xref: /dragonfly/sys/kern/vfs_cache.c (revision b1e9d17a)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993, 1995
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * Poul-Henning Kamp of the FreeBSD Project.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the University of
51  *	California, Berkeley and its contributors.
52  * 4. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  *
68  *	@(#)vfs_cache.c	8.5 (Berkeley) 3/22/95
69  * $FreeBSD: src/sys/kern/vfs_cache.c,v 1.42.2.6 2001/10/05 20:07:03 dillon Exp $
70  * $DragonFly: src/sys/kern/vfs_cache.c,v 1.57 2005/08/27 20:23:05 joerg Exp $
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mount.h>
78 #include <sys/vnode.h>
79 #include <sys/malloc.h>
80 #include <sys/sysproto.h>
81 #include <sys/proc.h>
82 #include <sys/namei.h>
83 #include <sys/nlookup.h>
84 #include <sys/filedesc.h>
85 #include <sys/fnv_hash.h>
86 #include <sys/globaldata.h>
87 #include <sys/kern_syscall.h>
88 #include <sys/dirent.h>
89 #include <ddb/ddb.h>
90 
91 /*
92  * Random lookups in the cache are accomplished with a hash table using
93  * a hash key of (nc_src_vp, name).
94  *
95  * Negative entries may exist and correspond to structures where nc_vp
96  * is NULL.  In a negative entry, NCF_WHITEOUT will be set if the entry
97  * corresponds to a whited-out directory entry (verses simply not finding the
98  * entry at all).
99  *
100  * Upon reaching the last segment of a path, if the reference is for DELETE,
101  * or NOCACHE is set (rewrite), and the name is located in the cache, it
102  * will be dropped.
103  */
104 
105 /*
106  * Structures associated with name cacheing.
107  */
108 #define NCHHASH(hash)	(&nchashtbl[(hash) & nchash])
109 #define MINNEG		1024
110 
111 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
112 
113 static LIST_HEAD(nchashhead, namecache) *nchashtbl;	/* Hash Table */
114 static struct namecache_list	ncneglist;		/* instead of vnode */
115 static int64_t last_fsmid;				/* node change id */
116 
117 /*
118  * ncvp_debug - debug cache_fromvp().  This is used by the NFS server
119  * to create the namecache infrastructure leading to a dangling vnode.
120  *
121  * 0	Only errors are reported
122  * 1	Successes are reported
123  * 2	Successes + the whole directory scan is reported
124  * 3	Force the directory scan code run as if the parent vnode did not
125  *	have a namecache record, even if it does have one.
126  */
127 static int	ncvp_debug;
128 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0, "");
129 
130 static u_long	nchash;			/* size of hash table */
131 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0, "");
132 
133 static u_long	ncnegfactor = 16;	/* ratio of negative entries */
134 SYSCTL_ULONG(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0, "");
135 
136 static int	nclockwarn;		/* warn on locked entries in ticks */
137 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0, "");
138 
139 static u_long	numneg;		/* number of cache entries allocated */
140 SYSCTL_ULONG(_debug, OID_AUTO, numneg, CTLFLAG_RD, &numneg, 0, "");
141 
142 static u_long	numcache;		/* number of cache entries allocated */
143 SYSCTL_ULONG(_debug, OID_AUTO, numcache, CTLFLAG_RD, &numcache, 0, "");
144 
145 static u_long	numunres;		/* number of unresolved entries */
146 SYSCTL_ULONG(_debug, OID_AUTO, numunres, CTLFLAG_RD, &numunres, 0, "");
147 
148 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode), "");
149 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache), "");
150 
151 static int cache_resolve_mp(struct namecache *ncp);
152 static void cache_rehash(struct namecache *ncp);
153 
154 /*
155  * The new name cache statistics
156  */
157 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
158 #define STATNODE(mode, name, var) \
159 	SYSCTL_ULONG(_vfs_cache, OID_AUTO, name, mode, var, 0, "");
160 STATNODE(CTLFLAG_RD, numneg, &numneg);
161 STATNODE(CTLFLAG_RD, numcache, &numcache);
162 static u_long numcalls; STATNODE(CTLFLAG_RD, numcalls, &numcalls);
163 static u_long dothits; STATNODE(CTLFLAG_RD, dothits, &dothits);
164 static u_long dotdothits; STATNODE(CTLFLAG_RD, dotdothits, &dotdothits);
165 static u_long numchecks; STATNODE(CTLFLAG_RD, numchecks, &numchecks);
166 static u_long nummiss; STATNODE(CTLFLAG_RD, nummiss, &nummiss);
167 static u_long nummisszap; STATNODE(CTLFLAG_RD, nummisszap, &nummisszap);
168 static u_long numposzaps; STATNODE(CTLFLAG_RD, numposzaps, &numposzaps);
169 static u_long numposhits; STATNODE(CTLFLAG_RD, numposhits, &numposhits);
170 static u_long numnegzaps; STATNODE(CTLFLAG_RD, numnegzaps, &numnegzaps);
171 static u_long numneghits; STATNODE(CTLFLAG_RD, numneghits, &numneghits);
172 
173 struct nchstats nchstats[SMP_MAXCPU];
174 /*
175  * Export VFS cache effectiveness statistics to user-land.
176  *
177  * The statistics are left for aggregation to user-land so
178  * neat things can be achieved, like observing per-CPU cache
179  * distribution.
180  */
181 static int
182 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
183 {
184 	struct globaldata *gd;
185 	int i, error;
186 
187 	error = 0;
188 	for (i = 0; i < ncpus; ++i) {
189 		gd = globaldata_find(i);
190 		if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
191 			sizeof(struct nchstats))))
192 			break;
193 	}
194 
195 	return (error);
196 }
197 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
198   0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
199 
200 static void cache_zap(struct namecache *ncp);
201 
202 /*
203  * cache_hold() and cache_drop() prevent the premature deletion of a
204  * namecache entry but do not prevent operations (such as zapping) on
205  * that namecache entry.
206  */
207 static __inline
208 struct namecache *
209 _cache_hold(struct namecache *ncp)
210 {
211 	++ncp->nc_refs;
212 	return(ncp);
213 }
214 
215 /*
216  * When dropping an entry, if only one ref remains and the entry has not
217  * been resolved, zap it.  Since the one reference is being dropped the
218  * entry had better not be locked.
219  */
220 static __inline
221 void
222 _cache_drop(struct namecache *ncp)
223 {
224 	KKASSERT(ncp->nc_refs > 0);
225 	if (ncp->nc_refs == 1 &&
226 	    (ncp->nc_flag & NCF_UNRESOLVED) &&
227 	    TAILQ_EMPTY(&ncp->nc_list)
228 	) {
229 		KKASSERT(ncp->nc_exlocks == 0);
230 		cache_lock(ncp);
231 		cache_zap(ncp);
232 	} else {
233 		--ncp->nc_refs;
234 	}
235 }
236 
237 /*
238  * Link a new namecache entry to its parent.  Be careful to avoid races
239  * if vhold() blocks in the future.
240  *
241  * If we are creating a child under an oldapi parent we must mark the
242  * child as being an oldapi entry as well.
243  */
244 static void
245 cache_link_parent(struct namecache *ncp, struct namecache *par)
246 {
247 	KKASSERT(ncp->nc_parent == NULL);
248 	ncp->nc_parent = par;
249 	if (TAILQ_EMPTY(&par->nc_list)) {
250 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
251 		/*
252 		 * Any vp associated with an ncp which has children must
253 		 * be held to prevent it from being recycled.
254 		 */
255 		if (par->nc_vp)
256 			vhold(par->nc_vp);
257 	} else {
258 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
259 	}
260 }
261 
262 /*
263  * Remove the parent association from a namecache structure.  If this is
264  * the last child of the parent the cache_drop(par) will attempt to
265  * recursively zap the parent.
266  */
267 static void
268 cache_unlink_parent(struct namecache *ncp)
269 {
270 	struct namecache *par;
271 
272 	if ((par = ncp->nc_parent) != NULL) {
273 		ncp->nc_parent = NULL;
274 		par = cache_hold(par);
275 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
276 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
277 			vdrop(par->nc_vp);
278 		cache_drop(par);
279 	}
280 }
281 
282 /*
283  * Allocate a new namecache structure.  Most of the code does not require
284  * zero-termination of the string but it makes vop_compat_ncreate() easier.
285  */
286 static struct namecache *
287 cache_alloc(int nlen)
288 {
289 	struct namecache *ncp;
290 
291 	ncp = malloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
292 	if (nlen)
293 		ncp->nc_name = malloc(nlen + 1, M_VFSCACHE, M_WAITOK);
294 	ncp->nc_nlen = nlen;
295 	ncp->nc_flag = NCF_UNRESOLVED;
296 	ncp->nc_error = ENOTCONN;	/* needs to be resolved */
297 	ncp->nc_refs = 1;
298 	ncp->nc_fsmid = ++last_fsmid;
299 	TAILQ_INIT(&ncp->nc_list);
300 	cache_lock(ncp);
301 	return(ncp);
302 }
303 
304 static void
305 cache_free(struct namecache *ncp)
306 {
307 	KKASSERT(ncp->nc_refs == 1 && ncp->nc_exlocks == 1);
308 	if (ncp->nc_name)
309 		free(ncp->nc_name, M_VFSCACHE);
310 	free(ncp, M_VFSCACHE);
311 }
312 
313 /*
314  * Ref and deref a namecache structure.
315  */
316 struct namecache *
317 cache_hold(struct namecache *ncp)
318 {
319 	return(_cache_hold(ncp));
320 }
321 
322 void
323 cache_drop(struct namecache *ncp)
324 {
325 	_cache_drop(ncp);
326 }
327 
328 /*
329  * Namespace locking.  The caller must already hold a reference to the
330  * namecache structure in order to lock/unlock it.  This function prevents
331  * the namespace from being created or destroyed by accessors other then
332  * the lock holder.
333  *
334  * Note that holding a locked namecache structure prevents other threads
335  * from making namespace changes (e.g. deleting or creating), prevents
336  * vnode association state changes by other threads, and prevents the
337  * namecache entry from being resolved or unresolved by other threads.
338  *
339  * The lock owner has full authority to associate/disassociate vnodes
340  * and resolve/unresolve the locked ncp.
341  *
342  * In particular, if a vnode is associated with a locked cache entry
343  * that vnode will *NOT* be recycled.  We accomplish this by vhold()ing the
344  * vnode.  XXX we should find a more efficient way to prevent the vnode
345  * from being recycled, but remember that any given vnode may have multiple
346  * namecache associations (think hardlinks).
347  */
348 void
349 cache_lock(struct namecache *ncp)
350 {
351 	thread_t td;
352 	int didwarn;
353 
354 	KKASSERT(ncp->nc_refs != 0);
355 	didwarn = 0;
356 	td = curthread;
357 
358 	for (;;) {
359 		if (ncp->nc_exlocks == 0) {
360 			ncp->nc_exlocks = 1;
361 			ncp->nc_locktd = td;
362 			/*
363 			 * The vp associated with a locked ncp must be held
364 			 * to prevent it from being recycled (which would
365 			 * cause the ncp to become unresolved).
366 			 *
367 			 * XXX loop on race for later MPSAFE work.
368 			 */
369 			if (ncp->nc_vp)
370 				vhold(ncp->nc_vp);
371 			break;
372 		}
373 		if (ncp->nc_locktd == td) {
374 			++ncp->nc_exlocks;
375 			break;
376 		}
377 		ncp->nc_flag |= NCF_LOCKREQ;
378 		if (tsleep(ncp, 0, "clock", nclockwarn) == EWOULDBLOCK) {
379 			if (didwarn)
380 				continue;
381 			didwarn = 1;
382 			printf("[diagnostic] cache_lock: blocked on %p", ncp);
383 			if ((ncp->nc_flag & NCF_MOUNTPT) && ncp->nc_mount)
384 			    printf(" [MOUNTFROM %s]\n", ncp->nc_mount->mnt_stat.f_mntfromname);
385 			else
386 			    printf(" \"%*.*s\"\n",
387 				ncp->nc_nlen, ncp->nc_nlen,
388 				ncp->nc_name);
389 		}
390 	}
391 
392 	if (didwarn == 1) {
393 		printf("[diagnostic] cache_lock: unblocked %*.*s\n",
394 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
395 	}
396 }
397 
398 int
399 cache_lock_nonblock(struct namecache *ncp)
400 {
401 	thread_t td;
402 
403 	KKASSERT(ncp->nc_refs != 0);
404 	td = curthread;
405 	if (ncp->nc_exlocks == 0) {
406 		ncp->nc_exlocks = 1;
407 		ncp->nc_locktd = td;
408 		/*
409 		 * The vp associated with a locked ncp must be held
410 		 * to prevent it from being recycled (which would
411 		 * cause the ncp to become unresolved).
412 		 *
413 		 * XXX loop on race for later MPSAFE work.
414 		 */
415 		if (ncp->nc_vp)
416 			vhold(ncp->nc_vp);
417 		return(0);
418 	} else {
419 		return(EWOULDBLOCK);
420 	}
421 }
422 
423 void
424 cache_unlock(struct namecache *ncp)
425 {
426 	thread_t td = curthread;
427 
428 	KKASSERT(ncp->nc_refs > 0);
429 	KKASSERT(ncp->nc_exlocks > 0);
430 	KKASSERT(ncp->nc_locktd == td);
431 	if (--ncp->nc_exlocks == 0) {
432 		if (ncp->nc_vp)
433 			vdrop(ncp->nc_vp);
434 		ncp->nc_locktd = NULL;
435 		if (ncp->nc_flag & NCF_LOCKREQ) {
436 			ncp->nc_flag &= ~NCF_LOCKREQ;
437 			wakeup(ncp);
438 		}
439 	}
440 }
441 
442 /*
443  * ref-and-lock, unlock-and-deref functions.
444  */
445 struct namecache *
446 cache_get(struct namecache *ncp)
447 {
448 	_cache_hold(ncp);
449 	cache_lock(ncp);
450 	return(ncp);
451 }
452 
453 int
454 cache_get_nonblock(struct namecache *ncp)
455 {
456 	/* XXX MP */
457 	if (ncp->nc_exlocks == 0 || ncp->nc_locktd == curthread) {
458 		_cache_hold(ncp);
459 		cache_lock(ncp);
460 		return(0);
461 	}
462 	return(EWOULDBLOCK);
463 }
464 
465 void
466 cache_put(struct namecache *ncp)
467 {
468 	cache_unlock(ncp);
469 	_cache_drop(ncp);
470 }
471 
472 /*
473  * Resolve an unresolved ncp by associating a vnode with it.  If the
474  * vnode is NULL, a negative cache entry is created.
475  *
476  * The ncp should be locked on entry and will remain locked on return.
477  */
478 void
479 cache_setvp(struct namecache *ncp, struct vnode *vp)
480 {
481 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
482 	ncp->nc_vp = vp;
483 	if (vp != NULL) {
484 		/*
485 		 * Any vp associated with an ncp which has children must
486 		 * be held.  Any vp associated with a locked ncp must be held.
487 		 */
488 		if (!TAILQ_EMPTY(&ncp->nc_list))
489 			vhold(vp);
490 		TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
491 		if (ncp->nc_exlocks)
492 			vhold(vp);
493 
494 		/*
495 		 * Set auxillary flags
496 		 */
497 		switch(vp->v_type) {
498 		case VDIR:
499 			ncp->nc_flag |= NCF_ISDIR;
500 			break;
501 		case VLNK:
502 			ncp->nc_flag |= NCF_ISSYMLINK;
503 			/* XXX cache the contents of the symlink */
504 			break;
505 		default:
506 			break;
507 		}
508 		++numcache;
509 		ncp->nc_error = 0;
510 	} else {
511 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
512 		++numneg;
513 		ncp->nc_error = ENOENT;
514 	}
515 	ncp->nc_flag &= ~NCF_UNRESOLVED;
516 }
517 
518 void
519 cache_settimeout(struct namecache *ncp, int nticks)
520 {
521 	if ((ncp->nc_timeout = ticks + nticks) == 0)
522 		ncp->nc_timeout = 1;
523 }
524 
525 /*
526  * Disassociate the vnode or negative-cache association and mark a
527  * namecache entry as unresolved again.  Note that the ncp is still
528  * left in the hash table and still linked to its parent.
529  *
530  * The ncp should be locked and refd on entry and will remain locked and refd
531  * on return.
532  *
533  * This routine is normally never called on a directory containing children.
534  * However, NFS often does just that in its rename() code as a cop-out to
535  * avoid complex namespace operations.  This disconnects a directory vnode
536  * from its namecache and can cause the OLDAPI and NEWAPI to get out of
537  * sync.
538  */
539 void
540 cache_setunresolved(struct namecache *ncp)
541 {
542 	struct vnode *vp;
543 
544 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
545 		ncp->nc_flag |= NCF_UNRESOLVED;
546 		ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK);
547 		ncp->nc_timeout = 0;
548 		ncp->nc_error = ENOTCONN;
549 		++numunres;
550 		if ((vp = ncp->nc_vp) != NULL) {
551 			--numcache;
552 			ncp->nc_vp = NULL;
553 			TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
554 
555 			/*
556 			 * Any vp associated with an ncp with children is
557 			 * held by that ncp.  Any vp associated with a locked
558 			 * ncp is held by that ncp.  These conditions must be
559 			 * undone when the vp is cleared out from the ncp.
560 			 */
561 			if (!TAILQ_EMPTY(&ncp->nc_list))
562 				vdrop(vp);
563 			if (ncp->nc_exlocks)
564 				vdrop(vp);
565 		} else {
566 			TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
567 			--numneg;
568 		}
569 	}
570 }
571 
572 /*
573  * Invalidate portions of the namecache topology given a starting entry.
574  * The passed ncp is set to an unresolved state and:
575  *
576  * The passed ncp must be locked.
577  *
578  * CINV_DESTROY		- Set a flag in the passed ncp entry indicating
579  *			  that the physical underlying nodes have been
580  *			  destroyed... as in deleted.  For example, when
581  *			  a directory is removed.  This will cause record
582  *			  lookups on the name to no longer be able to find
583  *			  the record and tells the resolver to return failure
584  *			  rather then trying to resolve through the parent.
585  *
586  *			  The topology itself, including ncp->nc_name,
587  *			  remains intact.
588  *
589  *			  This only applies to the passed ncp, if CINV_CHILDREN
590  *			  is specified the children are not flagged.
591  *
592  * CINV_CHILDREN	- Set all children (recursively) to an unresolved
593  *			  state as well.
594  *
595  *			  Note that this will also have the side effect of
596  *			  cleaning out any unreferenced nodes in the topology
597  *			  from the leaves up as the recursion backs out.
598  *
599  * Note that the topology for any referenced nodes remains intact.
600  *
601  * It is possible for cache_inval() to race a cache_resolve(), meaning that
602  * the namecache entry may not actually be invalidated on return if it was
603  * revalidated while recursing down into its children.  This code guarentees
604  * that the node(s) will go through an invalidation cycle, but does not
605  * guarentee that they will remain in an invalidated state.
606  *
607  * Returns non-zero if a revalidation was detected during the invalidation
608  * recursion, zero otherwise.  Note that since only the original ncp is
609  * locked the revalidation ultimately can only indicate that the original ncp
610  * *MIGHT* no have been reresolved.
611  */
612 int
613 cache_inval(struct namecache *ncp, int flags)
614 {
615 	struct namecache *kid;
616 	struct namecache *nextkid;
617 	int rcnt = 0;
618 
619 	KKASSERT(ncp->nc_exlocks);
620 
621 	cache_setunresolved(ncp);
622 	if (flags & CINV_DESTROY)
623 		ncp->nc_flag |= NCF_DESTROYED;
624 
625 	if ((flags & CINV_CHILDREN) &&
626 	    (kid = TAILQ_FIRST(&ncp->nc_list)) != NULL
627 	) {
628 		cache_hold(kid);
629 		cache_unlock(ncp);
630 		while (kid) {
631 			if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
632 				cache_hold(nextkid);
633 			if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
634 			    TAILQ_FIRST(&kid->nc_list)
635 			) {
636 				cache_lock(kid);
637 				rcnt += cache_inval(kid, flags & ~CINV_DESTROY);
638 				cache_unlock(kid);
639 			}
640 			cache_drop(kid);
641 			kid = nextkid;
642 		}
643 		cache_lock(ncp);
644 	}
645 
646 	/*
647 	 * Someone could have gotten in there while ncp was unlocked,
648 	 * retry if so.
649 	 */
650 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
651 		++rcnt;
652 	return (rcnt);
653 }
654 
655 /*
656  * Invalidate a vnode's namecache associations.  To avoid races against
657  * the resolver we do not invalidate a node which we previously invalidated
658  * but which was then re-resolved while we were in the invalidation loop.
659  *
660  * Returns non-zero if any namecache entries remain after the invalidation
661  * loop completed.
662  *
663  * NOTE: unlike the namecache topology which guarentees that ncp's will not
664  * be ripped out of the topology while held, the vnode's v_namecache list
665  * has no such restriction.  NCP's can be ripped out of the list at virtually
666  * any time if not locked, even if held.
667  */
668 int
669 cache_inval_vp(struct vnode *vp, int flags)
670 {
671 	struct namecache *ncp;
672 	struct namecache *next;
673 
674 restart:
675 	ncp = TAILQ_FIRST(&vp->v_namecache);
676 	if (ncp)
677 		cache_hold(ncp);
678 	while (ncp) {
679 		/* loop entered with ncp held */
680 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
681 			cache_hold(next);
682 		cache_lock(ncp);
683 		if (ncp->nc_vp != vp) {
684 			printf("Warning: cache_inval_vp: race-A detected on "
685 				"%s\n", ncp->nc_name);
686 			cache_put(ncp);
687 			if (next)
688 				cache_drop(next);
689 			goto restart;
690 		}
691 		cache_inval(ncp, flags);
692 		cache_put(ncp);		/* also releases reference */
693 		ncp = next;
694 		if (ncp && ncp->nc_vp != vp) {
695 			printf("Warning: cache_inval_vp: race-B detected on "
696 				"%s\n", ncp->nc_name);
697 			cache_drop(ncp);
698 			goto restart;
699 		}
700 	}
701 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
702 }
703 
704 /*
705  * The source ncp has been renamed to the target ncp.  Both fncp and tncp
706  * must be locked.  Both will be set to unresolved, any children of tncp
707  * will be disconnected (the prior contents of the target is assumed to be
708  * destroyed by the rename operation, e.g. renaming over an empty directory),
709  * and all children of fncp will be moved to tncp.
710  *
711  * XXX the disconnection could pose a problem, check code paths to make
712  * sure any code that blocks can handle the parent being changed out from
713  * under it.  Maybe we should lock the children (watch out for deadlocks) ?
714  *
715  * After we return the caller has the option of calling cache_setvp() if
716  * the vnode of the new target ncp is known.
717  *
718  * Any process CD'd into any of the children will no longer be able to ".."
719  * back out.  An rm -rf can cause this situation to occur.
720  */
721 void
722 cache_rename(struct namecache *fncp, struct namecache *tncp)
723 {
724 	struct namecache *scan;
725 	int didwarn = 0;
726 
727 	cache_setunresolved(fncp);
728 	cache_setunresolved(tncp);
729 	while (cache_inval(tncp, CINV_CHILDREN) != 0) {
730 		if (didwarn++ % 10 == 0) {
731 			printf("Warning: cache_rename: race during "
732 				"rename %s->%s\n",
733 				fncp->nc_name, tncp->nc_name);
734 		}
735 		tsleep(tncp, 0, "mvrace", hz / 10);
736 		cache_setunresolved(tncp);
737 	}
738 	while ((scan = TAILQ_FIRST(&fncp->nc_list)) != NULL) {
739 		cache_hold(scan);
740 		cache_unlink_parent(scan);
741 		cache_link_parent(scan, tncp);
742 		if (scan->nc_flag & NCF_HASHED)
743 			cache_rehash(scan);
744 		cache_drop(scan);
745 	}
746 }
747 
748 /*
749  * vget the vnode associated with the namecache entry.  Resolve the namecache
750  * entry if necessary and deal with namecache/vp races.  The passed ncp must
751  * be referenced and may be locked.  The ncp's ref/locking state is not
752  * effected by this call.
753  *
754  * lk_type may be LK_SHARED, LK_EXCLUSIVE.  A ref'd, possibly locked
755  * (depending on the passed lk_type) will be returned in *vpp with an error
756  * of 0, or NULL will be returned in *vpp with a non-0 error code.  The
757  * most typical error is ENOENT, meaning that the ncp represents a negative
758  * cache hit and there is no vnode to retrieve, but other errors can occur
759  * too.
760  *
761  * The main race we have to deal with are namecache zaps.  The ncp itself
762  * will not disappear since it is referenced, and it turns out that the
763  * validity of the vp pointer can be checked simply by rechecking the
764  * contents of ncp->nc_vp.
765  */
766 int
767 cache_vget(struct namecache *ncp, struct ucred *cred,
768 	   int lk_type, struct vnode **vpp)
769 {
770 	struct vnode *vp;
771 	int error;
772 
773 again:
774 	vp = NULL;
775 	if (ncp->nc_flag & NCF_UNRESOLVED) {
776 		cache_lock(ncp);
777 		error = cache_resolve(ncp, cred);
778 		cache_unlock(ncp);
779 	} else {
780 		error = 0;
781 	}
782 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
783 		error = vget(vp, lk_type, curthread);
784 		if (error) {
785 			if (vp != ncp->nc_vp)	/* handle cache_zap race */
786 				goto again;
787 			vp = NULL;
788 		} else if (vp != ncp->nc_vp) {	/* handle cache_zap race */
789 			vput(vp);
790 			goto again;
791 		}
792 	}
793 	if (error == 0 && vp == NULL)
794 		error = ENOENT;
795 	*vpp = vp;
796 	return(error);
797 }
798 
799 int
800 cache_vref(struct namecache *ncp, struct ucred *cred, struct vnode **vpp)
801 {
802 	struct vnode *vp;
803 	int error;
804 
805 again:
806 	vp = NULL;
807 	if (ncp->nc_flag & NCF_UNRESOLVED) {
808 		cache_lock(ncp);
809 		error = cache_resolve(ncp, cred);
810 		cache_unlock(ncp);
811 	} else {
812 		error = 0;
813 	}
814 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
815 		vref(vp);
816 		if (vp != ncp->nc_vp) {		/* handle cache_zap race */
817 			vrele(vp);
818 			goto again;
819 		}
820 	}
821 	if (error == 0 && vp == NULL)
822 		error = ENOENT;
823 	*vpp = vp;
824 	return(error);
825 }
826 
827 void
828 cache_update_fsmid(struct namecache *ncp)
829 {
830 	struct vnode *vp;
831 	struct namecache *scan;
832 	int64_t fsmid = ++last_fsmid;
833 
834 	if ((vp = ncp->nc_vp) != NULL) {
835 		TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
836 			for (scan = ncp; scan; scan = scan->nc_parent)
837 				scan->nc_fsmid = fsmid;
838 		}
839 	} else {
840 		while (ncp) {
841 			ncp->nc_fsmid = fsmid;
842 			ncp = ncp->nc_parent;
843 		}
844 	}
845 }
846 
847 void
848 cache_update_fsmid_vp(struct vnode *vp)
849 {
850 	struct namecache *ncp;
851 	struct namecache *scan;
852 	int64_t fsmid = ++last_fsmid;
853 
854 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
855 		for (scan = ncp; scan; scan = scan->nc_parent)
856 			scan->nc_fsmid = fsmid;
857 	}
858 }
859 
860 /*
861  * Convert a directory vnode to a namecache record without any other
862  * knowledge of the topology.  This ONLY works with directory vnodes and
863  * is ONLY used by the NFS server.  dvp must be refd but unlocked, and the
864  * returned ncp (if not NULL) will be held and unlocked.
865  *
866  * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
867  * If 'makeit' is 1 we attempt to track-down and create the namecache topology
868  * for dvp.  This will fail only if the directory has been deleted out from
869  * under the caller.
870  *
871  * Callers must always check for a NULL return no matter the value of 'makeit'.
872  */
873 
874 static int cache_inefficient_scan(struct namecache *ncp, struct ucred *cred,
875 				  struct vnode *dvp);
876 
877 struct namecache *
878 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit)
879 {
880 	struct namecache *ncp;
881 	struct vnode *pvp;
882 	int error;
883 
884 	/*
885 	 * Temporary debugging code to force the directory scanning code
886 	 * to be exercised.
887 	 */
888 	ncp = NULL;
889 	if (ncvp_debug >= 3 && makeit && TAILQ_FIRST(&dvp->v_namecache)) {
890 		ncp = TAILQ_FIRST(&dvp->v_namecache);
891 		printf("cache_fromdvp: forcing %s\n", ncp->nc_name);
892 		goto force;
893 	}
894 
895 	/*
896 	 * Loop until resolution, inside code will break out on error.
897 	 */
898 	while ((ncp = TAILQ_FIRST(&dvp->v_namecache)) == NULL && makeit) {
899 force:
900 		/*
901 		 * If dvp is the root of its filesystem it should already
902 		 * have a namecache pointer associated with it as a side
903 		 * effect of the mount, but it may have been disassociated.
904 		 */
905 		if (dvp->v_flag & VROOT) {
906 			ncp = cache_get(dvp->v_mount->mnt_ncp);
907 			error = cache_resolve_mp(ncp);
908 			cache_put(ncp);
909 			if (ncvp_debug) {
910 				printf("cache_fromdvp: resolve root of mount %p error %d",
911 					dvp->v_mount, error);
912 			}
913 			if (error) {
914 				if (ncvp_debug)
915 					printf(" failed\n");
916 				ncp = NULL;
917 				break;
918 			}
919 			if (ncvp_debug)
920 				printf(" succeeded\n");
921 			continue;
922 		}
923 
924 		/*
925 		 * Get the parent directory and resolve its ncp.
926 		 */
927 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred);
928 		if (error) {
929 			printf("lookupdotdot failed %d %p\n", error, pvp);
930 			break;
931 		}
932 		VOP_UNLOCK(pvp, 0, curthread);
933 
934 		/*
935 		 * XXX this recursion could run the kernel out of stack,
936 		 * change to a less efficient algorithm if we get too deep
937 		 * (use 'makeit' for a depth counter?)
938 		 */
939 		ncp = cache_fromdvp(pvp, cred, makeit);
940 		vrele(pvp);
941 		if (ncp == NULL)
942 			break;
943 
944 		/*
945 		 * Do an inefficient scan of pvp (embodied by ncp) to look
946 		 * for dvp.  This will create a namecache record for dvp on
947 		 * success.  We loop up to recheck on success.
948 		 *
949 		 * ncp and dvp are both held but not locked.
950 		 */
951 		error = cache_inefficient_scan(ncp, cred, dvp);
952 		cache_drop(ncp);
953 		if (error) {
954 			printf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
955 				pvp, ncp->nc_name, dvp);
956 			ncp = NULL;
957 			break;
958 		}
959 		if (ncvp_debug) {
960 			printf("cache_fromdvp: scan %p (%s) succeeded\n",
961 				pvp, ncp->nc_name);
962 		}
963 	}
964 	if (ncp)
965 		cache_hold(ncp);
966 	return (ncp);
967 }
968 
969 /*
970  * Do an inefficient scan of the directory represented by ncp looking for
971  * the directory vnode dvp.  ncp must be held but not locked on entry and
972  * will be held on return.  dvp must be refd but not locked on entry and
973  * will remain refd on return.
974  *
975  * Why do this at all?  Well, due to its stateless nature the NFS server
976  * converts file handles directly to vnodes without necessarily going through
977  * the namecache ops that would otherwise create the namecache topology
978  * leading to the vnode.  We could either (1) Change the namecache algorithms
979  * to allow disconnect namecache records that are re-merged opportunistically,
980  * or (2) Make the NFS server backtrack and scan to recover a connected
981  * namecache topology in order to then be able to issue new API lookups.
982  *
983  * It turns out that (1) is a huge mess.  It takes a nice clean set of
984  * namecache algorithms and introduces a lot of complication in every subsystem
985  * that calls into the namecache to deal with the re-merge case, especially
986  * since we are using the namecache to placehold negative lookups and the
987  * vnode might not be immediately assigned. (2) is certainly far less
988  * efficient then (1), but since we are only talking about directories here
989  * (which are likely to remain cached), the case does not actually run all
990  * that often and has the supreme advantage of not polluting the namecache
991  * algorithms.
992  */
993 static int
994 cache_inefficient_scan(struct namecache *ncp, struct ucred *cred,
995 		       struct vnode *dvp)
996 {
997 	struct nlcomponent nlc;
998 	struct namecache *rncp;
999 	struct dirent *den;
1000 	struct vnode *pvp;
1001 	struct vattr vat;
1002 	struct iovec iov;
1003 	struct uio uio;
1004 	int blksize;
1005 	int eofflag;
1006 	int bytes;
1007 	char *rbuf;
1008 	int error;
1009 
1010 	vat.va_blocksize = 0;
1011 	if ((error = VOP_GETATTR(dvp, &vat, curthread)) != 0)
1012 		return (error);
1013 	if ((error = cache_vget(ncp, cred, LK_SHARED, &pvp)) != 0)
1014 		return (error);
1015 	if (ncvp_debug)
1016 		printf("inefficient_scan: directory iosize %ld vattr fileid = %ld\n", vat.va_blocksize, (long)vat.va_fileid);
1017 	if ((blksize = vat.va_blocksize) == 0)
1018 		blksize = DEV_BSIZE;
1019 	rbuf = malloc(blksize, M_TEMP, M_WAITOK);
1020 	rncp = NULL;
1021 
1022 	eofflag = 0;
1023 	uio.uio_offset = 0;
1024 again:
1025 	iov.iov_base = rbuf;
1026 	iov.iov_len = blksize;
1027 	uio.uio_iov = &iov;
1028 	uio.uio_iovcnt = 1;
1029 	uio.uio_resid = blksize;
1030 	uio.uio_segflg = UIO_SYSSPACE;
1031 	uio.uio_rw = UIO_READ;
1032 	uio.uio_td = curthread;
1033 
1034 	if (ncvp_debug >= 2)
1035 		printf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
1036 	error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
1037 	if (error == 0) {
1038 		den = (struct dirent *)rbuf;
1039 		bytes = blksize - uio.uio_resid;
1040 
1041 		while (bytes > 0) {
1042 			if (ncvp_debug >= 2) {
1043 				printf("cache_inefficient_scan: %*.*s\n",
1044 					den->d_namlen, den->d_namlen,
1045 					den->d_name);
1046 			}
1047 			if (den->d_type != DT_WHT &&
1048 			    den->d_ino == vat.va_fileid) {
1049 				if (ncvp_debug) {
1050 					printf("cache_inefficient_scan: "
1051 					       "MATCHED inode %ld path %s/%*.*s\n",
1052 					       vat.va_fileid, ncp->nc_name,
1053 					       den->d_namlen, den->d_namlen,
1054 					       den->d_name);
1055 				}
1056 				nlc.nlc_nameptr = den->d_name;
1057 				nlc.nlc_namelen = den->d_namlen;
1058 				VOP_UNLOCK(pvp, 0, curthread);
1059 				rncp = cache_nlookup(ncp, &nlc);
1060 				KKASSERT(rncp != NULL);
1061 				break;
1062 			}
1063 			bytes -= _DIRENT_DIRSIZ(den);
1064 			den = _DIRENT_NEXT(den);
1065 		}
1066 		if (rncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
1067 			goto again;
1068 	}
1069 	if (rncp) {
1070 		vrele(pvp);
1071 		if (rncp->nc_flag & NCF_UNRESOLVED) {
1072 			cache_setvp(rncp, dvp);
1073 			if (ncvp_debug >= 2) {
1074 				printf("cache_inefficient_scan: setvp %s/%s = %p\n",
1075 					ncp->nc_name, rncp->nc_name, dvp);
1076 			}
1077 		} else {
1078 			if (ncvp_debug >= 2) {
1079 				printf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
1080 					ncp->nc_name, rncp->nc_name, dvp,
1081 					rncp->nc_vp);
1082 			}
1083 		}
1084 		if (rncp->nc_vp == NULL)
1085 			error = rncp->nc_error;
1086 		cache_put(rncp);
1087 	} else {
1088 		printf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
1089 			dvp, ncp->nc_name);
1090 		vput(pvp);
1091 		error = ENOENT;
1092 	}
1093 	free(rbuf, M_TEMP);
1094 	return (error);
1095 }
1096 
1097 /*
1098  * Zap a namecache entry.  The ncp is unconditionally set to an unresolved
1099  * state, which disassociates it from its vnode or ncneglist.
1100  *
1101  * Then, if there are no additional references to the ncp and no children,
1102  * the ncp is removed from the topology and destroyed.  This function will
1103  * also run through the nc_parent chain and destroy parent ncps if possible.
1104  * As a side benefit, it turns out the only conditions that allow running
1105  * up the chain are also the conditions to ensure no deadlock will occur.
1106  *
1107  * References and/or children may exist if the ncp is in the middle of the
1108  * topology, preventing the ncp from being destroyed.
1109  *
1110  * This function must be called with the ncp held and locked and will unlock
1111  * and drop it during zapping.
1112  */
1113 static void
1114 cache_zap(struct namecache *ncp)
1115 {
1116 	struct namecache *par;
1117 
1118 	/*
1119 	 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
1120 	 */
1121 	cache_setunresolved(ncp);
1122 
1123 	/*
1124 	 * Try to scrap the entry and possibly tail-recurse on its parent.
1125 	 * We only scrap unref'd (other then our ref) unresolved entries,
1126 	 * we do not scrap 'live' entries.
1127 	 */
1128 	while (ncp->nc_flag & NCF_UNRESOLVED) {
1129 		/*
1130 		 * Someone other then us has a ref, stop.
1131 		 */
1132 		if (ncp->nc_refs > 1)
1133 			goto done;
1134 
1135 		/*
1136 		 * We have children, stop.
1137 		 */
1138 		if (!TAILQ_EMPTY(&ncp->nc_list))
1139 			goto done;
1140 
1141 		/*
1142 		 * Remove ncp from the topology: hash table and parent linkage.
1143 		 */
1144 		if (ncp->nc_flag & NCF_HASHED) {
1145 			ncp->nc_flag &= ~NCF_HASHED;
1146 			LIST_REMOVE(ncp, nc_hash);
1147 		}
1148 		if ((par = ncp->nc_parent) != NULL) {
1149 			par = cache_hold(par);
1150 			TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
1151 			ncp->nc_parent = NULL;
1152 			if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
1153 				vdrop(par->nc_vp);
1154 		}
1155 
1156 		/*
1157 		 * ncp should not have picked up any refs.  Physically
1158 		 * destroy the ncp.
1159 		 */
1160 		KKASSERT(ncp->nc_refs == 1);
1161 		--numunres;
1162 		/* cache_unlock(ncp) not required */
1163 		ncp->nc_refs = -1;	/* safety */
1164 		if (ncp->nc_name)
1165 			free(ncp->nc_name, M_VFSCACHE);
1166 		free(ncp, M_VFSCACHE);
1167 
1168 		/*
1169 		 * Loop on the parent (it may be NULL).  Only bother looping
1170 		 * if the parent has a single ref (ours), which also means
1171 		 * we can lock it trivially.
1172 		 */
1173 		ncp = par;
1174 		if (ncp == NULL)
1175 			return;
1176 		if (ncp->nc_refs != 1) {
1177 			cache_drop(ncp);
1178 			return;
1179 		}
1180 		KKASSERT(par->nc_exlocks == 0);
1181 		cache_lock(ncp);
1182 	}
1183 done:
1184 	cache_unlock(ncp);
1185 	--ncp->nc_refs;
1186 }
1187 
1188 static enum { CHI_LOW, CHI_HIGH } cache_hysteresis_state = CHI_LOW;
1189 
1190 static __inline
1191 void
1192 cache_hysteresis(void)
1193 {
1194 	/*
1195 	 * Don't cache too many negative hits.  We use hysteresis to reduce
1196 	 * the impact on the critical path.
1197 	 */
1198 	switch(cache_hysteresis_state) {
1199 	case CHI_LOW:
1200 		if (numneg > MINNEG && numneg * ncnegfactor > numcache) {
1201 			cache_cleanneg(10);
1202 			cache_hysteresis_state = CHI_HIGH;
1203 		}
1204 		break;
1205 	case CHI_HIGH:
1206 		if (numneg > MINNEG * 9 / 10 &&
1207 		    numneg * ncnegfactor * 9 / 10 > numcache
1208 		) {
1209 			cache_cleanneg(10);
1210 		} else {
1211 			cache_hysteresis_state = CHI_LOW;
1212 		}
1213 		break;
1214 	}
1215 }
1216 
1217 /*
1218  * NEW NAMECACHE LOOKUP API
1219  *
1220  * Lookup an entry in the cache.  A locked, referenced, non-NULL
1221  * entry is *always* returned, even if the supplied component is illegal.
1222  * The resulting namecache entry should be returned to the system with
1223  * cache_put() or cache_unlock() + cache_drop().
1224  *
1225  * namecache locks are recursive but care must be taken to avoid lock order
1226  * reversals.
1227  *
1228  * Nobody else will be able to manipulate the associated namespace (e.g.
1229  * create, delete, rename, rename-target) until the caller unlocks the
1230  * entry.
1231  *
1232  * The returned entry will be in one of three states:  positive hit (non-null
1233  * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
1234  * Unresolved entries must be resolved through the filesystem to associate the
1235  * vnode and/or determine whether a positive or negative hit has occured.
1236  *
1237  * It is not necessary to lock a directory in order to lock namespace under
1238  * that directory.  In fact, it is explicitly not allowed to do that.  A
1239  * directory is typically only locked when being created, renamed, or
1240  * destroyed.
1241  *
1242  * The directory (par) may be unresolved, in which case any returned child
1243  * will likely also be marked unresolved.  Likely but not guarenteed.  Since
1244  * the filesystem lookup requires a resolved directory vnode the caller is
1245  * responsible for resolving the namecache chain top-down.  This API
1246  * specifically allows whole chains to be created in an unresolved state.
1247  */
1248 struct namecache *
1249 cache_nlookup(struct namecache *par, struct nlcomponent *nlc)
1250 {
1251 	struct namecache *ncp;
1252 	struct namecache *new_ncp;
1253 	struct nchashhead *nchpp;
1254 	u_int32_t hash;
1255 	globaldata_t gd;
1256 
1257 	numcalls++;
1258 	gd = mycpu;
1259 
1260 	/*
1261 	 * Try to locate an existing entry
1262 	 */
1263 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
1264 	hash = fnv_32_buf(&par, sizeof(par), hash);
1265 	new_ncp = NULL;
1266 restart:
1267 	LIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1268 		numchecks++;
1269 
1270 		/*
1271 		 * Zap entries that have timed out.
1272 		 */
1273 		if (ncp->nc_timeout &&
1274 		    (int)(ncp->nc_timeout - ticks) < 0 &&
1275 		    (ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
1276 		    ncp->nc_exlocks == 0
1277 		) {
1278 			cache_zap(cache_get(ncp));
1279 			goto restart;
1280 		}
1281 
1282 		/*
1283 		 * Break out if we find a matching entry.  Note that
1284 		 * UNRESOLVED entries may match, but DESTROYED entries
1285 		 * do not.
1286 		 */
1287 		if (ncp->nc_parent == par &&
1288 		    ncp->nc_nlen == nlc->nlc_namelen &&
1289 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
1290 		    (ncp->nc_flag & NCF_DESTROYED) == 0
1291 		) {
1292 			if (cache_get_nonblock(ncp) == 0) {
1293 				if (new_ncp)
1294 					cache_free(new_ncp);
1295 				goto found;
1296 			}
1297 			cache_get(ncp);
1298 			cache_put(ncp);
1299 			goto restart;
1300 		}
1301 	}
1302 
1303 	/*
1304 	 * We failed to locate an entry, create a new entry and add it to
1305 	 * the cache.  We have to relookup after possibly blocking in
1306 	 * malloc.
1307 	 */
1308 	if (new_ncp == NULL) {
1309 		new_ncp = cache_alloc(nlc->nlc_namelen);
1310 		goto restart;
1311 	}
1312 
1313 	ncp = new_ncp;
1314 
1315 	/*
1316 	 * Initialize as a new UNRESOLVED entry, lock (non-blocking),
1317 	 * and link to the parent.  The mount point is usually inherited
1318 	 * from the parent unless this is a special case such as a mount
1319 	 * point where nlc_namelen is 0.  The caller is responsible for
1320 	 * setting nc_mount in that case.  If nlc_namelen is 0 nc_name will
1321 	 * be NULL.
1322 	 */
1323 	if (nlc->nlc_namelen) {
1324 		bcopy(nlc->nlc_nameptr, ncp->nc_name, nlc->nlc_namelen);
1325 		ncp->nc_name[nlc->nlc_namelen] = 0;
1326 		ncp->nc_mount = par->nc_mount;
1327 	}
1328 	nchpp = NCHHASH(hash);
1329 	LIST_INSERT_HEAD(nchpp, ncp, nc_hash);
1330 	ncp->nc_flag |= NCF_HASHED;
1331 	cache_link_parent(ncp, par);
1332 found:
1333 	/*
1334 	 * stats and namecache size management
1335 	 */
1336 	if (ncp->nc_flag & NCF_UNRESOLVED)
1337 		++gd->gd_nchstats->ncs_miss;
1338 	else if (ncp->nc_vp)
1339 		++gd->gd_nchstats->ncs_goodhits;
1340 	else
1341 		++gd->gd_nchstats->ncs_neghits;
1342 	cache_hysteresis();
1343 	return(ncp);
1344 }
1345 
1346 /*
1347  * Resolve an unresolved namecache entry, generally by looking it up.
1348  * The passed ncp must be locked and refd.
1349  *
1350  * Theoretically since a vnode cannot be recycled while held, and since
1351  * the nc_parent chain holds its vnode as long as children exist, the
1352  * direct parent of the cache entry we are trying to resolve should
1353  * have a valid vnode.  If not then generate an error that we can
1354  * determine is related to a resolver bug.
1355  *
1356  * Note that successful resolution does not necessarily return an error
1357  * code of 0.  If the ncp resolves to a negative cache hit then ENOENT
1358  * will be returned.
1359  */
1360 int
1361 cache_resolve(struct namecache *ncp, struct ucred *cred)
1362 {
1363 	struct namecache *par;
1364 	int error;
1365 
1366 restart:
1367 	/*
1368 	 * If the ncp is already resolved we have nothing to do.
1369 	 */
1370 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1371 		return (ncp->nc_error);
1372 
1373 	/*
1374 	 * Mount points need special handling because the parent does not
1375 	 * belong to the same filesystem as the ncp.
1376 	 */
1377 	if (ncp->nc_flag & NCF_MOUNTPT)
1378 		return (cache_resolve_mp(ncp));
1379 
1380 	/*
1381 	 * We expect an unbroken chain of ncps to at least the mount point,
1382 	 * and even all the way to root (but this code doesn't have to go
1383 	 * past the mount point).
1384 	 */
1385 	if (ncp->nc_parent == NULL) {
1386 		printf("EXDEV case 1 %p %*.*s\n", ncp,
1387 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
1388 		ncp->nc_error = EXDEV;
1389 		return(ncp->nc_error);
1390 	}
1391 
1392 	/*
1393 	 * The vp's of the parent directories in the chain are held via vhold()
1394 	 * due to the existance of the child, and should not disappear.
1395 	 * However, there are cases where they can disappear:
1396 	 *
1397 	 *	- due to filesystem I/O errors.
1398 	 *	- due to NFS being stupid about tracking the namespace and
1399 	 *	  destroys the namespace for entire directories quite often.
1400 	 *	- due to forced unmounts.
1401 	 *	- due to an rmdir (parent will be marked DESTROYED)
1402 	 *
1403 	 * When this occurs we have to track the chain backwards and resolve
1404 	 * it, looping until the resolver catches up to the current node.  We
1405 	 * could recurse here but we might run ourselves out of kernel stack
1406 	 * so we do it in a more painful manner.  This situation really should
1407 	 * not occur all that often, or if it does not have to go back too
1408 	 * many nodes to resolve the ncp.
1409 	 */
1410 	while (ncp->nc_parent->nc_vp == NULL) {
1411 		/*
1412 		 * This case can occur if a process is CD'd into a
1413 		 * directory which is then rmdir'd.  If the parent is marked
1414 		 * destroyed there is no point trying to resolve it.
1415 		 */
1416 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
1417 			return(ENOENT);
1418 
1419 		par = ncp->nc_parent;
1420 		while (par->nc_parent && par->nc_parent->nc_vp == NULL)
1421 			par = par->nc_parent;
1422 		if (par->nc_parent == NULL) {
1423 			printf("EXDEV case 2 %*.*s\n",
1424 				par->nc_nlen, par->nc_nlen, par->nc_name);
1425 			return (EXDEV);
1426 		}
1427 		printf("[diagnostic] cache_resolve: had to recurse on %*.*s\n",
1428 			par->nc_nlen, par->nc_nlen, par->nc_name);
1429 		/*
1430 		 * The parent is not set in stone, ref and lock it to prevent
1431 		 * it from disappearing.  Also note that due to renames it
1432 		 * is possible for our ncp to move and for par to no longer
1433 		 * be one of its parents.  We resolve it anyway, the loop
1434 		 * will handle any moves.
1435 		 */
1436 		cache_get(par);
1437 		if (par->nc_flag & NCF_MOUNTPT) {
1438 			cache_resolve_mp(par);
1439 		} else if (par->nc_parent->nc_vp == NULL) {
1440 			printf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name);
1441 			cache_put(par);
1442 			continue;
1443 		} else if (par->nc_flag & NCF_UNRESOLVED) {
1444 			par->nc_error = VOP_NRESOLVE(par, cred);
1445 		}
1446 		if ((error = par->nc_error) != 0) {
1447 			if (par->nc_error != EAGAIN) {
1448 				printf("EXDEV case 3 %*.*s error %d\n",
1449 				    par->nc_nlen, par->nc_nlen, par->nc_name,
1450 				    par->nc_error);
1451 				cache_put(par);
1452 				return(error);
1453 			}
1454 			printf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
1455 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
1456 		}
1457 		cache_put(par);
1458 		/* loop */
1459 	}
1460 
1461 	/*
1462 	 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
1463 	 * ncp's and reattach them.  If this occurs the original ncp is marked
1464 	 * EAGAIN to force a relookup.
1465 	 *
1466 	 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
1467 	 * ncp must already be resolved.
1468 	 */
1469 	KKASSERT((ncp->nc_flag & NCF_MOUNTPT) == 0);
1470 	ncp->nc_error = VOP_NRESOLVE(ncp, cred);
1471 	/*vop_nresolve(*ncp->nc_parent->nc_vp->v_ops, ncp, cred);*/
1472 	if (ncp->nc_error == EAGAIN) {
1473 		printf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
1474 			ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
1475 		goto restart;
1476 	}
1477 	return(ncp->nc_error);
1478 }
1479 
1480 /*
1481  * Resolve the ncp associated with a mount point.  Such ncp's almost always
1482  * remain resolved and this routine is rarely called.  NFS MPs tends to force
1483  * re-resolution more often due to its mac-truck-smash-the-namecache
1484  * method of tracking namespace changes.
1485  *
1486  * The semantics for this call is that the passed ncp must be locked on
1487  * entry and will be locked on return.  However, if we actually have to
1488  * resolve the mount point we temporarily unlock the entry in order to
1489  * avoid race-to-root deadlocks due to e.g. dead NFS mounts.  Because of
1490  * the unlock we have to recheck the flags after we relock.
1491  */
1492 static int
1493 cache_resolve_mp(struct namecache *ncp)
1494 {
1495 	struct vnode *vp;
1496 	struct mount *mp = ncp->nc_mount;
1497 	int error;
1498 
1499 	KKASSERT(mp != NULL);
1500 	if (ncp->nc_flag & NCF_UNRESOLVED) {
1501 		cache_unlock(ncp);
1502 		while (vfs_busy(mp, 0, curthread))
1503 			;
1504 		error = VFS_ROOT(mp, &vp);
1505 		cache_lock(ncp);
1506 
1507 		/*
1508 		 * recheck the ncp state after relocking.
1509 		 */
1510 		if (ncp->nc_flag & NCF_UNRESOLVED) {
1511 			ncp->nc_error = error;
1512 			if (error == 0) {
1513 				cache_setvp(ncp, vp);
1514 				vput(vp);
1515 			} else {
1516 				printf("[diagnostic] cache_resolve_mp: failed to resolve mount %p\n", mp);
1517 				cache_setvp(ncp, NULL);
1518 			}
1519 		} else if (error == 0) {
1520 			vput(vp);
1521 		}
1522 		vfs_unbusy(mp, curthread);
1523 	}
1524 	return(ncp->nc_error);
1525 }
1526 
1527 void
1528 cache_cleanneg(int count)
1529 {
1530 	struct namecache *ncp;
1531 
1532 	/*
1533 	 * Automode from the vnlru proc - clean out 10% of the negative cache
1534 	 * entries.
1535 	 */
1536 	if (count == 0)
1537 		count = numneg / 10 + 1;
1538 
1539 	/*
1540 	 * Attempt to clean out the specified number of negative cache
1541 	 * entries.
1542 	 */
1543 	while (count) {
1544 		ncp = TAILQ_FIRST(&ncneglist);
1545 		if (ncp == NULL) {
1546 			KKASSERT(numneg == 0);
1547 			break;
1548 		}
1549 		TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
1550 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
1551 		if (cache_get_nonblock(ncp) == 0)
1552 			cache_zap(ncp);
1553 		--count;
1554 	}
1555 }
1556 
1557 /*
1558  * Rehash a ncp.  Rehashing is typically required if the name changes (should
1559  * not generally occur) or the parent link changes.  This function will
1560  * unhash the ncp if the ncp is no longer hashable.
1561  */
1562 static void
1563 cache_rehash(struct namecache *ncp)
1564 {
1565 	struct nchashhead *nchpp;
1566 	u_int32_t hash;
1567 
1568 	if (ncp->nc_flag & NCF_HASHED) {
1569 		ncp->nc_flag &= ~NCF_HASHED;
1570 		LIST_REMOVE(ncp, nc_hash);
1571 	}
1572 	if (ncp->nc_nlen && ncp->nc_parent) {
1573 		hash = fnv_32_buf(ncp->nc_name, ncp->nc_nlen, FNV1_32_INIT);
1574 		hash = fnv_32_buf(&ncp->nc_parent,
1575 					sizeof(ncp->nc_parent), hash);
1576 		nchpp = NCHHASH(hash);
1577 		LIST_INSERT_HEAD(nchpp, ncp, nc_hash);
1578 		ncp->nc_flag |= NCF_HASHED;
1579 	}
1580 }
1581 
1582 /*
1583  * Name cache initialization, from vfsinit() when we are booting
1584  */
1585 void
1586 nchinit(void)
1587 {
1588 	int i;
1589 	globaldata_t gd;
1590 
1591 	/* initialise per-cpu namecache effectiveness statistics. */
1592 	for (i = 0; i < ncpus; ++i) {
1593 		gd = globaldata_find(i);
1594 		gd->gd_nchstats = &nchstats[i];
1595 	}
1596 	TAILQ_INIT(&ncneglist);
1597 	nchashtbl = hashinit(desiredvnodes*2, M_VFSCACHE, &nchash);
1598 	nclockwarn = 1 * hz;
1599 }
1600 
1601 /*
1602  * Called from start_init() to bootstrap the root filesystem.  Returns
1603  * a referenced, unlocked namecache record.
1604  */
1605 struct namecache *
1606 cache_allocroot(struct mount *mp, struct vnode *vp)
1607 {
1608 	struct namecache *ncp = cache_alloc(0);
1609 
1610 	ncp->nc_flag |= NCF_MOUNTPT | NCF_ROOT;
1611 	ncp->nc_mount = mp;
1612 	cache_setvp(ncp, vp);
1613 	return(ncp);
1614 }
1615 
1616 /*
1617  * vfs_cache_setroot()
1618  *
1619  *	Create an association between the root of our namecache and
1620  *	the root vnode.  This routine may be called several times during
1621  *	booting.
1622  *
1623  *	If the caller intends to save the returned namecache pointer somewhere
1624  *	it must cache_hold() it.
1625  */
1626 void
1627 vfs_cache_setroot(struct vnode *nvp, struct namecache *ncp)
1628 {
1629 	struct vnode *ovp;
1630 	struct namecache *oncp;
1631 
1632 	ovp = rootvnode;
1633 	oncp = rootncp;
1634 	rootvnode = nvp;
1635 	rootncp = ncp;
1636 
1637 	if (ovp)
1638 		vrele(ovp);
1639 	if (oncp)
1640 		cache_drop(oncp);
1641 }
1642 
1643 /*
1644  * XXX OLD API COMPAT FUNCTION.  This really messes up the new namecache
1645  * topology and is being removed as quickly as possible.  The new VOP_N*()
1646  * API calls are required to make specific adjustments using the supplied
1647  * ncp pointers rather then just bogusly purging random vnodes.
1648  *
1649  * Invalidate all namecache entries to a particular vnode as well as
1650  * any direct children of that vnode in the namecache.  This is a
1651  * 'catch all' purge used by filesystems that do not know any better.
1652  *
1653  * A new vnode v_id is generated.  Note that no vnode will ever have a
1654  * v_id of 0.
1655  *
1656  * Note that the linkage between the vnode and its namecache entries will
1657  * be removed, but the namecache entries themselves might stay put due to
1658  * active references from elsewhere in the system or due to the existance of
1659  * the children.   The namecache topology is left intact even if we do not
1660  * know what the vnode association is.  Such entries will be marked
1661  * NCF_UNRESOLVED.
1662  *
1663  * XXX: Only time and the size of v_id prevents this from failing:
1664  * XXX: In theory we should hunt down all (struct vnode*, v_id)
1665  * XXX: soft references and nuke them, at least on the global
1666  * XXX: v_id wraparound.  The period of resistance can be extended
1667  * XXX: by incrementing each vnodes v_id individually instead of
1668  * XXX: using the global v_id.
1669  */
1670 void
1671 cache_purge(struct vnode *vp)
1672 {
1673 	static u_long nextid;
1674 
1675 	cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
1676 
1677 	/*
1678 	 * Calculate a new unique id for ".." handling
1679 	 */
1680 	do {
1681 		nextid++;
1682 	} while (nextid == vp->v_id || nextid == 0);
1683 	vp->v_id = nextid;
1684 }
1685 
1686 /*
1687  * Flush all entries referencing a particular filesystem.
1688  *
1689  * Since we need to check it anyway, we will flush all the invalid
1690  * entries at the same time.
1691  */
1692 void
1693 cache_purgevfs(struct mount *mp)
1694 {
1695 	struct nchashhead *nchpp;
1696 	struct namecache *ncp, *nnp;
1697 
1698 	/*
1699 	 * Scan hash tables for applicable entries.
1700 	 */
1701 	for (nchpp = &nchashtbl[nchash]; nchpp >= nchashtbl; nchpp--) {
1702 		ncp = LIST_FIRST(nchpp);
1703 		if (ncp)
1704 			cache_hold(ncp);
1705 		while (ncp) {
1706 			nnp = LIST_NEXT(ncp, nc_hash);
1707 			if (nnp)
1708 				cache_hold(nnp);
1709 			if (ncp->nc_mount == mp) {
1710 				cache_lock(ncp);
1711 				cache_zap(ncp);
1712 			} else {
1713 				cache_drop(ncp);
1714 			}
1715 			ncp = nnp;
1716 		}
1717 	}
1718 }
1719 
1720 static int disablecwd;
1721 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0, "");
1722 
1723 static u_long numcwdcalls; STATNODE(CTLFLAG_RD, numcwdcalls, &numcwdcalls);
1724 static u_long numcwdfail1; STATNODE(CTLFLAG_RD, numcwdfail1, &numcwdfail1);
1725 static u_long numcwdfail2; STATNODE(CTLFLAG_RD, numcwdfail2, &numcwdfail2);
1726 static u_long numcwdfail3; STATNODE(CTLFLAG_RD, numcwdfail3, &numcwdfail3);
1727 static u_long numcwdfail4; STATNODE(CTLFLAG_RD, numcwdfail4, &numcwdfail4);
1728 static u_long numcwdfound; STATNODE(CTLFLAG_RD, numcwdfound, &numcwdfound);
1729 
1730 int
1731 __getcwd(struct __getcwd_args *uap)
1732 {
1733 	int buflen;
1734 	int error;
1735 	char *buf;
1736 	char *bp;
1737 
1738 	if (disablecwd)
1739 		return (ENODEV);
1740 
1741 	buflen = uap->buflen;
1742 	if (buflen < 2)
1743 		return (EINVAL);
1744 	if (buflen > MAXPATHLEN)
1745 		buflen = MAXPATHLEN;
1746 
1747 	buf = malloc(buflen, M_TEMP, M_WAITOK);
1748 	bp = kern_getcwd(buf, buflen, &error);
1749 	if (error == 0)
1750 		error = copyout(bp, uap->buf, strlen(bp) + 1);
1751 	free(buf, M_TEMP);
1752 	return (error);
1753 }
1754 
1755 char *
1756 kern_getcwd(char *buf, size_t buflen, int *error)
1757 {
1758 	struct proc *p = curproc;
1759 	char *bp;
1760 	int i, slash_prefixed;
1761 	struct filedesc *fdp;
1762 	struct namecache *ncp;
1763 
1764 	numcwdcalls++;
1765 	bp = buf;
1766 	bp += buflen - 1;
1767 	*bp = '\0';
1768 	fdp = p->p_fd;
1769 	slash_prefixed = 0;
1770 
1771 	ncp = fdp->fd_ncdir;
1772 	while (ncp && ncp != fdp->fd_nrdir && (ncp->nc_flag & NCF_ROOT) == 0) {
1773 		if (ncp->nc_flag & NCF_MOUNTPT) {
1774 			if (ncp->nc_mount == NULL) {
1775 				*error = EBADF;		/* forced unmount? */
1776 				return(NULL);
1777 			}
1778 			ncp = ncp->nc_parent;
1779 			continue;
1780 		}
1781 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
1782 			if (bp == buf) {
1783 				numcwdfail4++;
1784 				*error = ENOMEM;
1785 				return(NULL);
1786 			}
1787 			*--bp = ncp->nc_name[i];
1788 		}
1789 		if (bp == buf) {
1790 			numcwdfail4++;
1791 			*error = ENOMEM;
1792 			return(NULL);
1793 		}
1794 		*--bp = '/';
1795 		slash_prefixed = 1;
1796 		ncp = ncp->nc_parent;
1797 	}
1798 	if (ncp == NULL) {
1799 		numcwdfail2++;
1800 		*error = ENOENT;
1801 		return(NULL);
1802 	}
1803 	if (!slash_prefixed) {
1804 		if (bp == buf) {
1805 			numcwdfail4++;
1806 			*error = ENOMEM;
1807 			return(NULL);
1808 		}
1809 		*--bp = '/';
1810 	}
1811 	numcwdfound++;
1812 	*error = 0;
1813 	return (bp);
1814 }
1815 
1816 /*
1817  * Thus begins the fullpath magic.
1818  */
1819 
1820 #undef STATNODE
1821 #define STATNODE(name)							\
1822 	static u_int name;						\
1823 	SYSCTL_UINT(_vfs_cache, OID_AUTO, name, CTLFLAG_RD, &name, 0, "")
1824 
1825 static int disablefullpath;
1826 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
1827     &disablefullpath, 0, "");
1828 
1829 STATNODE(numfullpathcalls);
1830 STATNODE(numfullpathfail1);
1831 STATNODE(numfullpathfail2);
1832 STATNODE(numfullpathfail3);
1833 STATNODE(numfullpathfail4);
1834 STATNODE(numfullpathfound);
1835 
1836 int
1837 cache_fullpath(struct proc *p, struct namecache *ncp, char **retbuf, char **freebuf)
1838 {
1839 	char *bp, *buf;
1840 	int i, slash_prefixed;
1841 	struct namecache *fd_nrdir;
1842 
1843 	numfullpathcalls--;
1844 
1845 	buf = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
1846 	bp = buf + MAXPATHLEN - 1;
1847 	*bp = '\0';
1848 	if (p != NULL)
1849 		fd_nrdir = p->p_fd->fd_nrdir;
1850 	else
1851 		fd_nrdir = NULL;
1852 	slash_prefixed = 0;
1853 	while (ncp && ncp != fd_nrdir && (ncp->nc_flag & NCF_ROOT) == 0) {
1854 		if (ncp->nc_flag & NCF_MOUNTPT) {
1855 			if (ncp->nc_mount == NULL) {
1856 				free(buf, M_TEMP);
1857 				return(EBADF);
1858 			}
1859 			ncp = ncp->nc_parent;
1860 			continue;
1861 		}
1862 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
1863 			if (bp == buf) {
1864 				numfullpathfail4++;
1865 				free(buf, M_TEMP);
1866 				return(ENOMEM);
1867 			}
1868 			*--bp = ncp->nc_name[i];
1869 		}
1870 		if (bp == buf) {
1871 			numfullpathfail4++;
1872 			free(buf, M_TEMP);
1873 			return(ENOMEM);
1874 		}
1875 		*--bp = '/';
1876 		slash_prefixed = 1;
1877 		ncp = ncp->nc_parent;
1878 	}
1879 	if (ncp == NULL) {
1880 		numfullpathfail2++;
1881 		free(buf, M_TEMP);
1882 		return(ENOENT);
1883 	}
1884 	if (p != NULL && (ncp->nc_flag & NCF_ROOT) && ncp != fd_nrdir) {
1885 		bp = buf + MAXPATHLEN - 1;
1886 		*bp = '\0';
1887 		slash_prefixed = 0;
1888 	}
1889 	if (!slash_prefixed) {
1890 		if (bp == buf) {
1891 			numfullpathfail4++;
1892 			free(buf, M_TEMP);
1893 			return(ENOMEM);
1894 		}
1895 		*--bp = '/';
1896 	}
1897 	numfullpathfound++;
1898 	*retbuf = bp;
1899 	*freebuf = buf;
1900 
1901 	return(0);
1902 }
1903 
1904 int
1905 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf, char **freebuf)
1906 {
1907 	struct namecache *ncp;
1908 
1909 	numfullpathcalls++;
1910 	if (disablefullpath)
1911 		return (ENODEV);
1912 
1913 	if (p == NULL)
1914 		return (EINVAL);
1915 
1916 	/* vn is NULL, client wants us to use p->p_textvp */
1917 	if (vn == NULL) {
1918 		if ((vn = p->p_textvp) == NULL)
1919 			return (EINVAL);
1920 	}
1921 	TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
1922 		if (ncp->nc_nlen)
1923 			break;
1924 	}
1925 	if (ncp == NULL)
1926 		return (EINVAL);
1927 
1928 	numfullpathcalls--;
1929 	return(cache_fullpath(p, ncp, retbuf, freebuf));
1930 }
1931