->mount = NULL;
587 }
588 
589 /*
590  * Resolve an unresolved ncp by associating a vnode with it.  If the
591  * vnode is NULL, a negative cache entry is created.
592  *
593  * The ncp should be locked on entry and will remain locked on return.
594  */
595 static
596 void
597 _cache_setvp(struct namecache *ncp, struct vnode *vp)
598 {
599 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
600 	ncp->nc_vp = vp;
601 	if (vp != NULL) {
602 		/*
603 		 * Any vp associated with an ncp which has children must
604 		 * be held.  Any vp associated with a locked ncp must be held.
605 		 */
606 		if (!TAILQ_EMPTY(&ncp->nc_list))
607 			vhold(vp);
608 		TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
609 		if (ncp->nc_exlocks)
610 			vhold(vp);
611 
612 		/*
613 		 * Set auxiliary flags
614 		 */
615 		switch(vp->v_type) {
616 		case VDIR:
617 			ncp->nc_flag |= NCF_ISDIR;
618 			break;
619 		case VLNK:
620 			ncp->nc_flag |= NCF_ISSYMLINK;
621 			/* XXX cache the contents of the symlink */
622 			break;
623 		default:
624 			break;
625 		}
626 		++numcache;
627 		ncp->nc_error = 0;
628 	} else {
629 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
630 		++numneg;
631 		ncp->nc_error = ENOENT;
632 	}
633 	ncp->nc_flag &= ~NCF_UNRESOLVED;
634 }
635 
636 void
637 cache_setvp(struct nchandle *nch, struct vnode *vp)
638 {
639 	_cache_setvp(nch->ncp, vp);
640 }
641 
642 void
643 cache_settimeout(struct nchandle *nch, int nticks)
644 {
645 	struct namecache *ncp = nch->ncp;
646 
647 	if ((ncp->nc_timeout = ticks + nticks) == 0)
648 		ncp->nc_timeout = 1;
649 }
650 
651 /*
652  * Disassociate the vnode or negative-cache association and mark a
653  * namecache entry as unresolved again.  Note that the ncp is still
654  * left in the hash table and still linked to its parent.
655  *
656  * The ncp should be locked and refd on entry and will remain locked and refd
657  * on return.
658  *
659  * This routine is normally never called on a directory containing children.
660  * However, NFS often does just that in its rename() code as a cop-out to
661  * avoid complex namespace operations.  This disconnects a directory vnode
662  * from its namecache and can cause the OLDAPI and NEWAPI to get out of
663  * sync.
664  *
665  * NOTE: NCF_FSMID must be cleared so a refurbishment of the ncp, such as
666  * in a create, properly propogates flag up the chain.
667  */
668 static
669 void
670 _cache_setunresolved(struct namecache *ncp)
671 {
672 	struct vnode *vp;
673 
674 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
675 		ncp->nc_flag |= NCF_UNRESOLVED;
676 		ncp->nc_timeout = 0;
677 		ncp->nc_error = ENOTCONN;
678 		++numunres;
679 		if ((vp = ncp->nc_vp) != NULL) {
680 			--numcache;
681 			ncp->nc_vp = NULL;
682 			TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
683 
684 			/*
685 			 * Any vp associated with an ncp with children is
686 			 * held by that ncp.  Any vp associated with a locked
687 			 * ncp is held by that ncp.  These conditions must be
688 			 * undone when the vp is cleared out from the ncp.
689 			 */
690 			if (ncp->nc_flag & NCF_FSMID)
691 				vupdatefsmid(vp);
692 			if (!TAILQ_EMPTY(&ncp->nc_list))
693 				vdrop(vp);
694 			if (ncp->nc_exlocks)
695 				vdrop(vp);
696 		} else {
697 			TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
698 			--numneg;
699 		}
700 		ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK|
701 				  NCF_FSMID);
702 	}
703 }
704 
705 void
706 cache_setunresolved(struct nchandle *nch)
707 {
708 	_cache_setunresolved(nch->ncp);
709 }
710 
711 /*
712  * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
713  * looking for matches.  This flag tells the lookup code when it must
714  * check for a mount linkage and also prevents the directories in question
715  * from being deleted or renamed.
716  */
717 static
718 int
719 cache_clrmountpt_callback(struct mount *mp, void *data)
720 {
721 	struct nchandle *nch = data;
722 
723 	if (mp->mnt_ncmounton.ncp == nch->ncp)
724 		return(1);
725 	if (mp->mnt_ncmountpt.ncp == nch->ncp)
726 		return(1);
727 	return(0);
728 }
729 
730 void
731 cache_clrmountpt(struct nchandle *nch)
732 {
733 	int count;
734 
735 	count = mountlist_scan(cache_clrmountpt_callback, nch,
736 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
737 	if (count == 0)
738 		nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
739 }
740 
741 /*
742  * Invalidate portions of the namecache topology given a starting entry.
743  * The passed ncp is set to an unresolved state and:
744  *
745  * The passed ncp must be locked.
746  *
747  * CINV_DESTROY		- Set a flag in the passed ncp entry indicating
748  *			  that the physical underlying nodes have been
749  *			  destroyed... as in deleted.  For example, when
750  *			  a directory is removed.  This will cause record
751  *			  lookups on the name to no longer be able to find
752  *			  the record and tells the resolver to return failure
753  *			  rather then trying to resolve through the parent.
754  *
755  *			  The topology itself, including ncp->nc_name,
756  *			  remains intact.
757  *
758  *			  This only applies to the passed ncp, if CINV_CHILDREN
759  *			  is specified the children are not flagged.
760  *
761  * CINV_CHILDREN	- Set all children (recursively) to an unresolved
762  *			  state as well.
763  *
764  *			  Note that this will also have the side effect of
765  *			  cleaning out any unreferenced nodes in the topology
766  *			  from the leaves up as the recursion backs out.
767  *
768  * Note that the topology for any referenced nodes remains intact.
769  *
770  * It is possible for cache_inval() to race a cache_resolve(), meaning that
771  * the namecache entry may not actually be invalidated on return if it was
772  * revalidated while recursing down into its children.  This code guarentees
773  * that the node(s) will go through an invalidation cycle, but does not
774  * guarentee that they will remain in an invalidated state.
775  *
776  * Returns non-zero if a revalidation was detected during the invalidation
777  * recursion, zero otherwise.  Note that since only the original ncp is
778  * locked the revalidation ultimately can only indicate that the original ncp
779  * *MIGHT* no have been reresolved.
780  *
781  * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
782  * have to avoid blowing out the kernel stack.  We do this by saving the
783  * deep namecache node and aborting the recursion, then re-recursing at that
784  * node using a depth-first algorithm in order to allow multiple deep
785  * recursions to chain through each other, then we restart the invalidation
786  * from scratch.
787  */
788 
789 struct cinvtrack {
790 	struct namecache *resume_ncp;
791 	int depth;
792 };
793 
794 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
795 
796 static
797 int
798 _cache_inval(struct namecache *ncp, int flags)
799 {
800 	struct cinvtrack track;
801 	struct namecache *ncp2;
802 	int r;
803 
804 	track.depth = 0;
805 	track.resume_ncp = NULL;
806 
807 	for (;;) {
808 		r = _cache_inval_internal(ncp, flags, &track);
809 		if (track.resume_ncp == NULL)
810 			break;
811 		kprintf("Warning: deep namecache recursion at %s\n",
812 			ncp->nc_name);
813 		_cache_unlock(ncp);
814 		while ((ncp2 = track.resume_ncp) != NULL) {
815 			track.resume_ncp = NULL;
816 			_cache_lock(ncp2);
817 			_cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
818 					     &track);
819 			_cache_put(ncp2);
820 		}
821 		_cache_lock(ncp);
822 	}
823 	return(r);
824 }
825 
826 int
827 cache_inval(struct nchandle *nch, int flags)
828 {
829 	return(_cache_inval(nch->ncp, flags));
830 }
831 
832 static int
833 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
834 {
835 	struct namecache *kid;
836 	struct namecache *nextkid;
837 	int rcnt = 0;
838 
839 	KKASSERT(ncp->nc_exlocks);
840 
841 	_cache_setunresolved(ncp);
842 	if (flags & CINV_DESTROY)
843 		ncp->nc_flag |= NCF_DESTROYED;
844 
845 	if ((flags & CINV_CHILDREN) &&
846 	    (kid = TAILQ_FIRST(&ncp->nc_list)) != NULL
847 	) {
848 		if (++track->depth > MAX_RECURSION_DEPTH) {
849 			track->resume_ncp = ncp;
850 			_cache_hold(ncp);
851 			++rcnt;
852 		}
853 		_cache_hold(kid);
854 		_cache_unlock(ncp);
855 		while (kid) {
856 			if (track->resume_ncp) {
857 				_cache_drop(kid);
858 				break;
859 			}
860 			if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
861 				_cache_hold(nextkid);
862 			if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
863 			    TAILQ_FIRST(&kid->nc_list)
864 			) {
865 				_cache_lock(kid);
866 				rcnt += _cache_inval_internal(kid, flags & ~CINV_DESTROY, track);
867 				_cache_unlock(kid);
868 			}
869 			_cache_drop(kid);
870 			kid = nextkid;
871 		}
872 		--track->depth;
873 		_cache_lock(ncp);
874 	}
875 
876 	/*
877 	 * Someone could have gotten in there while ncp was unlocked,
878 	 * retry if so.
879 	 */
880 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
881 		++rcnt;
882 	return (rcnt);
883 }
884 
885 /*
886  * Invalidate a vnode's namecache associations.  To avoid races against
887  * the resolver we do not invalidate a node which we previously invalidated
888  * but which was then re-resolved while we were in the invalidation loop.
889  *
890  * Returns non-zero if any namecache entries remain after the invalidation
891  * loop completed.
892  *
893  * NOTE: unlike the namecache topology which guarentees that ncp's will not
894  * be ripped out of the topology while held, the vnode's v_namecache list
895  * has no such restriction.  NCP's can be ripped out of the list at virtually
896  * any time if not locked, even if held.
897  */
898 int
899 cache_inval_vp(struct vnode *vp, int flags)
900 {
901 	struct namecache *ncp;
902 	struct namecache *next;
903 
904 restart:
905 	ncp = TAILQ_FIRST(&vp->v_namecache);
906 	if (ncp)
907 		_cache_hold(ncp);
908 	while (ncp) {
909 		/* loop entered with ncp held */
910 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
911 			_cache_hold(next);
912 		_cache_lock(ncp);
913 		if (ncp->nc_vp != vp) {
914 			kprintf("Warning: cache_inval_vp: race-A detected on "
915 				"%s\n", ncp->nc_name);
916 			_cache_put(ncp);
917 			if (next)
918 				_cache_drop(next);
919 			goto restart;
920 		}
921 		_cache_inval(ncp, flags);
922 		_cache_put(ncp);		/* also releases reference */
923 		ncp = next;
924 		if (ncp && ncp->nc_vp != vp) {
925 			kprintf("Warning: cache_inval_vp: race-B detected on "
926 				"%s\n", ncp->nc_name);
927 			_cache_drop(ncp);
928 			goto restart;
929 		}
930 	}
931 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
932 }
933 
934 /*
935  * This routine is used instead of the normal cache_inval_vp() when we
936  * are trying to recycle otherwise good vnodes.
937  *
938  * Return 0 on success, non-zero if not all namecache records could be
939  * disassociated from the vnode (for various reasons).
940  */
941 int
942 cache_inval_vp_nonblock(struct vnode *vp)
943 {
944 	struct namecache *ncp;
945 	struct namecache *next;
946 
947 	ncp = TAILQ_FIRST(&vp->v_namecache);
948 	if (ncp)
949 		_cache_hold(ncp);
950 	while (ncp) {
951 		/* loop entered with ncp held */
952 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
953 			_cache_hold(next);
954 		if (_cache_lock_nonblock(ncp)) {
955 			_cache_drop(ncp);
956 			if (next)
957 				_cache_drop(next);
958 			break;
959 		}
960 		if (ncp->nc_vp != vp) {
961 			kprintf("Warning: cache_inval_vp: race-A detected on "
962 				"%s\n", ncp->nc_name);
963 			_cache_put(ncp);
964 			if (next)
965 				_cache_drop(next);
966 			break;
967 		}
968 		_cache_inval(ncp, 0);
969 		_cache_put(ncp);		/* also releases reference */
970 		ncp = next;
971 		if (ncp && ncp->nc_vp != vp) {
972 			kprintf("Warning: cache_inval_vp: race-B detected on "
973 				"%s\n", ncp->nc_name);
974 			_cache_drop(ncp);
975 			break;
976 		}
977 	}
978 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
979 }
980 
981 /*
982  * The source ncp has been renamed to the target ncp.  Both fncp and tncp
983  * must be locked.  The target ncp is destroyed (as a normal rename-over
984  * would destroy the target file or directory).
985  *
986  * Because there may be references to the source ncp we cannot copy its
987  * contents to the target.  Instead the source ncp is relinked as the target
988  * and the target ncp is removed from the namecache topology.
989  */
990 void
991 cache_rename(struct nchandle *fnch, struct nchandle *tnch)
992 {
993 	struct namecache *fncp = fnch->ncp;
994 	struct namecache *tncp = tnch->ncp;
995 	char *oname;
996 
997 	_cache_setunresolved(tncp);
998 	cache_unlink_parent(fncp);
999 	cache_link_parent(fncp, tncp->nc_parent);
1000 	cache_unlink_parent(tncp);
1001 	oname = fncp->nc_name;
1002 	fncp->nc_name = tncp->nc_name;
1003 	fncp->nc_nlen = tncp->nc_nlen;
1004 	tncp->nc_name = NULL;
1005 	tncp->nc_nlen = 0;
1006 	if (fncp->nc_flag & NCF_HASHED)
1007 		_cache_rehash(fncp);
1008 	if (tncp->nc_flag & NCF_HASHED)
1009 		_cache_rehash(tncp);
1010 	if (oname)
1011 		kfree(oname, M_VFSCACHE);
1012 }
1013 
1014 /*
1015  * vget the vnode associated with the namecache entry.  Resolve the namecache
1016  * entry if necessary and deal with namecache/vp races.  The passed ncp must
1017  * be referenced and may be locked.  The ncp's ref/locking state is not
1018  * effected by this call.
1019  *
1020  * lk_type may be LK_SHARED, LK_EXCLUSIVE.  A ref'd, possibly locked
1021  * (depending on the passed lk_type) will be returned in *vpp with an error
1022  * of 0, or NULL will be returned in *vpp with a non-0 error code.  The
1023  * most typical error is ENOENT, meaning that the ncp represents a negative
1024  * cache hit and there is no vnode to retrieve, but other errors can occur
1025  * too.
1026  *
1027  * The main race we have to deal with are namecache zaps.  The ncp itself
1028  * will not disappear since it is referenced, and it turns out that the
1029  * validity of the vp pointer can be checked simply by rechecking the
1030  * contents of ncp->nc_vp.
1031  */
1032 int
1033 cache_vget(struct nchandle *nch, struct ucred *cred,
1034 	   int lk_type, struct vnode **vpp)
1035 {
1036 	struct namecache *ncp;
1037 	struct vnode *vp;
1038 	int error;
1039 
1040 	ncp = nch->ncp;
1041 again:
1042 	vp = NULL;
1043 	if (ncp->nc_flag & NCF_UNRESOLVED) {
1044 		_cache_lock(ncp);
1045 		error = cache_resolve(nch, cred);
1046 		_cache_unlock(ncp);
1047 	} else {
1048 		error = 0;
1049 	}
1050 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1051 		/*
1052 		 * Accessing the vnode from the namecache is a bit
1053 		 * dangerous.  Because there are no refs on the vnode, it
1054 		 * could be in the middle of a reclaim.
1055 		 */
1056 		if (vp->v_flag & VRECLAIMED) {
1057 			kprintf("Warning: vnode reclaim race detected in cache_vget on %p (%s)\n", vp, ncp->nc_name);
1058 			_cache_lock(ncp);
1059 			_cache_setunresolved(ncp);
1060 			_cache_unlock(ncp);
1061 			goto again;
1062 		}
1063 		error = vget(vp, lk_type);
1064 		if (error) {
1065 			if (vp != ncp->nc_vp)
1066 				goto again;
1067 			vp = NULL;
1068 		} else if (vp != ncp->nc_vp) {
1069 			vput(vp);
1070 			goto again;
1071 		} else if (vp->v_flag & VRECLAIMED) {
1072 			panic("vget succeeded on a VRECLAIMED node! vp %p", vp);
1073 		}
1074 	}
1075 	if (error == 0 && vp == NULL)
1076 		error = ENOENT;
1077 	*vpp = vp;
1078 	return(error);
1079 }
1080 
1081 int
1082 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
1083 {
1084 	struct namecache *ncp;
1085 	struct vnode *vp;
1086 	int error;
1087 
1088 	ncp = nch->ncp;
1089 
1090 again:
1091 	vp = NULL;
1092 	if (ncp->nc_flag & NCF_UNRESOLVED) {
1093 		_cache_lock(ncp);
1094 		error = cache_resolve(nch, cred);
1095 		_cache_unlock(ncp);
1096 	} else {
1097 		error = 0;
1098 	}
1099 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1100 		/*
1101 		 * Since we did not obtain any locks, a cache zap
1102 		 * race can occur here if the vnode is in the middle
1103 		 * of being reclaimed and has not yet been able to
1104 		 * clean out its cache node.  If that case occurs,
1105 		 * we must lock and unresolve the cache, then loop
1106 		 * to retry.
1107 		 */
1108 		if ((error = vget(vp, LK_SHARED)) != 0) {
1109 			if (error == ENOENT) {
1110 				kprintf("Warning: vnode reclaim race detected on cache_vref %p (%s)\n", vp, ncp->nc_name);
1111 				_cache_lock(ncp);
1112 				_cache_setunresolved(ncp);
1113 				_cache_unlock(ncp);
1114 				goto again;
1115 			}
1116 			/* fatal error */
1117 		} else {
1118 			/* caller does not want a lock */
1119 			vn_unlock(vp);
1120 		}
1121 	}
1122 	if (error == 0 && vp == NULL)
1123 		error = ENOENT;
1124 	*vpp = vp;
1125 	return(error);
1126 }
1127 
1128 /*
1129  * Return a referenced vnode representing the parent directory of
1130  * ncp.  Because the caller has locked the ncp it should not be possible for
1131  * the parent ncp to go away.
1132  *
1133  * However, we might race against the parent dvp and not be able to
1134  * reference it.  If we race, return NULL.
1135  */
1136 static struct vnode *
1137 cache_dvpref(struct namecache *ncp)
1138 {
1139 	struct namecache *par;
1140 	struct vnode *dvp;
1141 
1142 	dvp = NULL;
1143 	if ((par = ncp->nc_parent) != NULL) {
1144 		if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
1145 			if ((dvp = par->nc_vp) != NULL) {
1146 				if (vget(dvp, LK_SHARED) == 0) {
1147 					vn_unlock(dvp);
1148 					/* return referenced, unlocked dvp */
1149 				} else {
1150 					dvp = NULL;
1151 				}
1152 			}
1153 		}
1154 	}
1155 	return(dvp);
1156 }
1157 
1158 /*
1159  * Recursively set the FSMID update flag for namecache nodes leading
1160  * to root.  This will cause the next getattr or reclaim to increment the
1161  * fsmid and mark the inode for lazy updating.
1162  *
1163  * Stop recursing when we hit a node whos NCF_FSMID flag is already set.
1164  * This makes FSMIDs work in an Einsteinian fashion - where the observation
1165  * effects the result.  In this case a program monitoring a higher level
1166  * node will have detected some prior change and started its scan (clearing
1167  * NCF_FSMID in higher level nodes), but since it has not yet observed the
1168  * node where we find NCF_FSMID still set, we can safely make the related
1169  * modification without interfering with the theorized program.
1170  *
1171  * This also means that FSMIDs cannot represent time-domain quantities
1172  * in a hierarchical sense.  But the main reason for doing it this way
1173  * is to reduce the amount of recursion that occurs in the critical path
1174  * when e.g. a program is writing to a file that sits deep in a directory
1175  * hierarchy.
1176  */
1177 void
1178 cache_update_fsmid(struct nchandle *nch)
1179 {
1180 	struct namecache *ncp;
1181 	struct namecache *scan;
1182 	struct vnode *vp;
1183 
1184 	ncp = nch->ncp;
1185 
1186 	/*
1187 	 * Warning: even if we get a non-NULL vp it could still be in the
1188 	 * middle of a recyclement.  Don't do anything fancy, just set
1189 	 * NCF_FSMID.
1190 	 */
1191 	if ((vp = ncp->nc_vp) != NULL) {
1192 		TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1193 			for (scan = ncp; scan; scan = scan->nc_parent) {
1194 				if (scan->nc_flag & NCF_FSMID)
1195 					break;
1196 				scan->nc_flag |= NCF_FSMID;
1197 			}
1198 		}
1199 	} else {
1200 		while (ncp && (ncp->nc_flag & NCF_FSMID) == 0) {
1201 			ncp->nc_flag |= NCF_FSMID;
1202 			ncp = ncp->nc_parent;
1203 		}
1204 	}
1205 }
1206 
1207 void
1208 cache_update_fsmid_vp(struct vnode *vp)
1209 {
1210 	struct namecache *ncp;
1211 	struct namecache *scan;
1212 
1213 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1214 		for (scan = ncp; scan; scan = scan->nc_parent) {
1215 			if (scan->nc_flag & NCF_FSMID)
1216 				break;
1217 			scan->nc_flag |= NCF_FSMID;
1218 		}
1219 	}
1220 }
1221 
1222 /*
1223  * If getattr is called on a vnode (e.g. a stat call), the filesystem
1224  * may call this routine to determine if the namecache has the hierarchical
1225  * change flag set, requiring the fsmid to be updated.
1226  *
1227  * Since 0 indicates no support, make sure the filesystem fsmid is at least
1228  * 1.
1229  */
1230 int
1231 cache_check_fsmid_vp(struct vnode *vp, int64_t *fsmid)
1232 {
1233 	struct namecache *ncp;
1234 	int changed = 0;
1235 
1236 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1237 		if (ncp->nc_flag & NCF_FSMID) {
1238 			ncp->nc_flag &= ~NCF_FSMID;
1239 			changed = 1;
1240 		}
1241 	}
1242 	if (*fsmid == 0)
1243 		++*fsmid;
1244 	if (changed)
1245 		++*fsmid;
1246 	return(changed);
1247 }
1248 
1249 /*
1250  * Obtain the FSMID for a vnode for filesystems which do not support
1251  * a built-in FSMID.
1252  */
1253 int64_t
1254 cache_sync_fsmid_vp(struct vnode *vp)
1255 {
1256 	struct namecache *ncp;
1257 
1258 	if ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL) {
1259 		if (ncp->nc_flag & NCF_FSMID) {
1260 			ncp->nc_flag &= ~NCF_FSMID;
1261 			++ncp->nc_fsmid;
1262 		}
1263 		return(ncp->nc_fsmid);
1264 	}
1265 	return(VNOVAL);
1266 }
1267 
1268 /*
1269  * Convert a directory vnode to a namecache record without any other
1270  * knowledge of the topology.  This ONLY works with directory vnodes and
1271  * is ONLY used by the NFS server.  dvp must be refd but unlocked, and the
1272  * returned ncp (if not NULL) will be held and unlocked.
1273  *
1274  * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
1275  * If 'makeit' is 1 we attempt to track-down and create the namecache topology
1276  * for dvp.  This will fail only if the directory has been deleted out from
1277  * under the caller.
1278  *
1279  * Callers must always check for a NULL return no matter the value of 'makeit'.
1280  *
1281  * To avoid underflowing the kernel stack each recursive call increments
1282  * the makeit variable.
1283  */
1284 
1285 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1286 				  struct vnode *dvp, char *fakename);
1287 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1288 				  struct vnode **saved_dvp);
1289 
1290 int
1291 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
1292 	      struct nchandle *nch)
1293 {
1294 	struct vnode *saved_dvp;
1295 	struct vnode *pvp;
1296 	char *fakename;
1297 	int error;
1298 
1299 	nch->ncp = NULL;
1300 	nch->mount = dvp->v_mount;
1301 	saved_dvp = NULL;
1302 	fakename = NULL;
1303 
1304 	/*
1305 	 * Temporary debugging code to force the directory scanning code
1306 	 * to be exercised.
1307 	 */
1308 	if (ncvp_debug >= 3 && makeit && TAILQ_FIRST(&dvp->v_namecache)) {
1309 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
1310 		kprintf("cache_fromdvp: forcing %s\n", nch->ncp->nc_name);
1311 		goto force;
1312 	}
1313 
1314 	/*
1315 	 * Loop until resolution, inside code will break out on error.
1316 	 */
1317 	while ((nch->ncp = TAILQ_FIRST(&dvp->v_namecache)) == NULL && makeit) {
1318 force:
1319 		/*
1320 		 * If dvp is the root of its filesystem it should already
1321 		 * have a namecache pointer associated with it as a side
1322 		 * effect of the mount, but it may have been disassociated.
1323 		 */
1324 		if (dvp->v_flag & VROOT) {
1325 			nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
1326 			error = cache_resolve_mp(nch->mount);
1327 			_cache_put(nch->ncp);
1328 			if (ncvp_debug) {
1329 				kprintf("cache_fromdvp: resolve root of mount %p error %d",
1330 					dvp->v_mount, error);
1331 			}
1332 			if (error) {
1333 				if (ncvp_debug)
1334 					kprintf(" failed\n");
1335 				nch->ncp = NULL;
1336 				break;
1337 			}
1338 			if (ncvp_debug)
1339 				kprintf(" succeeded\n");
1340 			continue;
1341 		}
1342 
1343 		/*
1344 		 * If we are recursed too deeply resort to an O(n^2)
1345 		 * algorithm to resolve the namecache topology.  The
1346 		 * resolved pvp is left referenced in saved_dvp to
1347 		 * prevent the tree from being destroyed while we loop.
1348 		 */
1349 		if (makeit > 20) {
1350 			error = cache_fromdvp_try(dvp, cred, &saved_dvp);
1351 			if (error) {
1352 				kprintf("lookupdotdot(longpath) failed %d "
1353 				       "dvp %p\n", error, dvp);
1354 				nch->ncp = NULL;
1355 				break;
1356 			}
1357 			continue;
1358 		}
1359 
1360 		/*
1361 		 * Get the parent directory and resolve its ncp.
1362 		 */
1363 		if (fakename) {
1364 			kfree(fakename, M_TEMP);
1365 			fakename = NULL;
1366 		}
1367 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1368 					  &fakename);
1369 		if (error) {
1370 			kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
1371 			break;
1372 		}
1373 		vn_unlock(pvp);
1374 
1375 		/*
1376 		 * Reuse makeit as a recursion depth counter.  On success
1377 		 * nch will be fully referenced.
1378 		 */
1379 		cache_fromdvp(pvp, cred, makeit + 1, nch);
1380 		vrele(pvp);
1381 		if (nch->ncp == NULL)
1382 			break;
1383 
1384 		/*
1385 		 * Do an inefficient scan of pvp (embodied by ncp) to look
1386 		 * for dvp.  This will create a namecache record for dvp on
1387 		 * success.  We loop up to recheck on success.
1388 		 *
1389 		 * ncp and dvp are both held but not locked.
1390 		 */
1391 		error = cache_inefficient_scan(nch, cred, dvp, fakename);
1392 		if (error) {
1393 			kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
1394 				pvp, nch->ncp->nc_name, dvp);
1395 			cache_drop(nch);
1396 			/* nch was NULLed out, reload mount */
1397 			nch->mount = dvp->v_mount;
1398 			break;
1399 		}
1400 		if (ncvp_debug) {
1401 			kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
1402 				pvp, nch->ncp->nc_name);
1403 		}
1404 		cache_drop(nch);
1405 		/* nch was NULLed out, reload mount */
1406 		nch->mount = dvp->v_mount;
1407 	}
1408 
1409 	if (fakename)
1410 		kfree(fakename, M_TEMP);
1411 
1412 	/*
1413 	 * hold it for real so the mount gets a ref
1414 	 */
1415 	if (nch->ncp)
1416 		cache_hold(nch);
1417 	if (saved_dvp)
1418 		vrele(saved_dvp);
1419 	if (nch->ncp)
1420 		return (0);
1421 	return (EINVAL);
1422 }
1423 
1424 /*
1425  * Go up the chain of parent directories until we find something
1426  * we can resolve into the namecache.  This is very inefficient.
1427  */
1428 static
1429 int
1430 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1431 		  struct vnode **saved_dvp)
1432 {
1433 	struct nchandle nch;
1434 	struct vnode *pvp;
1435 	int error;
1436 	static time_t last_fromdvp_report;
1437 	char *fakename;
1438 
1439 	/*
1440 	 * Loop getting the parent directory vnode until we get something we
1441 	 * can resolve in the namecache.
1442 	 */
1443 	vref(dvp);
1444 	nch.mount = dvp->v_mount;
1445 	nch.ncp = NULL;
1446 	fakename = NULL;
1447 
1448 	for (;;) {
1449 		if (fakename) {
1450 			kfree(fakename, M_TEMP);
1451 			fakename = NULL;
1452 		}
1453 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1454 					  &fakename);
1455 		if (error) {
1456 			vrele(dvp);
1457 			break;
1458 		}
1459 		vn_unlock(pvp);
1460 		if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
1461 			_cache_hold(nch.ncp);
1462 			vrele(pvp);
1463 			break;
1464 		}
1465 		if (pvp->v_flag & VROOT) {
1466 			nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
1467 			error = cache_resolve_mp(nch.mount);
1468 			_cache_unlock(nch.ncp);
1469 			vrele(pvp);
1470 			if (error) {
1471 				_cache_drop(nch.ncp);
1472 				nch.ncp = NULL;
1473 				vrele(dvp);
1474 			}
1475 			break;
1476 		}
1477 		vrele(dvp);
1478 		dvp = pvp;
1479 	}
1480 	if (error == 0) {
1481 		if (last_fromdvp_report != time_second) {
1482 			last_fromdvp_report = time_second;
1483 			kprintf("Warning: extremely inefficient path "
1484 				"resolution on %s\n",
1485 				nch.ncp->nc_name);
1486 		}
1487 		error = cache_inefficient_scan(&nch, cred, dvp, fakename);
1488 
1489 		/*
1490 		 * Hopefully dvp now has a namecache record associated with
1491 		 * it.  Leave it referenced to prevent the kernel from
1492 		 * recycling the vnode.  Otherwise extremely long directory
1493 		 * paths could result in endless recycling.
1494 		 */
1495 		if (*saved_dvp)
1496 		    vrele(*saved_dvp);
1497 		*saved_dvp = dvp;
1498 		_cache_drop(nch.ncp);
1499 	}
1500 	if (fakename)
1501 		kfree(fakename, M_TEMP);
1502 	return (error);
1503 }
1504 
1505 /*
1506  * Do an inefficient scan of the directory represented by ncp looking for
1507  * the directory vnode dvp.  ncp must be held but not locked on entry and
1508  * will be held on return.  dvp must be refd but not locked on entry and
1509  * will remain refd on return.
1510  *
1511  * Why do this at all?  Well, due to its stateless nature the NFS server
1512  * converts file handles directly to vnodes without necessarily going through
1513  * the namecache ops that would otherwise create the namecache topology
1514  * leading to the vnode.  We could either (1) Change the namecache algorithms
1515  * to allow disconnect namecache records that are re-merged opportunistically,
1516  * or (2) Make the NFS server backtrack and scan to recover a connected
1517  * namecache topology in order to then be able to issue new API lookups.
1518  *
1519  * It turns out that (1) is a huge mess.  It takes a nice clean set of
1520  * namecache algorithms and introduces a lot of complication in every subsystem
1521  * that calls into the namecache to deal with the re-merge case, especially
1522  * since we are using the namecache to placehold negative lookups and the
1523  * vnode might not be immediately assigned. (2) is certainly far less
1524  * efficient then (1), but since we are only talking about directories here
1525  * (which are likely to remain cached), the case does not actually run all
1526  * that often and has the supreme advantage of not polluting the namecache
1527  * algorithms.
1528  *
1529  * If a fakename is supplied just construct a namecache entry using the
1530  * fake name.
1531  */
1532 static int
1533 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1534 		       struct vnode *dvp, char *fakename)
1535 {
1536 	struct nlcomponent nlc;
1537 	struct nchandle rncp;
1538 	struct dirent *den;
1539 	struct vnode *pvp;
1540 	struct vattr vat;
1541 	struct iovec iov;
1542 	struct uio uio;
1543 	int blksize;
1544 	int eofflag;
1545 	int bytes;
1546 	char *rbuf;
1547 	int error;
1548 
1549 	vat.va_blocksize = 0;
1550 	if ((error = VOP_GETATTR(dvp, &vat)) != 0)
1551 		return (error);
1552 	if ((error = cache_vref(nch, cred, &pvp)) != 0)
1553 		return (error);
1554 	if (ncvp_debug) {
1555 		kprintf("inefficient_scan: directory iosize %ld "
1556 			"vattr fileid = %lld\n",
1557 			vat.va_blocksize,
1558 			(long long)vat.va_fileid);
1559 	}
1560 
1561 	/*
1562 	 * Use the supplied fakename if not NULL.  Fake names are typically
1563 	 * not in the actual filesystem hierarchy.  This is used by HAMMER
1564 	 * to glue @@timestamp recursions together.
1565 	 */
1566 	if (fakename) {
1567 		nlc.nlc_nameptr = fakename;
1568 		nlc.nlc_namelen = strlen(fakename);
1569 		rncp = cache_nlookup(nch, &nlc);
1570 		goto done;
1571 	}
1572 
1573 	if ((blksize = vat.va_blocksize) == 0)
1574 		blksize = DEV_BSIZE;
1575 	rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
1576 	rncp.ncp = NULL;
1577 
1578 	eofflag = 0;
1579 	uio.uio_offset = 0;
1580 again:
1581 	iov.iov_base = rbuf;
1582 	iov.iov_len = blksize;
1583 	uio.uio_iov = &iov;
1584 	uio.uio_iovcnt = 1;
1585 	uio.uio_resid = blksize;
1586 	uio.uio_segflg = UIO_SYSSPACE;
1587 	uio.uio_rw = UIO_READ;
1588 	uio.uio_td = curthread;
1589 
1590 	if (ncvp_debug >= 2)
1591 		kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
1592 	error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
1593 	if (error == 0) {
1594 		den = (struct dirent *)rbuf;
1595 		bytes = blksize - uio.uio_resid;
1596 
1597 		while (bytes > 0) {
1598 			if (ncvp_debug >= 2) {
1599 				kprintf("cache_inefficient_scan: %*.*s\n",
1600 					den->d_namlen, den->d_namlen,
1601 					den->d_name);
1602 			}
1603 			if (den->d_type != DT_WHT &&
1604 			    den->d_ino == vat.va_fileid) {
1605 				if (ncvp_debug) {
1606 					kprintf("cache_inefficient_scan: "
1607 					       "MATCHED inode %lld path %s/%*.*s\n",
1608 					       (long long)vat.va_fileid,
1609 					       nch->ncp->nc_name,
1610 					       den->d_namlen, den->d_namlen,
1611 					       den->d_name);
1612 				}
1613 				nlc.nlc_nameptr = den->d_name;
1614 				nlc.nlc_namelen = den->d_namlen;
1615 				rncp = cache_nlookup(nch, &nlc);
1616 				KKASSERT(rncp.ncp != NULL);
1617 				break;
1618 			}
1619 			bytes -= _DIRENT_DIRSIZ(den);
1620 			den = _DIRENT_NEXT(den);
1621 		}
1622 		if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
1623 			goto again;
1624 	}
1625 	kfree(rbuf, M_TEMP);
1626 done:
1627 	vrele(pvp);
1628 	if (rncp.ncp) {
1629 		if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
1630 			_cache_setvp(rncp.ncp, dvp);
1631 			if (ncvp_debug >= 2) {
1632 				kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
1633 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
1634 			}
1635 		} else {
1636 			if (ncvp_debug >= 2) {
1637 				kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
1638 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
1639 					rncp.ncp->nc_vp);
1640 			}
1641 		}
1642 		if (rncp.ncp->nc_vp == NULL)
1643 			error = rncp.ncp->nc_error;
1644 		/*
1645 		 * Release rncp after a successful nlookup.  rncp was fully
1646 		 * referenced.
1647 		 */
1648 		cache_put(&rncp);
1649 	} else {
1650 		kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
1651 			dvp, nch->ncp->nc_name);
1652 		error = ENOENT;
1653 	}
1654 	return (error);
1655 }
1656 
1657 /*
1658  * Zap a namecache entry.  The ncp is unconditionally set to an unresolved
1659  * state, which disassociates it from its vnode or ncneglist.
1660  *
1661  * Then, if there are no additional references to the ncp and no children,
1662  * the ncp is removed from the topology and destroyed.  This function will
1663  * also run through the nc_parent chain and destroy parent ncps if possible.
1664  * As a side benefit, it turns out the only conditions that allow running
1665  * up the chain are also the conditions to ensure no deadlock will occur.
1666  *
1667  * References and/or children may exist if the ncp is in the middle of the
1668  * topology, preventing the ncp from being destroyed.
1669  *
1670  * This function must be called with the ncp held and locked and will unlock
1671  * and drop it during zapping.
1672  */
1673 static void
1674 cache_zap(struct namecache *ncp)
1675 {
1676 	struct namecache *par;
1677 
1678 	/*
1679 	 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
1680 	 */
1681 	_cache_setunresolved(ncp);
1682 
1683 	/*
1684 	 * Try to scrap the entry and possibly tail-recurse on its parent.
1685 	 * We only scrap unref'd (other then our ref) unresolved entries,
1686 	 * we do not scrap 'live' entries.
1687 	 */
1688 	while (ncp->nc_flag & NCF_UNRESOLVED) {
1689 		/*
1690 		 * Someone other then us has a ref, stop.
1691 		 */
1692 		if (ncp->nc_refs > 1)
1693 			goto done;
1694 
1695 		/*
1696 		 * We have children, stop.
1697 		 */
1698 		if (!TAILQ_EMPTY(&ncp->nc_list))
1699 			goto done;
1700 
1701 		/*
1702 		 * Remove ncp from the topology: hash table and parent linkage.
1703 		 */
1704 		if (ncp->nc_flag & NCF_HASHED) {
1705 			ncp->nc_flag &= ~NCF_HASHED;
1706 			LIST_REMOVE(ncp, nc_hash);
1707 		}
1708 		if ((par = ncp->nc_parent) != NULL) {
1709 			par = _cache_hold(par);
1710 			TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
1711 			ncp->nc_parent = NULL;
1712 			if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
1713 				vdrop(par->nc_vp);
1714 		}
1715 
1716 		/*
1717 		 * ncp should not have picked up any refs.  Physically
1718 		 * destroy the ncp.
1719 		 */
1720 		KKASSERT(ncp->nc_refs == 1);
1721 		--numunres;
1722 		/* _cache_unlock(ncp) not required */
1723 		ncp->nc_refs = -1;	/* safety */
1724 		if (ncp->nc_name)
1725 			kfree(ncp->nc_name, M_VFSCACHE);
1726 		kfree(ncp, M_VFSCACHE);
1727 
1728 		/*
1729 		 * Loop on the parent (it may be NULL).  Only bother looping
1730 		 * if the parent has a single ref (ours), which also means
1731 		 * we can lock it trivially.
1732 		 */
1733 		ncp = par;
1734 		if (ncp == NULL)
1735 			return;
1736 		if (ncp->nc_refs != 1) {
1737 			_cache_drop(ncp);
1738 			return;
1739 		}
1740 		KKASSERT(par->nc_exlocks == 0);
1741 		_cache_lock(ncp);
1742 	}
1743 done:
1744 	_cache_unlock(ncp);
1745 	atomic_subtract_int(&ncp->nc_refs, 1);
1746 }
1747 
1748 static enum { CHI_LOW, CHI_HIGH } cache_hysteresis_state = CHI_LOW;
1749 
1750 static __inline
1751 void
1752 cache_hysteresis(void)
1753 {
1754 	/*
1755 	 * Don't cache too many negative hits.  We use hysteresis to reduce
1756 	 * the impact on the critical path.
1757 	 */
1758 	switch(cache_hysteresis_state) {
1759 	case CHI_LOW:
1760 		if (numneg > MINNEG && numneg * ncnegfactor > numcache) {
1761 			cache_cleanneg(10);
1762 			cache_hysteresis_state = CHI_HIGH;
1763 		}
1764 		break;
1765 	case CHI_HIGH:
1766 		if (numneg > MINNEG * 9 / 10 &&
1767 		    numneg * ncnegfactor * 9 / 10 > numcache
1768 		) {
1769 			cache_cleanneg(10);
1770 		} else {
1771 			cache_hysteresis_state = CHI_LOW;
1772 		}
1773 		break;
1774 	}
1775 }
1776 
1777 /*
1778  * NEW NAMECACHE LOOKUP API
1779  *
1780  * Lookup an entry in the cache.  A locked, referenced, non-NULL
1781  * entry is *always* returned, even if the supplied component is illegal.
1782  * The resulting namecache entry should be returned to the system with
1783  * cache_put() or _cache_unlock() + cache_drop().
1784  *
1785  * namecache locks are recursive but care must be taken to avoid lock order
1786  * reversals.
1787  *
1788  * Nobody else will be able to manipulate the associated namespace (e.g.
1789  * create, delete, rename, rename-target) until the caller unlocks the
1790  * entry.
1791  *
1792  * The returned entry will be in one of three states:  positive hit (non-null
1793  * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
1794  * Unresolved entries must be resolved through the filesystem to associate the
1795  * vnode and/or determine whether a positive or negative hit has occured.
1796  *
1797  * It is not necessary to lock a directory in order to lock namespace under
1798  * that directory.  In fact, it is explicitly not allowed to do that.  A
1799  * directory is typically only locked when being created, renamed, or
1800  * destroyed.
1801  *
1802  * The directory (par) may be unresolved, in which case any returned child
1803  * will likely also be marked unresolved.  Likely but not guarenteed.  Since
1804  * the filesystem lookup requires a resolved directory vnode the caller is
1805  * responsible for resolving the namecache chain top-down.  This API
1806  * specifically allows whole chains to be created in an unresolved state.
1807  */
1808 struct nchandle
1809 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
1810 {
1811 	struct nchandle nch;
1812 	struct namecache *ncp;
1813 	struct namecache *new_ncp;
1814 	struct nchashhead *nchpp;
1815 	u_int32_t hash;
1816 	globaldata_t gd;
1817 
1818 	numcalls++;
1819 	gd = mycpu;
1820 
1821 	/*
1822 	 * Try to locate an existing entry
1823 	 */
1824 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
1825 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
1826 	new_ncp = NULL;
1827 restart:
1828 	LIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1829 		numchecks++;
1830 
1831 		/*
1832 		 * Try to zap entries that have timed out.  We have
1833 		 * to be careful here because locked leafs may depend
1834 		 * on the vnode remaining intact in a parent, so only
1835 		 * do this under very specific conditions.
1836 		 */
1837 		if (ncp->nc_timeout &&
1838 		    (int)(ncp->nc_timeout - ticks) < 0 &&
1839 		    (ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
1840 		    ncp->nc_exlocks == 0 &&
1841 		    TAILQ_EMPTY(&ncp->nc_list)
1842 		) {
1843 			cache_zap(_cache_get(ncp));
1844 			goto restart;
1845 		}
1846 
1847 		/*
1848 		 * Break out if we find a matching entry.  Note that
1849 		 * UNRESOLVED entries may match, but DESTROYED entries
1850 		 * do not.
1851 		 */
1852 		if (ncp->nc_parent == par_nch->ncp &&
1853 		    ncp->nc_nlen == nlc->nlc_namelen &&
1854 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
1855 		    (ncp->nc_flag & NCF_DESTROYED) == 0
1856 		) {
1857 			if (_cache_get_nonblock(ncp) == 0) {
1858 				if (new_ncp)
1859 					_cache_free(new_ncp);
1860 				goto found;
1861 			}
1862 			_cache_get(ncp);
1863 			_cache_put(ncp);
1864 			goto restart;
1865 		}
1866 	}
1867 
1868 	/*
1869 	 * We failed to locate an entry, create a new entry and add it to
1870 	 * the cache.  We have to relookup after possibly blocking in
1871 	 * malloc.
1872 	 */
1873 	if (new_ncp == NULL) {
1874 		new_ncp = cache_alloc(nlc->nlc_namelen);
1875 		goto restart;
1876 	}
1877 
1878 	ncp = new_ncp;
1879 
1880 	/*
1881 	 * Initialize as a new UNRESOLVED entry, lock (non-blocking),
1882 	 * and link to the parent.  The mount point is usually inherited
1883 	 * from the parent unless this is a special case such as a mount
1884 	 * point where nlc_namelen is 0.   If nlc_namelen is 0 nc_name will
1885 	 * be NULL.
1886 	 */
1887 	if (nlc->nlc_namelen) {
1888 		bcopy(nlc->nlc_nameptr, ncp->nc_name, nlc->nlc_namelen);
1889 		ncp->nc_name[nlc->nlc_namelen] = 0;
1890 	}
1891 	nchpp = NCHHASH(hash);
1892 	LIST_INSERT_HEAD(nchpp, ncp, nc_hash);
1893 	ncp->nc_flag |= NCF_HASHED;
1894 	cache_link_parent(ncp, par_nch->ncp);
1895 found:
1896 	/*
1897 	 * stats and namecache size management
1898 	 */
1899 	if (ncp->nc_flag & NCF_UNRESOLVED)
1900 		++gd->gd_nchstats->ncs_miss;
1901 	else if (ncp->nc_vp)
1902 		++gd->gd_nchstats->ncs_goodhits;
1903 	else
1904 		++gd->gd_nchstats->ncs_neghits;
1905 	cache_hysteresis();
1906 	nch.mount = par_nch->mount;
1907 	nch.ncp = ncp;
1908 	++nch.mount->mnt_refs;
1909 	return(nch);
1910 }
1911 
1912 /*
1913  * The namecache entry is marked as being used as a mount point.
1914  * Locate the mount if it is visible to the caller.
1915  */
1916 struct findmount_info {
1917 	struct mount *result;
1918 	struct mount *nch_mount;
1919 	struct namecache *nch_ncp;
1920 };
1921 
1922 static
1923 int
1924 cache_findmount_callback(struct mount *mp, void *data)
1925 {
1926 	struct findmount_info *info = data;
1927 
1928 	/*
1929 	 * Check the mount's mounted-on point against the passed nch.
1930 	 */
1931 	if (mp->mnt_ncmounton.mount == info->nch_mount &&
1932 	    mp->mnt_ncmounton.ncp == info->nch_ncp
1933 	) {
1934 	    info->result = mp;
1935 	    return(-1);
1936 	}
1937 	return(0);
1938 }
1939 
1940 struct mount *
1941 cache_findmount(struct nchandle *nch)
1942 {
1943 	struct findmount_info info;
1944 
1945 	info.result = NULL;
1946 	info.nch_mount = nch->mount;
1947 	info.nch_ncp = nch->ncp;
1948 	mountlist_scan(cache_findmount_callback, &info,
1949 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1950 	return(info.result);
1951 }
1952 
1953 /*
1954  * Resolve an unresolved namecache entry, generally by looking it up.
1955  * The passed ncp must be locked and refd.
1956  *
1957  * Theoretically since a vnode cannot be recycled while held, and since
1958  * the nc_parent chain holds its vnode as long as children exist, the
1959  * direct parent of the cache entry we are trying to resolve should
1960  * have a valid vnode.  If not then generate an error that we can
1961  * determine is related to a resolver bug.
1962  *
1963  * However, if a vnode was in the middle of a recyclement when the NCP
1964  * got locked, ncp->nc_vp might point to a vnode that is about to become
1965  * invalid.  cache_resolve() handles this case by unresolving the entry
1966  * and then re-resolving it.
1967  *
1968  * Note that successful resolution does not necessarily return an error
1969  * code of 0.  If the ncp resolves to a negative cache hit then ENOENT
1970  * will be returned.
1971  */
1972 int
1973 cache_resolve(struct nchandle *nch, struct ucred *cred)
1974 {
1975 	struct namecache *par;
1976 	struct namecache *ncp;
1977 	struct nchandle nctmp;
1978 	struct mount *mp;
1979 	struct vnode *dvp;
1980 	int error;
1981 
1982 	ncp = nch->ncp;
1983 	mp = nch->mount;
1984 restart:
1985 	/*
1986 	 * If the ncp is already resolved we have nothing to do.  However,
1987 	 * we do want to guarentee that a usable vnode is returned when
1988 	 * a vnode is present, so make sure it hasn't been reclaimed.
1989 	 */
1990 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1991 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1992 			_cache_setunresolved(ncp);
1993 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1994 			return (ncp->nc_error);
1995 	}
1996 
1997 	/*
1998 	 * Mount points need special handling because the parent does not
1999 	 * belong to the same filesystem as the ncp.
2000 	 */
2001 	if (ncp == mp->mnt_ncmountpt.ncp)
2002 		return (cache_resolve_mp(mp));
2003 
2004 	/*
2005 	 * We expect an unbroken chain of ncps to at least the mount point,
2006 	 * and even all the way to root (but this code doesn't have to go
2007 	 * past the mount point).
2008 	 */
2009 	if (ncp->nc_parent == NULL) {
2010 		kprintf("EXDEV case 1 %p %*.*s\n", ncp,
2011 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2012 		ncp->nc_error = EXDEV;
2013 		return(ncp->nc_error);
2014 	}
2015 
2016 	/*
2017 	 * The vp's of the parent directories in the chain are held via vhold()
2018 	 * due to the existance of the child, and should not disappear.
2019 	 * However, there are cases where they can disappear:
2020 	 *
2021 	 *	- due to filesystem I/O errors.
2022 	 *	- due to NFS being stupid about tracking the namespace and
2023 	 *	  destroys the namespace for entire directories quite often.
2024 	 *	- due to forced unmounts.
2025 	 *	- due to an rmdir (parent will be marked DESTROYED)
2026 	 *
2027 	 * When this occurs we have to track the chain backwards and resolve
2028 	 * it, looping until the resolver catches up to the current node.  We
2029 	 * could recurse here but we might run ourselves out of kernel stack
2030 	 * so we do it in a more painful manner.  This situation really should
2031 	 * not occur all that often, or if it does not have to go back too
2032 	 * many nodes to resolve the ncp.
2033 	 */
2034 	while ((dvp = cache_dvpref(ncp)) == NULL) {
2035 		/*
2036 		 * This case can occur if a process is CD'd into a
2037 		 * directory which is then rmdir'd.  If the parent is marked
2038 		 * destroyed there is no point trying to resolve it.
2039 		 */
2040 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
2041 			return(ENOENT);
2042 
2043 		par = ncp->nc_parent;
2044 		while (par->nc_parent && par->nc_parent->nc_vp == NULL)
2045 			par = par->nc_parent;
2046 		if (par->nc_parent == NULL) {
2047 			kprintf("EXDEV case 2 %*.*s\n",
2048 				par->nc_nlen, par->nc_nlen, par->nc_name);
2049 			return (EXDEV);
2050 		}
2051 		kprintf("[diagnostic] cache_resolve: had to recurse on %*.*s\n",
2052 			par->nc_nlen, par->nc_nlen, par->nc_name);
2053 		/*
2054 		 * The parent is not set in stone, ref and lock it to prevent
2055 		 * it from disappearing.  Also note that due to renames it
2056 		 * is possible for our ncp to move and for par to no longer
2057 		 * be one of its parents.  We resolve it anyway, the loop
2058 		 * will handle any moves.
2059 		 */
2060 		_cache_get(par);
2061 		if (par == nch->mount->mnt_ncmountpt.ncp) {
2062 			cache_resolve_mp(nch->mount);
2063 		} else if ((dvp = cache_dvpref(par)) == NULL) {
2064 			kprintf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name);
2065 			_cache_put(par);
2066 			continue;
2067 		} else {
2068 			if (par->nc_flag & NCF_UNRESOLVED) {
2069 				nctmp.mount = mp;
2070 				nctmp.ncp = par;
2071 				par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2072 			}
2073 			vrele(dvp);
2074 		}
2075 		if ((error = par->nc_error) != 0) {
2076 			if (par->nc_error != EAGAIN) {
2077 				kprintf("EXDEV case 3 %*.*s error %d\n",
2078 				    par->nc_nlen, par->nc_nlen, par->nc_name,
2079 				    par->nc_error);
2080 				_cache_put(par);
2081 				return(error);
2082 			}
2083 			kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
2084 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
2085 		}
2086 		_cache_put(par);
2087 		/* loop */
2088 	}
2089 
2090 	/*
2091 	 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
2092 	 * ncp's and reattach them.  If this occurs the original ncp is marked
2093 	 * EAGAIN to force a relookup.
2094 	 *
2095 	 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
2096 	 * ncp must already be resolved.
2097 	 */
2098 	if (dvp) {
2099 		nctmp.mount = mp;
2100 		nctmp.ncp = ncp;
2101 		ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2102 		vrele(dvp);
2103 	} else {
2104 		ncp->nc_error = EPERM;
2105 	}
2106 	if (ncp->nc_error == EAGAIN) {
2107 		kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
2108 			ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2109 		goto restart;
2110 	}
2111 	return(ncp->nc_error);
2112 }
2113 
2114 /*
2115  * Resolve the ncp associated with a mount point.  Such ncp's almost always
2116  * remain resolved and this routine is rarely called.  NFS MPs tends to force
2117  * re-resolution more often due to its mac-truck-smash-the-namecache
2118  * method of tracking namespace changes.
2119  *
2120  * The semantics for this call is that the passed ncp must be locked on
2121  * entry and will be locked on return.  However, if we actually have to
2122  * resolve the mount point we temporarily unlock the entry in order to
2123  * avoid race-to-root deadlocks due to e.g. dead NFS mounts.  Because of
2124  * the unlock we have to recheck the flags after we relock.
2125  */
2126 static int
2127 cache_resolve_mp(struct mount *mp)
2128 {
2129 	struct namecache *ncp = mp->mnt_ncmountpt.ncp;
2130 	struct vnode *vp;
2131 	int error;
2132 
2133 	KKASSERT(mp != NULL);
2134 
2135 	/*
2136 	 * If the ncp is already resolved we have nothing to do.  However,
2137 	 * we do want to guarentee that a usable vnode is returned when
2138 	 * a vnode is present, so make sure it hasn't been reclaimed.
2139 	 */
2140 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
2141 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
2142 			_cache_setunresolved(ncp);
2143 	}
2144 
2145 	if (ncp->nc_flag & NCF_UNRESOLVED) {
2146 		_cache_unlock(ncp);
2147 		while (vfs_busy(mp, 0))
2148 			;
2149 		error = VFS_ROOT(mp, &vp);
2150 		_cache_lock(ncp);
2151 
2152 		/*
2153 		 * recheck the ncp state after relocking.
2154 		 */
2155 		if (ncp->nc_flag & NCF_UNRESOLVED) {
2156 			ncp->nc_error = error;
2157 			if (error == 0) {
2158 				_cache_setvp(ncp, vp);
2159 				vput(vp);
2160 			} else {
2161 				kprintf("[diagnostic] cache_resolve_mp: failed"
2162 					" to resolve mount %p err=%d ncp=%p\n",
2163 					mp, error, ncp);
2164 				_cache_setvp(ncp, NULL);
2165 			}
2166 		} else if (error == 0) {
2167 			vput(vp);
2168 		}
2169 		vfs_unbusy(mp);
2170 	}
2171 	return(ncp->nc_error);
2172 }
2173 
2174 void
2175 cache_cleanneg(int count)
2176 {
2177 	struct namecache *ncp;
2178 
2179 	/*
2180 	 * Automode from the vnlru proc - clean out 10% of the negative cache
2181 	 * entries.
2182 	 */
2183 	if (count == 0)
2184 		count = numneg / 10 + 1;
2185 
2186 	/*
2187 	 * Attempt to clean out the specified number of negative cache
2188 	 * entries.
2189 	 */
2190 	while (count) {
2191 		ncp = TAILQ_FIRST(&ncneglist);
2192 		if (ncp == NULL) {
2193 			KKASSERT(numneg == 0);
2194 			break;
2195 		}
2196 		TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
2197 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
2198 		if (_cache_get_nonblock(ncp) == 0)
2199 			cache_zap(ncp);
2200 		--count;
2201 	}
2202 }
2203 
2204 /*
2205  * Rehash a ncp.  Rehashing is typically required if the name changes (should
2206  * not generally occur) or the parent link changes.  This function will
2207  * unhash the ncp if the ncp is no longer hashable.
2208  */
2209 static void
2210 _cache_rehash(struct namecache *ncp)
2211 {
2212 	struct nchashhead *nchpp;
2213 	u_int32_t hash;
2214 
2215 	if (ncp->nc_flag & NCF_HASHED) {
2216 		ncp->nc_flag &= ~NCF_HASHED;
2217 		LIST_REMOVE(ncp, nc_hash);
2218 	}
2219 	if (ncp->nc_nlen && ncp->nc_parent) {
2220 		hash = fnv_32_buf(ncp->nc_name, ncp->nc_nlen, FNV1_32_INIT);
2221 		hash = fnv_32_buf(&ncp->nc_parent,
2222 					sizeof(ncp->nc_parent), hash);
2223 		nchpp = NCHHASH(hash);
2224 		LIST_INSERT_HEAD(nchpp, ncp, nc_hash);
2225 		ncp->nc_flag |= NCF_HASHED;
2226 	}
2227 }
2228 
2229 /*
2230  * Name cache initialization, from vfsinit() when we are booting
2231  */
2232 void
2233 nchinit(void)
2234 {
2235 	int i;
2236 	globaldata_t gd;
2237 
2238 	/* initialise per-cpu namecache effectiveness statistics. */
2239 	for (i = 0; i < ncpus; ++i) {
2240 		gd = globaldata_find(i);
2241 		gd->gd_nchstats = &nchstats[i];
2242 	}
2243 	TAILQ_INIT(&ncneglist);
2244 	nchashtbl = hashinit(desiredvnodes*2, M_VFSCACHE, &nchash);
2245 	nclockwarn = 5 * hz;
2246 }
2247 
2248 /*
2249  * Called from start_init() to bootstrap the root filesystem.  Returns
2250  * a referenced, unlocked namecache record.
2251  */
2252 void
2253 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
2254 {
2255 	nch->ncp = cache_alloc(0);
2256 	nch->mount = mp;
2257 	++mp->mnt_refs;
2258 	if (vp)
2259 		_cache_setvp(nch->ncp, vp);
2260 }
2261 
2262 /*
2263  * vfs_cache_setroot()
2264  *
2265  *	Create an association between the root of our namecache and
2266  *	the root vnode.  This routine may be called several times during
2267  *	booting.
2268  *
2269  *	If the caller intends to save the returned namecache pointer somewhere
2270  *	it must cache_hold() it.
2271  */
2272 void
2273 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
2274 {
2275 	struct vnode *ovp;
2276 	struct nchandle onch;
2277 
2278 	ovp = rootvnode;
2279 	onch = rootnch;
2280 	rootvnode = nvp;
2281 	if (nch)
2282 		rootnch = *nch;
2283 	else
2284 		cache_zero(&rootnch);
2285 	if (ovp)
2286 		vrele(ovp);
2287 	if (onch.ncp)
2288 		cache_drop(&onch);
2289 }
2290 
2291 /*
2292  * XXX OLD API COMPAT FUNCTION.  This really messes up the new namecache
2293  * topology and is being removed as quickly as possible.  The new VOP_N*()
2294  * API calls are required to make specific adjustments using the supplied
2295  * ncp pointers rather then just bogusly purging random vnodes.
2296  *
2297  * Invalidate all namecache entries to a particular vnode as well as
2298  * any direct children of that vnode in the namecache.  This is a
2299  * 'catch all' purge used by filesystems that do not know any better.
2300  *
2301  * Note that the linkage between the vnode and its namecache entries will
2302  * be removed, but the namecache entries themselves might stay put due to
2303  * active references from elsewhere in the system or due to the existance of
2304  * the children.   The namecache topology is left intact even if we do not
2305  * know what the vnode association is.  Such entries will be marked
2306  * NCF_UNRESOLVED.
2307  */
2308 void
2309 cache_purge(struct vnode *vp)
2310 {
2311 	cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
2312 }
2313 
2314 /*
2315  * Flush all entries referencing a particular filesystem.
2316  *
2317  * Since we need to check it anyway, we will flush all the invalid
2318  * entries at the same time.
2319  */
2320 #if 0
2321 
2322 void
2323 cache_purgevfs(struct mount *mp)
2324 {
2325 	struct nchashhead *nchpp;
2326 	struct namecache *ncp, *nnp;
2327 
2328 	/*
2329 	 * Scan hash tables for applicable entries.
2330 	 */
2331 	for (nchpp = &nchashtbl[nchash]; nchpp >= nchashtbl; nchpp--) {
2332 		ncp = LIST_FIRST(nchpp);
2333 		if (ncp)
2334 			_cache_hold(ncp);
2335 		while (ncp) {
2336 			nnp = LIST_NEXT(ncp, nc_hash);
2337 			if (nnp)
2338 				_cache_hold(nnp);
2339 			if (ncp->nc_mount == mp) {
2340 				_cache_lock(ncp);
2341 				cache_zap(ncp);
2342 			} else {
2343 				_cache_drop(ncp);
2344 			}
2345 			ncp = nnp;
2346 		}
2347 	}
2348 }
2349 
2350 #endif
2351 
2352 /*
2353  * Create a new (theoretically) unique fsmid
2354  */
2355 int64_t
2356 cache_getnewfsmid(void)
2357 {
2358 	static int fsmid_roller;
2359 	int64_t fsmid;
2360 
2361 	++fsmid_roller;
2362 	fsmid = ((int64_t)time_second << 32) |
2363 			(fsmid_roller & 0x7FFFFFFF);
2364 	return (fsmid);
2365 }
2366 
2367 
2368 static int disablecwd;
2369 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0, "");
2370 
2371 static u_long numcwdcalls; STATNODE(CTLFLAG_RD, numcwdcalls, &numcwdcalls);
2372 static u_long numcwdfail1; STATNODE(CTLFLAG_RD, numcwdfail1, &numcwdfail1);
2373 static u_long numcwdfail2; STATNODE(CTLFLAG_RD, numcwdfail2, &numcwdfail2);
2374 static u_long numcwdfail3; STATNODE(CTLFLAG_RD, numcwdfail3, &numcwdfail3);
2375 static u_long numcwdfail4; STATNODE(CTLFLAG_RD, numcwdfail4, &numcwdfail4);
2376 static u_long numcwdfound; STATNODE(CTLFLAG_RD, numcwdfound, &numcwdfound);
2377 
2378 int
2379 sys___getcwd(struct __getcwd_args *uap)
2380 {
2381 	int buflen;
2382 	int error;
2383 	char *buf;
2384 	char *bp;
2385 
2386 	if (disablecwd)
2387 		return (ENODEV);
2388 
2389 	buflen = uap->buflen;
2390 	if (buflen < 2)
2391 		return (EINVAL);
2392 	if (buflen > MAXPATHLEN)
2393 		buflen = MAXPATHLEN;
2394 
2395 	buf = kmalloc(buflen, M_TEMP, M_WAITOK);
2396 	bp = kern_getcwd(buf, buflen, &error);
2397 	if (error == 0)
2398 		error = copyout(bp, uap->buf, strlen(bp) + 1);
2399 	kfree(buf, M_TEMP);
2400 	return (error);
2401 }
2402 
2403 char *
2404 kern_getcwd(char *buf, size_t buflen, int *error)
2405 {
2406 	struct proc *p = curproc;
2407 	char *bp;
2408 	int i, slash_prefixed;
2409 	struct filedesc *fdp;
2410 	struct nchandle nch;
2411 
2412 	numcwdcalls++;
2413 	bp = buf;
2414 	bp += buflen - 1;
2415 	*bp = '\0';
2416 	fdp = p->p_fd;
2417 	slash_prefixed = 0;
2418 
2419 	nch = fdp->fd_ncdir;
2420 	while (nch.ncp && (nch.ncp != fdp->fd_nrdir.ncp ||
2421 	       nch.mount != fdp->fd_nrdir.mount)
2422 	) {
2423 		/*
2424 		 * While traversing upwards if we encounter the root
2425 		 * of the current mount we have to skip to the mount point
2426 		 * in the underlying filesystem.
2427 		 */
2428 		if (nch.ncp == nch.mount->mnt_ncmountpt.ncp) {
2429 			nch = nch.mount->mnt_ncmounton;
2430 			continue;
2431 		}
2432 
2433 		/*
2434 		 * Prepend the path segment
2435 		 */
2436 		for (i = nch.ncp->nc_nlen - 1; i >= 0; i--) {
2437 			if (bp == buf) {
2438 				numcwdfail4++;
2439 				*error = ENOMEM;
2440 				return(NULL);
2441 			}
2442 			*--bp = nch.ncp->nc_name[i];
2443 		}
2444 		if (bp == buf) {
2445 			numcwdfail4++;
2446 			*error = ENOMEM;
2447 			return(NULL);
2448 		}
2449 		*--bp = '/';
2450 		slash_prefixed = 1;
2451 
2452 		/*
2453 		 * Go up a directory.  This isn't a mount point so we don't
2454 		 * have to check again.
2455 		 */
2456 		nch.ncp = nch.ncp->nc_parent;
2457 	}
2458 	if (nch.ncp == NULL) {
2459 		numcwdfail2++;
2460 		*error = ENOENT;
2461 		return(NULL);
2462 	}
2463 	if (!slash_prefixed) {
2464 		if (bp == buf) {
2465 			numcwdfail4++;
2466 			*error = ENOMEM;
2467 			return(NULL);
2468 		}
2469 		*--bp = '/';
2470 	}
2471 	numcwdfound++;
2472 	*error = 0;
2473 	return (bp);
2474 }
2475 
2476 /*
2477  * Thus begins the fullpath magic.
2478  */
2479 
2480 #undef STATNODE
2481 #define STATNODE(name)							\
2482 	static u_int name;						\
2483 	SYSCTL_UINT(_vfs_cache, OID_AUTO, name, CTLFLAG_RD, &name, 0, "")
2484 
2485 static int disablefullpath;
2486 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
2487     &disablefullpath, 0, "");
2488 
2489 STATNODE(numfullpathcalls);
2490 STATNODE(numfullpathfail1);
2491 STATNODE(numfullpathfail2);
2492 STATNODE(numfullpathfail3);
2493 STATNODE(numfullpathfail4);
2494 STATNODE(numfullpathfound);
2495 
2496 int
2497 cache_fullpath(struct proc *p, struct nchandle *nchp, char **retbuf, char **freebuf)
2498 {
2499 	char *bp, *buf;
2500 	int i, slash_prefixed;
2501 	struct nchandle fd_nrdir;
2502 	struct nchandle nch;
2503 
2504 	numfullpathcalls--;
2505 
2506 	*retbuf = NULL;
2507 	*freebuf = NULL;
2508 
2509 	buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
2510 	bp = buf + MAXPATHLEN - 1;
2511 	*bp = '\0';
2512 	if (p != NULL)
2513 		fd_nrdir = p->p_fd->fd_nrdir;
2514 	else
2515 		fd_nrdir = rootnch;
2516 	slash_prefixed = 0;
2517 	nch = *nchp;
2518 
2519 	while (nch.ncp &&
2520 	       (nch.ncp != fd_nrdir.ncp || nch.mount != fd_nrdir.mount)
2521 	) {
2522 		/*
2523 		 * While traversing upwards if we encounter the root
2524 		 * of the current mount we have to skip to the mount point.
2525 		 */
2526 		if (nch.ncp == nch.mount->mnt_ncmountpt.ncp) {
2527 			nch = nch.mount->mnt_ncmounton;
2528 			continue;
2529 		}
2530 
2531 		/*
2532 		 * Prepend the path segment
2533 		 */
2534 		for (i = nch.ncp->nc_nlen - 1; i >= 0; i--) {
2535 			if (bp == buf) {
2536 				numfullpathfail4++;
2537 				kfree(buf, M_TEMP);
2538 				return(ENOMEM);
2539 			}
2540 			*--bp = nch.ncp->nc_name[i];
2541 		}
2542 		if (bp == buf) {
2543 			numfullpathfail4++;
2544 			kfree(buf, M_TEMP);
2545 			return(ENOMEM);
2546 		}
2547 		*--bp = '/';
2548 		slash_prefixed = 1;
2549 
2550 		/*
2551 		 * Go up a directory.  This isn't a mount point so we don't
2552 		 * have to check again.
2553 		 */
2554 		nch.ncp = nch.ncp->nc_parent;
2555 	}
2556 	if (nch.ncp == NULL) {
2557 		numfullpathfail2++;
2558 		kfree(buf, M_TEMP);
2559 		return(ENOENT);
2560 	}
2561 
2562 	if (!slash_prefixed) {
2563 		if (bp == buf) {
2564 			numfullpathfail4++;
2565 			kfree(buf, M_TEMP);
2566 			return(ENOMEM);
2567 		}
2568 		*--bp = '/';
2569 	}
2570 	numfullpathfound++;
2571 	*retbuf = bp;
2572 	*freebuf = buf;
2573 
2574 	return(0);
2575 }
2576 
2577 int
2578 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf, char **freebuf)
2579 {
2580 	struct namecache *ncp;
2581 	struct nchandle nch;
2582 
2583 	numfullpathcalls++;
2584 	if (disablefullpath)
2585 		return (ENODEV);
2586 
2587 	if (p == NULL)
2588 		return (EINVAL);
2589 
2590 	/* vn is NULL, client wants us to use p->p_textvp */
2591 	if (vn == NULL) {
2592 		if ((vn = p->p_textvp) == NULL)
2593 			return (EINVAL);
2594 	}
2595 	TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
2596 		if (ncp->nc_nlen)
2597 			break;
2598 	}
2599 	if (ncp == NULL)
2600 		return (EINVAL);
2601 
2602 	numfullpathcalls--;
2603 	nch.ncp = ncp;;
2604 	nch.mount = vn->v_mount;
2605 	return(cache_fullpath(p, &nch, retbuf, freebuf));
2606 }
2607