xref: /dragonfly/sys/kern/vfs_cache.c (revision d4ef6694)
1 /*
2  * Copyright (c) 2003,2004,2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993, 1995
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * Poul-Henning Kamp of the FreeBSD Project.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. Neither the name of the University nor the names of its contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/kernel.h>
68 #include <sys/sysctl.h>
69 #include <sys/mount.h>
70 #include <sys/vnode.h>
71 #include <sys/malloc.h>
72 #include <sys/sysproto.h>
73 #include <sys/spinlock.h>
74 #include <sys/proc.h>
75 #include <sys/namei.h>
76 #include <sys/nlookup.h>
77 #include <sys/filedesc.h>
78 #include <sys/fnv_hash.h>
79 #include <sys/globaldata.h>
80 #include <sys/kern_syscall.h>
81 #include <sys/dirent.h>
82 #include <ddb/ddb.h>
83 
84 #include <sys/sysref2.h>
85 #include <sys/spinlock2.h>
86 #include <sys/mplock2.h>
87 
88 #define MAX_RECURSION_DEPTH	64
89 
90 /*
91  * Random lookups in the cache are accomplished with a hash table using
92  * a hash key of (nc_src_vp, name).  Each hash chain has its own spin lock.
93  *
94  * Negative entries may exist and correspond to resolved namecache
95  * structures where nc_vp is NULL.  In a negative entry, NCF_WHITEOUT
96  * will be set if the entry corresponds to a whited-out directory entry
97  * (verses simply not finding the entry at all).   ncneglist is locked
98  * with a global spinlock (ncspin).
99  *
100  * MPSAFE RULES:
101  *
102  * (1) A ncp must be referenced before it can be locked.
103  *
104  * (2) A ncp must be locked in order to modify it.
105  *
106  * (3) ncp locks are always ordered child -> parent.  That may seem
107  *     backwards but forward scans use the hash table and thus can hold
108  *     the parent unlocked when traversing downward.
109  *
110  *     This allows insert/rename/delete/dot-dot and other operations
111  *     to use ncp->nc_parent links.
112  *
113  *     This also prevents a locked up e.g. NFS node from creating a
114  *     chain reaction all the way back to the root vnode / namecache.
115  *
116  * (4) parent linkages require both the parent and child to be locked.
117  */
118 
119 /*
120  * Structures associated with name cacheing.
121  */
122 #define NCHHASH(hash)		(&nchashtbl[(hash) & nchash])
123 #define MINNEG			1024
124 #define MINPOS			1024
125 #define NCMOUNT_NUMCACHE	1009	/* prime number */
126 
127 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
128 
129 LIST_HEAD(nchash_list, namecache);
130 
131 struct nchash_head {
132        struct nchash_list list;
133        struct spinlock	spin;
134 };
135 
136 struct ncmount_cache {
137 	struct spinlock	spin;
138 	struct namecache *ncp;
139 	struct mount *mp;
140 	int isneg;		/* if != 0 mp is originator and not target */
141 };
142 
143 static struct nchash_head	*nchashtbl;
144 static struct namecache_list	ncneglist;
145 static struct spinlock		ncspin;
146 static struct ncmount_cache	ncmount_cache[NCMOUNT_NUMCACHE];
147 
148 /*
149  * ncvp_debug - debug cache_fromvp().  This is used by the NFS server
150  * to create the namecache infrastructure leading to a dangling vnode.
151  *
152  * 0	Only errors are reported
153  * 1	Successes are reported
154  * 2	Successes + the whole directory scan is reported
155  * 3	Force the directory scan code run as if the parent vnode did not
156  *	have a namecache record, even if it does have one.
157  */
158 static int	ncvp_debug;
159 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0,
160     "Namecache debug level (0-3)");
161 
162 static u_long	nchash;			/* size of hash table */
163 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
164     "Size of namecache hash table");
165 
166 static int	ncnegflush = 10;	/* burst for negative flush */
167 SYSCTL_INT(_debug, OID_AUTO, ncnegflush, CTLFLAG_RW, &ncnegflush, 0,
168     "Batch flush negative entries");
169 
170 static int	ncposflush = 10;	/* burst for positive flush */
171 SYSCTL_INT(_debug, OID_AUTO, ncposflush, CTLFLAG_RW, &ncposflush, 0,
172     "Batch flush positive entries");
173 
174 static int	ncnegfactor = 16;	/* ratio of negative entries */
175 SYSCTL_INT(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0,
176     "Ratio of namecache negative entries");
177 
178 static int	nclockwarn;		/* warn on locked entries in ticks */
179 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0,
180     "Warn on locked namecache entries in ticks");
181 
182 static int	numdefered;		/* number of cache entries allocated */
183 SYSCTL_INT(_debug, OID_AUTO, numdefered, CTLFLAG_RD, &numdefered, 0,
184     "Number of cache entries allocated");
185 
186 static int	ncposlimit;		/* number of cache entries allocated */
187 SYSCTL_INT(_debug, OID_AUTO, ncposlimit, CTLFLAG_RW, &ncposlimit, 0,
188     "Number of cache entries allocated");
189 
190 static int	ncp_shared_lock_disable = 0;
191 SYSCTL_INT(_debug, OID_AUTO, ncp_shared_lock_disable, CTLFLAG_RW,
192 	   &ncp_shared_lock_disable, 0, "Disable shared namecache locks");
193 
194 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode),
195     "sizeof(struct vnode)");
196 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache),
197     "sizeof(struct namecache)");
198 
199 static int	ncmount_cache_enable = 1;
200 SYSCTL_INT(_debug, OID_AUTO, ncmount_cache_enable, CTLFLAG_RW,
201 	   &ncmount_cache_enable, 0, "mount point cache");
202 static long	ncmount_cache_hit;
203 SYSCTL_LONG(_debug, OID_AUTO, ncmount_cache_hit, CTLFLAG_RW,
204 	    &ncmount_cache_hit, 0, "mpcache hits");
205 static long	ncmount_cache_miss;
206 SYSCTL_LONG(_debug, OID_AUTO, ncmount_cache_miss, CTLFLAG_RW,
207 	    &ncmount_cache_miss, 0, "mpcache misses");
208 static long	ncmount_cache_overwrite;
209 SYSCTL_LONG(_debug, OID_AUTO, ncmount_cache_overwrite, CTLFLAG_RW,
210 	    &ncmount_cache_overwrite, 0, "mpcache entry overwrites");
211 
212 static int cache_resolve_mp(struct mount *mp);
213 static struct vnode *cache_dvpref(struct namecache *ncp);
214 static void _cache_lock(struct namecache *ncp);
215 static void _cache_setunresolved(struct namecache *ncp);
216 static void _cache_cleanneg(int count);
217 static void _cache_cleanpos(int count);
218 static void _cache_cleandefered(void);
219 static void _cache_unlink(struct namecache *ncp);
220 
221 /*
222  * The new name cache statistics
223  */
224 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
225 static int numneg;
226 SYSCTL_INT(_vfs_cache, OID_AUTO, numneg, CTLFLAG_RD, &numneg, 0,
227     "Number of negative namecache entries");
228 static int numcache;
229 SYSCTL_INT(_vfs_cache, OID_AUTO, numcache, CTLFLAG_RD, &numcache, 0,
230     "Number of namecaches entries");
231 static u_long numcalls;
232 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcalls, CTLFLAG_RD, &numcalls, 0,
233     "Number of namecache lookups");
234 static u_long numchecks;
235 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numchecks, CTLFLAG_RD, &numchecks, 0,
236     "Number of checked entries in namecache lookups");
237 
238 struct nchstats nchstats[SMP_MAXCPU];
239 /*
240  * Export VFS cache effectiveness statistics to user-land.
241  *
242  * The statistics are left for aggregation to user-land so
243  * neat things can be achieved, like observing per-CPU cache
244  * distribution.
245  */
246 static int
247 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
248 {
249 	struct globaldata *gd;
250 	int i, error;
251 
252 	error = 0;
253 	for (i = 0; i < ncpus; ++i) {
254 		gd = globaldata_find(i);
255 		if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
256 			sizeof(struct nchstats))))
257 			break;
258 	}
259 
260 	return (error);
261 }
262 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
263   0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
264 
265 static struct namecache *cache_zap(struct namecache *ncp, int nonblock);
266 
267 /*
268  * Namespace locking.  The caller must already hold a reference to the
269  * namecache structure in order to lock/unlock it.  This function prevents
270  * the namespace from being created or destroyed by accessors other then
271  * the lock holder.
272  *
273  * Note that holding a locked namecache structure prevents other threads
274  * from making namespace changes (e.g. deleting or creating), prevents
275  * vnode association state changes by other threads, and prevents the
276  * namecache entry from being resolved or unresolved by other threads.
277  *
278  * An exclusive lock owner has full authority to associate/disassociate
279  * vnodes and resolve/unresolve the locked ncp.
280  *
281  * A shared lock owner only has authority to acquire the underlying vnode,
282  * if any.
283  *
284  * The primary lock field is nc_lockstatus.  nc_locktd is set after the
285  * fact (when locking) or cleared prior to unlocking.
286  *
287  * WARNING!  Holding a locked ncp will prevent a vnode from being destroyed
288  *	     or recycled, but it does NOT help you if the vnode had already
289  *	     initiated a recyclement.  If this is important, use cache_get()
290  *	     rather then cache_lock() (and deal with the differences in the
291  *	     way the refs counter is handled).  Or, alternatively, make an
292  *	     unconditional call to cache_validate() or cache_resolve()
293  *	     after cache_lock() returns.
294  */
295 static
296 void
297 _cache_lock(struct namecache *ncp)
298 {
299 	thread_t td;
300 	int didwarn;
301 	int begticks;
302 	int error;
303 	u_int count;
304 
305 	KKASSERT(ncp->nc_refs != 0);
306 	didwarn = 0;
307 	begticks = 0;
308 	td = curthread;
309 
310 	for (;;) {
311 		count = ncp->nc_lockstatus;
312 		cpu_ccfence();
313 
314 		if ((count & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 0) {
315 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
316 					      count, count + 1)) {
317 				/*
318 				 * The vp associated with a locked ncp must
319 				 * be held to prevent it from being recycled.
320 				 *
321 				 * WARNING!  If VRECLAIMED is set the vnode
322 				 * could already be in the middle of a recycle.
323 				 * Callers must use cache_vref() or
324 				 * cache_vget() on the locked ncp to
325 				 * validate the vp or set the cache entry
326 				 * to unresolved.
327 				 *
328 				 * NOTE! vhold() is allowed if we hold a
329 				 *	 lock on the ncp (which we do).
330 				 */
331 				ncp->nc_locktd = td;
332 				if (ncp->nc_vp)
333 					vhold(ncp->nc_vp);
334 				break;
335 			}
336 			/* cmpset failed */
337 			continue;
338 		}
339 		if (ncp->nc_locktd == td) {
340 			KKASSERT((count & NC_SHLOCK_FLAG) == 0);
341 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
342 					      count, count + 1)) {
343 				break;
344 			}
345 			/* cmpset failed */
346 			continue;
347 		}
348 		tsleep_interlock(&ncp->nc_locktd, 0);
349 		if (atomic_cmpset_int(&ncp->nc_lockstatus, count,
350 				      count | NC_EXLOCK_REQ) == 0) {
351 			/* cmpset failed */
352 			continue;
353 		}
354 		if (begticks == 0)
355 			begticks = ticks;
356 		error = tsleep(&ncp->nc_locktd, PINTERLOCKED,
357 			       "clock", nclockwarn);
358 		if (error == EWOULDBLOCK) {
359 			if (didwarn == 0) {
360 				didwarn = ticks;
361 				kprintf("[diagnostic] cache_lock: "
362 					"blocked on %p %08x",
363 					ncp, count);
364 				kprintf(" \"%*.*s\"\n",
365 					ncp->nc_nlen, ncp->nc_nlen,
366 					ncp->nc_name);
367 			}
368 		}
369 		/* loop */
370 	}
371 	if (didwarn) {
372 		kprintf("[diagnostic] cache_lock: unblocked %*.*s after "
373 			"%d secs\n",
374 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
375 			(int)(ticks + (hz / 2) - begticks) / hz);
376 	}
377 }
378 
379 /*
380  * The shared lock works similarly to the exclusive lock except
381  * nc_locktd is left NULL and we need an interlock (VHOLD) to
382  * prevent vhold() races, since the moment our cmpset_int succeeds
383  * another cpu can come in and get its own shared lock.
384  *
385  * A critical section is needed to prevent interruption during the
386  * VHOLD interlock.
387  */
388 static
389 void
390 _cache_lock_shared(struct namecache *ncp)
391 {
392 	int didwarn;
393 	int error;
394 	u_int count;
395 	u_int optreq = NC_EXLOCK_REQ;
396 
397 	KKASSERT(ncp->nc_refs != 0);
398 	didwarn = 0;
399 
400 	for (;;) {
401 		count = ncp->nc_lockstatus;
402 		cpu_ccfence();
403 
404 		if ((count & ~NC_SHLOCK_REQ) == 0) {
405 			crit_enter();
406 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
407 				      count,
408 				      (count + 1) | NC_SHLOCK_FLAG |
409 						    NC_SHLOCK_VHOLD)) {
410 				/*
411 				 * The vp associated with a locked ncp must
412 				 * be held to prevent it from being recycled.
413 				 *
414 				 * WARNING!  If VRECLAIMED is set the vnode
415 				 * could already be in the middle of a recycle.
416 				 * Callers must use cache_vref() or
417 				 * cache_vget() on the locked ncp to
418 				 * validate the vp or set the cache entry
419 				 * to unresolved.
420 				 *
421 				 * NOTE! vhold() is allowed if we hold a
422 				 *	 lock on the ncp (which we do).
423 				 */
424 				if (ncp->nc_vp)
425 					vhold(ncp->nc_vp);
426 				atomic_clear_int(&ncp->nc_lockstatus,
427 						 NC_SHLOCK_VHOLD);
428 				crit_exit();
429 				break;
430 			}
431 			/* cmpset failed */
432 			crit_exit();
433 			continue;
434 		}
435 
436 		/*
437 		 * If already held shared we can just bump the count, but
438 		 * only allow this if nobody is trying to get the lock
439 		 * exclusively.  If we are blocking too long ignore excl
440 		 * requests (which can race/deadlock us).
441 		 *
442 		 * VHOLD is a bit of a hack.  Even though we successfully
443 		 * added another shared ref, the cpu that got the first
444 		 * shared ref might not yet have held the vnode.
445 		 */
446 		if ((count & (optreq|NC_SHLOCK_FLAG)) == NC_SHLOCK_FLAG) {
447 			KKASSERT((count & ~(NC_EXLOCK_REQ |
448 					    NC_SHLOCK_REQ |
449 					    NC_SHLOCK_FLAG)) > 0);
450 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
451 					      count, count + 1)) {
452 				while (ncp->nc_lockstatus & NC_SHLOCK_VHOLD)
453 					cpu_pause();
454 				break;
455 			}
456 			continue;
457 		}
458 		tsleep_interlock(ncp, 0);
459 		if (atomic_cmpset_int(&ncp->nc_lockstatus, count,
460 				      count | NC_SHLOCK_REQ) == 0) {
461 			/* cmpset failed */
462 			continue;
463 		}
464 		error = tsleep(ncp, PINTERLOCKED, "clocksh", nclockwarn);
465 		if (error == EWOULDBLOCK) {
466 			optreq = 0;
467 			if (didwarn == 0) {
468 				didwarn = ticks;
469 				kprintf("[diagnostic] cache_lock_shared: "
470 					"blocked on %p %08x",
471 					ncp, count);
472 				kprintf(" \"%*.*s\"\n",
473 					ncp->nc_nlen, ncp->nc_nlen,
474 					ncp->nc_name);
475 			}
476 		}
477 		/* loop */
478 	}
479 	if (didwarn) {
480 		kprintf("[diagnostic] cache_lock_shared: "
481 			"unblocked %*.*s after %d secs\n",
482 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
483 			(int)(ticks - didwarn) / hz);
484 	}
485 }
486 
487 /*
488  * NOTE: nc_refs may be zero if the ncp is interlocked by circumstance,
489  *	 such as the case where one of its children is locked.
490  */
491 static
492 int
493 _cache_lock_nonblock(struct namecache *ncp)
494 {
495 	thread_t td;
496 	u_int count;
497 
498 	td = curthread;
499 
500 	for (;;) {
501 		count = ncp->nc_lockstatus;
502 
503 		if ((count & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 0) {
504 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
505 					      count, count + 1)) {
506 				/*
507 				 * The vp associated with a locked ncp must
508 				 * be held to prevent it from being recycled.
509 				 *
510 				 * WARNING!  If VRECLAIMED is set the vnode
511 				 * could already be in the middle of a recycle.
512 				 * Callers must use cache_vref() or
513 				 * cache_vget() on the locked ncp to
514 				 * validate the vp or set the cache entry
515 				 * to unresolved.
516 				 *
517 				 * NOTE! vhold() is allowed if we hold a
518 				 *	 lock on the ncp (which we do).
519 				 */
520 				ncp->nc_locktd = td;
521 				if (ncp->nc_vp)
522 					vhold(ncp->nc_vp);
523 				break;
524 			}
525 			/* cmpset failed */
526 			continue;
527 		}
528 		if (ncp->nc_locktd == td) {
529 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
530 					      count, count + 1)) {
531 				break;
532 			}
533 			/* cmpset failed */
534 			continue;
535 		}
536 		return(EWOULDBLOCK);
537 	}
538 	return(0);
539 }
540 
541 /*
542  * The shared lock works similarly to the exclusive lock except
543  * nc_locktd is left NULL and we need an interlock (VHOLD) to
544  * prevent vhold() races, since the moment our cmpset_int succeeds
545  * another cpu can come in and get its own shared lock.
546  *
547  * A critical section is needed to prevent interruption during the
548  * VHOLD interlock.
549  */
550 static
551 int
552 _cache_lock_shared_nonblock(struct namecache *ncp)
553 {
554 	u_int count;
555 
556 	for (;;) {
557 		count = ncp->nc_lockstatus;
558 
559 		if ((count & ~NC_SHLOCK_REQ) == 0) {
560 			crit_enter();
561 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
562 				      count,
563 				      (count + 1) | NC_SHLOCK_FLAG |
564 						    NC_SHLOCK_VHOLD)) {
565 				/*
566 				 * The vp associated with a locked ncp must
567 				 * be held to prevent it from being recycled.
568 				 *
569 				 * WARNING!  If VRECLAIMED is set the vnode
570 				 * could already be in the middle of a recycle.
571 				 * Callers must use cache_vref() or
572 				 * cache_vget() on the locked ncp to
573 				 * validate the vp or set the cache entry
574 				 * to unresolved.
575 				 *
576 				 * NOTE! vhold() is allowed if we hold a
577 				 *	 lock on the ncp (which we do).
578 				 */
579 				if (ncp->nc_vp)
580 					vhold(ncp->nc_vp);
581 				atomic_clear_int(&ncp->nc_lockstatus,
582 						 NC_SHLOCK_VHOLD);
583 				crit_exit();
584 				break;
585 			}
586 			/* cmpset failed */
587 			crit_exit();
588 			continue;
589 		}
590 
591 		/*
592 		 * If already held shared we can just bump the count, but
593 		 * only allow this if nobody is trying to get the lock
594 		 * exclusively.
595 		 *
596 		 * VHOLD is a bit of a hack.  Even though we successfully
597 		 * added another shared ref, the cpu that got the first
598 		 * shared ref might not yet have held the vnode.
599 		 */
600 		if ((count & (NC_EXLOCK_REQ|NC_SHLOCK_FLAG)) ==
601 		    NC_SHLOCK_FLAG) {
602 			KKASSERT((count & ~(NC_EXLOCK_REQ |
603 					    NC_SHLOCK_REQ |
604 					    NC_SHLOCK_FLAG)) > 0);
605 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
606 					      count, count + 1)) {
607 				while (ncp->nc_lockstatus & NC_SHLOCK_VHOLD)
608 					cpu_pause();
609 				break;
610 			}
611 			continue;
612 		}
613 		return(EWOULDBLOCK);
614 	}
615 	return(0);
616 }
617 
618 /*
619  * Helper function
620  *
621  * NOTE: nc_refs can be 0 (degenerate case during _cache_drop).
622  *
623  *	 nc_locktd must be NULLed out prior to nc_lockstatus getting cleared.
624  */
625 static
626 void
627 _cache_unlock(struct namecache *ncp)
628 {
629 	thread_t td __debugvar = curthread;
630 	u_int count;
631 	u_int ncount;
632 	struct vnode *dropvp;
633 
634 	KKASSERT(ncp->nc_refs >= 0);
635 	KKASSERT((ncp->nc_lockstatus & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) > 0);
636 	KKASSERT((ncp->nc_lockstatus & NC_SHLOCK_FLAG) || ncp->nc_locktd == td);
637 
638 	count = ncp->nc_lockstatus;
639 	cpu_ccfence();
640 
641 	/*
642 	 * Clear nc_locktd prior to the atomic op (excl lock only)
643 	 */
644 	if ((count & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 1)
645 		ncp->nc_locktd = NULL;
646 	dropvp = NULL;
647 
648 	for (;;) {
649 		if ((count &
650 		     ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ|NC_SHLOCK_FLAG)) == 1) {
651 			dropvp = ncp->nc_vp;
652 			if (count & NC_EXLOCK_REQ)
653 				ncount = count & NC_SHLOCK_REQ; /* cnt->0 */
654 			else
655 				ncount = 0;
656 
657 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
658 					      count, ncount)) {
659 				if (count & NC_EXLOCK_REQ)
660 					wakeup(&ncp->nc_locktd);
661 				else if (count & NC_SHLOCK_REQ)
662 					wakeup(ncp);
663 				break;
664 			}
665 			dropvp = NULL;
666 		} else {
667 			KKASSERT((count & NC_SHLOCK_VHOLD) == 0);
668 			KKASSERT((count & ~(NC_EXLOCK_REQ |
669 					    NC_SHLOCK_REQ |
670 					    NC_SHLOCK_FLAG)) > 1);
671 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
672 					      count, count - 1)) {
673 				break;
674 			}
675 		}
676 		count = ncp->nc_lockstatus;
677 		cpu_ccfence();
678 	}
679 
680 	/*
681 	 * Don't actually drop the vp until we successfully clean out
682 	 * the lock, otherwise we may race another shared lock.
683 	 */
684 	if (dropvp)
685 		vdrop(dropvp);
686 }
687 
688 static
689 int
690 _cache_lockstatus(struct namecache *ncp)
691 {
692 	if (ncp->nc_locktd == curthread)
693 		return(LK_EXCLUSIVE);
694 	if (ncp->nc_lockstatus & NC_SHLOCK_FLAG)
695 		return(LK_SHARED);
696 	return(-1);
697 }
698 
699 /*
700  * cache_hold() and cache_drop() prevent the premature deletion of a
701  * namecache entry but do not prevent operations (such as zapping) on
702  * that namecache entry.
703  *
704  * This routine may only be called from outside this source module if
705  * nc_refs is already at least 1.
706  *
707  * This is a rare case where callers are allowed to hold a spinlock,
708  * so we can't ourselves.
709  */
710 static __inline
711 struct namecache *
712 _cache_hold(struct namecache *ncp)
713 {
714 	atomic_add_int(&ncp->nc_refs, 1);
715 	return(ncp);
716 }
717 
718 /*
719  * Drop a cache entry, taking care to deal with races.
720  *
721  * For potential 1->0 transitions we must hold the ncp lock to safely
722  * test its flags.  An unresolved entry with no children must be zapped
723  * to avoid leaks.
724  *
725  * The call to cache_zap() itself will handle all remaining races and
726  * will decrement the ncp's refs regardless.  If we are resolved or
727  * have children nc_refs can safely be dropped to 0 without having to
728  * zap the entry.
729  *
730  * NOTE: cache_zap() will re-check nc_refs and nc_list in a MPSAFE fashion.
731  *
732  * NOTE: cache_zap() may return a non-NULL referenced parent which must
733  *	 be dropped in a loop.
734  */
735 static __inline
736 void
737 _cache_drop(struct namecache *ncp)
738 {
739 	int refs;
740 
741 	while (ncp) {
742 		KKASSERT(ncp->nc_refs > 0);
743 		refs = ncp->nc_refs;
744 
745 		if (refs == 1) {
746 			if (_cache_lock_nonblock(ncp) == 0) {
747 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
748 				if ((ncp->nc_flag & NCF_UNRESOLVED) &&
749 				    TAILQ_EMPTY(&ncp->nc_list)) {
750 					ncp = cache_zap(ncp, 1);
751 					continue;
752 				}
753 				if (atomic_cmpset_int(&ncp->nc_refs, 1, 0)) {
754 					_cache_unlock(ncp);
755 					break;
756 				}
757 				_cache_unlock(ncp);
758 			}
759 		} else {
760 			if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1))
761 				break;
762 		}
763 		cpu_pause();
764 	}
765 }
766 
767 /*
768  * Link a new namecache entry to its parent and to the hash table.  Be
769  * careful to avoid races if vhold() blocks in the future.
770  *
771  * Both ncp and par must be referenced and locked.
772  *
773  * NOTE: The hash table spinlock is held during this call, we can't do
774  *	 anything fancy.
775  */
776 static void
777 _cache_link_parent(struct namecache *ncp, struct namecache *par,
778 		   struct nchash_head *nchpp)
779 {
780 	KKASSERT(ncp->nc_parent == NULL);
781 	ncp->nc_parent = par;
782 	ncp->nc_head = nchpp;
783 
784 	/*
785 	 * Set inheritance flags.  Note that the parent flags may be
786 	 * stale due to getattr potentially not having been run yet
787 	 * (it gets run during nlookup()'s).
788 	 */
789 	ncp->nc_flag &= ~(NCF_SF_PNOCACHE | NCF_UF_PCACHE);
790 	if (par->nc_flag & (NCF_SF_NOCACHE | NCF_SF_PNOCACHE))
791 		ncp->nc_flag |= NCF_SF_PNOCACHE;
792 	if (par->nc_flag & (NCF_UF_CACHE | NCF_UF_PCACHE))
793 		ncp->nc_flag |= NCF_UF_PCACHE;
794 
795 	LIST_INSERT_HEAD(&nchpp->list, ncp, nc_hash);
796 
797 	if (TAILQ_EMPTY(&par->nc_list)) {
798 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
799 		/*
800 		 * Any vp associated with an ncp which has children must
801 		 * be held to prevent it from being recycled.
802 		 */
803 		if (par->nc_vp)
804 			vhold(par->nc_vp);
805 	} else {
806 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
807 	}
808 }
809 
810 /*
811  * Remove the parent and hash associations from a namecache structure.
812  * If this is the last child of the parent the cache_drop(par) will
813  * attempt to recursively zap the parent.
814  *
815  * ncp must be locked.  This routine will acquire a temporary lock on
816  * the parent as wlel as the appropriate hash chain.
817  */
818 static void
819 _cache_unlink_parent(struct namecache *ncp)
820 {
821 	struct namecache *par;
822 	struct vnode *dropvp;
823 
824 	if ((par = ncp->nc_parent) != NULL) {
825 		KKASSERT(ncp->nc_parent == par);
826 		_cache_hold(par);
827 		_cache_lock(par);
828 		spin_lock(&ncp->nc_head->spin);
829 		LIST_REMOVE(ncp, nc_hash);
830 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
831 		dropvp = NULL;
832 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
833 			dropvp = par->nc_vp;
834 		spin_unlock(&ncp->nc_head->spin);
835 		ncp->nc_parent = NULL;
836 		ncp->nc_head = NULL;
837 		_cache_unlock(par);
838 		_cache_drop(par);
839 
840 		/*
841 		 * We can only safely vdrop with no spinlocks held.
842 		 */
843 		if (dropvp)
844 			vdrop(dropvp);
845 	}
846 }
847 
848 /*
849  * Allocate a new namecache structure.  Most of the code does not require
850  * zero-termination of the string but it makes vop_compat_ncreate() easier.
851  */
852 static struct namecache *
853 cache_alloc(int nlen)
854 {
855 	struct namecache *ncp;
856 
857 	ncp = kmalloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
858 	if (nlen)
859 		ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHE, M_WAITOK);
860 	ncp->nc_nlen = nlen;
861 	ncp->nc_flag = NCF_UNRESOLVED;
862 	ncp->nc_error = ENOTCONN;	/* needs to be resolved */
863 	ncp->nc_refs = 1;
864 
865 	TAILQ_INIT(&ncp->nc_list);
866 	_cache_lock(ncp);
867 	return(ncp);
868 }
869 
870 /*
871  * Can only be called for the case where the ncp has never been
872  * associated with anything (so no spinlocks are needed).
873  */
874 static void
875 _cache_free(struct namecache *ncp)
876 {
877 	KKASSERT(ncp->nc_refs == 1 && ncp->nc_lockstatus == 1);
878 	if (ncp->nc_name)
879 		kfree(ncp->nc_name, M_VFSCACHE);
880 	kfree(ncp, M_VFSCACHE);
881 }
882 
883 /*
884  * [re]initialize a nchandle.
885  */
886 void
887 cache_zero(struct nchandle *nch)
888 {
889 	nch->ncp = NULL;
890 	nch->mount = NULL;
891 }
892 
893 /*
894  * Ref and deref a namecache structure.
895  *
896  * The caller must specify a stable ncp pointer, typically meaning the
897  * ncp is already referenced but this can also occur indirectly through
898  * e.g. holding a lock on a direct child.
899  *
900  * WARNING: Caller may hold an unrelated read spinlock, which means we can't
901  *	    use read spinlocks here.
902  *
903  * MPSAFE if nch is
904  */
905 struct nchandle *
906 cache_hold(struct nchandle *nch)
907 {
908 	_cache_hold(nch->ncp);
909 	atomic_add_int(&nch->mount->mnt_refs, 1);
910 	return(nch);
911 }
912 
913 /*
914  * Create a copy of a namecache handle for an already-referenced
915  * entry.
916  *
917  * MPSAFE if nch is
918  */
919 void
920 cache_copy(struct nchandle *nch, struct nchandle *target)
921 {
922 	*target = *nch;
923 	if (target->ncp)
924 		_cache_hold(target->ncp);
925 	atomic_add_int(&nch->mount->mnt_refs, 1);
926 }
927 
928 /*
929  * MPSAFE if nch is
930  */
931 void
932 cache_changemount(struct nchandle *nch, struct mount *mp)
933 {
934 	atomic_add_int(&nch->mount->mnt_refs, -1);
935 	nch->mount = mp;
936 	atomic_add_int(&nch->mount->mnt_refs, 1);
937 }
938 
939 void
940 cache_drop(struct nchandle *nch)
941 {
942 	atomic_add_int(&nch->mount->mnt_refs, -1);
943 	_cache_drop(nch->ncp);
944 	nch->ncp = NULL;
945 	nch->mount = NULL;
946 }
947 
948 int
949 cache_lockstatus(struct nchandle *nch)
950 {
951 	return(_cache_lockstatus(nch->ncp));
952 }
953 
954 void
955 cache_lock(struct nchandle *nch)
956 {
957 	_cache_lock(nch->ncp);
958 }
959 
960 void
961 cache_lock_maybe_shared(struct nchandle *nch, int excl)
962 {
963 	struct namecache *ncp = nch->ncp;
964 
965 	if (ncp_shared_lock_disable || excl ||
966 	    (ncp->nc_flag & NCF_UNRESOLVED)) {
967 		_cache_lock(ncp);
968 	} else {
969 		_cache_lock_shared(ncp);
970 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
971 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
972 				_cache_unlock(ncp);
973 				_cache_lock(ncp);
974 			}
975 		} else {
976 			_cache_unlock(ncp);
977 			_cache_lock(ncp);
978 		}
979 	}
980 }
981 
982 /*
983  * Relock nch1 given an unlocked nch1 and a locked nch2.  The caller
984  * is responsible for checking both for validity on return as they
985  * may have become invalid.
986  *
987  * We have to deal with potential deadlocks here, just ping pong
988  * the lock until we get it (we will always block somewhere when
989  * looping so this is not cpu-intensive).
990  *
991  * which = 0	nch1 not locked, nch2 is locked
992  * which = 1	nch1 is locked, nch2 is not locked
993  */
994 void
995 cache_relock(struct nchandle *nch1, struct ucred *cred1,
996 	     struct nchandle *nch2, struct ucred *cred2)
997 {
998 	int which;
999 
1000 	which = 0;
1001 
1002 	for (;;) {
1003 		if (which == 0) {
1004 			if (cache_lock_nonblock(nch1) == 0) {
1005 				cache_resolve(nch1, cred1);
1006 				break;
1007 			}
1008 			cache_unlock(nch2);
1009 			cache_lock(nch1);
1010 			cache_resolve(nch1, cred1);
1011 			which = 1;
1012 		} else {
1013 			if (cache_lock_nonblock(nch2) == 0) {
1014 				cache_resolve(nch2, cred2);
1015 				break;
1016 			}
1017 			cache_unlock(nch1);
1018 			cache_lock(nch2);
1019 			cache_resolve(nch2, cred2);
1020 			which = 0;
1021 		}
1022 	}
1023 }
1024 
1025 int
1026 cache_lock_nonblock(struct nchandle *nch)
1027 {
1028 	return(_cache_lock_nonblock(nch->ncp));
1029 }
1030 
1031 void
1032 cache_unlock(struct nchandle *nch)
1033 {
1034 	_cache_unlock(nch->ncp);
1035 }
1036 
1037 /*
1038  * ref-and-lock, unlock-and-deref functions.
1039  *
1040  * This function is primarily used by nlookup.  Even though cache_lock
1041  * holds the vnode, it is possible that the vnode may have already
1042  * initiated a recyclement.
1043  *
1044  * We want cache_get() to return a definitively usable vnode or a
1045  * definitively unresolved ncp.
1046  */
1047 static
1048 struct namecache *
1049 _cache_get(struct namecache *ncp)
1050 {
1051 	_cache_hold(ncp);
1052 	_cache_lock(ncp);
1053 	if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1054 		_cache_setunresolved(ncp);
1055 	return(ncp);
1056 }
1057 
1058 /*
1059  * Attempt to obtain a shared lock on the ncp.  A shared lock will only
1060  * be obtained if the ncp is resolved and the vnode (if not ENOENT) is
1061  * valid.  Otherwise an exclusive lock will be acquired instead.
1062  */
1063 static
1064 struct namecache *
1065 _cache_get_maybe_shared(struct namecache *ncp, int excl)
1066 {
1067 	if (ncp_shared_lock_disable || excl ||
1068 	    (ncp->nc_flag & NCF_UNRESOLVED)) {
1069 		return(_cache_get(ncp));
1070 	}
1071 	_cache_hold(ncp);
1072 	_cache_lock_shared(ncp);
1073 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1074 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
1075 			_cache_unlock(ncp);
1076 			ncp = _cache_get(ncp);
1077 			_cache_drop(ncp);
1078 		}
1079 	} else {
1080 		_cache_unlock(ncp);
1081 		ncp = _cache_get(ncp);
1082 		_cache_drop(ncp);
1083 	}
1084 	return(ncp);
1085 }
1086 
1087 /*
1088  * This is a special form of _cache_lock() which only succeeds if
1089  * it can get a pristine, non-recursive lock.  The caller must have
1090  * already ref'd the ncp.
1091  *
1092  * On success the ncp will be locked, on failure it will not.  The
1093  * ref count does not change either way.
1094  *
1095  * We want _cache_lock_special() (on success) to return a definitively
1096  * usable vnode or a definitively unresolved ncp.
1097  */
1098 static int
1099 _cache_lock_special(struct namecache *ncp)
1100 {
1101 	if (_cache_lock_nonblock(ncp) == 0) {
1102 		if ((ncp->nc_lockstatus &
1103 		     ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 1) {
1104 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1105 				_cache_setunresolved(ncp);
1106 			return(0);
1107 		}
1108 		_cache_unlock(ncp);
1109 	}
1110 	return(EWOULDBLOCK);
1111 }
1112 
1113 /*
1114  * This function tries to get a shared lock but will back-off to an exclusive
1115  * lock if:
1116  *
1117  * (1) Some other thread is trying to obtain an exclusive lock
1118  *     (to prevent the exclusive requester from getting livelocked out
1119  *     by many shared locks).
1120  *
1121  * (2) The current thread already owns an exclusive lock (to avoid
1122  *     deadlocking).
1123  *
1124  * WARNING! On machines with lots of cores we really want to try hard to
1125  *	    get a shared lock or concurrent path lookups can chain-react
1126  *	    into a very high-latency exclusive lock.
1127  */
1128 static int
1129 _cache_lock_shared_special(struct namecache *ncp)
1130 {
1131 	/*
1132 	 * Only honor a successful shared lock (returning 0) if there is
1133 	 * no exclusive request pending and the vnode, if present, is not
1134 	 * in a reclaimed state.
1135 	 */
1136 	if (_cache_lock_shared_nonblock(ncp) == 0) {
1137 		if ((ncp->nc_lockstatus & NC_EXLOCK_REQ) == 0) {
1138 			if (ncp->nc_vp == NULL ||
1139 			    (ncp->nc_vp->v_flag & VRECLAIMED) == 0) {
1140 				return(0);
1141 			}
1142 		}
1143 		_cache_unlock(ncp);
1144 		return(EWOULDBLOCK);
1145 	}
1146 
1147 	/*
1148 	 * Non-blocking shared lock failed.  If we already own the exclusive
1149 	 * lock just acquire another exclusive lock (instead of deadlocking).
1150 	 * Otherwise acquire a shared lock.
1151 	 */
1152 	if (ncp->nc_locktd == curthread) {
1153 		_cache_lock(ncp);
1154 		return(0);
1155 	}
1156 	_cache_lock_shared(ncp);
1157 	return(0);
1158 }
1159 
1160 
1161 /*
1162  * NOTE: The same nchandle can be passed for both arguments.
1163  */
1164 void
1165 cache_get(struct nchandle *nch, struct nchandle *target)
1166 {
1167 	KKASSERT(nch->ncp->nc_refs > 0);
1168 	target->mount = nch->mount;
1169 	target->ncp = _cache_get(nch->ncp);
1170 	atomic_add_int(&target->mount->mnt_refs, 1);
1171 }
1172 
1173 void
1174 cache_get_maybe_shared(struct nchandle *nch, struct nchandle *target, int excl)
1175 {
1176 	KKASSERT(nch->ncp->nc_refs > 0);
1177 	target->mount = nch->mount;
1178 	target->ncp = _cache_get_maybe_shared(nch->ncp, excl);
1179 	atomic_add_int(&target->mount->mnt_refs, 1);
1180 }
1181 
1182 /*
1183  *
1184  */
1185 static __inline
1186 void
1187 _cache_put(struct namecache *ncp)
1188 {
1189 	_cache_unlock(ncp);
1190 	_cache_drop(ncp);
1191 }
1192 
1193 /*
1194  *
1195  */
1196 void
1197 cache_put(struct nchandle *nch)
1198 {
1199 	atomic_add_int(&nch->mount->mnt_refs, -1);
1200 	_cache_put(nch->ncp);
1201 	nch->ncp = NULL;
1202 	nch->mount = NULL;
1203 }
1204 
1205 /*
1206  * Resolve an unresolved ncp by associating a vnode with it.  If the
1207  * vnode is NULL, a negative cache entry is created.
1208  *
1209  * The ncp should be locked on entry and will remain locked on return.
1210  */
1211 static
1212 void
1213 _cache_setvp(struct mount *mp, struct namecache *ncp, struct vnode *vp)
1214 {
1215 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
1216 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
1217 
1218 	if (vp != NULL) {
1219 		/*
1220 		 * Any vp associated with an ncp which has children must
1221 		 * be held.  Any vp associated with a locked ncp must be held.
1222 		 */
1223 		if (!TAILQ_EMPTY(&ncp->nc_list))
1224 			vhold(vp);
1225 		spin_lock(&vp->v_spin);
1226 		ncp->nc_vp = vp;
1227 		TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
1228 		spin_unlock(&vp->v_spin);
1229 		if (ncp->nc_lockstatus & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ))
1230 			vhold(vp);
1231 
1232 		/*
1233 		 * Set auxiliary flags
1234 		 */
1235 		switch(vp->v_type) {
1236 		case VDIR:
1237 			ncp->nc_flag |= NCF_ISDIR;
1238 			break;
1239 		case VLNK:
1240 			ncp->nc_flag |= NCF_ISSYMLINK;
1241 			/* XXX cache the contents of the symlink */
1242 			break;
1243 		default:
1244 			break;
1245 		}
1246 		atomic_add_int(&numcache, 1);
1247 		ncp->nc_error = 0;
1248 		/* XXX: this is a hack to work-around the lack of a real pfs vfs
1249 		 * implementation*/
1250 		if (mp != NULL)
1251 			if (strncmp(mp->mnt_stat.f_fstypename, "null", 5) == 0)
1252 				vp->v_pfsmp = mp;
1253 	} else {
1254 		/*
1255 		 * When creating a negative cache hit we set the
1256 		 * namecache_gen.  A later resolve will clean out the
1257 		 * negative cache hit if the mount point's namecache_gen
1258 		 * has changed.  Used by devfs, could also be used by
1259 		 * other remote FSs.
1260 		 */
1261 		ncp->nc_vp = NULL;
1262 		spin_lock(&ncspin);
1263 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
1264 		++numneg;
1265 		spin_unlock(&ncspin);
1266 		ncp->nc_error = ENOENT;
1267 		if (mp)
1268 			VFS_NCPGEN_SET(mp, ncp);
1269 	}
1270 	ncp->nc_flag &= ~(NCF_UNRESOLVED | NCF_DEFEREDZAP);
1271 }
1272 
1273 /*
1274  *
1275  */
1276 void
1277 cache_setvp(struct nchandle *nch, struct vnode *vp)
1278 {
1279 	_cache_setvp(nch->mount, nch->ncp, vp);
1280 }
1281 
1282 /*
1283  *
1284  */
1285 void
1286 cache_settimeout(struct nchandle *nch, int nticks)
1287 {
1288 	struct namecache *ncp = nch->ncp;
1289 
1290 	if ((ncp->nc_timeout = ticks + nticks) == 0)
1291 		ncp->nc_timeout = 1;
1292 }
1293 
1294 /*
1295  * Disassociate the vnode or negative-cache association and mark a
1296  * namecache entry as unresolved again.  Note that the ncp is still
1297  * left in the hash table and still linked to its parent.
1298  *
1299  * The ncp should be locked and refd on entry and will remain locked and refd
1300  * on return.
1301  *
1302  * This routine is normally never called on a directory containing children.
1303  * However, NFS often does just that in its rename() code as a cop-out to
1304  * avoid complex namespace operations.  This disconnects a directory vnode
1305  * from its namecache and can cause the OLDAPI and NEWAPI to get out of
1306  * sync.
1307  *
1308  */
1309 static
1310 void
1311 _cache_setunresolved(struct namecache *ncp)
1312 {
1313 	struct vnode *vp;
1314 
1315 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1316 		ncp->nc_flag |= NCF_UNRESOLVED;
1317 		ncp->nc_timeout = 0;
1318 		ncp->nc_error = ENOTCONN;
1319 		if ((vp = ncp->nc_vp) != NULL) {
1320 			atomic_add_int(&numcache, -1);
1321 			spin_lock(&vp->v_spin);
1322 			ncp->nc_vp = NULL;
1323 			TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
1324 			spin_unlock(&vp->v_spin);
1325 
1326 			/*
1327 			 * Any vp associated with an ncp with children is
1328 			 * held by that ncp.  Any vp associated with a locked
1329 			 * ncp is held by that ncp.  These conditions must be
1330 			 * undone when the vp is cleared out from the ncp.
1331 			 */
1332 			if (!TAILQ_EMPTY(&ncp->nc_list))
1333 				vdrop(vp);
1334 			if (ncp->nc_lockstatus & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ))
1335 				vdrop(vp);
1336 		} else {
1337 			spin_lock(&ncspin);
1338 			TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
1339 			--numneg;
1340 			spin_unlock(&ncspin);
1341 		}
1342 		ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK);
1343 	}
1344 }
1345 
1346 /*
1347  * The cache_nresolve() code calls this function to automatically
1348  * set a resolved cache element to unresolved if it has timed out
1349  * or if it is a negative cache hit and the mount point namecache_gen
1350  * has changed.
1351  */
1352 static __inline int
1353 _cache_auto_unresolve_test(struct mount *mp, struct namecache *ncp)
1354 {
1355 	/*
1356 	 * Try to zap entries that have timed out.  We have
1357 	 * to be careful here because locked leafs may depend
1358 	 * on the vnode remaining intact in a parent, so only
1359 	 * do this under very specific conditions.
1360 	 */
1361 	if (ncp->nc_timeout && (int)(ncp->nc_timeout - ticks) < 0 &&
1362 	    TAILQ_EMPTY(&ncp->nc_list)) {
1363 		return 1;
1364 	}
1365 
1366 	/*
1367 	 * If a resolved negative cache hit is invalid due to
1368 	 * the mount's namecache generation being bumped, zap it.
1369 	 */
1370 	if (ncp->nc_vp == NULL && VFS_NCPGEN_TEST(mp, ncp)) {
1371 		return 1;
1372 	}
1373 
1374 	/*
1375 	 * Otherwise we are good
1376 	 */
1377 	return 0;
1378 }
1379 
1380 static __inline void
1381 _cache_auto_unresolve(struct mount *mp, struct namecache *ncp)
1382 {
1383 	/*
1384 	 * Already in an unresolved state, nothing to do.
1385 	 */
1386 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1387 		if (_cache_auto_unresolve_test(mp, ncp))
1388 			_cache_setunresolved(ncp);
1389 	}
1390 }
1391 
1392 /*
1393  *
1394  */
1395 void
1396 cache_setunresolved(struct nchandle *nch)
1397 {
1398 	_cache_setunresolved(nch->ncp);
1399 }
1400 
1401 /*
1402  * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
1403  * looking for matches.  This flag tells the lookup code when it must
1404  * check for a mount linkage and also prevents the directories in question
1405  * from being deleted or renamed.
1406  */
1407 static
1408 int
1409 cache_clrmountpt_callback(struct mount *mp, void *data)
1410 {
1411 	struct nchandle *nch = data;
1412 
1413 	if (mp->mnt_ncmounton.ncp == nch->ncp)
1414 		return(1);
1415 	if (mp->mnt_ncmountpt.ncp == nch->ncp)
1416 		return(1);
1417 	return(0);
1418 }
1419 
1420 /*
1421  *
1422  */
1423 void
1424 cache_clrmountpt(struct nchandle *nch)
1425 {
1426 	int count;
1427 
1428 	count = mountlist_scan(cache_clrmountpt_callback, nch,
1429 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1430 	if (count == 0)
1431 		nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
1432 }
1433 
1434 /*
1435  * Invalidate portions of the namecache topology given a starting entry.
1436  * The passed ncp is set to an unresolved state and:
1437  *
1438  * The passed ncp must be referencxed and locked.  The routine may unlock
1439  * and relock ncp several times, and will recheck the children and loop
1440  * to catch races.  When done the passed ncp will be returned with the
1441  * reference and lock intact.
1442  *
1443  * CINV_DESTROY		- Set a flag in the passed ncp entry indicating
1444  *			  that the physical underlying nodes have been
1445  *			  destroyed... as in deleted.  For example, when
1446  *			  a directory is removed.  This will cause record
1447  *			  lookups on the name to no longer be able to find
1448  *			  the record and tells the resolver to return failure
1449  *			  rather then trying to resolve through the parent.
1450  *
1451  *			  The topology itself, including ncp->nc_name,
1452  *			  remains intact.
1453  *
1454  *			  This only applies to the passed ncp, if CINV_CHILDREN
1455  *			  is specified the children are not flagged.
1456  *
1457  * CINV_CHILDREN	- Set all children (recursively) to an unresolved
1458  *			  state as well.
1459  *
1460  *			  Note that this will also have the side effect of
1461  *			  cleaning out any unreferenced nodes in the topology
1462  *			  from the leaves up as the recursion backs out.
1463  *
1464  * Note that the topology for any referenced nodes remains intact, but
1465  * the nodes will be marked as having been destroyed and will be set
1466  * to an unresolved state.
1467  *
1468  * It is possible for cache_inval() to race a cache_resolve(), meaning that
1469  * the namecache entry may not actually be invalidated on return if it was
1470  * revalidated while recursing down into its children.  This code guarentees
1471  * that the node(s) will go through an invalidation cycle, but does not
1472  * guarentee that they will remain in an invalidated state.
1473  *
1474  * Returns non-zero if a revalidation was detected during the invalidation
1475  * recursion, zero otherwise.  Note that since only the original ncp is
1476  * locked the revalidation ultimately can only indicate that the original ncp
1477  * *MIGHT* no have been reresolved.
1478  *
1479  * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
1480  * have to avoid blowing out the kernel stack.  We do this by saving the
1481  * deep namecache node and aborting the recursion, then re-recursing at that
1482  * node using a depth-first algorithm in order to allow multiple deep
1483  * recursions to chain through each other, then we restart the invalidation
1484  * from scratch.
1485  */
1486 
1487 struct cinvtrack {
1488 	struct namecache *resume_ncp;
1489 	int depth;
1490 };
1491 
1492 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
1493 
1494 static
1495 int
1496 _cache_inval(struct namecache *ncp, int flags)
1497 {
1498 	struct cinvtrack track;
1499 	struct namecache *ncp2;
1500 	int r;
1501 
1502 	track.depth = 0;
1503 	track.resume_ncp = NULL;
1504 
1505 	for (;;) {
1506 		r = _cache_inval_internal(ncp, flags, &track);
1507 		if (track.resume_ncp == NULL)
1508 			break;
1509 		kprintf("Warning: deep namecache recursion at %s\n",
1510 			ncp->nc_name);
1511 		_cache_unlock(ncp);
1512 		while ((ncp2 = track.resume_ncp) != NULL) {
1513 			track.resume_ncp = NULL;
1514 			_cache_lock(ncp2);
1515 			_cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
1516 					     &track);
1517 			_cache_put(ncp2);
1518 		}
1519 		_cache_lock(ncp);
1520 	}
1521 	return(r);
1522 }
1523 
1524 int
1525 cache_inval(struct nchandle *nch, int flags)
1526 {
1527 	return(_cache_inval(nch->ncp, flags));
1528 }
1529 
1530 /*
1531  * Helper for _cache_inval().  The passed ncp is refd and locked and
1532  * remains that way on return, but may be unlocked/relocked multiple
1533  * times by the routine.
1534  */
1535 static int
1536 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
1537 {
1538 	struct namecache *kid;
1539 	struct namecache *nextkid;
1540 	int rcnt = 0;
1541 
1542 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
1543 
1544 	_cache_setunresolved(ncp);
1545 	if (flags & CINV_DESTROY)
1546 		ncp->nc_flag |= NCF_DESTROYED;
1547 	if ((flags & CINV_CHILDREN) &&
1548 	    (kid = TAILQ_FIRST(&ncp->nc_list)) != NULL
1549 	) {
1550 		_cache_hold(kid);
1551 		if (++track->depth > MAX_RECURSION_DEPTH) {
1552 			track->resume_ncp = ncp;
1553 			_cache_hold(ncp);
1554 			++rcnt;
1555 		}
1556 		_cache_unlock(ncp);
1557 		while (kid) {
1558 			if (track->resume_ncp) {
1559 				_cache_drop(kid);
1560 				break;
1561 			}
1562 			if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
1563 				_cache_hold(nextkid);
1564 			if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
1565 			    TAILQ_FIRST(&kid->nc_list)
1566 			) {
1567 				_cache_lock(kid);
1568 				rcnt += _cache_inval_internal(kid, flags & ~CINV_DESTROY, track);
1569 				_cache_unlock(kid);
1570 			}
1571 			_cache_drop(kid);
1572 			kid = nextkid;
1573 		}
1574 		--track->depth;
1575 		_cache_lock(ncp);
1576 	}
1577 
1578 	/*
1579 	 * Someone could have gotten in there while ncp was unlocked,
1580 	 * retry if so.
1581 	 */
1582 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1583 		++rcnt;
1584 	return (rcnt);
1585 }
1586 
1587 /*
1588  * Invalidate a vnode's namecache associations.  To avoid races against
1589  * the resolver we do not invalidate a node which we previously invalidated
1590  * but which was then re-resolved while we were in the invalidation loop.
1591  *
1592  * Returns non-zero if any namecache entries remain after the invalidation
1593  * loop completed.
1594  *
1595  * NOTE: Unlike the namecache topology which guarentees that ncp's will not
1596  *	 be ripped out of the topology while held, the vnode's v_namecache
1597  *	 list has no such restriction.  NCP's can be ripped out of the list
1598  *	 at virtually any time if not locked, even if held.
1599  *
1600  *	 In addition, the v_namecache list itself must be locked via
1601  *	 the vnode's spinlock.
1602  */
1603 int
1604 cache_inval_vp(struct vnode *vp, int flags)
1605 {
1606 	struct namecache *ncp;
1607 	struct namecache *next;
1608 
1609 restart:
1610 	spin_lock(&vp->v_spin);
1611 	ncp = TAILQ_FIRST(&vp->v_namecache);
1612 	if (ncp)
1613 		_cache_hold(ncp);
1614 	while (ncp) {
1615 		/* loop entered with ncp held and vp spin-locked */
1616 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1617 			_cache_hold(next);
1618 		spin_unlock(&vp->v_spin);
1619 		_cache_lock(ncp);
1620 		if (ncp->nc_vp != vp) {
1621 			kprintf("Warning: cache_inval_vp: race-A detected on "
1622 				"%s\n", ncp->nc_name);
1623 			_cache_put(ncp);
1624 			if (next)
1625 				_cache_drop(next);
1626 			goto restart;
1627 		}
1628 		_cache_inval(ncp, flags);
1629 		_cache_put(ncp);		/* also releases reference */
1630 		ncp = next;
1631 		spin_lock(&vp->v_spin);
1632 		if (ncp && ncp->nc_vp != vp) {
1633 			spin_unlock(&vp->v_spin);
1634 			kprintf("Warning: cache_inval_vp: race-B detected on "
1635 				"%s\n", ncp->nc_name);
1636 			_cache_drop(ncp);
1637 			goto restart;
1638 		}
1639 	}
1640 	spin_unlock(&vp->v_spin);
1641 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1642 }
1643 
1644 /*
1645  * This routine is used instead of the normal cache_inval_vp() when we
1646  * are trying to recycle otherwise good vnodes.
1647  *
1648  * Return 0 on success, non-zero if not all namecache records could be
1649  * disassociated from the vnode (for various reasons).
1650  */
1651 int
1652 cache_inval_vp_nonblock(struct vnode *vp)
1653 {
1654 	struct namecache *ncp;
1655 	struct namecache *next;
1656 
1657 	spin_lock(&vp->v_spin);
1658 	ncp = TAILQ_FIRST(&vp->v_namecache);
1659 	if (ncp)
1660 		_cache_hold(ncp);
1661 	while (ncp) {
1662 		/* loop entered with ncp held */
1663 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1664 			_cache_hold(next);
1665 		spin_unlock(&vp->v_spin);
1666 		if (_cache_lock_nonblock(ncp)) {
1667 			_cache_drop(ncp);
1668 			if (next)
1669 				_cache_drop(next);
1670 			goto done;
1671 		}
1672 		if (ncp->nc_vp != vp) {
1673 			kprintf("Warning: cache_inval_vp: race-A detected on "
1674 				"%s\n", ncp->nc_name);
1675 			_cache_put(ncp);
1676 			if (next)
1677 				_cache_drop(next);
1678 			goto done;
1679 		}
1680 		_cache_inval(ncp, 0);
1681 		_cache_put(ncp);		/* also releases reference */
1682 		ncp = next;
1683 		spin_lock(&vp->v_spin);
1684 		if (ncp && ncp->nc_vp != vp) {
1685 			spin_unlock(&vp->v_spin);
1686 			kprintf("Warning: cache_inval_vp: race-B detected on "
1687 				"%s\n", ncp->nc_name);
1688 			_cache_drop(ncp);
1689 			goto done;
1690 		}
1691 	}
1692 	spin_unlock(&vp->v_spin);
1693 done:
1694 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1695 }
1696 
1697 /*
1698  * The source ncp has been renamed to the target ncp.  Both fncp and tncp
1699  * must be locked.  The target ncp is destroyed (as a normal rename-over
1700  * would destroy the target file or directory).
1701  *
1702  * Because there may be references to the source ncp we cannot copy its
1703  * contents to the target.  Instead the source ncp is relinked as the target
1704  * and the target ncp is removed from the namecache topology.
1705  */
1706 void
1707 cache_rename(struct nchandle *fnch, struct nchandle *tnch)
1708 {
1709 	struct namecache *fncp = fnch->ncp;
1710 	struct namecache *tncp = tnch->ncp;
1711 	struct namecache *tncp_par;
1712 	struct nchash_head *nchpp;
1713 	u_int32_t hash;
1714 	char *oname;
1715 	char *nname;
1716 
1717 	if (tncp->nc_nlen) {
1718 		nname = kmalloc(tncp->nc_nlen + 1, M_VFSCACHE, M_WAITOK);
1719 		bcopy(tncp->nc_name, nname, tncp->nc_nlen);
1720 		nname[tncp->nc_nlen] = 0;
1721 	} else {
1722 		nname = NULL;
1723 	}
1724 
1725 	/*
1726 	 * Rename fncp (unlink)
1727 	 */
1728 	_cache_unlink_parent(fncp);
1729 	oname = fncp->nc_name;
1730 	fncp->nc_name = nname;
1731 	fncp->nc_nlen = tncp->nc_nlen;
1732 	if (oname)
1733 		kfree(oname, M_VFSCACHE);
1734 
1735 	tncp_par = tncp->nc_parent;
1736 	_cache_hold(tncp_par);
1737 	_cache_lock(tncp_par);
1738 
1739 	/*
1740 	 * Rename fncp (relink)
1741 	 */
1742 	hash = fnv_32_buf(fncp->nc_name, fncp->nc_nlen, FNV1_32_INIT);
1743 	hash = fnv_32_buf(&tncp_par, sizeof(tncp_par), hash);
1744 	nchpp = NCHHASH(hash);
1745 
1746 	spin_lock(&nchpp->spin);
1747 	_cache_link_parent(fncp, tncp_par, nchpp);
1748 	spin_unlock(&nchpp->spin);
1749 
1750 	_cache_put(tncp_par);
1751 
1752 	/*
1753 	 * Get rid of the overwritten tncp (unlink)
1754 	 */
1755 	_cache_unlink(tncp);
1756 }
1757 
1758 /*
1759  * Perform actions consistent with unlinking a file.  The passed-in ncp
1760  * must be locked.
1761  *
1762  * The ncp is marked DESTROYED so it no longer shows up in searches,
1763  * and will be physically deleted when the vnode goes away.
1764  *
1765  * If the related vnode has no refs then we cycle it through vget()/vput()
1766  * to (possibly if we don't have a ref race) trigger a deactivation,
1767  * allowing the VFS to trivially detect and recycle the deleted vnode
1768  * via VOP_INACTIVE().
1769  *
1770  * NOTE: _cache_rename() will automatically call _cache_unlink() on the
1771  *	 target ncp.
1772  */
1773 void
1774 cache_unlink(struct nchandle *nch)
1775 {
1776 	_cache_unlink(nch->ncp);
1777 }
1778 
1779 static void
1780 _cache_unlink(struct namecache *ncp)
1781 {
1782 	struct vnode *vp;
1783 
1784 	/*
1785 	 * Causes lookups to fail and allows another ncp with the same
1786 	 * name to be created under ncp->nc_parent.
1787 	 */
1788 	ncp->nc_flag |= NCF_DESTROYED;
1789 
1790 	/*
1791 	 * Attempt to trigger a deactivation.  Set VREF_FINALIZE to
1792 	 * force action on the 1->0 transition.
1793 	 */
1794 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
1795 	    (vp = ncp->nc_vp) != NULL) {
1796 		atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1797 		if (VREFCNT(vp) <= 0) {
1798 			if (vget(vp, LK_SHARED) == 0)
1799 				vput(vp);
1800 		}
1801 	}
1802 }
1803 
1804 /*
1805  * Return non-zero if the nch might be associated with an open and/or mmap()'d
1806  * file.  The easy solution is to just return non-zero if the vnode has refs.
1807  * Used to interlock hammer2 reclaims (VREF_FINALIZE should already be set to
1808  * force the reclaim).
1809  */
1810 int
1811 cache_isopen(struct nchandle *nch)
1812 {
1813 	struct vnode *vp;
1814 	struct namecache *ncp = nch->ncp;
1815 
1816 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
1817 	    (vp = ncp->nc_vp) != NULL &&
1818 	    VREFCNT(vp)) {
1819 		return 1;
1820 	}
1821 	return 0;
1822 }
1823 
1824 
1825 /*
1826  * vget the vnode associated with the namecache entry.  Resolve the namecache
1827  * entry if necessary.  The passed ncp must be referenced and locked.  If
1828  * the ncp is resolved it might be locked shared.
1829  *
1830  * lk_type may be LK_SHARED, LK_EXCLUSIVE.  A ref'd, possibly locked
1831  * (depending on the passed lk_type) will be returned in *vpp with an error
1832  * of 0, or NULL will be returned in *vpp with a non-0 error code.  The
1833  * most typical error is ENOENT, meaning that the ncp represents a negative
1834  * cache hit and there is no vnode to retrieve, but other errors can occur
1835  * too.
1836  *
1837  * The vget() can race a reclaim.  If this occurs we re-resolve the
1838  * namecache entry.
1839  *
1840  * There are numerous places in the kernel where vget() is called on a
1841  * vnode while one or more of its namecache entries is locked.  Releasing
1842  * a vnode never deadlocks against locked namecache entries (the vnode
1843  * will not get recycled while referenced ncp's exist).  This means we
1844  * can safely acquire the vnode.  In fact, we MUST NOT release the ncp
1845  * lock when acquiring the vp lock or we might cause a deadlock.
1846  *
1847  * NOTE: The passed-in ncp must be locked exclusively if it is initially
1848  *	 unresolved.  If a reclaim race occurs the passed-in ncp will be
1849  *	 relocked exclusively before being re-resolved.
1850  */
1851 int
1852 cache_vget(struct nchandle *nch, struct ucred *cred,
1853 	   int lk_type, struct vnode **vpp)
1854 {
1855 	struct namecache *ncp;
1856 	struct vnode *vp;
1857 	int error;
1858 
1859 	ncp = nch->ncp;
1860 again:
1861 	vp = NULL;
1862 	if (ncp->nc_flag & NCF_UNRESOLVED)
1863 		error = cache_resolve(nch, cred);
1864 	else
1865 		error = 0;
1866 
1867 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1868 		error = vget(vp, lk_type);
1869 		if (error) {
1870 			/*
1871 			 * VRECLAIM race
1872 			 *
1873 			 * The ncp may have been locked shared, we must relock
1874 			 * it exclusively before we can set it to unresolved.
1875 			 */
1876 			if (error == ENOENT) {
1877 				kprintf("Warning: vnode reclaim race detected "
1878 					"in cache_vget on %p (%s)\n",
1879 					vp, ncp->nc_name);
1880 				_cache_unlock(ncp);
1881 				_cache_lock(ncp);
1882 				_cache_setunresolved(ncp);
1883 				goto again;
1884 			}
1885 
1886 			/*
1887 			 * Not a reclaim race, some other error.
1888 			 */
1889 			KKASSERT(ncp->nc_vp == vp);
1890 			vp = NULL;
1891 		} else {
1892 			KKASSERT(ncp->nc_vp == vp);
1893 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1894 		}
1895 	}
1896 	if (error == 0 && vp == NULL)
1897 		error = ENOENT;
1898 	*vpp = vp;
1899 	return(error);
1900 }
1901 
1902 /*
1903  * Similar to cache_vget() but only acquires a ref on the vnode.
1904  *
1905  * NOTE: The passed-in ncp must be locked exclusively if it is initially
1906  *	 unresolved.  If a reclaim race occurs the passed-in ncp will be
1907  *	 relocked exclusively before being re-resolved.
1908  */
1909 int
1910 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
1911 {
1912 	struct namecache *ncp;
1913 	struct vnode *vp;
1914 	int error;
1915 
1916 	ncp = nch->ncp;
1917 again:
1918 	vp = NULL;
1919 	if (ncp->nc_flag & NCF_UNRESOLVED)
1920 		error = cache_resolve(nch, cred);
1921 	else
1922 		error = 0;
1923 
1924 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1925 		error = vget(vp, LK_SHARED);
1926 		if (error) {
1927 			/*
1928 			 * VRECLAIM race
1929 			 */
1930 			if (error == ENOENT) {
1931 				kprintf("Warning: vnode reclaim race detected "
1932 					"in cache_vget on %p (%s)\n",
1933 					vp, ncp->nc_name);
1934 				_cache_unlock(ncp);
1935 				_cache_lock(ncp);
1936 				_cache_setunresolved(ncp);
1937 				goto again;
1938 			}
1939 
1940 			/*
1941 			 * Not a reclaim race, some other error.
1942 			 */
1943 			KKASSERT(ncp->nc_vp == vp);
1944 			vp = NULL;
1945 		} else {
1946 			KKASSERT(ncp->nc_vp == vp);
1947 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1948 			/* caller does not want a lock */
1949 			vn_unlock(vp);
1950 		}
1951 	}
1952 	if (error == 0 && vp == NULL)
1953 		error = ENOENT;
1954 	*vpp = vp;
1955 	return(error);
1956 }
1957 
1958 /*
1959  * Return a referenced vnode representing the parent directory of
1960  * ncp.
1961  *
1962  * Because the caller has locked the ncp it should not be possible for
1963  * the parent ncp to go away.  However, the parent can unresolve its
1964  * dvp at any time so we must be able to acquire a lock on the parent
1965  * to safely access nc_vp.
1966  *
1967  * We have to leave par unlocked when vget()ing dvp to avoid a deadlock,
1968  * so use vhold()/vdrop() while holding the lock to prevent dvp from
1969  * getting destroyed.
1970  *
1971  * NOTE: vhold() is allowed when dvp has 0 refs if we hold a
1972  *	 lock on the ncp in question..
1973  */
1974 static struct vnode *
1975 cache_dvpref(struct namecache *ncp)
1976 {
1977 	struct namecache *par;
1978 	struct vnode *dvp;
1979 
1980 	dvp = NULL;
1981 	if ((par = ncp->nc_parent) != NULL) {
1982 		_cache_hold(par);
1983 		_cache_lock(par);
1984 		if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
1985 			if ((dvp = par->nc_vp) != NULL)
1986 				vhold(dvp);
1987 		}
1988 		_cache_unlock(par);
1989 		if (dvp) {
1990 			if (vget(dvp, LK_SHARED) == 0) {
1991 				vn_unlock(dvp);
1992 				vdrop(dvp);
1993 				/* return refd, unlocked dvp */
1994 			} else {
1995 				vdrop(dvp);
1996 				dvp = NULL;
1997 			}
1998 		}
1999 		_cache_drop(par);
2000 	}
2001 	return(dvp);
2002 }
2003 
2004 /*
2005  * Convert a directory vnode to a namecache record without any other
2006  * knowledge of the topology.  This ONLY works with directory vnodes and
2007  * is ONLY used by the NFS server.  dvp must be refd but unlocked, and the
2008  * returned ncp (if not NULL) will be held and unlocked.
2009  *
2010  * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
2011  * If 'makeit' is 1 we attempt to track-down and create the namecache topology
2012  * for dvp.  This will fail only if the directory has been deleted out from
2013  * under the caller.
2014  *
2015  * Callers must always check for a NULL return no matter the value of 'makeit'.
2016  *
2017  * To avoid underflowing the kernel stack each recursive call increments
2018  * the makeit variable.
2019  */
2020 
2021 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
2022 				  struct vnode *dvp, char *fakename);
2023 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
2024 				  struct vnode **saved_dvp);
2025 
2026 int
2027 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
2028 	      struct nchandle *nch)
2029 {
2030 	struct vnode *saved_dvp;
2031 	struct vnode *pvp;
2032 	char *fakename;
2033 	int error;
2034 
2035 	nch->ncp = NULL;
2036 	nch->mount = dvp->v_mount;
2037 	saved_dvp = NULL;
2038 	fakename = NULL;
2039 
2040 	/*
2041 	 * Handle the makeit == 0 degenerate case
2042 	 */
2043 	if (makeit == 0) {
2044 		spin_lock_shared(&dvp->v_spin);
2045 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
2046 		if (nch->ncp)
2047 			cache_hold(nch);
2048 		spin_unlock_shared(&dvp->v_spin);
2049 	}
2050 
2051 	/*
2052 	 * Loop until resolution, inside code will break out on error.
2053 	 */
2054 	while (makeit) {
2055 		/*
2056 		 * Break out if we successfully acquire a working ncp.
2057 		 */
2058 		spin_lock_shared(&dvp->v_spin);
2059 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
2060 		if (nch->ncp) {
2061 			cache_hold(nch);
2062 			spin_unlock_shared(&dvp->v_spin);
2063 			break;
2064 		}
2065 		spin_unlock_shared(&dvp->v_spin);
2066 
2067 		/*
2068 		 * If dvp is the root of its filesystem it should already
2069 		 * have a namecache pointer associated with it as a side
2070 		 * effect of the mount, but it may have been disassociated.
2071 		 */
2072 		if (dvp->v_flag & VROOT) {
2073 			nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
2074 			error = cache_resolve_mp(nch->mount);
2075 			_cache_put(nch->ncp);
2076 			if (ncvp_debug) {
2077 				kprintf("cache_fromdvp: resolve root of mount %p error %d",
2078 					dvp->v_mount, error);
2079 			}
2080 			if (error) {
2081 				if (ncvp_debug)
2082 					kprintf(" failed\n");
2083 				nch->ncp = NULL;
2084 				break;
2085 			}
2086 			if (ncvp_debug)
2087 				kprintf(" succeeded\n");
2088 			continue;
2089 		}
2090 
2091 		/*
2092 		 * If we are recursed too deeply resort to an O(n^2)
2093 		 * algorithm to resolve the namecache topology.  The
2094 		 * resolved pvp is left referenced in saved_dvp to
2095 		 * prevent the tree from being destroyed while we loop.
2096 		 */
2097 		if (makeit > 20) {
2098 			error = cache_fromdvp_try(dvp, cred, &saved_dvp);
2099 			if (error) {
2100 				kprintf("lookupdotdot(longpath) failed %d "
2101 				       "dvp %p\n", error, dvp);
2102 				nch->ncp = NULL;
2103 				break;
2104 			}
2105 			continue;
2106 		}
2107 
2108 		/*
2109 		 * Get the parent directory and resolve its ncp.
2110 		 */
2111 		if (fakename) {
2112 			kfree(fakename, M_TEMP);
2113 			fakename = NULL;
2114 		}
2115 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2116 					  &fakename);
2117 		if (error) {
2118 			kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
2119 			break;
2120 		}
2121 		vn_unlock(pvp);
2122 
2123 		/*
2124 		 * Reuse makeit as a recursion depth counter.  On success
2125 		 * nch will be fully referenced.
2126 		 */
2127 		cache_fromdvp(pvp, cred, makeit + 1, nch);
2128 		vrele(pvp);
2129 		if (nch->ncp == NULL)
2130 			break;
2131 
2132 		/*
2133 		 * Do an inefficient scan of pvp (embodied by ncp) to look
2134 		 * for dvp.  This will create a namecache record for dvp on
2135 		 * success.  We loop up to recheck on success.
2136 		 *
2137 		 * ncp and dvp are both held but not locked.
2138 		 */
2139 		error = cache_inefficient_scan(nch, cred, dvp, fakename);
2140 		if (error) {
2141 			kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
2142 				pvp, nch->ncp->nc_name, dvp);
2143 			cache_drop(nch);
2144 			/* nch was NULLed out, reload mount */
2145 			nch->mount = dvp->v_mount;
2146 			break;
2147 		}
2148 		if (ncvp_debug) {
2149 			kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
2150 				pvp, nch->ncp->nc_name);
2151 		}
2152 		cache_drop(nch);
2153 		/* nch was NULLed out, reload mount */
2154 		nch->mount = dvp->v_mount;
2155 	}
2156 
2157 	/*
2158 	 * If nch->ncp is non-NULL it will have been held already.
2159 	 */
2160 	if (fakename)
2161 		kfree(fakename, M_TEMP);
2162 	if (saved_dvp)
2163 		vrele(saved_dvp);
2164 	if (nch->ncp)
2165 		return (0);
2166 	return (EINVAL);
2167 }
2168 
2169 /*
2170  * Go up the chain of parent directories until we find something
2171  * we can resolve into the namecache.  This is very inefficient.
2172  */
2173 static
2174 int
2175 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
2176 		  struct vnode **saved_dvp)
2177 {
2178 	struct nchandle nch;
2179 	struct vnode *pvp;
2180 	int error;
2181 	static time_t last_fromdvp_report;
2182 	char *fakename;
2183 
2184 	/*
2185 	 * Loop getting the parent directory vnode until we get something we
2186 	 * can resolve in the namecache.
2187 	 */
2188 	vref(dvp);
2189 	nch.mount = dvp->v_mount;
2190 	nch.ncp = NULL;
2191 	fakename = NULL;
2192 
2193 	for (;;) {
2194 		if (fakename) {
2195 			kfree(fakename, M_TEMP);
2196 			fakename = NULL;
2197 		}
2198 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2199 					  &fakename);
2200 		if (error) {
2201 			vrele(dvp);
2202 			break;
2203 		}
2204 		vn_unlock(pvp);
2205 		spin_lock_shared(&pvp->v_spin);
2206 		if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
2207 			_cache_hold(nch.ncp);
2208 			spin_unlock_shared(&pvp->v_spin);
2209 			vrele(pvp);
2210 			break;
2211 		}
2212 		spin_unlock_shared(&pvp->v_spin);
2213 		if (pvp->v_flag & VROOT) {
2214 			nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
2215 			error = cache_resolve_mp(nch.mount);
2216 			_cache_unlock(nch.ncp);
2217 			vrele(pvp);
2218 			if (error) {
2219 				_cache_drop(nch.ncp);
2220 				nch.ncp = NULL;
2221 				vrele(dvp);
2222 			}
2223 			break;
2224 		}
2225 		vrele(dvp);
2226 		dvp = pvp;
2227 	}
2228 	if (error == 0) {
2229 		if (last_fromdvp_report != time_uptime) {
2230 			last_fromdvp_report = time_uptime;
2231 			kprintf("Warning: extremely inefficient path "
2232 				"resolution on %s\n",
2233 				nch.ncp->nc_name);
2234 		}
2235 		error = cache_inefficient_scan(&nch, cred, dvp, fakename);
2236 
2237 		/*
2238 		 * Hopefully dvp now has a namecache record associated with
2239 		 * it.  Leave it referenced to prevent the kernel from
2240 		 * recycling the vnode.  Otherwise extremely long directory
2241 		 * paths could result in endless recycling.
2242 		 */
2243 		if (*saved_dvp)
2244 		    vrele(*saved_dvp);
2245 		*saved_dvp = dvp;
2246 		_cache_drop(nch.ncp);
2247 	}
2248 	if (fakename)
2249 		kfree(fakename, M_TEMP);
2250 	return (error);
2251 }
2252 
2253 /*
2254  * Do an inefficient scan of the directory represented by ncp looking for
2255  * the directory vnode dvp.  ncp must be held but not locked on entry and
2256  * will be held on return.  dvp must be refd but not locked on entry and
2257  * will remain refd on return.
2258  *
2259  * Why do this at all?  Well, due to its stateless nature the NFS server
2260  * converts file handles directly to vnodes without necessarily going through
2261  * the namecache ops that would otherwise create the namecache topology
2262  * leading to the vnode.  We could either (1) Change the namecache algorithms
2263  * to allow disconnect namecache records that are re-merged opportunistically,
2264  * or (2) Make the NFS server backtrack and scan to recover a connected
2265  * namecache topology in order to then be able to issue new API lookups.
2266  *
2267  * It turns out that (1) is a huge mess.  It takes a nice clean set of
2268  * namecache algorithms and introduces a lot of complication in every subsystem
2269  * that calls into the namecache to deal with the re-merge case, especially
2270  * since we are using the namecache to placehold negative lookups and the
2271  * vnode might not be immediately assigned. (2) is certainly far less
2272  * efficient then (1), but since we are only talking about directories here
2273  * (which are likely to remain cached), the case does not actually run all
2274  * that often and has the supreme advantage of not polluting the namecache
2275  * algorithms.
2276  *
2277  * If a fakename is supplied just construct a namecache entry using the
2278  * fake name.
2279  */
2280 static int
2281 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
2282 		       struct vnode *dvp, char *fakename)
2283 {
2284 	struct nlcomponent nlc;
2285 	struct nchandle rncp;
2286 	struct dirent *den;
2287 	struct vnode *pvp;
2288 	struct vattr vat;
2289 	struct iovec iov;
2290 	struct uio uio;
2291 	int blksize;
2292 	int eofflag;
2293 	int bytes;
2294 	char *rbuf;
2295 	int error;
2296 
2297 	vat.va_blocksize = 0;
2298 	if ((error = VOP_GETATTR(dvp, &vat)) != 0)
2299 		return (error);
2300 	cache_lock(nch);
2301 	error = cache_vref(nch, cred, &pvp);
2302 	cache_unlock(nch);
2303 	if (error)
2304 		return (error);
2305 	if (ncvp_debug) {
2306 		kprintf("inefficient_scan: directory iosize %ld "
2307 			"vattr fileid = %lld\n",
2308 			vat.va_blocksize,
2309 			(long long)vat.va_fileid);
2310 	}
2311 
2312 	/*
2313 	 * Use the supplied fakename if not NULL.  Fake names are typically
2314 	 * not in the actual filesystem hierarchy.  This is used by HAMMER
2315 	 * to glue @@timestamp recursions together.
2316 	 */
2317 	if (fakename) {
2318 		nlc.nlc_nameptr = fakename;
2319 		nlc.nlc_namelen = strlen(fakename);
2320 		rncp = cache_nlookup(nch, &nlc);
2321 		goto done;
2322 	}
2323 
2324 	if ((blksize = vat.va_blocksize) == 0)
2325 		blksize = DEV_BSIZE;
2326 	rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
2327 	rncp.ncp = NULL;
2328 
2329 	eofflag = 0;
2330 	uio.uio_offset = 0;
2331 again:
2332 	iov.iov_base = rbuf;
2333 	iov.iov_len = blksize;
2334 	uio.uio_iov = &iov;
2335 	uio.uio_iovcnt = 1;
2336 	uio.uio_resid = blksize;
2337 	uio.uio_segflg = UIO_SYSSPACE;
2338 	uio.uio_rw = UIO_READ;
2339 	uio.uio_td = curthread;
2340 
2341 	if (ncvp_debug >= 2)
2342 		kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
2343 	error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
2344 	if (error == 0) {
2345 		den = (struct dirent *)rbuf;
2346 		bytes = blksize - uio.uio_resid;
2347 
2348 		while (bytes > 0) {
2349 			if (ncvp_debug >= 2) {
2350 				kprintf("cache_inefficient_scan: %*.*s\n",
2351 					den->d_namlen, den->d_namlen,
2352 					den->d_name);
2353 			}
2354 			if (den->d_type != DT_WHT &&
2355 			    den->d_ino == vat.va_fileid) {
2356 				if (ncvp_debug) {
2357 					kprintf("cache_inefficient_scan: "
2358 					       "MATCHED inode %lld path %s/%*.*s\n",
2359 					       (long long)vat.va_fileid,
2360 					       nch->ncp->nc_name,
2361 					       den->d_namlen, den->d_namlen,
2362 					       den->d_name);
2363 				}
2364 				nlc.nlc_nameptr = den->d_name;
2365 				nlc.nlc_namelen = den->d_namlen;
2366 				rncp = cache_nlookup(nch, &nlc);
2367 				KKASSERT(rncp.ncp != NULL);
2368 				break;
2369 			}
2370 			bytes -= _DIRENT_DIRSIZ(den);
2371 			den = _DIRENT_NEXT(den);
2372 		}
2373 		if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
2374 			goto again;
2375 	}
2376 	kfree(rbuf, M_TEMP);
2377 done:
2378 	vrele(pvp);
2379 	if (rncp.ncp) {
2380 		if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
2381 			_cache_setvp(rncp.mount, rncp.ncp, dvp);
2382 			if (ncvp_debug >= 2) {
2383 				kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
2384 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
2385 			}
2386 		} else {
2387 			if (ncvp_debug >= 2) {
2388 				kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
2389 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
2390 					rncp.ncp->nc_vp);
2391 			}
2392 		}
2393 		if (rncp.ncp->nc_vp == NULL)
2394 			error = rncp.ncp->nc_error;
2395 		/*
2396 		 * Release rncp after a successful nlookup.  rncp was fully
2397 		 * referenced.
2398 		 */
2399 		cache_put(&rncp);
2400 	} else {
2401 		kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
2402 			dvp, nch->ncp->nc_name);
2403 		error = ENOENT;
2404 	}
2405 	return (error);
2406 }
2407 
2408 /*
2409  * Zap a namecache entry.  The ncp is unconditionally set to an unresolved
2410  * state, which disassociates it from its vnode or ncneglist.
2411  *
2412  * Then, if there are no additional references to the ncp and no children,
2413  * the ncp is removed from the topology and destroyed.
2414  *
2415  * References and/or children may exist if the ncp is in the middle of the
2416  * topology, preventing the ncp from being destroyed.
2417  *
2418  * This function must be called with the ncp held and locked and will unlock
2419  * and drop it during zapping.
2420  *
2421  * If nonblock is non-zero and the parent ncp cannot be locked we give up.
2422  * This case can occur in the cache_drop() path.
2423  *
2424  * This function may returned a held (but NOT locked) parent node which the
2425  * caller must drop.  We do this so _cache_drop() can loop, to avoid
2426  * blowing out the kernel stack.
2427  *
2428  * WARNING!  For MPSAFE operation this routine must acquire up to three
2429  *	     spin locks to be able to safely test nc_refs.  Lock order is
2430  *	     very important.
2431  *
2432  *	     hash spinlock if on hash list
2433  *	     parent spinlock if child of parent
2434  *	     (the ncp is unresolved so there is no vnode association)
2435  */
2436 static struct namecache *
2437 cache_zap(struct namecache *ncp, int nonblock)
2438 {
2439 	struct namecache *par;
2440 	struct vnode *dropvp;
2441 	int refs;
2442 
2443 	/*
2444 	 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
2445 	 */
2446 	_cache_setunresolved(ncp);
2447 
2448 	/*
2449 	 * Try to scrap the entry and possibly tail-recurse on its parent.
2450 	 * We only scrap unref'd (other then our ref) unresolved entries,
2451 	 * we do not scrap 'live' entries.
2452 	 *
2453 	 * Note that once the spinlocks are acquired if nc_refs == 1 no
2454 	 * other references are possible.  If it isn't, however, we have
2455 	 * to decrement but also be sure to avoid a 1->0 transition.
2456 	 */
2457 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
2458 	KKASSERT(ncp->nc_refs > 0);
2459 
2460 	/*
2461 	 * Acquire locks.  Note that the parent can't go away while we hold
2462 	 * a child locked.
2463 	 */
2464 	if ((par = ncp->nc_parent) != NULL) {
2465 		if (nonblock) {
2466 			for (;;) {
2467 				if (_cache_lock_nonblock(par) == 0)
2468 					break;
2469 				refs = ncp->nc_refs;
2470 				ncp->nc_flag |= NCF_DEFEREDZAP;
2471 				++numdefered;	/* MP race ok */
2472 				if (atomic_cmpset_int(&ncp->nc_refs,
2473 						      refs, refs - 1)) {
2474 					_cache_unlock(ncp);
2475 					return(NULL);
2476 				}
2477 				cpu_pause();
2478 			}
2479 			_cache_hold(par);
2480 		} else {
2481 			_cache_hold(par);
2482 			_cache_lock(par);
2483 		}
2484 		spin_lock(&ncp->nc_head->spin);
2485 	}
2486 
2487 	/*
2488 	 * If someone other then us has a ref or we have children
2489 	 * we cannot zap the entry.  The 1->0 transition and any
2490 	 * further list operation is protected by the spinlocks
2491 	 * we have acquired but other transitions are not.
2492 	 */
2493 	for (;;) {
2494 		refs = ncp->nc_refs;
2495 		if (refs == 1 && TAILQ_EMPTY(&ncp->nc_list))
2496 			break;
2497 		if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1)) {
2498 			if (par) {
2499 				spin_unlock(&ncp->nc_head->spin);
2500 				_cache_put(par);
2501 			}
2502 			_cache_unlock(ncp);
2503 			return(NULL);
2504 		}
2505 		cpu_pause();
2506 	}
2507 
2508 	/*
2509 	 * We are the only ref and with the spinlocks held no further
2510 	 * refs can be acquired by others.
2511 	 *
2512 	 * Remove us from the hash list and parent list.  We have to
2513 	 * drop a ref on the parent's vp if the parent's list becomes
2514 	 * empty.
2515 	 */
2516 	dropvp = NULL;
2517 	if (par) {
2518 		struct nchash_head *nchpp = ncp->nc_head;
2519 
2520 		KKASSERT(nchpp != NULL);
2521 		LIST_REMOVE(ncp, nc_hash);
2522 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
2523 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
2524 			dropvp = par->nc_vp;
2525 		ncp->nc_head = NULL;
2526 		ncp->nc_parent = NULL;
2527 		spin_unlock(&nchpp->spin);
2528 		_cache_unlock(par);
2529 	} else {
2530 		KKASSERT(ncp->nc_head == NULL);
2531 	}
2532 
2533 	/*
2534 	 * ncp should not have picked up any refs.  Physically
2535 	 * destroy the ncp.
2536 	 */
2537 	KKASSERT(ncp->nc_refs == 1);
2538 	/* _cache_unlock(ncp) not required */
2539 	ncp->nc_refs = -1;	/* safety */
2540 	if (ncp->nc_name)
2541 		kfree(ncp->nc_name, M_VFSCACHE);
2542 	kfree(ncp, M_VFSCACHE);
2543 
2544 	/*
2545 	 * Delayed drop (we had to release our spinlocks)
2546 	 *
2547 	 * The refed parent (if not  NULL) must be dropped.  The
2548 	 * caller is responsible for looping.
2549 	 */
2550 	if (dropvp)
2551 		vdrop(dropvp);
2552 	return(par);
2553 }
2554 
2555 /*
2556  * Clean up dangling negative cache and defered-drop entries in the
2557  * namecache.
2558  *
2559  * This routine is called in the critical path and also called from
2560  * vnlru().  When called from vnlru we use a lower limit to try to
2561  * deal with the negative cache before the critical path has to start
2562  * dealing with it.
2563  */
2564 typedef enum { CHI_LOW, CHI_HIGH } cache_hs_t;
2565 
2566 static cache_hs_t neg_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
2567 static cache_hs_t pos_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
2568 
2569 void
2570 cache_hysteresis(int critpath)
2571 {
2572 	int poslimit;
2573 	int neglimit = desiredvnodes / ncnegfactor;
2574 	int xnumcache = numcache;
2575 
2576 	if (critpath == 0)
2577 		neglimit = neglimit * 8 / 10;
2578 
2579 	/*
2580 	 * Don't cache too many negative hits.  We use hysteresis to reduce
2581 	 * the impact on the critical path.
2582 	 */
2583 	switch(neg_cache_hysteresis_state[critpath]) {
2584 	case CHI_LOW:
2585 		if (numneg > MINNEG && numneg > neglimit) {
2586 			if (critpath)
2587 				_cache_cleanneg(ncnegflush);
2588 			else
2589 				_cache_cleanneg(ncnegflush +
2590 						numneg - neglimit);
2591 			neg_cache_hysteresis_state[critpath] = CHI_HIGH;
2592 		}
2593 		break;
2594 	case CHI_HIGH:
2595 		if (numneg > MINNEG * 9 / 10 &&
2596 		    numneg * 9 / 10 > neglimit
2597 		) {
2598 			if (critpath)
2599 				_cache_cleanneg(ncnegflush);
2600 			else
2601 				_cache_cleanneg(ncnegflush +
2602 						numneg * 9 / 10 - neglimit);
2603 		} else {
2604 			neg_cache_hysteresis_state[critpath] = CHI_LOW;
2605 		}
2606 		break;
2607 	}
2608 
2609 	/*
2610 	 * Don't cache too many positive hits.  We use hysteresis to reduce
2611 	 * the impact on the critical path.
2612 	 *
2613 	 * Excessive positive hits can accumulate due to large numbers of
2614 	 * hardlinks (the vnode cache will not prevent hl ncps from growing
2615 	 * into infinity).
2616 	 */
2617 	if ((poslimit = ncposlimit) == 0)
2618 		poslimit = desiredvnodes * 2;
2619 	if (critpath == 0)
2620 		poslimit = poslimit * 8 / 10;
2621 
2622 	switch(pos_cache_hysteresis_state[critpath]) {
2623 	case CHI_LOW:
2624 		if (xnumcache > poslimit && xnumcache > MINPOS) {
2625 			if (critpath)
2626 				_cache_cleanpos(ncposflush);
2627 			else
2628 				_cache_cleanpos(ncposflush +
2629 						xnumcache - poslimit);
2630 			pos_cache_hysteresis_state[critpath] = CHI_HIGH;
2631 		}
2632 		break;
2633 	case CHI_HIGH:
2634 		if (xnumcache > poslimit * 5 / 6 && xnumcache > MINPOS) {
2635 			if (critpath)
2636 				_cache_cleanpos(ncposflush);
2637 			else
2638 				_cache_cleanpos(ncposflush +
2639 						xnumcache - poslimit * 5 / 6);
2640 		} else {
2641 			pos_cache_hysteresis_state[critpath] = CHI_LOW;
2642 		}
2643 		break;
2644 	}
2645 
2646 	/*
2647 	 * Clean out dangling defered-zap ncps which could not
2648 	 * be cleanly dropped if too many build up.  Note
2649 	 * that numdefered is not an exact number as such ncps
2650 	 * can be reused and the counter is not handled in a MP
2651 	 * safe manner by design.
2652 	 */
2653 	if (numdefered > neglimit) {
2654 		_cache_cleandefered();
2655 	}
2656 }
2657 
2658 /*
2659  * NEW NAMECACHE LOOKUP API
2660  *
2661  * Lookup an entry in the namecache.  The passed par_nch must be referenced
2662  * and unlocked.  A referenced and locked nchandle with a non-NULL nch.ncp
2663  * is ALWAYS returned, eve if the supplied component is illegal.
2664  *
2665  * The resulting namecache entry should be returned to the system with
2666  * cache_put() or cache_unlock() + cache_drop().
2667  *
2668  * namecache locks are recursive but care must be taken to avoid lock order
2669  * reversals (hence why the passed par_nch must be unlocked).  Locking
2670  * rules are to order for parent traversals, not for child traversals.
2671  *
2672  * Nobody else will be able to manipulate the associated namespace (e.g.
2673  * create, delete, rename, rename-target) until the caller unlocks the
2674  * entry.
2675  *
2676  * The returned entry will be in one of three states:  positive hit (non-null
2677  * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
2678  * Unresolved entries must be resolved through the filesystem to associate the
2679  * vnode and/or determine whether a positive or negative hit has occured.
2680  *
2681  * It is not necessary to lock a directory in order to lock namespace under
2682  * that directory.  In fact, it is explicitly not allowed to do that.  A
2683  * directory is typically only locked when being created, renamed, or
2684  * destroyed.
2685  *
2686  * The directory (par) may be unresolved, in which case any returned child
2687  * will likely also be marked unresolved.  Likely but not guarenteed.  Since
2688  * the filesystem lookup requires a resolved directory vnode the caller is
2689  * responsible for resolving the namecache chain top-down.  This API
2690  * specifically allows whole chains to be created in an unresolved state.
2691  */
2692 struct nchandle
2693 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
2694 {
2695 	struct nchandle nch;
2696 	struct namecache *ncp;
2697 	struct namecache *new_ncp;
2698 	struct nchash_head *nchpp;
2699 	struct mount *mp;
2700 	u_int32_t hash;
2701 	globaldata_t gd;
2702 	int par_locked;
2703 
2704 	numcalls++;
2705 	gd = mycpu;
2706 	mp = par_nch->mount;
2707 	par_locked = 0;
2708 
2709 	/*
2710 	 * This is a good time to call it, no ncp's are locked by
2711 	 * the caller or us.
2712 	 */
2713 	cache_hysteresis(1);
2714 
2715 	/*
2716 	 * Try to locate an existing entry
2717 	 */
2718 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2719 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2720 	new_ncp = NULL;
2721 	nchpp = NCHHASH(hash);
2722 restart:
2723 	if (new_ncp)
2724 		spin_lock(&nchpp->spin);
2725 	else
2726 		spin_lock_shared(&nchpp->spin);
2727 
2728 	LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2729 		numchecks++;
2730 
2731 		/*
2732 		 * Break out if we find a matching entry.  Note that
2733 		 * UNRESOLVED entries may match, but DESTROYED entries
2734 		 * do not.
2735 		 */
2736 		if (ncp->nc_parent == par_nch->ncp &&
2737 		    ncp->nc_nlen == nlc->nlc_namelen &&
2738 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2739 		    (ncp->nc_flag & NCF_DESTROYED) == 0
2740 		) {
2741 			_cache_hold(ncp);
2742 			if (new_ncp)
2743 				spin_unlock(&nchpp->spin);
2744 			else
2745 				spin_unlock_shared(&nchpp->spin);
2746 			if (par_locked) {
2747 				_cache_unlock(par_nch->ncp);
2748 				par_locked = 0;
2749 			}
2750 			if (_cache_lock_special(ncp) == 0) {
2751 				/*
2752 				 * Successfully locked but we must re-test
2753 				 * conditions that might have changed since
2754 				 * we did not have the lock before.
2755 				 */
2756 				if ((ncp->nc_flag & NCF_DESTROYED) ||
2757 				    ncp->nc_parent != par_nch->ncp) {
2758 					_cache_put(ncp);
2759 					goto restart;
2760 				}
2761 				_cache_auto_unresolve(mp, ncp);
2762 				if (new_ncp)
2763 					_cache_free(new_ncp);
2764 				goto found;
2765 			}
2766 			_cache_get(ncp);	/* cycle the lock to block */
2767 			_cache_put(ncp);
2768 			_cache_drop(ncp);
2769 			goto restart;
2770 		}
2771 	}
2772 
2773 	/*
2774 	 * We failed to locate an entry, create a new entry and add it to
2775 	 * the cache.  The parent ncp must also be locked so we
2776 	 * can link into it.
2777 	 *
2778 	 * We have to relookup after possibly blocking in kmalloc or
2779 	 * when locking par_nch.
2780 	 *
2781 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
2782 	 *	 mount case, in which case nc_name will be NULL.
2783 	 */
2784 	if (new_ncp == NULL) {
2785 		spin_unlock_shared(&nchpp->spin);
2786 		new_ncp = cache_alloc(nlc->nlc_namelen);
2787 		if (nlc->nlc_namelen) {
2788 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
2789 			      nlc->nlc_namelen);
2790 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
2791 		}
2792 		goto restart;
2793 	}
2794 
2795 	/*
2796 	 * NOTE! The spinlock is held exclusively here because new_ncp
2797 	 *	 is non-NULL.
2798 	 */
2799 	if (par_locked == 0) {
2800 		spin_unlock(&nchpp->spin);
2801 		_cache_lock(par_nch->ncp);
2802 		par_locked = 1;
2803 		goto restart;
2804 	}
2805 
2806 	/*
2807 	 * WARNING!  We still hold the spinlock.  We have to set the hash
2808 	 *	     table entry atomically.
2809 	 */
2810 	ncp = new_ncp;
2811 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
2812 	spin_unlock(&nchpp->spin);
2813 	_cache_unlock(par_nch->ncp);
2814 	/* par_locked = 0 - not used */
2815 found:
2816 	/*
2817 	 * stats and namecache size management
2818 	 */
2819 	if (ncp->nc_flag & NCF_UNRESOLVED)
2820 		++gd->gd_nchstats->ncs_miss;
2821 	else if (ncp->nc_vp)
2822 		++gd->gd_nchstats->ncs_goodhits;
2823 	else
2824 		++gd->gd_nchstats->ncs_neghits;
2825 	nch.mount = mp;
2826 	nch.ncp = ncp;
2827 	atomic_add_int(&nch.mount->mnt_refs, 1);
2828 	return(nch);
2829 }
2830 
2831 /*
2832  * Attempt to lookup a namecache entry and return with a shared namecache
2833  * lock.
2834  */
2835 int
2836 cache_nlookup_maybe_shared(struct nchandle *par_nch, struct nlcomponent *nlc,
2837 			   int excl, struct nchandle *res_nch)
2838 {
2839 	struct namecache *ncp;
2840 	struct nchash_head *nchpp;
2841 	struct mount *mp;
2842 	u_int32_t hash;
2843 	globaldata_t gd;
2844 
2845 	/*
2846 	 * If exclusive requested or shared namecache locks are disabled,
2847 	 * return failure.
2848 	 */
2849 	if (ncp_shared_lock_disable || excl)
2850 		return(EWOULDBLOCK);
2851 
2852 	numcalls++;
2853 	gd = mycpu;
2854 	mp = par_nch->mount;
2855 
2856 	/*
2857 	 * This is a good time to call it, no ncp's are locked by
2858 	 * the caller or us.
2859 	 */
2860 	cache_hysteresis(1);
2861 
2862 	/*
2863 	 * Try to locate an existing entry
2864 	 */
2865 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2866 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2867 	nchpp = NCHHASH(hash);
2868 
2869 	spin_lock_shared(&nchpp->spin);
2870 
2871 	LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2872 		numchecks++;
2873 
2874 		/*
2875 		 * Break out if we find a matching entry.  Note that
2876 		 * UNRESOLVED entries may match, but DESTROYED entries
2877 		 * do not.
2878 		 */
2879 		if (ncp->nc_parent == par_nch->ncp &&
2880 		    ncp->nc_nlen == nlc->nlc_namelen &&
2881 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2882 		    (ncp->nc_flag & NCF_DESTROYED) == 0
2883 		) {
2884 			_cache_hold(ncp);
2885 			spin_unlock_shared(&nchpp->spin);
2886 			if (_cache_lock_shared_special(ncp) == 0) {
2887 				if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
2888 				    (ncp->nc_flag & NCF_DESTROYED) == 0 &&
2889 				    _cache_auto_unresolve_test(mp, ncp) == 0) {
2890 					goto found;
2891 				}
2892 				_cache_unlock(ncp);
2893 			}
2894 			_cache_drop(ncp);
2895 			spin_lock_shared(&nchpp->spin);
2896 			break;
2897 		}
2898 	}
2899 
2900 	/*
2901 	 * Failure
2902 	 */
2903 	spin_unlock_shared(&nchpp->spin);
2904 	return(EWOULDBLOCK);
2905 
2906 	/*
2907 	 * Success
2908 	 *
2909 	 * Note that nc_error might be non-zero (e.g ENOENT).
2910 	 */
2911 found:
2912 	res_nch->mount = mp;
2913 	res_nch->ncp = ncp;
2914 	++gd->gd_nchstats->ncs_goodhits;
2915 	atomic_add_int(&res_nch->mount->mnt_refs, 1);
2916 
2917 	KKASSERT(ncp->nc_error != EWOULDBLOCK);
2918 	return(ncp->nc_error);
2919 }
2920 
2921 /*
2922  * This is a non-blocking verison of cache_nlookup() used by
2923  * nfs_readdirplusrpc_uio().  It can fail for any reason and
2924  * will return nch.ncp == NULL in that case.
2925  */
2926 struct nchandle
2927 cache_nlookup_nonblock(struct nchandle *par_nch, struct nlcomponent *nlc)
2928 {
2929 	struct nchandle nch;
2930 	struct namecache *ncp;
2931 	struct namecache *new_ncp;
2932 	struct nchash_head *nchpp;
2933 	struct mount *mp;
2934 	u_int32_t hash;
2935 	globaldata_t gd;
2936 	int par_locked;
2937 
2938 	numcalls++;
2939 	gd = mycpu;
2940 	mp = par_nch->mount;
2941 	par_locked = 0;
2942 
2943 	/*
2944 	 * Try to locate an existing entry
2945 	 */
2946 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2947 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2948 	new_ncp = NULL;
2949 	nchpp = NCHHASH(hash);
2950 restart:
2951 	spin_lock(&nchpp->spin);
2952 	LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2953 		numchecks++;
2954 
2955 		/*
2956 		 * Break out if we find a matching entry.  Note that
2957 		 * UNRESOLVED entries may match, but DESTROYED entries
2958 		 * do not.
2959 		 */
2960 		if (ncp->nc_parent == par_nch->ncp &&
2961 		    ncp->nc_nlen == nlc->nlc_namelen &&
2962 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2963 		    (ncp->nc_flag & NCF_DESTROYED) == 0
2964 		) {
2965 			_cache_hold(ncp);
2966 			spin_unlock(&nchpp->spin);
2967 			if (par_locked) {
2968 				_cache_unlock(par_nch->ncp);
2969 				par_locked = 0;
2970 			}
2971 			if (_cache_lock_special(ncp) == 0) {
2972 				_cache_auto_unresolve(mp, ncp);
2973 				if (new_ncp) {
2974 					_cache_free(new_ncp);
2975 					new_ncp = NULL;
2976 				}
2977 				goto found;
2978 			}
2979 			_cache_drop(ncp);
2980 			goto failed;
2981 		}
2982 	}
2983 
2984 	/*
2985 	 * We failed to locate an entry, create a new entry and add it to
2986 	 * the cache.  The parent ncp must also be locked so we
2987 	 * can link into it.
2988 	 *
2989 	 * We have to relookup after possibly blocking in kmalloc or
2990 	 * when locking par_nch.
2991 	 *
2992 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
2993 	 *	 mount case, in which case nc_name will be NULL.
2994 	 */
2995 	if (new_ncp == NULL) {
2996 		spin_unlock(&nchpp->spin);
2997 		new_ncp = cache_alloc(nlc->nlc_namelen);
2998 		if (nlc->nlc_namelen) {
2999 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
3000 			      nlc->nlc_namelen);
3001 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
3002 		}
3003 		goto restart;
3004 	}
3005 	if (par_locked == 0) {
3006 		spin_unlock(&nchpp->spin);
3007 		if (_cache_lock_nonblock(par_nch->ncp) == 0) {
3008 			par_locked = 1;
3009 			goto restart;
3010 		}
3011 		goto failed;
3012 	}
3013 
3014 	/*
3015 	 * WARNING!  We still hold the spinlock.  We have to set the hash
3016 	 *	     table entry atomically.
3017 	 */
3018 	ncp = new_ncp;
3019 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
3020 	spin_unlock(&nchpp->spin);
3021 	_cache_unlock(par_nch->ncp);
3022 	/* par_locked = 0 - not used */
3023 found:
3024 	/*
3025 	 * stats and namecache size management
3026 	 */
3027 	if (ncp->nc_flag & NCF_UNRESOLVED)
3028 		++gd->gd_nchstats->ncs_miss;
3029 	else if (ncp->nc_vp)
3030 		++gd->gd_nchstats->ncs_goodhits;
3031 	else
3032 		++gd->gd_nchstats->ncs_neghits;
3033 	nch.mount = mp;
3034 	nch.ncp = ncp;
3035 	atomic_add_int(&nch.mount->mnt_refs, 1);
3036 	return(nch);
3037 failed:
3038 	if (new_ncp) {
3039 		_cache_free(new_ncp);
3040 		new_ncp = NULL;
3041 	}
3042 	nch.mount = NULL;
3043 	nch.ncp = NULL;
3044 	return(nch);
3045 }
3046 
3047 /*
3048  * The namecache entry is marked as being used as a mount point.
3049  * Locate the mount if it is visible to the caller.  The DragonFly
3050  * mount system allows arbitrary loops in the topology and disentangles
3051  * those loops by matching against (mp, ncp) rather than just (ncp).
3052  * This means any given ncp can dive any number of mounts, depending
3053  * on the relative mount (e.g. nullfs) the caller is at in the topology.
3054  *
3055  * We use a very simple frontend cache to reduce SMP conflicts,
3056  * which we have to do because the mountlist scan needs an exclusive
3057  * lock around its ripout info list.  Not to mention that there might
3058  * be a lot of mounts.
3059  */
3060 struct findmount_info {
3061 	struct mount *result;
3062 	struct mount *nch_mount;
3063 	struct namecache *nch_ncp;
3064 };
3065 
3066 static
3067 struct ncmount_cache *
3068 ncmount_cache_lookup(struct mount *mp, struct namecache *ncp)
3069 {
3070 	int hash;
3071 
3072 	hash = ((int)(intptr_t)mp / sizeof(*mp)) ^
3073 	       ((int)(intptr_t)ncp / sizeof(*ncp));
3074 	hash = (hash & 0x7FFFFFFF) % NCMOUNT_NUMCACHE;
3075 	return (&ncmount_cache[hash]);
3076 }
3077 
3078 static
3079 int
3080 cache_findmount_callback(struct mount *mp, void *data)
3081 {
3082 	struct findmount_info *info = data;
3083 
3084 	/*
3085 	 * Check the mount's mounted-on point against the passed nch.
3086 	 */
3087 	if (mp->mnt_ncmounton.mount == info->nch_mount &&
3088 	    mp->mnt_ncmounton.ncp == info->nch_ncp
3089 	) {
3090 	    info->result = mp;
3091 	    atomic_add_int(&mp->mnt_refs, 1);
3092 	    return(-1);
3093 	}
3094 	return(0);
3095 }
3096 
3097 struct mount *
3098 cache_findmount(struct nchandle *nch)
3099 {
3100 	struct findmount_info info;
3101 	struct ncmount_cache *ncc;
3102 	struct mount *mp;
3103 
3104 	/*
3105 	 * Fast
3106 	 */
3107 	if (ncmount_cache_enable == 0) {
3108 		ncc = NULL;
3109 		goto skip;
3110 	}
3111 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3112 	if (ncc->ncp == nch->ncp) {
3113 		spin_lock_shared(&ncc->spin);
3114 		if (ncc->isneg == 0 &&
3115 		    ncc->ncp == nch->ncp && (mp = ncc->mp) != NULL) {
3116 			if (mp->mnt_ncmounton.mount == nch->mount &&
3117 			    mp->mnt_ncmounton.ncp == nch->ncp) {
3118 				/*
3119 				 * Cache hit (positive)
3120 				 */
3121 				atomic_add_int(&mp->mnt_refs, 1);
3122 				spin_unlock_shared(&ncc->spin);
3123 				++ncmount_cache_hit;
3124 				return(mp);
3125 			}
3126 			/* else cache miss */
3127 		}
3128 		if (ncc->isneg &&
3129 		    ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3130 			/*
3131 			 * Cache hit (negative)
3132 			 */
3133 			spin_unlock_shared(&ncc->spin);
3134 			++ncmount_cache_hit;
3135 			return(NULL);
3136 		}
3137 		spin_unlock_shared(&ncc->spin);
3138 	}
3139 skip:
3140 
3141 	/*
3142 	 * Slow
3143 	 */
3144 	info.result = NULL;
3145 	info.nch_mount = nch->mount;
3146 	info.nch_ncp = nch->ncp;
3147 	mountlist_scan(cache_findmount_callback, &info,
3148 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
3149 
3150 	/*
3151 	 * Cache the result.
3152 	 *
3153 	 * Negative lookups: We cache the originating {ncp,mp}. (mp) is
3154 	 *		     only used for pointer comparisons and is not
3155 	 *		     referenced (otherwise there would be dangling
3156 	 *		     refs).
3157 	 *
3158 	 * Positive lookups: We cache the originating {ncp} and the target
3159 	 *		     (mp).  (mp) is referenced.
3160 	 *
3161 	 * Indeterminant:    If the match is undergoing an unmount we do
3162 	 *		     not cache it to avoid racing cache_unmounting(),
3163 	 *		     but still return the match.
3164 	 */
3165 	if (ncc) {
3166 		spin_lock(&ncc->spin);
3167 		if (info.result == NULL) {
3168 			if (ncc->isneg == 0 && ncc->mp)
3169 				atomic_add_int(&ncc->mp->mnt_refs, -1);
3170 			ncc->ncp = nch->ncp;
3171 			ncc->mp = nch->mount;
3172 			ncc->isneg = 1;
3173 			spin_unlock(&ncc->spin);
3174 			++ncmount_cache_overwrite;
3175 		} else if ((info.result->mnt_kern_flag & MNTK_UNMOUNT) == 0) {
3176 			if (ncc->isneg == 0 && ncc->mp)
3177 				atomic_add_int(&ncc->mp->mnt_refs, -1);
3178 			atomic_add_int(&info.result->mnt_refs, 1);
3179 			ncc->ncp = nch->ncp;
3180 			ncc->mp = info.result;
3181 			ncc->isneg = 0;
3182 			spin_unlock(&ncc->spin);
3183 			++ncmount_cache_overwrite;
3184 		} else {
3185 			spin_unlock(&ncc->spin);
3186 		}
3187 		++ncmount_cache_miss;
3188 	}
3189 	return(info.result);
3190 }
3191 
3192 void
3193 cache_dropmount(struct mount *mp)
3194 {
3195 	atomic_add_int(&mp->mnt_refs, -1);
3196 }
3197 
3198 void
3199 cache_ismounting(struct mount *mp)
3200 {
3201 	struct nchandle *nch = &mp->mnt_ncmounton;
3202 	struct ncmount_cache *ncc;
3203 
3204 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3205 	if (ncc->isneg &&
3206 	    ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3207 		spin_lock(&ncc->spin);
3208 		if (ncc->isneg &&
3209 		    ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3210 			ncc->ncp = NULL;
3211 			ncc->mp = NULL;
3212 		}
3213 		spin_unlock(&ncc->spin);
3214 	}
3215 }
3216 
3217 void
3218 cache_unmounting(struct mount *mp)
3219 {
3220 	struct nchandle *nch = &mp->mnt_ncmounton;
3221 	struct ncmount_cache *ncc;
3222 
3223 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3224 	if (ncc->isneg == 0 &&
3225 	    ncc->ncp == nch->ncp && ncc->mp == mp) {
3226 		spin_lock(&ncc->spin);
3227 		if (ncc->isneg == 0 &&
3228 		    ncc->ncp == nch->ncp && ncc->mp == mp) {
3229 			atomic_add_int(&mp->mnt_refs, -1);
3230 			ncc->ncp = NULL;
3231 			ncc->mp = NULL;
3232 		}
3233 		spin_unlock(&ncc->spin);
3234 	}
3235 }
3236 
3237 /*
3238  * Resolve an unresolved namecache entry, generally by looking it up.
3239  * The passed ncp must be locked and refd.
3240  *
3241  * Theoretically since a vnode cannot be recycled while held, and since
3242  * the nc_parent chain holds its vnode as long as children exist, the
3243  * direct parent of the cache entry we are trying to resolve should
3244  * have a valid vnode.  If not then generate an error that we can
3245  * determine is related to a resolver bug.
3246  *
3247  * However, if a vnode was in the middle of a recyclement when the NCP
3248  * got locked, ncp->nc_vp might point to a vnode that is about to become
3249  * invalid.  cache_resolve() handles this case by unresolving the entry
3250  * and then re-resolving it.
3251  *
3252  * Note that successful resolution does not necessarily return an error
3253  * code of 0.  If the ncp resolves to a negative cache hit then ENOENT
3254  * will be returned.
3255  */
3256 int
3257 cache_resolve(struct nchandle *nch, struct ucred *cred)
3258 {
3259 	struct namecache *par_tmp;
3260 	struct namecache *par;
3261 	struct namecache *ncp;
3262 	struct nchandle nctmp;
3263 	struct mount *mp;
3264 	struct vnode *dvp;
3265 	int error;
3266 
3267 	ncp = nch->ncp;
3268 	mp = nch->mount;
3269 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
3270 restart:
3271 	/*
3272 	 * If the ncp is already resolved we have nothing to do.  However,
3273 	 * we do want to guarentee that a usable vnode is returned when
3274 	 * a vnode is present, so make sure it hasn't been reclaimed.
3275 	 */
3276 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3277 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
3278 			_cache_setunresolved(ncp);
3279 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
3280 			return (ncp->nc_error);
3281 	}
3282 
3283 	/*
3284 	 * If the ncp was destroyed it will never resolve again.  This
3285 	 * can basically only happen when someone is chdir'd into an
3286 	 * empty directory which is then rmdir'd.  We want to catch this
3287 	 * here and not dive the VFS because the VFS might actually
3288 	 * have a way to re-resolve the disconnected ncp, which will
3289 	 * result in inconsistencies in the cdir/nch for proc->p_fd.
3290 	 */
3291 	if (ncp->nc_flag & NCF_DESTROYED) {
3292 		kprintf("Warning: cache_resolve: ncp '%s' was unlinked\n",
3293 			ncp->nc_name);
3294 		return(EINVAL);
3295 	}
3296 
3297 	/*
3298 	 * Mount points need special handling because the parent does not
3299 	 * belong to the same filesystem as the ncp.
3300 	 */
3301 	if (ncp == mp->mnt_ncmountpt.ncp)
3302 		return (cache_resolve_mp(mp));
3303 
3304 	/*
3305 	 * We expect an unbroken chain of ncps to at least the mount point,
3306 	 * and even all the way to root (but this code doesn't have to go
3307 	 * past the mount point).
3308 	 */
3309 	if (ncp->nc_parent == NULL) {
3310 		kprintf("EXDEV case 1 %p %*.*s\n", ncp,
3311 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
3312 		ncp->nc_error = EXDEV;
3313 		return(ncp->nc_error);
3314 	}
3315 
3316 	/*
3317 	 * The vp's of the parent directories in the chain are held via vhold()
3318 	 * due to the existance of the child, and should not disappear.
3319 	 * However, there are cases where they can disappear:
3320 	 *
3321 	 *	- due to filesystem I/O errors.
3322 	 *	- due to NFS being stupid about tracking the namespace and
3323 	 *	  destroys the namespace for entire directories quite often.
3324 	 *	- due to forced unmounts.
3325 	 *	- due to an rmdir (parent will be marked DESTROYED)
3326 	 *
3327 	 * When this occurs we have to track the chain backwards and resolve
3328 	 * it, looping until the resolver catches up to the current node.  We
3329 	 * could recurse here but we might run ourselves out of kernel stack
3330 	 * so we do it in a more painful manner.  This situation really should
3331 	 * not occur all that often, or if it does not have to go back too
3332 	 * many nodes to resolve the ncp.
3333 	 */
3334 	while ((dvp = cache_dvpref(ncp)) == NULL) {
3335 		/*
3336 		 * This case can occur if a process is CD'd into a
3337 		 * directory which is then rmdir'd.  If the parent is marked
3338 		 * destroyed there is no point trying to resolve it.
3339 		 */
3340 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
3341 			return(ENOENT);
3342 		par = ncp->nc_parent;
3343 		_cache_hold(par);
3344 		_cache_lock(par);
3345 		while ((par_tmp = par->nc_parent) != NULL &&
3346 		       par_tmp->nc_vp == NULL) {
3347 			_cache_hold(par_tmp);
3348 			_cache_lock(par_tmp);
3349 			_cache_put(par);
3350 			par = par_tmp;
3351 		}
3352 		if (par->nc_parent == NULL) {
3353 			kprintf("EXDEV case 2 %*.*s\n",
3354 				par->nc_nlen, par->nc_nlen, par->nc_name);
3355 			_cache_put(par);
3356 			return (EXDEV);
3357 		}
3358 		kprintf("[diagnostic] cache_resolve: had to recurse on %*.*s\n",
3359 			par->nc_nlen, par->nc_nlen, par->nc_name);
3360 		/*
3361 		 * The parent is not set in stone, ref and lock it to prevent
3362 		 * it from disappearing.  Also note that due to renames it
3363 		 * is possible for our ncp to move and for par to no longer
3364 		 * be one of its parents.  We resolve it anyway, the loop
3365 		 * will handle any moves.
3366 		 */
3367 		_cache_get(par);	/* additional hold/lock */
3368 		_cache_put(par);	/* from earlier hold/lock */
3369 		if (par == nch->mount->mnt_ncmountpt.ncp) {
3370 			cache_resolve_mp(nch->mount);
3371 		} else if ((dvp = cache_dvpref(par)) == NULL) {
3372 			kprintf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name);
3373 			_cache_put(par);
3374 			continue;
3375 		} else {
3376 			if (par->nc_flag & NCF_UNRESOLVED) {
3377 				nctmp.mount = mp;
3378 				nctmp.ncp = par;
3379 				par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
3380 			}
3381 			vrele(dvp);
3382 		}
3383 		if ((error = par->nc_error) != 0) {
3384 			if (par->nc_error != EAGAIN) {
3385 				kprintf("EXDEV case 3 %*.*s error %d\n",
3386 				    par->nc_nlen, par->nc_nlen, par->nc_name,
3387 				    par->nc_error);
3388 				_cache_put(par);
3389 				return(error);
3390 			}
3391 			kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
3392 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
3393 		}
3394 		_cache_put(par);
3395 		/* loop */
3396 	}
3397 
3398 	/*
3399 	 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
3400 	 * ncp's and reattach them.  If this occurs the original ncp is marked
3401 	 * EAGAIN to force a relookup.
3402 	 *
3403 	 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
3404 	 * ncp must already be resolved.
3405 	 */
3406 	if (dvp) {
3407 		nctmp.mount = mp;
3408 		nctmp.ncp = ncp;
3409 		ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
3410 		vrele(dvp);
3411 	} else {
3412 		ncp->nc_error = EPERM;
3413 	}
3414 	if (ncp->nc_error == EAGAIN) {
3415 		kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
3416 			ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
3417 		goto restart;
3418 	}
3419 	return(ncp->nc_error);
3420 }
3421 
3422 /*
3423  * Resolve the ncp associated with a mount point.  Such ncp's almost always
3424  * remain resolved and this routine is rarely called.  NFS MPs tends to force
3425  * re-resolution more often due to its mac-truck-smash-the-namecache
3426  * method of tracking namespace changes.
3427  *
3428  * The semantics for this call is that the passed ncp must be locked on
3429  * entry and will be locked on return.  However, if we actually have to
3430  * resolve the mount point we temporarily unlock the entry in order to
3431  * avoid race-to-root deadlocks due to e.g. dead NFS mounts.  Because of
3432  * the unlock we have to recheck the flags after we relock.
3433  */
3434 static int
3435 cache_resolve_mp(struct mount *mp)
3436 {
3437 	struct namecache *ncp = mp->mnt_ncmountpt.ncp;
3438 	struct vnode *vp;
3439 	int error;
3440 
3441 	KKASSERT(mp != NULL);
3442 
3443 	/*
3444 	 * If the ncp is already resolved we have nothing to do.  However,
3445 	 * we do want to guarentee that a usable vnode is returned when
3446 	 * a vnode is present, so make sure it hasn't been reclaimed.
3447 	 */
3448 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3449 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
3450 			_cache_setunresolved(ncp);
3451 	}
3452 
3453 	if (ncp->nc_flag & NCF_UNRESOLVED) {
3454 		_cache_unlock(ncp);
3455 		while (vfs_busy(mp, 0))
3456 			;
3457 		error = VFS_ROOT(mp, &vp);
3458 		_cache_lock(ncp);
3459 
3460 		/*
3461 		 * recheck the ncp state after relocking.
3462 		 */
3463 		if (ncp->nc_flag & NCF_UNRESOLVED) {
3464 			ncp->nc_error = error;
3465 			if (error == 0) {
3466 				_cache_setvp(mp, ncp, vp);
3467 				vput(vp);
3468 			} else {
3469 				kprintf("[diagnostic] cache_resolve_mp: failed"
3470 					" to resolve mount %p err=%d ncp=%p\n",
3471 					mp, error, ncp);
3472 				_cache_setvp(mp, ncp, NULL);
3473 			}
3474 		} else if (error == 0) {
3475 			vput(vp);
3476 		}
3477 		vfs_unbusy(mp);
3478 	}
3479 	return(ncp->nc_error);
3480 }
3481 
3482 /*
3483  * Clean out negative cache entries when too many have accumulated.
3484  */
3485 static void
3486 _cache_cleanneg(int count)
3487 {
3488 	struct namecache *ncp;
3489 
3490 	/*
3491 	 * Attempt to clean out the specified number of negative cache
3492 	 * entries.
3493 	 */
3494 	while (count) {
3495 		spin_lock(&ncspin);
3496 		ncp = TAILQ_FIRST(&ncneglist);
3497 		if (ncp == NULL) {
3498 			spin_unlock(&ncspin);
3499 			break;
3500 		}
3501 		TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
3502 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
3503 		_cache_hold(ncp);
3504 		spin_unlock(&ncspin);
3505 
3506 		/*
3507 		 * This can race, so we must re-check that the ncp
3508 		 * is on the ncneglist after successfully locking it.
3509 		 */
3510 		if (_cache_lock_special(ncp) == 0) {
3511 			if (ncp->nc_vp == NULL &&
3512 			    (ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3513 				ncp = cache_zap(ncp, 1);
3514 				if (ncp)
3515 					_cache_drop(ncp);
3516 			} else {
3517 				kprintf("cache_cleanneg: race avoided\n");
3518 				_cache_unlock(ncp);
3519 			}
3520 		} else {
3521 			_cache_drop(ncp);
3522 		}
3523 		--count;
3524 	}
3525 }
3526 
3527 /*
3528  * Clean out positive cache entries when too many have accumulated.
3529  */
3530 static void
3531 _cache_cleanpos(int count)
3532 {
3533 	static volatile int rover;
3534 	struct nchash_head *nchpp;
3535 	struct namecache *ncp;
3536 	int rover_copy;
3537 
3538 	/*
3539 	 * Attempt to clean out the specified number of negative cache
3540 	 * entries.
3541 	 */
3542 	while (count) {
3543 		rover_copy = ++rover;	/* MPSAFEENOUGH */
3544 		cpu_ccfence();
3545 		nchpp = NCHHASH(rover_copy);
3546 
3547 		spin_lock_shared(&nchpp->spin);
3548 		ncp = LIST_FIRST(&nchpp->list);
3549 		while (ncp && (ncp->nc_flag & NCF_DESTROYED))
3550 			ncp = LIST_NEXT(ncp, nc_hash);
3551 		if (ncp)
3552 			_cache_hold(ncp);
3553 		spin_unlock_shared(&nchpp->spin);
3554 
3555 		if (ncp) {
3556 			if (_cache_lock_special(ncp) == 0) {
3557 				ncp = cache_zap(ncp, 1);
3558 				if (ncp)
3559 					_cache_drop(ncp);
3560 			} else {
3561 				_cache_drop(ncp);
3562 			}
3563 		}
3564 		--count;
3565 	}
3566 }
3567 
3568 /*
3569  * This is a kitchen sink function to clean out ncps which we
3570  * tried to zap from cache_drop() but failed because we were
3571  * unable to acquire the parent lock.
3572  *
3573  * Such entries can also be removed via cache_inval_vp(), such
3574  * as when unmounting.
3575  */
3576 static void
3577 _cache_cleandefered(void)
3578 {
3579 	struct nchash_head *nchpp;
3580 	struct namecache *ncp;
3581 	struct namecache dummy;
3582 	int i;
3583 
3584 	numdefered = 0;
3585 	bzero(&dummy, sizeof(dummy));
3586 	dummy.nc_flag = NCF_DESTROYED;
3587 	dummy.nc_refs = 1;
3588 
3589 	for (i = 0; i <= nchash; ++i) {
3590 		nchpp = &nchashtbl[i];
3591 
3592 		spin_lock(&nchpp->spin);
3593 		LIST_INSERT_HEAD(&nchpp->list, &dummy, nc_hash);
3594 		ncp = &dummy;
3595 		while ((ncp = LIST_NEXT(ncp, nc_hash)) != NULL) {
3596 			if ((ncp->nc_flag & NCF_DEFEREDZAP) == 0)
3597 				continue;
3598 			LIST_REMOVE(&dummy, nc_hash);
3599 			LIST_INSERT_AFTER(ncp, &dummy, nc_hash);
3600 			_cache_hold(ncp);
3601 			spin_unlock(&nchpp->spin);
3602 			if (_cache_lock_nonblock(ncp) == 0) {
3603 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
3604 				_cache_unlock(ncp);
3605 			}
3606 			_cache_drop(ncp);
3607 			spin_lock(&nchpp->spin);
3608 			ncp = &dummy;
3609 		}
3610 		LIST_REMOVE(&dummy, nc_hash);
3611 		spin_unlock(&nchpp->spin);
3612 	}
3613 }
3614 
3615 /*
3616  * Name cache initialization, from vfsinit() when we are booting
3617  */
3618 void
3619 nchinit(void)
3620 {
3621 	int i;
3622 	globaldata_t gd;
3623 
3624 	/* initialise per-cpu namecache effectiveness statistics. */
3625 	for (i = 0; i < ncpus; ++i) {
3626 		gd = globaldata_find(i);
3627 		gd->gd_nchstats = &nchstats[i];
3628 	}
3629 	TAILQ_INIT(&ncneglist);
3630 	spin_init(&ncspin, "nchinit");
3631 	nchashtbl = hashinit_ext(desiredvnodes / 2,
3632 				 sizeof(struct nchash_head),
3633 				 M_VFSCACHE, &nchash);
3634 	for (i = 0; i <= (int)nchash; ++i) {
3635 		LIST_INIT(&nchashtbl[i].list);
3636 		spin_init(&nchashtbl[i].spin, "nchinit_hash");
3637 	}
3638 	for (i = 0; i < NCMOUNT_NUMCACHE; ++i)
3639 		spin_init(&ncmount_cache[i].spin, "nchinit_cache");
3640 	nclockwarn = 5 * hz;
3641 }
3642 
3643 /*
3644  * Called from start_init() to bootstrap the root filesystem.  Returns
3645  * a referenced, unlocked namecache record.
3646  */
3647 void
3648 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
3649 {
3650 	nch->ncp = cache_alloc(0);
3651 	nch->mount = mp;
3652 	atomic_add_int(&mp->mnt_refs, 1);
3653 	if (vp)
3654 		_cache_setvp(nch->mount, nch->ncp, vp);
3655 }
3656 
3657 /*
3658  * vfs_cache_setroot()
3659  *
3660  *	Create an association between the root of our namecache and
3661  *	the root vnode.  This routine may be called several times during
3662  *	booting.
3663  *
3664  *	If the caller intends to save the returned namecache pointer somewhere
3665  *	it must cache_hold() it.
3666  */
3667 void
3668 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
3669 {
3670 	struct vnode *ovp;
3671 	struct nchandle onch;
3672 
3673 	ovp = rootvnode;
3674 	onch = rootnch;
3675 	rootvnode = nvp;
3676 	if (nch)
3677 		rootnch = *nch;
3678 	else
3679 		cache_zero(&rootnch);
3680 	if (ovp)
3681 		vrele(ovp);
3682 	if (onch.ncp)
3683 		cache_drop(&onch);
3684 }
3685 
3686 /*
3687  * XXX OLD API COMPAT FUNCTION.  This really messes up the new namecache
3688  * topology and is being removed as quickly as possible.  The new VOP_N*()
3689  * API calls are required to make specific adjustments using the supplied
3690  * ncp pointers rather then just bogusly purging random vnodes.
3691  *
3692  * Invalidate all namecache entries to a particular vnode as well as
3693  * any direct children of that vnode in the namecache.  This is a
3694  * 'catch all' purge used by filesystems that do not know any better.
3695  *
3696  * Note that the linkage between the vnode and its namecache entries will
3697  * be removed, but the namecache entries themselves might stay put due to
3698  * active references from elsewhere in the system or due to the existance of
3699  * the children.   The namecache topology is left intact even if we do not
3700  * know what the vnode association is.  Such entries will be marked
3701  * NCF_UNRESOLVED.
3702  */
3703 void
3704 cache_purge(struct vnode *vp)
3705 {
3706 	cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
3707 }
3708 
3709 /*
3710  * Flush all entries referencing a particular filesystem.
3711  *
3712  * Since we need to check it anyway, we will flush all the invalid
3713  * entries at the same time.
3714  */
3715 #if 0
3716 
3717 void
3718 cache_purgevfs(struct mount *mp)
3719 {
3720 	struct nchash_head *nchpp;
3721 	struct namecache *ncp, *nnp;
3722 
3723 	/*
3724 	 * Scan hash tables for applicable entries.
3725 	 */
3726 	for (nchpp = &nchashtbl[nchash]; nchpp >= nchashtbl; nchpp--) {
3727 		spin_lock_wr(&nchpp->spin); XXX
3728 		ncp = LIST_FIRST(&nchpp->list);
3729 		if (ncp)
3730 			_cache_hold(ncp);
3731 		while (ncp) {
3732 			nnp = LIST_NEXT(ncp, nc_hash);
3733 			if (nnp)
3734 				_cache_hold(nnp);
3735 			if (ncp->nc_mount == mp) {
3736 				_cache_lock(ncp);
3737 				ncp = cache_zap(ncp, 0);
3738 				if (ncp)
3739 					_cache_drop(ncp);
3740 			} else {
3741 				_cache_drop(ncp);
3742 			}
3743 			ncp = nnp;
3744 		}
3745 		spin_unlock_wr(&nchpp->spin); XXX
3746 	}
3747 }
3748 
3749 #endif
3750 
3751 static int disablecwd;
3752 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0,
3753     "Disable getcwd");
3754 
3755 static u_long numcwdcalls;
3756 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdcalls, CTLFLAG_RD, &numcwdcalls, 0,
3757     "Number of current directory resolution calls");
3758 static u_long numcwdfailnf;
3759 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfailnf, CTLFLAG_RD, &numcwdfailnf, 0,
3760     "Number of current directory failures due to lack of file");
3761 static u_long numcwdfailsz;
3762 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfailsz, CTLFLAG_RD, &numcwdfailsz, 0,
3763     "Number of current directory failures due to large result");
3764 static u_long numcwdfound;
3765 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfound, CTLFLAG_RD, &numcwdfound, 0,
3766     "Number of current directory resolution successes");
3767 
3768 /*
3769  * MPALMOSTSAFE
3770  */
3771 int
3772 sys___getcwd(struct __getcwd_args *uap)
3773 {
3774 	u_int buflen;
3775 	int error;
3776 	char *buf;
3777 	char *bp;
3778 
3779 	if (disablecwd)
3780 		return (ENODEV);
3781 
3782 	buflen = uap->buflen;
3783 	if (buflen == 0)
3784 		return (EINVAL);
3785 	if (buflen > MAXPATHLEN)
3786 		buflen = MAXPATHLEN;
3787 
3788 	buf = kmalloc(buflen, M_TEMP, M_WAITOK);
3789 	bp = kern_getcwd(buf, buflen, &error);
3790 	if (error == 0)
3791 		error = copyout(bp, uap->buf, strlen(bp) + 1);
3792 	kfree(buf, M_TEMP);
3793 	return (error);
3794 }
3795 
3796 char *
3797 kern_getcwd(char *buf, size_t buflen, int *error)
3798 {
3799 	struct proc *p = curproc;
3800 	char *bp;
3801 	int i, slash_prefixed;
3802 	struct filedesc *fdp;
3803 	struct nchandle nch;
3804 	struct namecache *ncp;
3805 
3806 	numcwdcalls++;
3807 	bp = buf;
3808 	bp += buflen - 1;
3809 	*bp = '\0';
3810 	fdp = p->p_fd;
3811 	slash_prefixed = 0;
3812 
3813 	nch = fdp->fd_ncdir;
3814 	ncp = nch.ncp;
3815 	if (ncp)
3816 		_cache_hold(ncp);
3817 
3818 	while (ncp && (ncp != fdp->fd_nrdir.ncp ||
3819 	       nch.mount != fdp->fd_nrdir.mount)
3820 	) {
3821 		/*
3822 		 * While traversing upwards if we encounter the root
3823 		 * of the current mount we have to skip to the mount point
3824 		 * in the underlying filesystem.
3825 		 */
3826 		if (ncp == nch.mount->mnt_ncmountpt.ncp) {
3827 			nch = nch.mount->mnt_ncmounton;
3828 			_cache_drop(ncp);
3829 			ncp = nch.ncp;
3830 			if (ncp)
3831 				_cache_hold(ncp);
3832 			continue;
3833 		}
3834 
3835 		/*
3836 		 * Prepend the path segment
3837 		 */
3838 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
3839 			if (bp == buf) {
3840 				numcwdfailsz++;
3841 				*error = ERANGE;
3842 				bp = NULL;
3843 				goto done;
3844 			}
3845 			*--bp = ncp->nc_name[i];
3846 		}
3847 		if (bp == buf) {
3848 			numcwdfailsz++;
3849 			*error = ERANGE;
3850 			bp = NULL;
3851 			goto done;
3852 		}
3853 		*--bp = '/';
3854 		slash_prefixed = 1;
3855 
3856 		/*
3857 		 * Go up a directory.  This isn't a mount point so we don't
3858 		 * have to check again.
3859 		 */
3860 		while ((nch.ncp = ncp->nc_parent) != NULL) {
3861 			if (ncp_shared_lock_disable)
3862 				_cache_lock(ncp);
3863 			else
3864 				_cache_lock_shared(ncp);
3865 			if (nch.ncp != ncp->nc_parent) {
3866 				_cache_unlock(ncp);
3867 				continue;
3868 			}
3869 			_cache_hold(nch.ncp);
3870 			_cache_unlock(ncp);
3871 			break;
3872 		}
3873 		_cache_drop(ncp);
3874 		ncp = nch.ncp;
3875 	}
3876 	if (ncp == NULL) {
3877 		numcwdfailnf++;
3878 		*error = ENOENT;
3879 		bp = NULL;
3880 		goto done;
3881 	}
3882 	if (!slash_prefixed) {
3883 		if (bp == buf) {
3884 			numcwdfailsz++;
3885 			*error = ERANGE;
3886 			bp = NULL;
3887 			goto done;
3888 		}
3889 		*--bp = '/';
3890 	}
3891 	numcwdfound++;
3892 	*error = 0;
3893 done:
3894 	if (ncp)
3895 		_cache_drop(ncp);
3896 	return (bp);
3897 }
3898 
3899 /*
3900  * Thus begins the fullpath magic.
3901  *
3902  * The passed nchp is referenced but not locked.
3903  */
3904 static int disablefullpath;
3905 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
3906     &disablefullpath, 0,
3907     "Disable fullpath lookups");
3908 
3909 static u_int numfullpathcalls;
3910 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathcalls, CTLFLAG_RD,
3911     &numfullpathcalls, 0,
3912     "Number of full path resolutions in progress");
3913 static u_int numfullpathfailnf;
3914 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfailnf, CTLFLAG_RD,
3915     &numfullpathfailnf, 0,
3916     "Number of full path resolution failures due to lack of file");
3917 static u_int numfullpathfailsz;
3918 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfailsz, CTLFLAG_RD,
3919     &numfullpathfailsz, 0,
3920     "Number of full path resolution failures due to insufficient memory");
3921 static u_int numfullpathfound;
3922 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfound, CTLFLAG_RD,
3923     &numfullpathfound, 0,
3924     "Number of full path resolution successes");
3925 
3926 int
3927 cache_fullpath(struct proc *p, struct nchandle *nchp, struct nchandle *nchbase,
3928 	       char **retbuf, char **freebuf, int guess)
3929 {
3930 	struct nchandle fd_nrdir;
3931 	struct nchandle nch;
3932 	struct namecache *ncp;
3933 	struct mount *mp, *new_mp;
3934 	char *bp, *buf;
3935 	int slash_prefixed;
3936 	int error = 0;
3937 	int i;
3938 
3939 	atomic_add_int(&numfullpathcalls, -1);
3940 
3941 	*retbuf = NULL;
3942 	*freebuf = NULL;
3943 
3944 	buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
3945 	bp = buf + MAXPATHLEN - 1;
3946 	*bp = '\0';
3947 	if (nchbase)
3948 		fd_nrdir = *nchbase;
3949 	else if (p != NULL)
3950 		fd_nrdir = p->p_fd->fd_nrdir;
3951 	else
3952 		fd_nrdir = rootnch;
3953 	slash_prefixed = 0;
3954 	nch = *nchp;
3955 	ncp = nch.ncp;
3956 	if (ncp)
3957 		_cache_hold(ncp);
3958 	mp = nch.mount;
3959 
3960 	while (ncp && (ncp != fd_nrdir.ncp || mp != fd_nrdir.mount)) {
3961 		new_mp = NULL;
3962 
3963 		/*
3964 		 * If we are asked to guess the upwards path, we do so whenever
3965 		 * we encounter an ncp marked as a mountpoint. We try to find
3966 		 * the actual mountpoint by finding the mountpoint with this
3967 		 * ncp.
3968 		 */
3969 		if (guess && (ncp->nc_flag & NCF_ISMOUNTPT)) {
3970 			new_mp = mount_get_by_nc(ncp);
3971 		}
3972 		/*
3973 		 * While traversing upwards if we encounter the root
3974 		 * of the current mount we have to skip to the mount point.
3975 		 */
3976 		if (ncp == mp->mnt_ncmountpt.ncp) {
3977 			new_mp = mp;
3978 		}
3979 		if (new_mp) {
3980 			nch = new_mp->mnt_ncmounton;
3981 			_cache_drop(ncp);
3982 			ncp = nch.ncp;
3983 			if (ncp)
3984 				_cache_hold(ncp);
3985 			mp = nch.mount;
3986 			continue;
3987 		}
3988 
3989 		/*
3990 		 * Prepend the path segment
3991 		 */
3992 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
3993 			if (bp == buf) {
3994 				numfullpathfailsz++;
3995 				kfree(buf, M_TEMP);
3996 				error = ENOMEM;
3997 				goto done;
3998 			}
3999 			*--bp = ncp->nc_name[i];
4000 		}
4001 		if (bp == buf) {
4002 			numfullpathfailsz++;
4003 			kfree(buf, M_TEMP);
4004 			error = ENOMEM;
4005 			goto done;
4006 		}
4007 		*--bp = '/';
4008 		slash_prefixed = 1;
4009 
4010 		/*
4011 		 * Go up a directory.  This isn't a mount point so we don't
4012 		 * have to check again.
4013 		 *
4014 		 * We can only safely access nc_parent with ncp held locked.
4015 		 */
4016 		while ((nch.ncp = ncp->nc_parent) != NULL) {
4017 			_cache_lock(ncp);
4018 			if (nch.ncp != ncp->nc_parent) {
4019 				_cache_unlock(ncp);
4020 				continue;
4021 			}
4022 			_cache_hold(nch.ncp);
4023 			_cache_unlock(ncp);
4024 			break;
4025 		}
4026 		_cache_drop(ncp);
4027 		ncp = nch.ncp;
4028 	}
4029 	if (ncp == NULL) {
4030 		numfullpathfailnf++;
4031 		kfree(buf, M_TEMP);
4032 		error = ENOENT;
4033 		goto done;
4034 	}
4035 
4036 	if (!slash_prefixed) {
4037 		if (bp == buf) {
4038 			numfullpathfailsz++;
4039 			kfree(buf, M_TEMP);
4040 			error = ENOMEM;
4041 			goto done;
4042 		}
4043 		*--bp = '/';
4044 	}
4045 	numfullpathfound++;
4046 	*retbuf = bp;
4047 	*freebuf = buf;
4048 	error = 0;
4049 done:
4050 	if (ncp)
4051 		_cache_drop(ncp);
4052 	return(error);
4053 }
4054 
4055 int
4056 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf,
4057 	    char **freebuf, int guess)
4058 {
4059 	struct namecache *ncp;
4060 	struct nchandle nch;
4061 	int error;
4062 
4063 	*freebuf = NULL;
4064 	atomic_add_int(&numfullpathcalls, 1);
4065 	if (disablefullpath)
4066 		return (ENODEV);
4067 
4068 	if (p == NULL)
4069 		return (EINVAL);
4070 
4071 	/* vn is NULL, client wants us to use p->p_textvp */
4072 	if (vn == NULL) {
4073 		if ((vn = p->p_textvp) == NULL)
4074 			return (EINVAL);
4075 	}
4076 	spin_lock_shared(&vn->v_spin);
4077 	TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
4078 		if (ncp->nc_nlen)
4079 			break;
4080 	}
4081 	if (ncp == NULL) {
4082 		spin_unlock_shared(&vn->v_spin);
4083 		return (EINVAL);
4084 	}
4085 	_cache_hold(ncp);
4086 	spin_unlock_shared(&vn->v_spin);
4087 
4088 	atomic_add_int(&numfullpathcalls, -1);
4089 	nch.ncp = ncp;
4090 	nch.mount = vn->v_mount;
4091 	error = cache_fullpath(p, &nch, NULL, retbuf, freebuf, guess);
4092 	_cache_drop(ncp);
4093 	return (error);
4094 }
4095