xref: /dragonfly/sys/kern/vfs_cache.c (revision c9c5aa9e)
1 /*
2  * Copyright (c) 2003-2020 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993, 1995
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * Poul-Henning Kamp of the FreeBSD Project.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. Neither the name of the University nor the names of its contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/uio.h>
68 #include <sys/kernel.h>
69 #include <sys/sysctl.h>
70 #include <sys/mount.h>
71 #include <sys/vnode.h>
72 #include <sys/malloc.h>
73 #include <sys/sysmsg.h>
74 #include <sys/spinlock.h>
75 #include <sys/proc.h>
76 #include <sys/nlookup.h>
77 #include <sys/filedesc.h>
78 #include <sys/fnv_hash.h>
79 #include <sys/globaldata.h>
80 #include <sys/kern_syscall.h>
81 #include <sys/dirent.h>
82 #include <ddb/ddb.h>
83 
84 #include <sys/spinlock2.h>
85 
86 #define MAX_RECURSION_DEPTH	64
87 
88 /*
89  * Random lookups in the cache are accomplished with a hash table using
90  * a hash key of (nc_src_vp, name).  Each hash chain has its own spin lock,
91  * but we use the ncp->update counter trick to avoid acquiring any
92  * contestable spin-locks during a lookup.
93  *
94  * Negative entries may exist and correspond to resolved namecache
95  * structures where nc_vp is NULL.  In a negative entry, NCF_WHITEOUT
96  * will be set if the entry corresponds to a whited-out directory entry
97  * (verses simply not finding the entry at all).  pcpu_ncache[n].neg_list
98  * is locked via pcpu_ncache[n].neg_spin;
99  *
100  * MPSAFE RULES:
101  *
102  * (1) ncp's typically have at least a nc_refs of 1, and usually 2.  One
103  *     is applicable to direct lookups via the hash table nchpp or via
104  *     nc_list (the two are added or removed together).  Removal of the ncp
105  *     from the hash table drops this reference.  The second is applicable
106  *     to vp->v_namecache linkages (or negative list linkages), and removal
107  *     of the ncp from these lists drops this reference.
108  *
109  *     On the 1->0 transition of nc_refs the ncp can no longer be referenced
110  *     and must be destroyed.  No other thread should have access to it at
111  *     this point so it can be safely locked and freed without any deadlock
112  *     fears.
113  *
114  *     The 1->0 transition can occur at almost any juncture and so cache_drop()
115  *     deals with it directly.
116  *
117  * (2) Once the 1->0 transition occurs, the entity that caused the transition
118  *     will be responsible for destroying the ncp.  The ncp cannot be on any
119  *     list or hash at this time, or be held by anyone other than the caller
120  *     responsible for the transition.
121  *
122  * (3) A ncp must be locked in order to modify it.
123  *
124  * (5) ncp locks are ordered, child-to-parent.  Child first, then parent.
125  *     This may seem backwards but forward-scans use the hash table and thus
126  *     can hold the parent unlocked while traversing downward.  Deletions,
127  *     on the other-hand, tend to propagate bottom-up since the ref on the
128  *     is dropped as the children go away.
129  *
130  * (6) Both parent and child must be locked in order to enter the child onto
131  *     the parent's nc_list.
132  */
133 
134 /*
135  * Structures associated with name cacheing.
136  */
137 #define NCHHASH(hash)		(&nchashtbl[(hash) & nchash])
138 #define MINNEG			1024
139 #define MINPOS			1024
140 #define NCMOUNT_NUMCACHE	(16384)	/* power of 2 */
141 #define NCMOUNT_SET		(8)	/* power of 2 */
142 
143 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
144 
145 TAILQ_HEAD(nchash_list, namecache);
146 
147 /*
148  * Don't cachealign, but at least pad to 32 bytes so entries
149  * don't cross a cache line.
150  */
151 struct nchash_head {
152        struct nchash_list list;	/* 16 bytes */
153        struct spinlock	spin;	/* 8 bytes */
154        long	pad01;		/* 8 bytes */
155 };
156 
157 struct ncmount_cache {
158 	struct spinlock	spin;
159 	struct namecache *ncp;
160 	struct mount *mp;
161 	struct mount *mp_target;
162 	int isneg;
163 	int ticks;
164 	int updating;
165 	int unused01;
166 };
167 
168 struct pcpu_ncache {
169 	struct spinlock		umount_spin;	/* cache_findmount/interlock */
170 	struct spinlock		neg_spin;	/* for neg_list and neg_count */
171 	struct namecache_list	neg_list;
172 	long			neg_count;
173 	long			vfscache_negs;
174 	long			vfscache_count;
175 	long			vfscache_leafs;
176 	long			numdefered;
177 } __cachealign;
178 
179 __read_mostly static struct nchash_head	*nchashtbl;
180 __read_mostly static struct pcpu_ncache	*pcpu_ncache;
181 static struct ncmount_cache	ncmount_cache[NCMOUNT_NUMCACHE];
182 
183 /*
184  * ncvp_debug - debug cache_fromvp().  This is used by the NFS server
185  * to create the namecache infrastructure leading to a dangling vnode.
186  *
187  * 0	Only errors are reported
188  * 1	Successes are reported
189  * 2	Successes + the whole directory scan is reported
190  * 3	Force the directory scan code run as if the parent vnode did not
191  *	have a namecache record, even if it does have one.
192  */
193 __read_mostly static int	ncvp_debug;
194 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0,
195     "Namecache debug level (0-3)");
196 
197 __read_mostly static u_long nchash;		/* size of hash table */
198 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
199     "Size of namecache hash table");
200 
201 __read_mostly static int ncnegflush = 10;	/* burst for negative flush */
202 SYSCTL_INT(_debug, OID_AUTO, ncnegflush, CTLFLAG_RW, &ncnegflush, 0,
203     "Batch flush negative entries");
204 
205 __read_mostly static int ncposflush = 10;	/* burst for positive flush */
206 SYSCTL_INT(_debug, OID_AUTO, ncposflush, CTLFLAG_RW, &ncposflush, 0,
207     "Batch flush positive entries");
208 
209 __read_mostly static int ncnegfactor = 16;	/* ratio of negative entries */
210 SYSCTL_INT(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0,
211     "Ratio of namecache negative entries");
212 
213 __read_mostly static int nclockwarn;	/* warn on locked entries in ticks */
214 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0,
215     "Warn on locked namecache entries in ticks");
216 
217 __read_mostly static int ncposlimit;	/* number of cache entries allocated */
218 SYSCTL_INT(_debug, OID_AUTO, ncposlimit, CTLFLAG_RW, &ncposlimit, 0,
219     "Number of cache entries allocated");
220 
221 __read_mostly static int ncp_shared_lock_disable = 0;
222 SYSCTL_INT(_debug, OID_AUTO, ncp_shared_lock_disable, CTLFLAG_RW,
223 	   &ncp_shared_lock_disable, 0, "Disable shared namecache locks");
224 
225 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode),
226     "sizeof(struct vnode)");
227 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache),
228     "sizeof(struct namecache)");
229 
230 __read_mostly static int ncmount_cache_enable = 1;
231 SYSCTL_INT(_debug, OID_AUTO, ncmount_cache_enable, CTLFLAG_RW,
232 	   &ncmount_cache_enable, 0, "mount point cache");
233 
234 static __inline void _cache_drop(struct namecache *ncp);
235 static int cache_resolve_mp(struct mount *mp);
236 static int cache_findmount_callback(struct mount *mp, void *data);
237 static void _cache_setunresolved(struct namecache *ncp);
238 static void _cache_cleanneg(long count);
239 static void _cache_cleanpos(long count);
240 static void _cache_cleandefered(void);
241 static void _cache_unlink(struct namecache *ncp);
242 
243 /*
244  * The new name cache statistics (these are rolled up globals and not
245  * modified in the critical path, see struct pcpu_ncache).
246  */
247 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
248 static long vfscache_negs;
249 SYSCTL_LONG(_vfs_cache, OID_AUTO, numneg, CTLFLAG_RD, &vfscache_negs, 0,
250     "Number of negative namecache entries");
251 static long vfscache_count;
252 SYSCTL_LONG(_vfs_cache, OID_AUTO, numcache, CTLFLAG_RD, &vfscache_count, 0,
253     "Number of namecaches entries");
254 static long vfscache_leafs;
255 SYSCTL_LONG(_vfs_cache, OID_AUTO, numleafs, CTLFLAG_RD, &vfscache_leafs, 0,
256     "Number of namecaches entries");
257 static long	numdefered;
258 SYSCTL_LONG(_debug, OID_AUTO, numdefered, CTLFLAG_RD, &numdefered, 0,
259     "Number of cache entries allocated");
260 
261 
262 struct nchstats nchstats[SMP_MAXCPU];
263 /*
264  * Export VFS cache effectiveness statistics to user-land.
265  *
266  * The statistics are left for aggregation to user-land so
267  * neat things can be achieved, like observing per-CPU cache
268  * distribution.
269  */
270 static int
271 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
272 {
273 	struct globaldata *gd;
274 	int i, error;
275 
276 	error = 0;
277 	for (i = 0; i < ncpus; ++i) {
278 		gd = globaldata_find(i);
279 		if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
280 			sizeof(struct nchstats))))
281 			break;
282 	}
283 
284 	return (error);
285 }
286 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
287   0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
288 
289 static void cache_zap(struct namecache *ncp);
290 
291 /*
292  * Cache mount points and namecache records in order to avoid unnecessary
293  * atomic ops on mnt_refs and ncp->refs.  This improves concurrent SMP
294  * performance and is particularly important on multi-socket systems to
295  * reduce cache-line ping-ponging.
296  *
297  * Try to keep the pcpu structure within one cache line (~64 bytes).
298  */
299 #define MNTCACHE_COUNT	32	/* power of 2, multiple of SET */
300 #define MNTCACHE_SET	8	/* set associativity */
301 
302 struct mntcache_elm {
303 	struct namecache *ncp;
304 	struct mount	 *mp;
305 	int	ticks;
306 	int	unused01;
307 };
308 
309 struct mntcache {
310 	struct mntcache_elm array[MNTCACHE_COUNT];
311 } __cachealign;
312 
313 static struct mntcache	pcpu_mntcache[MAXCPU];
314 
315 static __inline
316 struct mntcache_elm *
317 _cache_mntcache_hash(void *ptr)
318 {
319 	struct mntcache_elm *elm;
320 	int hv;
321 
322 	hv = iscsi_crc32(&ptr, sizeof(ptr)) & (MNTCACHE_COUNT - 1);
323 	elm = &pcpu_mntcache[mycpu->gd_cpuid].array[hv & ~(MNTCACHE_SET - 1)];
324 
325 	return elm;
326 }
327 
328 static
329 void
330 _cache_mntref(struct mount *mp)
331 {
332 	struct mntcache_elm *elm;
333 	struct mount *mpr;
334 	int i;
335 
336 	elm = _cache_mntcache_hash(mp);
337 	for (i = 0; i < MNTCACHE_SET; ++i) {
338 		if (elm->mp == mp) {
339 			mpr = atomic_swap_ptr((void *)&elm->mp, NULL);
340 			if (__predict_true(mpr == mp))
341 				return;
342 			if (mpr)
343 				atomic_add_int(&mpr->mnt_refs, -1);
344 		}
345 		++elm;
346 	}
347 	atomic_add_int(&mp->mnt_refs, 1);
348 }
349 
350 static
351 void
352 _cache_mntrel(struct mount *mp)
353 {
354 	struct mntcache_elm *elm;
355 	struct mntcache_elm *best;
356 	struct mount *mpr;
357 	int delta1;
358 	int delta2;
359 	int i;
360 
361 	elm = _cache_mntcache_hash(mp);
362 	best = elm;
363 	for (i = 0; i < MNTCACHE_SET; ++i) {
364 		if (elm->mp == NULL) {
365 			mpr = atomic_swap_ptr((void *)&elm->mp, mp);
366 			if (__predict_false(mpr != NULL)) {
367 				atomic_add_int(&mpr->mnt_refs, -1);
368 			}
369 			elm->ticks = ticks;
370 			return;
371 		}
372 		delta1 = ticks - best->ticks;
373 		delta2 = ticks - elm->ticks;
374 		if (delta2 > delta1 || delta1 < -1 || delta2 < -1)
375 			best = elm;
376 		++elm;
377 	}
378 	mpr = atomic_swap_ptr((void *)&best->mp, mp);
379 	best->ticks = ticks;
380 	if (mpr)
381 		atomic_add_int(&mpr->mnt_refs, -1);
382 }
383 
384 /*
385  * Clears all cached mount points on all cpus.  This routine should only
386  * be called when we are waiting for a mount to clear, e.g. so we can
387  * unmount.
388  */
389 void
390 cache_clearmntcache(struct mount *target __unused)
391 {
392 	int n;
393 
394 	for (n = 0; n < ncpus; ++n) {
395 		struct mntcache *cache = &pcpu_mntcache[n];
396 		struct mntcache_elm *elm;
397 		struct namecache *ncp;
398 		struct mount *mp;
399 		int i;
400 
401 		for (i = 0; i < MNTCACHE_COUNT; ++i) {
402 			elm = &cache->array[i];
403 			if (elm->mp) {
404 				mp = atomic_swap_ptr((void *)&elm->mp, NULL);
405 				if (mp)
406 					atomic_add_int(&mp->mnt_refs, -1);
407 			}
408 			if (elm->ncp) {
409 				ncp = atomic_swap_ptr((void *)&elm->ncp, NULL);
410 				if (ncp)
411 					_cache_drop(ncp);
412 			}
413 		}
414 	}
415 }
416 
417 /*
418  * Namespace locking.  The caller must already hold a reference to the
419  * namecache structure in order to lock/unlock it.  The controlling entity
420  * in a 1->0 transition does not need to lock the ncp to dispose of it,
421  * as nobody else will have visiblity to it at that point.
422  *
423  * Note that holding a locked namecache structure prevents other threads
424  * from making namespace changes (e.g. deleting or creating), prevents
425  * vnode association state changes by other threads, and prevents the
426  * namecache entry from being resolved or unresolved by other threads.
427  *
428  * An exclusive lock owner has full authority to associate/disassociate
429  * vnodes and resolve/unresolve the locked ncp.
430  *
431  * A shared lock owner only has authority to acquire the underlying vnode,
432  * if any.
433  *
434  * The primary lock field is nc_lockstatus.  nc_locktd is set after the
435  * fact (when locking) or cleared prior to unlocking.
436  *
437  * WARNING!  Holding a locked ncp will prevent a vnode from being destroyed
438  *	     or recycled, but it does NOT help you if the vnode had already
439  *	     initiated a recyclement.  If this is important, use cache_get()
440  *	     rather then cache_lock() (and deal with the differences in the
441  *	     way the refs counter is handled).  Or, alternatively, make an
442  *	     unconditional call to cache_validate() or cache_resolve()
443  *	     after cache_lock() returns.
444  */
445 static __inline
446 void
447 _cache_lock(struct namecache *ncp)
448 {
449 	int didwarn = 0;
450 	int error;
451 
452 	error = lockmgr(&ncp->nc_lock, LK_EXCLUSIVE);
453 	while (__predict_false(error == EWOULDBLOCK)) {
454 		if (didwarn == 0) {
455 			didwarn = ticks - nclockwarn;
456 			kprintf("[diagnostic] cache_lock: "
457 				"%s blocked on %p "
458 				"\"%*.*s\"\n",
459 				curthread->td_comm, ncp,
460 				ncp->nc_nlen, ncp->nc_nlen,
461 				ncp->nc_name);
462 		}
463 		error = lockmgr(&ncp->nc_lock, LK_EXCLUSIVE | LK_TIMELOCK);
464 	}
465 	if (__predict_false(didwarn)) {
466 		kprintf("[diagnostic] cache_lock: "
467 			"%s unblocked %*.*s after %d secs\n",
468 			curthread->td_comm,
469 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
470 			(int)(ticks - didwarn) / hz);
471 	}
472 }
473 
474 /*
475  * Release a previously acquired lock.
476  *
477  * A concurrent shared-lock acquisition or acquisition/release can
478  * race bit 31 so only drop the ncp if bit 31 was set.
479  */
480 static __inline
481 void
482 _cache_unlock(struct namecache *ncp)
483 {
484 	lockmgr(&ncp->nc_lock, LK_RELEASE);
485 }
486 
487 /*
488  * Lock ncp exclusively, non-blocking.  Return 0 on success.
489  */
490 static __inline
491 int
492 _cache_lock_nonblock(struct namecache *ncp)
493 {
494 	int error;
495 
496 	error = lockmgr(&ncp->nc_lock, LK_EXCLUSIVE | LK_NOWAIT);
497 	if (__predict_false(error != 0)) {
498 		return(EWOULDBLOCK);
499 	}
500 	return 0;
501 }
502 
503 /*
504  * This is a special form of _cache_lock() which only succeeds if
505  * it can get a pristine, non-recursive lock.  The caller must have
506  * already ref'd the ncp.
507  *
508  * On success the ncp will be locked, on failure it will not.  The
509  * ref count does not change either way.
510  *
511  * We want _cache_lock_special() (on success) to return a definitively
512  * usable vnode or a definitively unresolved ncp.
513  */
514 static __inline
515 int
516 _cache_lock_special(struct namecache *ncp)
517 {
518 	if (_cache_lock_nonblock(ncp) == 0) {
519 		if (lockmgr_oneexcl(&ncp->nc_lock)) {
520 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
521 				_cache_setunresolved(ncp);
522 			return 0;
523 		}
524 		_cache_unlock(ncp);
525 	}
526 	return EWOULDBLOCK;
527 }
528 
529 /*
530  * Shared lock, guarantees vp held
531  *
532  * The shared lock holds vp on the 0->1 transition.  It is possible to race
533  * another shared lock release, preventing the other release from dropping
534  * the vnode and clearing bit 31.
535  *
536  * If it is not set then we are responsible for setting it, and this
537  * responsibility does not race with anyone else.
538  */
539 static __inline
540 void
541 _cache_lock_shared(struct namecache *ncp)
542 {
543 	int didwarn = 0;
544 	int error;
545 
546 	error = lockmgr(&ncp->nc_lock, LK_SHARED | LK_TIMELOCK);
547 	while (__predict_false(error == EWOULDBLOCK)) {
548 		if (didwarn == 0) {
549 			didwarn = ticks - nclockwarn;
550 			kprintf("[diagnostic] cache_lock_shared: "
551 				"%s blocked on %p "
552 				"\"%*.*s\"\n",
553 				curthread->td_comm, ncp,
554 				ncp->nc_nlen, ncp->nc_nlen,
555 				ncp->nc_name);
556 		}
557 		error = lockmgr(&ncp->nc_lock, LK_SHARED | LK_TIMELOCK);
558 	}
559 	if (__predict_false(didwarn)) {
560 		kprintf("[diagnostic] cache_lock_shared: "
561 			"%s unblocked %*.*s after %d secs\n",
562 			curthread->td_comm,
563 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
564 			(int)(ticks - didwarn) / hz);
565 	}
566 }
567 
568 /*
569  * Shared lock, guarantees vp held.  Non-blocking.  Returns 0 on success
570  */
571 static __inline
572 int
573 _cache_lock_shared_nonblock(struct namecache *ncp)
574 {
575 	int error;
576 
577 	error = lockmgr(&ncp->nc_lock, LK_SHARED | LK_NOWAIT);
578 	if (__predict_false(error != 0)) {
579 		return(EWOULDBLOCK);
580 	}
581 	return 0;
582 }
583 
584 /*
585  * This function tries to get a shared lock but will back-off to an
586  * exclusive lock if:
587  *
588  * (1) Some other thread is trying to obtain an exclusive lock
589  *     (to prevent the exclusive requester from getting livelocked out
590  *     by many shared locks).
591  *
592  * (2) The current thread already owns an exclusive lock (to avoid
593  *     deadlocking).
594  *
595  * WARNING! On machines with lots of cores we really want to try hard to
596  *	    get a shared lock or concurrent path lookups can chain-react
597  *	    into a very high-latency exclusive lock.
598  *
599  *	    This is very evident in dsynth's initial scans.
600  */
601 static __inline
602 int
603 _cache_lock_shared_special(struct namecache *ncp)
604 {
605 	/*
606 	 * Only honor a successful shared lock (returning 0) if there is
607 	 * no exclusive request pending and the vnode, if present, is not
608 	 * in a reclaimed state.
609 	 */
610 	if (_cache_lock_shared_nonblock(ncp) == 0) {
611 		if (__predict_true(!lockmgr_exclpending(&ncp->nc_lock))) {
612 			if (ncp->nc_vp == NULL ||
613 			    (ncp->nc_vp->v_flag & VRECLAIMED) == 0) {
614 				return(0);
615 			}
616 		}
617 		_cache_unlock(ncp);
618 		return(EWOULDBLOCK);
619 	}
620 
621 	/*
622 	 * Non-blocking shared lock failed.  If we already own the exclusive
623 	 * lock just acquire another exclusive lock (instead of deadlocking).
624 	 * Otherwise acquire a shared lock.
625 	 */
626 	if (lockstatus(&ncp->nc_lock, curthread) == LK_EXCLUSIVE) {
627 		_cache_lock(ncp);
628 		return(0);
629 	}
630 	_cache_lock_shared(ncp);
631 	return(0);
632 }
633 
634 static __inline
635 int
636 _cache_lockstatus(struct namecache *ncp)
637 {
638 	int status;
639 
640 	status = lockstatus(&ncp->nc_lock, curthread);
641 	if (status == 0 || status == LK_EXCLOTHER)
642 		status = -1;
643 	return status;
644 }
645 
646 /*
647  * cache_hold() and cache_drop() prevent the premature deletion of a
648  * namecache entry but do not prevent operations (such as zapping) on
649  * that namecache entry.
650  *
651  * This routine may only be called from outside this source module if
652  * nc_refs is already deterministically at least 1, such as being
653  * associated with e.g. a process, file descriptor, or some other entity.
654  *
655  * Only the above situations, similar situations within this module where
656  * the ref count is deterministically at least 1, or when the ncp is found
657  * via the nchpp (hash table) lookup, can bump nc_refs.
658  *
659  * Very specifically, a ncp found via nc_list CANNOT bump nc_refs.  It
660  * can still be removed from the nc_list, however, as long as the caller
661  * can acquire its lock (in the wrong order).
662  *
663  * This is a rare case where callers are allowed to hold a spinlock,
664  * so we can't ourselves.
665  */
666 static __inline
667 struct namecache *
668 _cache_hold(struct namecache *ncp)
669 {
670 	KKASSERT(ncp->nc_refs > 0);
671 	atomic_add_int(&ncp->nc_refs, 1);
672 
673 	return(ncp);
674 }
675 
676 /*
677  * Drop a cache entry.
678  *
679  * The 1->0 transition is special and requires the caller to destroy the
680  * entry.  It means that the ncp is no longer on a nchpp list (since that
681  * would mean there was stilla ref).  The ncp could still be on a nc_list
682  * but will not have any child of its own, again because nc_refs is now 0
683  * and children would have a ref to their parent.
684  *
685  * Once the 1->0 transition is made, nc_refs cannot be incremented again.
686  */
687 static __inline
688 void
689 _cache_drop(struct namecache *ncp)
690 {
691 	if (atomic_fetchadd_int(&ncp->nc_refs, -1) == 1) {
692 		/*
693 		 * Executed unlocked (no need to lock on last drop)
694 		 */
695 		_cache_setunresolved(ncp);
696 
697 		/*
698 		 * Scrap it.
699 		 */
700 		ncp->nc_refs = -1;	/* safety */
701 		if (ncp->nc_name)
702 			kfree(ncp->nc_name, M_VFSCACHE);
703 		kfree(ncp, M_VFSCACHE);
704 	}
705 }
706 
707 /*
708  * Link a new namecache entry to its parent and to the hash table.  Be
709  * careful to avoid races if vhold() blocks in the future.
710  *
711  * Both ncp and par must be referenced and locked.  The reference is
712  * transfered to the nchpp (and, most notably, NOT to the parent list).
713  *
714  * NOTE: The hash table spinlock is held across this call, we can't do
715  *	 anything fancy.
716  */
717 static void
718 _cache_link_parent(struct namecache *ncp, struct namecache *par,
719 		   struct nchash_head *nchpp)
720 {
721 	struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
722 
723 	KKASSERT(ncp->nc_parent == NULL);
724 	ncp->nc_parent = par;
725 	ncp->nc_head = nchpp;
726 
727 	/*
728 	 * Set inheritance flags.  Note that the parent flags may be
729 	 * stale due to getattr potentially not having been run yet
730 	 * (it gets run during nlookup()'s).
731 	 */
732 	ncp->nc_flag &= ~(NCF_SF_PNOCACHE | NCF_UF_PCACHE);
733 	if (par->nc_flag & (NCF_SF_NOCACHE | NCF_SF_PNOCACHE))
734 		ncp->nc_flag |= NCF_SF_PNOCACHE;
735 	if (par->nc_flag & (NCF_UF_CACHE | NCF_UF_PCACHE))
736 		ncp->nc_flag |= NCF_UF_PCACHE;
737 
738 	/*
739 	 * Add to hash table and parent, adjust accounting
740 	 */
741 	TAILQ_INSERT_HEAD(&nchpp->list, ncp, nc_hash);
742 	atomic_add_long(&pn->vfscache_count, 1);
743 	if (TAILQ_EMPTY(&ncp->nc_list))
744 		atomic_add_long(&pn->vfscache_leafs, 1);
745 
746 	if (TAILQ_EMPTY(&par->nc_list)) {
747 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
748 		atomic_add_long(&pn->vfscache_leafs, -1);
749 		/*
750 		 * Any vp associated with an ncp which has children must
751 		 * be held to prevent it from being recycled.
752 		 */
753 		if (par->nc_vp)
754 			vhold(par->nc_vp);
755 	} else {
756 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
757 	}
758 	_cache_hold(par);	/* add nc_parent ref */
759 }
760 
761 /*
762  * Remove the parent and hash associations from a namecache structure.
763  * Drop the ref-count on the parent.  The caller receives the ref
764  * from the ncp's nchpp linkage that was removed and may forward that
765  * ref to a new linkage.
766 
767  * The caller usually holds an additional ref * on the ncp so the unlink
768  * cannot be the final drop.  XXX should not be necessary now since the
769  * caller receives the ref from the nchpp linkage, assuming the ncp
770  * was linked in the first place.
771  *
772  * ncp must be locked, which means that there won't be any nc_parent
773  * removal races.  This routine will acquire a temporary lock on
774  * the parent as well as the appropriate hash chain.
775  */
776 static void
777 _cache_unlink_parent(struct namecache *ncp)
778 {
779 	struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
780 	struct namecache *par;
781 	struct vnode *dropvp;
782 	struct nchash_head *nchpp;
783 
784 	if ((par = ncp->nc_parent) != NULL) {
785 		cpu_ccfence();
786 		KKASSERT(ncp->nc_parent == par);
787 
788 		/* don't add a ref, we drop the nchpp ref later */
789 		_cache_lock(par);
790 		nchpp = ncp->nc_head;
791 		spin_lock(&nchpp->spin);
792 
793 		/*
794 		 * Remove from hash table and parent, adjust accounting
795 		 */
796 		TAILQ_REMOVE(&ncp->nc_head->list, ncp, nc_hash);
797 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
798 		atomic_add_long(&pn->vfscache_count, -1);
799 		if (TAILQ_EMPTY(&ncp->nc_list))
800 			atomic_add_long(&pn->vfscache_leafs, -1);
801 
802 		dropvp = NULL;
803 		if (TAILQ_EMPTY(&par->nc_list)) {
804 			atomic_add_long(&pn->vfscache_leafs, 1);
805 			if (par->nc_vp)
806 				dropvp = par->nc_vp;
807 		}
808 		ncp->nc_parent = NULL;
809 		ncp->nc_head = NULL;
810 		spin_unlock(&nchpp->spin);
811 		_cache_unlock(par);
812 		_cache_drop(par);	/* drop nc_parent ref */
813 
814 		/*
815 		 * We can only safely vdrop with no spinlocks held.
816 		 */
817 		if (dropvp)
818 			vdrop(dropvp);
819 	}
820 }
821 
822 /*
823  * Allocate a new namecache structure.  Most of the code does not require
824  * zero-termination of the string but it makes vop_compat_ncreate() easier.
825  *
826  * The returned ncp will be locked and referenced.  The ref is generally meant
827  * to be transfered to the nchpp linkage.
828  */
829 static struct namecache *
830 cache_alloc(int nlen)
831 {
832 	struct namecache *ncp;
833 
834 	ncp = kmalloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
835 	if (nlen)
836 		ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHE, M_WAITOK);
837 	ncp->nc_nlen = nlen;
838 	ncp->nc_flag = NCF_UNRESOLVED;
839 	ncp->nc_error = ENOTCONN;	/* needs to be resolved */
840 	ncp->nc_refs = 1;
841 	TAILQ_INIT(&ncp->nc_list);
842 	lockinit(&ncp->nc_lock, "ncplk", hz, LK_CANRECURSE);
843 	lockmgr(&ncp->nc_lock, LK_EXCLUSIVE);
844 
845 	return(ncp);
846 }
847 
848 /*
849  * Can only be called for the case where the ncp has never been
850  * associated with anything (so no spinlocks are needed).
851  */
852 static void
853 _cache_free(struct namecache *ncp)
854 {
855 	KKASSERT(ncp->nc_refs == 1);
856 	if (ncp->nc_name)
857 		kfree(ncp->nc_name, M_VFSCACHE);
858 	kfree(ncp, M_VFSCACHE);
859 }
860 
861 /*
862  * [re]initialize a nchandle.
863  */
864 void
865 cache_zero(struct nchandle *nch)
866 {
867 	nch->ncp = NULL;
868 	nch->mount = NULL;
869 }
870 
871 /*
872  * Ref and deref a nchandle structure (ncp + mp)
873  *
874  * The caller must specify a stable ncp pointer, typically meaning the
875  * ncp is already referenced but this can also occur indirectly through
876  * e.g. holding a lock on a direct child.
877  *
878  * WARNING: Caller may hold an unrelated read spinlock, which means we can't
879  *	    use read spinlocks here.
880  */
881 struct nchandle *
882 cache_hold(struct nchandle *nch)
883 {
884 	_cache_hold(nch->ncp);
885 	_cache_mntref(nch->mount);
886 	return(nch);
887 }
888 
889 /*
890  * Create a copy of a namecache handle for an already-referenced
891  * entry.
892  */
893 void
894 cache_copy(struct nchandle *nch, struct nchandle *target)
895 {
896 	struct namecache *ncp;
897 	struct mount *mp;
898 	struct mntcache_elm *elm;
899 	struct namecache *ncpr;
900 	int i;
901 
902 	ncp = nch->ncp;
903 	mp = nch->mount;
904 	target->ncp = ncp;
905 	target->mount = mp;
906 
907 	elm = _cache_mntcache_hash(ncp);
908 	for (i = 0; i < MNTCACHE_SET; ++i) {
909 		if (elm->ncp == ncp) {
910 			ncpr = atomic_swap_ptr((void *)&elm->ncp, NULL);
911 			if (ncpr == ncp) {
912 				_cache_mntref(mp);
913 				return;
914 			}
915 			if (ncpr)
916 				_cache_drop(ncpr);
917 		}
918 		++elm;
919 	}
920 	if (ncp)
921 		_cache_hold(ncp);
922 	_cache_mntref(mp);
923 }
924 
925 /*
926  * Drop the nchandle, but try to cache the ref to avoid global atomic
927  * ops.  This is typically done on the system root and jail root nchandles.
928  */
929 void
930 cache_drop_and_cache(struct nchandle *nch, int elmno)
931 {
932 	struct mntcache_elm *elm;
933 	struct mntcache_elm *best;
934 	struct namecache *ncpr;
935 	int delta1;
936 	int delta2;
937 	int i;
938 
939 	if (elmno > 4) {
940 		if (nch->ncp) {
941 			_cache_drop(nch->ncp);
942 			nch->ncp = NULL;
943 		}
944 		if (nch->mount) {
945 			_cache_mntrel(nch->mount);
946 			nch->mount = NULL;
947 		}
948 		return;
949 	}
950 
951 	elm = _cache_mntcache_hash(nch->ncp);
952 	best = elm;
953 	for (i = 0; i < MNTCACHE_SET; ++i) {
954 		if (elm->ncp == NULL) {
955 			ncpr = atomic_swap_ptr((void *)&elm->ncp, nch->ncp);
956 			_cache_mntrel(nch->mount);
957 			elm->ticks = ticks;
958 			nch->mount = NULL;
959 			nch->ncp = NULL;
960 			if (ncpr)
961 				_cache_drop(ncpr);
962 			return;
963 		}
964 		delta1 = ticks - best->ticks;
965 		delta2 = ticks - elm->ticks;
966 		if (delta2 > delta1 || delta1 < -1 || delta2 < -1)
967 			best = elm;
968 		++elm;
969 	}
970 	ncpr = atomic_swap_ptr((void *)&best->ncp, nch->ncp);
971 	_cache_mntrel(nch->mount);
972 	best->ticks = ticks;
973 	nch->mount = NULL;
974 	nch->ncp = NULL;
975 	if (ncpr)
976 		_cache_drop(ncpr);
977 }
978 
979 void
980 cache_changemount(struct nchandle *nch, struct mount *mp)
981 {
982 	_cache_mntref(mp);
983 	_cache_mntrel(nch->mount);
984 	nch->mount = mp;
985 }
986 
987 void
988 cache_drop(struct nchandle *nch)
989 {
990 	_cache_mntrel(nch->mount);
991 	_cache_drop(nch->ncp);
992 	nch->ncp = NULL;
993 	nch->mount = NULL;
994 }
995 
996 int
997 cache_lockstatus(struct nchandle *nch)
998 {
999 	return(_cache_lockstatus(nch->ncp));
1000 }
1001 
1002 void
1003 cache_lock(struct nchandle *nch)
1004 {
1005 	_cache_lock(nch->ncp);
1006 }
1007 
1008 void
1009 cache_lock_maybe_shared(struct nchandle *nch, int excl)
1010 {
1011 	struct namecache *ncp = nch->ncp;
1012 
1013 	if (ncp_shared_lock_disable || excl ||
1014 	    (ncp->nc_flag & NCF_UNRESOLVED)) {
1015 		_cache_lock(ncp);
1016 	} else {
1017 		_cache_lock_shared(ncp);
1018 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1019 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
1020 				_cache_unlock(ncp);
1021 				_cache_lock(ncp);
1022 			}
1023 		} else {
1024 			_cache_unlock(ncp);
1025 			_cache_lock(ncp);
1026 		}
1027 	}
1028 }
1029 
1030 /*
1031  * Lock fncpd, fncp, tncpd, and tncp.  tncp is already locked but may
1032  * have to be cycled to avoid deadlocks.  Make sure all four are resolved.
1033  *
1034  * The caller is responsible for checking the validity upon return as
1035  * the records may have been flagged DESTROYED in the interim.
1036  *
1037  * Namecache lock ordering is leaf first, then parent.  However, complex
1038  * interactions may occur between the source and target because there is
1039  * no ordering guarantee between (fncpd, fncp) and (tncpd and tncp).
1040  */
1041 void
1042 cache_lock4_tondlocked(struct nchandle *fncpd, struct nchandle *fncp,
1043 		       struct nchandle *tncpd, struct nchandle *tncp,
1044 		       struct ucred *fcred, struct ucred *tcred)
1045 {
1046 	int tlocked = 1;
1047 
1048 	/*
1049 	 * Lock tncp and tncpd
1050 	 *
1051 	 * NOTE: Because these ncps are not locked to begin with, it is
1052 	 *	 possible for other rename races to cause the normal lock
1053 	 *	 order assumptions to fail.
1054 	 *
1055 	 * NOTE: Lock ordering assumptions are valid if a leaf's parent
1056 	 *	 matches after the leaf has been locked.  However, ordering
1057 	 *	 between the 'from' and the 'to' is not and an overlapping
1058 	 *	 lock order reversal is still possible.
1059 	 */
1060 again:
1061 	if (__predict_false(tlocked == 0)) {
1062 		cache_lock(tncp);
1063 	}
1064 	if (__predict_false(cache_lock_nonblock(tncpd) != 0)) {
1065 		cache_unlock(tncp);
1066 		cache_lock(tncpd); cache_unlock(tncpd); /* cycle */
1067 		tlocked = 0;
1068 		goto again;
1069 	}
1070 
1071 	/*
1072 	 * Lock fncp and fncpd
1073 	 *
1074 	 * NOTE: Because these ncps are not locked to begin with, it is
1075 	 *	 possible for other rename races to cause the normal lock
1076 	 *	 order assumptions to fail.
1077 	 *
1078 	 * NOTE: Lock ordering assumptions are valid if a leaf's parent
1079 	 *	 matches after the leaf has been locked.  However, ordering
1080 	 *	 between the 'from' and the 'to' is not and an overlapping
1081 	 *	 lock order reversal is still possible.
1082 	 */
1083 	if (__predict_false(cache_lock_nonblock(fncp) != 0)) {
1084 		cache_unlock(tncpd);
1085 		cache_unlock(tncp);
1086 		cache_lock(fncp); cache_unlock(fncp); /* cycle */
1087 		tlocked = 0;
1088 		goto again;
1089 	}
1090 	if (__predict_false(cache_lock_nonblock(fncpd) != 0)) {
1091 		cache_unlock(fncp);
1092 		cache_unlock(tncpd);
1093 		cache_unlock(tncp);
1094 		cache_lock(fncpd); cache_unlock(fncpd); /* cycle */
1095 		tlocked = 0;
1096 		goto again;
1097 	}
1098 	if (__predict_true((fncpd->ncp->nc_flag & NCF_DESTROYED) == 0))
1099 		cache_resolve(fncpd, fcred);
1100 	if (__predict_true((tncpd->ncp->nc_flag & NCF_DESTROYED) == 0))
1101 		cache_resolve(tncpd, tcred);
1102 	if (__predict_true((fncp->ncp->nc_flag & NCF_DESTROYED) == 0))
1103 		cache_resolve(fncp, fcred);
1104 	if (__predict_true((tncp->ncp->nc_flag & NCF_DESTROYED) == 0))
1105 		cache_resolve(tncp, tcred);
1106 }
1107 
1108 int
1109 cache_lock_nonblock(struct nchandle *nch)
1110 {
1111 	return(_cache_lock_nonblock(nch->ncp));
1112 }
1113 
1114 void
1115 cache_unlock(struct nchandle *nch)
1116 {
1117 	_cache_unlock(nch->ncp);
1118 }
1119 
1120 /*
1121  * ref-and-lock, unlock-and-deref functions.
1122  *
1123  * This function is primarily used by nlookup.  Even though cache_lock
1124  * holds the vnode, it is possible that the vnode may have already
1125  * initiated a recyclement.
1126  *
1127  * We want cache_get() to return a definitively usable vnode or a
1128  * definitively unresolved ncp.
1129  */
1130 static
1131 struct namecache *
1132 _cache_get(struct namecache *ncp)
1133 {
1134 	_cache_hold(ncp);
1135 	_cache_lock(ncp);
1136 	if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1137 		_cache_setunresolved(ncp);
1138 	return(ncp);
1139 }
1140 
1141 /*
1142  * Attempt to obtain a shared lock on the ncp.  A shared lock will only
1143  * be obtained if the ncp is resolved and the vnode (if not ENOENT) is
1144  * valid.  Otherwise an exclusive lock will be acquired instead.
1145  */
1146 static
1147 struct namecache *
1148 _cache_get_maybe_shared(struct namecache *ncp, int excl)
1149 {
1150 	if (ncp_shared_lock_disable || excl ||
1151 	    (ncp->nc_flag & NCF_UNRESOLVED)) {
1152 		return(_cache_get(ncp));
1153 	}
1154 	_cache_hold(ncp);
1155 	_cache_lock_shared(ncp);
1156 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1157 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
1158 			_cache_unlock(ncp);
1159 			ncp = _cache_get(ncp);
1160 			_cache_drop(ncp);
1161 		}
1162 	} else {
1163 		_cache_unlock(ncp);
1164 		ncp = _cache_get(ncp);
1165 		_cache_drop(ncp);
1166 	}
1167 	return(ncp);
1168 }
1169 
1170 /*
1171  * NOTE: The same nchandle can be passed for both arguments.
1172  */
1173 void
1174 cache_get(struct nchandle *nch, struct nchandle *target)
1175 {
1176 	KKASSERT(nch->ncp->nc_refs > 0);
1177 	target->mount = nch->mount;
1178 	target->ncp = _cache_get(nch->ncp);
1179 	_cache_mntref(target->mount);
1180 }
1181 
1182 void
1183 cache_get_maybe_shared(struct nchandle *nch, struct nchandle *target, int excl)
1184 {
1185 	KKASSERT(nch->ncp->nc_refs > 0);
1186 	target->mount = nch->mount;
1187 	target->ncp = _cache_get_maybe_shared(nch->ncp, excl);
1188 	_cache_mntref(target->mount);
1189 }
1190 
1191 /*
1192  * Release a held and locked ncp
1193  */
1194 static __inline
1195 void
1196 _cache_put(struct namecache *ncp)
1197 {
1198 	_cache_unlock(ncp);
1199 	_cache_drop(ncp);
1200 }
1201 
1202 void
1203 cache_put(struct nchandle *nch)
1204 {
1205 	_cache_mntrel(nch->mount);
1206 	_cache_put(nch->ncp);
1207 	nch->ncp = NULL;
1208 	nch->mount = NULL;
1209 }
1210 
1211 /*
1212  * Resolve an unresolved ncp by associating a vnode with it.  If the
1213  * vnode is NULL, a negative cache entry is created.
1214  *
1215  * The ncp should be locked on entry and will remain locked on return.
1216  */
1217 static
1218 void
1219 _cache_setvp(struct mount *mp, struct namecache *ncp, struct vnode *vp)
1220 {
1221 	KKASSERT((ncp->nc_flag & NCF_UNRESOLVED) &&
1222 		 (_cache_lockstatus(ncp) == LK_EXCLUSIVE) &&
1223 		 ncp->nc_vp == NULL);
1224 
1225 	if (vp) {
1226 		/*
1227 		 * Any vp associated with an ncp which has children must
1228 		 * be held.  Any vp associated with a locked ncp must be held.
1229 		 */
1230 		if (!TAILQ_EMPTY(&ncp->nc_list))
1231 			vhold(vp);
1232 		spin_lock(&vp->v_spin);
1233 		ncp->nc_vp = vp;
1234 		TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
1235 		++vp->v_namecache_count;
1236 		_cache_hold(ncp);		/* v_namecache assoc */
1237 		spin_unlock(&vp->v_spin);
1238 		vhold(vp);			/* nc_vp */
1239 
1240 		/*
1241 		 * Set auxiliary flags
1242 		 */
1243 		switch(vp->v_type) {
1244 		case VDIR:
1245 			ncp->nc_flag |= NCF_ISDIR;
1246 			break;
1247 		case VLNK:
1248 			ncp->nc_flag |= NCF_ISSYMLINK;
1249 			/* XXX cache the contents of the symlink */
1250 			break;
1251 		default:
1252 			break;
1253 		}
1254 
1255 		ncp->nc_error = 0;
1256 
1257 		/*
1258 		 * XXX: this is a hack to work-around the lack of a real pfs vfs
1259 		 * implementation
1260 		 */
1261 		if (mp) {
1262 			if (strncmp(mp->mnt_stat.f_fstypename, "null", 5) == 0)
1263 				vp->v_pfsmp = mp;
1264 		}
1265 	} else {
1266 		/*
1267 		 * When creating a negative cache hit we set the
1268 		 * namecache_gen.  A later resolve will clean out the
1269 		 * negative cache hit if the mount point's namecache_gen
1270 		 * has changed.  Used by devfs, could also be used by
1271 		 * other remote FSs.
1272 		 */
1273 		struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
1274 
1275 		ncp->nc_vp = NULL;
1276 		ncp->nc_negcpu = mycpu->gd_cpuid;
1277 		spin_lock(&pn->neg_spin);
1278 		TAILQ_INSERT_TAIL(&pn->neg_list, ncp, nc_vnode);
1279 		_cache_hold(ncp);	/* neg_list assoc */
1280 		++pn->neg_count;
1281 		spin_unlock(&pn->neg_spin);
1282 		atomic_add_long(&pn->vfscache_negs, 1);
1283 
1284 		ncp->nc_error = ENOENT;
1285 		if (mp)
1286 			VFS_NCPGEN_SET(mp, ncp);
1287 	}
1288 	ncp->nc_flag &= ~(NCF_UNRESOLVED | NCF_DEFEREDZAP);
1289 }
1290 
1291 void
1292 cache_setvp(struct nchandle *nch, struct vnode *vp)
1293 {
1294 	_cache_setvp(nch->mount, nch->ncp, vp);
1295 }
1296 
1297 /*
1298  * Used for NFS
1299  */
1300 void
1301 cache_settimeout(struct nchandle *nch, int nticks)
1302 {
1303 	struct namecache *ncp = nch->ncp;
1304 
1305 	if ((ncp->nc_timeout = ticks + nticks) == 0)
1306 		ncp->nc_timeout = 1;
1307 }
1308 
1309 /*
1310  * Disassociate the vnode or negative-cache association and mark a
1311  * namecache entry as unresolved again.  Note that the ncp is still
1312  * left in the hash table and still linked to its parent.
1313  *
1314  * The ncp should be locked and refd on entry and will remain locked and refd
1315  * on return.
1316  *
1317  * This routine is normally never called on a directory containing children.
1318  * However, NFS often does just that in its rename() code as a cop-out to
1319  * avoid complex namespace operations.  This disconnects a directory vnode
1320  * from its namecache and can cause the OLDAPI and NEWAPI to get out of
1321  * sync.
1322  *
1323  */
1324 static
1325 void
1326 _cache_setunresolved(struct namecache *ncp)
1327 {
1328 	struct vnode *vp;
1329 
1330 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1331 		ncp->nc_flag |= NCF_UNRESOLVED;
1332 		ncp->nc_timeout = 0;
1333 		ncp->nc_error = ENOTCONN;
1334 		if ((vp = ncp->nc_vp) != NULL) {
1335 			spin_lock(&vp->v_spin);
1336 			ncp->nc_vp = NULL;
1337 			TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
1338 			--vp->v_namecache_count;
1339 			spin_unlock(&vp->v_spin);
1340 
1341 			/*
1342 			 * Any vp associated with an ncp with children is
1343 			 * held by that ncp.  Any vp associated with  ncp
1344 			 * is held by that ncp.  These conditions must be
1345 			 * undone when the vp is cleared out from the ncp.
1346 			 */
1347 			if (!TAILQ_EMPTY(&ncp->nc_list))
1348 				vdrop(vp);
1349 			vdrop(vp);
1350 		} else {
1351 			struct pcpu_ncache *pn;
1352 
1353 			pn = &pcpu_ncache[ncp->nc_negcpu];
1354 
1355 			atomic_add_long(&pn->vfscache_negs, -1);
1356 			spin_lock(&pn->neg_spin);
1357 			TAILQ_REMOVE(&pn->neg_list, ncp, nc_vnode);
1358 			--pn->neg_count;
1359 			spin_unlock(&pn->neg_spin);
1360 		}
1361 		ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK);
1362 		_cache_drop(ncp);	/* from v_namecache or neg_list */
1363 	}
1364 }
1365 
1366 /*
1367  * The cache_nresolve() code calls this function to automatically
1368  * set a resolved cache element to unresolved if it has timed out
1369  * or if it is a negative cache hit and the mount point namecache_gen
1370  * has changed.
1371  */
1372 static __inline int
1373 _cache_auto_unresolve_test(struct mount *mp, struct namecache *ncp)
1374 {
1375 	/*
1376 	 * Try to zap entries that have timed out.  We have
1377 	 * to be careful here because locked leafs may depend
1378 	 * on the vnode remaining intact in a parent, so only
1379 	 * do this under very specific conditions.
1380 	 */
1381 	if (ncp->nc_timeout && (int)(ncp->nc_timeout - ticks) < 0 &&
1382 	    TAILQ_EMPTY(&ncp->nc_list)) {
1383 		return 1;
1384 	}
1385 
1386 	/*
1387 	 * If a resolved negative cache hit is invalid due to
1388 	 * the mount's namecache generation being bumped, zap it.
1389 	 */
1390 	if (ncp->nc_vp == NULL && VFS_NCPGEN_TEST(mp, ncp)) {
1391 		return 1;
1392 	}
1393 
1394 	/*
1395 	 * Otherwise we are good
1396 	 */
1397 	return 0;
1398 }
1399 
1400 static __inline void
1401 _cache_auto_unresolve(struct mount *mp, struct namecache *ncp)
1402 {
1403 	/*
1404 	 * Already in an unresolved state, nothing to do.
1405 	 */
1406 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1407 		if (_cache_auto_unresolve_test(mp, ncp))
1408 			_cache_setunresolved(ncp);
1409 	}
1410 }
1411 
1412 void
1413 cache_setunresolved(struct nchandle *nch)
1414 {
1415 	_cache_setunresolved(nch->ncp);
1416 }
1417 
1418 /*
1419  * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
1420  * looking for matches.  This flag tells the lookup code when it must
1421  * check for a mount linkage and also prevents the directories in question
1422  * from being deleted or renamed.
1423  */
1424 static
1425 int
1426 cache_clrmountpt_callback(struct mount *mp, void *data)
1427 {
1428 	struct nchandle *nch = data;
1429 
1430 	if (mp->mnt_ncmounton.ncp == nch->ncp)
1431 		return(1);
1432 	if (mp->mnt_ncmountpt.ncp == nch->ncp)
1433 		return(1);
1434 	return(0);
1435 }
1436 
1437 /*
1438  * Clear NCF_ISMOUNTPT on nch->ncp if it is no longer associated
1439  * with a mount point.
1440  */
1441 void
1442 cache_clrmountpt(struct nchandle *nch)
1443 {
1444 	int count;
1445 
1446 	count = mountlist_scan(cache_clrmountpt_callback, nch,
1447 			       MNTSCAN_FORWARD | MNTSCAN_NOBUSY |
1448 			       MNTSCAN_NOUNLOCK);
1449 	if (count == 0)
1450 		nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
1451 }
1452 
1453 /*
1454  * Invalidate portions of the namecache topology given a starting entry.
1455  * The passed ncp is set to an unresolved state and:
1456  *
1457  * The passed ncp must be referenced and locked.  The routine may unlock
1458  * and relock ncp several times, and will recheck the children and loop
1459  * to catch races.  When done the passed ncp will be returned with the
1460  * reference and lock intact.
1461  *
1462  * CINV_DESTROY		- Set a flag in the passed ncp entry indicating
1463  *			  that the physical underlying nodes have been
1464  *			  destroyed... as in deleted.  For example, when
1465  *			  a directory is removed.  This will cause record
1466  *			  lookups on the name to no longer be able to find
1467  *			  the record and tells the resolver to return failure
1468  *			  rather then trying to resolve through the parent.
1469  *
1470  *			  The topology itself, including ncp->nc_name,
1471  *			  remains intact.
1472  *
1473  *			  This only applies to the passed ncp, if CINV_CHILDREN
1474  *			  is specified the children are not flagged.
1475  *
1476  * CINV_CHILDREN	- Set all children (recursively) to an unresolved
1477  *			  state as well.
1478  *
1479  *			  Note that this will also have the side effect of
1480  *			  cleaning out any unreferenced nodes in the topology
1481  *			  from the leaves up as the recursion backs out.
1482  *
1483  * Note that the topology for any referenced nodes remains intact, but
1484  * the nodes will be marked as having been destroyed and will be set
1485  * to an unresolved state.
1486  *
1487  * It is possible for cache_inval() to race a cache_resolve(), meaning that
1488  * the namecache entry may not actually be invalidated on return if it was
1489  * revalidated while recursing down into its children.  This code guarentees
1490  * that the node(s) will go through an invalidation cycle, but does not
1491  * guarentee that they will remain in an invalidated state.
1492  *
1493  * Returns non-zero if a revalidation was detected during the invalidation
1494  * recursion, zero otherwise.  Note that since only the original ncp is
1495  * locked the revalidation ultimately can only indicate that the original ncp
1496  * *MIGHT* no have been reresolved.
1497  *
1498  * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
1499  * have to avoid blowing out the kernel stack.  We do this by saving the
1500  * deep namecache node and aborting the recursion, then re-recursing at that
1501  * node using a depth-first algorithm in order to allow multiple deep
1502  * recursions to chain through each other, then we restart the invalidation
1503  * from scratch.
1504  */
1505 
1506 struct cinvtrack {
1507 	struct namecache *resume_ncp;
1508 	int depth;
1509 };
1510 
1511 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
1512 
1513 static
1514 int
1515 _cache_inval(struct namecache *ncp, int flags)
1516 {
1517 	struct cinvtrack track;
1518 	struct namecache *ncp2;
1519 	int r;
1520 
1521 	track.depth = 0;
1522 	track.resume_ncp = NULL;
1523 
1524 	for (;;) {
1525 		r = _cache_inval_internal(ncp, flags, &track);
1526 		if (track.resume_ncp == NULL)
1527 			break;
1528 		_cache_unlock(ncp);
1529 		while ((ncp2 = track.resume_ncp) != NULL) {
1530 			track.resume_ncp = NULL;
1531 			_cache_lock(ncp2);
1532 			_cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
1533 					     &track);
1534 			/*_cache_put(ncp2);*/
1535 			cache_zap(ncp2);
1536 		}
1537 		_cache_lock(ncp);
1538 	}
1539 	return(r);
1540 }
1541 
1542 int
1543 cache_inval(struct nchandle *nch, int flags)
1544 {
1545 	return(_cache_inval(nch->ncp, flags));
1546 }
1547 
1548 /*
1549  * Helper for _cache_inval().  The passed ncp is refd and locked and
1550  * remains that way on return, but may be unlocked/relocked multiple
1551  * times by the routine.
1552  */
1553 static int
1554 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
1555 {
1556 	struct namecache *nextkid;
1557 	int rcnt = 0;
1558 
1559 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
1560 
1561 	_cache_setunresolved(ncp);
1562 	if (flags & CINV_DESTROY) {
1563 		ncp->nc_flag |= NCF_DESTROYED;
1564 		++ncp->nc_generation;
1565 	}
1566 
1567 	while ((flags & CINV_CHILDREN) &&
1568 	       (nextkid = TAILQ_FIRST(&ncp->nc_list)) != NULL
1569 	) {
1570 		struct namecache *kid;
1571 		int restart;
1572 
1573 		restart = 0;
1574 		_cache_hold(nextkid);
1575 		if (++track->depth > MAX_RECURSION_DEPTH) {
1576 			track->resume_ncp = ncp;
1577 			_cache_hold(ncp);
1578 			++rcnt;
1579 		}
1580 		while ((kid = nextkid) != NULL) {
1581 			/*
1582 			 * Parent (ncp) must be locked for the iteration.
1583 			 */
1584 			nextkid = NULL;
1585 			if (kid->nc_parent != ncp) {
1586 				_cache_drop(kid);
1587 				kprintf("cache_inval_internal restartA %s\n",
1588 					ncp->nc_name);
1589 				restart = 1;
1590 				break;
1591 			}
1592 			if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
1593 				_cache_hold(nextkid);
1594 
1595 			/*
1596 			 * Parent unlocked for this section to avoid
1597 			 * deadlocks.  Then lock the kid and check for
1598 			 * races.
1599 			 */
1600 			_cache_unlock(ncp);
1601 			if (track->resume_ncp) {
1602 				_cache_drop(kid);
1603 				_cache_lock(ncp);
1604 				break;
1605 			}
1606 			_cache_lock(kid);
1607 			if (kid->nc_parent != ncp) {
1608 				kprintf("cache_inval_internal "
1609 					"restartB %s\n",
1610 					ncp->nc_name);
1611 				restart = 1;
1612 				_cache_unlock(kid);
1613 				_cache_drop(kid);
1614 				_cache_lock(ncp);
1615 				break;
1616 			}
1617 			if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
1618 			    TAILQ_FIRST(&kid->nc_list)
1619 			) {
1620 
1621 				rcnt += _cache_inval_internal(kid,
1622 						flags & ~CINV_DESTROY, track);
1623 				/*_cache_unlock(kid);*/
1624 				/*_cache_drop(kid);*/
1625 				cache_zap(kid);
1626 			} else {
1627 				cache_zap(kid);
1628 			}
1629 
1630 			/*
1631 			 * Relock parent to continue scan
1632 			 */
1633 			_cache_lock(ncp);
1634 		}
1635 		if (nextkid)
1636 			_cache_drop(nextkid);
1637 		--track->depth;
1638 		if (restart == 0)
1639 			break;
1640 	}
1641 
1642 	/*
1643 	 * Someone could have gotten in there while ncp was unlocked,
1644 	 * retry if so.
1645 	 */
1646 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1647 		++rcnt;
1648 	return (rcnt);
1649 }
1650 
1651 /*
1652  * Invalidate a vnode's namecache associations.  To avoid races against
1653  * the resolver we do not invalidate a node which we previously invalidated
1654  * but which was then re-resolved while we were in the invalidation loop.
1655  *
1656  * Returns non-zero if any namecache entries remain after the invalidation
1657  * loop completed.
1658  *
1659  * NOTE: Unlike the namecache topology which guarentees that ncp's will not
1660  *	 be ripped out of the topology while held, the vnode's v_namecache
1661  *	 list has no such restriction.  NCP's can be ripped out of the list
1662  *	 at virtually any time if not locked, even if held.
1663  *
1664  *	 In addition, the v_namecache list itself must be locked via
1665  *	 the vnode's spinlock.
1666  */
1667 int
1668 cache_inval_vp(struct vnode *vp, int flags)
1669 {
1670 	struct namecache *ncp;
1671 	struct namecache *next;
1672 
1673 restart:
1674 	spin_lock(&vp->v_spin);
1675 	ncp = TAILQ_FIRST(&vp->v_namecache);
1676 	if (ncp)
1677 		_cache_hold(ncp);
1678 	while (ncp) {
1679 		/* loop entered with ncp held and vp spin-locked */
1680 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1681 			_cache_hold(next);
1682 		spin_unlock(&vp->v_spin);
1683 		_cache_lock(ncp);
1684 		if (ncp->nc_vp != vp) {
1685 			kprintf("Warning: cache_inval_vp: race-A detected on "
1686 				"%s\n", ncp->nc_name);
1687 			_cache_put(ncp);
1688 			if (next)
1689 				_cache_drop(next);
1690 			goto restart;
1691 		}
1692 		_cache_inval(ncp, flags);
1693 		_cache_put(ncp);		/* also releases reference */
1694 		ncp = next;
1695 		spin_lock(&vp->v_spin);
1696 		if (ncp && ncp->nc_vp != vp) {
1697 			spin_unlock(&vp->v_spin);
1698 			kprintf("Warning: cache_inval_vp: race-B detected on "
1699 				"%s\n", ncp->nc_name);
1700 			_cache_drop(ncp);
1701 			goto restart;
1702 		}
1703 	}
1704 	spin_unlock(&vp->v_spin);
1705 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1706 }
1707 
1708 /*
1709  * This routine is used instead of the normal cache_inval_vp() when we
1710  * are trying to recycle otherwise good vnodes.
1711  *
1712  * Return 0 on success, non-zero if not all namecache records could be
1713  * disassociated from the vnode (for various reasons).
1714  */
1715 int
1716 cache_inval_vp_nonblock(struct vnode *vp)
1717 {
1718 	struct namecache *ncp;
1719 	struct namecache *next;
1720 
1721 	spin_lock(&vp->v_spin);
1722 	ncp = TAILQ_FIRST(&vp->v_namecache);
1723 	if (ncp)
1724 		_cache_hold(ncp);
1725 	while (ncp) {
1726 		/* loop entered with ncp held */
1727 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1728 			_cache_hold(next);
1729 		spin_unlock(&vp->v_spin);
1730 		if (_cache_lock_nonblock(ncp)) {
1731 			_cache_drop(ncp);
1732 			if (next)
1733 				_cache_drop(next);
1734 			goto done;
1735 		}
1736 		if (ncp->nc_vp != vp) {
1737 			kprintf("Warning: cache_inval_vp: race-A detected on "
1738 				"%s\n", ncp->nc_name);
1739 			_cache_put(ncp);
1740 			if (next)
1741 				_cache_drop(next);
1742 			goto done;
1743 		}
1744 		_cache_inval(ncp, 0);
1745 		_cache_put(ncp);		/* also releases reference */
1746 		ncp = next;
1747 		spin_lock(&vp->v_spin);
1748 		if (ncp && ncp->nc_vp != vp) {
1749 			spin_unlock(&vp->v_spin);
1750 			kprintf("Warning: cache_inval_vp: race-B detected on "
1751 				"%s\n", ncp->nc_name);
1752 			_cache_drop(ncp);
1753 			goto done;
1754 		}
1755 	}
1756 	spin_unlock(&vp->v_spin);
1757 done:
1758 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1759 }
1760 
1761 /*
1762  * Clears the universal directory search 'ok' flag.  This flag allows
1763  * nlookup() to bypass normal vnode checks.  This flag is a cached flag
1764  * so clearing it simply forces revalidation.
1765  */
1766 void
1767 cache_inval_wxok(struct vnode *vp)
1768 {
1769 	struct namecache *ncp;
1770 
1771 	spin_lock(&vp->v_spin);
1772 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1773 		if (ncp->nc_flag & (NCF_WXOK | NCF_NOTX))
1774 			atomic_clear_short(&ncp->nc_flag, NCF_WXOK | NCF_NOTX);
1775 	}
1776 	spin_unlock(&vp->v_spin);
1777 }
1778 
1779 /*
1780  * The source ncp has been renamed to the target ncp.  All elements have been
1781  * locked, including the parent ncp's.
1782  *
1783  * The target ncp is destroyed (as a normal rename-over would destroy the
1784  * target file or directory).
1785  *
1786  * Because there may be references to the source ncp we cannot copy its
1787  * contents to the target.  Instead the source ncp is relinked as the target
1788  * and the target ncp is removed from the namecache topology.
1789  */
1790 void
1791 cache_rename(struct nchandle *fnch, struct nchandle *tnch)
1792 {
1793 	struct namecache *fncp = fnch->ncp;
1794 	struct namecache *tncp = tnch->ncp;
1795 	struct namecache *tncp_par;
1796 	struct nchash_head *nchpp;
1797 	u_int32_t hash;
1798 	char *oname;
1799 	char *nname;
1800 
1801 	++fncp->nc_generation;
1802 	++tncp->nc_generation;
1803 	if (tncp->nc_nlen) {
1804 		nname = kmalloc(tncp->nc_nlen + 1, M_VFSCACHE, M_WAITOK);
1805 		bcopy(tncp->nc_name, nname, tncp->nc_nlen);
1806 		nname[tncp->nc_nlen] = 0;
1807 	} else {
1808 		nname = NULL;
1809 	}
1810 
1811 	/*
1812 	 * Rename fncp (unlink)
1813 	 */
1814 	_cache_unlink_parent(fncp);
1815 	oname = fncp->nc_name;
1816 	fncp->nc_name = nname;
1817 	fncp->nc_nlen = tncp->nc_nlen;
1818 	if (oname)
1819 		kfree(oname, M_VFSCACHE);
1820 
1821 	tncp_par = tncp->nc_parent;
1822 	KKASSERT(tncp_par->nc_lock.lk_lockholder == curthread);
1823 
1824 	/*
1825 	 * Rename fncp (relink)
1826 	 */
1827 	hash = fnv_32_buf(fncp->nc_name, fncp->nc_nlen, FNV1_32_INIT);
1828 	hash = fnv_32_buf(&tncp_par, sizeof(tncp_par), hash);
1829 	nchpp = NCHHASH(hash);
1830 
1831 	spin_lock(&nchpp->spin);
1832 	_cache_link_parent(fncp, tncp_par, nchpp);
1833 	spin_unlock(&nchpp->spin);
1834 
1835 	/*
1836 	 * Get rid of the overwritten tncp (unlink)
1837 	 */
1838 	_cache_unlink(tncp);
1839 }
1840 
1841 /*
1842  * Perform actions consistent with unlinking a file.  The passed-in ncp
1843  * must be locked.
1844  *
1845  * The ncp is marked DESTROYED so it no longer shows up in searches,
1846  * and will be physically deleted when the vnode goes away.
1847  *
1848  * If the related vnode has no refs then we cycle it through vget()/vput()
1849  * to (possibly if we don't have a ref race) trigger a deactivation,
1850  * allowing the VFS to trivially detect and recycle the deleted vnode
1851  * via VOP_INACTIVE().
1852  *
1853  * NOTE: _cache_rename() will automatically call _cache_unlink() on the
1854  *	 target ncp.
1855  */
1856 void
1857 cache_unlink(struct nchandle *nch)
1858 {
1859 	_cache_unlink(nch->ncp);
1860 }
1861 
1862 static void
1863 _cache_unlink(struct namecache *ncp)
1864 {
1865 	struct vnode *vp;
1866 
1867 	/*
1868 	 * Causes lookups to fail and allows another ncp with the same
1869 	 * name to be created under ncp->nc_parent.
1870 	 */
1871 	ncp->nc_flag |= NCF_DESTROYED;
1872 	++ncp->nc_generation;
1873 
1874 	/*
1875 	 * Attempt to trigger a deactivation.  Set VREF_FINALIZE to
1876 	 * force action on the 1->0 transition.
1877 	 */
1878 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
1879 	    (vp = ncp->nc_vp) != NULL) {
1880 		atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1881 		if (VREFCNT(vp) <= 0) {
1882 			if (vget(vp, LK_SHARED) == 0)
1883 				vput(vp);
1884 		}
1885 	}
1886 }
1887 
1888 /*
1889  * Return non-zero if the nch might be associated with an open and/or mmap()'d
1890  * file.  The easy solution is to just return non-zero if the vnode has refs.
1891  * Used to interlock hammer2 reclaims (VREF_FINALIZE should already be set to
1892  * force the reclaim).
1893  */
1894 int
1895 cache_isopen(struct nchandle *nch)
1896 {
1897 	struct vnode *vp;
1898 	struct namecache *ncp = nch->ncp;
1899 
1900 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
1901 	    (vp = ncp->nc_vp) != NULL &&
1902 	    VREFCNT(vp)) {
1903 		return 1;
1904 	}
1905 	return 0;
1906 }
1907 
1908 
1909 /*
1910  * vget the vnode associated with the namecache entry.  Resolve the namecache
1911  * entry if necessary.  The passed ncp must be referenced and locked.  If
1912  * the ncp is resolved it might be locked shared.
1913  *
1914  * lk_type may be LK_SHARED, LK_EXCLUSIVE.  A ref'd, possibly locked
1915  * (depending on the passed lk_type) will be returned in *vpp with an error
1916  * of 0, or NULL will be returned in *vpp with a non-0 error code.  The
1917  * most typical error is ENOENT, meaning that the ncp represents a negative
1918  * cache hit and there is no vnode to retrieve, but other errors can occur
1919  * too.
1920  *
1921  * The vget() can race a reclaim.  If this occurs we re-resolve the
1922  * namecache entry.
1923  *
1924  * There are numerous places in the kernel where vget() is called on a
1925  * vnode while one or more of its namecache entries is locked.  Releasing
1926  * a vnode never deadlocks against locked namecache entries (the vnode
1927  * will not get recycled while referenced ncp's exist).  This means we
1928  * can safely acquire the vnode.  In fact, we MUST NOT release the ncp
1929  * lock when acquiring the vp lock or we might cause a deadlock.
1930  *
1931  * NOTE: The passed-in ncp must be locked exclusively if it is initially
1932  *	 unresolved.  If a reclaim race occurs the passed-in ncp will be
1933  *	 relocked exclusively before being re-resolved.
1934  */
1935 int
1936 cache_vget(struct nchandle *nch, struct ucred *cred,
1937 	   int lk_type, struct vnode **vpp)
1938 {
1939 	struct namecache *ncp;
1940 	struct vnode *vp;
1941 	int error;
1942 
1943 	ncp = nch->ncp;
1944 again:
1945 	vp = NULL;
1946 	if (ncp->nc_flag & NCF_UNRESOLVED)
1947 		error = cache_resolve(nch, cred);
1948 	else
1949 		error = 0;
1950 
1951 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1952 		error = vget(vp, lk_type);
1953 		if (error) {
1954 			/*
1955 			 * VRECLAIM race
1956 			 *
1957 			 * The ncp may have been locked shared, we must relock
1958 			 * it exclusively before we can set it to unresolved.
1959 			 */
1960 			if (error == ENOENT) {
1961 				kprintf("Warning: vnode reclaim race detected "
1962 					"in cache_vget on %p (%s)\n",
1963 					vp, ncp->nc_name);
1964 				_cache_unlock(ncp);
1965 				_cache_lock(ncp);
1966 				_cache_setunresolved(ncp);
1967 				goto again;
1968 			}
1969 
1970 			/*
1971 			 * Not a reclaim race, some other error.
1972 			 */
1973 			KKASSERT(ncp->nc_vp == vp);
1974 			vp = NULL;
1975 		} else {
1976 			KKASSERT(ncp->nc_vp == vp);
1977 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1978 		}
1979 	}
1980 	if (error == 0 && vp == NULL)
1981 		error = ENOENT;
1982 	*vpp = vp;
1983 	return(error);
1984 }
1985 
1986 /*
1987  * Similar to cache_vget() but only acquires a ref on the vnode.  The vnode
1988  * is already held by virtuue of the ncp being locked, but it might not be
1989  * referenced and while it is not referenced it can transition into the
1990  * VRECLAIMED state.
1991  *
1992  * NOTE: The passed-in ncp must be locked exclusively if it is initially
1993  *	 unresolved.  If a reclaim race occurs the passed-in ncp will be
1994  *	 relocked exclusively before being re-resolved.
1995  *
1996  * NOTE: At the moment we have to issue a vget() on the vnode, even though
1997  *	 we are going to immediately release the lock, in order to resolve
1998  *	 potential reclamation races.  Once we have a solid vnode ref that
1999  *	 was (at some point) interlocked via a vget(), the vnode will not
2000  *	 be reclaimed.
2001  *
2002  * NOTE: vhold counts (v_auxrefs) do not prevent reclamation.
2003  */
2004 int
2005 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
2006 {
2007 	struct namecache *ncp;
2008 	struct vnode *vp;
2009 	int error;
2010 	int v;
2011 
2012 	ncp = nch->ncp;
2013 again:
2014 	vp = NULL;
2015 	if (ncp->nc_flag & NCF_UNRESOLVED)
2016 		error = cache_resolve(nch, cred);
2017 	else
2018 		error = 0;
2019 
2020 	while (error == 0 && (vp = ncp->nc_vp) != NULL) {
2021 		/*
2022 		 * Try a lockless ref of the vnode.  VRECLAIMED transitions
2023 		 * use the vx_lock state and update-counter mechanism so we
2024 		 * can detect if one is in-progress or occurred.
2025 		 *
2026 		 * If we can successfully ref the vnode and interlock against
2027 		 * the update-counter mechanism, and VRECLAIMED is found to
2028 		 * not be set after that, we should be good.
2029 		 */
2030 		v = spin_access_start_only(&vp->v_spin);
2031 		if (__predict_true(spin_access_check_inprog(v) == 0)) {
2032 			vref_special(vp);
2033 			if (__predict_false(
2034 				    spin_access_end_only(&vp->v_spin, v))) {
2035 				vrele(vp);
2036 				continue;
2037 			}
2038 			if (__predict_true((vp->v_flag & VRECLAIMED) == 0)) {
2039 				break;
2040 			}
2041 			vrele(vp);
2042 			kprintf("CACHE_VREF: IN-RECLAIM\n");
2043 		}
2044 
2045 		/*
2046 		 * Do it the slow way
2047 		 */
2048 		error = vget(vp, LK_SHARED);
2049 		if (error) {
2050 			/*
2051 			 * VRECLAIM race
2052 			 */
2053 			if (error == ENOENT) {
2054 				kprintf("Warning: vnode reclaim race detected "
2055 					"in cache_vget on %p (%s)\n",
2056 					vp, ncp->nc_name);
2057 				_cache_unlock(ncp);
2058 				_cache_lock(ncp);
2059 				_cache_setunresolved(ncp);
2060 				goto again;
2061 			}
2062 
2063 			/*
2064 			 * Not a reclaim race, some other error.
2065 			 */
2066 			KKASSERT(ncp->nc_vp == vp);
2067 			vp = NULL;
2068 		} else {
2069 			KKASSERT(ncp->nc_vp == vp);
2070 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
2071 			/* caller does not want a lock */
2072 			vn_unlock(vp);
2073 		}
2074 		break;
2075 	}
2076 	if (error == 0 && vp == NULL)
2077 		error = ENOENT;
2078 	*vpp = vp;
2079 
2080 	return(error);
2081 }
2082 
2083 /*
2084  * Return a referenced vnode representing the parent directory of
2085  * ncp.
2086  *
2087  * Because the caller has locked the ncp it should not be possible for
2088  * the parent ncp to go away.  However, the parent can unresolve its
2089  * dvp at any time so we must be able to acquire a lock on the parent
2090  * to safely access nc_vp.
2091  *
2092  * We have to leave par unlocked when vget()ing dvp to avoid a deadlock,
2093  * so use vhold()/vdrop() while holding the lock to prevent dvp from
2094  * getting destroyed.
2095  *
2096  * NOTE: vhold() is allowed when dvp has 0 refs if we hold a
2097  *	 lock on the ncp in question..
2098  */
2099 struct vnode *
2100 cache_dvpref(struct namecache *ncp)
2101 {
2102 	struct namecache *par;
2103 	struct vnode *dvp;
2104 
2105 	dvp = NULL;
2106 	if ((par = ncp->nc_parent) != NULL) {
2107 		_cache_hold(par);
2108 		_cache_lock(par);
2109 		if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
2110 			if ((dvp = par->nc_vp) != NULL)
2111 				vhold(dvp);
2112 		}
2113 		_cache_unlock(par);
2114 		if (dvp) {
2115 			if (vget(dvp, LK_SHARED) == 0) {
2116 				vn_unlock(dvp);
2117 				vdrop(dvp);
2118 				/* return refd, unlocked dvp */
2119 			} else {
2120 				vdrop(dvp);
2121 				dvp = NULL;
2122 			}
2123 		}
2124 		_cache_drop(par);
2125 	}
2126 	return(dvp);
2127 }
2128 
2129 /*
2130  * Convert a directory vnode to a namecache record without any other
2131  * knowledge of the topology.  This ONLY works with directory vnodes and
2132  * is ONLY used by the NFS server.  dvp must be refd but unlocked, and the
2133  * returned ncp (if not NULL) will be held and unlocked.
2134  *
2135  * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
2136  * If 'makeit' is 1 we attempt to track-down and create the namecache topology
2137  * for dvp.  This will fail only if the directory has been deleted out from
2138  * under the caller.
2139  *
2140  * Callers must always check for a NULL return no matter the value of 'makeit'.
2141  *
2142  * To avoid underflowing the kernel stack each recursive call increments
2143  * the makeit variable.
2144  */
2145 
2146 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
2147 				  struct vnode *dvp, char *fakename);
2148 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
2149 				  struct vnode **saved_dvp);
2150 
2151 int
2152 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
2153 	      struct nchandle *nch)
2154 {
2155 	struct vnode *saved_dvp;
2156 	struct vnode *pvp;
2157 	char *fakename;
2158 	int error;
2159 
2160 	nch->ncp = NULL;
2161 	nch->mount = dvp->v_mount;
2162 	saved_dvp = NULL;
2163 	fakename = NULL;
2164 
2165 	/*
2166 	 * Handle the makeit == 0 degenerate case
2167 	 */
2168 	if (makeit == 0) {
2169 		spin_lock_shared(&dvp->v_spin);
2170 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
2171 		if (nch->ncp)
2172 			cache_hold(nch);
2173 		spin_unlock_shared(&dvp->v_spin);
2174 	}
2175 
2176 	/*
2177 	 * Loop until resolution, inside code will break out on error.
2178 	 */
2179 	while (makeit) {
2180 		/*
2181 		 * Break out if we successfully acquire a working ncp.
2182 		 */
2183 		spin_lock_shared(&dvp->v_spin);
2184 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
2185 		if (nch->ncp) {
2186 			cache_hold(nch);
2187 			spin_unlock_shared(&dvp->v_spin);
2188 			break;
2189 		}
2190 		spin_unlock_shared(&dvp->v_spin);
2191 
2192 		/*
2193 		 * If dvp is the root of its filesystem it should already
2194 		 * have a namecache pointer associated with it as a side
2195 		 * effect of the mount, but it may have been disassociated.
2196 		 */
2197 		if (dvp->v_flag & VROOT) {
2198 			nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
2199 			error = cache_resolve_mp(nch->mount);
2200 			_cache_put(nch->ncp);
2201 			if (ncvp_debug) {
2202 				kprintf("cache_fromdvp: resolve root of mount %p error %d",
2203 					dvp->v_mount, error);
2204 			}
2205 			if (error) {
2206 				if (ncvp_debug)
2207 					kprintf(" failed\n");
2208 				nch->ncp = NULL;
2209 				break;
2210 			}
2211 			if (ncvp_debug)
2212 				kprintf(" succeeded\n");
2213 			continue;
2214 		}
2215 
2216 		/*
2217 		 * If we are recursed too deeply resort to an O(n^2)
2218 		 * algorithm to resolve the namecache topology.  The
2219 		 * resolved pvp is left referenced in saved_dvp to
2220 		 * prevent the tree from being destroyed while we loop.
2221 		 */
2222 		if (makeit > 20) {
2223 			error = cache_fromdvp_try(dvp, cred, &saved_dvp);
2224 			if (error) {
2225 				kprintf("lookupdotdot(longpath) failed %d "
2226 				       "dvp %p\n", error, dvp);
2227 				nch->ncp = NULL;
2228 				break;
2229 			}
2230 			continue;
2231 		}
2232 
2233 		/*
2234 		 * Get the parent directory and resolve its ncp.
2235 		 */
2236 		if (fakename) {
2237 			kfree(fakename, M_TEMP);
2238 			fakename = NULL;
2239 		}
2240 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2241 					  &fakename);
2242 		if (error) {
2243 			kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
2244 			break;
2245 		}
2246 		vn_unlock(pvp);
2247 
2248 		/*
2249 		 * Reuse makeit as a recursion depth counter.  On success
2250 		 * nch will be fully referenced.
2251 		 */
2252 		cache_fromdvp(pvp, cred, makeit + 1, nch);
2253 		vrele(pvp);
2254 		if (nch->ncp == NULL)
2255 			break;
2256 
2257 		/*
2258 		 * Do an inefficient scan of pvp (embodied by ncp) to look
2259 		 * for dvp.  This will create a namecache record for dvp on
2260 		 * success.  We loop up to recheck on success.
2261 		 *
2262 		 * ncp and dvp are both held but not locked.
2263 		 */
2264 		error = cache_inefficient_scan(nch, cred, dvp, fakename);
2265 		if (error) {
2266 			kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
2267 				pvp, nch->ncp->nc_name, dvp);
2268 			cache_drop(nch);
2269 			/* nch was NULLed out, reload mount */
2270 			nch->mount = dvp->v_mount;
2271 			break;
2272 		}
2273 		if (ncvp_debug) {
2274 			kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
2275 				pvp, nch->ncp->nc_name);
2276 		}
2277 		cache_drop(nch);
2278 		/* nch was NULLed out, reload mount */
2279 		nch->mount = dvp->v_mount;
2280 	}
2281 
2282 	/*
2283 	 * If nch->ncp is non-NULL it will have been held already.
2284 	 */
2285 	if (fakename)
2286 		kfree(fakename, M_TEMP);
2287 	if (saved_dvp)
2288 		vrele(saved_dvp);
2289 	if (nch->ncp)
2290 		return (0);
2291 	return (EINVAL);
2292 }
2293 
2294 /*
2295  * Go up the chain of parent directories until we find something
2296  * we can resolve into the namecache.  This is very inefficient.
2297  */
2298 static
2299 int
2300 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
2301 		  struct vnode **saved_dvp)
2302 {
2303 	struct nchandle nch;
2304 	struct vnode *pvp;
2305 	int error;
2306 	static time_t last_fromdvp_report;
2307 	char *fakename;
2308 
2309 	/*
2310 	 * Loop getting the parent directory vnode until we get something we
2311 	 * can resolve in the namecache.
2312 	 */
2313 	vref(dvp);
2314 	nch.mount = dvp->v_mount;
2315 	nch.ncp = NULL;
2316 	fakename = NULL;
2317 
2318 	for (;;) {
2319 		if (fakename) {
2320 			kfree(fakename, M_TEMP);
2321 			fakename = NULL;
2322 		}
2323 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2324 					  &fakename);
2325 		if (error) {
2326 			vrele(dvp);
2327 			break;
2328 		}
2329 		vn_unlock(pvp);
2330 		spin_lock_shared(&pvp->v_spin);
2331 		if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
2332 			_cache_hold(nch.ncp);
2333 			spin_unlock_shared(&pvp->v_spin);
2334 			vrele(pvp);
2335 			break;
2336 		}
2337 		spin_unlock_shared(&pvp->v_spin);
2338 		if (pvp->v_flag & VROOT) {
2339 			nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
2340 			error = cache_resolve_mp(nch.mount);
2341 			_cache_unlock(nch.ncp);
2342 			vrele(pvp);
2343 			if (error) {
2344 				_cache_drop(nch.ncp);
2345 				nch.ncp = NULL;
2346 				vrele(dvp);
2347 			}
2348 			break;
2349 		}
2350 		vrele(dvp);
2351 		dvp = pvp;
2352 	}
2353 	if (error == 0) {
2354 		if (last_fromdvp_report != time_uptime) {
2355 			last_fromdvp_report = time_uptime;
2356 			kprintf("Warning: extremely inefficient path "
2357 				"resolution on %s\n",
2358 				nch.ncp->nc_name);
2359 		}
2360 		error = cache_inefficient_scan(&nch, cred, dvp, fakename);
2361 
2362 		/*
2363 		 * Hopefully dvp now has a namecache record associated with
2364 		 * it.  Leave it referenced to prevent the kernel from
2365 		 * recycling the vnode.  Otherwise extremely long directory
2366 		 * paths could result in endless recycling.
2367 		 */
2368 		if (*saved_dvp)
2369 		    vrele(*saved_dvp);
2370 		*saved_dvp = dvp;
2371 		_cache_drop(nch.ncp);
2372 	}
2373 	if (fakename)
2374 		kfree(fakename, M_TEMP);
2375 	return (error);
2376 }
2377 
2378 /*
2379  * Do an inefficient scan of the directory represented by ncp looking for
2380  * the directory vnode dvp.  ncp must be held but not locked on entry and
2381  * will be held on return.  dvp must be refd but not locked on entry and
2382  * will remain refd on return.
2383  *
2384  * Why do this at all?  Well, due to its stateless nature the NFS server
2385  * converts file handles directly to vnodes without necessarily going through
2386  * the namecache ops that would otherwise create the namecache topology
2387  * leading to the vnode.  We could either (1) Change the namecache algorithms
2388  * to allow disconnect namecache records that are re-merged opportunistically,
2389  * or (2) Make the NFS server backtrack and scan to recover a connected
2390  * namecache topology in order to then be able to issue new API lookups.
2391  *
2392  * It turns out that (1) is a huge mess.  It takes a nice clean set of
2393  * namecache algorithms and introduces a lot of complication in every subsystem
2394  * that calls into the namecache to deal with the re-merge case, especially
2395  * since we are using the namecache to placehold negative lookups and the
2396  * vnode might not be immediately assigned. (2) is certainly far less
2397  * efficient then (1), but since we are only talking about directories here
2398  * (which are likely to remain cached), the case does not actually run all
2399  * that often and has the supreme advantage of not polluting the namecache
2400  * algorithms.
2401  *
2402  * If a fakename is supplied just construct a namecache entry using the
2403  * fake name.
2404  */
2405 static int
2406 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
2407 		       struct vnode *dvp, char *fakename)
2408 {
2409 	struct nlcomponent nlc;
2410 	struct nchandle rncp;
2411 	struct dirent *den;
2412 	struct vnode *pvp;
2413 	struct vattr vat;
2414 	struct iovec iov;
2415 	struct uio uio;
2416 	int blksize;
2417 	int eofflag;
2418 	int bytes;
2419 	char *rbuf;
2420 	int error;
2421 
2422 	vat.va_blocksize = 0;
2423 	if ((error = VOP_GETATTR(dvp, &vat)) != 0)
2424 		return (error);
2425 	cache_lock(nch);
2426 	error = cache_vref(nch, cred, &pvp);
2427 	cache_unlock(nch);
2428 	if (error)
2429 		return (error);
2430 	if (ncvp_debug) {
2431 		kprintf("inefficient_scan of (%p,%s): directory iosize %ld "
2432 			"vattr fileid = %lld\n",
2433 			nch->ncp, nch->ncp->nc_name,
2434 			vat.va_blocksize,
2435 			(long long)vat.va_fileid);
2436 	}
2437 
2438 	/*
2439 	 * Use the supplied fakename if not NULL.  Fake names are typically
2440 	 * not in the actual filesystem hierarchy.  This is used by HAMMER
2441 	 * to glue @@timestamp recursions together.
2442 	 */
2443 	if (fakename) {
2444 		nlc.nlc_nameptr = fakename;
2445 		nlc.nlc_namelen = strlen(fakename);
2446 		rncp = cache_nlookup(nch, &nlc);
2447 		goto done;
2448 	}
2449 
2450 	if ((blksize = vat.va_blocksize) == 0)
2451 		blksize = DEV_BSIZE;
2452 	rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
2453 	rncp.ncp = NULL;
2454 
2455 	eofflag = 0;
2456 	uio.uio_offset = 0;
2457 again:
2458 	iov.iov_base = rbuf;
2459 	iov.iov_len = blksize;
2460 	uio.uio_iov = &iov;
2461 	uio.uio_iovcnt = 1;
2462 	uio.uio_resid = blksize;
2463 	uio.uio_segflg = UIO_SYSSPACE;
2464 	uio.uio_rw = UIO_READ;
2465 	uio.uio_td = curthread;
2466 
2467 	if (ncvp_debug >= 2)
2468 		kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
2469 	error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
2470 	if (error == 0) {
2471 		den = (struct dirent *)rbuf;
2472 		bytes = blksize - uio.uio_resid;
2473 
2474 		while (bytes > 0) {
2475 			if (ncvp_debug >= 2) {
2476 				kprintf("cache_inefficient_scan: %*.*s\n",
2477 					den->d_namlen, den->d_namlen,
2478 					den->d_name);
2479 			}
2480 			if (den->d_type != DT_WHT &&
2481 			    den->d_ino == vat.va_fileid) {
2482 				if (ncvp_debug) {
2483 					kprintf("cache_inefficient_scan: "
2484 					       "MATCHED inode %lld path %s/%*.*s\n",
2485 					       (long long)vat.va_fileid,
2486 					       nch->ncp->nc_name,
2487 					       den->d_namlen, den->d_namlen,
2488 					       den->d_name);
2489 				}
2490 				nlc.nlc_nameptr = den->d_name;
2491 				nlc.nlc_namelen = den->d_namlen;
2492 				rncp = cache_nlookup(nch, &nlc);
2493 				KKASSERT(rncp.ncp != NULL);
2494 				break;
2495 			}
2496 			bytes -= _DIRENT_DIRSIZ(den);
2497 			den = _DIRENT_NEXT(den);
2498 		}
2499 		if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
2500 			goto again;
2501 	}
2502 	kfree(rbuf, M_TEMP);
2503 done:
2504 	vrele(pvp);
2505 	if (rncp.ncp) {
2506 		if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
2507 			_cache_setvp(rncp.mount, rncp.ncp, dvp);
2508 			if (ncvp_debug >= 2) {
2509 				kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
2510 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
2511 			}
2512 		} else {
2513 			if (ncvp_debug >= 2) {
2514 				kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
2515 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
2516 					rncp.ncp->nc_vp);
2517 			}
2518 		}
2519 		if (rncp.ncp->nc_vp == NULL)
2520 			error = rncp.ncp->nc_error;
2521 		/*
2522 		 * Release rncp after a successful nlookup.  rncp was fully
2523 		 * referenced.
2524 		 */
2525 		cache_put(&rncp);
2526 	} else {
2527 		kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
2528 			dvp, nch->ncp->nc_name);
2529 		error = ENOENT;
2530 	}
2531 	return (error);
2532 }
2533 
2534 /*
2535  * This function must be called with the ncp held and locked and will unlock
2536  * and drop it during zapping.
2537  *
2538  * Zap a namecache entry.  The ncp is unconditionally set to an unresolved
2539  * state, which disassociates it from its vnode or pcpu_ncache[n].neg_list
2540  * and removes the related reference.  If the ncp can be removed, and the
2541  * parent can be zapped non-blocking, this function loops up.
2542  *
2543  * There will be one ref from the caller (which we now own).  The only
2544  * remaining autonomous refs to the ncp will then be due to nc_parent->nc_list,
2545  * so possibly 2 refs left.  Taking this into account, if there are no
2546  * additional refs and no children, the ncp will be removed from the topology
2547  * and destroyed.
2548  *
2549  * References and/or children may exist if the ncp is in the middle of the
2550  * topology, preventing the ncp from being destroyed.
2551  *
2552  * If nonblock is non-zero and the parent ncp cannot be locked we give up.
2553  *
2554  * This function may return a held (but NOT locked) parent node which the
2555  * caller must drop in a loop.  Looping is one way to avoid unbounded recursion
2556  * due to deep namecache trees.
2557  *
2558  * WARNING!  For MPSAFE operation this routine must acquire up to three
2559  *	     spin locks to be able to safely test nc_refs.  Lock order is
2560  *	     very important.
2561  *
2562  *	     hash spinlock if on hash list
2563  *	     parent spinlock if child of parent
2564  *	     (the ncp is unresolved so there is no vnode association)
2565  */
2566 static void
2567 cache_zap(struct namecache *ncp)
2568 {
2569 	struct namecache *par;
2570 	struct vnode *dropvp;
2571 	struct nchash_head *nchpp;
2572 	int refcmp;
2573 	int nonblock = 1;	/* XXX cleanup */
2574 
2575 again:
2576 	/*
2577 	 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
2578 	 * This gets rid of any vp->v_namecache list or negative list and
2579 	 * the related ref.
2580 	 */
2581 	_cache_setunresolved(ncp);
2582 
2583 	/*
2584 	 * Try to scrap the entry and possibly tail-recurse on its parent.
2585 	 * We only scrap unref'd (other then our ref) unresolved entries,
2586 	 * we do not scrap 'live' entries.
2587 	 *
2588 	 * If nc_parent is non NULL we expect 2 references, else just 1.
2589 	 * If there are more, someone else also holds the ncp and we cannot
2590 	 * destroy it.
2591 	 */
2592 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
2593 	KKASSERT(ncp->nc_refs > 0);
2594 
2595 	/*
2596 	 * If the ncp is linked to its parent it will also be in the hash
2597 	 * table.  We have to be able to lock the parent and the hash table.
2598 	 *
2599 	 * Acquire locks.  Note that the parent can't go away while we hold
2600 	 * a child locked.  If nc_parent is present, expect 2 refs instead
2601 	 * of 1.
2602 	 */
2603 	nchpp = NULL;
2604 	if ((par = ncp->nc_parent) != NULL) {
2605 		if (nonblock) {
2606 			if (_cache_lock_nonblock(par)) {
2607 				/* lock failed */
2608 				ncp->nc_flag |= NCF_DEFEREDZAP;
2609 				atomic_add_long(
2610 				    &pcpu_ncache[mycpu->gd_cpuid].numdefered,
2611 				    1);
2612 				_cache_unlock(ncp);
2613 				_cache_drop(ncp);	/* caller's ref */
2614 				return;
2615 			}
2616 			_cache_hold(par);
2617 		} else {
2618 			_cache_hold(par);
2619 			_cache_lock(par);
2620 		}
2621 		nchpp = ncp->nc_head;
2622 		spin_lock(&nchpp->spin);
2623 	}
2624 
2625 	/*
2626 	 * With the parent and nchpp locked, and the vnode removed
2627 	 * (no vp->v_namecache), we expect 1 or 2 refs.  If there are
2628 	 * more someone else has a ref and we cannot zap the entry.
2629 	 *
2630 	 * one for our hold
2631 	 * one for our parent link (parent also has one from the linkage)
2632 	 */
2633 	if (par)
2634 		refcmp = 2;
2635 	else
2636 		refcmp = 1;
2637 
2638 	/*
2639 	 * On failure undo the work we've done so far and drop the
2640 	 * caller's ref and ncp.
2641 	 */
2642 	if (ncp->nc_refs != refcmp || TAILQ_FIRST(&ncp->nc_list)) {
2643 		if (par) {
2644 			spin_unlock(&nchpp->spin);
2645 			_cache_put(par);
2646 		}
2647 		_cache_unlock(ncp);
2648 		_cache_drop(ncp);
2649 		return;
2650 	}
2651 
2652 	/*
2653 	 * We own all the refs and with the spinlocks held no further
2654 	 * refs can be acquired by others.
2655 	 *
2656 	 * Remove us from the hash list and parent list.  We have to
2657 	 * drop a ref on the parent's vp if the parent's list becomes
2658 	 * empty.
2659 	 */
2660 	dropvp = NULL;
2661 	if (par) {
2662 		struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
2663 
2664 		KKASSERT(nchpp == ncp->nc_head);
2665 		TAILQ_REMOVE(&ncp->nc_head->list, ncp, nc_hash);
2666 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
2667 		atomic_add_long(&pn->vfscache_count, -1);
2668 		if (TAILQ_EMPTY(&ncp->nc_list))
2669 			atomic_add_long(&pn->vfscache_leafs, -1);
2670 
2671 		if (TAILQ_EMPTY(&par->nc_list)) {
2672 			atomic_add_long(&pn->vfscache_leafs, 1);
2673 			if (par->nc_vp)
2674 				dropvp = par->nc_vp;
2675 		}
2676 		ncp->nc_parent = NULL;
2677 		ncp->nc_head = NULL;
2678 		spin_unlock(&nchpp->spin);
2679 		_cache_drop(par);	/* removal of ncp from par->nc_list */
2680 		/*_cache_unlock(par);*/
2681 	} else {
2682 		KKASSERT(ncp->nc_head == NULL);
2683 	}
2684 
2685 	/*
2686 	 * ncp should not have picked up any refs.  Physically
2687 	 * destroy the ncp.
2688 	 */
2689 	if (ncp->nc_refs != refcmp) {
2690 		panic("cache_zap: %p bad refs %d (expected %d)\n",
2691 			ncp, ncp->nc_refs, refcmp);
2692 	}
2693 	/* _cache_unlock(ncp) not required */
2694 	ncp->nc_refs = -1;	/* safety */
2695 	if (ncp->nc_name)
2696 		kfree(ncp->nc_name, M_VFSCACHE);
2697 	kfree(ncp, M_VFSCACHE);
2698 
2699 	/*
2700 	 * Delayed drop (we had to release our spinlocks)
2701 	 */
2702 	if (dropvp)
2703 		vdrop(dropvp);
2704 
2705 	/*
2706 	 * Loop up if we can recursively clean out the parent.
2707 	 */
2708 	if (par) {
2709 		refcmp = 1;		/* ref on parent */
2710 		if (par->nc_parent)	/* par->par */
2711 			++refcmp;
2712 		par->nc_flag &= ~NCF_DEFEREDZAP;
2713 		if ((par->nc_flag & NCF_UNRESOLVED) &&
2714 		    par->nc_refs == refcmp &&
2715 		    TAILQ_EMPTY(&par->nc_list)) {
2716 			ncp = par;
2717 			goto again;
2718 		}
2719 		_cache_unlock(par);
2720 		_cache_drop(par);
2721 	}
2722 }
2723 
2724 /*
2725  * Clean up dangling negative cache and defered-drop entries in the
2726  * namecache.
2727  *
2728  * This routine is called in the critical path and also called from
2729  * vnlru().  When called from vnlru we use a lower limit to try to
2730  * deal with the negative cache before the critical path has to start
2731  * dealing with it.
2732  */
2733 typedef enum { CHI_LOW, CHI_HIGH } cache_hs_t;
2734 
2735 static cache_hs_t neg_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
2736 static cache_hs_t pos_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
2737 
2738 void
2739 cache_hysteresis(int critpath)
2740 {
2741 	long poslimit;
2742 	long neglimit = maxvnodes / ncnegfactor;
2743 	long xnumcache = vfscache_leafs;
2744 
2745 	if (critpath == 0)
2746 		neglimit = neglimit * 8 / 10;
2747 
2748 	/*
2749 	 * Don't cache too many negative hits.  We use hysteresis to reduce
2750 	 * the impact on the critical path.
2751 	 */
2752 	switch(neg_cache_hysteresis_state[critpath]) {
2753 	case CHI_LOW:
2754 		if (vfscache_negs > MINNEG && vfscache_negs > neglimit) {
2755 			if (critpath)
2756 				_cache_cleanneg(ncnegflush);
2757 			else
2758 				_cache_cleanneg(ncnegflush +
2759 						vfscache_negs - neglimit);
2760 			neg_cache_hysteresis_state[critpath] = CHI_HIGH;
2761 		}
2762 		break;
2763 	case CHI_HIGH:
2764 		if (vfscache_negs > MINNEG * 9 / 10 &&
2765 		    vfscache_negs * 9 / 10 > neglimit
2766 		) {
2767 			if (critpath)
2768 				_cache_cleanneg(ncnegflush);
2769 			else
2770 				_cache_cleanneg(ncnegflush +
2771 						vfscache_negs * 9 / 10 -
2772 						neglimit);
2773 		} else {
2774 			neg_cache_hysteresis_state[critpath] = CHI_LOW;
2775 		}
2776 		break;
2777 	}
2778 
2779 	/*
2780 	 * Don't cache too many positive hits.  We use hysteresis to reduce
2781 	 * the impact on the critical path.
2782 	 *
2783 	 * Excessive positive hits can accumulate due to large numbers of
2784 	 * hardlinks (the vnode cache will not prevent hl ncps from growing
2785 	 * into infinity).
2786 	 */
2787 	if ((poslimit = ncposlimit) == 0)
2788 		poslimit = maxvnodes * 2;
2789 	if (critpath == 0)
2790 		poslimit = poslimit * 8 / 10;
2791 
2792 	switch(pos_cache_hysteresis_state[critpath]) {
2793 	case CHI_LOW:
2794 		if (xnumcache > poslimit && xnumcache > MINPOS) {
2795 			if (critpath)
2796 				_cache_cleanpos(ncposflush);
2797 			else
2798 				_cache_cleanpos(ncposflush +
2799 						xnumcache - poslimit);
2800 			pos_cache_hysteresis_state[critpath] = CHI_HIGH;
2801 		}
2802 		break;
2803 	case CHI_HIGH:
2804 		if (xnumcache > poslimit * 5 / 6 && xnumcache > MINPOS) {
2805 			if (critpath)
2806 				_cache_cleanpos(ncposflush);
2807 			else
2808 				_cache_cleanpos(ncposflush +
2809 						xnumcache - poslimit * 5 / 6);
2810 		} else {
2811 			pos_cache_hysteresis_state[critpath] = CHI_LOW;
2812 		}
2813 		break;
2814 	}
2815 
2816 	/*
2817 	 * Clean out dangling defered-zap ncps which could not be cleanly
2818 	 * dropped if too many build up.  Note that numdefered is
2819 	 * heuristical.  Make sure we are real-time for the current cpu,
2820 	 * plus the global rollup.
2821 	 */
2822 	if (pcpu_ncache[mycpu->gd_cpuid].numdefered + numdefered > neglimit) {
2823 		_cache_cleandefered();
2824 	}
2825 }
2826 
2827 /*
2828  * NEW NAMECACHE LOOKUP API
2829  *
2830  * Lookup an entry in the namecache.  The passed par_nch must be referenced
2831  * and unlocked.  A referenced and locked nchandle with a non-NULL nch.ncp
2832  * is ALWAYS returned, eve if the supplied component is illegal.
2833  *
2834  * The resulting namecache entry should be returned to the system with
2835  * cache_put() or cache_unlock() + cache_drop().
2836  *
2837  * namecache locks are recursive but care must be taken to avoid lock order
2838  * reversals (hence why the passed par_nch must be unlocked).  Locking
2839  * rules are to order for parent traversals, not for child traversals.
2840  *
2841  * Nobody else will be able to manipulate the associated namespace (e.g.
2842  * create, delete, rename, rename-target) until the caller unlocks the
2843  * entry.
2844  *
2845  * The returned entry will be in one of three states:  positive hit (non-null
2846  * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
2847  * Unresolved entries must be resolved through the filesystem to associate the
2848  * vnode and/or determine whether a positive or negative hit has occured.
2849  *
2850  * It is not necessary to lock a directory in order to lock namespace under
2851  * that directory.  In fact, it is explicitly not allowed to do that.  A
2852  * directory is typically only locked when being created, renamed, or
2853  * destroyed.
2854  *
2855  * The directory (par) may be unresolved, in which case any returned child
2856  * will likely also be marked unresolved.  Likely but not guarenteed.  Since
2857  * the filesystem lookup requires a resolved directory vnode the caller is
2858  * responsible for resolving the namecache chain top-down.  This API
2859  * specifically allows whole chains to be created in an unresolved state.
2860  */
2861 struct nchandle
2862 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
2863 {
2864 	struct nchandle nch;
2865 	struct namecache *ncp;
2866 	struct namecache *new_ncp;
2867 	struct namecache *rep_ncp;	/* reuse a destroyed ncp */
2868 	struct nchash_head *nchpp;
2869 	struct mount *mp;
2870 	u_int32_t hash;
2871 	globaldata_t gd;
2872 	int par_locked;
2873 	int use_excl;
2874 
2875 	gd = mycpu;
2876 	mp = par_nch->mount;
2877 	par_locked = 0;
2878 
2879 	/*
2880 	 * This is a good time to call it, no ncp's are locked by
2881 	 * the caller or us.
2882 	 */
2883 	cache_hysteresis(1);
2884 
2885 	/*
2886 	 * Try to locate an existing entry
2887 	 */
2888 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2889 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2890 	new_ncp = NULL;
2891 	use_excl = 0;
2892 	nchpp = NCHHASH(hash);
2893 restart:
2894 	rep_ncp = NULL;
2895 	if (use_excl)
2896 		spin_lock(&nchpp->spin);
2897 	else
2898 		spin_lock_shared(&nchpp->spin);
2899 
2900 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
2901 		/*
2902 		 * Break out if we find a matching entry.  Note that
2903 		 * UNRESOLVED entries may match, but DESTROYED entries
2904 		 * do not.
2905 		 *
2906 		 * We may be able to reuse DESTROYED entries that we come
2907 		 * across, even if the name does not match, as long as
2908 		 * nc_nlen is correct and the only hold ref is from the nchpp
2909 		 * list itself.
2910 		 */
2911 		if (ncp->nc_parent == par_nch->ncp &&
2912 		    ncp->nc_nlen == nlc->nlc_namelen) {
2913 			if (ncp->nc_flag & NCF_DESTROYED) {
2914 				if (ncp->nc_refs == 1 && rep_ncp == NULL)
2915 					rep_ncp = ncp;
2916 				continue;
2917 			}
2918 			if (bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen))
2919 				continue;
2920 			_cache_hold(ncp);
2921 			if (use_excl)
2922 				spin_unlock(&nchpp->spin);
2923 			else
2924 				spin_unlock_shared(&nchpp->spin);
2925 			if (par_locked) {
2926 				_cache_unlock(par_nch->ncp);
2927 				par_locked = 0;
2928 			}
2929 			if (_cache_lock_special(ncp) == 0) {
2930 				/*
2931 				 * Successfully locked but we must re-test
2932 				 * conditions that might have changed since
2933 				 * we did not have the lock before.
2934 				 */
2935 				if (ncp->nc_parent != par_nch->ncp ||
2936 				    ncp->nc_nlen != nlc->nlc_namelen ||
2937 				    bcmp(ncp->nc_name, nlc->nlc_nameptr,
2938 					 ncp->nc_nlen) ||
2939 				    (ncp->nc_flag & NCF_DESTROYED)) {
2940 					_cache_put(ncp);
2941 					goto restart;
2942 				}
2943 				_cache_auto_unresolve(mp, ncp);
2944 				if (new_ncp) {
2945 					_cache_free(new_ncp);
2946 					new_ncp = NULL; /* safety */
2947 				}
2948 				goto found;
2949 			}
2950 			_cache_get(ncp);	/* cycle the lock to block */
2951 			_cache_put(ncp);
2952 			_cache_drop(ncp);
2953 			goto restart;
2954 		}
2955 	}
2956 
2957 	/*
2958 	 * We failed to locate the entry, try to resurrect a destroyed
2959 	 * entry that we did find that is already correctly linked into
2960 	 * nchpp and the parent.  We must re-test conditions after
2961 	 * successfully locking rep_ncp.
2962 	 *
2963 	 * This case can occur under heavy loads due to not being able
2964 	 * to safely lock the parent in cache_zap().  Nominally a repeated
2965 	 * create/unlink load, but only the namelen needs to match.
2966 	 *
2967 	 * An exclusive lock on the nchpp is required to process this case,
2968 	 * otherwise a race can cause duplicate entries to be created with
2969 	 * one cpu reusing a DESTROYED ncp while another creates a new_ncp.
2970 	 */
2971 	if (rep_ncp && use_excl) {
2972 		if (_cache_lock_nonblock(rep_ncp) == 0) {
2973 			_cache_hold(rep_ncp);
2974 			if (rep_ncp->nc_parent == par_nch->ncp &&
2975 			    rep_ncp->nc_nlen == nlc->nlc_namelen &&
2976 			    (rep_ncp->nc_flag & NCF_DESTROYED) &&
2977 			    rep_ncp->nc_refs == 2) {
2978 				/*
2979 				 * Update nc_name.
2980 				 */
2981 				ncp = rep_ncp;
2982 				bcopy(nlc->nlc_nameptr, ncp->nc_name,
2983 				      nlc->nlc_namelen);
2984 
2985 				/*
2986 				 * This takes some care.  We must clear the
2987 				 * NCF_DESTROYED flag before unlocking the
2988 				 * hash chain so other concurrent searches
2989 				 * do not skip this element.
2990 				 *
2991 				 * We must also unlock the hash chain before
2992 				 * unresolving the ncp to avoid deadlocks.
2993 				 * We hold the lock on the ncp so we can safely
2994 				 * reinitialize nc_flag after that.
2995 				 */
2996 				ncp->nc_flag &= ~NCF_DESTROYED;
2997 				spin_unlock(&nchpp->spin);	/* use_excl */
2998 
2999 				_cache_setunresolved(ncp);
3000 				ncp->nc_flag = NCF_UNRESOLVED;
3001 				ncp->nc_error = ENOTCONN;
3002 				if (par_locked) {
3003 					_cache_unlock(par_nch->ncp);
3004 					par_locked = 0;
3005 				}
3006 				if (new_ncp) {
3007 					_cache_free(new_ncp);
3008 					new_ncp = NULL; /* safety */
3009 				}
3010 				goto found;
3011 			}
3012 			_cache_put(rep_ncp);
3013 		}
3014 	}
3015 
3016 	/*
3017 	 * Otherwise create a new entry and add it to the cache.  The parent
3018 	 * ncp must also be locked so we can link into it.
3019 	 *
3020 	 * We have to relookup after possibly blocking in kmalloc or
3021 	 * when locking par_nch.
3022 	 *
3023 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
3024 	 *	 mount case, in which case nc_name will be NULL.
3025 	 *
3026 	 * NOTE: In the rep_ncp != NULL case we are trying to reuse
3027 	 *	 a DESTROYED entry, but didn't have an exclusive lock.
3028 	 *	 In this situation we do not create a new_ncp.
3029 	 */
3030 	if (new_ncp == NULL) {
3031 		if (use_excl)
3032 			spin_unlock(&nchpp->spin);
3033 		else
3034 			spin_unlock_shared(&nchpp->spin);
3035 		if (rep_ncp == NULL) {
3036 			new_ncp = cache_alloc(nlc->nlc_namelen);
3037 			if (nlc->nlc_namelen) {
3038 				bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
3039 				      nlc->nlc_namelen);
3040 				new_ncp->nc_name[nlc->nlc_namelen] = 0;
3041 			}
3042 		}
3043 		use_excl = 1;
3044 		goto restart;
3045 	}
3046 
3047 	/*
3048 	 * NOTE! The spinlock is held exclusively here because new_ncp
3049 	 *	 is non-NULL.
3050 	 */
3051 	if (par_locked == 0) {
3052 		spin_unlock(&nchpp->spin);
3053 		_cache_lock(par_nch->ncp);
3054 		par_locked = 1;
3055 		goto restart;
3056 	}
3057 
3058 	/*
3059 	 * Link to parent (requires another ref, the one already in new_ncp
3060 	 * is what we wil lreturn).
3061 	 *
3062 	 * WARNING!  We still hold the spinlock.  We have to set the hash
3063 	 *	     table entry atomically.
3064 	 */
3065 	ncp = new_ncp;
3066 	++ncp->nc_refs;
3067 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
3068 	spin_unlock(&nchpp->spin);
3069 	_cache_unlock(par_nch->ncp);
3070 	/* par_locked = 0 - not used */
3071 found:
3072 	/*
3073 	 * stats and namecache size management
3074 	 */
3075 	if (ncp->nc_flag & NCF_UNRESOLVED)
3076 		++gd->gd_nchstats->ncs_miss;
3077 	else if (ncp->nc_vp)
3078 		++gd->gd_nchstats->ncs_goodhits;
3079 	else
3080 		++gd->gd_nchstats->ncs_neghits;
3081 	nch.mount = mp;
3082 	nch.ncp = ncp;
3083 	_cache_mntref(nch.mount);
3084 
3085 	return(nch);
3086 }
3087 
3088 /*
3089  * Attempt to lookup a namecache entry and return with a shared namecache
3090  * lock.  This operates non-blocking.  EWOULDBLOCK is returned if excl is
3091  * set or we are unable to lock.
3092  */
3093 int
3094 cache_nlookup_maybe_shared(struct nchandle *par_nch,
3095 			   struct nlcomponent *nlc,
3096 			   int excl, struct nchandle *res_nch)
3097 {
3098 	struct namecache *ncp;
3099 	struct nchash_head *nchpp;
3100 	struct mount *mp;
3101 	u_int32_t hash;
3102 	globaldata_t gd;
3103 
3104 	/*
3105 	 * If exclusive requested or shared namecache locks are disabled,
3106 	 * return failure.
3107 	 */
3108 	if (ncp_shared_lock_disable || excl)
3109 		return(EWOULDBLOCK);
3110 
3111 	gd = mycpu;
3112 	mp = par_nch->mount;
3113 
3114 	/*
3115 	 * This is a good time to call it, no ncp's are locked by
3116 	 * the caller or us.
3117 	 */
3118 	cache_hysteresis(1);
3119 
3120 	/*
3121 	 * Try to locate an existing entry
3122 	 */
3123 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3124 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3125 	nchpp = NCHHASH(hash);
3126 
3127 	spin_lock_shared(&nchpp->spin);
3128 
3129 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
3130 		/*
3131 		 * Break out if we find a matching entry.  Note that
3132 		 * UNRESOLVED entries may match, but DESTROYED entries
3133 		 * do not.
3134 		 */
3135 		if (ncp->nc_parent == par_nch->ncp &&
3136 		    ncp->nc_nlen == nlc->nlc_namelen &&
3137 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
3138 		    (ncp->nc_flag & NCF_DESTROYED) == 0
3139 		) {
3140 			_cache_hold(ncp);
3141 			spin_unlock_shared(&nchpp->spin);
3142 
3143 			if (_cache_lock_shared_special(ncp) == 0) {
3144 				if (ncp->nc_parent == par_nch->ncp &&
3145 				    ncp->nc_nlen == nlc->nlc_namelen &&
3146 				    bcmp(ncp->nc_name, nlc->nlc_nameptr,
3147 					 ncp->nc_nlen) == 0 &&
3148 				    (ncp->nc_flag & NCF_DESTROYED) == 0 &&
3149 				    (ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
3150 				    _cache_auto_unresolve_test(mp, ncp) == 0) {
3151 					goto found;
3152 				}
3153 				_cache_unlock(ncp);
3154 			}
3155 			_cache_drop(ncp);
3156 			return(EWOULDBLOCK);
3157 		}
3158 	}
3159 
3160 	/*
3161 	 * Failure
3162 	 */
3163 	spin_unlock_shared(&nchpp->spin);
3164 	return(EWOULDBLOCK);
3165 
3166 	/*
3167 	 * Success
3168 	 *
3169 	 * Note that nc_error might be non-zero (e.g ENOENT).
3170 	 */
3171 found:
3172 	res_nch->mount = mp;
3173 	res_nch->ncp = ncp;
3174 	++gd->gd_nchstats->ncs_goodhits;
3175 	_cache_mntref(res_nch->mount);
3176 
3177 	KKASSERT(ncp->nc_error != EWOULDBLOCK);
3178 	return(ncp->nc_error);
3179 }
3180 
3181 /*
3182  * This is a non-blocking verison of cache_nlookup() used by
3183  * nfs_readdirplusrpc_uio().  It can fail for any reason and
3184  * will return nch.ncp == NULL in that case.
3185  */
3186 struct nchandle
3187 cache_nlookup_nonblock(struct nchandle *par_nch, struct nlcomponent *nlc)
3188 {
3189 	struct nchandle nch;
3190 	struct namecache *ncp;
3191 	struct namecache *new_ncp;
3192 	struct nchash_head *nchpp;
3193 	struct mount *mp;
3194 	u_int32_t hash;
3195 	globaldata_t gd;
3196 	int par_locked;
3197 
3198 	gd = mycpu;
3199 	mp = par_nch->mount;
3200 	par_locked = 0;
3201 
3202 	/*
3203 	 * Try to locate an existing entry
3204 	 */
3205 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3206 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3207 	new_ncp = NULL;
3208 	nchpp = NCHHASH(hash);
3209 restart:
3210 	spin_lock(&nchpp->spin);
3211 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
3212 		/*
3213 		 * Break out if we find a matching entry.  Note that
3214 		 * UNRESOLVED entries may match, but DESTROYED entries
3215 		 * do not.
3216 		 */
3217 		if (ncp->nc_parent == par_nch->ncp &&
3218 		    ncp->nc_nlen == nlc->nlc_namelen &&
3219 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
3220 		    (ncp->nc_flag & NCF_DESTROYED) == 0
3221 		) {
3222 			_cache_hold(ncp);
3223 			spin_unlock(&nchpp->spin);
3224 			if (par_locked) {
3225 				_cache_unlock(par_nch->ncp);
3226 				par_locked = 0;
3227 			}
3228 			if (_cache_lock_special(ncp) == 0) {
3229 				if (ncp->nc_parent != par_nch->ncp ||
3230 				    ncp->nc_nlen != nlc->nlc_namelen ||
3231 				    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) ||
3232 				    (ncp->nc_flag & NCF_DESTROYED)) {
3233 					kprintf("cache_lookup_nonblock: "
3234 						"ncp-race %p %*.*s\n",
3235 						ncp,
3236 						nlc->nlc_namelen,
3237 						nlc->nlc_namelen,
3238 						nlc->nlc_nameptr);
3239 					_cache_unlock(ncp);
3240 					_cache_drop(ncp);
3241 					goto failed;
3242 				}
3243 				_cache_auto_unresolve(mp, ncp);
3244 				if (new_ncp) {
3245 					_cache_free(new_ncp);
3246 					new_ncp = NULL;
3247 				}
3248 				goto found;
3249 			}
3250 			_cache_drop(ncp);
3251 			goto failed;
3252 		}
3253 	}
3254 
3255 	/*
3256 	 * We failed to locate an entry, create a new entry and add it to
3257 	 * the cache.  The parent ncp must also be locked so we
3258 	 * can link into it.
3259 	 *
3260 	 * We have to relookup after possibly blocking in kmalloc or
3261 	 * when locking par_nch.
3262 	 *
3263 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
3264 	 *	 mount case, in which case nc_name will be NULL.
3265 	 */
3266 	if (new_ncp == NULL) {
3267 		spin_unlock(&nchpp->spin);
3268 		new_ncp = cache_alloc(nlc->nlc_namelen);
3269 		if (nlc->nlc_namelen) {
3270 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
3271 			      nlc->nlc_namelen);
3272 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
3273 		}
3274 		goto restart;
3275 	}
3276 	if (par_locked == 0) {
3277 		spin_unlock(&nchpp->spin);
3278 		if (_cache_lock_nonblock(par_nch->ncp) == 0) {
3279 			par_locked = 1;
3280 			goto restart;
3281 		}
3282 		goto failed;
3283 	}
3284 
3285 	/*
3286 	 * Link to parent (requires another ref, the one already in new_ncp
3287 	 * is what we wil lreturn).
3288 	 *
3289 	 * WARNING!  We still hold the spinlock.  We have to set the hash
3290 	 *	     table entry atomically.
3291 	 */
3292 	ncp = new_ncp;
3293 	++ncp->nc_refs;
3294 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
3295 	spin_unlock(&nchpp->spin);
3296 	_cache_unlock(par_nch->ncp);
3297 	/* par_locked = 0 - not used */
3298 found:
3299 	/*
3300 	 * stats and namecache size management
3301 	 */
3302 	if (ncp->nc_flag & NCF_UNRESOLVED)
3303 		++gd->gd_nchstats->ncs_miss;
3304 	else if (ncp->nc_vp)
3305 		++gd->gd_nchstats->ncs_goodhits;
3306 	else
3307 		++gd->gd_nchstats->ncs_neghits;
3308 	nch.mount = mp;
3309 	nch.ncp = ncp;
3310 	_cache_mntref(nch.mount);
3311 
3312 	return(nch);
3313 failed:
3314 	if (new_ncp) {
3315 		_cache_free(new_ncp);
3316 		new_ncp = NULL;
3317 	}
3318 	nch.mount = NULL;
3319 	nch.ncp = NULL;
3320 	return(nch);
3321 }
3322 
3323 /*
3324  * This version is non-locking.  The caller must validate the result
3325  * for parent-to-child continuity.
3326  *
3327  * It can fail for any reason and will return nch.ncp == NULL in that case.
3328  */
3329 struct nchandle
3330 cache_nlookup_nonlocked(struct nchandle *par_nch, struct nlcomponent *nlc)
3331 {
3332 	struct nchandle nch;
3333 	struct namecache *ncp;
3334 	struct nchash_head *nchpp;
3335 	struct mount *mp;
3336 	u_int32_t hash;
3337 	globaldata_t gd;
3338 
3339 	gd = mycpu;
3340 	mp = par_nch->mount;
3341 
3342 	/*
3343 	 * Try to locate an existing entry
3344 	 */
3345 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3346 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3347 	nchpp = NCHHASH(hash);
3348 
3349 	spin_lock_shared(&nchpp->spin);
3350 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
3351 		/*
3352 		 * Break out if we find a matching entry.  Note that
3353 		 * UNRESOLVED entries may match, but DESTROYED entries
3354 		 * do not.
3355 		 *
3356 		 * Resolved NFS entries which have timed out fail so the
3357 		 * caller can rerun with normal locking.
3358 		 */
3359 		if (ncp->nc_parent == par_nch->ncp &&
3360 		    ncp->nc_nlen == nlc->nlc_namelen &&
3361 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
3362 		    (ncp->nc_flag & NCF_DESTROYED) == 0
3363 		) {
3364 			if (_cache_auto_unresolve_test(par_nch->mount, ncp))
3365 				break;
3366 			_cache_hold(ncp);
3367 			spin_unlock_shared(&nchpp->spin);
3368 			goto found;
3369 		}
3370 	}
3371 	spin_unlock_shared(&nchpp->spin);
3372 	nch.mount = NULL;
3373 	nch.ncp = NULL;
3374 	return nch;
3375 found:
3376 	/*
3377 	 * stats and namecache size management
3378 	 */
3379 	if (ncp->nc_flag & NCF_UNRESOLVED)
3380 		++gd->gd_nchstats->ncs_miss;
3381 	else if (ncp->nc_vp)
3382 		++gd->gd_nchstats->ncs_goodhits;
3383 	else
3384 		++gd->gd_nchstats->ncs_neghits;
3385 	nch.mount = mp;
3386 	nch.ncp = ncp;
3387 	_cache_mntref(nch.mount);
3388 
3389 	return(nch);
3390 }
3391 
3392 /*
3393  * The namecache entry is marked as being used as a mount point.
3394  * Locate the mount if it is visible to the caller.  The DragonFly
3395  * mount system allows arbitrary loops in the topology and disentangles
3396  * those loops by matching against (mp, ncp) rather than just (ncp).
3397  * This means any given ncp can dive any number of mounts, depending
3398  * on the relative mount (e.g. nullfs) the caller is at in the topology.
3399  *
3400  * We use a very simple frontend cache to reduce SMP conflicts,
3401  * which we have to do because the mountlist scan needs an exclusive
3402  * lock around its ripout info list.  Not to mention that there might
3403  * be a lot of mounts.
3404  *
3405  * Because all mounts can potentially be accessed by all cpus, break the cpu's
3406  * down a bit to allow some contention rather than making the cache
3407  * excessively huge.
3408  *
3409  * The hash table is split into per-cpu areas, is 4-way set-associative.
3410  */
3411 struct findmount_info {
3412 	struct mount *result;
3413 	struct mount *nch_mount;
3414 	struct namecache *nch_ncp;
3415 };
3416 
3417 static __inline
3418 struct ncmount_cache *
3419 ncmount_cache_lookup4(struct mount *mp, struct namecache *ncp)
3420 {
3421 	uint32_t hash;
3422 
3423 	hash = iscsi_crc32(&mp, sizeof(mp));
3424 	hash = iscsi_crc32_ext(&ncp, sizeof(ncp), hash);
3425 	hash ^= hash >> 16;
3426 	hash = hash & ((NCMOUNT_NUMCACHE - 1) & ~(NCMOUNT_SET - 1));
3427 
3428 	return (&ncmount_cache[hash]);
3429 }
3430 
3431 static
3432 struct ncmount_cache *
3433 ncmount_cache_lookup(struct mount *mp, struct namecache *ncp)
3434 {
3435 	struct ncmount_cache *ncc;
3436 	struct ncmount_cache *best;
3437 	int delta;
3438 	int best_delta;
3439 	int i;
3440 
3441 	ncc = ncmount_cache_lookup4(mp, ncp);
3442 
3443 	/*
3444 	 * NOTE: When checking for a ticks overflow implement a slop of
3445 	 *	 2 ticks just to be safe, because ticks is accessed
3446 	 *	 non-atomically one CPU can increment it while another
3447 	 *	 is still using the old value.
3448 	 */
3449 	if (ncc->ncp == ncp && ncc->mp == mp)	/* 0 */
3450 		return ncc;
3451 	delta = (int)(ticks - ncc->ticks);	/* beware GCC opts */
3452 	if (delta < -2)				/* overflow reset */
3453 		ncc->ticks = ticks;
3454 	best = ncc;
3455 	best_delta = delta;
3456 
3457 	for (i = 1; i < NCMOUNT_SET; ++i) {	/* 1, 2, 3 */
3458 		++ncc;
3459 		if (ncc->ncp == ncp && ncc->mp == mp)
3460 			return ncc;
3461 		delta = (int)(ticks - ncc->ticks);
3462 		if (delta < -2)
3463 			ncc->ticks = ticks;
3464 		if (delta > best_delta) {
3465 			best_delta = delta;
3466 			best = ncc;
3467 		}
3468 	}
3469 	return best;
3470 }
3471 
3472 /*
3473  * pcpu-optimized mount search.  Locate the recursive mountpoint, avoid
3474  * doing an expensive mountlist_scan*() if possible.
3475  *
3476  * (mp, ncp) -> mountonpt.k
3477  *
3478  * Returns a referenced mount pointer or NULL
3479  *
3480  * General SMP operation uses a per-cpu umount_spin to interlock unmount
3481  * operations (that is, where the mp_target can be freed out from under us).
3482  *
3483  * Lookups use the ncc->updating counter to validate the contents in order
3484  * to avoid having to obtain the per cache-element spin-lock.  In addition,
3485  * the ticks field is only updated when it changes.  However, if our per-cpu
3486  * lock fails due to an unmount-in-progress, we fall-back to the
3487  * cache-element's spin-lock.
3488  */
3489 struct mount *
3490 cache_findmount(struct nchandle *nch)
3491 {
3492 	struct findmount_info info;
3493 	struct ncmount_cache *ncc;
3494 	struct ncmount_cache ncc_copy;
3495 	struct mount *target;
3496 	struct pcpu_ncache *pcpu;
3497 	struct spinlock *spinlk;
3498 	int update;
3499 
3500 	pcpu = pcpu_ncache;
3501 	if (ncmount_cache_enable == 0 || pcpu == NULL) {
3502 		ncc = NULL;
3503 		goto skip;
3504 	}
3505 	pcpu += mycpu->gd_cpuid;
3506 
3507 again:
3508 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3509 	if (ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3510 found:
3511 		/*
3512 		 * This is a bit messy for now because we do not yet have
3513 		 * safe disposal of mount structures.  We have to ref
3514 		 * ncc->mp_target but the 'update' counter only tell us
3515 		 * whether the cache has changed after the fact.
3516 		 *
3517 		 * For now get a per-cpu spinlock that will only contend
3518 		 * against umount's.  This is the best path.  If it fails,
3519 		 * instead of waiting on the umount we fall-back to a
3520 		 * shared ncc->spin lock, which will generally only cost a
3521 		 * cache ping-pong.
3522 		 */
3523 		update = ncc->updating;
3524 		if (__predict_true(spin_trylock(&pcpu->umount_spin))) {
3525 			spinlk = &pcpu->umount_spin;
3526 		} else {
3527 			spinlk = &ncc->spin;
3528 			spin_lock_shared(spinlk);
3529 		}
3530 		if (update & 1) {		/* update in progress */
3531 			spin_unlock_any(spinlk);
3532 			goto skip;
3533 		}
3534 		ncc_copy = *ncc;
3535 		cpu_lfence();
3536 		if (ncc->updating != update) {	/* content changed */
3537 			spin_unlock_any(spinlk);
3538 			goto again;
3539 		}
3540 		if (ncc_copy.ncp != nch->ncp || ncc_copy.mp != nch->mount) {
3541 			spin_unlock_any(spinlk);
3542 			goto again;
3543 		}
3544 		if (ncc_copy.isneg == 0) {
3545 			target = ncc_copy.mp_target;
3546 			if (target->mnt_ncmounton.mount == nch->mount &&
3547 			    target->mnt_ncmounton.ncp == nch->ncp) {
3548 				/*
3549 				 * Cache hit (positive) (avoid dirtying
3550 				 * the cache line if possible)
3551 				 */
3552 				if (ncc->ticks != (int)ticks)
3553 					ncc->ticks = (int)ticks;
3554 				_cache_mntref(target);
3555 			}
3556 		} else {
3557 			/*
3558 			 * Cache hit (negative) (avoid dirtying
3559 			 * the cache line if possible)
3560 			 */
3561 			if (ncc->ticks != (int)ticks)
3562 				ncc->ticks = (int)ticks;
3563 			target = NULL;
3564 		}
3565 		spin_unlock_any(spinlk);
3566 
3567 		return target;
3568 	}
3569 skip:
3570 
3571 	/*
3572 	 * Slow
3573 	 */
3574 	info.result = NULL;
3575 	info.nch_mount = nch->mount;
3576 	info.nch_ncp = nch->ncp;
3577 	mountlist_scan(cache_findmount_callback, &info,
3578 		       MNTSCAN_FORWARD | MNTSCAN_NOBUSY | MNTSCAN_NOUNLOCK);
3579 
3580 	/*
3581 	 * To reduce multi-re-entry on the cache, relookup in the cache.
3582 	 * This can still race, obviously, but that's ok.
3583 	 */
3584 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3585 	if (ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3586 		if (info.result)
3587 			atomic_add_int(&info.result->mnt_refs, -1);
3588 		goto found;
3589 	}
3590 
3591 	/*
3592 	 * Cache the result.
3593 	 */
3594 	if ((info.result == NULL ||
3595 	    (info.result->mnt_kern_flag & MNTK_UNMOUNT) == 0)) {
3596 		spin_lock(&ncc->spin);
3597 		atomic_add_int_nonlocked(&ncc->updating, 1);
3598 		cpu_sfence();
3599 		KKASSERT(ncc->updating & 1);
3600 		if (ncc->mp != nch->mount) {
3601 			if (ncc->mp)
3602 				atomic_add_int(&ncc->mp->mnt_refs, -1);
3603 			atomic_add_int(&nch->mount->mnt_refs, 1);
3604 			ncc->mp = nch->mount;
3605 		}
3606 		ncc->ncp = nch->ncp;	/* ptr compares only, not refd*/
3607 		ncc->ticks = (int)ticks;
3608 
3609 		if (info.result) {
3610 			ncc->isneg = 0;
3611 			if (ncc->mp_target != info.result) {
3612 				if (ncc->mp_target)
3613 					atomic_add_int(&ncc->mp_target->mnt_refs, -1);
3614 				ncc->mp_target = info.result;
3615 				atomic_add_int(&info.result->mnt_refs, 1);
3616 			}
3617 		} else {
3618 			ncc->isneg = 1;
3619 			if (ncc->mp_target) {
3620 				atomic_add_int(&ncc->mp_target->mnt_refs, -1);
3621 				ncc->mp_target = NULL;
3622 			}
3623 		}
3624 		cpu_sfence();
3625 		atomic_add_int_nonlocked(&ncc->updating, 1);
3626 		spin_unlock(&ncc->spin);
3627 	}
3628 	return(info.result);
3629 }
3630 
3631 static
3632 int
3633 cache_findmount_callback(struct mount *mp, void *data)
3634 {
3635 	struct findmount_info *info = data;
3636 
3637 	/*
3638 	 * Check the mount's mounted-on point against the passed nch.
3639 	 */
3640 	if (mp->mnt_ncmounton.mount == info->nch_mount &&
3641 	    mp->mnt_ncmounton.ncp == info->nch_ncp
3642 	) {
3643 	    info->result = mp;
3644 	    _cache_mntref(mp);
3645 	    return(-1);
3646 	}
3647 	return(0);
3648 }
3649 
3650 void
3651 cache_dropmount(struct mount *mp)
3652 {
3653 	_cache_mntrel(mp);
3654 }
3655 
3656 /*
3657  * mp is being mounted, scrap entries matching mp->mnt_ncmounton (positive
3658  * or negative).
3659  *
3660  * A full scan is not required, but for now just do it anyway.
3661  */
3662 void
3663 cache_ismounting(struct mount *mp)
3664 {
3665 	struct ncmount_cache *ncc;
3666 	struct mount *ncc_mp;
3667 	int i;
3668 
3669 	if (pcpu_ncache == NULL)
3670 		return;
3671 
3672 	for (i = 0; i < NCMOUNT_NUMCACHE; ++i) {
3673 		ncc = &ncmount_cache[i];
3674 		if (ncc->mp != mp->mnt_ncmounton.mount ||
3675 		    ncc->ncp != mp->mnt_ncmounton.ncp) {
3676 			continue;
3677 		}
3678 		spin_lock(&ncc->spin);
3679 		atomic_add_int_nonlocked(&ncc->updating, 1);
3680 		cpu_sfence();
3681 		KKASSERT(ncc->updating & 1);
3682 		if (ncc->mp != mp->mnt_ncmounton.mount ||
3683 		    ncc->ncp != mp->mnt_ncmounton.ncp) {
3684 			cpu_sfence();
3685 			++ncc->updating;
3686 			spin_unlock(&ncc->spin);
3687 			continue;
3688 		}
3689 		ncc_mp = ncc->mp;
3690 		ncc->ncp = NULL;
3691 		ncc->mp = NULL;
3692 		if (ncc_mp)
3693 			atomic_add_int(&ncc_mp->mnt_refs, -1);
3694 		ncc_mp = ncc->mp_target;
3695 		ncc->mp_target = NULL;
3696 		if (ncc_mp)
3697 			atomic_add_int(&ncc_mp->mnt_refs, -1);
3698 		ncc->ticks = (int)ticks - hz * 120;
3699 
3700 		cpu_sfence();
3701 		atomic_add_int_nonlocked(&ncc->updating, 1);
3702 		spin_unlock(&ncc->spin);
3703 	}
3704 
3705 	/*
3706 	 * Pre-cache the mount point
3707 	 */
3708 	ncc = ncmount_cache_lookup(mp->mnt_ncmounton.mount,
3709 				   mp->mnt_ncmounton.ncp);
3710 
3711 	spin_lock(&ncc->spin);
3712 	atomic_add_int_nonlocked(&ncc->updating, 1);
3713 	cpu_sfence();
3714 	KKASSERT(ncc->updating & 1);
3715 
3716 	if (ncc->mp)
3717 		atomic_add_int(&ncc->mp->mnt_refs, -1);
3718 	atomic_add_int(&mp->mnt_ncmounton.mount->mnt_refs, 1);
3719 	ncc->mp = mp->mnt_ncmounton.mount;
3720 	ncc->ncp = mp->mnt_ncmounton.ncp;	/* ptr compares only */
3721 	ncc->ticks = (int)ticks;
3722 
3723 	ncc->isneg = 0;
3724 	if (ncc->mp_target != mp) {
3725 		if (ncc->mp_target)
3726 			atomic_add_int(&ncc->mp_target->mnt_refs, -1);
3727 		ncc->mp_target = mp;
3728 		atomic_add_int(&mp->mnt_refs, 1);
3729 	}
3730 	cpu_sfence();
3731 	atomic_add_int_nonlocked(&ncc->updating, 1);
3732 	spin_unlock(&ncc->spin);
3733 }
3734 
3735 /*
3736  * Scrap any ncmount_cache entries related to mp.  Not only do we need to
3737  * scrap entries matching mp->mnt_ncmounton, but we also need to scrap any
3738  * negative hits involving (mp, <any>).
3739  *
3740  * A full scan is required.
3741  */
3742 void
3743 cache_unmounting(struct mount *mp)
3744 {
3745 	struct ncmount_cache *ncc;
3746 	struct pcpu_ncache *pcpu;
3747 	struct mount *ncc_mp;
3748 	int i;
3749 
3750 	pcpu = pcpu_ncache;
3751 	if (pcpu == NULL)
3752 		return;
3753 
3754 	for (i = 0; i < ncpus; ++i)
3755 		spin_lock(&pcpu[i].umount_spin);
3756 
3757 	for (i = 0; i < NCMOUNT_NUMCACHE; ++i) {
3758 		ncc = &ncmount_cache[i];
3759 		if (ncc->mp != mp && ncc->mp_target != mp)
3760 			continue;
3761 		spin_lock(&ncc->spin);
3762 		atomic_add_int_nonlocked(&ncc->updating, 1);
3763 		cpu_sfence();
3764 
3765 		if (ncc->mp != mp && ncc->mp_target != mp) {
3766 			atomic_add_int_nonlocked(&ncc->updating, 1);
3767 			cpu_sfence();
3768 			spin_unlock(&ncc->spin);
3769 			continue;
3770 		}
3771 		ncc_mp = ncc->mp;
3772 		ncc->ncp = NULL;
3773 		ncc->mp = NULL;
3774 		if (ncc_mp)
3775 			atomic_add_int(&ncc_mp->mnt_refs, -1);
3776 		ncc_mp = ncc->mp_target;
3777 		ncc->mp_target = NULL;
3778 		if (ncc_mp)
3779 			atomic_add_int(&ncc_mp->mnt_refs, -1);
3780 		ncc->ticks = (int)ticks - hz * 120;
3781 
3782 		cpu_sfence();
3783 		atomic_add_int_nonlocked(&ncc->updating, 1);
3784 		spin_unlock(&ncc->spin);
3785 	}
3786 
3787 	for (i = 0; i < ncpus; ++i)
3788 		spin_unlock(&pcpu[i].umount_spin);
3789 }
3790 
3791 /*
3792  * Resolve an unresolved namecache entry, generally by looking it up.
3793  * The passed ncp must be locked and refd.
3794  *
3795  * Theoretically since a vnode cannot be recycled while held, and since
3796  * the nc_parent chain holds its vnode as long as children exist, the
3797  * direct parent of the cache entry we are trying to resolve should
3798  * have a valid vnode.  If not then generate an error that we can
3799  * determine is related to a resolver bug.
3800  *
3801  * However, if a vnode was in the middle of a recyclement when the NCP
3802  * got locked, ncp->nc_vp might point to a vnode that is about to become
3803  * invalid.  cache_resolve() handles this case by unresolving the entry
3804  * and then re-resolving it.
3805  *
3806  * Note that successful resolution does not necessarily return an error
3807  * code of 0.  If the ncp resolves to a negative cache hit then ENOENT
3808  * will be returned.
3809  */
3810 int
3811 cache_resolve(struct nchandle *nch, struct ucred *cred)
3812 {
3813 	struct namecache *par_tmp;
3814 	struct namecache *par;
3815 	struct namecache *ncp;
3816 	struct nchandle nctmp;
3817 	struct mount *mp;
3818 	struct vnode *dvp;
3819 	int error;
3820 
3821 	ncp = nch->ncp;
3822 	mp = nch->mount;
3823 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
3824 restart:
3825 	/*
3826 	 * If the ncp is already resolved we have nothing to do.  However,
3827 	 * we do want to guarentee that a usable vnode is returned when
3828 	 * a vnode is present, so make sure it hasn't been reclaimed.
3829 	 */
3830 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3831 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
3832 			_cache_setunresolved(ncp);
3833 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
3834 			return (ncp->nc_error);
3835 	}
3836 
3837 	/*
3838 	 * If the ncp was destroyed it will never resolve again.  This
3839 	 * can basically only happen when someone is chdir'd into an
3840 	 * empty directory which is then rmdir'd.  We want to catch this
3841 	 * here and not dive the VFS because the VFS might actually
3842 	 * have a way to re-resolve the disconnected ncp, which will
3843 	 * result in inconsistencies in the cdir/nch for proc->p_fd.
3844 	 */
3845 	if (ncp->nc_flag & NCF_DESTROYED)
3846 		return(EINVAL);
3847 
3848 	/*
3849 	 * Mount points need special handling because the parent does not
3850 	 * belong to the same filesystem as the ncp.
3851 	 */
3852 	if (ncp == mp->mnt_ncmountpt.ncp)
3853 		return (cache_resolve_mp(mp));
3854 
3855 	/*
3856 	 * We expect an unbroken chain of ncps to at least the mount point,
3857 	 * and even all the way to root (but this code doesn't have to go
3858 	 * past the mount point).
3859 	 */
3860 	if (ncp->nc_parent == NULL) {
3861 		kprintf("EXDEV case 1 %p %*.*s\n", ncp,
3862 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
3863 		ncp->nc_error = EXDEV;
3864 		return(ncp->nc_error);
3865 	}
3866 
3867 	/*
3868 	 * The vp's of the parent directories in the chain are held via vhold()
3869 	 * due to the existance of the child, and should not disappear.
3870 	 * However, there are cases where they can disappear:
3871 	 *
3872 	 *	- due to filesystem I/O errors.
3873 	 *	- due to NFS being stupid about tracking the namespace and
3874 	 *	  destroys the namespace for entire directories quite often.
3875 	 *	- due to forced unmounts.
3876 	 *	- due to an rmdir (parent will be marked DESTROYED)
3877 	 *
3878 	 * When this occurs we have to track the chain backwards and resolve
3879 	 * it, looping until the resolver catches up to the current node.  We
3880 	 * could recurse here but we might run ourselves out of kernel stack
3881 	 * so we do it in a more painful manner.  This situation really should
3882 	 * not occur all that often, or if it does not have to go back too
3883 	 * many nodes to resolve the ncp.
3884 	 */
3885 	while ((dvp = cache_dvpref(ncp)) == NULL) {
3886 		/*
3887 		 * This case can occur if a process is CD'd into a
3888 		 * directory which is then rmdir'd.  If the parent is marked
3889 		 * destroyed there is no point trying to resolve it.
3890 		 */
3891 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
3892 			return(ENOENT);
3893 		par = ncp->nc_parent;
3894 		_cache_hold(par);
3895 		_cache_lock(par);
3896 		while ((par_tmp = par->nc_parent) != NULL &&
3897 		       par_tmp->nc_vp == NULL) {
3898 			_cache_hold(par_tmp);
3899 			_cache_lock(par_tmp);
3900 			_cache_put(par);
3901 			par = par_tmp;
3902 		}
3903 		if (par->nc_parent == NULL) {
3904 			kprintf("EXDEV case 2 %*.*s\n",
3905 				par->nc_nlen, par->nc_nlen, par->nc_name);
3906 			_cache_put(par);
3907 			return (EXDEV);
3908 		}
3909 		/*
3910 		 * The parent is not set in stone, ref and lock it to prevent
3911 		 * it from disappearing.  Also note that due to renames it
3912 		 * is possible for our ncp to move and for par to no longer
3913 		 * be one of its parents.  We resolve it anyway, the loop
3914 		 * will handle any moves.
3915 		 */
3916 		_cache_get(par);	/* additional hold/lock */
3917 		_cache_put(par);	/* from earlier hold/lock */
3918 		if (par == nch->mount->mnt_ncmountpt.ncp) {
3919 			cache_resolve_mp(nch->mount);
3920 		} else if ((dvp = cache_dvpref(par)) == NULL) {
3921 			kprintf("[diagnostic] cache_resolve: raced on %*.*s\n",
3922 				par->nc_nlen, par->nc_nlen, par->nc_name);
3923 			_cache_put(par);
3924 			continue;
3925 		} else {
3926 			if (par->nc_flag & NCF_UNRESOLVED) {
3927 				nctmp.mount = mp;
3928 				nctmp.ncp = par;
3929 				par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
3930 			}
3931 			vrele(dvp);
3932 		}
3933 		if ((error = par->nc_error) != 0) {
3934 			if (par->nc_error != EAGAIN) {
3935 				kprintf("EXDEV case 3 %*.*s error %d\n",
3936 				    par->nc_nlen, par->nc_nlen, par->nc_name,
3937 				    par->nc_error);
3938 				_cache_put(par);
3939 				return(error);
3940 			}
3941 			kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
3942 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
3943 		}
3944 		_cache_put(par);
3945 		/* loop */
3946 	}
3947 
3948 	/*
3949 	 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
3950 	 * ncp's and reattach them.  If this occurs the original ncp is marked
3951 	 * EAGAIN to force a relookup.
3952 	 *
3953 	 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
3954 	 * ncp must already be resolved.
3955 	 */
3956 	if (dvp) {
3957 		nctmp.mount = mp;
3958 		nctmp.ncp = ncp;
3959 		ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
3960 		vrele(dvp);
3961 	} else {
3962 		ncp->nc_error = EPERM;
3963 	}
3964 	if (ncp->nc_error == EAGAIN) {
3965 		kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
3966 			ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
3967 		goto restart;
3968 	}
3969 	return(ncp->nc_error);
3970 }
3971 
3972 /*
3973  * Resolve the ncp associated with a mount point.  Such ncp's almost always
3974  * remain resolved and this routine is rarely called.  NFS MPs tends to force
3975  * re-resolution more often due to its mac-truck-smash-the-namecache
3976  * method of tracking namespace changes.
3977  *
3978  * The semantics for this call is that the passed ncp must be locked on
3979  * entry and will be locked on return.  However, if we actually have to
3980  * resolve the mount point we temporarily unlock the entry in order to
3981  * avoid race-to-root deadlocks due to e.g. dead NFS mounts.  Because of
3982  * the unlock we have to recheck the flags after we relock.
3983  */
3984 static int
3985 cache_resolve_mp(struct mount *mp)
3986 {
3987 	struct namecache *ncp = mp->mnt_ncmountpt.ncp;
3988 	struct vnode *vp;
3989 	int error;
3990 
3991 	KKASSERT(mp != NULL);
3992 
3993 	/*
3994 	 * If the ncp is already resolved we have nothing to do.  However,
3995 	 * we do want to guarentee that a usable vnode is returned when
3996 	 * a vnode is present, so make sure it hasn't been reclaimed.
3997 	 */
3998 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3999 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
4000 			_cache_setunresolved(ncp);
4001 	}
4002 
4003 	if (ncp->nc_flag & NCF_UNRESOLVED) {
4004 		_cache_unlock(ncp);
4005 		while (vfs_busy(mp, 0))
4006 			;
4007 		error = VFS_ROOT(mp, &vp);
4008 		_cache_lock(ncp);
4009 
4010 		/*
4011 		 * recheck the ncp state after relocking.
4012 		 */
4013 		if (ncp->nc_flag & NCF_UNRESOLVED) {
4014 			ncp->nc_error = error;
4015 			if (error == 0) {
4016 				_cache_setvp(mp, ncp, vp);
4017 				vput(vp);
4018 			} else {
4019 				kprintf("[diagnostic] cache_resolve_mp: failed"
4020 					" to resolve mount %p err=%d ncp=%p\n",
4021 					mp, error, ncp);
4022 				_cache_setvp(mp, ncp, NULL);
4023 			}
4024 		} else if (error == 0) {
4025 			vput(vp);
4026 		}
4027 		vfs_unbusy(mp);
4028 	}
4029 	return(ncp->nc_error);
4030 }
4031 
4032 /*
4033  * Clean out negative cache entries when too many have accumulated.
4034  */
4035 static void
4036 _cache_cleanneg(long count)
4037 {
4038 	struct pcpu_ncache *pn;
4039 	struct namecache *ncp;
4040 	static uint32_t neg_rover;
4041 	uint32_t n;
4042 	long vnegs;
4043 
4044 	n = neg_rover++;	/* SMP heuristical, race ok */
4045 	cpu_ccfence();
4046 	n = n % (uint32_t)ncpus;
4047 
4048 	/*
4049 	 * Normalize vfscache_negs and count.  count is sometimes based
4050 	 * on vfscache_negs.  vfscache_negs is heuristical and can sometimes
4051 	 * have crazy values.
4052 	 */
4053 	vnegs = vfscache_negs;
4054 	cpu_ccfence();
4055 	if (vnegs <= MINNEG)
4056 		vnegs = MINNEG;
4057 	if (count < 1)
4058 		count = 1;
4059 
4060 	pn = &pcpu_ncache[n];
4061 	spin_lock(&pn->neg_spin);
4062 	count = pn->neg_count * count / vnegs + 1;
4063 	spin_unlock(&pn->neg_spin);
4064 
4065 	/*
4066 	 * Attempt to clean out the specified number of negative cache
4067 	 * entries.
4068 	 */
4069 	while (count > 0) {
4070 		spin_lock(&pn->neg_spin);
4071 		ncp = TAILQ_FIRST(&pn->neg_list);
4072 		if (ncp == NULL) {
4073 			spin_unlock(&pn->neg_spin);
4074 			break;
4075 		}
4076 		TAILQ_REMOVE(&pn->neg_list, ncp, nc_vnode);
4077 		TAILQ_INSERT_TAIL(&pn->neg_list, ncp, nc_vnode);
4078 		_cache_hold(ncp);
4079 		spin_unlock(&pn->neg_spin);
4080 
4081 		/*
4082 		 * This can race, so we must re-check that the ncp
4083 		 * is on the ncneg.list after successfully locking it.
4084 		 */
4085 		if (_cache_lock_special(ncp) == 0) {
4086 			if (ncp->nc_vp == NULL &&
4087 			    (ncp->nc_flag & NCF_UNRESOLVED) == 0) {
4088 				cache_zap(ncp);
4089 			} else {
4090 				_cache_unlock(ncp);
4091 				_cache_drop(ncp);
4092 			}
4093 		} else {
4094 			_cache_drop(ncp);
4095 		}
4096 		--count;
4097 	}
4098 }
4099 
4100 /*
4101  * Clean out positive cache entries when too many have accumulated.
4102  */
4103 static void
4104 _cache_cleanpos(long count)
4105 {
4106 	static volatile int rover;
4107 	struct nchash_head *nchpp;
4108 	struct namecache *ncp;
4109 	int rover_copy;
4110 
4111 	/*
4112 	 * Attempt to clean out the specified number of negative cache
4113 	 * entries.
4114 	 */
4115 	while (count > 0) {
4116 		rover_copy = ++rover;	/* MPSAFEENOUGH */
4117 		cpu_ccfence();
4118 		nchpp = NCHHASH(rover_copy);
4119 
4120 		if (TAILQ_FIRST(&nchpp->list) == NULL) {
4121 			--count;
4122 			continue;
4123 		}
4124 
4125 		/*
4126 		 * Cycle ncp on list, ignore and do not move DUMMY
4127 		 * ncps.  These are temporary list iterators.
4128 		 *
4129 		 * We must cycle the ncp to the end of the list to
4130 		 * ensure that all ncp's have an equal chance of
4131 		 * being removed.
4132 		 */
4133 		spin_lock(&nchpp->spin);
4134 		ncp = TAILQ_FIRST(&nchpp->list);
4135 		while (ncp && (ncp->nc_flag & NCF_DUMMY))
4136 			ncp = TAILQ_NEXT(ncp, nc_hash);
4137 		if (ncp) {
4138 			TAILQ_REMOVE(&nchpp->list, ncp, nc_hash);
4139 			TAILQ_INSERT_TAIL(&nchpp->list, ncp, nc_hash);
4140 			_cache_hold(ncp);
4141 		}
4142 		spin_unlock(&nchpp->spin);
4143 
4144 		if (ncp) {
4145 			if (_cache_lock_special(ncp) == 0) {
4146 				cache_zap(ncp);
4147 			} else {
4148 				_cache_drop(ncp);
4149 			}
4150 		}
4151 		--count;
4152 	}
4153 }
4154 
4155 /*
4156  * This is a kitchen sink function to clean out ncps which we
4157  * tried to zap from cache_drop() but failed because we were
4158  * unable to acquire the parent lock.
4159  *
4160  * Such entries can also be removed via cache_inval_vp(), such
4161  * as when unmounting.
4162  */
4163 static void
4164 _cache_cleandefered(void)
4165 {
4166 	struct nchash_head *nchpp;
4167 	struct namecache *ncp;
4168 	struct namecache dummy;
4169 	int i;
4170 
4171 	/*
4172 	 * Create a list iterator.  DUMMY indicates that this is a list
4173 	 * iterator, DESTROYED prevents matches by lookup functions.
4174 	 */
4175 	numdefered = 0;
4176 	pcpu_ncache[mycpu->gd_cpuid].numdefered = 0;
4177 	bzero(&dummy, sizeof(dummy));
4178 	dummy.nc_flag = NCF_DESTROYED | NCF_DUMMY;
4179 	dummy.nc_refs = 1;
4180 
4181 	for (i = 0; i <= nchash; ++i) {
4182 		nchpp = &nchashtbl[i];
4183 
4184 		spin_lock(&nchpp->spin);
4185 		TAILQ_INSERT_HEAD(&nchpp->list, &dummy, nc_hash);
4186 		ncp = &dummy;
4187 		while ((ncp = TAILQ_NEXT(ncp, nc_hash)) != NULL) {
4188 			if ((ncp->nc_flag & NCF_DEFEREDZAP) == 0)
4189 				continue;
4190 			TAILQ_REMOVE(&nchpp->list, &dummy, nc_hash);
4191 			TAILQ_INSERT_AFTER(&nchpp->list, ncp, &dummy, nc_hash);
4192 			_cache_hold(ncp);
4193 			spin_unlock(&nchpp->spin);
4194 			if (_cache_lock_nonblock(ncp) == 0) {
4195 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
4196 				_cache_unlock(ncp);
4197 			}
4198 			_cache_drop(ncp);
4199 			spin_lock(&nchpp->spin);
4200 			ncp = &dummy;
4201 		}
4202 		TAILQ_REMOVE(&nchpp->list, &dummy, nc_hash);
4203 		spin_unlock(&nchpp->spin);
4204 	}
4205 }
4206 
4207 /*
4208  * Name cache initialization, from vfsinit() when we are booting
4209  */
4210 void
4211 nchinit(void)
4212 {
4213 	struct pcpu_ncache *pn;
4214 	globaldata_t gd;
4215 	int i;
4216 
4217 	/*
4218 	 * Per-cpu accounting and negative hit list
4219 	 */
4220 	pcpu_ncache = kmalloc(sizeof(*pcpu_ncache) * ncpus,
4221 			      M_VFSCACHE, M_WAITOK|M_ZERO);
4222 	for (i = 0; i < ncpus; ++i) {
4223 		pn = &pcpu_ncache[i];
4224 		TAILQ_INIT(&pn->neg_list);
4225 		spin_init(&pn->neg_spin, "ncneg");
4226 		spin_init(&pn->umount_spin, "ncumm");
4227 	}
4228 
4229 	/*
4230 	 * Initialise per-cpu namecache effectiveness statistics.
4231 	 */
4232 	for (i = 0; i < ncpus; ++i) {
4233 		gd = globaldata_find(i);
4234 		gd->gd_nchstats = &nchstats[i];
4235 	}
4236 
4237 	/*
4238 	 * Create a generous namecache hash table
4239 	 */
4240 	nchashtbl = hashinit_ext(vfs_inodehashsize(),
4241 				 sizeof(struct nchash_head),
4242 				 M_VFSCACHE, &nchash);
4243 	for (i = 0; i <= (int)nchash; ++i) {
4244 		TAILQ_INIT(&nchashtbl[i].list);
4245 		spin_init(&nchashtbl[i].spin, "nchinit_hash");
4246 	}
4247 	for (i = 0; i < NCMOUNT_NUMCACHE; ++i)
4248 		spin_init(&ncmount_cache[i].spin, "nchinit_cache");
4249 	nclockwarn = 5 * hz;
4250 }
4251 
4252 /*
4253  * Called from start_init() to bootstrap the root filesystem.  Returns
4254  * a referenced, unlocked namecache record.
4255  */
4256 void
4257 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
4258 {
4259 	nch->ncp = cache_alloc(0);
4260 	nch->mount = mp;
4261 	_cache_mntref(mp);
4262 	if (vp)
4263 		_cache_setvp(nch->mount, nch->ncp, vp);
4264 }
4265 
4266 /*
4267  * vfs_cache_setroot()
4268  *
4269  *	Create an association between the root of our namecache and
4270  *	the root vnode.  This routine may be called several times during
4271  *	booting.
4272  *
4273  *	If the caller intends to save the returned namecache pointer somewhere
4274  *	it must cache_hold() it.
4275  */
4276 void
4277 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
4278 {
4279 	struct vnode *ovp;
4280 	struct nchandle onch;
4281 
4282 	ovp = rootvnode;
4283 	onch = rootnch;
4284 	rootvnode = nvp;
4285 	if (nch)
4286 		rootnch = *nch;
4287 	else
4288 		cache_zero(&rootnch);
4289 	if (ovp)
4290 		vrele(ovp);
4291 	if (onch.ncp)
4292 		cache_drop(&onch);
4293 }
4294 
4295 /*
4296  * XXX OLD API COMPAT FUNCTION.  This really messes up the new namecache
4297  * topology and is being removed as quickly as possible.  The new VOP_N*()
4298  * API calls are required to make specific adjustments using the supplied
4299  * ncp pointers rather then just bogusly purging random vnodes.
4300  *
4301  * Invalidate all namecache entries to a particular vnode as well as
4302  * any direct children of that vnode in the namecache.  This is a
4303  * 'catch all' purge used by filesystems that do not know any better.
4304  *
4305  * Note that the linkage between the vnode and its namecache entries will
4306  * be removed, but the namecache entries themselves might stay put due to
4307  * active references from elsewhere in the system or due to the existance of
4308  * the children.   The namecache topology is left intact even if we do not
4309  * know what the vnode association is.  Such entries will be marked
4310  * NCF_UNRESOLVED.
4311  */
4312 void
4313 cache_purge(struct vnode *vp)
4314 {
4315 	cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
4316 }
4317 
4318 __read_mostly static int disablecwd;
4319 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0,
4320     "Disable getcwd");
4321 
4322 /*
4323  * MPALMOSTSAFE
4324  */
4325 int
4326 sys___getcwd(struct sysmsg *sysmsg, const struct __getcwd_args *uap)
4327 {
4328 	u_int buflen;
4329 	int error;
4330 	char *buf;
4331 	char *bp;
4332 
4333 	if (disablecwd)
4334 		return (ENODEV);
4335 
4336 	buflen = uap->buflen;
4337 	if (buflen == 0)
4338 		return (EINVAL);
4339 	if (buflen > MAXPATHLEN)
4340 		buflen = MAXPATHLEN;
4341 
4342 	buf = kmalloc(buflen, M_TEMP, M_WAITOK);
4343 	bp = kern_getcwd(buf, buflen, &error);
4344 	if (error == 0)
4345 		error = copyout(bp, uap->buf, strlen(bp) + 1);
4346 	kfree(buf, M_TEMP);
4347 	return (error);
4348 }
4349 
4350 char *
4351 kern_getcwd(char *buf, size_t buflen, int *error)
4352 {
4353 	struct proc *p = curproc;
4354 	char *bp;
4355 	int i, slash_prefixed;
4356 	struct filedesc *fdp;
4357 	struct nchandle nch;
4358 	struct namecache *ncp;
4359 
4360 	bp = buf;
4361 	bp += buflen - 1;
4362 	*bp = '\0';
4363 	fdp = p->p_fd;
4364 	slash_prefixed = 0;
4365 
4366 	nch = fdp->fd_ncdir;
4367 	ncp = nch.ncp;
4368 	if (ncp)
4369 		_cache_hold(ncp);
4370 
4371 	while (ncp && (ncp != fdp->fd_nrdir.ncp ||
4372 	       nch.mount != fdp->fd_nrdir.mount)
4373 	) {
4374 		if (ncp->nc_flag & NCF_DESTROYED) {
4375 			_cache_drop(ncp);
4376 			ncp = NULL;
4377 			break;
4378 		}
4379 		/*
4380 		 * While traversing upwards if we encounter the root
4381 		 * of the current mount we have to skip to the mount point
4382 		 * in the underlying filesystem.
4383 		 */
4384 		if (ncp == nch.mount->mnt_ncmountpt.ncp) {
4385 			nch = nch.mount->mnt_ncmounton;
4386 			_cache_drop(ncp);
4387 			ncp = nch.ncp;
4388 			if (ncp)
4389 				_cache_hold(ncp);
4390 			continue;
4391 		}
4392 
4393 		/*
4394 		 * Prepend the path segment
4395 		 */
4396 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
4397 			if (bp == buf) {
4398 				*error = ERANGE;
4399 				bp = NULL;
4400 				goto done;
4401 			}
4402 			*--bp = ncp->nc_name[i];
4403 		}
4404 		if (bp == buf) {
4405 			*error = ERANGE;
4406 			bp = NULL;
4407 			goto done;
4408 		}
4409 		*--bp = '/';
4410 		slash_prefixed = 1;
4411 
4412 		/*
4413 		 * Go up a directory.  This isn't a mount point so we don't
4414 		 * have to check again.
4415 		 */
4416 		while ((nch.ncp = ncp->nc_parent) != NULL) {
4417 			if (ncp_shared_lock_disable)
4418 				_cache_lock(ncp);
4419 			else
4420 				_cache_lock_shared(ncp);
4421 			if (nch.ncp != ncp->nc_parent) {
4422 				_cache_unlock(ncp);
4423 				continue;
4424 			}
4425 			_cache_hold(nch.ncp);
4426 			_cache_unlock(ncp);
4427 			break;
4428 		}
4429 		_cache_drop(ncp);
4430 		ncp = nch.ncp;
4431 	}
4432 	if (ncp == NULL) {
4433 		*error = ENOENT;
4434 		bp = NULL;
4435 		goto done;
4436 	}
4437 	if (!slash_prefixed) {
4438 		if (bp == buf) {
4439 			*error = ERANGE;
4440 			bp = NULL;
4441 			goto done;
4442 		}
4443 		*--bp = '/';
4444 	}
4445 	*error = 0;
4446 done:
4447 	if (ncp)
4448 		_cache_drop(ncp);
4449 	return (bp);
4450 }
4451 
4452 /*
4453  * Thus begins the fullpath magic.
4454  *
4455  * The passed nchp is referenced but not locked.
4456  */
4457 __read_mostly static int disablefullpath;
4458 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
4459     &disablefullpath, 0,
4460     "Disable fullpath lookups");
4461 
4462 int
4463 cache_fullpath(struct proc *p, struct nchandle *nchp, struct nchandle *nchbase,
4464 	       char **retbuf, char **freebuf, int guess)
4465 {
4466 	struct nchandle fd_nrdir;
4467 	struct nchandle nch;
4468 	struct namecache *ncp;
4469 	struct mount *mp, *new_mp;
4470 	char *bp, *buf;
4471 	int slash_prefixed;
4472 	int error = 0;
4473 	int i;
4474 
4475 	*retbuf = NULL;
4476 	*freebuf = NULL;
4477 
4478 	buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
4479 	bp = buf + MAXPATHLEN - 1;
4480 	*bp = '\0';
4481 	if (nchbase)
4482 		fd_nrdir = *nchbase;
4483 	else if (p != NULL)
4484 		fd_nrdir = p->p_fd->fd_nrdir;
4485 	else
4486 		fd_nrdir = rootnch;
4487 	slash_prefixed = 0;
4488 	nch = *nchp;
4489 	ncp = nch.ncp;
4490 	if (ncp)
4491 		_cache_hold(ncp);
4492 	mp = nch.mount;
4493 
4494 	while (ncp && (ncp != fd_nrdir.ncp || mp != fd_nrdir.mount)) {
4495 		new_mp = NULL;
4496 
4497 		/*
4498 		 * If we are asked to guess the upwards path, we do so whenever
4499 		 * we encounter an ncp marked as a mountpoint. We try to find
4500 		 * the actual mountpoint by finding the mountpoint with this
4501 		 * ncp.
4502 		 */
4503 		if (guess && (ncp->nc_flag & NCF_ISMOUNTPT)) {
4504 			new_mp = mount_get_by_nc(ncp);
4505 		}
4506 		/*
4507 		 * While traversing upwards if we encounter the root
4508 		 * of the current mount we have to skip to the mount point.
4509 		 */
4510 		if (ncp == mp->mnt_ncmountpt.ncp) {
4511 			new_mp = mp;
4512 		}
4513 		if (new_mp) {
4514 			nch = new_mp->mnt_ncmounton;
4515 			_cache_drop(ncp);
4516 			ncp = nch.ncp;
4517 			if (ncp)
4518 				_cache_hold(ncp);
4519 			mp = nch.mount;
4520 			continue;
4521 		}
4522 
4523 		/*
4524 		 * Prepend the path segment
4525 		 */
4526 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
4527 			if (bp == buf) {
4528 				kfree(buf, M_TEMP);
4529 				error = ENOMEM;
4530 				goto done;
4531 			}
4532 			*--bp = ncp->nc_name[i];
4533 		}
4534 		if (bp == buf) {
4535 			kfree(buf, M_TEMP);
4536 			error = ENOMEM;
4537 			goto done;
4538 		}
4539 		*--bp = '/';
4540 		slash_prefixed = 1;
4541 
4542 		/*
4543 		 * Go up a directory.  This isn't a mount point so we don't
4544 		 * have to check again.
4545 		 *
4546 		 * We can only safely access nc_parent with ncp held locked.
4547 		 */
4548 		while ((nch.ncp = ncp->nc_parent) != NULL) {
4549 			_cache_lock_shared(ncp);
4550 			if (nch.ncp != ncp->nc_parent) {
4551 				_cache_unlock(ncp);
4552 				continue;
4553 			}
4554 			_cache_hold(nch.ncp);
4555 			_cache_unlock(ncp);
4556 			break;
4557 		}
4558 		_cache_drop(ncp);
4559 		ncp = nch.ncp;
4560 	}
4561 	if (ncp == NULL) {
4562 		kfree(buf, M_TEMP);
4563 		error = ENOENT;
4564 		goto done;
4565 	}
4566 
4567 	if (!slash_prefixed) {
4568 		if (bp == buf) {
4569 			kfree(buf, M_TEMP);
4570 			error = ENOMEM;
4571 			goto done;
4572 		}
4573 		*--bp = '/';
4574 	}
4575 	*retbuf = bp;
4576 	*freebuf = buf;
4577 	error = 0;
4578 done:
4579 	if (ncp)
4580 		_cache_drop(ncp);
4581 	return(error);
4582 }
4583 
4584 int
4585 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf,
4586 	    char **freebuf, int guess)
4587 {
4588 	struct namecache *ncp;
4589 	struct nchandle nch;
4590 	int error;
4591 
4592 	*freebuf = NULL;
4593 	if (disablefullpath)
4594 		return (ENODEV);
4595 
4596 	if (p == NULL)
4597 		return (EINVAL);
4598 
4599 	/* vn is NULL, client wants us to use p->p_textvp */
4600 	if (vn == NULL) {
4601 		if ((vn = p->p_textvp) == NULL)
4602 			return (EINVAL);
4603 	}
4604 	spin_lock_shared(&vn->v_spin);
4605 	TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
4606 		if (ncp->nc_nlen)
4607 			break;
4608 	}
4609 	if (ncp == NULL) {
4610 		spin_unlock_shared(&vn->v_spin);
4611 		return (EINVAL);
4612 	}
4613 	_cache_hold(ncp);
4614 	spin_unlock_shared(&vn->v_spin);
4615 
4616 	nch.ncp = ncp;
4617 	nch.mount = vn->v_mount;
4618 	error = cache_fullpath(p, &nch, NULL, retbuf, freebuf, guess);
4619 	_cache_drop(ncp);
4620 	return (error);
4621 }
4622 
4623 void
4624 vfscache_rollup_cpu(struct globaldata *gd)
4625 {
4626 	struct pcpu_ncache *pn;
4627 	long count;
4628 
4629 	if (pcpu_ncache == NULL)
4630 		return;
4631 	pn = &pcpu_ncache[gd->gd_cpuid];
4632 
4633 	if (pn->vfscache_count) {
4634 		count = atomic_swap_long(&pn->vfscache_count, 0);
4635 		atomic_add_long(&vfscache_count, count);
4636 	}
4637 	if (pn->vfscache_leafs) {
4638 		count = atomic_swap_long(&pn->vfscache_leafs, 0);
4639 		atomic_add_long(&vfscache_leafs, count);
4640 	}
4641 	if (pn->vfscache_negs) {
4642 		count = atomic_swap_long(&pn->vfscache_negs, 0);
4643 		atomic_add_long(&vfscache_negs, count);
4644 	}
4645 	if (pn->numdefered) {
4646 		count = atomic_swap_long(&pn->numdefered, 0);
4647 		atomic_add_long(&numdefered, count);
4648 	}
4649 }
4650