xref: /dragonfly/sys/kern/vfs_cache.c (revision d780b39f)
1 /*
2  * Copyright (c) 2003-2020 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993, 1995
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * Poul-Henning Kamp of the FreeBSD Project.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. Neither the name of the University nor the names of its contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/uio.h>
68 #include <sys/kernel.h>
69 #include <sys/sysctl.h>
70 #include <sys/mount.h>
71 #include <sys/vnode.h>
72 #include <sys/malloc.h>
73 #include <sys/sysmsg.h>
74 #include <sys/spinlock.h>
75 #include <sys/proc.h>
76 #include <sys/nlookup.h>
77 #include <sys/filedesc.h>
78 #include <sys/fnv_hash.h>
79 #include <sys/globaldata.h>
80 #include <sys/kern_syscall.h>
81 #include <sys/dirent.h>
82 #include <ddb/ddb.h>
83 
84 #include <sys/spinlock2.h>
85 
86 #define MAX_RECURSION_DEPTH	64
87 
88 /*
89  * Random lookups in the cache are accomplished with a hash table using
90  * a hash key of (nc_src_vp, name).  Each hash chain has its own spin lock,
91  * but we use the ncp->update counter trick to avoid acquiring any
92  * contestable spin-locks during a lookup.
93  *
94  * Negative entries may exist and correspond to resolved namecache
95  * structures where nc_vp is NULL.  In a negative entry, NCF_WHITEOUT
96  * will be set if the entry corresponds to a whited-out directory entry
97  * (verses simply not finding the entry at all).  pcpu_ncache[n].neg_list
98  * is locked via pcpu_ncache[n].neg_spin;
99  *
100  * MPSAFE RULES:
101  *
102  * (1) ncp's typically have at least a nc_refs of 1, and usually 2.  One
103  *     is applicable to direct lookups via the hash table nchpp or via
104  *     nc_list (the two are added or removed together).  Removal of the ncp
105  *     from the hash table drops this reference.  The second is applicable
106  *     to vp->v_namecache linkages (or negative list linkages), and removal
107  *     of the ncp from these lists drops this reference.
108  *
109  *     On the 1->0 transition of nc_refs the ncp can no longer be referenced
110  *     and must be destroyed.  No other thread should have access to it at
111  *     this point so it can be safely locked and freed without any deadlock
112  *     fears.
113  *
114  *     The 1->0 transition can occur at almost any juncture and so cache_drop()
115  *     deals with it directly.
116  *
117  * (2) Once the 1->0 transition occurs, the entity that caused the transition
118  *     will be responsible for destroying the ncp.  The ncp cannot be on any
119  *     list or hash at this time, or be held by anyone other than the caller
120  *     responsible for the transition.
121  *
122  * (3) A ncp must be locked in order to modify it.
123  *
124  * (5) ncp locks are ordered, child-to-parent.  Child first, then parent.
125  *     This may seem backwards but forward-scans use the hash table and thus
126  *     can hold the parent unlocked while traversing downward.  Deletions,
127  *     on the other-hand, tend to propagate bottom-up since the ref on the
128  *     is dropped as the children go away.
129  *
130  * (6) Both parent and child must be locked in order to enter the child onto
131  *     the parent's nc_list.
132  */
133 
134 /*
135  * Structures associated with name cacheing.
136  */
137 #define NCHHASH(hash)		(&nchashtbl[(hash) & nchash])
138 #define MINNEG			1024
139 #define MINPOS			1024
140 #define NCMOUNT_NUMCACHE	(16384)	/* power of 2 */
141 #define NCMOUNT_SET		(8)	/* power of 2 */
142 
143 MALLOC_DEFINE_OBJ(M_VFSCACHE, sizeof(struct namecache),
144 		  "namecache", "namecache entries");
145 MALLOC_DEFINE(M_VFSCACHEAUX, "namecachestr", "namecache strings");
146 
147 TAILQ_HEAD(nchash_list, namecache);
148 
149 /*
150  * Don't cachealign, but at least pad to 32 bytes so entries
151  * don't cross a cache line.
152  */
153 struct nchash_head {
154        struct nchash_list list;	/* 16 bytes */
155        struct spinlock	spin;	/* 8 bytes */
156        long	pad01;		/* 8 bytes */
157 };
158 
159 struct ncmount_cache {
160 	struct spinlock	spin;
161 	struct namecache *ncp;
162 	struct mount *mp;
163 	struct mount *mp_target;
164 	int isneg;
165 	int ticks;
166 	int updating;
167 	int unused01;
168 };
169 
170 struct pcpu_ncache {
171 	struct spinlock		umount_spin;	/* cache_findmount/interlock */
172 	struct spinlock		neg_spin;	/* for neg_list and neg_count */
173 	struct namecache_list	neg_list;
174 	long			neg_count;
175 	long			vfscache_negs;
176 	long			vfscache_count;
177 	long			vfscache_leafs;
178 	long			vfscache_unres;
179 	long			numdefered;
180 } __cachealign;
181 
182 __read_mostly static struct nchash_head	*nchashtbl;
183 __read_mostly static struct pcpu_ncache	*pcpu_ncache;
184 static struct ncmount_cache	ncmount_cache[NCMOUNT_NUMCACHE];
185 
186 /*
187  * ncvp_debug - debug cache_fromvp().  This is used by the NFS server
188  * to create the namecache infrastructure leading to a dangling vnode.
189  *
190  * 0	Only errors are reported
191  * 1	Successes are reported
192  * 2	Successes + the whole directory scan is reported
193  * 3	Force the directory scan code run as if the parent vnode did not
194  *	have a namecache record, even if it does have one.
195  */
196 __read_mostly static int	ncvp_debug;
197 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0,
198     "Namecache debug level (0-3)");
199 
200 __read_mostly static u_long nchash;		/* size of hash table */
201 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
202     "Size of namecache hash table");
203 
204 __read_mostly static int ncnegflush = 10;	/* burst for negative flush */
205 SYSCTL_INT(_debug, OID_AUTO, ncnegflush, CTLFLAG_RW, &ncnegflush, 0,
206     "Batch flush negative entries");
207 
208 __read_mostly static int ncposflush = 10;	/* burst for positive flush */
209 SYSCTL_INT(_debug, OID_AUTO, ncposflush, CTLFLAG_RW, &ncposflush, 0,
210     "Batch flush positive entries");
211 
212 __read_mostly static int ncnegfactor = 16;	/* ratio of negative entries */
213 SYSCTL_INT(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0,
214     "Ratio of negative namecache entries");
215 
216 __read_mostly static int ncposfactor = 16;    /* ratio of unres+leaf entries */
217 SYSCTL_INT(_debug, OID_AUTO, ncposfactor, CTLFLAG_RW, &ncposfactor, 0,
218     "Ratio of unresolved leaf namecache entries");
219 
220 __read_mostly static int nclockwarn;	/* warn on locked entries in ticks */
221 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0,
222     "Warn on locked namecache entries in ticks");
223 
224 __read_mostly static int ncposlimit;	/* number of cache entries allocated */
225 SYSCTL_INT(_debug, OID_AUTO, ncposlimit, CTLFLAG_RW, &ncposlimit, 0,
226     "Number of cache entries allocated");
227 
228 __read_mostly static int ncp_shared_lock_disable = 0;
229 SYSCTL_INT(_debug, OID_AUTO, ncp_shared_lock_disable, CTLFLAG_RW,
230 	   &ncp_shared_lock_disable, 0, "Disable shared namecache locks");
231 
232 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode),
233     "sizeof(struct vnode)");
234 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache),
235     "sizeof(struct namecache)");
236 
237 __read_mostly static int ncmount_cache_enable = 1;
238 SYSCTL_INT(_debug, OID_AUTO, ncmount_cache_enable, CTLFLAG_RW,
239 	   &ncmount_cache_enable, 0, "mount point cache");
240 
241 static __inline void _cache_drop(struct namecache *ncp);
242 static int cache_resolve_mp(struct mount *mp);
243 static int cache_findmount_callback(struct mount *mp, void *data);
244 static void _cache_setunresolved(struct namecache *ncp);
245 static void _cache_cleanneg(long count);
246 static void _cache_cleanpos(long count);
247 static void _cache_cleandefered(void);
248 static void _cache_unlink(struct namecache *ncp);
249 
250 /*
251  * The new name cache statistics (these are rolled up globals and not
252  * modified in the critical path, see struct pcpu_ncache).
253  */
254 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
255 static long vfscache_negs;
256 SYSCTL_LONG(_vfs_cache, OID_AUTO, numneg, CTLFLAG_RD, &vfscache_negs, 0,
257     "Number of negative namecache entries");
258 static long vfscache_count;
259 SYSCTL_LONG(_vfs_cache, OID_AUTO, numcache, CTLFLAG_RD, &vfscache_count, 0,
260     "Number of namecaches entries");
261 static long vfscache_leafs;
262 SYSCTL_LONG(_vfs_cache, OID_AUTO, numleafs, CTLFLAG_RD, &vfscache_leafs, 0,
263     "Number of leaf namecaches entries");
264 static long vfscache_unres;
265 SYSCTL_LONG(_vfs_cache, OID_AUTO, numunres, CTLFLAG_RD, &vfscache_unres, 0,
266     "Number of unresolved leaf namecaches entries");
267 static long	numdefered;
268 SYSCTL_LONG(_debug, OID_AUTO, numdefered, CTLFLAG_RD, &numdefered, 0,
269     "Number of cache entries allocated");
270 
271 
272 struct nchstats nchstats[SMP_MAXCPU];
273 /*
274  * Export VFS cache effectiveness statistics to user-land.
275  *
276  * The statistics are left for aggregation to user-land so
277  * neat things can be achieved, like observing per-CPU cache
278  * distribution.
279  */
280 static int
281 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
282 {
283 	struct globaldata *gd;
284 	int i, error;
285 
286 	error = 0;
287 	for (i = 0; i < ncpus; ++i) {
288 		gd = globaldata_find(i);
289 		if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
290 			sizeof(struct nchstats))))
291 			break;
292 	}
293 
294 	return (error);
295 }
296 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
297   0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
298 
299 static int cache_zap(struct namecache *ncp);
300 
301 /*
302  * Cache mount points and namecache records in order to avoid unnecessary
303  * atomic ops on mnt_refs and ncp->refs.  This improves concurrent SMP
304  * performance and is particularly important on multi-socket systems to
305  * reduce cache-line ping-ponging.
306  *
307  * Try to keep the pcpu structure within one cache line (~64 bytes).
308  */
309 #define MNTCACHE_COUNT	32	/* power of 2, multiple of SET */
310 #define MNTCACHE_SET	8	/* set associativity */
311 
312 struct mntcache_elm {
313 	struct namecache *ncp;
314 	struct mount	 *mp;
315 	int	ticks;
316 	int	unused01;
317 };
318 
319 struct mntcache {
320 	struct mntcache_elm array[MNTCACHE_COUNT];
321 } __cachealign;
322 
323 static struct mntcache	pcpu_mntcache[MAXCPU];
324 
325 static __inline
326 struct mntcache_elm *
327 _cache_mntcache_hash(void *ptr)
328 {
329 	struct mntcache_elm *elm;
330 	int hv;
331 
332 	hv = iscsi_crc32(&ptr, sizeof(ptr)) & (MNTCACHE_COUNT - 1);
333 	elm = &pcpu_mntcache[mycpu->gd_cpuid].array[hv & ~(MNTCACHE_SET - 1)];
334 
335 	return elm;
336 }
337 
338 static
339 void
340 _cache_mntref(struct mount *mp)
341 {
342 	struct mntcache_elm *elm;
343 	struct mount *mpr;
344 	int i;
345 
346 	elm = _cache_mntcache_hash(mp);
347 	for (i = 0; i < MNTCACHE_SET; ++i) {
348 		if (elm->mp == mp) {
349 			mpr = atomic_swap_ptr((void *)&elm->mp, NULL);
350 			if (__predict_true(mpr == mp))
351 				return;
352 			if (mpr)
353 				atomic_add_int(&mpr->mnt_refs, -1);
354 		}
355 		++elm;
356 	}
357 	atomic_add_int(&mp->mnt_refs, 1);
358 }
359 
360 static
361 void
362 _cache_mntrel(struct mount *mp)
363 {
364 	struct mntcache_elm *elm;
365 	struct mntcache_elm *best;
366 	struct mount *mpr;
367 	int delta1;
368 	int delta2;
369 	int i;
370 
371 	elm = _cache_mntcache_hash(mp);
372 	best = elm;
373 	for (i = 0; i < MNTCACHE_SET; ++i) {
374 		if (elm->mp == NULL) {
375 			mpr = atomic_swap_ptr((void *)&elm->mp, mp);
376 			if (__predict_false(mpr != NULL)) {
377 				atomic_add_int(&mpr->mnt_refs, -1);
378 			}
379 			elm->ticks = ticks;
380 			return;
381 		}
382 		delta1 = ticks - best->ticks;
383 		delta2 = ticks - elm->ticks;
384 		if (delta2 > delta1 || delta1 < -1 || delta2 < -1)
385 			best = elm;
386 		++elm;
387 	}
388 	mpr = atomic_swap_ptr((void *)&best->mp, mp);
389 	best->ticks = ticks;
390 	if (mpr)
391 		atomic_add_int(&mpr->mnt_refs, -1);
392 }
393 
394 /*
395  * Clears all cached mount points on all cpus.  This routine should only
396  * be called when we are waiting for a mount to clear, e.g. so we can
397  * unmount.
398  */
399 void
400 cache_clearmntcache(struct mount *target __unused)
401 {
402 	int n;
403 
404 	for (n = 0; n < ncpus; ++n) {
405 		struct mntcache *cache = &pcpu_mntcache[n];
406 		struct mntcache_elm *elm;
407 		struct namecache *ncp;
408 		struct mount *mp;
409 		int i;
410 
411 		for (i = 0; i < MNTCACHE_COUNT; ++i) {
412 			elm = &cache->array[i];
413 			if (elm->mp) {
414 				mp = atomic_swap_ptr((void *)&elm->mp, NULL);
415 				if (mp)
416 					atomic_add_int(&mp->mnt_refs, -1);
417 			}
418 			if (elm->ncp) {
419 				ncp = atomic_swap_ptr((void *)&elm->ncp, NULL);
420 				if (ncp)
421 					_cache_drop(ncp);
422 			}
423 		}
424 	}
425 }
426 
427 /*
428  * Namespace locking.  The caller must already hold a reference to the
429  * namecache structure in order to lock/unlock it.  The controlling entity
430  * in a 1->0 transition does not need to lock the ncp to dispose of it,
431  * as nobody else will have visibility to it at that point.
432  *
433  * Note that holding a locked namecache structure prevents other threads
434  * from making namespace changes (e.g. deleting or creating), prevents
435  * vnode association state changes by other threads, and prevents the
436  * namecache entry from being resolved or unresolved by other threads.
437  *
438  * An exclusive lock owner has full authority to associate/disassociate
439  * vnodes and resolve/unresolve the locked ncp.
440  *
441  * A shared lock owner only has authority to acquire the underlying vnode,
442  * if any.
443  *
444  * The primary lock field is nc_lockstatus.  nc_locktd is set after the
445  * fact (when locking) or cleared prior to unlocking.
446  *
447  * WARNING!  Holding a locked ncp will prevent a vnode from being destroyed
448  *	     or recycled, but it does NOT help you if the vnode had already
449  *	     initiated a recyclement.  If this is important, use cache_get()
450  *	     rather then cache_lock() (and deal with the differences in the
451  *	     way the refs counter is handled).  Or, alternatively, make an
452  *	     unconditional call to cache_validate() or cache_resolve()
453  *	     after cache_lock() returns.
454  */
455 static __inline
456 void
457 _cache_lock(struct namecache *ncp)
458 {
459 	int didwarn = 0;
460 	int error;
461 
462 	error = lockmgr(&ncp->nc_lock, LK_EXCLUSIVE);
463 	while (__predict_false(error == EWOULDBLOCK)) {
464 		if (didwarn == 0) {
465 			didwarn = ticks - nclockwarn;
466 			kprintf("[diagnostic] cache_lock: "
467 				"%s blocked on %p "
468 				"\"%*.*s\"\n",
469 				curthread->td_comm, ncp,
470 				ncp->nc_nlen, ncp->nc_nlen,
471 				ncp->nc_name);
472 		}
473 		error = lockmgr(&ncp->nc_lock, LK_EXCLUSIVE | LK_TIMELOCK);
474 	}
475 	if (__predict_false(didwarn)) {
476 		kprintf("[diagnostic] cache_lock: "
477 			"%s unblocked %*.*s after %d secs\n",
478 			curthread->td_comm,
479 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
480 			(int)(ticks - didwarn) / hz);
481 	}
482 }
483 
484 /*
485  * Release a previously acquired lock.
486  *
487  * A concurrent shared-lock acquisition or acquisition/release can
488  * race bit 31 so only drop the ncp if bit 31 was set.
489  */
490 static __inline
491 void
492 _cache_unlock(struct namecache *ncp)
493 {
494 	lockmgr(&ncp->nc_lock, LK_RELEASE);
495 }
496 
497 /*
498  * Lock ncp exclusively, non-blocking.  Return 0 on success.
499  */
500 static __inline
501 int
502 _cache_lock_nonblock(struct namecache *ncp)
503 {
504 	int error;
505 
506 	error = lockmgr(&ncp->nc_lock, LK_EXCLUSIVE | LK_NOWAIT);
507 	if (__predict_false(error != 0)) {
508 		return(EWOULDBLOCK);
509 	}
510 	return 0;
511 }
512 
513 /*
514  * This is a special form of _cache_lock() which only succeeds if
515  * it can get a pristine, non-recursive lock.  The caller must have
516  * already ref'd the ncp.
517  *
518  * On success the ncp will be locked, on failure it will not.  The
519  * ref count does not change either way.
520  *
521  * We want _cache_lock_special() (on success) to return a definitively
522  * usable vnode or a definitively unresolved ncp.
523  */
524 static __inline
525 int
526 _cache_lock_special(struct namecache *ncp)
527 {
528 	if (_cache_lock_nonblock(ncp) == 0) {
529 		if (lockmgr_oneexcl(&ncp->nc_lock)) {
530 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
531 				_cache_setunresolved(ncp);
532 			return 0;
533 		}
534 		_cache_unlock(ncp);
535 	}
536 	return EWOULDBLOCK;
537 }
538 
539 /*
540  * Shared lock, guarantees vp held
541  *
542  * The shared lock holds vp on the 0->1 transition.  It is possible to race
543  * another shared lock release, preventing the other release from dropping
544  * the vnode and clearing bit 31.
545  *
546  * If it is not set then we are responsible for setting it, and this
547  * responsibility does not race with anyone else.
548  */
549 static __inline
550 void
551 _cache_lock_shared(struct namecache *ncp)
552 {
553 	int didwarn = 0;
554 	int error;
555 
556 	error = lockmgr(&ncp->nc_lock, LK_SHARED | LK_TIMELOCK);
557 	while (__predict_false(error == EWOULDBLOCK)) {
558 		if (didwarn == 0) {
559 			didwarn = ticks - nclockwarn;
560 			kprintf("[diagnostic] cache_lock_shared: "
561 				"%s blocked on %p "
562 				"\"%*.*s\"\n",
563 				curthread->td_comm, ncp,
564 				ncp->nc_nlen, ncp->nc_nlen,
565 				ncp->nc_name);
566 		}
567 		error = lockmgr(&ncp->nc_lock, LK_SHARED | LK_TIMELOCK);
568 	}
569 	if (__predict_false(didwarn)) {
570 		kprintf("[diagnostic] cache_lock_shared: "
571 			"%s unblocked %*.*s after %d secs\n",
572 			curthread->td_comm,
573 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
574 			(int)(ticks - didwarn) / hz);
575 	}
576 }
577 
578 /*
579  * Shared lock, guarantees vp held.  Non-blocking.  Returns 0 on success
580  */
581 static __inline
582 int
583 _cache_lock_shared_nonblock(struct namecache *ncp)
584 {
585 	int error;
586 
587 	error = lockmgr(&ncp->nc_lock, LK_SHARED | LK_NOWAIT);
588 	if (__predict_false(error != 0)) {
589 		return(EWOULDBLOCK);
590 	}
591 	return 0;
592 }
593 
594 /*
595  * This function tries to get a shared lock but will back-off to an
596  * exclusive lock if:
597  *
598  * (1) Some other thread is trying to obtain an exclusive lock
599  *     (to prevent the exclusive requester from getting livelocked out
600  *     by many shared locks).
601  *
602  * (2) The current thread already owns an exclusive lock (to avoid
603  *     deadlocking).
604  *
605  * WARNING! On machines with lots of cores we really want to try hard to
606  *	    get a shared lock or concurrent path lookups can chain-react
607  *	    into a very high-latency exclusive lock.
608  *
609  *	    This is very evident in dsynth's initial scans.
610  */
611 static __inline
612 int
613 _cache_lock_shared_special(struct namecache *ncp)
614 {
615 	/*
616 	 * Only honor a successful shared lock (returning 0) if there is
617 	 * no exclusive request pending and the vnode, if present, is not
618 	 * in a reclaimed state.
619 	 */
620 	if (_cache_lock_shared_nonblock(ncp) == 0) {
621 		if (__predict_true(!lockmgr_exclpending(&ncp->nc_lock))) {
622 			if (ncp->nc_vp == NULL ||
623 			    (ncp->nc_vp->v_flag & VRECLAIMED) == 0) {
624 				return(0);
625 			}
626 		}
627 		_cache_unlock(ncp);
628 		return(EWOULDBLOCK);
629 	}
630 
631 	/*
632 	 * Non-blocking shared lock failed.  If we already own the exclusive
633 	 * lock just acquire another exclusive lock (instead of deadlocking).
634 	 * Otherwise acquire a shared lock.
635 	 */
636 	if (lockstatus(&ncp->nc_lock, curthread) == LK_EXCLUSIVE) {
637 		_cache_lock(ncp);
638 		return(0);
639 	}
640 	_cache_lock_shared(ncp);
641 	return(0);
642 }
643 
644 static __inline
645 int
646 _cache_lockstatus(struct namecache *ncp)
647 {
648 	int status;
649 
650 	status = lockstatus(&ncp->nc_lock, curthread);
651 	if (status == 0 || status == LK_EXCLOTHER)
652 		status = -1;
653 	return status;
654 }
655 
656 /*
657  * cache_hold() and cache_drop() prevent the premature deletion of a
658  * namecache entry but do not prevent operations (such as zapping) on
659  * that namecache entry.
660  *
661  * This routine may only be called from outside this source module if
662  * nc_refs is already deterministically at least 1, such as being
663  * associated with e.g. a process, file descriptor, or some other entity.
664  *
665  * Only the above situations, similar situations within this module where
666  * the ref count is deterministically at least 1, or when the ncp is found
667  * via the nchpp (hash table) lookup, can bump nc_refs.
668  *
669  * Very specifically, a ncp found via nc_list CANNOT bump nc_refs.  It
670  * can still be removed from the nc_list, however, as long as the caller
671  * can acquire its lock (in the wrong order).
672  *
673  * This is a rare case where callers are allowed to hold a spinlock,
674  * so we can't ourselves.
675  */
676 static __inline
677 struct namecache *
678 _cache_hold(struct namecache *ncp)
679 {
680 	KKASSERT(ncp->nc_refs > 0);
681 	atomic_add_int(&ncp->nc_refs, 1);
682 
683 	return(ncp);
684 }
685 
686 /*
687  * Drop a cache entry.
688  *
689  * The 1->0 transition is special and requires the caller to destroy the
690  * entry.  It means that the ncp is no longer on a nchpp list (since that
691  * would mean there was stilla ref).  The ncp could still be on a nc_list
692  * but will not have any child of its own, again because nc_refs is now 0
693  * and children would have a ref to their parent.
694  *
695  * Once the 1->0 transition is made, nc_refs cannot be incremented again.
696  */
697 static __inline
698 void
699 _cache_drop(struct namecache *ncp)
700 {
701 	if (atomic_fetchadd_int(&ncp->nc_refs, -1) == 1) {
702 		/*
703 		 * Executed unlocked (no need to lock on last drop)
704 		 */
705 		_cache_setunresolved(ncp);
706 
707 		/*
708 		 * Scrap it.
709 		 */
710 		ncp->nc_refs = -1;	/* safety */
711 		if (ncp->nc_name)
712 			kfree(ncp->nc_name, M_VFSCACHEAUX);
713 		kfree_obj(ncp, M_VFSCACHE);
714 	}
715 }
716 
717 /*
718  * Link a new namecache entry to its parent and to the hash table.  Be
719  * careful to avoid races if vhold() blocks in the future.
720  *
721  * Both ncp and par must be referenced and locked.  The reference is
722  * transfered to the nchpp (and, most notably, NOT to the parent list).
723  *
724  * NOTE: The hash table spinlock is held across this call, we can't do
725  *	 anything fancy.
726  */
727 static void
728 _cache_link_parent(struct namecache *ncp, struct namecache *par,
729 		   struct nchash_head *nchpp)
730 {
731 	struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
732 
733 	KKASSERT(ncp->nc_parent == NULL);
734 	ncp->nc_parent = par;
735 	ncp->nc_head = nchpp;
736 
737 	/*
738 	 * Set inheritance flags.  Note that the parent flags may be
739 	 * stale due to getattr potentially not having been run yet
740 	 * (it gets run during nlookup()'s).
741 	 */
742 	ncp->nc_flag &= ~(NCF_SF_PNOCACHE | NCF_UF_PCACHE);
743 	if (par->nc_flag & (NCF_SF_NOCACHE | NCF_SF_PNOCACHE))
744 		ncp->nc_flag |= NCF_SF_PNOCACHE;
745 	if (par->nc_flag & (NCF_UF_CACHE | NCF_UF_PCACHE))
746 		ncp->nc_flag |= NCF_UF_PCACHE;
747 
748 	/*
749 	 * Add to hash table and parent, adjust accounting
750 	 */
751 	TAILQ_INSERT_HEAD(&nchpp->list, ncp, nc_hash);
752 	atomic_add_long(&pn->vfscache_count, 1);
753 
754 	/*
755 	 * ncp is a new leaf being added to the tree
756 	 */
757 	if (TAILQ_EMPTY(&ncp->nc_list)) {
758 		atomic_add_long(&pn->vfscache_leafs, 1);
759 		if (ncp->nc_flag & NCF_UNRESOLVED)
760 			atomic_add_long(&pn->vfscache_unres, 1);
761 	}
762 
763 	if (TAILQ_EMPTY(&par->nc_list)) {
764 		/*
765 		 * Parent was, but now is no longer a leaf
766 		 */
767 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
768 		if (par->nc_flag & NCF_UNRESOLVED)
769 			atomic_add_long(&pn->vfscache_unres, -1);
770 		atomic_add_long(&pn->vfscache_leafs, -1);
771 
772 		/*
773 		 * Any vp associated with an ncp which has children must
774 		 * be held to prevent it from being recycled.
775 		 */
776 		if (par->nc_vp)
777 			vhold(par->nc_vp);
778 	} else {
779 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
780 	}
781 	_cache_hold(par);	/* add nc_parent ref */
782 }
783 
784 /*
785  * Remove the parent and hash associations from a namecache structure.
786  * Drop the ref-count on the parent.  The caller receives the ref
787  * from the ncp's nchpp linkage that was removed and may forward that
788  * ref to a new linkage.
789 
790  * The caller usually holds an additional ref * on the ncp so the unlink
791  * cannot be the final drop.  XXX should not be necessary now since the
792  * caller receives the ref from the nchpp linkage, assuming the ncp
793  * was linked in the first place.
794  *
795  * ncp must be locked, which means that there won't be any nc_parent
796  * removal races.  This routine will acquire a temporary lock on
797  * the parent as well as the appropriate hash chain.
798  *
799  * par must be locked and will remain locked on return.
800  *
801  * nhcpp must be spin-locked.  This routine eats the spin-lock.
802  */
803 static __inline void
804 _cache_unlink_parent(struct namecache *par, struct namecache *ncp,
805 		     struct nchash_head *nchpp)
806 {
807 	struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
808 	struct vnode *dropvp;
809 
810 	KKASSERT(ncp->nc_parent == par);
811 	cpu_ccfence();
812 
813 	/* don't add a ref, we drop the nchpp ref later */
814 
815 	/*
816 	 * Remove from hash table and parent, adjust accounting
817 	 */
818 	TAILQ_REMOVE(&ncp->nc_head->list, ncp, nc_hash);
819 	TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
820 	atomic_add_long(&pn->vfscache_count, -1);
821 
822 	/*
823 	 * Removing leaf from tree
824 	 */
825 	if (TAILQ_EMPTY(&ncp->nc_list)) {
826 		if (ncp->nc_flag & NCF_UNRESOLVED)
827 			atomic_add_long(&pn->vfscache_unres, -1);
828 		atomic_add_long(&pn->vfscache_leafs, -1);
829 	}
830 
831 	/*
832 	 * Parent is now a leaf?
833 	 */
834 	dropvp = NULL;
835 	if (TAILQ_EMPTY(&par->nc_list)) {
836 		if (par->nc_flag & NCF_UNRESOLVED)
837 			atomic_add_long(&pn->vfscache_unres, 1);
838 		atomic_add_long(&pn->vfscache_leafs, 1);
839 		if (par->nc_vp)
840 			dropvp = par->nc_vp;
841 	}
842 	ncp->nc_parent = NULL;
843 	ncp->nc_head = NULL;
844 	spin_unlock(&nchpp->spin);
845 	_cache_drop(par);	/* drop nc_parent ref from ncp */
846 
847 	/*
848 	 * We can only safely vdrop with no spinlocks held.
849 	 */
850 	if (dropvp)
851 		vdrop(dropvp);
852 }
853 
854 /*
855  * Allocate a new namecache structure.  Most of the code does not require
856  * zero-termination of the string but it makes vop_compat_ncreate() easier.
857  *
858  * The returned ncp will be locked and referenced.  The ref is generally meant
859  * to be transfered to the nchpp linkage.
860  */
861 static struct namecache *
862 cache_alloc(int nlen)
863 {
864 	struct namecache *ncp;
865 
866 	ncp = kmalloc_obj(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
867 	if (nlen)
868 		ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHEAUX, M_WAITOK);
869 	ncp->nc_nlen = nlen;
870 	ncp->nc_flag = NCF_UNRESOLVED;
871 	ncp->nc_error = ENOTCONN;	/* needs to be resolved */
872 	ncp->nc_refs = 1;
873 	TAILQ_INIT(&ncp->nc_list);
874 	lockinit(&ncp->nc_lock, "ncplk", hz, LK_CANRECURSE);
875 	lockmgr(&ncp->nc_lock, LK_EXCLUSIVE);
876 
877 	return(ncp);
878 }
879 
880 /*
881  * Can only be called for the case where the ncp has never been
882  * associated with anything (so no spinlocks are needed).
883  */
884 static void
885 _cache_free(struct namecache *ncp)
886 {
887 	KKASSERT(ncp->nc_refs == 1);
888 	if (ncp->nc_name)
889 		kfree(ncp->nc_name, M_VFSCACHEAUX);
890 	kfree_obj(ncp, M_VFSCACHE);
891 }
892 
893 /*
894  * [re]initialize a nchandle.
895  */
896 void
897 cache_zero(struct nchandle *nch)
898 {
899 	nch->ncp = NULL;
900 	nch->mount = NULL;
901 }
902 
903 /*
904  * Ref and deref a nchandle structure (ncp + mp)
905  *
906  * The caller must specify a stable ncp pointer, typically meaning the
907  * ncp is already referenced but this can also occur indirectly through
908  * e.g. holding a lock on a direct child.
909  *
910  * WARNING: Caller may hold an unrelated read spinlock, which means we can't
911  *	    use read spinlocks here.
912  */
913 struct nchandle *
914 cache_hold(struct nchandle *nch)
915 {
916 	_cache_hold(nch->ncp);
917 	_cache_mntref(nch->mount);
918 	return(nch);
919 }
920 
921 /*
922  * Create a copy of a namecache handle for an already-referenced
923  * entry.
924  */
925 void
926 cache_copy(struct nchandle *nch, struct nchandle *target)
927 {
928 	struct namecache *ncp;
929 	struct mount *mp;
930 	struct mntcache_elm *elm;
931 	struct namecache *ncpr;
932 	int i;
933 
934 	ncp = nch->ncp;
935 	mp = nch->mount;
936 	target->ncp = ncp;
937 	target->mount = mp;
938 
939 	elm = _cache_mntcache_hash(ncp);
940 	for (i = 0; i < MNTCACHE_SET; ++i) {
941 		if (elm->ncp == ncp) {
942 			ncpr = atomic_swap_ptr((void *)&elm->ncp, NULL);
943 			if (ncpr == ncp) {
944 				_cache_mntref(mp);
945 				return;
946 			}
947 			if (ncpr)
948 				_cache_drop(ncpr);
949 		}
950 		++elm;
951 	}
952 	if (ncp)
953 		_cache_hold(ncp);
954 	_cache_mntref(mp);
955 }
956 
957 /*
958  * Drop the nchandle, but try to cache the ref to avoid global atomic
959  * ops.  This is typically done on the system root and jail root nchandles.
960  */
961 void
962 cache_drop_and_cache(struct nchandle *nch, int elmno)
963 {
964 	struct mntcache_elm *elm;
965 	struct mntcache_elm *best;
966 	struct namecache *ncpr;
967 	int delta1;
968 	int delta2;
969 	int i;
970 
971 	if (elmno > 4) {
972 		if (nch->ncp) {
973 			_cache_drop(nch->ncp);
974 			nch->ncp = NULL;
975 		}
976 		if (nch->mount) {
977 			_cache_mntrel(nch->mount);
978 			nch->mount = NULL;
979 		}
980 		return;
981 	}
982 
983 	elm = _cache_mntcache_hash(nch->ncp);
984 	best = elm;
985 	for (i = 0; i < MNTCACHE_SET; ++i) {
986 		if (elm->ncp == NULL) {
987 			ncpr = atomic_swap_ptr((void *)&elm->ncp, nch->ncp);
988 			_cache_mntrel(nch->mount);
989 			elm->ticks = ticks;
990 			nch->mount = NULL;
991 			nch->ncp = NULL;
992 			if (ncpr)
993 				_cache_drop(ncpr);
994 			return;
995 		}
996 		delta1 = ticks - best->ticks;
997 		delta2 = ticks - elm->ticks;
998 		if (delta2 > delta1 || delta1 < -1 || delta2 < -1)
999 			best = elm;
1000 		++elm;
1001 	}
1002 	ncpr = atomic_swap_ptr((void *)&best->ncp, nch->ncp);
1003 	_cache_mntrel(nch->mount);
1004 	best->ticks = ticks;
1005 	nch->mount = NULL;
1006 	nch->ncp = NULL;
1007 	if (ncpr)
1008 		_cache_drop(ncpr);
1009 }
1010 
1011 void
1012 cache_changemount(struct nchandle *nch, struct mount *mp)
1013 {
1014 	_cache_mntref(mp);
1015 	_cache_mntrel(nch->mount);
1016 	nch->mount = mp;
1017 }
1018 
1019 void
1020 cache_drop(struct nchandle *nch)
1021 {
1022 	_cache_mntrel(nch->mount);
1023 	_cache_drop(nch->ncp);
1024 	nch->ncp = NULL;
1025 	nch->mount = NULL;
1026 }
1027 
1028 int
1029 cache_lockstatus(struct nchandle *nch)
1030 {
1031 	return(_cache_lockstatus(nch->ncp));
1032 }
1033 
1034 void
1035 cache_lock(struct nchandle *nch)
1036 {
1037 	_cache_lock(nch->ncp);
1038 }
1039 
1040 void
1041 cache_lock_maybe_shared(struct nchandle *nch, int excl)
1042 {
1043 	struct namecache *ncp = nch->ncp;
1044 
1045 	if (ncp_shared_lock_disable || excl ||
1046 	    (ncp->nc_flag & NCF_UNRESOLVED)) {
1047 		_cache_lock(ncp);
1048 	} else {
1049 		_cache_lock_shared(ncp);
1050 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1051 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
1052 				_cache_unlock(ncp);
1053 				_cache_lock(ncp);
1054 			}
1055 		} else {
1056 			_cache_unlock(ncp);
1057 			_cache_lock(ncp);
1058 		}
1059 	}
1060 }
1061 
1062 /*
1063  * Lock fncpd, fncp, tncpd, and tncp.  tncp is already locked but may
1064  * have to be cycled to avoid deadlocks.  Make sure all four are resolved.
1065  *
1066  * The caller is responsible for checking the validity upon return as
1067  * the records may have been flagged DESTROYED in the interim.
1068  *
1069  * Namecache lock ordering is leaf first, then parent.  However, complex
1070  * interactions may occur between the source and target because there is
1071  * no ordering guarantee between (fncpd, fncp) and (tncpd and tncp).
1072  */
1073 void
1074 cache_lock4_tondlocked(struct nchandle *fncpd, struct nchandle *fncp,
1075 		       struct nchandle *tncpd, struct nchandle *tncp,
1076 		       struct ucred *fcred, struct ucred *tcred)
1077 {
1078 	int tlocked = 1;
1079 
1080 	/*
1081 	 * Lock tncp and tncpd
1082 	 *
1083 	 * NOTE: Because these ncps are not locked to begin with, it is
1084 	 *	 possible for other rename races to cause the normal lock
1085 	 *	 order assumptions to fail.
1086 	 *
1087 	 * NOTE: Lock ordering assumptions are valid if a leaf's parent
1088 	 *	 matches after the leaf has been locked.  However, ordering
1089 	 *	 between the 'from' and the 'to' is not and an overlapping
1090 	 *	 lock order reversal is still possible.
1091 	 */
1092 again:
1093 	if (__predict_false(tlocked == 0)) {
1094 		cache_lock(tncp);
1095 	}
1096 	if (__predict_false(cache_lock_nonblock(tncpd) != 0)) {
1097 		cache_unlock(tncp);
1098 		cache_lock(tncpd); cache_unlock(tncpd); /* cycle */
1099 		tlocked = 0;
1100 		goto again;
1101 	}
1102 
1103 	/*
1104 	 * Lock fncp and fncpd
1105 	 *
1106 	 * NOTE: Because these ncps are not locked to begin with, it is
1107 	 *	 possible for other rename races to cause the normal lock
1108 	 *	 order assumptions to fail.
1109 	 *
1110 	 * NOTE: Lock ordering assumptions are valid if a leaf's parent
1111 	 *	 matches after the leaf has been locked.  However, ordering
1112 	 *	 between the 'from' and the 'to' is not and an overlapping
1113 	 *	 lock order reversal is still possible.
1114 	 */
1115 	if (__predict_false(cache_lock_nonblock(fncp) != 0)) {
1116 		cache_unlock(tncpd);
1117 		cache_unlock(tncp);
1118 		cache_lock(fncp); cache_unlock(fncp); /* cycle */
1119 		tlocked = 0;
1120 		goto again;
1121 	}
1122 	if (__predict_false(cache_lock_nonblock(fncpd) != 0)) {
1123 		cache_unlock(fncp);
1124 		cache_unlock(tncpd);
1125 		cache_unlock(tncp);
1126 		cache_lock(fncpd); cache_unlock(fncpd); /* cycle */
1127 		tlocked = 0;
1128 		goto again;
1129 	}
1130 	if (__predict_true((fncpd->ncp->nc_flag & NCF_DESTROYED) == 0))
1131 		cache_resolve(fncpd, fcred);
1132 	if (__predict_true((tncpd->ncp->nc_flag & NCF_DESTROYED) == 0))
1133 		cache_resolve(tncpd, tcred);
1134 	if (__predict_true((fncp->ncp->nc_flag & NCF_DESTROYED) == 0))
1135 		cache_resolve(fncp, fcred);
1136 	if (__predict_true((tncp->ncp->nc_flag & NCF_DESTROYED) == 0))
1137 		cache_resolve(tncp, tcred);
1138 }
1139 
1140 int
1141 cache_lock_nonblock(struct nchandle *nch)
1142 {
1143 	return(_cache_lock_nonblock(nch->ncp));
1144 }
1145 
1146 void
1147 cache_unlock(struct nchandle *nch)
1148 {
1149 	_cache_unlock(nch->ncp);
1150 }
1151 
1152 /*
1153  * ref-and-lock, unlock-and-deref functions.
1154  *
1155  * This function is primarily used by nlookup.  Even though cache_lock
1156  * holds the vnode, it is possible that the vnode may have already
1157  * initiated a recyclement.
1158  *
1159  * We want cache_get() to return a definitively usable vnode or a
1160  * definitively unresolved ncp.
1161  */
1162 static
1163 struct namecache *
1164 _cache_get(struct namecache *ncp)
1165 {
1166 	_cache_hold(ncp);
1167 	_cache_lock(ncp);
1168 	if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1169 		_cache_setunresolved(ncp);
1170 	return(ncp);
1171 }
1172 
1173 /*
1174  * Attempt to obtain a shared lock on the ncp.  A shared lock will only
1175  * be obtained if the ncp is resolved and the vnode (if not ENOENT) is
1176  * valid.  Otherwise an exclusive lock will be acquired instead.
1177  */
1178 static
1179 struct namecache *
1180 _cache_get_maybe_shared(struct namecache *ncp, int excl)
1181 {
1182 	if (ncp_shared_lock_disable || excl ||
1183 	    (ncp->nc_flag & NCF_UNRESOLVED)) {
1184 		return(_cache_get(ncp));
1185 	}
1186 	_cache_hold(ncp);
1187 	_cache_lock_shared(ncp);
1188 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1189 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
1190 			_cache_unlock(ncp);
1191 			ncp = _cache_get(ncp);
1192 			_cache_drop(ncp);
1193 		}
1194 	} else {
1195 		_cache_unlock(ncp);
1196 		ncp = _cache_get(ncp);
1197 		_cache_drop(ncp);
1198 	}
1199 	return(ncp);
1200 }
1201 
1202 /*
1203  * NOTE: The same nchandle can be passed for both arguments.
1204  */
1205 void
1206 cache_get(struct nchandle *nch, struct nchandle *target)
1207 {
1208 	KKASSERT(nch->ncp->nc_refs > 0);
1209 	target->mount = nch->mount;
1210 	target->ncp = _cache_get(nch->ncp);
1211 	_cache_mntref(target->mount);
1212 }
1213 
1214 void
1215 cache_get_maybe_shared(struct nchandle *nch, struct nchandle *target, int excl)
1216 {
1217 	KKASSERT(nch->ncp->nc_refs > 0);
1218 	target->mount = nch->mount;
1219 	target->ncp = _cache_get_maybe_shared(nch->ncp, excl);
1220 	_cache_mntref(target->mount);
1221 }
1222 
1223 /*
1224  * Release a held and locked ncp
1225  */
1226 static __inline
1227 void
1228 _cache_put(struct namecache *ncp)
1229 {
1230 	_cache_unlock(ncp);
1231 	_cache_drop(ncp);
1232 }
1233 
1234 void
1235 cache_put(struct nchandle *nch)
1236 {
1237 	_cache_mntrel(nch->mount);
1238 	_cache_put(nch->ncp);
1239 	nch->ncp = NULL;
1240 	nch->mount = NULL;
1241 }
1242 
1243 /*
1244  * Resolve an unresolved ncp by associating a vnode with it.  If the
1245  * vnode is NULL, a negative cache entry is created.
1246  *
1247  * The ncp should be locked on entry and will remain locked on return.
1248  */
1249 static
1250 void
1251 _cache_setvp(struct mount *mp, struct namecache *ncp, struct vnode *vp)
1252 {
1253 	struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
1254 
1255 	KKASSERT((ncp->nc_flag & NCF_UNRESOLVED) &&
1256 		 (_cache_lockstatus(ncp) == LK_EXCLUSIVE) &&
1257 		 ncp->nc_vp == NULL);
1258 
1259 	if (vp) {
1260 		/*
1261 		 * Any vp associated with an ncp which has children must
1262 		 * be held.  Any vp associated with a locked ncp must be held.
1263 		 */
1264 		if (!TAILQ_EMPTY(&ncp->nc_list))
1265 			vhold(vp);
1266 		spin_lock(&vp->v_spin);
1267 		ncp->nc_vp = vp;
1268 		TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
1269 		++vp->v_namecache_count;
1270 		_cache_hold(ncp);		/* v_namecache assoc */
1271 		spin_unlock(&vp->v_spin);
1272 		vhold(vp);			/* nc_vp */
1273 
1274 		/*
1275 		 * Set auxiliary flags
1276 		 */
1277 		switch(vp->v_type) {
1278 		case VDIR:
1279 			ncp->nc_flag |= NCF_ISDIR;
1280 			break;
1281 		case VLNK:
1282 			ncp->nc_flag |= NCF_ISSYMLINK;
1283 			/* XXX cache the contents of the symlink */
1284 			break;
1285 		default:
1286 			break;
1287 		}
1288 
1289 		ncp->nc_error = 0;
1290 
1291 		/*
1292 		 * XXX: this is a hack to work-around the lack of a real pfs vfs
1293 		 * implementation
1294 		 */
1295 		if (mp) {
1296 			if (strncmp(mp->mnt_stat.f_fstypename, "null", 5) == 0)
1297 				vp->v_pfsmp = mp;
1298 		}
1299 	} else {
1300 		/*
1301 		 * When creating a negative cache hit we set the
1302 		 * namecache_gen.  A later resolve will clean out the
1303 		 * negative cache hit if the mount point's namecache_gen
1304 		 * has changed.  Used by devfs, could also be used by
1305 		 * other remote FSs.
1306 		 */
1307 		ncp->nc_vp = NULL;
1308 		ncp->nc_negcpu = mycpu->gd_cpuid;
1309 		spin_lock(&pn->neg_spin);
1310 		TAILQ_INSERT_TAIL(&pn->neg_list, ncp, nc_vnode);
1311 		_cache_hold(ncp);	/* neg_list assoc */
1312 		++pn->neg_count;
1313 		spin_unlock(&pn->neg_spin);
1314 		atomic_add_long(&pn->vfscache_negs, 1);
1315 
1316 		ncp->nc_error = ENOENT;
1317 		if (mp)
1318 			VFS_NCPGEN_SET(mp, ncp);
1319 	}
1320 
1321 	/*
1322 	 * Previously unresolved leaf is now resolved.
1323 	 */
1324 	if (TAILQ_EMPTY(&ncp->nc_list))
1325 		atomic_add_long(&pn->vfscache_unres, -1);
1326 
1327 	ncp->nc_flag &= ~(NCF_UNRESOLVED | NCF_DEFEREDZAP);
1328 }
1329 
1330 void
1331 cache_setvp(struct nchandle *nch, struct vnode *vp)
1332 {
1333 	_cache_setvp(nch->mount, nch->ncp, vp);
1334 }
1335 
1336 /*
1337  * Used for NFS
1338  */
1339 void
1340 cache_settimeout(struct nchandle *nch, int nticks)
1341 {
1342 	struct namecache *ncp = nch->ncp;
1343 
1344 	if ((ncp->nc_timeout = ticks + nticks) == 0)
1345 		ncp->nc_timeout = 1;
1346 }
1347 
1348 /*
1349  * Disassociate the vnode or negative-cache association and mark a
1350  * namecache entry as unresolved again.  Note that the ncp is still
1351  * left in the hash table and still linked to its parent.
1352  *
1353  * The ncp should be locked and refd on entry and will remain locked and refd
1354  * on return.
1355  *
1356  * This routine is normally never called on a directory containing children.
1357  * However, NFS often does just that in its rename() code as a cop-out to
1358  * avoid complex namespace operations.  This disconnects a directory vnode
1359  * from its namecache and can cause the OLDAPI and NEWAPI to get out of
1360  * sync.
1361  *
1362  */
1363 static
1364 void
1365 _cache_setunresolved(struct namecache *ncp)
1366 {
1367 	struct vnode *vp;
1368 
1369 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1370 		struct pcpu_ncache *pn;
1371 
1372 		/*
1373 		 * Is a resolbed leaf now becoming unresolved?
1374 		 */
1375 		if (TAILQ_EMPTY(&ncp->nc_list)) {
1376 			pn = &pcpu_ncache[mycpu->gd_cpuid];
1377 			atomic_add_long(&pn->vfscache_unres, 1);
1378 		}
1379 
1380 		ncp->nc_flag |= NCF_UNRESOLVED;
1381 		ncp->nc_timeout = 0;
1382 		ncp->nc_error = ENOTCONN;
1383 		if ((vp = ncp->nc_vp) != NULL) {
1384 			spin_lock(&vp->v_spin);
1385 			ncp->nc_vp = NULL;
1386 			TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
1387 			--vp->v_namecache_count;
1388 			spin_unlock(&vp->v_spin);
1389 
1390 			/*
1391 			 * Any vp associated with an ncp with children is
1392 			 * held by that ncp.  Any vp associated with  ncp
1393 			 * is held by that ncp.  These conditions must be
1394 			 * undone when the vp is cleared out from the ncp.
1395 			 */
1396 			if (!TAILQ_EMPTY(&ncp->nc_list))
1397 				vdrop(vp);
1398 			vdrop(vp);
1399 		} else {
1400 			pn = &pcpu_ncache[ncp->nc_negcpu];
1401 
1402 			atomic_add_long(&pn->vfscache_negs, -1);
1403 			spin_lock(&pn->neg_spin);
1404 			TAILQ_REMOVE(&pn->neg_list, ncp, nc_vnode);
1405 			--pn->neg_count;
1406 			spin_unlock(&pn->neg_spin);
1407 		}
1408 		ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK);
1409 		_cache_drop(ncp);	/* from v_namecache or neg_list */
1410 	}
1411 }
1412 
1413 /*
1414  * The cache_nresolve() code calls this function to automatically
1415  * set a resolved cache element to unresolved if it has timed out
1416  * or if it is a negative cache hit and the mount point namecache_gen
1417  * has changed.
1418  */
1419 static __inline int
1420 _cache_auto_unresolve_test(struct mount *mp, struct namecache *ncp)
1421 {
1422 	/*
1423 	 * Try to zap entries that have timed out.  We have
1424 	 * to be careful here because locked leafs may depend
1425 	 * on the vnode remaining intact in a parent, so only
1426 	 * do this under very specific conditions.
1427 	 */
1428 	if (ncp->nc_timeout && (int)(ncp->nc_timeout - ticks) < 0 &&
1429 	    TAILQ_EMPTY(&ncp->nc_list)) {
1430 		return 1;
1431 	}
1432 
1433 	/*
1434 	 * If a resolved negative cache hit is invalid due to
1435 	 * the mount's namecache generation being bumped, zap it.
1436 	 */
1437 	if (ncp->nc_vp == NULL && VFS_NCPGEN_TEST(mp, ncp)) {
1438 		return 1;
1439 	}
1440 
1441 	/*
1442 	 * Otherwise we are good
1443 	 */
1444 	return 0;
1445 }
1446 
1447 static __inline void
1448 _cache_auto_unresolve(struct mount *mp, struct namecache *ncp)
1449 {
1450 	/*
1451 	 * Already in an unresolved state, nothing to do.
1452 	 */
1453 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1454 		if (_cache_auto_unresolve_test(mp, ncp))
1455 			_cache_setunresolved(ncp);
1456 	}
1457 }
1458 
1459 void
1460 cache_setunresolved(struct nchandle *nch)
1461 {
1462 	_cache_setunresolved(nch->ncp);
1463 }
1464 
1465 /*
1466  * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
1467  * looking for matches.  This flag tells the lookup code when it must
1468  * check for a mount linkage and also prevents the directories in question
1469  * from being deleted or renamed.
1470  */
1471 static
1472 int
1473 cache_clrmountpt_callback(struct mount *mp, void *data)
1474 {
1475 	struct nchandle *nch = data;
1476 
1477 	if (mp->mnt_ncmounton.ncp == nch->ncp)
1478 		return(1);
1479 	if (mp->mnt_ncmountpt.ncp == nch->ncp)
1480 		return(1);
1481 	return(0);
1482 }
1483 
1484 /*
1485  * Clear NCF_ISMOUNTPT on nch->ncp if it is no longer associated
1486  * with a mount point.
1487  */
1488 void
1489 cache_clrmountpt(struct nchandle *nch)
1490 {
1491 	int count;
1492 
1493 	count = mountlist_scan(cache_clrmountpt_callback, nch,
1494 			       MNTSCAN_FORWARD | MNTSCAN_NOBUSY |
1495 			       MNTSCAN_NOUNLOCK);
1496 	if (count == 0)
1497 		nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
1498 }
1499 
1500 /*
1501  * Invalidate portions of the namecache topology given a starting entry.
1502  * The passed ncp is set to an unresolved state and:
1503  *
1504  * The passed ncp must be referenced and locked.  The routine may unlock
1505  * and relock ncp several times, and will recheck the children and loop
1506  * to catch races.  When done the passed ncp will be returned with the
1507  * reference and lock intact.
1508  *
1509  * CINV_DESTROY		- Set a flag in the passed ncp entry indicating
1510  *			  that the physical underlying nodes have been
1511  *			  destroyed... as in deleted.  For example, when
1512  *			  a directory is removed.  This will cause record
1513  *			  lookups on the name to no longer be able to find
1514  *			  the record and tells the resolver to return failure
1515  *			  rather then trying to resolve through the parent.
1516  *
1517  *			  The topology itself, including ncp->nc_name,
1518  *			  remains intact.
1519  *
1520  *			  This only applies to the passed ncp, if CINV_CHILDREN
1521  *			  is specified the children are not flagged.
1522  *
1523  * CINV_CHILDREN	- Set all children (recursively) to an unresolved
1524  *			  state as well.
1525  *
1526  *			  Note that this will also have the side effect of
1527  *			  cleaning out any unreferenced nodes in the topology
1528  *			  from the leaves up as the recursion backs out.
1529  *
1530  * Note that the topology for any referenced nodes remains intact, but
1531  * the nodes will be marked as having been destroyed and will be set
1532  * to an unresolved state.
1533  *
1534  * It is possible for cache_inval() to race a cache_resolve(), meaning that
1535  * the namecache entry may not actually be invalidated on return if it was
1536  * revalidated while recursing down into its children.  This code guarentees
1537  * that the node(s) will go through an invalidation cycle, but does not
1538  * guarentee that they will remain in an invalidated state.
1539  *
1540  * Returns non-zero if a revalidation was detected during the invalidation
1541  * recursion, zero otherwise.  Note that since only the original ncp is
1542  * locked the revalidation ultimately can only indicate that the original ncp
1543  * *MIGHT* no have been reresolved.
1544  *
1545  * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
1546  * have to avoid blowing out the kernel stack.  We do this by saving the
1547  * deep namecache node and aborting the recursion, then re-recursing at that
1548  * node using a depth-first algorithm in order to allow multiple deep
1549  * recursions to chain through each other, then we restart the invalidation
1550  * from scratch.
1551  */
1552 
1553 struct cinvtrack {
1554 	struct namecache *resume_ncp;
1555 	int depth;
1556 };
1557 
1558 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
1559 
1560 static
1561 int
1562 _cache_inval(struct namecache *ncp, int flags)
1563 {
1564 	struct cinvtrack track;
1565 	struct namecache *ncp2;
1566 	int r;
1567 
1568 	track.depth = 0;
1569 	track.resume_ncp = NULL;
1570 
1571 	for (;;) {
1572 		r = _cache_inval_internal(ncp, flags, &track);
1573 		if (track.resume_ncp == NULL)
1574 			break;
1575 		_cache_unlock(ncp);
1576 		while ((ncp2 = track.resume_ncp) != NULL) {
1577 			track.resume_ncp = NULL;
1578 			_cache_lock(ncp2);
1579 			_cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
1580 					     &track);
1581 			/*_cache_put(ncp2);*/
1582 			cache_zap(ncp2);
1583 		}
1584 		_cache_lock(ncp);
1585 	}
1586 	return(r);
1587 }
1588 
1589 int
1590 cache_inval(struct nchandle *nch, int flags)
1591 {
1592 	return(_cache_inval(nch->ncp, flags));
1593 }
1594 
1595 /*
1596  * Helper for _cache_inval().  The passed ncp is refd and locked and
1597  * remains that way on return, but may be unlocked/relocked multiple
1598  * times by the routine.
1599  */
1600 static int
1601 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
1602 {
1603 	struct namecache *nextkid;
1604 	int rcnt = 0;
1605 
1606 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
1607 
1608 	_cache_setunresolved(ncp);
1609 	if (flags & CINV_DESTROY) {
1610 		ncp->nc_flag |= NCF_DESTROYED;
1611 		++ncp->nc_generation;
1612 	}
1613 
1614 	while ((flags & CINV_CHILDREN) &&
1615 	       (nextkid = TAILQ_FIRST(&ncp->nc_list)) != NULL
1616 	) {
1617 		struct namecache *kid;
1618 		int restart;
1619 
1620 		restart = 0;
1621 		_cache_hold(nextkid);
1622 		if (++track->depth > MAX_RECURSION_DEPTH) {
1623 			track->resume_ncp = ncp;
1624 			_cache_hold(ncp);
1625 			++rcnt;
1626 		}
1627 		while ((kid = nextkid) != NULL) {
1628 			/*
1629 			 * Parent (ncp) must be locked for the iteration.
1630 			 */
1631 			nextkid = NULL;
1632 			if (kid->nc_parent != ncp) {
1633 				_cache_drop(kid);
1634 				kprintf("cache_inval_internal restartA %s\n",
1635 					ncp->nc_name);
1636 				restart = 1;
1637 				break;
1638 			}
1639 			if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
1640 				_cache_hold(nextkid);
1641 
1642 			/*
1643 			 * Parent unlocked for this section to avoid
1644 			 * deadlocks.  Then lock the kid and check for
1645 			 * races.
1646 			 */
1647 			_cache_unlock(ncp);
1648 			if (track->resume_ncp) {
1649 				_cache_drop(kid);
1650 				_cache_lock(ncp);
1651 				break;
1652 			}
1653 			_cache_lock(kid);
1654 			if (kid->nc_parent != ncp) {
1655 				kprintf("cache_inval_internal "
1656 					"restartB %s\n",
1657 					ncp->nc_name);
1658 				restart = 1;
1659 				_cache_unlock(kid);
1660 				_cache_drop(kid);
1661 				_cache_lock(ncp);
1662 				break;
1663 			}
1664 			if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
1665 			    TAILQ_FIRST(&kid->nc_list)
1666 			) {
1667 
1668 				rcnt += _cache_inval_internal(kid,
1669 						flags & ~CINV_DESTROY, track);
1670 				/*_cache_unlock(kid);*/
1671 				/*_cache_drop(kid);*/
1672 				cache_zap(kid);
1673 			} else {
1674 				cache_zap(kid);
1675 			}
1676 
1677 			/*
1678 			 * Relock parent to continue scan
1679 			 */
1680 			_cache_lock(ncp);
1681 		}
1682 		if (nextkid)
1683 			_cache_drop(nextkid);
1684 		--track->depth;
1685 		if (restart == 0)
1686 			break;
1687 	}
1688 
1689 	/*
1690 	 * Someone could have gotten in there while ncp was unlocked,
1691 	 * retry if so.
1692 	 */
1693 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1694 		++rcnt;
1695 	return (rcnt);
1696 }
1697 
1698 /*
1699  * Invalidate a vnode's namecache associations.  To avoid races against
1700  * the resolver we do not invalidate a node which we previously invalidated
1701  * but which was then re-resolved while we were in the invalidation loop.
1702  *
1703  * Returns non-zero if any namecache entries remain after the invalidation
1704  * loop completed.
1705  *
1706  * NOTE: Unlike the namecache topology which guarentees that ncp's will not
1707  *	 be ripped out of the topology while held, the vnode's v_namecache
1708  *	 list has no such restriction.  NCP's can be ripped out of the list
1709  *	 at virtually any time if not locked, even if held.
1710  *
1711  *	 In addition, the v_namecache list itself must be locked via
1712  *	 the vnode's spinlock.
1713  */
1714 int
1715 cache_inval_vp(struct vnode *vp, int flags)
1716 {
1717 	struct namecache *ncp;
1718 	struct namecache *next;
1719 
1720 restart:
1721 	spin_lock(&vp->v_spin);
1722 	ncp = TAILQ_FIRST(&vp->v_namecache);
1723 	if (ncp)
1724 		_cache_hold(ncp);
1725 	while (ncp) {
1726 		/* loop entered with ncp held and vp spin-locked */
1727 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1728 			_cache_hold(next);
1729 		spin_unlock(&vp->v_spin);
1730 		_cache_lock(ncp);
1731 		if (ncp->nc_vp != vp) {
1732 			kprintf("Warning: cache_inval_vp: race-A detected on "
1733 				"%s\n", ncp->nc_name);
1734 			_cache_put(ncp);
1735 			if (next)
1736 				_cache_drop(next);
1737 			goto restart;
1738 		}
1739 		_cache_inval(ncp, flags);
1740 		_cache_put(ncp);		/* also releases reference */
1741 		ncp = next;
1742 		spin_lock(&vp->v_spin);
1743 		if (ncp && ncp->nc_vp != vp) {
1744 			spin_unlock(&vp->v_spin);
1745 			kprintf("Warning: cache_inval_vp: race-B detected on "
1746 				"%s\n", ncp->nc_name);
1747 			_cache_drop(ncp);
1748 			goto restart;
1749 		}
1750 	}
1751 	spin_unlock(&vp->v_spin);
1752 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1753 }
1754 
1755 /*
1756  * This routine is used instead of the normal cache_inval_vp() when we
1757  * are trying to recycle otherwise good vnodes.
1758  *
1759  * Return 0 on success, non-zero if not all namecache records could be
1760  * disassociated from the vnode (for various reasons).
1761  */
1762 int
1763 cache_inval_vp_nonblock(struct vnode *vp)
1764 {
1765 	struct namecache *ncp;
1766 	struct namecache *next;
1767 
1768 	spin_lock(&vp->v_spin);
1769 	ncp = TAILQ_FIRST(&vp->v_namecache);
1770 	if (ncp)
1771 		_cache_hold(ncp);
1772 	while (ncp) {
1773 		/* loop entered with ncp held */
1774 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1775 			_cache_hold(next);
1776 		spin_unlock(&vp->v_spin);
1777 		if (_cache_lock_nonblock(ncp)) {
1778 			_cache_drop(ncp);
1779 			if (next)
1780 				_cache_drop(next);
1781 			goto done;
1782 		}
1783 		if (ncp->nc_vp != vp) {
1784 			kprintf("Warning: cache_inval_vp: race-A detected on "
1785 				"%s\n", ncp->nc_name);
1786 			_cache_put(ncp);
1787 			if (next)
1788 				_cache_drop(next);
1789 			goto done;
1790 		}
1791 		_cache_inval(ncp, 0);
1792 		_cache_put(ncp);		/* also releases reference */
1793 		ncp = next;
1794 		spin_lock(&vp->v_spin);
1795 		if (ncp && ncp->nc_vp != vp) {
1796 			spin_unlock(&vp->v_spin);
1797 			kprintf("Warning: cache_inval_vp: race-B detected on "
1798 				"%s\n", ncp->nc_name);
1799 			_cache_drop(ncp);
1800 			goto done;
1801 		}
1802 	}
1803 	spin_unlock(&vp->v_spin);
1804 done:
1805 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1806 }
1807 
1808 /*
1809  * Attempt to quickly invalidate the vnode's namecache entry.  This function
1810  * will also dive the ncp and free its children but only if they are trivial.
1811  * All locks are non-blocking and the function will fail if required locks
1812  * cannot be obtained.
1813  *
1814  * We want this sort of function to be able to guarantee progress when vnlru
1815  * wants to recycle a vnode.  Directories could otherwise get stuck and not
1816  * be able to recycle due to destroyed or unresolved children in the
1817  * namecache.
1818  */
1819 void
1820 cache_inval_vp_quick(struct vnode *vp)
1821 {
1822         struct namecache *ncp;
1823         struct namecache *kid;
1824 
1825         spin_lock(&vp->v_spin);
1826         while ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL) {
1827                 _cache_hold(ncp);
1828                 spin_unlock(&vp->v_spin);
1829                 if (_cache_lock_nonblock(ncp)) {
1830                         _cache_drop(ncp);
1831 			return;
1832                 }
1833 
1834 		/*
1835 		 * Try to trivially destroy any children.
1836 		 */
1837 		while ((kid = TAILQ_FIRST(&ncp->nc_list)) != NULL) {
1838 			struct nchash_head *nchpp;
1839 
1840 			/*
1841 			 * Early test without the lock
1842 			 */
1843 			if (TAILQ_FIRST(&kid->nc_list) ||
1844 			    kid->nc_vp ||
1845 			    kid->nc_refs != 1)
1846 			{
1847 				_cache_put(ncp);
1848 				return;
1849 			}
1850 
1851 			_cache_hold(kid);
1852 			if (_cache_lock_nonblock(kid)) {
1853 				_cache_drop(kid);
1854 				_cache_put(ncp);
1855 				return;
1856 			}
1857 
1858 			/*
1859 			 * A destruction/free test requires the parent,
1860 			 * the child, and the hash table to be locked.
1861 			 */
1862 			nchpp = kid->nc_head;
1863 			spin_lock(&nchpp->spin);
1864 
1865 			/*
1866 			 * Give up if the child isn't trivial.
1867 			 */
1868 			if (kid->nc_parent != ncp ||
1869 			    kid->nc_vp ||
1870 			    kid->nc_refs != 2 ||
1871 			    TAILQ_FIRST(&kid->nc_list))
1872 			{
1873 				spin_unlock(&nchpp->spin);
1874 				_cache_put(kid);
1875 				_cache_put(ncp);
1876 				return;
1877 			}
1878 
1879 			/*
1880 			 * Kaboom (eats nchpp)
1881 			 *
1882 			 * Call eats nhcpp spin-lock
1883 			 */
1884 			_cache_unlink_parent(ncp, kid, nchpp);
1885 
1886 			/* _cache_unlock(kid) not required */
1887 			kid->nc_refs = -1;      /* safety */
1888 			if (kid->nc_name)
1889 				kfree(kid->nc_name, M_VFSCACHEAUX);
1890 			kfree_obj(kid, M_VFSCACHE);
1891 		}
1892 
1893 		/*
1894 		 * Success, disassociate and release the ncp.  Do not
1895 		 * try to zap it here.
1896 		 *
1897 		 * NOTE: Releasing the ncp here leaves it in the tree,
1898 		 *	 but since we have disassociated the vnode this
1899 		 *	 ncp entry becomes 'trivial' and successive calls
1900 		 *	 to cache_inval_vp_quick() will be able to continue
1901 		 *	 to make progress.
1902 		 */
1903 		_cache_setunresolved(ncp);
1904                 _cache_put(ncp);
1905                 spin_lock(&vp->v_spin);
1906         }
1907         spin_unlock(&vp->v_spin);
1908 }
1909 
1910 /*
1911  * Clears the universal directory search 'ok' flag.  This flag allows
1912  * nlookup() to bypass normal vnode checks.  This flag is a cached flag
1913  * so clearing it simply forces revalidation.
1914  */
1915 void
1916 cache_inval_wxok(struct vnode *vp)
1917 {
1918 	struct namecache *ncp;
1919 
1920 	spin_lock(&vp->v_spin);
1921 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1922 		if (ncp->nc_flag & (NCF_WXOK | NCF_NOTX))
1923 			atomic_clear_short(&ncp->nc_flag, NCF_WXOK | NCF_NOTX);
1924 	}
1925 	spin_unlock(&vp->v_spin);
1926 }
1927 
1928 /*
1929  * The source ncp has been renamed to the target ncp.  All elements have been
1930  * locked, including the parent ncp's.
1931  *
1932  * The target ncp is destroyed (as a normal rename-over would destroy the
1933  * target file or directory).
1934  *
1935  * Because there may be references to the source ncp we cannot copy its
1936  * contents to the target.  Instead the source ncp is relinked as the target
1937  * and the target ncp is removed from the namecache topology.
1938  */
1939 void
1940 cache_rename(struct nchandle *fnch, struct nchandle *tnch)
1941 {
1942 	struct namecache *fncp = fnch->ncp;
1943 	struct namecache *tncp = tnch->ncp;
1944 	struct namecache *par;
1945 	struct nchash_head *nchpp;
1946 	u_int32_t hash;
1947 	char *oname;
1948 	char *nname;
1949 
1950 	++fncp->nc_generation;
1951 	++tncp->nc_generation;
1952 	if (tncp->nc_nlen) {
1953 		nname = kmalloc(tncp->nc_nlen + 1, M_VFSCACHEAUX, M_WAITOK);
1954 		bcopy(tncp->nc_name, nname, tncp->nc_nlen);
1955 		nname[tncp->nc_nlen] = 0;
1956 	} else {
1957 		nname = NULL;
1958 	}
1959 
1960 	/*
1961 	 * Rename fncp (unlink)
1962 	 */
1963 	if (fncp->nc_parent) {
1964 		par = fncp->nc_parent;
1965 		_cache_hold(par);
1966 		_cache_lock(par);
1967 		nchpp = fncp->nc_head;
1968 		spin_lock(&nchpp->spin);
1969 		_cache_unlink_parent(par, fncp, nchpp); /* eats nchpp */
1970 		_cache_put(par);
1971 	} else {
1972 		par = NULL;
1973 		nchpp = NULL;
1974 	}
1975 	oname = fncp->nc_name;
1976 	fncp->nc_name = nname;
1977 	fncp->nc_nlen = tncp->nc_nlen;
1978 	if (oname)
1979 		kfree(oname, M_VFSCACHEAUX);
1980 
1981 	par = tncp->nc_parent;
1982 	KKASSERT(par->nc_lock.lk_lockholder == curthread);
1983 
1984 	/*
1985 	 * Rename fncp (relink)
1986 	 */
1987 	hash = fnv_32_buf(fncp->nc_name, fncp->nc_nlen, FNV1_32_INIT);
1988 	hash = fnv_32_buf(&par, sizeof(par), hash);
1989 	nchpp = NCHHASH(hash);
1990 
1991 	spin_lock(&nchpp->spin);
1992 	_cache_link_parent(fncp, par, nchpp);
1993 	spin_unlock(&nchpp->spin);
1994 
1995 	/*
1996 	 * Get rid of the overwritten tncp (unlink)
1997 	 */
1998 	_cache_unlink(tncp);
1999 }
2000 
2001 /*
2002  * Perform actions consistent with unlinking a file.  The passed-in ncp
2003  * must be locked.
2004  *
2005  * The ncp is marked DESTROYED so it no longer shows up in searches,
2006  * and will be physically deleted when the vnode goes away.
2007  *
2008  * If the related vnode has no refs then we cycle it through vget()/vput()
2009  * to (possibly if we don't have a ref race) trigger a deactivation,
2010  * allowing the VFS to trivially detect and recycle the deleted vnode
2011  * via VOP_INACTIVE().
2012  *
2013  * NOTE: _cache_rename() will automatically call _cache_unlink() on the
2014  *	 target ncp.
2015  */
2016 void
2017 cache_unlink(struct nchandle *nch)
2018 {
2019 	_cache_unlink(nch->ncp);
2020 }
2021 
2022 static void
2023 _cache_unlink(struct namecache *ncp)
2024 {
2025 	struct vnode *vp;
2026 
2027 	/*
2028 	 * Causes lookups to fail and allows another ncp with the same
2029 	 * name to be created under ncp->nc_parent.
2030 	 */
2031 	ncp->nc_flag |= NCF_DESTROYED;
2032 	++ncp->nc_generation;
2033 
2034 	/*
2035 	 * Attempt to trigger a deactivation.  Set VREF_FINALIZE to
2036 	 * force action on the 1->0 transition.  Do not destroy the
2037 	 * vp association if a vp is present (leave the destroyed ncp
2038 	 * resolved through the vp finalization).
2039 	 *
2040 	 * Cleanup the refs in the resolved-not-found case by setting
2041 	 * the ncp to an unresolved state.  This improves our ability
2042 	 * to get rid of dead ncp elements in other cache_*() routines.
2043 	 */
2044 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
2045 		vp = ncp->nc_vp;
2046 		if (vp) {
2047 			atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
2048 			if (VREFCNT(vp) <= 0) {
2049 				if (vget(vp, LK_SHARED) == 0)
2050 					vput(vp);
2051 			}
2052 		} else {
2053 			_cache_setunresolved(ncp);
2054 		}
2055 	}
2056 }
2057 
2058 /*
2059  * Return non-zero if the nch might be associated with an open and/or mmap()'d
2060  * file.  The easy solution is to just return non-zero if the vnode has refs.
2061  * Used to interlock hammer2 reclaims (VREF_FINALIZE should already be set to
2062  * force the reclaim).
2063  */
2064 int
2065 cache_isopen(struct nchandle *nch)
2066 {
2067 	struct vnode *vp;
2068 	struct namecache *ncp = nch->ncp;
2069 
2070 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
2071 	    (vp = ncp->nc_vp) != NULL &&
2072 	    VREFCNT(vp)) {
2073 		return 1;
2074 	}
2075 	return 0;
2076 }
2077 
2078 
2079 /*
2080  * vget the vnode associated with the namecache entry.  Resolve the namecache
2081  * entry if necessary.  The passed ncp must be referenced and locked.  If
2082  * the ncp is resolved it might be locked shared.
2083  *
2084  * lk_type may be LK_SHARED, LK_EXCLUSIVE.  A ref'd, possibly locked
2085  * (depending on the passed lk_type) will be returned in *vpp with an error
2086  * of 0, or NULL will be returned in *vpp with a non-0 error code.  The
2087  * most typical error is ENOENT, meaning that the ncp represents a negative
2088  * cache hit and there is no vnode to retrieve, but other errors can occur
2089  * too.
2090  *
2091  * The vget() can race a reclaim.  If this occurs we re-resolve the
2092  * namecache entry.
2093  *
2094  * There are numerous places in the kernel where vget() is called on a
2095  * vnode while one or more of its namecache entries is locked.  Releasing
2096  * a vnode never deadlocks against locked namecache entries (the vnode
2097  * will not get recycled while referenced ncp's exist).  This means we
2098  * can safely acquire the vnode.  In fact, we MUST NOT release the ncp
2099  * lock when acquiring the vp lock or we might cause a deadlock.
2100  *
2101  * NOTE: The passed-in ncp must be locked exclusively if it is initially
2102  *	 unresolved.  If a reclaim race occurs the passed-in ncp will be
2103  *	 relocked exclusively before being re-resolved.
2104  */
2105 int
2106 cache_vget(struct nchandle *nch, struct ucred *cred,
2107 	   int lk_type, struct vnode **vpp)
2108 {
2109 	struct namecache *ncp;
2110 	struct vnode *vp;
2111 	int error;
2112 
2113 	ncp = nch->ncp;
2114 again:
2115 	vp = NULL;
2116 	if (ncp->nc_flag & NCF_UNRESOLVED)
2117 		error = cache_resolve(nch, cred);
2118 	else
2119 		error = 0;
2120 
2121 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
2122 		error = vget(vp, lk_type);
2123 		if (error) {
2124 			/*
2125 			 * VRECLAIM race
2126 			 *
2127 			 * The ncp may have been locked shared, we must relock
2128 			 * it exclusively before we can set it to unresolved.
2129 			 */
2130 			if (error == ENOENT) {
2131 				kprintf("Warning: vnode reclaim race detected "
2132 					"in cache_vget on %p (%s)\n",
2133 					vp, ncp->nc_name);
2134 				_cache_unlock(ncp);
2135 				_cache_lock(ncp);
2136 				_cache_setunresolved(ncp);
2137 				goto again;
2138 			}
2139 
2140 			/*
2141 			 * Not a reclaim race, some other error.
2142 			 */
2143 			KKASSERT(ncp->nc_vp == vp);
2144 			vp = NULL;
2145 		} else {
2146 			KKASSERT(ncp->nc_vp == vp);
2147 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
2148 		}
2149 	}
2150 	if (error == 0 && vp == NULL)
2151 		error = ENOENT;
2152 	*vpp = vp;
2153 	return(error);
2154 }
2155 
2156 /*
2157  * Similar to cache_vget() but only acquires a ref on the vnode.  The vnode
2158  * is already held by virtuue of the ncp being locked, but it might not be
2159  * referenced and while it is not referenced it can transition into the
2160  * VRECLAIMED state.
2161  *
2162  * NOTE: The passed-in ncp must be locked exclusively if it is initially
2163  *	 unresolved.  If a reclaim race occurs the passed-in ncp will be
2164  *	 relocked exclusively before being re-resolved.
2165  *
2166  * NOTE: At the moment we have to issue a vget() on the vnode, even though
2167  *	 we are going to immediately release the lock, in order to resolve
2168  *	 potential reclamation races.  Once we have a solid vnode ref that
2169  *	 was (at some point) interlocked via a vget(), the vnode will not
2170  *	 be reclaimed.
2171  *
2172  * NOTE: vhold counts (v_auxrefs) do not prevent reclamation.
2173  */
2174 int
2175 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
2176 {
2177 	struct namecache *ncp;
2178 	struct vnode *vp;
2179 	int error;
2180 	int v;
2181 
2182 	ncp = nch->ncp;
2183 again:
2184 	vp = NULL;
2185 	if (ncp->nc_flag & NCF_UNRESOLVED)
2186 		error = cache_resolve(nch, cred);
2187 	else
2188 		error = 0;
2189 
2190 	while (error == 0 && (vp = ncp->nc_vp) != NULL) {
2191 		/*
2192 		 * Try a lockless ref of the vnode.  VRECLAIMED transitions
2193 		 * use the vx_lock state and update-counter mechanism so we
2194 		 * can detect if one is in-progress or occurred.
2195 		 *
2196 		 * If we can successfully ref the vnode and interlock against
2197 		 * the update-counter mechanism, and VRECLAIMED is found to
2198 		 * not be set after that, we should be good.
2199 		 */
2200 		v = spin_access_start_only(&vp->v_spin);
2201 		if (__predict_true(spin_access_check_inprog(v) == 0)) {
2202 			vref_special(vp);
2203 			if (__predict_false(
2204 				    spin_access_end_only(&vp->v_spin, v))) {
2205 				vrele(vp);
2206 				continue;
2207 			}
2208 			if (__predict_true((vp->v_flag & VRECLAIMED) == 0)) {
2209 				break;
2210 			}
2211 			vrele(vp);
2212 			kprintf("CACHE_VREF: IN-RECLAIM\n");
2213 		}
2214 
2215 		/*
2216 		 * Do it the slow way
2217 		 */
2218 		error = vget(vp, LK_SHARED);
2219 		if (error) {
2220 			/*
2221 			 * VRECLAIM race
2222 			 */
2223 			if (error == ENOENT) {
2224 				kprintf("Warning: vnode reclaim race detected "
2225 					"in cache_vget on %p (%s)\n",
2226 					vp, ncp->nc_name);
2227 				_cache_unlock(ncp);
2228 				_cache_lock(ncp);
2229 				_cache_setunresolved(ncp);
2230 				goto again;
2231 			}
2232 
2233 			/*
2234 			 * Not a reclaim race, some other error.
2235 			 */
2236 			KKASSERT(ncp->nc_vp == vp);
2237 			vp = NULL;
2238 		} else {
2239 			KKASSERT(ncp->nc_vp == vp);
2240 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
2241 			/* caller does not want a lock */
2242 			vn_unlock(vp);
2243 		}
2244 		break;
2245 	}
2246 	if (error == 0 && vp == NULL)
2247 		error = ENOENT;
2248 	*vpp = vp;
2249 
2250 	return(error);
2251 }
2252 
2253 /*
2254  * Return a referenced vnode representing the parent directory of
2255  * ncp.
2256  *
2257  * Because the caller has locked the ncp it should not be possible for
2258  * the parent ncp to go away.  However, the parent can unresolve its
2259  * dvp at any time so we must be able to acquire a lock on the parent
2260  * to safely access nc_vp.
2261  *
2262  * We have to leave par unlocked when vget()ing dvp to avoid a deadlock,
2263  * so use vhold()/vdrop() while holding the lock to prevent dvp from
2264  * getting destroyed.
2265  *
2266  * NOTE: vhold() is allowed when dvp has 0 refs if we hold a
2267  *	 lock on the ncp in question..
2268  */
2269 struct vnode *
2270 cache_dvpref(struct namecache *ncp)
2271 {
2272 	struct namecache *par;
2273 	struct vnode *dvp;
2274 
2275 	dvp = NULL;
2276 	if ((par = ncp->nc_parent) != NULL) {
2277 		_cache_hold(par);
2278 		_cache_lock(par);
2279 		if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
2280 			if ((dvp = par->nc_vp) != NULL)
2281 				vhold(dvp);
2282 		}
2283 		_cache_unlock(par);
2284 		if (dvp) {
2285 			if (vget(dvp, LK_SHARED) == 0) {
2286 				vn_unlock(dvp);
2287 				vdrop(dvp);
2288 				/* return refd, unlocked dvp */
2289 			} else {
2290 				vdrop(dvp);
2291 				dvp = NULL;
2292 			}
2293 		}
2294 		_cache_drop(par);
2295 	}
2296 	return(dvp);
2297 }
2298 
2299 /*
2300  * Convert a directory vnode to a namecache record without any other
2301  * knowledge of the topology.  This ONLY works with directory vnodes and
2302  * is ONLY used by the NFS server.  dvp must be refd but unlocked, and the
2303  * returned ncp (if not NULL) will be held and unlocked.
2304  *
2305  * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
2306  * If 'makeit' is 1 we attempt to track-down and create the namecache topology
2307  * for dvp.  This will fail only if the directory has been deleted out from
2308  * under the caller.
2309  *
2310  * Callers must always check for a NULL return no matter the value of 'makeit'.
2311  *
2312  * To avoid underflowing the kernel stack each recursive call increments
2313  * the makeit variable.
2314  */
2315 
2316 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
2317 				  struct vnode *dvp, char *fakename);
2318 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
2319 				  struct vnode **saved_dvp);
2320 
2321 int
2322 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
2323 	      struct nchandle *nch)
2324 {
2325 	struct vnode *saved_dvp;
2326 	struct vnode *pvp;
2327 	char *fakename;
2328 	int error;
2329 
2330 	nch->ncp = NULL;
2331 	nch->mount = dvp->v_mount;
2332 	saved_dvp = NULL;
2333 	fakename = NULL;
2334 
2335 	/*
2336 	 * Handle the makeit == 0 degenerate case
2337 	 */
2338 	if (makeit == 0) {
2339 		spin_lock_shared(&dvp->v_spin);
2340 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
2341 		if (nch->ncp)
2342 			cache_hold(nch);
2343 		spin_unlock_shared(&dvp->v_spin);
2344 	}
2345 
2346 	/*
2347 	 * Loop until resolution, inside code will break out on error.
2348 	 */
2349 	while (makeit) {
2350 		/*
2351 		 * Break out if we successfully acquire a working ncp.
2352 		 */
2353 		spin_lock_shared(&dvp->v_spin);
2354 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
2355 		if (nch->ncp) {
2356 			cache_hold(nch);
2357 			spin_unlock_shared(&dvp->v_spin);
2358 			break;
2359 		}
2360 		spin_unlock_shared(&dvp->v_spin);
2361 
2362 		/*
2363 		 * If dvp is the root of its filesystem it should already
2364 		 * have a namecache pointer associated with it as a side
2365 		 * effect of the mount, but it may have been disassociated.
2366 		 */
2367 		if (dvp->v_flag & VROOT) {
2368 			nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
2369 			error = cache_resolve_mp(nch->mount);
2370 			_cache_put(nch->ncp);
2371 			if (ncvp_debug) {
2372 				kprintf("cache_fromdvp: resolve root of mount %p error %d",
2373 					dvp->v_mount, error);
2374 			}
2375 			if (error) {
2376 				if (ncvp_debug)
2377 					kprintf(" failed\n");
2378 				nch->ncp = NULL;
2379 				break;
2380 			}
2381 			if (ncvp_debug)
2382 				kprintf(" succeeded\n");
2383 			continue;
2384 		}
2385 
2386 		/*
2387 		 * If we are recursed too deeply resort to an O(n^2)
2388 		 * algorithm to resolve the namecache topology.  The
2389 		 * resolved pvp is left referenced in saved_dvp to
2390 		 * prevent the tree from being destroyed while we loop.
2391 		 */
2392 		if (makeit > 20) {
2393 			error = cache_fromdvp_try(dvp, cred, &saved_dvp);
2394 			if (error) {
2395 				kprintf("lookupdotdot(longpath) failed %d "
2396 				       "dvp %p\n", error, dvp);
2397 				nch->ncp = NULL;
2398 				break;
2399 			}
2400 			continue;
2401 		}
2402 
2403 		/*
2404 		 * Get the parent directory and resolve its ncp.
2405 		 */
2406 		if (fakename) {
2407 			kfree(fakename, M_TEMP);
2408 			fakename = NULL;
2409 		}
2410 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2411 					  &fakename);
2412 		if (error) {
2413 			kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
2414 			break;
2415 		}
2416 		vn_unlock(pvp);
2417 
2418 		/*
2419 		 * Reuse makeit as a recursion depth counter.  On success
2420 		 * nch will be fully referenced.
2421 		 */
2422 		cache_fromdvp(pvp, cred, makeit + 1, nch);
2423 		vrele(pvp);
2424 		if (nch->ncp == NULL)
2425 			break;
2426 
2427 		/*
2428 		 * Do an inefficient scan of pvp (embodied by ncp) to look
2429 		 * for dvp.  This will create a namecache record for dvp on
2430 		 * success.  We loop up to recheck on success.
2431 		 *
2432 		 * ncp and dvp are both held but not locked.
2433 		 */
2434 		error = cache_inefficient_scan(nch, cred, dvp, fakename);
2435 		if (error) {
2436 			kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
2437 				pvp, nch->ncp->nc_name, dvp);
2438 			cache_drop(nch);
2439 			/* nch was NULLed out, reload mount */
2440 			nch->mount = dvp->v_mount;
2441 			break;
2442 		}
2443 		if (ncvp_debug) {
2444 			kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
2445 				pvp, nch->ncp->nc_name);
2446 		}
2447 		cache_drop(nch);
2448 		/* nch was NULLed out, reload mount */
2449 		nch->mount = dvp->v_mount;
2450 	}
2451 
2452 	/*
2453 	 * If nch->ncp is non-NULL it will have been held already.
2454 	 */
2455 	if (fakename)
2456 		kfree(fakename, M_TEMP);
2457 	if (saved_dvp)
2458 		vrele(saved_dvp);
2459 	if (nch->ncp)
2460 		return (0);
2461 	return (EINVAL);
2462 }
2463 
2464 /*
2465  * Go up the chain of parent directories until we find something
2466  * we can resolve into the namecache.  This is very inefficient.
2467  */
2468 static
2469 int
2470 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
2471 		  struct vnode **saved_dvp)
2472 {
2473 	struct nchandle nch;
2474 	struct vnode *pvp;
2475 	int error;
2476 	static time_t last_fromdvp_report;
2477 	char *fakename;
2478 
2479 	/*
2480 	 * Loop getting the parent directory vnode until we get something we
2481 	 * can resolve in the namecache.
2482 	 */
2483 	vref(dvp);
2484 	nch.mount = dvp->v_mount;
2485 	nch.ncp = NULL;
2486 	fakename = NULL;
2487 
2488 	for (;;) {
2489 		if (fakename) {
2490 			kfree(fakename, M_TEMP);
2491 			fakename = NULL;
2492 		}
2493 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2494 					  &fakename);
2495 		if (error) {
2496 			vrele(dvp);
2497 			break;
2498 		}
2499 		vn_unlock(pvp);
2500 		spin_lock_shared(&pvp->v_spin);
2501 		if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
2502 			_cache_hold(nch.ncp);
2503 			spin_unlock_shared(&pvp->v_spin);
2504 			vrele(pvp);
2505 			break;
2506 		}
2507 		spin_unlock_shared(&pvp->v_spin);
2508 		if (pvp->v_flag & VROOT) {
2509 			nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
2510 			error = cache_resolve_mp(nch.mount);
2511 			_cache_unlock(nch.ncp);
2512 			vrele(pvp);
2513 			if (error) {
2514 				_cache_drop(nch.ncp);
2515 				nch.ncp = NULL;
2516 				vrele(dvp);
2517 			}
2518 			break;
2519 		}
2520 		vrele(dvp);
2521 		dvp = pvp;
2522 	}
2523 	if (error == 0) {
2524 		if (last_fromdvp_report != time_uptime) {
2525 			last_fromdvp_report = time_uptime;
2526 			kprintf("Warning: extremely inefficient path "
2527 				"resolution on %s\n",
2528 				nch.ncp->nc_name);
2529 		}
2530 		error = cache_inefficient_scan(&nch, cred, dvp, fakename);
2531 
2532 		/*
2533 		 * Hopefully dvp now has a namecache record associated with
2534 		 * it.  Leave it referenced to prevent the kernel from
2535 		 * recycling the vnode.  Otherwise extremely long directory
2536 		 * paths could result in endless recycling.
2537 		 */
2538 		if (*saved_dvp)
2539 		    vrele(*saved_dvp);
2540 		*saved_dvp = dvp;
2541 		_cache_drop(nch.ncp);
2542 	}
2543 	if (fakename)
2544 		kfree(fakename, M_TEMP);
2545 	return (error);
2546 }
2547 
2548 /*
2549  * Do an inefficient scan of the directory represented by ncp looking for
2550  * the directory vnode dvp.  ncp must be held but not locked on entry and
2551  * will be held on return.  dvp must be refd but not locked on entry and
2552  * will remain refd on return.
2553  *
2554  * Why do this at all?  Well, due to its stateless nature the NFS server
2555  * converts file handles directly to vnodes without necessarily going through
2556  * the namecache ops that would otherwise create the namecache topology
2557  * leading to the vnode.  We could either (1) Change the namecache algorithms
2558  * to allow disconnect namecache records that are re-merged opportunistically,
2559  * or (2) Make the NFS server backtrack and scan to recover a connected
2560  * namecache topology in order to then be able to issue new API lookups.
2561  *
2562  * It turns out that (1) is a huge mess.  It takes a nice clean set of
2563  * namecache algorithms and introduces a lot of complication in every subsystem
2564  * that calls into the namecache to deal with the re-merge case, especially
2565  * since we are using the namecache to placehold negative lookups and the
2566  * vnode might not be immediately assigned. (2) is certainly far less
2567  * efficient then (1), but since we are only talking about directories here
2568  * (which are likely to remain cached), the case does not actually run all
2569  * that often and has the supreme advantage of not polluting the namecache
2570  * algorithms.
2571  *
2572  * If a fakename is supplied just construct a namecache entry using the
2573  * fake name.
2574  */
2575 static int
2576 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
2577 		       struct vnode *dvp, char *fakename)
2578 {
2579 	struct nlcomponent nlc;
2580 	struct nchandle rncp;
2581 	struct dirent *den;
2582 	struct vnode *pvp;
2583 	struct vattr vat;
2584 	struct iovec iov;
2585 	struct uio uio;
2586 	int blksize;
2587 	int eofflag;
2588 	int bytes;
2589 	char *rbuf;
2590 	int error;
2591 
2592 	vat.va_blocksize = 0;
2593 	if ((error = VOP_GETATTR(dvp, &vat)) != 0)
2594 		return (error);
2595 	cache_lock(nch);
2596 	error = cache_vref(nch, cred, &pvp);
2597 	cache_unlock(nch);
2598 	if (error)
2599 		return (error);
2600 	if (ncvp_debug) {
2601 		kprintf("inefficient_scan of (%p,%s): directory iosize %ld "
2602 			"vattr fileid = %lld\n",
2603 			nch->ncp, nch->ncp->nc_name,
2604 			vat.va_blocksize,
2605 			(long long)vat.va_fileid);
2606 	}
2607 
2608 	/*
2609 	 * Use the supplied fakename if not NULL.  Fake names are typically
2610 	 * not in the actual filesystem hierarchy.  This is used by HAMMER
2611 	 * to glue @@timestamp recursions together.
2612 	 */
2613 	if (fakename) {
2614 		nlc.nlc_nameptr = fakename;
2615 		nlc.nlc_namelen = strlen(fakename);
2616 		rncp = cache_nlookup(nch, &nlc);
2617 		goto done;
2618 	}
2619 
2620 	if ((blksize = vat.va_blocksize) == 0)
2621 		blksize = DEV_BSIZE;
2622 	rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
2623 	rncp.ncp = NULL;
2624 
2625 	eofflag = 0;
2626 	uio.uio_offset = 0;
2627 again:
2628 	iov.iov_base = rbuf;
2629 	iov.iov_len = blksize;
2630 	uio.uio_iov = &iov;
2631 	uio.uio_iovcnt = 1;
2632 	uio.uio_resid = blksize;
2633 	uio.uio_segflg = UIO_SYSSPACE;
2634 	uio.uio_rw = UIO_READ;
2635 	uio.uio_td = curthread;
2636 
2637 	if (ncvp_debug >= 2)
2638 		kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
2639 	error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
2640 	if (error == 0) {
2641 		den = (struct dirent *)rbuf;
2642 		bytes = blksize - uio.uio_resid;
2643 
2644 		while (bytes > 0) {
2645 			if (ncvp_debug >= 2) {
2646 				kprintf("cache_inefficient_scan: %*.*s\n",
2647 					den->d_namlen, den->d_namlen,
2648 					den->d_name);
2649 			}
2650 			if (den->d_type != DT_WHT &&
2651 			    den->d_ino == vat.va_fileid) {
2652 				if (ncvp_debug) {
2653 					kprintf("cache_inefficient_scan: "
2654 					       "MATCHED inode %lld path %s/%*.*s\n",
2655 					       (long long)vat.va_fileid,
2656 					       nch->ncp->nc_name,
2657 					       den->d_namlen, den->d_namlen,
2658 					       den->d_name);
2659 				}
2660 				nlc.nlc_nameptr = den->d_name;
2661 				nlc.nlc_namelen = den->d_namlen;
2662 				rncp = cache_nlookup(nch, &nlc);
2663 				KKASSERT(rncp.ncp != NULL);
2664 				break;
2665 			}
2666 			bytes -= _DIRENT_DIRSIZ(den);
2667 			den = _DIRENT_NEXT(den);
2668 		}
2669 		if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
2670 			goto again;
2671 	}
2672 	kfree(rbuf, M_TEMP);
2673 done:
2674 	vrele(pvp);
2675 	if (rncp.ncp) {
2676 		if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
2677 			_cache_setvp(rncp.mount, rncp.ncp, dvp);
2678 			if (ncvp_debug >= 2) {
2679 				kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
2680 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
2681 			}
2682 		} else {
2683 			if (ncvp_debug >= 2) {
2684 				kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
2685 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
2686 					rncp.ncp->nc_vp);
2687 			}
2688 		}
2689 		if (rncp.ncp->nc_vp == NULL)
2690 			error = rncp.ncp->nc_error;
2691 		/*
2692 		 * Release rncp after a successful nlookup.  rncp was fully
2693 		 * referenced.
2694 		 */
2695 		cache_put(&rncp);
2696 	} else {
2697 		kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
2698 			dvp, nch->ncp->nc_name);
2699 		error = ENOENT;
2700 	}
2701 	return (error);
2702 }
2703 
2704 /*
2705  * This function must be called with the ncp held and locked and will unlock
2706  * and drop it during zapping.
2707  *
2708  * Zap a namecache entry.  The ncp is unconditionally set to an unresolved
2709  * state, which disassociates it from its vnode or pcpu_ncache[n].neg_list
2710  * and removes the related reference.  If the ncp can be removed, and the
2711  * parent can be zapped non-blocking, this function loops up.
2712  *
2713  * There will be one ref from the caller (which we now own).  The only
2714  * remaining autonomous refs to the ncp will then be due to nc_parent->nc_list,
2715  * so possibly 2 refs left.  Taking this into account, if there are no
2716  * additional refs and no children, the ncp will be removed from the topology
2717  * and destroyed.
2718  *
2719  * References and/or children may exist if the ncp is in the middle of the
2720  * topology, preventing the ncp from being destroyed.
2721  *
2722  * If nonblock is non-zero and the parent ncp cannot be locked we give up.
2723  *
2724  * This function may return a held (but NOT locked) parent node which the
2725  * caller must drop in a loop.  Looping is one way to avoid unbounded recursion
2726  * due to deep namecache trees.
2727  *
2728  * WARNING!  For MPSAFE operation this routine must acquire up to three
2729  *	     spin locks to be able to safely test nc_refs.  Lock order is
2730  *	     very important.
2731  *
2732  *	     hash spinlock if on hash list
2733  *	     parent spinlock if child of parent
2734  *	     (the ncp is unresolved so there is no vnode association)
2735  */
2736 static int
2737 cache_zap(struct namecache *ncp)
2738 {
2739 	struct namecache *par;
2740 	struct nchash_head *nchpp;
2741 	int refcmp;
2742 	int nonblock = 1;	/* XXX cleanup */
2743 	int res = 0;
2744 
2745 again:
2746 	/*
2747 	 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
2748 	 * This gets rid of any vp->v_namecache list or negative list and
2749 	 * the related ref.
2750 	 */
2751 	_cache_setunresolved(ncp);
2752 
2753 	/*
2754 	 * Try to scrap the entry and possibly tail-recurse on its parent.
2755 	 * We only scrap unref'd (other then our ref) unresolved entries,
2756 	 * we do not scrap 'live' entries.
2757 	 *
2758 	 * If nc_parent is non NULL we expect 2 references, else just 1.
2759 	 * If there are more, someone else also holds the ncp and we cannot
2760 	 * destroy it.
2761 	 */
2762 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
2763 	KKASSERT(ncp->nc_refs > 0);
2764 
2765 	/*
2766 	 * If the ncp is linked to its parent it will also be in the hash
2767 	 * table.  We have to be able to lock the parent and the hash table.
2768 	 *
2769 	 * Acquire locks.  Note that the parent can't go away while we hold
2770 	 * a child locked.  If nc_parent is present, expect 2 refs instead
2771 	 * of 1.
2772 	 */
2773 	nchpp = NULL;
2774 	if ((par = ncp->nc_parent) != NULL) {
2775 		if (nonblock) {
2776 			if (_cache_lock_nonblock(par)) {
2777 				/* lock failed */
2778 				ncp->nc_flag |= NCF_DEFEREDZAP;
2779 				atomic_add_long(
2780 				    &pcpu_ncache[mycpu->gd_cpuid].numdefered,
2781 				    1);
2782 				_cache_unlock(ncp);
2783 				_cache_drop(ncp);	/* caller's ref */
2784 				return res;
2785 			}
2786 			_cache_hold(par);
2787 		} else {
2788 			_cache_hold(par);
2789 			_cache_lock(par);
2790 		}
2791 		nchpp = ncp->nc_head;
2792 		spin_lock(&nchpp->spin);
2793 	}
2794 
2795 	/*
2796 	 * With the parent and nchpp locked, and the vnode removed
2797 	 * (no vp->v_namecache), we expect 1 or 2 refs.  If there are
2798 	 * more someone else has a ref and we cannot zap the entry.
2799 	 *
2800 	 * one for our hold
2801 	 * one for our parent link (parent also has one from the linkage)
2802 	 */
2803 	if (par)
2804 		refcmp = 2;
2805 	else
2806 		refcmp = 1;
2807 
2808 	/*
2809 	 * On failure undo the work we've done so far and drop the
2810 	 * caller's ref and ncp.
2811 	 */
2812 	if (ncp->nc_refs != refcmp || TAILQ_FIRST(&ncp->nc_list)) {
2813 		if (par) {
2814 			spin_unlock(&nchpp->spin);
2815 			_cache_put(par);
2816 		}
2817 		_cache_unlock(ncp);
2818 		_cache_drop(ncp);
2819 		return res;
2820 	}
2821 
2822 	/*
2823 	 * We own all the refs and with the spinlocks held no further
2824 	 * refs can be acquired by others.
2825 	 *
2826 	 * Remove us from the hash list and parent list.  We have to
2827 	 * drop a ref on the parent's vp if the parent's list becomes
2828 	 * empty.
2829 	 */
2830 	if (par) {
2831 		KKASSERT(nchpp == ncp->nc_head);
2832 		_cache_unlink_parent(par, ncp, nchpp); /* eats nhcpp */
2833 		/*_cache_unlock(par);*/
2834 		/* &nchpp->spin is unlocked by call */
2835 	} else {
2836 		KKASSERT(ncp->nc_head == NULL);
2837 	}
2838 
2839 	/*
2840 	 * ncp should not have picked up any refs.  Physically
2841 	 * destroy the ncp.
2842 	 */
2843 	if (ncp->nc_refs != refcmp) {
2844 		panic("cache_zap: %p bad refs %d (expected %d)\n",
2845 			ncp, ncp->nc_refs, refcmp);
2846 	}
2847 	/* _cache_unlock(ncp) not required */
2848 	ncp->nc_refs = -1;	/* safety */
2849 	if (ncp->nc_name)
2850 		kfree(ncp->nc_name, M_VFSCACHEAUX);
2851 	kfree_obj(ncp, M_VFSCACHE);
2852 	res = 1;
2853 
2854 	/*
2855 	 * Loop up if we can recursively clean out the parent.
2856 	 */
2857 	if (par) {
2858 		refcmp = 1;		/* ref on parent */
2859 		if (par->nc_parent)	/* par->par */
2860 			++refcmp;
2861 		par->nc_flag &= ~NCF_DEFEREDZAP;
2862 		if ((par->nc_flag & NCF_UNRESOLVED) &&
2863 		    par->nc_refs == refcmp &&
2864 		    TAILQ_EMPTY(&par->nc_list))
2865 		{
2866 			ncp = par;
2867 			goto again;
2868 		}
2869 		_cache_unlock(par);
2870 		_cache_drop(par);
2871 	}
2872 	return 1;
2873 }
2874 
2875 /*
2876  * Clean up dangling negative cache and defered-drop entries in the
2877  * namecache.
2878  *
2879  * This routine is called in the critical path and also called from
2880  * vnlru().  When called from vnlru we use a lower limit to try to
2881  * deal with the negative cache before the critical path has to start
2882  * dealing with it.
2883  */
2884 typedef enum { CHI_LOW, CHI_HIGH } cache_hs_t;
2885 
2886 static cache_hs_t neg_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
2887 static cache_hs_t pos_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
2888 static cache_hs_t exc_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
2889 
2890 void
2891 cache_hysteresis(int critpath)
2892 {
2893 	long poslimit;
2894 	long exclimit;
2895 	long neglimit = maxvnodes / ncnegfactor;
2896 	long xnumunres;
2897 	long xnumleafs;
2898 
2899 	if (critpath == 0)
2900 		neglimit = neglimit * 8 / 10;
2901 
2902 	/*
2903 	 * Don't cache too many negative hits.  We use hysteresis to reduce
2904 	 * the impact on the critical path.
2905 	 */
2906 	switch(neg_cache_hysteresis_state[critpath]) {
2907 	case CHI_LOW:
2908 		if (vfscache_negs > MINNEG && vfscache_negs > neglimit) {
2909 			if (critpath)
2910 				_cache_cleanneg(ncnegflush);
2911 			else
2912 				_cache_cleanneg(ncnegflush +
2913 						vfscache_negs - neglimit);
2914 			neg_cache_hysteresis_state[critpath] = CHI_HIGH;
2915 		}
2916 		break;
2917 	case CHI_HIGH:
2918 		if (vfscache_negs > MINNEG * 9 / 10 &&
2919 		    vfscache_negs * 9 / 10 > neglimit
2920 		) {
2921 			if (critpath)
2922 				_cache_cleanneg(ncnegflush);
2923 			else
2924 				_cache_cleanneg(ncnegflush +
2925 						vfscache_negs * 9 / 10 -
2926 						neglimit);
2927 		} else {
2928 			neg_cache_hysteresis_state[critpath] = CHI_LOW;
2929 		}
2930 		break;
2931 	}
2932 
2933 	/*
2934 	 * Don't cache too many unresolved elements.  We use hysteresis to
2935 	 * reduce the impact on the critical path.
2936 	 */
2937 	if ((poslimit = ncposlimit) == 0)
2938 		poslimit = maxvnodes / ncposfactor;
2939 	if (critpath == 0)
2940 		poslimit = poslimit * 8 / 10;
2941 
2942 	/*
2943 	 * Number of unresolved leaf elements in the namecache.  These
2944 	 * can build-up for various reasons and may have to be disposed
2945 	 * of to allow the inactive list to be cleaned out by vnlru_proc()
2946 	 */
2947 	xnumunres = vfscache_unres;
2948 
2949 	switch(pos_cache_hysteresis_state[critpath]) {
2950 	case CHI_LOW:
2951 		if (xnumunres > poslimit && xnumunres > MINPOS) {
2952 			if (critpath)
2953 				_cache_cleanpos(ncposflush);
2954 			else
2955 				_cache_cleanpos(ncposflush +
2956 						xnumunres - poslimit);
2957 			pos_cache_hysteresis_state[critpath] = CHI_HIGH;
2958 		}
2959 		break;
2960 	case CHI_HIGH:
2961 		if (xnumunres > poslimit * 5 / 6 && xnumunres > MINPOS) {
2962 			if (critpath)
2963 				_cache_cleanpos(ncposflush);
2964 			else
2965 				_cache_cleanpos(ncposflush +
2966 						xnumunres - poslimit * 5 / 6);
2967 		} else {
2968 			pos_cache_hysteresis_state[critpath] = CHI_LOW;
2969 		}
2970 		break;
2971 	}
2972 
2973 	/*
2974 	 * Excessive positive hits can accumulate due to large numbers of
2975 	 * hardlinks (the vnode cache will not prevent ncps representing
2976 	 * hardlinks from growing into infinity).
2977 	 */
2978 	exclimit = maxvnodes * 2;
2979 	if (critpath == 0)
2980 		exclimit = exclimit * 8 / 10;
2981 	xnumleafs = vfscache_leafs;
2982 
2983 	switch(exc_cache_hysteresis_state[critpath]) {
2984 	case CHI_LOW:
2985 		if (xnumleafs > exclimit && xnumleafs > MINPOS) {
2986 			if (critpath)
2987 				_cache_cleanpos(ncposflush);
2988 			else
2989 				_cache_cleanpos(ncposflush +
2990 						xnumleafs - exclimit);
2991 			exc_cache_hysteresis_state[critpath] = CHI_HIGH;
2992 		}
2993 		break;
2994 	case CHI_HIGH:
2995 		if (xnumleafs > exclimit * 5 / 6 && xnumleafs > MINPOS) {
2996 			if (critpath)
2997 				_cache_cleanpos(ncposflush);
2998 			else
2999 				_cache_cleanpos(ncposflush +
3000 						xnumleafs - exclimit * 5 / 6);
3001 		} else {
3002 			exc_cache_hysteresis_state[critpath] = CHI_LOW;
3003 		}
3004 		break;
3005 	}
3006 
3007 	/*
3008 	 * Clean out dangling defered-zap ncps which could not be cleanly
3009 	 * dropped if too many build up.  Note that numdefered is
3010 	 * heuristical.  Make sure we are real-time for the current cpu,
3011 	 * plus the global rollup.
3012 	 */
3013 	if (pcpu_ncache[mycpu->gd_cpuid].numdefered + numdefered > neglimit) {
3014 		_cache_cleandefered();
3015 	}
3016 }
3017 
3018 /*
3019  * NEW NAMECACHE LOOKUP API
3020  *
3021  * Lookup an entry in the namecache.  The passed par_nch must be referenced
3022  * and unlocked.  A referenced and locked nchandle with a non-NULL nch.ncp
3023  * is ALWAYS returned, eve if the supplied component is illegal.
3024  *
3025  * The resulting namecache entry should be returned to the system with
3026  * cache_put() or cache_unlock() + cache_drop().
3027  *
3028  * namecache locks are recursive but care must be taken to avoid lock order
3029  * reversals (hence why the passed par_nch must be unlocked).  Locking
3030  * rules are to order for parent traversals, not for child traversals.
3031  *
3032  * Nobody else will be able to manipulate the associated namespace (e.g.
3033  * create, delete, rename, rename-target) until the caller unlocks the
3034  * entry.
3035  *
3036  * The returned entry will be in one of three states:  positive hit (non-null
3037  * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
3038  * Unresolved entries must be resolved through the filesystem to associate the
3039  * vnode and/or determine whether a positive or negative hit has occured.
3040  *
3041  * It is not necessary to lock a directory in order to lock namespace under
3042  * that directory.  In fact, it is explicitly not allowed to do that.  A
3043  * directory is typically only locked when being created, renamed, or
3044  * destroyed.
3045  *
3046  * The directory (par) may be unresolved, in which case any returned child
3047  * will likely also be marked unresolved.  Likely but not guarenteed.  Since
3048  * the filesystem lookup requires a resolved directory vnode the caller is
3049  * responsible for resolving the namecache chain top-down.  This API
3050  * specifically allows whole chains to be created in an unresolved state.
3051  */
3052 struct nchandle
3053 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
3054 {
3055 	struct nchandle nch;
3056 	struct namecache *ncp;
3057 	struct namecache *new_ncp;
3058 	struct namecache *rep_ncp;	/* reuse a destroyed ncp */
3059 	struct nchash_head *nchpp;
3060 	struct mount *mp;
3061 	u_int32_t hash;
3062 	globaldata_t gd;
3063 	int par_locked;
3064 	int use_excl;
3065 
3066 	gd = mycpu;
3067 	mp = par_nch->mount;
3068 	par_locked = 0;
3069 
3070 	/*
3071 	 * This is a good time to call it, no ncp's are locked by
3072 	 * the caller or us.
3073 	 */
3074 	cache_hysteresis(1);
3075 
3076 	/*
3077 	 * Try to locate an existing entry
3078 	 */
3079 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3080 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3081 	new_ncp = NULL;
3082 	use_excl = 0;
3083 	nchpp = NCHHASH(hash);
3084 restart:
3085 	rep_ncp = NULL;
3086 	if (use_excl)
3087 		spin_lock(&nchpp->spin);
3088 	else
3089 		spin_lock_shared(&nchpp->spin);
3090 
3091 	/*
3092 	 * Do a reverse scan to collect any DESTROYED ncps prior to matching
3093 	 * an existing entry.
3094 	 */
3095 	TAILQ_FOREACH_REVERSE(ncp, &nchpp->list, nchash_list, nc_hash) {
3096 		/*
3097 		 * Break out if we find a matching entry.  Note that
3098 		 * UNRESOLVED entries may match, but DESTROYED entries
3099 		 * do not.
3100 		 *
3101 		 * We may be able to reuse DESTROYED entries that we come
3102 		 * across, even if the name does not match, as long as
3103 		 * nc_nlen is correct and the only hold ref is from the nchpp
3104 		 * list itself.
3105 		 */
3106 		if (ncp->nc_parent == par_nch->ncp &&
3107 		    ncp->nc_nlen == nlc->nlc_namelen) {
3108 			if (ncp->nc_flag & NCF_DESTROYED) {
3109 				if (ncp->nc_refs == 1 && rep_ncp == NULL)
3110 					rep_ncp = ncp;
3111 				continue;
3112 			}
3113 			if (bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen))
3114 				continue;
3115 
3116 			/*
3117 			 * Matched ncp
3118 			 */
3119 			_cache_hold(ncp);
3120 			if (rep_ncp)
3121 				_cache_hold(rep_ncp);
3122 
3123 			if (use_excl)
3124 				spin_unlock(&nchpp->spin);
3125 			else
3126 				spin_unlock_shared(&nchpp->spin);
3127 
3128 			if (par_locked) {
3129 				_cache_unlock(par_nch->ncp);
3130 				par_locked = 0;
3131 			}
3132 
3133 			/*
3134 			 * Really try to destroy rep_ncp if encountered.
3135 			 * Various edge cases can build up more than one,
3136 			 * so loop if we succeed.  This isn't perfect, but
3137 			 * we can't afford to have tons of entries build
3138 			 * up on a single nhcpp list due to rename-over
3139 			 * operations.  If that were to happen, the system
3140 			 * would bog down quickly.
3141 			 */
3142 			if (rep_ncp) {
3143 				if (_cache_lock_nonblock(rep_ncp) == 0) {
3144 					if (rep_ncp->nc_flag & NCF_DESTROYED) {
3145 						if (cache_zap(rep_ncp)) {
3146 							_cache_drop(ncp);
3147 							goto restart;
3148 						}
3149 					} else {
3150 						_cache_unlock(rep_ncp);
3151 						_cache_drop(rep_ncp);
3152 					}
3153 				} else {
3154 					_cache_drop(rep_ncp);
3155 				}
3156 			}
3157 
3158 			/*
3159 			 * Continue processing the matched entry
3160 			 */
3161 			if (_cache_lock_special(ncp) == 0) {
3162 				/*
3163 				 * Successfully locked but we must re-test
3164 				 * conditions that might have changed since
3165 				 * we did not have the lock before.
3166 				 */
3167 				if (ncp->nc_parent != par_nch->ncp ||
3168 				    ncp->nc_nlen != nlc->nlc_namelen ||
3169 				    bcmp(ncp->nc_name, nlc->nlc_nameptr,
3170 					 ncp->nc_nlen) ||
3171 				    (ncp->nc_flag & NCF_DESTROYED)) {
3172 					_cache_put(ncp);
3173 					goto restart;
3174 				}
3175 				_cache_auto_unresolve(mp, ncp);
3176 				if (new_ncp) {
3177 					_cache_free(new_ncp);
3178 					new_ncp = NULL; /* safety */
3179 				}
3180 				goto found;
3181 			}
3182 			_cache_get(ncp);	/* cycle the lock to block */
3183 			_cache_put(ncp);
3184 			_cache_drop(ncp);
3185 			goto restart;
3186 		}
3187 	}
3188 
3189 	/*
3190 	 * We failed to locate the entry, try to resurrect a destroyed
3191 	 * entry that we did find that is already correctly linked into
3192 	 * nchpp and the parent.  We must re-test conditions after
3193 	 * successfully locking rep_ncp.
3194 	 *
3195 	 * This case can occur under heavy loads due to not being able
3196 	 * to safely lock the parent in cache_zap().  Nominally a repeated
3197 	 * create/unlink load, but only the namelen needs to match.
3198 	 *
3199 	 * An exclusive lock on the nchpp is required to process this case,
3200 	 * otherwise a race can cause duplicate entries to be created with
3201 	 * one cpu reusing a DESTROYED ncp while another creates a new_ncp.
3202 	 */
3203 	if (rep_ncp && use_excl) {
3204 		if (_cache_lock_nonblock(rep_ncp) == 0) {
3205 			_cache_hold(rep_ncp);
3206 			if (rep_ncp->nc_parent == par_nch->ncp &&
3207 			    rep_ncp->nc_nlen == nlc->nlc_namelen &&
3208 			    (rep_ncp->nc_flag & NCF_DESTROYED) &&
3209 			    rep_ncp->nc_refs == 2)
3210 			{
3211 				/*
3212 				 * Update nc_name.
3213 				 */
3214 				ncp = rep_ncp;
3215 				bcopy(nlc->nlc_nameptr, ncp->nc_name,
3216 				      nlc->nlc_namelen);
3217 
3218 				/*
3219 				 * This takes some care.  We must clear the
3220 				 * NCF_DESTROYED flag before unlocking the
3221 				 * hash chain so other concurrent searches
3222 				 * do not skip this element.
3223 				 *
3224 				 * We must also unlock the hash chain before
3225 				 * unresolving the ncp to avoid deadlocks.
3226 				 * We hold the lock on the ncp so we can safely
3227 				 * reinitialize nc_flag after that.
3228 				 */
3229 				ncp->nc_flag &= ~NCF_DESTROYED;
3230 				spin_unlock(&nchpp->spin);	/* use_excl */
3231 
3232 				_cache_setunresolved(ncp);
3233 				ncp->nc_flag = NCF_UNRESOLVED;
3234 				ncp->nc_error = ENOTCONN;
3235 				if (par_locked) {
3236 					_cache_unlock(par_nch->ncp);
3237 					par_locked = 0;
3238 				}
3239 				if (new_ncp) {
3240 					_cache_free(new_ncp);
3241 					new_ncp = NULL; /* safety */
3242 				}
3243 				goto found;
3244 			}
3245 			_cache_put(rep_ncp);
3246 		}
3247 	}
3248 
3249 	/*
3250 	 * Otherwise create a new entry and add it to the cache.  The parent
3251 	 * ncp must also be locked so we can link into it.
3252 	 *
3253 	 * We have to relookup after possibly blocking in kmalloc or
3254 	 * when locking par_nch.
3255 	 *
3256 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
3257 	 *	 mount case, in which case nc_name will be NULL.
3258 	 *
3259 	 * NOTE: In the rep_ncp != NULL case we are trying to reuse
3260 	 *	 a DESTROYED entry, but didn't have an exclusive lock.
3261 	 *	 In this situation we do not create a new_ncp.
3262 	 */
3263 	if (new_ncp == NULL) {
3264 		if (use_excl)
3265 			spin_unlock(&nchpp->spin);
3266 		else
3267 			spin_unlock_shared(&nchpp->spin);
3268 		if (rep_ncp == NULL) {
3269 			new_ncp = cache_alloc(nlc->nlc_namelen);
3270 			if (nlc->nlc_namelen) {
3271 				bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
3272 				      nlc->nlc_namelen);
3273 				new_ncp->nc_name[nlc->nlc_namelen] = 0;
3274 			}
3275 		}
3276 		use_excl = 1;
3277 		goto restart;
3278 	}
3279 
3280 	/*
3281 	 * NOTE! The spinlock is held exclusively here because new_ncp
3282 	 *	 is non-NULL.
3283 	 */
3284 	if (par_locked == 0) {
3285 		spin_unlock(&nchpp->spin);
3286 		_cache_lock(par_nch->ncp);
3287 		par_locked = 1;
3288 		goto restart;
3289 	}
3290 
3291 	/*
3292 	 * Link to parent (requires another ref, the one already in new_ncp
3293 	 * is what we wil lreturn).
3294 	 *
3295 	 * WARNING!  We still hold the spinlock.  We have to set the hash
3296 	 *	     table entry atomically.
3297 	 */
3298 	ncp = new_ncp;
3299 	++ncp->nc_refs;
3300 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
3301 	spin_unlock(&nchpp->spin);
3302 	_cache_unlock(par_nch->ncp);
3303 	/* par_locked = 0 - not used */
3304 found:
3305 	/*
3306 	 * stats and namecache size management
3307 	 */
3308 	if (ncp->nc_flag & NCF_UNRESOLVED)
3309 		++gd->gd_nchstats->ncs_miss;
3310 	else if (ncp->nc_vp)
3311 		++gd->gd_nchstats->ncs_goodhits;
3312 	else
3313 		++gd->gd_nchstats->ncs_neghits;
3314 	nch.mount = mp;
3315 	nch.ncp = ncp;
3316 	_cache_mntref(nch.mount);
3317 
3318 	return(nch);
3319 }
3320 
3321 /*
3322  * Attempt to lookup a namecache entry and return with a shared namecache
3323  * lock.  This operates non-blocking.  EWOULDBLOCK is returned if excl is
3324  * set or we are unable to lock.
3325  */
3326 int
3327 cache_nlookup_maybe_shared(struct nchandle *par_nch,
3328 			   struct nlcomponent *nlc,
3329 			   int excl, struct nchandle *res_nch)
3330 {
3331 	struct namecache *ncp;
3332 	struct nchash_head *nchpp;
3333 	struct mount *mp;
3334 	u_int32_t hash;
3335 	globaldata_t gd;
3336 
3337 	/*
3338 	 * If exclusive requested or shared namecache locks are disabled,
3339 	 * return failure.
3340 	 */
3341 	if (ncp_shared_lock_disable || excl)
3342 		return(EWOULDBLOCK);
3343 
3344 	gd = mycpu;
3345 	mp = par_nch->mount;
3346 
3347 	/*
3348 	 * This is a good time to call it, no ncp's are locked by
3349 	 * the caller or us.
3350 	 */
3351 	cache_hysteresis(1);
3352 
3353 	/*
3354 	 * Try to locate an existing entry
3355 	 */
3356 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3357 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3358 	nchpp = NCHHASH(hash);
3359 
3360 	spin_lock_shared(&nchpp->spin);
3361 
3362 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
3363 		/*
3364 		 * Break out if we find a matching entry.  Note that
3365 		 * UNRESOLVED entries may match, but DESTROYED entries
3366 		 * do not.
3367 		 */
3368 		if (ncp->nc_parent == par_nch->ncp &&
3369 		    ncp->nc_nlen == nlc->nlc_namelen &&
3370 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
3371 		    (ncp->nc_flag & NCF_DESTROYED) == 0
3372 		) {
3373 			_cache_hold(ncp);
3374 			spin_unlock_shared(&nchpp->spin);
3375 
3376 			if (_cache_lock_shared_special(ncp) == 0) {
3377 				if (ncp->nc_parent == par_nch->ncp &&
3378 				    ncp->nc_nlen == nlc->nlc_namelen &&
3379 				    bcmp(ncp->nc_name, nlc->nlc_nameptr,
3380 					 ncp->nc_nlen) == 0 &&
3381 				    (ncp->nc_flag & NCF_DESTROYED) == 0 &&
3382 				    (ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
3383 				    _cache_auto_unresolve_test(mp, ncp) == 0)
3384 				{
3385 					goto found;
3386 				}
3387 				_cache_unlock(ncp);
3388 			}
3389 			_cache_drop(ncp);
3390 			return(EWOULDBLOCK);
3391 		}
3392 	}
3393 
3394 	/*
3395 	 * Failure
3396 	 */
3397 	spin_unlock_shared(&nchpp->spin);
3398 	return(EWOULDBLOCK);
3399 
3400 	/*
3401 	 * Success
3402 	 *
3403 	 * Note that nc_error might be non-zero (e.g ENOENT).
3404 	 */
3405 found:
3406 	res_nch->mount = mp;
3407 	res_nch->ncp = ncp;
3408 	++gd->gd_nchstats->ncs_goodhits;
3409 	_cache_mntref(res_nch->mount);
3410 
3411 	KKASSERT(ncp->nc_error != EWOULDBLOCK);
3412 	return(ncp->nc_error);
3413 }
3414 
3415 /*
3416  * This is a non-blocking verison of cache_nlookup() used by
3417  * nfs_readdirplusrpc_uio().  It can fail for any reason and
3418  * will return nch.ncp == NULL in that case.
3419  */
3420 struct nchandle
3421 cache_nlookup_nonblock(struct nchandle *par_nch, struct nlcomponent *nlc)
3422 {
3423 	struct nchandle nch;
3424 	struct namecache *ncp;
3425 	struct namecache *new_ncp;
3426 	struct nchash_head *nchpp;
3427 	struct mount *mp;
3428 	u_int32_t hash;
3429 	globaldata_t gd;
3430 	int par_locked;
3431 
3432 	gd = mycpu;
3433 	mp = par_nch->mount;
3434 	par_locked = 0;
3435 
3436 	/*
3437 	 * Try to locate an existing entry
3438 	 */
3439 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3440 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3441 	new_ncp = NULL;
3442 	nchpp = NCHHASH(hash);
3443 restart:
3444 	spin_lock(&nchpp->spin);
3445 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
3446 		/*
3447 		 * Break out if we find a matching entry.  Note that
3448 		 * UNRESOLVED entries may match, but DESTROYED entries
3449 		 * do not.
3450 		 */
3451 		if (ncp->nc_parent == par_nch->ncp &&
3452 		    ncp->nc_nlen == nlc->nlc_namelen &&
3453 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
3454 		    (ncp->nc_flag & NCF_DESTROYED) == 0
3455 		) {
3456 			_cache_hold(ncp);
3457 			spin_unlock(&nchpp->spin);
3458 			if (par_locked) {
3459 				_cache_unlock(par_nch->ncp);
3460 				par_locked = 0;
3461 			}
3462 			if (_cache_lock_special(ncp) == 0) {
3463 				if (ncp->nc_parent != par_nch->ncp ||
3464 				    ncp->nc_nlen != nlc->nlc_namelen ||
3465 				    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) ||
3466 				    (ncp->nc_flag & NCF_DESTROYED)) {
3467 					kprintf("cache_lookup_nonblock: "
3468 						"ncp-race %p %*.*s\n",
3469 						ncp,
3470 						nlc->nlc_namelen,
3471 						nlc->nlc_namelen,
3472 						nlc->nlc_nameptr);
3473 					_cache_unlock(ncp);
3474 					_cache_drop(ncp);
3475 					goto failed;
3476 				}
3477 				_cache_auto_unresolve(mp, ncp);
3478 				if (new_ncp) {
3479 					_cache_free(new_ncp);
3480 					new_ncp = NULL;
3481 				}
3482 				goto found;
3483 			}
3484 			_cache_drop(ncp);
3485 			goto failed;
3486 		}
3487 	}
3488 
3489 	/*
3490 	 * We failed to locate an entry, create a new entry and add it to
3491 	 * the cache.  The parent ncp must also be locked so we
3492 	 * can link into it.
3493 	 *
3494 	 * We have to relookup after possibly blocking in kmalloc or
3495 	 * when locking par_nch.
3496 	 *
3497 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
3498 	 *	 mount case, in which case nc_name will be NULL.
3499 	 */
3500 	if (new_ncp == NULL) {
3501 		spin_unlock(&nchpp->spin);
3502 		new_ncp = cache_alloc(nlc->nlc_namelen);
3503 		if (nlc->nlc_namelen) {
3504 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
3505 			      nlc->nlc_namelen);
3506 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
3507 		}
3508 		goto restart;
3509 	}
3510 	if (par_locked == 0) {
3511 		spin_unlock(&nchpp->spin);
3512 		if (_cache_lock_nonblock(par_nch->ncp) == 0) {
3513 			par_locked = 1;
3514 			goto restart;
3515 		}
3516 		goto failed;
3517 	}
3518 
3519 	/*
3520 	 * Link to parent (requires another ref, the one already in new_ncp
3521 	 * is what we wil lreturn).
3522 	 *
3523 	 * WARNING!  We still hold the spinlock.  We have to set the hash
3524 	 *	     table entry atomically.
3525 	 */
3526 	ncp = new_ncp;
3527 	++ncp->nc_refs;
3528 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
3529 	spin_unlock(&nchpp->spin);
3530 	_cache_unlock(par_nch->ncp);
3531 	/* par_locked = 0 - not used */
3532 found:
3533 	/*
3534 	 * stats and namecache size management
3535 	 */
3536 	if (ncp->nc_flag & NCF_UNRESOLVED)
3537 		++gd->gd_nchstats->ncs_miss;
3538 	else if (ncp->nc_vp)
3539 		++gd->gd_nchstats->ncs_goodhits;
3540 	else
3541 		++gd->gd_nchstats->ncs_neghits;
3542 	nch.mount = mp;
3543 	nch.ncp = ncp;
3544 	_cache_mntref(nch.mount);
3545 
3546 	return(nch);
3547 failed:
3548 	if (new_ncp) {
3549 		_cache_free(new_ncp);
3550 		new_ncp = NULL;
3551 	}
3552 	nch.mount = NULL;
3553 	nch.ncp = NULL;
3554 	return(nch);
3555 }
3556 
3557 /*
3558  * This version is non-locking.  The caller must validate the result
3559  * for parent-to-child continuity.
3560  *
3561  * It can fail for any reason and will return nch.ncp == NULL in that case.
3562  */
3563 struct nchandle
3564 cache_nlookup_nonlocked(struct nchandle *par_nch, struct nlcomponent *nlc)
3565 {
3566 	struct nchandle nch;
3567 	struct namecache *ncp;
3568 	struct nchash_head *nchpp;
3569 	struct mount *mp;
3570 	u_int32_t hash;
3571 	globaldata_t gd;
3572 
3573 	gd = mycpu;
3574 	mp = par_nch->mount;
3575 
3576 	/*
3577 	 * Try to locate an existing entry
3578 	 */
3579 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3580 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3581 	nchpp = NCHHASH(hash);
3582 
3583 	spin_lock_shared(&nchpp->spin);
3584 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
3585 		/*
3586 		 * Break out if we find a matching entry.  Note that
3587 		 * UNRESOLVED entries may match, but DESTROYED entries
3588 		 * do not.
3589 		 *
3590 		 * Resolved NFS entries which have timed out fail so the
3591 		 * caller can rerun with normal locking.
3592 		 */
3593 		if (ncp->nc_parent == par_nch->ncp &&
3594 		    ncp->nc_nlen == nlc->nlc_namelen &&
3595 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
3596 		    (ncp->nc_flag & NCF_DESTROYED) == 0
3597 		) {
3598 			if (_cache_auto_unresolve_test(par_nch->mount, ncp))
3599 				break;
3600 			_cache_hold(ncp);
3601 			spin_unlock_shared(&nchpp->spin);
3602 			goto found;
3603 		}
3604 	}
3605 	spin_unlock_shared(&nchpp->spin);
3606 	nch.mount = NULL;
3607 	nch.ncp = NULL;
3608 	return nch;
3609 found:
3610 	/*
3611 	 * stats and namecache size management
3612 	 */
3613 	if (ncp->nc_flag & NCF_UNRESOLVED)
3614 		++gd->gd_nchstats->ncs_miss;
3615 	else if (ncp->nc_vp)
3616 		++gd->gd_nchstats->ncs_goodhits;
3617 	else
3618 		++gd->gd_nchstats->ncs_neghits;
3619 	nch.mount = mp;
3620 	nch.ncp = ncp;
3621 	_cache_mntref(nch.mount);
3622 
3623 	return(nch);
3624 }
3625 
3626 /*
3627  * The namecache entry is marked as being used as a mount point.
3628  * Locate the mount if it is visible to the caller.  The DragonFly
3629  * mount system allows arbitrary loops in the topology and disentangles
3630  * those loops by matching against (mp, ncp) rather than just (ncp).
3631  * This means any given ncp can dive any number of mounts, depending
3632  * on the relative mount (e.g. nullfs) the caller is at in the topology.
3633  *
3634  * We use a very simple frontend cache to reduce SMP conflicts,
3635  * which we have to do because the mountlist scan needs an exclusive
3636  * lock around its ripout info list.  Not to mention that there might
3637  * be a lot of mounts.
3638  *
3639  * Because all mounts can potentially be accessed by all cpus, break the cpu's
3640  * down a bit to allow some contention rather than making the cache
3641  * excessively huge.
3642  *
3643  * The hash table is split into per-cpu areas, is 4-way set-associative.
3644  */
3645 struct findmount_info {
3646 	struct mount *result;
3647 	struct mount *nch_mount;
3648 	struct namecache *nch_ncp;
3649 };
3650 
3651 static __inline
3652 struct ncmount_cache *
3653 ncmount_cache_lookup4(struct mount *mp, struct namecache *ncp)
3654 {
3655 	uint32_t hash;
3656 
3657 	hash = iscsi_crc32(&mp, sizeof(mp));
3658 	hash = iscsi_crc32_ext(&ncp, sizeof(ncp), hash);
3659 	hash ^= hash >> 16;
3660 	hash = hash & ((NCMOUNT_NUMCACHE - 1) & ~(NCMOUNT_SET - 1));
3661 
3662 	return (&ncmount_cache[hash]);
3663 }
3664 
3665 static
3666 struct ncmount_cache *
3667 ncmount_cache_lookup(struct mount *mp, struct namecache *ncp)
3668 {
3669 	struct ncmount_cache *ncc;
3670 	struct ncmount_cache *best;
3671 	int delta;
3672 	int best_delta;
3673 	int i;
3674 
3675 	ncc = ncmount_cache_lookup4(mp, ncp);
3676 
3677 	/*
3678 	 * NOTE: When checking for a ticks overflow implement a slop of
3679 	 *	 2 ticks just to be safe, because ticks is accessed
3680 	 *	 non-atomically one CPU can increment it while another
3681 	 *	 is still using the old value.
3682 	 */
3683 	if (ncc->ncp == ncp && ncc->mp == mp)	/* 0 */
3684 		return ncc;
3685 	delta = (int)(ticks - ncc->ticks);	/* beware GCC opts */
3686 	if (delta < -2)				/* overflow reset */
3687 		ncc->ticks = ticks;
3688 	best = ncc;
3689 	best_delta = delta;
3690 
3691 	for (i = 1; i < NCMOUNT_SET; ++i) {	/* 1, 2, 3 */
3692 		++ncc;
3693 		if (ncc->ncp == ncp && ncc->mp == mp)
3694 			return ncc;
3695 		delta = (int)(ticks - ncc->ticks);
3696 		if (delta < -2)
3697 			ncc->ticks = ticks;
3698 		if (delta > best_delta) {
3699 			best_delta = delta;
3700 			best = ncc;
3701 		}
3702 	}
3703 	return best;
3704 }
3705 
3706 /*
3707  * pcpu-optimized mount search.  Locate the recursive mountpoint, avoid
3708  * doing an expensive mountlist_scan*() if possible.
3709  *
3710  * (mp, ncp) -> mountonpt.k
3711  *
3712  * Returns a referenced mount pointer or NULL
3713  *
3714  * General SMP operation uses a per-cpu umount_spin to interlock unmount
3715  * operations (that is, where the mp_target can be freed out from under us).
3716  *
3717  * Lookups use the ncc->updating counter to validate the contents in order
3718  * to avoid having to obtain the per cache-element spin-lock.  In addition,
3719  * the ticks field is only updated when it changes.  However, if our per-cpu
3720  * lock fails due to an unmount-in-progress, we fall-back to the
3721  * cache-element's spin-lock.
3722  */
3723 struct mount *
3724 cache_findmount(struct nchandle *nch)
3725 {
3726 	struct findmount_info info;
3727 	struct ncmount_cache *ncc;
3728 	struct ncmount_cache ncc_copy;
3729 	struct mount *target;
3730 	struct pcpu_ncache *pcpu;
3731 	struct spinlock *spinlk;
3732 	int update;
3733 
3734 	pcpu = pcpu_ncache;
3735 	if (ncmount_cache_enable == 0 || pcpu == NULL) {
3736 		ncc = NULL;
3737 		goto skip;
3738 	}
3739 	pcpu += mycpu->gd_cpuid;
3740 
3741 again:
3742 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3743 	if (ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3744 found:
3745 		/*
3746 		 * This is a bit messy for now because we do not yet have
3747 		 * safe disposal of mount structures.  We have to ref
3748 		 * ncc->mp_target but the 'update' counter only tell us
3749 		 * whether the cache has changed after the fact.
3750 		 *
3751 		 * For now get a per-cpu spinlock that will only contend
3752 		 * against umount's.  This is the best path.  If it fails,
3753 		 * instead of waiting on the umount we fall-back to a
3754 		 * shared ncc->spin lock, which will generally only cost a
3755 		 * cache ping-pong.
3756 		 */
3757 		update = ncc->updating;
3758 		if (__predict_true(spin_trylock(&pcpu->umount_spin))) {
3759 			spinlk = &pcpu->umount_spin;
3760 		} else {
3761 			spinlk = &ncc->spin;
3762 			spin_lock_shared(spinlk);
3763 		}
3764 		if (update & 1) {		/* update in progress */
3765 			spin_unlock_any(spinlk);
3766 			goto skip;
3767 		}
3768 		ncc_copy = *ncc;
3769 		cpu_lfence();
3770 		if (ncc->updating != update) {	/* content changed */
3771 			spin_unlock_any(spinlk);
3772 			goto again;
3773 		}
3774 		if (ncc_copy.ncp != nch->ncp || ncc_copy.mp != nch->mount) {
3775 			spin_unlock_any(spinlk);
3776 			goto again;
3777 		}
3778 		if (ncc_copy.isneg == 0) {
3779 			target = ncc_copy.mp_target;
3780 			if (target->mnt_ncmounton.mount == nch->mount &&
3781 			    target->mnt_ncmounton.ncp == nch->ncp) {
3782 				/*
3783 				 * Cache hit (positive) (avoid dirtying
3784 				 * the cache line if possible)
3785 				 */
3786 				if (ncc->ticks != (int)ticks)
3787 					ncc->ticks = (int)ticks;
3788 				_cache_mntref(target);
3789 			}
3790 		} else {
3791 			/*
3792 			 * Cache hit (negative) (avoid dirtying
3793 			 * the cache line if possible)
3794 			 */
3795 			if (ncc->ticks != (int)ticks)
3796 				ncc->ticks = (int)ticks;
3797 			target = NULL;
3798 		}
3799 		spin_unlock_any(spinlk);
3800 
3801 		return target;
3802 	}
3803 skip:
3804 
3805 	/*
3806 	 * Slow
3807 	 */
3808 	info.result = NULL;
3809 	info.nch_mount = nch->mount;
3810 	info.nch_ncp = nch->ncp;
3811 	mountlist_scan(cache_findmount_callback, &info,
3812 		       MNTSCAN_FORWARD | MNTSCAN_NOBUSY | MNTSCAN_NOUNLOCK);
3813 
3814 	/*
3815 	 * To reduce multi-re-entry on the cache, relookup in the cache.
3816 	 * This can still race, obviously, but that's ok.
3817 	 */
3818 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3819 	if (ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3820 		if (info.result)
3821 			atomic_add_int(&info.result->mnt_refs, -1);
3822 		goto found;
3823 	}
3824 
3825 	/*
3826 	 * Cache the result.
3827 	 */
3828 	if ((info.result == NULL ||
3829 	    (info.result->mnt_kern_flag & MNTK_UNMOUNT) == 0)) {
3830 		spin_lock(&ncc->spin);
3831 		atomic_add_int_nonlocked(&ncc->updating, 1);
3832 		cpu_sfence();
3833 		KKASSERT(ncc->updating & 1);
3834 		if (ncc->mp != nch->mount) {
3835 			if (ncc->mp)
3836 				atomic_add_int(&ncc->mp->mnt_refs, -1);
3837 			atomic_add_int(&nch->mount->mnt_refs, 1);
3838 			ncc->mp = nch->mount;
3839 		}
3840 		ncc->ncp = nch->ncp;	/* ptr compares only, not refd*/
3841 		ncc->ticks = (int)ticks;
3842 
3843 		if (info.result) {
3844 			ncc->isneg = 0;
3845 			if (ncc->mp_target != info.result) {
3846 				if (ncc->mp_target)
3847 					atomic_add_int(&ncc->mp_target->mnt_refs, -1);
3848 				ncc->mp_target = info.result;
3849 				atomic_add_int(&info.result->mnt_refs, 1);
3850 			}
3851 		} else {
3852 			ncc->isneg = 1;
3853 			if (ncc->mp_target) {
3854 				atomic_add_int(&ncc->mp_target->mnt_refs, -1);
3855 				ncc->mp_target = NULL;
3856 			}
3857 		}
3858 		cpu_sfence();
3859 		atomic_add_int_nonlocked(&ncc->updating, 1);
3860 		spin_unlock(&ncc->spin);
3861 	}
3862 	return(info.result);
3863 }
3864 
3865 static
3866 int
3867 cache_findmount_callback(struct mount *mp, void *data)
3868 {
3869 	struct findmount_info *info = data;
3870 
3871 	/*
3872 	 * Check the mount's mounted-on point against the passed nch.
3873 	 */
3874 	if (mp->mnt_ncmounton.mount == info->nch_mount &&
3875 	    mp->mnt_ncmounton.ncp == info->nch_ncp
3876 	) {
3877 	    info->result = mp;
3878 	    _cache_mntref(mp);
3879 	    return(-1);
3880 	}
3881 	return(0);
3882 }
3883 
3884 void
3885 cache_dropmount(struct mount *mp)
3886 {
3887 	_cache_mntrel(mp);
3888 }
3889 
3890 /*
3891  * mp is being mounted, scrap entries matching mp->mnt_ncmounton (positive
3892  * or negative).
3893  *
3894  * A full scan is not required, but for now just do it anyway.
3895  */
3896 void
3897 cache_ismounting(struct mount *mp)
3898 {
3899 	struct ncmount_cache *ncc;
3900 	struct mount *ncc_mp;
3901 	int i;
3902 
3903 	if (pcpu_ncache == NULL)
3904 		return;
3905 
3906 	for (i = 0; i < NCMOUNT_NUMCACHE; ++i) {
3907 		ncc = &ncmount_cache[i];
3908 		if (ncc->mp != mp->mnt_ncmounton.mount ||
3909 		    ncc->ncp != mp->mnt_ncmounton.ncp) {
3910 			continue;
3911 		}
3912 		spin_lock(&ncc->spin);
3913 		atomic_add_int_nonlocked(&ncc->updating, 1);
3914 		cpu_sfence();
3915 		KKASSERT(ncc->updating & 1);
3916 		if (ncc->mp != mp->mnt_ncmounton.mount ||
3917 		    ncc->ncp != mp->mnt_ncmounton.ncp) {
3918 			cpu_sfence();
3919 			++ncc->updating;
3920 			spin_unlock(&ncc->spin);
3921 			continue;
3922 		}
3923 		ncc_mp = ncc->mp;
3924 		ncc->ncp = NULL;
3925 		ncc->mp = NULL;
3926 		if (ncc_mp)
3927 			atomic_add_int(&ncc_mp->mnt_refs, -1);
3928 		ncc_mp = ncc->mp_target;
3929 		ncc->mp_target = NULL;
3930 		if (ncc_mp)
3931 			atomic_add_int(&ncc_mp->mnt_refs, -1);
3932 		ncc->ticks = (int)ticks - hz * 120;
3933 
3934 		cpu_sfence();
3935 		atomic_add_int_nonlocked(&ncc->updating, 1);
3936 		spin_unlock(&ncc->spin);
3937 	}
3938 
3939 	/*
3940 	 * Pre-cache the mount point
3941 	 */
3942 	ncc = ncmount_cache_lookup(mp->mnt_ncmounton.mount,
3943 				   mp->mnt_ncmounton.ncp);
3944 
3945 	spin_lock(&ncc->spin);
3946 	atomic_add_int_nonlocked(&ncc->updating, 1);
3947 	cpu_sfence();
3948 	KKASSERT(ncc->updating & 1);
3949 
3950 	if (ncc->mp)
3951 		atomic_add_int(&ncc->mp->mnt_refs, -1);
3952 	atomic_add_int(&mp->mnt_ncmounton.mount->mnt_refs, 1);
3953 	ncc->mp = mp->mnt_ncmounton.mount;
3954 	ncc->ncp = mp->mnt_ncmounton.ncp;	/* ptr compares only */
3955 	ncc->ticks = (int)ticks;
3956 
3957 	ncc->isneg = 0;
3958 	if (ncc->mp_target != mp) {
3959 		if (ncc->mp_target)
3960 			atomic_add_int(&ncc->mp_target->mnt_refs, -1);
3961 		ncc->mp_target = mp;
3962 		atomic_add_int(&mp->mnt_refs, 1);
3963 	}
3964 	cpu_sfence();
3965 	atomic_add_int_nonlocked(&ncc->updating, 1);
3966 	spin_unlock(&ncc->spin);
3967 }
3968 
3969 /*
3970  * Scrap any ncmount_cache entries related to mp.  Not only do we need to
3971  * scrap entries matching mp->mnt_ncmounton, but we also need to scrap any
3972  * negative hits involving (mp, <any>).
3973  *
3974  * A full scan is required.
3975  */
3976 void
3977 cache_unmounting(struct mount *mp)
3978 {
3979 	struct ncmount_cache *ncc;
3980 	struct pcpu_ncache *pcpu;
3981 	struct mount *ncc_mp;
3982 	int i;
3983 
3984 	pcpu = pcpu_ncache;
3985 	if (pcpu == NULL)
3986 		return;
3987 
3988 	for (i = 0; i < ncpus; ++i)
3989 		spin_lock(&pcpu[i].umount_spin);
3990 
3991 	for (i = 0; i < NCMOUNT_NUMCACHE; ++i) {
3992 		ncc = &ncmount_cache[i];
3993 		if (ncc->mp != mp && ncc->mp_target != mp)
3994 			continue;
3995 		spin_lock(&ncc->spin);
3996 		atomic_add_int_nonlocked(&ncc->updating, 1);
3997 		cpu_sfence();
3998 
3999 		if (ncc->mp != mp && ncc->mp_target != mp) {
4000 			atomic_add_int_nonlocked(&ncc->updating, 1);
4001 			cpu_sfence();
4002 			spin_unlock(&ncc->spin);
4003 			continue;
4004 		}
4005 		ncc_mp = ncc->mp;
4006 		ncc->ncp = NULL;
4007 		ncc->mp = NULL;
4008 		if (ncc_mp)
4009 			atomic_add_int(&ncc_mp->mnt_refs, -1);
4010 		ncc_mp = ncc->mp_target;
4011 		ncc->mp_target = NULL;
4012 		if (ncc_mp)
4013 			atomic_add_int(&ncc_mp->mnt_refs, -1);
4014 		ncc->ticks = (int)ticks - hz * 120;
4015 
4016 		cpu_sfence();
4017 		atomic_add_int_nonlocked(&ncc->updating, 1);
4018 		spin_unlock(&ncc->spin);
4019 	}
4020 
4021 	for (i = 0; i < ncpus; ++i)
4022 		spin_unlock(&pcpu[i].umount_spin);
4023 }
4024 
4025 /*
4026  * Resolve an unresolved namecache entry, generally by looking it up.
4027  * The passed ncp must be locked and refd.
4028  *
4029  * Theoretically since a vnode cannot be recycled while held, and since
4030  * the nc_parent chain holds its vnode as long as children exist, the
4031  * direct parent of the cache entry we are trying to resolve should
4032  * have a valid vnode.  If not then generate an error that we can
4033  * determine is related to a resolver bug.
4034  *
4035  * However, if a vnode was in the middle of a recyclement when the NCP
4036  * got locked, ncp->nc_vp might point to a vnode that is about to become
4037  * invalid.  cache_resolve() handles this case by unresolving the entry
4038  * and then re-resolving it.
4039  *
4040  * Note that successful resolution does not necessarily return an error
4041  * code of 0.  If the ncp resolves to a negative cache hit then ENOENT
4042  * will be returned.
4043  */
4044 int
4045 cache_resolve(struct nchandle *nch, struct ucred *cred)
4046 {
4047 	struct namecache *par_tmp;
4048 	struct namecache *par;
4049 	struct namecache *ncp;
4050 	struct nchandle nctmp;
4051 	struct mount *mp;
4052 	struct vnode *dvp;
4053 	int error;
4054 
4055 	ncp = nch->ncp;
4056 	mp = nch->mount;
4057 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
4058 restart:
4059 	/*
4060 	 * If the ncp is already resolved we have nothing to do.  However,
4061 	 * we do want to guarentee that a usable vnode is returned when
4062 	 * a vnode is present, so make sure it hasn't been reclaimed.
4063 	 */
4064 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
4065 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
4066 			_cache_setunresolved(ncp);
4067 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
4068 			return (ncp->nc_error);
4069 	}
4070 
4071 	/*
4072 	 * If the ncp was destroyed it will never resolve again.  This
4073 	 * can basically only happen when someone is chdir'd into an
4074 	 * empty directory which is then rmdir'd.  We want to catch this
4075 	 * here and not dive the VFS because the VFS might actually
4076 	 * have a way to re-resolve the disconnected ncp, which will
4077 	 * result in inconsistencies in the cdir/nch for proc->p_fd.
4078 	 */
4079 	if (ncp->nc_flag & NCF_DESTROYED)
4080 		return(EINVAL);
4081 
4082 	/*
4083 	 * Mount points need special handling because the parent does not
4084 	 * belong to the same filesystem as the ncp.
4085 	 */
4086 	if (ncp == mp->mnt_ncmountpt.ncp)
4087 		return (cache_resolve_mp(mp));
4088 
4089 	/*
4090 	 * We expect an unbroken chain of ncps to at least the mount point,
4091 	 * and even all the way to root (but this code doesn't have to go
4092 	 * past the mount point).
4093 	 */
4094 	if (ncp->nc_parent == NULL) {
4095 		kprintf("EXDEV case 1 %p %*.*s\n", ncp,
4096 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
4097 		ncp->nc_error = EXDEV;
4098 		return(ncp->nc_error);
4099 	}
4100 
4101 	/*
4102 	 * The vp's of the parent directories in the chain are held via vhold()
4103 	 * due to the existance of the child, and should not disappear.
4104 	 * However, there are cases where they can disappear:
4105 	 *
4106 	 *	- due to filesystem I/O errors.
4107 	 *	- due to NFS being stupid about tracking the namespace and
4108 	 *	  destroys the namespace for entire directories quite often.
4109 	 *	- due to forced unmounts.
4110 	 *	- due to an rmdir (parent will be marked DESTROYED)
4111 	 *
4112 	 * When this occurs we have to track the chain backwards and resolve
4113 	 * it, looping until the resolver catches up to the current node.  We
4114 	 * could recurse here but we might run ourselves out of kernel stack
4115 	 * so we do it in a more painful manner.  This situation really should
4116 	 * not occur all that often, or if it does not have to go back too
4117 	 * many nodes to resolve the ncp.
4118 	 */
4119 	while ((dvp = cache_dvpref(ncp)) == NULL) {
4120 		/*
4121 		 * This case can occur if a process is CD'd into a
4122 		 * directory which is then rmdir'd.  If the parent is marked
4123 		 * destroyed there is no point trying to resolve it.
4124 		 */
4125 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
4126 			return(ENOENT);
4127 		par = ncp->nc_parent;
4128 		_cache_hold(par);
4129 		_cache_lock(par);
4130 		while ((par_tmp = par->nc_parent) != NULL &&
4131 		       par_tmp->nc_vp == NULL) {
4132 			_cache_hold(par_tmp);
4133 			_cache_lock(par_tmp);
4134 			_cache_put(par);
4135 			par = par_tmp;
4136 		}
4137 		if (par->nc_parent == NULL) {
4138 			kprintf("EXDEV case 2 %*.*s\n",
4139 				par->nc_nlen, par->nc_nlen, par->nc_name);
4140 			_cache_put(par);
4141 			return (EXDEV);
4142 		}
4143 		/*
4144 		 * The parent is not set in stone, ref and lock it to prevent
4145 		 * it from disappearing.  Also note that due to renames it
4146 		 * is possible for our ncp to move and for par to no longer
4147 		 * be one of its parents.  We resolve it anyway, the loop
4148 		 * will handle any moves.
4149 		 */
4150 		_cache_get(par);	/* additional hold/lock */
4151 		_cache_put(par);	/* from earlier hold/lock */
4152 		if (par == nch->mount->mnt_ncmountpt.ncp) {
4153 			cache_resolve_mp(nch->mount);
4154 		} else if ((dvp = cache_dvpref(par)) == NULL) {
4155 			kprintf("[diagnostic] cache_resolve: raced on %*.*s\n",
4156 				par->nc_nlen, par->nc_nlen, par->nc_name);
4157 			_cache_put(par);
4158 			continue;
4159 		} else {
4160 			if (par->nc_flag & NCF_UNRESOLVED) {
4161 				nctmp.mount = mp;
4162 				nctmp.ncp = par;
4163 				par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
4164 			}
4165 			vrele(dvp);
4166 		}
4167 		if ((error = par->nc_error) != 0) {
4168 			if (par->nc_error != EAGAIN) {
4169 				kprintf("EXDEV case 3 %*.*s error %d\n",
4170 				    par->nc_nlen, par->nc_nlen, par->nc_name,
4171 				    par->nc_error);
4172 				_cache_put(par);
4173 				return(error);
4174 			}
4175 			kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
4176 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
4177 		}
4178 		_cache_put(par);
4179 		/* loop */
4180 	}
4181 
4182 	/*
4183 	 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
4184 	 * ncp's and reattach them.  If this occurs the original ncp is marked
4185 	 * EAGAIN to force a relookup.
4186 	 *
4187 	 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
4188 	 * ncp must already be resolved.
4189 	 */
4190 	if (dvp) {
4191 		nctmp.mount = mp;
4192 		nctmp.ncp = ncp;
4193 		ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
4194 		vrele(dvp);
4195 	} else {
4196 		ncp->nc_error = EPERM;
4197 	}
4198 	if (ncp->nc_error == EAGAIN) {
4199 		kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
4200 			ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
4201 		goto restart;
4202 	}
4203 	return(ncp->nc_error);
4204 }
4205 
4206 /*
4207  * Resolve the ncp associated with a mount point.  Such ncp's almost always
4208  * remain resolved and this routine is rarely called.  NFS MPs tends to force
4209  * re-resolution more often due to its mac-truck-smash-the-namecache
4210  * method of tracking namespace changes.
4211  *
4212  * The semantics for this call is that the passed ncp must be locked on
4213  * entry and will be locked on return.  However, if we actually have to
4214  * resolve the mount point we temporarily unlock the entry in order to
4215  * avoid race-to-root deadlocks due to e.g. dead NFS mounts.  Because of
4216  * the unlock we have to recheck the flags after we relock.
4217  */
4218 static int
4219 cache_resolve_mp(struct mount *mp)
4220 {
4221 	struct namecache *ncp = mp->mnt_ncmountpt.ncp;
4222 	struct vnode *vp;
4223 	int error;
4224 
4225 	KKASSERT(mp != NULL);
4226 
4227 	/*
4228 	 * If the ncp is already resolved we have nothing to do.  However,
4229 	 * we do want to guarentee that a usable vnode is returned when
4230 	 * a vnode is present, so make sure it hasn't been reclaimed.
4231 	 */
4232 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
4233 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
4234 			_cache_setunresolved(ncp);
4235 	}
4236 
4237 	if (ncp->nc_flag & NCF_UNRESOLVED) {
4238 		/*
4239 		 * ncp must be unlocked across the vfs_busy(), but
4240 		 * once busied lock ordering is ncp(s), then vnodes,
4241 		 * so we must relock the ncp before issuing the VFS_ROOT().
4242 		 */
4243 		_cache_unlock(ncp);
4244 		while (vfs_busy(mp, 0))
4245 			;
4246 		_cache_lock(ncp);
4247 		error = VFS_ROOT(mp, &vp);
4248 
4249 		/*
4250 		 * recheck the ncp state after relocking.
4251 		 */
4252 		if (ncp->nc_flag & NCF_UNRESOLVED) {
4253 			ncp->nc_error = error;
4254 			if (error == 0) {
4255 				_cache_setvp(mp, ncp, vp);
4256 				vput(vp);
4257 			} else {
4258 				kprintf("[diagnostic] cache_resolve_mp: failed"
4259 					" to resolve mount %p err=%d ncp=%p\n",
4260 					mp, error, ncp);
4261 				_cache_setvp(mp, ncp, NULL);
4262 			}
4263 		} else if (error == 0) {
4264 			vput(vp);
4265 		}
4266 		vfs_unbusy(mp);
4267 	}
4268 	return(ncp->nc_error);
4269 }
4270 
4271 /*
4272  * Resolve the parent vnode
4273  */
4274 int
4275 cache_resolve_dvp(struct nchandle *nch, struct ucred *cred, struct vnode **dvpp)
4276 {
4277 	struct namecache *par_tmp;
4278 	struct namecache *par;
4279 	struct namecache *ncp;
4280 	struct nchandle nctmp;
4281 	struct mount *mp;
4282 	struct vnode *dvp;
4283 	int error;
4284 
4285 	*dvpp = NULL;
4286 	ncp = nch->ncp;
4287 	mp = nch->mount;
4288 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
4289 
4290 	/*
4291 	 * Treat this as a mount point even if it has a parent (e.g.
4292 	 * null-mount).  Return a NULL dvp and no error.
4293 	 */
4294 	if (ncp == mp->mnt_ncmountpt.ncp)
4295 		return 0;
4296 
4297 	/*
4298 	 * If the ncp was destroyed there is no parent directory, return
4299 	 * EINVAL.
4300 	 */
4301 	if (ncp->nc_flag & NCF_DESTROYED)
4302 		return(EINVAL);
4303 
4304 	/*
4305 	 * No parent if at the root of a filesystem, no error.  Typically
4306 	 * not applicable to null-mounts.  This case should have been caught
4307 	 * in the above ncmountpt check.
4308 	 */
4309 	if (ncp->nc_parent == NULL)
4310 		return 0;
4311 
4312 	/*
4313 	 * Resolve the parent dvp.
4314 	 *
4315 	 * The vp's of the parent directories in the chain are held via vhold()
4316 	 * due to the existance of the child, and should not disappear.
4317 	 * However, there are cases where they can disappear:
4318 	 *
4319 	 *	- due to filesystem I/O errors.
4320 	 *	- due to NFS being stupid about tracking the namespace and
4321 	 *	  destroys the namespace for entire directories quite often.
4322 	 *	- due to forced unmounts.
4323 	 *	- due to an rmdir (parent will be marked DESTROYED)
4324 	 *
4325 	 * When this occurs we have to track the chain backwards and resolve
4326 	 * it, looping until the resolver catches up to the current node.  We
4327 	 * could recurse here but we might run ourselves out of kernel stack
4328 	 * so we do it in a more painful manner.  This situation really should
4329 	 * not occur all that often, or if it does not have to go back too
4330 	 * many nodes to resolve the ncp.
4331 	 */
4332 	while ((dvp = cache_dvpref(ncp)) == NULL) {
4333 		/*
4334 		 * This case can occur if a process is CD'd into a
4335 		 * directory which is then rmdir'd.  If the parent is marked
4336 		 * destroyed there is no point trying to resolve it.
4337 		 */
4338 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
4339 			return(ENOENT);
4340 		par = ncp->nc_parent;
4341 		_cache_hold(par);
4342 		_cache_lock(par);
4343 		while ((par_tmp = par->nc_parent) != NULL &&
4344 		       par_tmp->nc_vp == NULL) {
4345 			_cache_hold(par_tmp);
4346 			_cache_lock(par_tmp);
4347 			_cache_put(par);
4348 			par = par_tmp;
4349 		}
4350 		if (par->nc_parent == NULL) {
4351 			kprintf("EXDEV case 2 %*.*s\n",
4352 				par->nc_nlen, par->nc_nlen, par->nc_name);
4353 			_cache_put(par);
4354 			return (EXDEV);
4355 		}
4356 
4357 		/*
4358 		 * The parent is not set in stone, ref and lock it to prevent
4359 		 * it from disappearing.  Also note that due to renames it
4360 		 * is possible for our ncp to move and for par to no longer
4361 		 * be one of its parents.  We resolve it anyway, the loop
4362 		 * will handle any moves.
4363 		 */
4364 		_cache_get(par);	/* additional hold/lock */
4365 		_cache_put(par);	/* from earlier hold/lock */
4366 		if (par == nch->mount->mnt_ncmountpt.ncp) {
4367 			cache_resolve_mp(nch->mount);
4368 		} else if ((dvp = cache_dvpref(par)) == NULL) {
4369 			kprintf("[diagnostic] cache_resolve: raced on %*.*s\n",
4370 				par->nc_nlen, par->nc_nlen, par->nc_name);
4371 			_cache_put(par);
4372 			continue;
4373 		} else {
4374 			if (par->nc_flag & NCF_UNRESOLVED) {
4375 				nctmp.mount = mp;
4376 				nctmp.ncp = par;
4377 				par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
4378 			}
4379 			vrele(dvp);
4380 		}
4381 		if ((error = par->nc_error) != 0) {
4382 			if (par->nc_error != EAGAIN) {
4383 				kprintf("EXDEV case 3 %*.*s error %d\n",
4384 				    par->nc_nlen, par->nc_nlen, par->nc_name,
4385 				    par->nc_error);
4386 				_cache_put(par);
4387 				return(error);
4388 			}
4389 			kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
4390 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
4391 		}
4392 		_cache_put(par);
4393 		/* loop */
4394 	}
4395 
4396 	/*
4397 	 * We have a referenced dvp
4398 	 */
4399 	*dvpp = dvp;
4400 	return 0;
4401 }
4402 
4403 /*
4404  * Clean out negative cache entries when too many have accumulated.
4405  */
4406 static void
4407 _cache_cleanneg(long count)
4408 {
4409 	struct pcpu_ncache *pn;
4410 	struct namecache *ncp;
4411 	static uint32_t neg_rover;
4412 	uint32_t n;
4413 	long vnegs;
4414 
4415 	n = neg_rover++;	/* SMP heuristical, race ok */
4416 	cpu_ccfence();
4417 	n = n % (uint32_t)ncpus;
4418 
4419 	/*
4420 	 * Normalize vfscache_negs and count.  count is sometimes based
4421 	 * on vfscache_negs.  vfscache_negs is heuristical and can sometimes
4422 	 * have crazy values.
4423 	 */
4424 	vnegs = vfscache_negs;
4425 	cpu_ccfence();
4426 	if (vnegs <= MINNEG)
4427 		vnegs = MINNEG;
4428 	if (count < 1)
4429 		count = 1;
4430 
4431 	pn = &pcpu_ncache[n];
4432 	spin_lock(&pn->neg_spin);
4433 	count = pn->neg_count * count / vnegs + 1;
4434 	spin_unlock(&pn->neg_spin);
4435 
4436 	/*
4437 	 * Attempt to clean out the specified number of negative cache
4438 	 * entries.
4439 	 */
4440 	while (count > 0) {
4441 		spin_lock(&pn->neg_spin);
4442 		ncp = TAILQ_FIRST(&pn->neg_list);
4443 		if (ncp == NULL) {
4444 			spin_unlock(&pn->neg_spin);
4445 			break;
4446 		}
4447 		TAILQ_REMOVE(&pn->neg_list, ncp, nc_vnode);
4448 		TAILQ_INSERT_TAIL(&pn->neg_list, ncp, nc_vnode);
4449 		_cache_hold(ncp);
4450 		spin_unlock(&pn->neg_spin);
4451 
4452 		/*
4453 		 * This can race, so we must re-check that the ncp
4454 		 * is on the ncneg.list after successfully locking it.
4455 		 */
4456 		if (_cache_lock_special(ncp) == 0) {
4457 			if (ncp->nc_vp == NULL &&
4458 			    (ncp->nc_flag & NCF_UNRESOLVED) == 0)
4459 			{
4460 				cache_zap(ncp);
4461 			} else {
4462 				_cache_unlock(ncp);
4463 				_cache_drop(ncp);
4464 			}
4465 		} else {
4466 			_cache_drop(ncp);
4467 		}
4468 		--count;
4469 	}
4470 }
4471 
4472 /*
4473  * Clean out positive cache entries when too many have accumulated.
4474  * Only leafs are cleaned out.  LRU order is maintained and we rove
4475  * available cpus.
4476  */
4477 static void
4478 _cache_cleanpos(long count)
4479 {
4480 	static volatile int rover;
4481 	struct nchash_head *nchpp;
4482 	struct namecache *ncp;
4483 	int rover_copy;
4484 
4485 	/*
4486 	 * Attempt to clean out the specified number of negative cache
4487 	 * entries.
4488 	 */
4489 	while (count > 0) {
4490 		rover_copy = ++rover;	/* MPSAFEENOUGH */
4491 		cpu_ccfence();
4492 		nchpp = NCHHASH(rover_copy);
4493 
4494 		if (TAILQ_FIRST(&nchpp->list) == NULL) {
4495 			--count;
4496 			continue;
4497 		}
4498 
4499 		/*
4500 		 * Cycle ncp on list, ignore and do not move DUMMY
4501 		 * ncps.  These are temporary list iterators.
4502 		 *
4503 		 * We must cycle the ncp to the end of the list to
4504 		 * ensure that all ncp's have an equal chance of
4505 		 * being removed.
4506 		 */
4507 		spin_lock(&nchpp->spin);
4508 		ncp = TAILQ_FIRST(&nchpp->list);
4509 		while (ncp && (ncp->nc_flag & NCF_DUMMY))
4510 			ncp = TAILQ_NEXT(ncp, nc_hash);
4511 		if (ncp) {
4512 			TAILQ_REMOVE(&nchpp->list, ncp, nc_hash);
4513 			TAILQ_INSERT_TAIL(&nchpp->list, ncp, nc_hash);
4514 			_cache_hold(ncp);
4515 		}
4516 		spin_unlock(&nchpp->spin);
4517 
4518 		if (ncp) {
4519 			if (_cache_lock_special(ncp) == 0) {
4520 				cache_zap(ncp);
4521 			} else {
4522 				_cache_drop(ncp);
4523 			}
4524 		}
4525 		--count;
4526 	}
4527 }
4528 
4529 /*
4530  * This is a kitchen sink function to clean out ncps which we
4531  * tried to zap from cache_drop() but failed because we were
4532  * unable to acquire the parent lock.
4533  *
4534  * Such entries can also be removed via cache_inval_vp(), such
4535  * as when unmounting.
4536  */
4537 static void
4538 _cache_cleandefered(void)
4539 {
4540 	struct nchash_head *nchpp;
4541 	struct namecache *ncp;
4542 	struct namecache dummy;
4543 	int i;
4544 
4545 	/*
4546 	 * Create a list iterator.  DUMMY indicates that this is a list
4547 	 * iterator, DESTROYED prevents matches by lookup functions.
4548 	 */
4549 	numdefered = 0;
4550 	pcpu_ncache[mycpu->gd_cpuid].numdefered = 0;
4551 	bzero(&dummy, sizeof(dummy));
4552 	dummy.nc_flag = NCF_DESTROYED | NCF_DUMMY;
4553 	dummy.nc_refs = 1;
4554 
4555 	for (i = 0; i <= nchash; ++i) {
4556 		nchpp = &nchashtbl[i];
4557 
4558 		spin_lock(&nchpp->spin);
4559 		TAILQ_INSERT_HEAD(&nchpp->list, &dummy, nc_hash);
4560 		ncp = &dummy;
4561 		while ((ncp = TAILQ_NEXT(ncp, nc_hash)) != NULL) {
4562 			if ((ncp->nc_flag & NCF_DEFEREDZAP) == 0)
4563 				continue;
4564 			TAILQ_REMOVE(&nchpp->list, &dummy, nc_hash);
4565 			TAILQ_INSERT_AFTER(&nchpp->list, ncp, &dummy, nc_hash);
4566 			_cache_hold(ncp);
4567 			spin_unlock(&nchpp->spin);
4568 			if (_cache_lock_nonblock(ncp) == 0) {
4569 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
4570 				_cache_unlock(ncp);
4571 			}
4572 			_cache_drop(ncp);
4573 			spin_lock(&nchpp->spin);
4574 			ncp = &dummy;
4575 		}
4576 		TAILQ_REMOVE(&nchpp->list, &dummy, nc_hash);
4577 		spin_unlock(&nchpp->spin);
4578 	}
4579 }
4580 
4581 /*
4582  * Name cache initialization, from vfsinit() when we are booting
4583  */
4584 void
4585 nchinit(void)
4586 {
4587 	struct pcpu_ncache *pn;
4588 	globaldata_t gd;
4589 	int i;
4590 
4591 	/*
4592 	 * Per-cpu accounting and negative hit list
4593 	 */
4594 	pcpu_ncache = kmalloc(sizeof(*pcpu_ncache) * ncpus,
4595 			      M_VFSCACHEAUX, M_WAITOK|M_ZERO);
4596 	for (i = 0; i < ncpus; ++i) {
4597 		pn = &pcpu_ncache[i];
4598 		TAILQ_INIT(&pn->neg_list);
4599 		spin_init(&pn->neg_spin, "ncneg");
4600 		spin_init(&pn->umount_spin, "ncumm");
4601 	}
4602 
4603 	/*
4604 	 * Initialise per-cpu namecache effectiveness statistics.
4605 	 */
4606 	for (i = 0; i < ncpus; ++i) {
4607 		gd = globaldata_find(i);
4608 		gd->gd_nchstats = &nchstats[i];
4609 	}
4610 
4611 	/*
4612 	 * Create a generous namecache hash table
4613 	 */
4614 	nchashtbl = hashinit_ext(vfs_inodehashsize(),
4615 				 sizeof(struct nchash_head),
4616 				 M_VFSCACHEAUX, &nchash);
4617 	for (i = 0; i <= (int)nchash; ++i) {
4618 		TAILQ_INIT(&nchashtbl[i].list);
4619 		spin_init(&nchashtbl[i].spin, "nchinit_hash");
4620 	}
4621 	for (i = 0; i < NCMOUNT_NUMCACHE; ++i)
4622 		spin_init(&ncmount_cache[i].spin, "nchinit_cache");
4623 	nclockwarn = 5 * hz;
4624 }
4625 
4626 /*
4627  * Called from start_init() to bootstrap the root filesystem.  Returns
4628  * a referenced, unlocked namecache record to serve as a root or the
4629  * root of the system.
4630  *
4631  * Adjust our namecache counts
4632  */
4633 void
4634 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
4635 {
4636 	struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
4637 
4638 	atomic_add_long(&pn->vfscache_leafs, 1);
4639 	atomic_add_long(&pn->vfscache_unres, 1);
4640 
4641 	nch->ncp = cache_alloc(0);
4642 	nch->mount = mp;
4643 	_cache_mntref(mp);
4644 	if (vp)
4645 		_cache_setvp(nch->mount, nch->ncp, vp);
4646 }
4647 
4648 /*
4649  * vfs_cache_setroot()
4650  *
4651  *	Create an association between the root of our namecache and
4652  *	the root vnode.  This routine may be called several times during
4653  *	booting.
4654  *
4655  *	If the caller intends to save the returned namecache pointer somewhere
4656  *	it must cache_hold() it.
4657  */
4658 void
4659 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
4660 {
4661 	struct vnode *ovp;
4662 	struct nchandle onch;
4663 
4664 	ovp = rootvnode;
4665 	onch = rootnch;
4666 	rootvnode = nvp;
4667 	if (nch)
4668 		rootnch = *nch;
4669 	else
4670 		cache_zero(&rootnch);
4671 	if (ovp)
4672 		vrele(ovp);
4673 	if (onch.ncp)
4674 		cache_drop(&onch);
4675 }
4676 
4677 /*
4678  * XXX OLD API COMPAT FUNCTION.  This really messes up the new namecache
4679  * topology and is being removed as quickly as possible.  The new VOP_N*()
4680  * API calls are required to make specific adjustments using the supplied
4681  * ncp pointers rather then just bogusly purging random vnodes.
4682  *
4683  * Invalidate all namecache entries to a particular vnode as well as
4684  * any direct children of that vnode in the namecache.  This is a
4685  * 'catch all' purge used by filesystems that do not know any better.
4686  *
4687  * Note that the linkage between the vnode and its namecache entries will
4688  * be removed, but the namecache entries themselves might stay put due to
4689  * active references from elsewhere in the system or due to the existance of
4690  * the children.   The namecache topology is left intact even if we do not
4691  * know what the vnode association is.  Such entries will be marked
4692  * NCF_UNRESOLVED.
4693  */
4694 void
4695 cache_purge(struct vnode *vp)
4696 {
4697 	cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
4698 }
4699 
4700 __read_mostly static int disablecwd;
4701 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0,
4702     "Disable getcwd");
4703 
4704 /*
4705  * MPALMOSTSAFE
4706  */
4707 int
4708 sys___getcwd(struct sysmsg *sysmsg, const struct __getcwd_args *uap)
4709 {
4710 	u_int buflen;
4711 	int error;
4712 	char *buf;
4713 	char *bp;
4714 
4715 	if (disablecwd)
4716 		return (ENODEV);
4717 
4718 	buflen = uap->buflen;
4719 	if (buflen == 0)
4720 		return (EINVAL);
4721 	if (buflen > MAXPATHLEN)
4722 		buflen = MAXPATHLEN;
4723 
4724 	buf = kmalloc(buflen, M_TEMP, M_WAITOK);
4725 	bp = kern_getcwd(buf, buflen, &error);
4726 	if (error == 0)
4727 		error = copyout(bp, uap->buf, strlen(bp) + 1);
4728 	kfree(buf, M_TEMP);
4729 	return (error);
4730 }
4731 
4732 char *
4733 kern_getcwd(char *buf, size_t buflen, int *error)
4734 {
4735 	struct proc *p = curproc;
4736 	char *bp;
4737 	int i, slash_prefixed;
4738 	struct filedesc *fdp;
4739 	struct nchandle nch;
4740 	struct namecache *ncp;
4741 
4742 	bp = buf;
4743 	bp += buflen - 1;
4744 	*bp = '\0';
4745 	fdp = p->p_fd;
4746 	slash_prefixed = 0;
4747 
4748 	nch = fdp->fd_ncdir;
4749 	ncp = nch.ncp;
4750 	if (ncp)
4751 		_cache_hold(ncp);
4752 
4753 	while (ncp && (ncp != fdp->fd_nrdir.ncp ||
4754 	       nch.mount != fdp->fd_nrdir.mount)
4755 	) {
4756 		if (ncp->nc_flag & NCF_DESTROYED) {
4757 			_cache_drop(ncp);
4758 			ncp = NULL;
4759 			break;
4760 		}
4761 		/*
4762 		 * While traversing upwards if we encounter the root
4763 		 * of the current mount we have to skip to the mount point
4764 		 * in the underlying filesystem.
4765 		 */
4766 		if (ncp == nch.mount->mnt_ncmountpt.ncp) {
4767 			nch = nch.mount->mnt_ncmounton;
4768 			_cache_drop(ncp);
4769 			ncp = nch.ncp;
4770 			if (ncp)
4771 				_cache_hold(ncp);
4772 			continue;
4773 		}
4774 
4775 		/*
4776 		 * Prepend the path segment
4777 		 */
4778 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
4779 			if (bp == buf) {
4780 				*error = ERANGE;
4781 				bp = NULL;
4782 				goto done;
4783 			}
4784 			*--bp = ncp->nc_name[i];
4785 		}
4786 		if (bp == buf) {
4787 			*error = ERANGE;
4788 			bp = NULL;
4789 			goto done;
4790 		}
4791 		*--bp = '/';
4792 		slash_prefixed = 1;
4793 
4794 		/*
4795 		 * Go up a directory.  This isn't a mount point so we don't
4796 		 * have to check again.
4797 		 */
4798 		while ((nch.ncp = ncp->nc_parent) != NULL) {
4799 			if (ncp_shared_lock_disable)
4800 				_cache_lock(ncp);
4801 			else
4802 				_cache_lock_shared(ncp);
4803 			if (nch.ncp != ncp->nc_parent) {
4804 				_cache_unlock(ncp);
4805 				continue;
4806 			}
4807 			_cache_hold(nch.ncp);
4808 			_cache_unlock(ncp);
4809 			break;
4810 		}
4811 		_cache_drop(ncp);
4812 		ncp = nch.ncp;
4813 	}
4814 	if (ncp == NULL) {
4815 		*error = ENOENT;
4816 		bp = NULL;
4817 		goto done;
4818 	}
4819 	if (!slash_prefixed) {
4820 		if (bp == buf) {
4821 			*error = ERANGE;
4822 			bp = NULL;
4823 			goto done;
4824 		}
4825 		*--bp = '/';
4826 	}
4827 	*error = 0;
4828 done:
4829 	if (ncp)
4830 		_cache_drop(ncp);
4831 	return (bp);
4832 }
4833 
4834 /*
4835  * Thus begins the fullpath magic.
4836  *
4837  * The passed nchp is referenced but not locked.
4838  */
4839 __read_mostly static int disablefullpath;
4840 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
4841     &disablefullpath, 0,
4842     "Disable fullpath lookups");
4843 
4844 int
4845 cache_fullpath(struct proc *p, struct nchandle *nchp, struct nchandle *nchbase,
4846 	       char **retbuf, char **freebuf, int guess)
4847 {
4848 	struct nchandle fd_nrdir;
4849 	struct nchandle nch;
4850 	struct namecache *ncp;
4851 	struct mount *mp, *new_mp;
4852 	char *bp, *buf;
4853 	int slash_prefixed;
4854 	int error = 0;
4855 	int i;
4856 
4857 	*retbuf = NULL;
4858 	*freebuf = NULL;
4859 
4860 	buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
4861 	bp = buf + MAXPATHLEN - 1;
4862 	*bp = '\0';
4863 	if (nchbase)
4864 		fd_nrdir = *nchbase;
4865 	else if (p != NULL)
4866 		fd_nrdir = p->p_fd->fd_nrdir;
4867 	else
4868 		fd_nrdir = rootnch;
4869 	slash_prefixed = 0;
4870 	nch = *nchp;
4871 	ncp = nch.ncp;
4872 	if (ncp)
4873 		_cache_hold(ncp);
4874 	mp = nch.mount;
4875 
4876 	while (ncp && (ncp != fd_nrdir.ncp || mp != fd_nrdir.mount)) {
4877 		new_mp = NULL;
4878 
4879 		/*
4880 		 * If we are asked to guess the upwards path, we do so whenever
4881 		 * we encounter an ncp marked as a mountpoint. We try to find
4882 		 * the actual mountpoint by finding the mountpoint with this
4883 		 * ncp.
4884 		 */
4885 		if (guess && (ncp->nc_flag & NCF_ISMOUNTPT)) {
4886 			new_mp = mount_get_by_nc(ncp);
4887 		}
4888 		/*
4889 		 * While traversing upwards if we encounter the root
4890 		 * of the current mount we have to skip to the mount point.
4891 		 */
4892 		if (ncp == mp->mnt_ncmountpt.ncp) {
4893 			new_mp = mp;
4894 		}
4895 		if (new_mp) {
4896 			nch = new_mp->mnt_ncmounton;
4897 			_cache_drop(ncp);
4898 			ncp = nch.ncp;
4899 			if (ncp)
4900 				_cache_hold(ncp);
4901 			mp = nch.mount;
4902 			continue;
4903 		}
4904 
4905 		/*
4906 		 * Prepend the path segment
4907 		 */
4908 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
4909 			if (bp == buf) {
4910 				kfree(buf, M_TEMP);
4911 				error = ENOMEM;
4912 				goto done;
4913 			}
4914 			*--bp = ncp->nc_name[i];
4915 		}
4916 		if (bp == buf) {
4917 			kfree(buf, M_TEMP);
4918 			error = ENOMEM;
4919 			goto done;
4920 		}
4921 		*--bp = '/';
4922 		slash_prefixed = 1;
4923 
4924 		/*
4925 		 * Go up a directory.  This isn't a mount point so we don't
4926 		 * have to check again.
4927 		 *
4928 		 * We can only safely access nc_parent with ncp held locked.
4929 		 */
4930 		while ((nch.ncp = ncp->nc_parent) != NULL) {
4931 			_cache_lock_shared(ncp);
4932 			if (nch.ncp != ncp->nc_parent) {
4933 				_cache_unlock(ncp);
4934 				continue;
4935 			}
4936 			_cache_hold(nch.ncp);
4937 			_cache_unlock(ncp);
4938 			break;
4939 		}
4940 		_cache_drop(ncp);
4941 		ncp = nch.ncp;
4942 	}
4943 	if (ncp == NULL) {
4944 		kfree(buf, M_TEMP);
4945 		error = ENOENT;
4946 		goto done;
4947 	}
4948 
4949 	if (!slash_prefixed) {
4950 		if (bp == buf) {
4951 			kfree(buf, M_TEMP);
4952 			error = ENOMEM;
4953 			goto done;
4954 		}
4955 		*--bp = '/';
4956 	}
4957 	*retbuf = bp;
4958 	*freebuf = buf;
4959 	error = 0;
4960 done:
4961 	if (ncp)
4962 		_cache_drop(ncp);
4963 	return(error);
4964 }
4965 
4966 int
4967 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf,
4968 	    char **freebuf, int guess)
4969 {
4970 	struct namecache *ncp;
4971 	struct nchandle nch;
4972 	int error;
4973 
4974 	*freebuf = NULL;
4975 	if (disablefullpath)
4976 		return (ENODEV);
4977 
4978 	if (p == NULL)
4979 		return (EINVAL);
4980 
4981 	/* vn is NULL, client wants us to use p->p_textvp */
4982 	if (vn == NULL) {
4983 		if ((vn = p->p_textvp) == NULL)
4984 			return (EINVAL);
4985 	}
4986 	spin_lock_shared(&vn->v_spin);
4987 	TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
4988 		if (ncp->nc_nlen)
4989 			break;
4990 	}
4991 	if (ncp == NULL) {
4992 		spin_unlock_shared(&vn->v_spin);
4993 		return (EINVAL);
4994 	}
4995 	_cache_hold(ncp);
4996 	spin_unlock_shared(&vn->v_spin);
4997 
4998 	nch.ncp = ncp;
4999 	nch.mount = vn->v_mount;
5000 	error = cache_fullpath(p, &nch, NULL, retbuf, freebuf, guess);
5001 	_cache_drop(ncp);
5002 	return (error);
5003 }
5004 
5005 void
5006 vfscache_rollup_cpu(struct globaldata *gd)
5007 {
5008 	struct pcpu_ncache *pn;
5009 	long count;
5010 
5011 	if (pcpu_ncache == NULL)
5012 		return;
5013 	pn = &pcpu_ncache[gd->gd_cpuid];
5014 
5015 	if (pn->vfscache_count) {
5016 		count = atomic_swap_long(&pn->vfscache_count, 0);
5017 		atomic_add_long(&vfscache_count, count);
5018 	}
5019 	if (pn->vfscache_leafs) {
5020 		count = atomic_swap_long(&pn->vfscache_leafs, 0);
5021 		atomic_add_long(&vfscache_leafs, count);
5022 	}
5023 	if (pn->vfscache_unres) {
5024 		count = atomic_swap_long(&pn->vfscache_unres, 0);
5025 		atomic_add_long(&vfscache_unres, count);
5026 	}
5027 	if (pn->vfscache_negs) {
5028 		count = atomic_swap_long(&pn->vfscache_negs, 0);
5029 		atomic_add_long(&vfscache_negs, count);
5030 	}
5031 	if (pn->numdefered) {
5032 		count = atomic_swap_long(&pn->numdefered, 0);
5033 		atomic_add_long(&numdefered, count);
5034 	}
5035 }
5036