xref: /dragonfly/sys/kern/vfs_cache.c (revision e65bc1c3)
1 /*
2  * Copyright (c) 2003,2004,2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993, 1995
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * Poul-Henning Kamp of the FreeBSD Project.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. Neither the name of the University nor the names of its contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/kernel.h>
68 #include <sys/sysctl.h>
69 #include <sys/mount.h>
70 #include <sys/vnode.h>
71 #include <sys/malloc.h>
72 #include <sys/sysproto.h>
73 #include <sys/spinlock.h>
74 #include <sys/proc.h>
75 #include <sys/namei.h>
76 #include <sys/nlookup.h>
77 #include <sys/filedesc.h>
78 #include <sys/fnv_hash.h>
79 #include <sys/globaldata.h>
80 #include <sys/kern_syscall.h>
81 #include <sys/dirent.h>
82 #include <ddb/ddb.h>
83 
84 #include <sys/sysref2.h>
85 #include <sys/spinlock2.h>
86 #include <sys/mplock2.h>
87 
88 #define MAX_RECURSION_DEPTH	64
89 
90 /*
91  * Random lookups in the cache are accomplished with a hash table using
92  * a hash key of (nc_src_vp, name).  Each hash chain has its own spin lock.
93  *
94  * Negative entries may exist and correspond to resolved namecache
95  * structures where nc_vp is NULL.  In a negative entry, NCF_WHITEOUT
96  * will be set if the entry corresponds to a whited-out directory entry
97  * (verses simply not finding the entry at all).   ncneglist is locked
98  * with a global spinlock (ncspin).
99  *
100  * MPSAFE RULES:
101  *
102  * (1) A ncp must be referenced before it can be locked.
103  *
104  * (2) A ncp must be locked in order to modify it.
105  *
106  * (3) ncp locks are always ordered child -> parent.  That may seem
107  *     backwards but forward scans use the hash table and thus can hold
108  *     the parent unlocked when traversing downward.
109  *
110  *     This allows insert/rename/delete/dot-dot and other operations
111  *     to use ncp->nc_parent links.
112  *
113  *     This also prevents a locked up e.g. NFS node from creating a
114  *     chain reaction all the way back to the root vnode / namecache.
115  *
116  * (4) parent linkages require both the parent and child to be locked.
117  */
118 
119 /*
120  * Structures associated with name cacheing.
121  */
122 #define NCHHASH(hash)		(&nchashtbl[(hash) & nchash])
123 #define MINNEG			1024
124 #define MINPOS			1024
125 #define NCMOUNT_NUMCACHE	1009	/* prime number */
126 
127 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
128 
129 LIST_HEAD(nchash_list, namecache);
130 
131 struct nchash_head {
132        struct nchash_list list;
133        struct spinlock	spin;
134 };
135 
136 struct ncmount_cache {
137 	struct spinlock	spin;
138 	struct namecache *ncp;
139 	struct mount *mp;
140 	int isneg;		/* if != 0 mp is originator and not target */
141 };
142 
143 static struct nchash_head	*nchashtbl;
144 static struct namecache_list	ncneglist;
145 static struct spinlock		ncspin;
146 static struct ncmount_cache	ncmount_cache[NCMOUNT_NUMCACHE];
147 
148 /*
149  * ncvp_debug - debug cache_fromvp().  This is used by the NFS server
150  * to create the namecache infrastructure leading to a dangling vnode.
151  *
152  * 0	Only errors are reported
153  * 1	Successes are reported
154  * 2	Successes + the whole directory scan is reported
155  * 3	Force the directory scan code run as if the parent vnode did not
156  *	have a namecache record, even if it does have one.
157  */
158 static int	ncvp_debug;
159 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0,
160     "Namecache debug level (0-3)");
161 
162 static u_long	nchash;			/* size of hash table */
163 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
164     "Size of namecache hash table");
165 
166 static int	ncnegflush = 10;	/* burst for negative flush */
167 SYSCTL_INT(_debug, OID_AUTO, ncnegflush, CTLFLAG_RW, &ncnegflush, 0,
168     "Batch flush negative entries");
169 
170 static int	ncposflush = 10;	/* burst for positive flush */
171 SYSCTL_INT(_debug, OID_AUTO, ncposflush, CTLFLAG_RW, &ncposflush, 0,
172     "Batch flush positive entries");
173 
174 static int	ncnegfactor = 16;	/* ratio of negative entries */
175 SYSCTL_INT(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0,
176     "Ratio of namecache negative entries");
177 
178 static int	nclockwarn;		/* warn on locked entries in ticks */
179 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0,
180     "Warn on locked namecache entries in ticks");
181 
182 static int	numdefered;		/* number of cache entries allocated */
183 SYSCTL_INT(_debug, OID_AUTO, numdefered, CTLFLAG_RD, &numdefered, 0,
184     "Number of cache entries allocated");
185 
186 static int	ncposlimit;		/* number of cache entries allocated */
187 SYSCTL_INT(_debug, OID_AUTO, ncposlimit, CTLFLAG_RW, &ncposlimit, 0,
188     "Number of cache entries allocated");
189 
190 static int	ncp_shared_lock_disable = 0;
191 SYSCTL_INT(_debug, OID_AUTO, ncp_shared_lock_disable, CTLFLAG_RW,
192 	   &ncp_shared_lock_disable, 0, "Disable shared namecache locks");
193 
194 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode),
195     "sizeof(struct vnode)");
196 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache),
197     "sizeof(struct namecache)");
198 
199 static int	ncmount_cache_enable = 1;
200 SYSCTL_INT(_debug, OID_AUTO, ncmount_cache_enable, CTLFLAG_RW,
201 	   &ncmount_cache_enable, 0, "mount point cache");
202 static long	ncmount_cache_hit;
203 SYSCTL_LONG(_debug, OID_AUTO, ncmount_cache_hit, CTLFLAG_RW,
204 	    &ncmount_cache_hit, 0, "mpcache hits");
205 static long	ncmount_cache_miss;
206 SYSCTL_LONG(_debug, OID_AUTO, ncmount_cache_miss, CTLFLAG_RW,
207 	    &ncmount_cache_miss, 0, "mpcache misses");
208 static long	ncmount_cache_overwrite;
209 SYSCTL_LONG(_debug, OID_AUTO, ncmount_cache_overwrite, CTLFLAG_RW,
210 	    &ncmount_cache_overwrite, 0, "mpcache entry overwrites");
211 
212 static int cache_resolve_mp(struct mount *mp);
213 static struct vnode *cache_dvpref(struct namecache *ncp);
214 static void _cache_lock(struct namecache *ncp);
215 static void _cache_setunresolved(struct namecache *ncp);
216 static void _cache_cleanneg(int count);
217 static void _cache_cleanpos(int count);
218 static void _cache_cleandefered(void);
219 static void _cache_unlink(struct namecache *ncp);
220 
221 /*
222  * The new name cache statistics
223  */
224 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
225 static int numneg;
226 SYSCTL_INT(_vfs_cache, OID_AUTO, numneg, CTLFLAG_RD, &numneg, 0,
227     "Number of negative namecache entries");
228 static int numcache;
229 SYSCTL_INT(_vfs_cache, OID_AUTO, numcache, CTLFLAG_RD, &numcache, 0,
230     "Number of namecaches entries");
231 static u_long numcalls;
232 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcalls, CTLFLAG_RD, &numcalls, 0,
233     "Number of namecache lookups");
234 static u_long numchecks;
235 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numchecks, CTLFLAG_RD, &numchecks, 0,
236     "Number of checked entries in namecache lookups");
237 
238 struct nchstats nchstats[SMP_MAXCPU];
239 /*
240  * Export VFS cache effectiveness statistics to user-land.
241  *
242  * The statistics are left for aggregation to user-land so
243  * neat things can be achieved, like observing per-CPU cache
244  * distribution.
245  */
246 static int
247 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
248 {
249 	struct globaldata *gd;
250 	int i, error;
251 
252 	error = 0;
253 	for (i = 0; i < ncpus; ++i) {
254 		gd = globaldata_find(i);
255 		if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
256 			sizeof(struct nchstats))))
257 			break;
258 	}
259 
260 	return (error);
261 }
262 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
263   0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
264 
265 static struct namecache *cache_zap(struct namecache *ncp, int nonblock);
266 
267 /*
268  * Namespace locking.  The caller must already hold a reference to the
269  * namecache structure in order to lock/unlock it.  This function prevents
270  * the namespace from being created or destroyed by accessors other then
271  * the lock holder.
272  *
273  * Note that holding a locked namecache structure prevents other threads
274  * from making namespace changes (e.g. deleting or creating), prevents
275  * vnode association state changes by other threads, and prevents the
276  * namecache entry from being resolved or unresolved by other threads.
277  *
278  * An exclusive lock owner has full authority to associate/disassociate
279  * vnodes and resolve/unresolve the locked ncp.
280  *
281  * A shared lock owner only has authority to acquire the underlying vnode,
282  * if any.
283  *
284  * The primary lock field is nc_lockstatus.  nc_locktd is set after the
285  * fact (when locking) or cleared prior to unlocking.
286  *
287  * WARNING!  Holding a locked ncp will prevent a vnode from being destroyed
288  *	     or recycled, but it does NOT help you if the vnode had already
289  *	     initiated a recyclement.  If this is important, use cache_get()
290  *	     rather then cache_lock() (and deal with the differences in the
291  *	     way the refs counter is handled).  Or, alternatively, make an
292  *	     unconditional call to cache_validate() or cache_resolve()
293  *	     after cache_lock() returns.
294  */
295 static
296 void
297 _cache_lock(struct namecache *ncp)
298 {
299 	thread_t td;
300 	int didwarn;
301 	int begticks;
302 	int error;
303 	u_int count;
304 
305 	KKASSERT(ncp->nc_refs != 0);
306 	didwarn = 0;
307 	begticks = 0;
308 	td = curthread;
309 
310 	for (;;) {
311 		count = ncp->nc_lockstatus;
312 		cpu_ccfence();
313 
314 		if ((count & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 0) {
315 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
316 					      count, count + 1)) {
317 				/*
318 				 * The vp associated with a locked ncp must
319 				 * be held to prevent it from being recycled.
320 				 *
321 				 * WARNING!  If VRECLAIMED is set the vnode
322 				 * could already be in the middle of a recycle.
323 				 * Callers must use cache_vref() or
324 				 * cache_vget() on the locked ncp to
325 				 * validate the vp or set the cache entry
326 				 * to unresolved.
327 				 *
328 				 * NOTE! vhold() is allowed if we hold a
329 				 *	 lock on the ncp (which we do).
330 				 */
331 				ncp->nc_locktd = td;
332 				if (ncp->nc_vp)
333 					vhold(ncp->nc_vp);
334 				break;
335 			}
336 			/* cmpset failed */
337 			continue;
338 		}
339 		if (ncp->nc_locktd == td) {
340 			KKASSERT((count & NC_SHLOCK_FLAG) == 0);
341 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
342 					      count, count + 1)) {
343 				break;
344 			}
345 			/* cmpset failed */
346 			continue;
347 		}
348 		tsleep_interlock(&ncp->nc_locktd, 0);
349 		if (atomic_cmpset_int(&ncp->nc_lockstatus, count,
350 				      count | NC_EXLOCK_REQ) == 0) {
351 			/* cmpset failed */
352 			continue;
353 		}
354 		if (begticks == 0)
355 			begticks = ticks;
356 		error = tsleep(&ncp->nc_locktd, PINTERLOCKED,
357 			       "clock", nclockwarn);
358 		if (error == EWOULDBLOCK) {
359 			if (didwarn == 0) {
360 				didwarn = ticks;
361 				kprintf("[diagnostic] cache_lock: "
362 					"blocked on %p %08x",
363 					ncp, count);
364 				kprintf(" \"%*.*s\"\n",
365 					ncp->nc_nlen, ncp->nc_nlen,
366 					ncp->nc_name);
367 			}
368 		}
369 		/* loop */
370 	}
371 	if (didwarn) {
372 		kprintf("[diagnostic] cache_lock: unblocked %*.*s after "
373 			"%d secs\n",
374 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
375 			(int)(ticks + (hz / 2) - begticks) / hz);
376 	}
377 }
378 
379 /*
380  * The shared lock works similarly to the exclusive lock except
381  * nc_locktd is left NULL and we need an interlock (VHOLD) to
382  * prevent vhold() races, since the moment our cmpset_int succeeds
383  * another cpu can come in and get its own shared lock.
384  *
385  * A critical section is needed to prevent interruption during the
386  * VHOLD interlock.
387  */
388 static
389 void
390 _cache_lock_shared(struct namecache *ncp)
391 {
392 	int didwarn;
393 	int error;
394 	u_int count;
395 	u_int optreq = NC_EXLOCK_REQ;
396 
397 	KKASSERT(ncp->nc_refs != 0);
398 	didwarn = 0;
399 
400 	for (;;) {
401 		count = ncp->nc_lockstatus;
402 		cpu_ccfence();
403 
404 		if ((count & ~NC_SHLOCK_REQ) == 0) {
405 			crit_enter();
406 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
407 				      count,
408 				      (count + 1) | NC_SHLOCK_FLAG |
409 						    NC_SHLOCK_VHOLD)) {
410 				/*
411 				 * The vp associated with a locked ncp must
412 				 * be held to prevent it from being recycled.
413 				 *
414 				 * WARNING!  If VRECLAIMED is set the vnode
415 				 * could already be in the middle of a recycle.
416 				 * Callers must use cache_vref() or
417 				 * cache_vget() on the locked ncp to
418 				 * validate the vp or set the cache entry
419 				 * to unresolved.
420 				 *
421 				 * NOTE! vhold() is allowed if we hold a
422 				 *	 lock on the ncp (which we do).
423 				 */
424 				if (ncp->nc_vp)
425 					vhold(ncp->nc_vp);
426 				atomic_clear_int(&ncp->nc_lockstatus,
427 						 NC_SHLOCK_VHOLD);
428 				crit_exit();
429 				break;
430 			}
431 			/* cmpset failed */
432 			crit_exit();
433 			continue;
434 		}
435 
436 		/*
437 		 * If already held shared we can just bump the count, but
438 		 * only allow this if nobody is trying to get the lock
439 		 * exclusively.  If we are blocking too long ignore excl
440 		 * requests (which can race/deadlock us).
441 		 *
442 		 * VHOLD is a bit of a hack.  Even though we successfully
443 		 * added another shared ref, the cpu that got the first
444 		 * shared ref might not yet have held the vnode.
445 		 */
446 		if ((count & (optreq|NC_SHLOCK_FLAG)) == NC_SHLOCK_FLAG) {
447 			KKASSERT((count & ~(NC_EXLOCK_REQ |
448 					    NC_SHLOCK_REQ |
449 					    NC_SHLOCK_FLAG)) > 0);
450 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
451 					      count, count + 1)) {
452 				while (ncp->nc_lockstatus & NC_SHLOCK_VHOLD)
453 					cpu_pause();
454 				break;
455 			}
456 			continue;
457 		}
458 		tsleep_interlock(ncp, 0);
459 		if (atomic_cmpset_int(&ncp->nc_lockstatus, count,
460 				      count | NC_SHLOCK_REQ) == 0) {
461 			/* cmpset failed */
462 			continue;
463 		}
464 		error = tsleep(ncp, PINTERLOCKED, "clocksh", nclockwarn);
465 		if (error == EWOULDBLOCK) {
466 			optreq = 0;
467 			if (didwarn == 0) {
468 				didwarn = ticks;
469 				kprintf("[diagnostic] cache_lock_shared: "
470 					"blocked on %p %08x",
471 					ncp, count);
472 				kprintf(" \"%*.*s\"\n",
473 					ncp->nc_nlen, ncp->nc_nlen,
474 					ncp->nc_name);
475 			}
476 		}
477 		/* loop */
478 	}
479 	if (didwarn) {
480 		kprintf("[diagnostic] cache_lock_shared: "
481 			"unblocked %*.*s after %d secs\n",
482 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
483 			(int)(ticks - didwarn) / hz);
484 	}
485 }
486 
487 /*
488  * NOTE: nc_refs may be zero if the ncp is interlocked by circumstance,
489  *	 such as the case where one of its children is locked.
490  */
491 static
492 int
493 _cache_lock_nonblock(struct namecache *ncp)
494 {
495 	thread_t td;
496 	u_int count;
497 
498 	td = curthread;
499 
500 	for (;;) {
501 		count = ncp->nc_lockstatus;
502 
503 		if ((count & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 0) {
504 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
505 					      count, count + 1)) {
506 				/*
507 				 * The vp associated with a locked ncp must
508 				 * be held to prevent it from being recycled.
509 				 *
510 				 * WARNING!  If VRECLAIMED is set the vnode
511 				 * could already be in the middle of a recycle.
512 				 * Callers must use cache_vref() or
513 				 * cache_vget() on the locked ncp to
514 				 * validate the vp or set the cache entry
515 				 * to unresolved.
516 				 *
517 				 * NOTE! vhold() is allowed if we hold a
518 				 *	 lock on the ncp (which we do).
519 				 */
520 				ncp->nc_locktd = td;
521 				if (ncp->nc_vp)
522 					vhold(ncp->nc_vp);
523 				break;
524 			}
525 			/* cmpset failed */
526 			continue;
527 		}
528 		if (ncp->nc_locktd == td) {
529 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
530 					      count, count + 1)) {
531 				break;
532 			}
533 			/* cmpset failed */
534 			continue;
535 		}
536 		return(EWOULDBLOCK);
537 	}
538 	return(0);
539 }
540 
541 /*
542  * The shared lock works similarly to the exclusive lock except
543  * nc_locktd is left NULL and we need an interlock (VHOLD) to
544  * prevent vhold() races, since the moment our cmpset_int succeeds
545  * another cpu can come in and get its own shared lock.
546  *
547  * A critical section is needed to prevent interruption during the
548  * VHOLD interlock.
549  */
550 static
551 int
552 _cache_lock_shared_nonblock(struct namecache *ncp)
553 {
554 	u_int count;
555 
556 	for (;;) {
557 		count = ncp->nc_lockstatus;
558 
559 		if ((count & ~NC_SHLOCK_REQ) == 0) {
560 			crit_enter();
561 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
562 				      count,
563 				      (count + 1) | NC_SHLOCK_FLAG |
564 						    NC_SHLOCK_VHOLD)) {
565 				/*
566 				 * The vp associated with a locked ncp must
567 				 * be held to prevent it from being recycled.
568 				 *
569 				 * WARNING!  If VRECLAIMED is set the vnode
570 				 * could already be in the middle of a recycle.
571 				 * Callers must use cache_vref() or
572 				 * cache_vget() on the locked ncp to
573 				 * validate the vp or set the cache entry
574 				 * to unresolved.
575 				 *
576 				 * NOTE! vhold() is allowed if we hold a
577 				 *	 lock on the ncp (which we do).
578 				 */
579 				if (ncp->nc_vp)
580 					vhold(ncp->nc_vp);
581 				atomic_clear_int(&ncp->nc_lockstatus,
582 						 NC_SHLOCK_VHOLD);
583 				crit_exit();
584 				break;
585 			}
586 			/* cmpset failed */
587 			crit_exit();
588 			continue;
589 		}
590 
591 		/*
592 		 * If already held shared we can just bump the count, but
593 		 * only allow this if nobody is trying to get the lock
594 		 * exclusively.
595 		 *
596 		 * VHOLD is a bit of a hack.  Even though we successfully
597 		 * added another shared ref, the cpu that got the first
598 		 * shared ref might not yet have held the vnode.
599 		 */
600 		if ((count & (NC_EXLOCK_REQ|NC_SHLOCK_FLAG)) ==
601 		    NC_SHLOCK_FLAG) {
602 			KKASSERT((count & ~(NC_EXLOCK_REQ |
603 					    NC_SHLOCK_REQ |
604 					    NC_SHLOCK_FLAG)) > 0);
605 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
606 					      count, count + 1)) {
607 				while (ncp->nc_lockstatus & NC_SHLOCK_VHOLD)
608 					cpu_pause();
609 				break;
610 			}
611 			continue;
612 		}
613 		return(EWOULDBLOCK);
614 	}
615 	return(0);
616 }
617 
618 /*
619  * Helper function
620  *
621  * NOTE: nc_refs can be 0 (degenerate case during _cache_drop).
622  *
623  *	 nc_locktd must be NULLed out prior to nc_lockstatus getting cleared.
624  */
625 static
626 void
627 _cache_unlock(struct namecache *ncp)
628 {
629 	thread_t td __debugvar = curthread;
630 	u_int count;
631 	u_int ncount;
632 	struct vnode *dropvp;
633 
634 	KKASSERT(ncp->nc_refs >= 0);
635 	KKASSERT((ncp->nc_lockstatus & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) > 0);
636 	KKASSERT((ncp->nc_lockstatus & NC_SHLOCK_FLAG) || ncp->nc_locktd == td);
637 
638 	count = ncp->nc_lockstatus;
639 	cpu_ccfence();
640 
641 	/*
642 	 * Clear nc_locktd prior to the atomic op (excl lock only)
643 	 */
644 	if ((count & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 1)
645 		ncp->nc_locktd = NULL;
646 	dropvp = NULL;
647 
648 	for (;;) {
649 		if ((count &
650 		     ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ|NC_SHLOCK_FLAG)) == 1) {
651 			dropvp = ncp->nc_vp;
652 			if (count & NC_EXLOCK_REQ)
653 				ncount = count & NC_SHLOCK_REQ; /* cnt->0 */
654 			else
655 				ncount = 0;
656 
657 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
658 					      count, ncount)) {
659 				if (count & NC_EXLOCK_REQ)
660 					wakeup(&ncp->nc_locktd);
661 				else if (count & NC_SHLOCK_REQ)
662 					wakeup(ncp);
663 				break;
664 			}
665 			dropvp = NULL;
666 		} else {
667 			KKASSERT((count & NC_SHLOCK_VHOLD) == 0);
668 			KKASSERT((count & ~(NC_EXLOCK_REQ |
669 					    NC_SHLOCK_REQ |
670 					    NC_SHLOCK_FLAG)) > 1);
671 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
672 					      count, count - 1)) {
673 				break;
674 			}
675 		}
676 		count = ncp->nc_lockstatus;
677 		cpu_ccfence();
678 	}
679 
680 	/*
681 	 * Don't actually drop the vp until we successfully clean out
682 	 * the lock, otherwise we may race another shared lock.
683 	 */
684 	if (dropvp)
685 		vdrop(dropvp);
686 }
687 
688 static
689 int
690 _cache_lockstatus(struct namecache *ncp)
691 {
692 	if (ncp->nc_locktd == curthread)
693 		return(LK_EXCLUSIVE);
694 	if (ncp->nc_lockstatus & NC_SHLOCK_FLAG)
695 		return(LK_SHARED);
696 	return(-1);
697 }
698 
699 /*
700  * cache_hold() and cache_drop() prevent the premature deletion of a
701  * namecache entry but do not prevent operations (such as zapping) on
702  * that namecache entry.
703  *
704  * This routine may only be called from outside this source module if
705  * nc_refs is already at least 1.
706  *
707  * This is a rare case where callers are allowed to hold a spinlock,
708  * so we can't ourselves.
709  */
710 static __inline
711 struct namecache *
712 _cache_hold(struct namecache *ncp)
713 {
714 	atomic_add_int(&ncp->nc_refs, 1);
715 	return(ncp);
716 }
717 
718 /*
719  * Drop a cache entry, taking care to deal with races.
720  *
721  * For potential 1->0 transitions we must hold the ncp lock to safely
722  * test its flags.  An unresolved entry with no children must be zapped
723  * to avoid leaks.
724  *
725  * The call to cache_zap() itself will handle all remaining races and
726  * will decrement the ncp's refs regardless.  If we are resolved or
727  * have children nc_refs can safely be dropped to 0 without having to
728  * zap the entry.
729  *
730  * NOTE: cache_zap() will re-check nc_refs and nc_list in a MPSAFE fashion.
731  *
732  * NOTE: cache_zap() may return a non-NULL referenced parent which must
733  *	 be dropped in a loop.
734  */
735 static __inline
736 void
737 _cache_drop(struct namecache *ncp)
738 {
739 	int refs;
740 
741 	while (ncp) {
742 		KKASSERT(ncp->nc_refs > 0);
743 		refs = ncp->nc_refs;
744 
745 		if (refs == 1) {
746 			if (_cache_lock_nonblock(ncp) == 0) {
747 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
748 				if ((ncp->nc_flag & NCF_UNRESOLVED) &&
749 				    TAILQ_EMPTY(&ncp->nc_list)) {
750 					ncp = cache_zap(ncp, 1);
751 					continue;
752 				}
753 				if (atomic_cmpset_int(&ncp->nc_refs, 1, 0)) {
754 					_cache_unlock(ncp);
755 					break;
756 				}
757 				_cache_unlock(ncp);
758 			}
759 		} else {
760 			if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1))
761 				break;
762 		}
763 		cpu_pause();
764 	}
765 }
766 
767 /*
768  * Link a new namecache entry to its parent and to the hash table.  Be
769  * careful to avoid races if vhold() blocks in the future.
770  *
771  * Both ncp and par must be referenced and locked.
772  *
773  * NOTE: The hash table spinlock is held during this call, we can't do
774  *	 anything fancy.
775  */
776 static void
777 _cache_link_parent(struct namecache *ncp, struct namecache *par,
778 		   struct nchash_head *nchpp)
779 {
780 	KKASSERT(ncp->nc_parent == NULL);
781 	ncp->nc_parent = par;
782 	ncp->nc_head = nchpp;
783 
784 	/*
785 	 * Set inheritance flags.  Note that the parent flags may be
786 	 * stale due to getattr potentially not having been run yet
787 	 * (it gets run during nlookup()'s).
788 	 */
789 	ncp->nc_flag &= ~(NCF_SF_PNOCACHE | NCF_UF_PCACHE);
790 	if (par->nc_flag & (NCF_SF_NOCACHE | NCF_SF_PNOCACHE))
791 		ncp->nc_flag |= NCF_SF_PNOCACHE;
792 	if (par->nc_flag & (NCF_UF_CACHE | NCF_UF_PCACHE))
793 		ncp->nc_flag |= NCF_UF_PCACHE;
794 
795 	LIST_INSERT_HEAD(&nchpp->list, ncp, nc_hash);
796 
797 	if (TAILQ_EMPTY(&par->nc_list)) {
798 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
799 		/*
800 		 * Any vp associated with an ncp which has children must
801 		 * be held to prevent it from being recycled.
802 		 */
803 		if (par->nc_vp)
804 			vhold(par->nc_vp);
805 	} else {
806 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
807 	}
808 }
809 
810 /*
811  * Remove the parent and hash associations from a namecache structure.
812  * If this is the last child of the parent the cache_drop(par) will
813  * attempt to recursively zap the parent.
814  *
815  * ncp must be locked.  This routine will acquire a temporary lock on
816  * the parent as wlel as the appropriate hash chain.
817  */
818 static void
819 _cache_unlink_parent(struct namecache *ncp)
820 {
821 	struct namecache *par;
822 	struct vnode *dropvp;
823 
824 	if ((par = ncp->nc_parent) != NULL) {
825 		KKASSERT(ncp->nc_parent == par);
826 		_cache_hold(par);
827 		_cache_lock(par);
828 		spin_lock(&ncp->nc_head->spin);
829 		LIST_REMOVE(ncp, nc_hash);
830 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
831 		dropvp = NULL;
832 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
833 			dropvp = par->nc_vp;
834 		spin_unlock(&ncp->nc_head->spin);
835 		ncp->nc_parent = NULL;
836 		ncp->nc_head = NULL;
837 		_cache_unlock(par);
838 		_cache_drop(par);
839 
840 		/*
841 		 * We can only safely vdrop with no spinlocks held.
842 		 */
843 		if (dropvp)
844 			vdrop(dropvp);
845 	}
846 }
847 
848 /*
849  * Allocate a new namecache structure.  Most of the code does not require
850  * zero-termination of the string but it makes vop_compat_ncreate() easier.
851  */
852 static struct namecache *
853 cache_alloc(int nlen)
854 {
855 	struct namecache *ncp;
856 
857 	ncp = kmalloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
858 	if (nlen)
859 		ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHE, M_WAITOK);
860 	ncp->nc_nlen = nlen;
861 	ncp->nc_flag = NCF_UNRESOLVED;
862 	ncp->nc_error = ENOTCONN;	/* needs to be resolved */
863 	ncp->nc_refs = 1;
864 
865 	TAILQ_INIT(&ncp->nc_list);
866 	_cache_lock(ncp);
867 	return(ncp);
868 }
869 
870 /*
871  * Can only be called for the case where the ncp has never been
872  * associated with anything (so no spinlocks are needed).
873  */
874 static void
875 _cache_free(struct namecache *ncp)
876 {
877 	KKASSERT(ncp->nc_refs == 1 && ncp->nc_lockstatus == 1);
878 	if (ncp->nc_name)
879 		kfree(ncp->nc_name, M_VFSCACHE);
880 	kfree(ncp, M_VFSCACHE);
881 }
882 
883 /*
884  * [re]initialize a nchandle.
885  */
886 void
887 cache_zero(struct nchandle *nch)
888 {
889 	nch->ncp = NULL;
890 	nch->mount = NULL;
891 }
892 
893 /*
894  * Ref and deref a namecache structure.
895  *
896  * The caller must specify a stable ncp pointer, typically meaning the
897  * ncp is already referenced but this can also occur indirectly through
898  * e.g. holding a lock on a direct child.
899  *
900  * WARNING: Caller may hold an unrelated read spinlock, which means we can't
901  *	    use read spinlocks here.
902  *
903  * MPSAFE if nch is
904  */
905 struct nchandle *
906 cache_hold(struct nchandle *nch)
907 {
908 	_cache_hold(nch->ncp);
909 	atomic_add_int(&nch->mount->mnt_refs, 1);
910 	return(nch);
911 }
912 
913 /*
914  * Create a copy of a namecache handle for an already-referenced
915  * entry.
916  *
917  * MPSAFE if nch is
918  */
919 void
920 cache_copy(struct nchandle *nch, struct nchandle *target)
921 {
922 	*target = *nch;
923 	if (target->ncp)
924 		_cache_hold(target->ncp);
925 	atomic_add_int(&nch->mount->mnt_refs, 1);
926 }
927 
928 /*
929  * MPSAFE if nch is
930  */
931 void
932 cache_changemount(struct nchandle *nch, struct mount *mp)
933 {
934 	atomic_add_int(&nch->mount->mnt_refs, -1);
935 	nch->mount = mp;
936 	atomic_add_int(&nch->mount->mnt_refs, 1);
937 }
938 
939 void
940 cache_drop(struct nchandle *nch)
941 {
942 	atomic_add_int(&nch->mount->mnt_refs, -1);
943 	_cache_drop(nch->ncp);
944 	nch->ncp = NULL;
945 	nch->mount = NULL;
946 }
947 
948 int
949 cache_lockstatus(struct nchandle *nch)
950 {
951 	return(_cache_lockstatus(nch->ncp));
952 }
953 
954 void
955 cache_lock(struct nchandle *nch)
956 {
957 	_cache_lock(nch->ncp);
958 }
959 
960 void
961 cache_lock_maybe_shared(struct nchandle *nch, int excl)
962 {
963 	struct namecache *ncp = nch->ncp;
964 
965 	if (ncp_shared_lock_disable || excl ||
966 	    (ncp->nc_flag & NCF_UNRESOLVED)) {
967 		_cache_lock(ncp);
968 	} else {
969 		_cache_lock_shared(ncp);
970 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
971 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
972 				_cache_unlock(ncp);
973 				_cache_lock(ncp);
974 			}
975 		} else {
976 			_cache_unlock(ncp);
977 			_cache_lock(ncp);
978 		}
979 	}
980 }
981 
982 /*
983  * Relock nch1 given an unlocked nch1 and a locked nch2.  The caller
984  * is responsible for checking both for validity on return as they
985  * may have become invalid.
986  *
987  * We have to deal with potential deadlocks here, just ping pong
988  * the lock until we get it (we will always block somewhere when
989  * looping so this is not cpu-intensive).
990  *
991  * which = 0	nch1 not locked, nch2 is locked
992  * which = 1	nch1 is locked, nch2 is not locked
993  */
994 void
995 cache_relock(struct nchandle *nch1, struct ucred *cred1,
996 	     struct nchandle *nch2, struct ucred *cred2)
997 {
998 	int which;
999 
1000 	which = 0;
1001 
1002 	for (;;) {
1003 		if (which == 0) {
1004 			if (cache_lock_nonblock(nch1) == 0) {
1005 				cache_resolve(nch1, cred1);
1006 				break;
1007 			}
1008 			cache_unlock(nch2);
1009 			cache_lock(nch1);
1010 			cache_resolve(nch1, cred1);
1011 			which = 1;
1012 		} else {
1013 			if (cache_lock_nonblock(nch2) == 0) {
1014 				cache_resolve(nch2, cred2);
1015 				break;
1016 			}
1017 			cache_unlock(nch1);
1018 			cache_lock(nch2);
1019 			cache_resolve(nch2, cred2);
1020 			which = 0;
1021 		}
1022 	}
1023 }
1024 
1025 int
1026 cache_lock_nonblock(struct nchandle *nch)
1027 {
1028 	return(_cache_lock_nonblock(nch->ncp));
1029 }
1030 
1031 void
1032 cache_unlock(struct nchandle *nch)
1033 {
1034 	_cache_unlock(nch->ncp);
1035 }
1036 
1037 /*
1038  * ref-and-lock, unlock-and-deref functions.
1039  *
1040  * This function is primarily used by nlookup.  Even though cache_lock
1041  * holds the vnode, it is possible that the vnode may have already
1042  * initiated a recyclement.
1043  *
1044  * We want cache_get() to return a definitively usable vnode or a
1045  * definitively unresolved ncp.
1046  */
1047 static
1048 struct namecache *
1049 _cache_get(struct namecache *ncp)
1050 {
1051 	_cache_hold(ncp);
1052 	_cache_lock(ncp);
1053 	if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1054 		_cache_setunresolved(ncp);
1055 	return(ncp);
1056 }
1057 
1058 /*
1059  * Attempt to obtain a shared lock on the ncp.  A shared lock will only
1060  * be obtained if the ncp is resolved and the vnode (if not ENOENT) is
1061  * valid.  Otherwise an exclusive lock will be acquired instead.
1062  */
1063 static
1064 struct namecache *
1065 _cache_get_maybe_shared(struct namecache *ncp, int excl)
1066 {
1067 	if (ncp_shared_lock_disable || excl ||
1068 	    (ncp->nc_flag & NCF_UNRESOLVED)) {
1069 		return(_cache_get(ncp));
1070 	}
1071 	_cache_hold(ncp);
1072 	_cache_lock_shared(ncp);
1073 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1074 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
1075 			_cache_unlock(ncp);
1076 			ncp = _cache_get(ncp);
1077 			_cache_drop(ncp);
1078 		}
1079 	} else {
1080 		_cache_unlock(ncp);
1081 		ncp = _cache_get(ncp);
1082 		_cache_drop(ncp);
1083 	}
1084 	return(ncp);
1085 }
1086 
1087 /*
1088  * This is a special form of _cache_lock() which only succeeds if
1089  * it can get a pristine, non-recursive lock.  The caller must have
1090  * already ref'd the ncp.
1091  *
1092  * On success the ncp will be locked, on failure it will not.  The
1093  * ref count does not change either way.
1094  *
1095  * We want _cache_lock_special() (on success) to return a definitively
1096  * usable vnode or a definitively unresolved ncp.
1097  */
1098 static int
1099 _cache_lock_special(struct namecache *ncp)
1100 {
1101 	if (_cache_lock_nonblock(ncp) == 0) {
1102 		if ((ncp->nc_lockstatus &
1103 		     ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 1) {
1104 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1105 				_cache_setunresolved(ncp);
1106 			return(0);
1107 		}
1108 		_cache_unlock(ncp);
1109 	}
1110 	return(EWOULDBLOCK);
1111 }
1112 
1113 /*
1114  * This function tries to get a shared lock but will back-off to an exclusive
1115  * lock if:
1116  *
1117  * (1) Some other thread is trying to obtain an exclusive lock
1118  *     (to prevent the exclusive requester from getting livelocked out
1119  *     by many shared locks).
1120  *
1121  * (2) The current thread already owns an exclusive lock (to avoid
1122  *     deadlocking).
1123  *
1124  * WARNING! On machines with lots of cores we really want to try hard to
1125  *	    get a shared lock or concurrent path lookups can chain-react
1126  *	    into a very high-latency exclusive lock.
1127  */
1128 static int
1129 _cache_lock_shared_special(struct namecache *ncp)
1130 {
1131 	if (_cache_lock_shared_nonblock(ncp) == 0) {
1132 		if ((ncp->nc_lockstatus &
1133 		     ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == (NC_SHLOCK_FLAG | 1)) {
1134 			if (ncp->nc_vp == NULL ||
1135 			    (ncp->nc_vp->v_flag & VRECLAIMED) == 0) {
1136 				return(0);
1137 			}
1138 		}
1139 		_cache_unlock(ncp);
1140 		return(EWOULDBLOCK);
1141 	}
1142 	if (ncp->nc_locktd == curthread) {
1143 		_cache_lock(ncp);
1144 		return(0);
1145 	}
1146 	_cache_lock_shared(ncp);
1147 	return(0);
1148 }
1149 
1150 
1151 /*
1152  * NOTE: The same nchandle can be passed for both arguments.
1153  */
1154 void
1155 cache_get(struct nchandle *nch, struct nchandle *target)
1156 {
1157 	KKASSERT(nch->ncp->nc_refs > 0);
1158 	target->mount = nch->mount;
1159 	target->ncp = _cache_get(nch->ncp);
1160 	atomic_add_int(&target->mount->mnt_refs, 1);
1161 }
1162 
1163 void
1164 cache_get_maybe_shared(struct nchandle *nch, struct nchandle *target, int excl)
1165 {
1166 	KKASSERT(nch->ncp->nc_refs > 0);
1167 	target->mount = nch->mount;
1168 	target->ncp = _cache_get_maybe_shared(nch->ncp, excl);
1169 	atomic_add_int(&target->mount->mnt_refs, 1);
1170 }
1171 
1172 /*
1173  *
1174  */
1175 static __inline
1176 void
1177 _cache_put(struct namecache *ncp)
1178 {
1179 	_cache_unlock(ncp);
1180 	_cache_drop(ncp);
1181 }
1182 
1183 /*
1184  *
1185  */
1186 void
1187 cache_put(struct nchandle *nch)
1188 {
1189 	atomic_add_int(&nch->mount->mnt_refs, -1);
1190 	_cache_put(nch->ncp);
1191 	nch->ncp = NULL;
1192 	nch->mount = NULL;
1193 }
1194 
1195 /*
1196  * Resolve an unresolved ncp by associating a vnode with it.  If the
1197  * vnode is NULL, a negative cache entry is created.
1198  *
1199  * The ncp should be locked on entry and will remain locked on return.
1200  */
1201 static
1202 void
1203 _cache_setvp(struct mount *mp, struct namecache *ncp, struct vnode *vp)
1204 {
1205 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
1206 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
1207 
1208 	if (vp != NULL) {
1209 		/*
1210 		 * Any vp associated with an ncp which has children must
1211 		 * be held.  Any vp associated with a locked ncp must be held.
1212 		 */
1213 		if (!TAILQ_EMPTY(&ncp->nc_list))
1214 			vhold(vp);
1215 		spin_lock(&vp->v_spin);
1216 		ncp->nc_vp = vp;
1217 		TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
1218 		spin_unlock(&vp->v_spin);
1219 		if (ncp->nc_lockstatus & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ))
1220 			vhold(vp);
1221 
1222 		/*
1223 		 * Set auxiliary flags
1224 		 */
1225 		switch(vp->v_type) {
1226 		case VDIR:
1227 			ncp->nc_flag |= NCF_ISDIR;
1228 			break;
1229 		case VLNK:
1230 			ncp->nc_flag |= NCF_ISSYMLINK;
1231 			/* XXX cache the contents of the symlink */
1232 			break;
1233 		default:
1234 			break;
1235 		}
1236 		atomic_add_int(&numcache, 1);
1237 		ncp->nc_error = 0;
1238 		/* XXX: this is a hack to work-around the lack of a real pfs vfs
1239 		 * implementation*/
1240 		if (mp != NULL)
1241 			if (strncmp(mp->mnt_stat.f_fstypename, "null", 5) == 0)
1242 				vp->v_pfsmp = mp;
1243 	} else {
1244 		/*
1245 		 * When creating a negative cache hit we set the
1246 		 * namecache_gen.  A later resolve will clean out the
1247 		 * negative cache hit if the mount point's namecache_gen
1248 		 * has changed.  Used by devfs, could also be used by
1249 		 * other remote FSs.
1250 		 */
1251 		ncp->nc_vp = NULL;
1252 		spin_lock(&ncspin);
1253 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
1254 		++numneg;
1255 		spin_unlock(&ncspin);
1256 		ncp->nc_error = ENOENT;
1257 		if (mp)
1258 			VFS_NCPGEN_SET(mp, ncp);
1259 	}
1260 	ncp->nc_flag &= ~(NCF_UNRESOLVED | NCF_DEFEREDZAP);
1261 }
1262 
1263 /*
1264  *
1265  */
1266 void
1267 cache_setvp(struct nchandle *nch, struct vnode *vp)
1268 {
1269 	_cache_setvp(nch->mount, nch->ncp, vp);
1270 }
1271 
1272 /*
1273  *
1274  */
1275 void
1276 cache_settimeout(struct nchandle *nch, int nticks)
1277 {
1278 	struct namecache *ncp = nch->ncp;
1279 
1280 	if ((ncp->nc_timeout = ticks + nticks) == 0)
1281 		ncp->nc_timeout = 1;
1282 }
1283 
1284 /*
1285  * Disassociate the vnode or negative-cache association and mark a
1286  * namecache entry as unresolved again.  Note that the ncp is still
1287  * left in the hash table and still linked to its parent.
1288  *
1289  * The ncp should be locked and refd on entry and will remain locked and refd
1290  * on return.
1291  *
1292  * This routine is normally never called on a directory containing children.
1293  * However, NFS often does just that in its rename() code as a cop-out to
1294  * avoid complex namespace operations.  This disconnects a directory vnode
1295  * from its namecache and can cause the OLDAPI and NEWAPI to get out of
1296  * sync.
1297  *
1298  */
1299 static
1300 void
1301 _cache_setunresolved(struct namecache *ncp)
1302 {
1303 	struct vnode *vp;
1304 
1305 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1306 		ncp->nc_flag |= NCF_UNRESOLVED;
1307 		ncp->nc_timeout = 0;
1308 		ncp->nc_error = ENOTCONN;
1309 		if ((vp = ncp->nc_vp) != NULL) {
1310 			atomic_add_int(&numcache, -1);
1311 			spin_lock(&vp->v_spin);
1312 			ncp->nc_vp = NULL;
1313 			TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
1314 			spin_unlock(&vp->v_spin);
1315 
1316 			/*
1317 			 * Any vp associated with an ncp with children is
1318 			 * held by that ncp.  Any vp associated with a locked
1319 			 * ncp is held by that ncp.  These conditions must be
1320 			 * undone when the vp is cleared out from the ncp.
1321 			 */
1322 			if (!TAILQ_EMPTY(&ncp->nc_list))
1323 				vdrop(vp);
1324 			if (ncp->nc_lockstatus & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ))
1325 				vdrop(vp);
1326 		} else {
1327 			spin_lock(&ncspin);
1328 			TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
1329 			--numneg;
1330 			spin_unlock(&ncspin);
1331 		}
1332 		ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK);
1333 	}
1334 }
1335 
1336 /*
1337  * The cache_nresolve() code calls this function to automatically
1338  * set a resolved cache element to unresolved if it has timed out
1339  * or if it is a negative cache hit and the mount point namecache_gen
1340  * has changed.
1341  */
1342 static __inline int
1343 _cache_auto_unresolve_test(struct mount *mp, struct namecache *ncp)
1344 {
1345 	/*
1346 	 * Try to zap entries that have timed out.  We have
1347 	 * to be careful here because locked leafs may depend
1348 	 * on the vnode remaining intact in a parent, so only
1349 	 * do this under very specific conditions.
1350 	 */
1351 	if (ncp->nc_timeout && (int)(ncp->nc_timeout - ticks) < 0 &&
1352 	    TAILQ_EMPTY(&ncp->nc_list)) {
1353 		return 1;
1354 	}
1355 
1356 	/*
1357 	 * If a resolved negative cache hit is invalid due to
1358 	 * the mount's namecache generation being bumped, zap it.
1359 	 */
1360 	if (ncp->nc_vp == NULL && VFS_NCPGEN_TEST(mp, ncp)) {
1361 		return 1;
1362 	}
1363 
1364 	/*
1365 	 * Otherwise we are good
1366 	 */
1367 	return 0;
1368 }
1369 
1370 static __inline void
1371 _cache_auto_unresolve(struct mount *mp, struct namecache *ncp)
1372 {
1373 	/*
1374 	 * Already in an unresolved state, nothing to do.
1375 	 */
1376 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1377 		if (_cache_auto_unresolve_test(mp, ncp))
1378 			_cache_setunresolved(ncp);
1379 	}
1380 }
1381 
1382 /*
1383  *
1384  */
1385 void
1386 cache_setunresolved(struct nchandle *nch)
1387 {
1388 	_cache_setunresolved(nch->ncp);
1389 }
1390 
1391 /*
1392  * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
1393  * looking for matches.  This flag tells the lookup code when it must
1394  * check for a mount linkage and also prevents the directories in question
1395  * from being deleted or renamed.
1396  */
1397 static
1398 int
1399 cache_clrmountpt_callback(struct mount *mp, void *data)
1400 {
1401 	struct nchandle *nch = data;
1402 
1403 	if (mp->mnt_ncmounton.ncp == nch->ncp)
1404 		return(1);
1405 	if (mp->mnt_ncmountpt.ncp == nch->ncp)
1406 		return(1);
1407 	return(0);
1408 }
1409 
1410 /*
1411  *
1412  */
1413 void
1414 cache_clrmountpt(struct nchandle *nch)
1415 {
1416 	int count;
1417 
1418 	count = mountlist_scan(cache_clrmountpt_callback, nch,
1419 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1420 	if (count == 0)
1421 		nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
1422 }
1423 
1424 /*
1425  * Invalidate portions of the namecache topology given a starting entry.
1426  * The passed ncp is set to an unresolved state and:
1427  *
1428  * The passed ncp must be referencxed and locked.  The routine may unlock
1429  * and relock ncp several times, and will recheck the children and loop
1430  * to catch races.  When done the passed ncp will be returned with the
1431  * reference and lock intact.
1432  *
1433  * CINV_DESTROY		- Set a flag in the passed ncp entry indicating
1434  *			  that the physical underlying nodes have been
1435  *			  destroyed... as in deleted.  For example, when
1436  *			  a directory is removed.  This will cause record
1437  *			  lookups on the name to no longer be able to find
1438  *			  the record and tells the resolver to return failure
1439  *			  rather then trying to resolve through the parent.
1440  *
1441  *			  The topology itself, including ncp->nc_name,
1442  *			  remains intact.
1443  *
1444  *			  This only applies to the passed ncp, if CINV_CHILDREN
1445  *			  is specified the children are not flagged.
1446  *
1447  * CINV_CHILDREN	- Set all children (recursively) to an unresolved
1448  *			  state as well.
1449  *
1450  *			  Note that this will also have the side effect of
1451  *			  cleaning out any unreferenced nodes in the topology
1452  *			  from the leaves up as the recursion backs out.
1453  *
1454  * Note that the topology for any referenced nodes remains intact, but
1455  * the nodes will be marked as having been destroyed and will be set
1456  * to an unresolved state.
1457  *
1458  * It is possible for cache_inval() to race a cache_resolve(), meaning that
1459  * the namecache entry may not actually be invalidated on return if it was
1460  * revalidated while recursing down into its children.  This code guarentees
1461  * that the node(s) will go through an invalidation cycle, but does not
1462  * guarentee that they will remain in an invalidated state.
1463  *
1464  * Returns non-zero if a revalidation was detected during the invalidation
1465  * recursion, zero otherwise.  Note that since only the original ncp is
1466  * locked the revalidation ultimately can only indicate that the original ncp
1467  * *MIGHT* no have been reresolved.
1468  *
1469  * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
1470  * have to avoid blowing out the kernel stack.  We do this by saving the
1471  * deep namecache node and aborting the recursion, then re-recursing at that
1472  * node using a depth-first algorithm in order to allow multiple deep
1473  * recursions to chain through each other, then we restart the invalidation
1474  * from scratch.
1475  */
1476 
1477 struct cinvtrack {
1478 	struct namecache *resume_ncp;
1479 	int depth;
1480 };
1481 
1482 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
1483 
1484 static
1485 int
1486 _cache_inval(struct namecache *ncp, int flags)
1487 {
1488 	struct cinvtrack track;
1489 	struct namecache *ncp2;
1490 	int r;
1491 
1492 	track.depth = 0;
1493 	track.resume_ncp = NULL;
1494 
1495 	for (;;) {
1496 		r = _cache_inval_internal(ncp, flags, &track);
1497 		if (track.resume_ncp == NULL)
1498 			break;
1499 		kprintf("Warning: deep namecache recursion at %s\n",
1500 			ncp->nc_name);
1501 		_cache_unlock(ncp);
1502 		while ((ncp2 = track.resume_ncp) != NULL) {
1503 			track.resume_ncp = NULL;
1504 			_cache_lock(ncp2);
1505 			_cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
1506 					     &track);
1507 			_cache_put(ncp2);
1508 		}
1509 		_cache_lock(ncp);
1510 	}
1511 	return(r);
1512 }
1513 
1514 int
1515 cache_inval(struct nchandle *nch, int flags)
1516 {
1517 	return(_cache_inval(nch->ncp, flags));
1518 }
1519 
1520 /*
1521  * Helper for _cache_inval().  The passed ncp is refd and locked and
1522  * remains that way on return, but may be unlocked/relocked multiple
1523  * times by the routine.
1524  */
1525 static int
1526 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
1527 {
1528 	struct namecache *kid;
1529 	struct namecache *nextkid;
1530 	int rcnt = 0;
1531 
1532 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
1533 
1534 	_cache_setunresolved(ncp);
1535 	if (flags & CINV_DESTROY)
1536 		ncp->nc_flag |= NCF_DESTROYED;
1537 	if ((flags & CINV_CHILDREN) &&
1538 	    (kid = TAILQ_FIRST(&ncp->nc_list)) != NULL
1539 	) {
1540 		_cache_hold(kid);
1541 		if (++track->depth > MAX_RECURSION_DEPTH) {
1542 			track->resume_ncp = ncp;
1543 			_cache_hold(ncp);
1544 			++rcnt;
1545 		}
1546 		_cache_unlock(ncp);
1547 		while (kid) {
1548 			if (track->resume_ncp) {
1549 				_cache_drop(kid);
1550 				break;
1551 			}
1552 			if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
1553 				_cache_hold(nextkid);
1554 			if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
1555 			    TAILQ_FIRST(&kid->nc_list)
1556 			) {
1557 				_cache_lock(kid);
1558 				rcnt += _cache_inval_internal(kid, flags & ~CINV_DESTROY, track);
1559 				_cache_unlock(kid);
1560 			}
1561 			_cache_drop(kid);
1562 			kid = nextkid;
1563 		}
1564 		--track->depth;
1565 		_cache_lock(ncp);
1566 	}
1567 
1568 	/*
1569 	 * Someone could have gotten in there while ncp was unlocked,
1570 	 * retry if so.
1571 	 */
1572 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1573 		++rcnt;
1574 	return (rcnt);
1575 }
1576 
1577 /*
1578  * Invalidate a vnode's namecache associations.  To avoid races against
1579  * the resolver we do not invalidate a node which we previously invalidated
1580  * but which was then re-resolved while we were in the invalidation loop.
1581  *
1582  * Returns non-zero if any namecache entries remain after the invalidation
1583  * loop completed.
1584  *
1585  * NOTE: Unlike the namecache topology which guarentees that ncp's will not
1586  *	 be ripped out of the topology while held, the vnode's v_namecache
1587  *	 list has no such restriction.  NCP's can be ripped out of the list
1588  *	 at virtually any time if not locked, even if held.
1589  *
1590  *	 In addition, the v_namecache list itself must be locked via
1591  *	 the vnode's spinlock.
1592  */
1593 int
1594 cache_inval_vp(struct vnode *vp, int flags)
1595 {
1596 	struct namecache *ncp;
1597 	struct namecache *next;
1598 
1599 restart:
1600 	spin_lock(&vp->v_spin);
1601 	ncp = TAILQ_FIRST(&vp->v_namecache);
1602 	if (ncp)
1603 		_cache_hold(ncp);
1604 	while (ncp) {
1605 		/* loop entered with ncp held and vp spin-locked */
1606 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1607 			_cache_hold(next);
1608 		spin_unlock(&vp->v_spin);
1609 		_cache_lock(ncp);
1610 		if (ncp->nc_vp != vp) {
1611 			kprintf("Warning: cache_inval_vp: race-A detected on "
1612 				"%s\n", ncp->nc_name);
1613 			_cache_put(ncp);
1614 			if (next)
1615 				_cache_drop(next);
1616 			goto restart;
1617 		}
1618 		_cache_inval(ncp, flags);
1619 		_cache_put(ncp);		/* also releases reference */
1620 		ncp = next;
1621 		spin_lock(&vp->v_spin);
1622 		if (ncp && ncp->nc_vp != vp) {
1623 			spin_unlock(&vp->v_spin);
1624 			kprintf("Warning: cache_inval_vp: race-B detected on "
1625 				"%s\n", ncp->nc_name);
1626 			_cache_drop(ncp);
1627 			goto restart;
1628 		}
1629 	}
1630 	spin_unlock(&vp->v_spin);
1631 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1632 }
1633 
1634 /*
1635  * This routine is used instead of the normal cache_inval_vp() when we
1636  * are trying to recycle otherwise good vnodes.
1637  *
1638  * Return 0 on success, non-zero if not all namecache records could be
1639  * disassociated from the vnode (for various reasons).
1640  */
1641 int
1642 cache_inval_vp_nonblock(struct vnode *vp)
1643 {
1644 	struct namecache *ncp;
1645 	struct namecache *next;
1646 
1647 	spin_lock(&vp->v_spin);
1648 	ncp = TAILQ_FIRST(&vp->v_namecache);
1649 	if (ncp)
1650 		_cache_hold(ncp);
1651 	while (ncp) {
1652 		/* loop entered with ncp held */
1653 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1654 			_cache_hold(next);
1655 		spin_unlock(&vp->v_spin);
1656 		if (_cache_lock_nonblock(ncp)) {
1657 			_cache_drop(ncp);
1658 			if (next)
1659 				_cache_drop(next);
1660 			goto done;
1661 		}
1662 		if (ncp->nc_vp != vp) {
1663 			kprintf("Warning: cache_inval_vp: race-A detected on "
1664 				"%s\n", ncp->nc_name);
1665 			_cache_put(ncp);
1666 			if (next)
1667 				_cache_drop(next);
1668 			goto done;
1669 		}
1670 		_cache_inval(ncp, 0);
1671 		_cache_put(ncp);		/* also releases reference */
1672 		ncp = next;
1673 		spin_lock(&vp->v_spin);
1674 		if (ncp && ncp->nc_vp != vp) {
1675 			spin_unlock(&vp->v_spin);
1676 			kprintf("Warning: cache_inval_vp: race-B detected on "
1677 				"%s\n", ncp->nc_name);
1678 			_cache_drop(ncp);
1679 			goto done;
1680 		}
1681 	}
1682 	spin_unlock(&vp->v_spin);
1683 done:
1684 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1685 }
1686 
1687 /*
1688  * The source ncp has been renamed to the target ncp.  Both fncp and tncp
1689  * must be locked.  The target ncp is destroyed (as a normal rename-over
1690  * would destroy the target file or directory).
1691  *
1692  * Because there may be references to the source ncp we cannot copy its
1693  * contents to the target.  Instead the source ncp is relinked as the target
1694  * and the target ncp is removed from the namecache topology.
1695  */
1696 void
1697 cache_rename(struct nchandle *fnch, struct nchandle *tnch)
1698 {
1699 	struct namecache *fncp = fnch->ncp;
1700 	struct namecache *tncp = tnch->ncp;
1701 	struct namecache *tncp_par;
1702 	struct nchash_head *nchpp;
1703 	u_int32_t hash;
1704 	char *oname;
1705 	char *nname;
1706 
1707 	if (tncp->nc_nlen) {
1708 		nname = kmalloc(tncp->nc_nlen + 1, M_VFSCACHE, M_WAITOK);
1709 		bcopy(tncp->nc_name, nname, tncp->nc_nlen);
1710 		nname[tncp->nc_nlen] = 0;
1711 	} else {
1712 		nname = NULL;
1713 	}
1714 
1715 	/*
1716 	 * Rename fncp (unlink)
1717 	 */
1718 	_cache_unlink_parent(fncp);
1719 	oname = fncp->nc_name;
1720 	fncp->nc_name = nname;
1721 	fncp->nc_nlen = tncp->nc_nlen;
1722 	if (oname)
1723 		kfree(oname, M_VFSCACHE);
1724 
1725 	tncp_par = tncp->nc_parent;
1726 	_cache_hold(tncp_par);
1727 	_cache_lock(tncp_par);
1728 
1729 	/*
1730 	 * Rename fncp (relink)
1731 	 */
1732 	hash = fnv_32_buf(fncp->nc_name, fncp->nc_nlen, FNV1_32_INIT);
1733 	hash = fnv_32_buf(&tncp_par, sizeof(tncp_par), hash);
1734 	nchpp = NCHHASH(hash);
1735 
1736 	spin_lock(&nchpp->spin);
1737 	_cache_link_parent(fncp, tncp_par, nchpp);
1738 	spin_unlock(&nchpp->spin);
1739 
1740 	_cache_put(tncp_par);
1741 
1742 	/*
1743 	 * Get rid of the overwritten tncp (unlink)
1744 	 */
1745 	_cache_unlink(tncp);
1746 }
1747 
1748 /*
1749  * Perform actions consistent with unlinking a file.  The passed-in ncp
1750  * must be locked.
1751  *
1752  * The ncp is marked DESTROYED so it no longer shows up in searches,
1753  * and will be physically deleted when the vnode goes away.
1754  *
1755  * If the related vnode has no refs then we cycle it through vget()/vput()
1756  * to (possibly if we don't have a ref race) trigger a deactivation,
1757  * allowing the VFS to trivially detect and recycle the deleted vnode
1758  * via VOP_INACTIVE().
1759  *
1760  * NOTE: _cache_rename() will automatically call _cache_unlink() on the
1761  *	 target ncp.
1762  */
1763 void
1764 cache_unlink(struct nchandle *nch)
1765 {
1766 	_cache_unlink(nch->ncp);
1767 }
1768 
1769 static void
1770 _cache_unlink(struct namecache *ncp)
1771 {
1772 	struct vnode *vp;
1773 
1774 	/*
1775 	 * Causes lookups to fail and allows another ncp with the same
1776 	 * name to be created under ncp->nc_parent.
1777 	 */
1778 	ncp->nc_flag |= NCF_DESTROYED;
1779 
1780 	/*
1781 	 * Attempt to trigger a deactivation.
1782 	 */
1783 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
1784 	    (vp = ncp->nc_vp) != NULL &&
1785 	    !sysref_isactive(&vp->v_sysref)) {
1786 		if (vget(vp, LK_SHARED) == 0)
1787 			vput(vp);
1788 	}
1789 }
1790 
1791 /*
1792  * vget the vnode associated with the namecache entry.  Resolve the namecache
1793  * entry if necessary.  The passed ncp must be referenced and locked.
1794  *
1795  * lk_type may be LK_SHARED, LK_EXCLUSIVE.  A ref'd, possibly locked
1796  * (depending on the passed lk_type) will be returned in *vpp with an error
1797  * of 0, or NULL will be returned in *vpp with a non-0 error code.  The
1798  * most typical error is ENOENT, meaning that the ncp represents a negative
1799  * cache hit and there is no vnode to retrieve, but other errors can occur
1800  * too.
1801  *
1802  * The vget() can race a reclaim.  If this occurs we re-resolve the
1803  * namecache entry.
1804  *
1805  * There are numerous places in the kernel where vget() is called on a
1806  * vnode while one or more of its namecache entries is locked.  Releasing
1807  * a vnode never deadlocks against locked namecache entries (the vnode
1808  * will not get recycled while referenced ncp's exist).  This means we
1809  * can safely acquire the vnode.  In fact, we MUST NOT release the ncp
1810  * lock when acquiring the vp lock or we might cause a deadlock.
1811  *
1812  * NOTE: The passed-in ncp must be locked exclusively if it is initially
1813  *	 unresolved.  If a reclaim race occurs the passed-in ncp will be
1814  *	 relocked exclusively before being re-resolved.
1815  */
1816 int
1817 cache_vget(struct nchandle *nch, struct ucred *cred,
1818 	   int lk_type, struct vnode **vpp)
1819 {
1820 	struct namecache *ncp;
1821 	struct vnode *vp;
1822 	int error;
1823 
1824 	ncp = nch->ncp;
1825 again:
1826 	vp = NULL;
1827 	if (ncp->nc_flag & NCF_UNRESOLVED)
1828 		error = cache_resolve(nch, cred);
1829 	else
1830 		error = 0;
1831 
1832 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1833 		error = vget(vp, lk_type);
1834 		if (error) {
1835 			/*
1836 			 * VRECLAIM race
1837 			 */
1838 			if (error == ENOENT) {
1839 				kprintf("Warning: vnode reclaim race detected "
1840 					"in cache_vget on %p (%s)\n",
1841 					vp, ncp->nc_name);
1842 				_cache_unlock(ncp);
1843 				_cache_lock(ncp);
1844 				_cache_setunresolved(ncp);
1845 				goto again;
1846 			}
1847 
1848 			/*
1849 			 * Not a reclaim race, some other error.
1850 			 */
1851 			KKASSERT(ncp->nc_vp == vp);
1852 			vp = NULL;
1853 		} else {
1854 			KKASSERT(ncp->nc_vp == vp);
1855 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1856 		}
1857 	}
1858 	if (error == 0 && vp == NULL)
1859 		error = ENOENT;
1860 	*vpp = vp;
1861 	return(error);
1862 }
1863 
1864 /*
1865  * Similar to cache_vget() but only acquires a ref on the vnode.
1866  *
1867  * NOTE: The passed-in ncp must be locked exclusively if it is initially
1868  *	 unresolved.  If a reclaim race occurs the passed-in ncp will be
1869  *	 relocked exclusively before being re-resolved.
1870  */
1871 int
1872 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
1873 {
1874 	struct namecache *ncp;
1875 	struct vnode *vp;
1876 	int error;
1877 
1878 	ncp = nch->ncp;
1879 again:
1880 	vp = NULL;
1881 	if (ncp->nc_flag & NCF_UNRESOLVED)
1882 		error = cache_resolve(nch, cred);
1883 	else
1884 		error = 0;
1885 
1886 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1887 		error = vget(vp, LK_SHARED);
1888 		if (error) {
1889 			/*
1890 			 * VRECLAIM race
1891 			 */
1892 			if (error == ENOENT) {
1893 				kprintf("Warning: vnode reclaim race detected "
1894 					"in cache_vget on %p (%s)\n",
1895 					vp, ncp->nc_name);
1896 				_cache_unlock(ncp);
1897 				_cache_lock(ncp);
1898 				_cache_setunresolved(ncp);
1899 				goto again;
1900 			}
1901 
1902 			/*
1903 			 * Not a reclaim race, some other error.
1904 			 */
1905 			KKASSERT(ncp->nc_vp == vp);
1906 			vp = NULL;
1907 		} else {
1908 			KKASSERT(ncp->nc_vp == vp);
1909 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1910 			/* caller does not want a lock */
1911 			vn_unlock(vp);
1912 		}
1913 	}
1914 	if (error == 0 && vp == NULL)
1915 		error = ENOENT;
1916 	*vpp = vp;
1917 	return(error);
1918 }
1919 
1920 /*
1921  * Return a referenced vnode representing the parent directory of
1922  * ncp.
1923  *
1924  * Because the caller has locked the ncp it should not be possible for
1925  * the parent ncp to go away.  However, the parent can unresolve its
1926  * dvp at any time so we must be able to acquire a lock on the parent
1927  * to safely access nc_vp.
1928  *
1929  * We have to leave par unlocked when vget()ing dvp to avoid a deadlock,
1930  * so use vhold()/vdrop() while holding the lock to prevent dvp from
1931  * getting destroyed.
1932  *
1933  * NOTE: vhold() is allowed when dvp has 0 refs if we hold a
1934  *	 lock on the ncp in question..
1935  */
1936 static struct vnode *
1937 cache_dvpref(struct namecache *ncp)
1938 {
1939 	struct namecache *par;
1940 	struct vnode *dvp;
1941 
1942 	dvp = NULL;
1943 	if ((par = ncp->nc_parent) != NULL) {
1944 		_cache_hold(par);
1945 		_cache_lock(par);
1946 		if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
1947 			if ((dvp = par->nc_vp) != NULL)
1948 				vhold(dvp);
1949 		}
1950 		_cache_unlock(par);
1951 		if (dvp) {
1952 			if (vget(dvp, LK_SHARED) == 0) {
1953 				vn_unlock(dvp);
1954 				vdrop(dvp);
1955 				/* return refd, unlocked dvp */
1956 			} else {
1957 				vdrop(dvp);
1958 				dvp = NULL;
1959 			}
1960 		}
1961 		_cache_drop(par);
1962 	}
1963 	return(dvp);
1964 }
1965 
1966 /*
1967  * Convert a directory vnode to a namecache record without any other
1968  * knowledge of the topology.  This ONLY works with directory vnodes and
1969  * is ONLY used by the NFS server.  dvp must be refd but unlocked, and the
1970  * returned ncp (if not NULL) will be held and unlocked.
1971  *
1972  * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
1973  * If 'makeit' is 1 we attempt to track-down and create the namecache topology
1974  * for dvp.  This will fail only if the directory has been deleted out from
1975  * under the caller.
1976  *
1977  * Callers must always check for a NULL return no matter the value of 'makeit'.
1978  *
1979  * To avoid underflowing the kernel stack each recursive call increments
1980  * the makeit variable.
1981  */
1982 
1983 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1984 				  struct vnode *dvp, char *fakename);
1985 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1986 				  struct vnode **saved_dvp);
1987 
1988 int
1989 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
1990 	      struct nchandle *nch)
1991 {
1992 	struct vnode *saved_dvp;
1993 	struct vnode *pvp;
1994 	char *fakename;
1995 	int error;
1996 
1997 	nch->ncp = NULL;
1998 	nch->mount = dvp->v_mount;
1999 	saved_dvp = NULL;
2000 	fakename = NULL;
2001 
2002 	/*
2003 	 * Handle the makeit == 0 degenerate case
2004 	 */
2005 	if (makeit == 0) {
2006 		spin_lock(&dvp->v_spin);
2007 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
2008 		if (nch->ncp)
2009 			cache_hold(nch);
2010 		spin_unlock(&dvp->v_spin);
2011 	}
2012 
2013 	/*
2014 	 * Loop until resolution, inside code will break out on error.
2015 	 */
2016 	while (makeit) {
2017 		/*
2018 		 * Break out if we successfully acquire a working ncp.
2019 		 */
2020 		spin_lock(&dvp->v_spin);
2021 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
2022 		if (nch->ncp) {
2023 			cache_hold(nch);
2024 			spin_unlock(&dvp->v_spin);
2025 			break;
2026 		}
2027 		spin_unlock(&dvp->v_spin);
2028 
2029 		/*
2030 		 * If dvp is the root of its filesystem it should already
2031 		 * have a namecache pointer associated with it as a side
2032 		 * effect of the mount, but it may have been disassociated.
2033 		 */
2034 		if (dvp->v_flag & VROOT) {
2035 			nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
2036 			error = cache_resolve_mp(nch->mount);
2037 			_cache_put(nch->ncp);
2038 			if (ncvp_debug) {
2039 				kprintf("cache_fromdvp: resolve root of mount %p error %d",
2040 					dvp->v_mount, error);
2041 			}
2042 			if (error) {
2043 				if (ncvp_debug)
2044 					kprintf(" failed\n");
2045 				nch->ncp = NULL;
2046 				break;
2047 			}
2048 			if (ncvp_debug)
2049 				kprintf(" succeeded\n");
2050 			continue;
2051 		}
2052 
2053 		/*
2054 		 * If we are recursed too deeply resort to an O(n^2)
2055 		 * algorithm to resolve the namecache topology.  The
2056 		 * resolved pvp is left referenced in saved_dvp to
2057 		 * prevent the tree from being destroyed while we loop.
2058 		 */
2059 		if (makeit > 20) {
2060 			error = cache_fromdvp_try(dvp, cred, &saved_dvp);
2061 			if (error) {
2062 				kprintf("lookupdotdot(longpath) failed %d "
2063 				       "dvp %p\n", error, dvp);
2064 				nch->ncp = NULL;
2065 				break;
2066 			}
2067 			continue;
2068 		}
2069 
2070 		/*
2071 		 * Get the parent directory and resolve its ncp.
2072 		 */
2073 		if (fakename) {
2074 			kfree(fakename, M_TEMP);
2075 			fakename = NULL;
2076 		}
2077 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2078 					  &fakename);
2079 		if (error) {
2080 			kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
2081 			break;
2082 		}
2083 		vn_unlock(pvp);
2084 
2085 		/*
2086 		 * Reuse makeit as a recursion depth counter.  On success
2087 		 * nch will be fully referenced.
2088 		 */
2089 		cache_fromdvp(pvp, cred, makeit + 1, nch);
2090 		vrele(pvp);
2091 		if (nch->ncp == NULL)
2092 			break;
2093 
2094 		/*
2095 		 * Do an inefficient scan of pvp (embodied by ncp) to look
2096 		 * for dvp.  This will create a namecache record for dvp on
2097 		 * success.  We loop up to recheck on success.
2098 		 *
2099 		 * ncp and dvp are both held but not locked.
2100 		 */
2101 		error = cache_inefficient_scan(nch, cred, dvp, fakename);
2102 		if (error) {
2103 			kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
2104 				pvp, nch->ncp->nc_name, dvp);
2105 			cache_drop(nch);
2106 			/* nch was NULLed out, reload mount */
2107 			nch->mount = dvp->v_mount;
2108 			break;
2109 		}
2110 		if (ncvp_debug) {
2111 			kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
2112 				pvp, nch->ncp->nc_name);
2113 		}
2114 		cache_drop(nch);
2115 		/* nch was NULLed out, reload mount */
2116 		nch->mount = dvp->v_mount;
2117 	}
2118 
2119 	/*
2120 	 * If nch->ncp is non-NULL it will have been held already.
2121 	 */
2122 	if (fakename)
2123 		kfree(fakename, M_TEMP);
2124 	if (saved_dvp)
2125 		vrele(saved_dvp);
2126 	if (nch->ncp)
2127 		return (0);
2128 	return (EINVAL);
2129 }
2130 
2131 /*
2132  * Go up the chain of parent directories until we find something
2133  * we can resolve into the namecache.  This is very inefficient.
2134  */
2135 static
2136 int
2137 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
2138 		  struct vnode **saved_dvp)
2139 {
2140 	struct nchandle nch;
2141 	struct vnode *pvp;
2142 	int error;
2143 	static time_t last_fromdvp_report;
2144 	char *fakename;
2145 
2146 	/*
2147 	 * Loop getting the parent directory vnode until we get something we
2148 	 * can resolve in the namecache.
2149 	 */
2150 	vref(dvp);
2151 	nch.mount = dvp->v_mount;
2152 	nch.ncp = NULL;
2153 	fakename = NULL;
2154 
2155 	for (;;) {
2156 		if (fakename) {
2157 			kfree(fakename, M_TEMP);
2158 			fakename = NULL;
2159 		}
2160 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2161 					  &fakename);
2162 		if (error) {
2163 			vrele(dvp);
2164 			break;
2165 		}
2166 		vn_unlock(pvp);
2167 		spin_lock(&pvp->v_spin);
2168 		if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
2169 			_cache_hold(nch.ncp);
2170 			spin_unlock(&pvp->v_spin);
2171 			vrele(pvp);
2172 			break;
2173 		}
2174 		spin_unlock(&pvp->v_spin);
2175 		if (pvp->v_flag & VROOT) {
2176 			nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
2177 			error = cache_resolve_mp(nch.mount);
2178 			_cache_unlock(nch.ncp);
2179 			vrele(pvp);
2180 			if (error) {
2181 				_cache_drop(nch.ncp);
2182 				nch.ncp = NULL;
2183 				vrele(dvp);
2184 			}
2185 			break;
2186 		}
2187 		vrele(dvp);
2188 		dvp = pvp;
2189 	}
2190 	if (error == 0) {
2191 		if (last_fromdvp_report != time_second) {
2192 			last_fromdvp_report = time_second;
2193 			kprintf("Warning: extremely inefficient path "
2194 				"resolution on %s\n",
2195 				nch.ncp->nc_name);
2196 		}
2197 		error = cache_inefficient_scan(&nch, cred, dvp, fakename);
2198 
2199 		/*
2200 		 * Hopefully dvp now has a namecache record associated with
2201 		 * it.  Leave it referenced to prevent the kernel from
2202 		 * recycling the vnode.  Otherwise extremely long directory
2203 		 * paths could result in endless recycling.
2204 		 */
2205 		if (*saved_dvp)
2206 		    vrele(*saved_dvp);
2207 		*saved_dvp = dvp;
2208 		_cache_drop(nch.ncp);
2209 	}
2210 	if (fakename)
2211 		kfree(fakename, M_TEMP);
2212 	return (error);
2213 }
2214 
2215 /*
2216  * Do an inefficient scan of the directory represented by ncp looking for
2217  * the directory vnode dvp.  ncp must be held but not locked on entry and
2218  * will be held on return.  dvp must be refd but not locked on entry and
2219  * will remain refd on return.
2220  *
2221  * Why do this at all?  Well, due to its stateless nature the NFS server
2222  * converts file handles directly to vnodes without necessarily going through
2223  * the namecache ops that would otherwise create the namecache topology
2224  * leading to the vnode.  We could either (1) Change the namecache algorithms
2225  * to allow disconnect namecache records that are re-merged opportunistically,
2226  * or (2) Make the NFS server backtrack and scan to recover a connected
2227  * namecache topology in order to then be able to issue new API lookups.
2228  *
2229  * It turns out that (1) is a huge mess.  It takes a nice clean set of
2230  * namecache algorithms and introduces a lot of complication in every subsystem
2231  * that calls into the namecache to deal with the re-merge case, especially
2232  * since we are using the namecache to placehold negative lookups and the
2233  * vnode might not be immediately assigned. (2) is certainly far less
2234  * efficient then (1), but since we are only talking about directories here
2235  * (which are likely to remain cached), the case does not actually run all
2236  * that often and has the supreme advantage of not polluting the namecache
2237  * algorithms.
2238  *
2239  * If a fakename is supplied just construct a namecache entry using the
2240  * fake name.
2241  */
2242 static int
2243 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
2244 		       struct vnode *dvp, char *fakename)
2245 {
2246 	struct nlcomponent nlc;
2247 	struct nchandle rncp;
2248 	struct dirent *den;
2249 	struct vnode *pvp;
2250 	struct vattr vat;
2251 	struct iovec iov;
2252 	struct uio uio;
2253 	int blksize;
2254 	int eofflag;
2255 	int bytes;
2256 	char *rbuf;
2257 	int error;
2258 
2259 	vat.va_blocksize = 0;
2260 	if ((error = VOP_GETATTR(dvp, &vat)) != 0)
2261 		return (error);
2262 	cache_lock(nch);
2263 	error = cache_vref(nch, cred, &pvp);
2264 	cache_unlock(nch);
2265 	if (error)
2266 		return (error);
2267 	if (ncvp_debug) {
2268 		kprintf("inefficient_scan: directory iosize %ld "
2269 			"vattr fileid = %lld\n",
2270 			vat.va_blocksize,
2271 			(long long)vat.va_fileid);
2272 	}
2273 
2274 	/*
2275 	 * Use the supplied fakename if not NULL.  Fake names are typically
2276 	 * not in the actual filesystem hierarchy.  This is used by HAMMER
2277 	 * to glue @@timestamp recursions together.
2278 	 */
2279 	if (fakename) {
2280 		nlc.nlc_nameptr = fakename;
2281 		nlc.nlc_namelen = strlen(fakename);
2282 		rncp = cache_nlookup(nch, &nlc);
2283 		goto done;
2284 	}
2285 
2286 	if ((blksize = vat.va_blocksize) == 0)
2287 		blksize = DEV_BSIZE;
2288 	rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
2289 	rncp.ncp = NULL;
2290 
2291 	eofflag = 0;
2292 	uio.uio_offset = 0;
2293 again:
2294 	iov.iov_base = rbuf;
2295 	iov.iov_len = blksize;
2296 	uio.uio_iov = &iov;
2297 	uio.uio_iovcnt = 1;
2298 	uio.uio_resid = blksize;
2299 	uio.uio_segflg = UIO_SYSSPACE;
2300 	uio.uio_rw = UIO_READ;
2301 	uio.uio_td = curthread;
2302 
2303 	if (ncvp_debug >= 2)
2304 		kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
2305 	error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
2306 	if (error == 0) {
2307 		den = (struct dirent *)rbuf;
2308 		bytes = blksize - uio.uio_resid;
2309 
2310 		while (bytes > 0) {
2311 			if (ncvp_debug >= 2) {
2312 				kprintf("cache_inefficient_scan: %*.*s\n",
2313 					den->d_namlen, den->d_namlen,
2314 					den->d_name);
2315 			}
2316 			if (den->d_type != DT_WHT &&
2317 			    den->d_ino == vat.va_fileid) {
2318 				if (ncvp_debug) {
2319 					kprintf("cache_inefficient_scan: "
2320 					       "MATCHED inode %lld path %s/%*.*s\n",
2321 					       (long long)vat.va_fileid,
2322 					       nch->ncp->nc_name,
2323 					       den->d_namlen, den->d_namlen,
2324 					       den->d_name);
2325 				}
2326 				nlc.nlc_nameptr = den->d_name;
2327 				nlc.nlc_namelen = den->d_namlen;
2328 				rncp = cache_nlookup(nch, &nlc);
2329 				KKASSERT(rncp.ncp != NULL);
2330 				break;
2331 			}
2332 			bytes -= _DIRENT_DIRSIZ(den);
2333 			den = _DIRENT_NEXT(den);
2334 		}
2335 		if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
2336 			goto again;
2337 	}
2338 	kfree(rbuf, M_TEMP);
2339 done:
2340 	vrele(pvp);
2341 	if (rncp.ncp) {
2342 		if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
2343 			_cache_setvp(rncp.mount, rncp.ncp, dvp);
2344 			if (ncvp_debug >= 2) {
2345 				kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
2346 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
2347 			}
2348 		} else {
2349 			if (ncvp_debug >= 2) {
2350 				kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
2351 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
2352 					rncp.ncp->nc_vp);
2353 			}
2354 		}
2355 		if (rncp.ncp->nc_vp == NULL)
2356 			error = rncp.ncp->nc_error;
2357 		/*
2358 		 * Release rncp after a successful nlookup.  rncp was fully
2359 		 * referenced.
2360 		 */
2361 		cache_put(&rncp);
2362 	} else {
2363 		kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
2364 			dvp, nch->ncp->nc_name);
2365 		error = ENOENT;
2366 	}
2367 	return (error);
2368 }
2369 
2370 /*
2371  * Zap a namecache entry.  The ncp is unconditionally set to an unresolved
2372  * state, which disassociates it from its vnode or ncneglist.
2373  *
2374  * Then, if there are no additional references to the ncp and no children,
2375  * the ncp is removed from the topology and destroyed.
2376  *
2377  * References and/or children may exist if the ncp is in the middle of the
2378  * topology, preventing the ncp from being destroyed.
2379  *
2380  * This function must be called with the ncp held and locked and will unlock
2381  * and drop it during zapping.
2382  *
2383  * If nonblock is non-zero and the parent ncp cannot be locked we give up.
2384  * This case can occur in the cache_drop() path.
2385  *
2386  * This function may returned a held (but NOT locked) parent node which the
2387  * caller must drop.  We do this so _cache_drop() can loop, to avoid
2388  * blowing out the kernel stack.
2389  *
2390  * WARNING!  For MPSAFE operation this routine must acquire up to three
2391  *	     spin locks to be able to safely test nc_refs.  Lock order is
2392  *	     very important.
2393  *
2394  *	     hash spinlock if on hash list
2395  *	     parent spinlock if child of parent
2396  *	     (the ncp is unresolved so there is no vnode association)
2397  */
2398 static struct namecache *
2399 cache_zap(struct namecache *ncp, int nonblock)
2400 {
2401 	struct namecache *par;
2402 	struct vnode *dropvp;
2403 	int refs;
2404 
2405 	/*
2406 	 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
2407 	 */
2408 	_cache_setunresolved(ncp);
2409 
2410 	/*
2411 	 * Try to scrap the entry and possibly tail-recurse on its parent.
2412 	 * We only scrap unref'd (other then our ref) unresolved entries,
2413 	 * we do not scrap 'live' entries.
2414 	 *
2415 	 * Note that once the spinlocks are acquired if nc_refs == 1 no
2416 	 * other references are possible.  If it isn't, however, we have
2417 	 * to decrement but also be sure to avoid a 1->0 transition.
2418 	 */
2419 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
2420 	KKASSERT(ncp->nc_refs > 0);
2421 
2422 	/*
2423 	 * Acquire locks.  Note that the parent can't go away while we hold
2424 	 * a child locked.
2425 	 */
2426 	if ((par = ncp->nc_parent) != NULL) {
2427 		if (nonblock) {
2428 			for (;;) {
2429 				if (_cache_lock_nonblock(par) == 0)
2430 					break;
2431 				refs = ncp->nc_refs;
2432 				ncp->nc_flag |= NCF_DEFEREDZAP;
2433 				++numdefered;	/* MP race ok */
2434 				if (atomic_cmpset_int(&ncp->nc_refs,
2435 						      refs, refs - 1)) {
2436 					_cache_unlock(ncp);
2437 					return(NULL);
2438 				}
2439 				cpu_pause();
2440 			}
2441 			_cache_hold(par);
2442 		} else {
2443 			_cache_hold(par);
2444 			_cache_lock(par);
2445 		}
2446 		spin_lock(&ncp->nc_head->spin);
2447 	}
2448 
2449 	/*
2450 	 * If someone other then us has a ref or we have children
2451 	 * we cannot zap the entry.  The 1->0 transition and any
2452 	 * further list operation is protected by the spinlocks
2453 	 * we have acquired but other transitions are not.
2454 	 */
2455 	for (;;) {
2456 		refs = ncp->nc_refs;
2457 		if (refs == 1 && TAILQ_EMPTY(&ncp->nc_list))
2458 			break;
2459 		if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1)) {
2460 			if (par) {
2461 				spin_unlock(&ncp->nc_head->spin);
2462 				_cache_put(par);
2463 			}
2464 			_cache_unlock(ncp);
2465 			return(NULL);
2466 		}
2467 		cpu_pause();
2468 	}
2469 
2470 	/*
2471 	 * We are the only ref and with the spinlocks held no further
2472 	 * refs can be acquired by others.
2473 	 *
2474 	 * Remove us from the hash list and parent list.  We have to
2475 	 * drop a ref on the parent's vp if the parent's list becomes
2476 	 * empty.
2477 	 */
2478 	dropvp = NULL;
2479 	if (par) {
2480 		struct nchash_head *nchpp = ncp->nc_head;
2481 
2482 		KKASSERT(nchpp != NULL);
2483 		LIST_REMOVE(ncp, nc_hash);
2484 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
2485 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
2486 			dropvp = par->nc_vp;
2487 		ncp->nc_head = NULL;
2488 		ncp->nc_parent = NULL;
2489 		spin_unlock(&nchpp->spin);
2490 		_cache_unlock(par);
2491 	} else {
2492 		KKASSERT(ncp->nc_head == NULL);
2493 	}
2494 
2495 	/*
2496 	 * ncp should not have picked up any refs.  Physically
2497 	 * destroy the ncp.
2498 	 */
2499 	KKASSERT(ncp->nc_refs == 1);
2500 	/* _cache_unlock(ncp) not required */
2501 	ncp->nc_refs = -1;	/* safety */
2502 	if (ncp->nc_name)
2503 		kfree(ncp->nc_name, M_VFSCACHE);
2504 	kfree(ncp, M_VFSCACHE);
2505 
2506 	/*
2507 	 * Delayed drop (we had to release our spinlocks)
2508 	 *
2509 	 * The refed parent (if not  NULL) must be dropped.  The
2510 	 * caller is responsible for looping.
2511 	 */
2512 	if (dropvp)
2513 		vdrop(dropvp);
2514 	return(par);
2515 }
2516 
2517 /*
2518  * Clean up dangling negative cache and defered-drop entries in the
2519  * namecache.
2520  *
2521  * This routine is called in the critical path and also called from
2522  * vnlru().  When called from vnlru we use a lower limit to try to
2523  * deal with the negative cache before the critical path has to start
2524  * dealing with it.
2525  */
2526 typedef enum { CHI_LOW, CHI_HIGH } cache_hs_t;
2527 
2528 static cache_hs_t neg_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
2529 static cache_hs_t pos_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
2530 
2531 void
2532 cache_hysteresis(int critpath)
2533 {
2534 	int poslimit;
2535 	int neglimit = desiredvnodes / ncnegfactor;
2536 	int xnumcache = numcache;
2537 
2538 	if (critpath == 0)
2539 		neglimit = neglimit * 8 / 10;
2540 
2541 	/*
2542 	 * Don't cache too many negative hits.  We use hysteresis to reduce
2543 	 * the impact on the critical path.
2544 	 */
2545 	switch(neg_cache_hysteresis_state[critpath]) {
2546 	case CHI_LOW:
2547 		if (numneg > MINNEG && numneg > neglimit) {
2548 			if (critpath)
2549 				_cache_cleanneg(ncnegflush);
2550 			else
2551 				_cache_cleanneg(ncnegflush +
2552 						numneg - neglimit);
2553 			neg_cache_hysteresis_state[critpath] = CHI_HIGH;
2554 		}
2555 		break;
2556 	case CHI_HIGH:
2557 		if (numneg > MINNEG * 9 / 10 &&
2558 		    numneg * 9 / 10 > neglimit
2559 		) {
2560 			if (critpath)
2561 				_cache_cleanneg(ncnegflush);
2562 			else
2563 				_cache_cleanneg(ncnegflush +
2564 						numneg * 9 / 10 - neglimit);
2565 		} else {
2566 			neg_cache_hysteresis_state[critpath] = CHI_LOW;
2567 		}
2568 		break;
2569 	}
2570 
2571 	/*
2572 	 * Don't cache too many positive hits.  We use hysteresis to reduce
2573 	 * the impact on the critical path.
2574 	 *
2575 	 * Excessive positive hits can accumulate due to large numbers of
2576 	 * hardlinks (the vnode cache will not prevent hl ncps from growing
2577 	 * into infinity).
2578 	 */
2579 	if ((poslimit = ncposlimit) == 0)
2580 		poslimit = desiredvnodes * 2;
2581 	if (critpath == 0)
2582 		poslimit = poslimit * 8 / 10;
2583 
2584 	switch(pos_cache_hysteresis_state[critpath]) {
2585 	case CHI_LOW:
2586 		if (xnumcache > poslimit && xnumcache > MINPOS) {
2587 			if (critpath)
2588 				_cache_cleanpos(ncposflush);
2589 			else
2590 				_cache_cleanpos(ncposflush +
2591 						xnumcache - poslimit);
2592 			pos_cache_hysteresis_state[critpath] = CHI_HIGH;
2593 		}
2594 		break;
2595 	case CHI_HIGH:
2596 		if (xnumcache > poslimit * 5 / 6 && xnumcache > MINPOS) {
2597 			if (critpath)
2598 				_cache_cleanpos(ncposflush);
2599 			else
2600 				_cache_cleanpos(ncposflush +
2601 						xnumcache - poslimit * 5 / 6);
2602 		} else {
2603 			pos_cache_hysteresis_state[critpath] = CHI_LOW;
2604 		}
2605 		break;
2606 	}
2607 
2608 	/*
2609 	 * Clean out dangling defered-zap ncps which could not
2610 	 * be cleanly dropped if too many build up.  Note
2611 	 * that numdefered is not an exact number as such ncps
2612 	 * can be reused and the counter is not handled in a MP
2613 	 * safe manner by design.
2614 	 */
2615 	if (numdefered > neglimit) {
2616 		_cache_cleandefered();
2617 	}
2618 }
2619 
2620 /*
2621  * NEW NAMECACHE LOOKUP API
2622  *
2623  * Lookup an entry in the namecache.  The passed par_nch must be referenced
2624  * and unlocked.  A referenced and locked nchandle with a non-NULL nch.ncp
2625  * is ALWAYS returned, eve if the supplied component is illegal.
2626  *
2627  * The resulting namecache entry should be returned to the system with
2628  * cache_put() or cache_unlock() + cache_drop().
2629  *
2630  * namecache locks are recursive but care must be taken to avoid lock order
2631  * reversals (hence why the passed par_nch must be unlocked).  Locking
2632  * rules are to order for parent traversals, not for child traversals.
2633  *
2634  * Nobody else will be able to manipulate the associated namespace (e.g.
2635  * create, delete, rename, rename-target) until the caller unlocks the
2636  * entry.
2637  *
2638  * The returned entry will be in one of three states:  positive hit (non-null
2639  * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
2640  * Unresolved entries must be resolved through the filesystem to associate the
2641  * vnode and/or determine whether a positive or negative hit has occured.
2642  *
2643  * It is not necessary to lock a directory in order to lock namespace under
2644  * that directory.  In fact, it is explicitly not allowed to do that.  A
2645  * directory is typically only locked when being created, renamed, or
2646  * destroyed.
2647  *
2648  * The directory (par) may be unresolved, in which case any returned child
2649  * will likely also be marked unresolved.  Likely but not guarenteed.  Since
2650  * the filesystem lookup requires a resolved directory vnode the caller is
2651  * responsible for resolving the namecache chain top-down.  This API
2652  * specifically allows whole chains to be created in an unresolved state.
2653  */
2654 struct nchandle
2655 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
2656 {
2657 	struct nchandle nch;
2658 	struct namecache *ncp;
2659 	struct namecache *new_ncp;
2660 	struct nchash_head *nchpp;
2661 	struct mount *mp;
2662 	u_int32_t hash;
2663 	globaldata_t gd;
2664 	int par_locked;
2665 
2666 	numcalls++;
2667 	gd = mycpu;
2668 	mp = par_nch->mount;
2669 	par_locked = 0;
2670 
2671 	/*
2672 	 * This is a good time to call it, no ncp's are locked by
2673 	 * the caller or us.
2674 	 */
2675 	cache_hysteresis(1);
2676 
2677 	/*
2678 	 * Try to locate an existing entry
2679 	 */
2680 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2681 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2682 	new_ncp = NULL;
2683 	nchpp = NCHHASH(hash);
2684 restart:
2685 	spin_lock(&nchpp->spin);
2686 	LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2687 		numchecks++;
2688 
2689 		/*
2690 		 * Break out if we find a matching entry.  Note that
2691 		 * UNRESOLVED entries may match, but DESTROYED entries
2692 		 * do not.
2693 		 */
2694 		if (ncp->nc_parent == par_nch->ncp &&
2695 		    ncp->nc_nlen == nlc->nlc_namelen &&
2696 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2697 		    (ncp->nc_flag & NCF_DESTROYED) == 0
2698 		) {
2699 			_cache_hold(ncp);
2700 			spin_unlock(&nchpp->spin);
2701 			if (par_locked) {
2702 				_cache_unlock(par_nch->ncp);
2703 				par_locked = 0;
2704 			}
2705 			if (_cache_lock_special(ncp) == 0) {
2706 				_cache_auto_unresolve(mp, ncp);
2707 				if (new_ncp)
2708 					_cache_free(new_ncp);
2709 				goto found;
2710 			}
2711 			_cache_get(ncp);
2712 			_cache_put(ncp);
2713 			_cache_drop(ncp);
2714 			goto restart;
2715 		}
2716 	}
2717 
2718 	/*
2719 	 * We failed to locate an entry, create a new entry and add it to
2720 	 * the cache.  The parent ncp must also be locked so we
2721 	 * can link into it.
2722 	 *
2723 	 * We have to relookup after possibly blocking in kmalloc or
2724 	 * when locking par_nch.
2725 	 *
2726 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
2727 	 *	 mount case, in which case nc_name will be NULL.
2728 	 */
2729 	if (new_ncp == NULL) {
2730 		spin_unlock(&nchpp->spin);
2731 		new_ncp = cache_alloc(nlc->nlc_namelen);
2732 		if (nlc->nlc_namelen) {
2733 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
2734 			      nlc->nlc_namelen);
2735 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
2736 		}
2737 		goto restart;
2738 	}
2739 	if (par_locked == 0) {
2740 		spin_unlock(&nchpp->spin);
2741 		_cache_lock(par_nch->ncp);
2742 		par_locked = 1;
2743 		goto restart;
2744 	}
2745 
2746 	/*
2747 	 * WARNING!  We still hold the spinlock.  We have to set the hash
2748 	 *	     table entry atomically.
2749 	 */
2750 	ncp = new_ncp;
2751 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
2752 	spin_unlock(&nchpp->spin);
2753 	_cache_unlock(par_nch->ncp);
2754 	/* par_locked = 0 - not used */
2755 found:
2756 	/*
2757 	 * stats and namecache size management
2758 	 */
2759 	if (ncp->nc_flag & NCF_UNRESOLVED)
2760 		++gd->gd_nchstats->ncs_miss;
2761 	else if (ncp->nc_vp)
2762 		++gd->gd_nchstats->ncs_goodhits;
2763 	else
2764 		++gd->gd_nchstats->ncs_neghits;
2765 	nch.mount = mp;
2766 	nch.ncp = ncp;
2767 	atomic_add_int(&nch.mount->mnt_refs, 1);
2768 	return(nch);
2769 }
2770 
2771 /*
2772  * Attempt to lookup a namecache entry and return with a shared namecache
2773  * lock.
2774  */
2775 int
2776 cache_nlookup_maybe_shared(struct nchandle *par_nch, struct nlcomponent *nlc,
2777 			   int excl, struct nchandle *res_nch)
2778 {
2779 	struct namecache *ncp;
2780 	struct nchash_head *nchpp;
2781 	struct mount *mp;
2782 	u_int32_t hash;
2783 	globaldata_t gd;
2784 
2785 	/*
2786 	 * If exclusive requested or shared namecache locks are disabled,
2787 	 * return failure.
2788 	 */
2789 	if (ncp_shared_lock_disable || excl)
2790 		return(EWOULDBLOCK);
2791 
2792 	numcalls++;
2793 	gd = mycpu;
2794 	mp = par_nch->mount;
2795 
2796 	/*
2797 	 * This is a good time to call it, no ncp's are locked by
2798 	 * the caller or us.
2799 	 */
2800 	cache_hysteresis(1);
2801 
2802 	/*
2803 	 * Try to locate an existing entry
2804 	 */
2805 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2806 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2807 	nchpp = NCHHASH(hash);
2808 
2809 	spin_lock(&nchpp->spin);
2810 
2811 	LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2812 		numchecks++;
2813 
2814 		/*
2815 		 * Break out if we find a matching entry.  Note that
2816 		 * UNRESOLVED entries may match, but DESTROYED entries
2817 		 * do not.
2818 		 */
2819 		if (ncp->nc_parent == par_nch->ncp &&
2820 		    ncp->nc_nlen == nlc->nlc_namelen &&
2821 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2822 		    (ncp->nc_flag & NCF_DESTROYED) == 0
2823 		) {
2824 			_cache_hold(ncp);
2825 			spin_unlock(&nchpp->spin);
2826 			if (_cache_lock_shared_special(ncp) == 0) {
2827 				if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
2828 				    (ncp->nc_flag & NCF_DESTROYED) == 0 &&
2829 				    _cache_auto_unresolve_test(mp, ncp) == 0) {
2830 					goto found;
2831 				}
2832 				_cache_unlock(ncp);
2833 			}
2834 			_cache_drop(ncp);
2835 			spin_lock(&nchpp->spin);
2836 			break;
2837 		}
2838 	}
2839 
2840 	/*
2841 	 * Failure
2842 	 */
2843 	spin_unlock(&nchpp->spin);
2844 	return(EWOULDBLOCK);
2845 
2846 	/*
2847 	 * Success
2848 	 *
2849 	 * Note that nc_error might be non-zero (e.g ENOENT).
2850 	 */
2851 found:
2852 	res_nch->mount = mp;
2853 	res_nch->ncp = ncp;
2854 	++gd->gd_nchstats->ncs_goodhits;
2855 	atomic_add_int(&res_nch->mount->mnt_refs, 1);
2856 
2857 	KKASSERT(ncp->nc_error != EWOULDBLOCK);
2858 	return(ncp->nc_error);
2859 }
2860 
2861 /*
2862  * This is a non-blocking verison of cache_nlookup() used by
2863  * nfs_readdirplusrpc_uio().  It can fail for any reason and
2864  * will return nch.ncp == NULL in that case.
2865  */
2866 struct nchandle
2867 cache_nlookup_nonblock(struct nchandle *par_nch, struct nlcomponent *nlc)
2868 {
2869 	struct nchandle nch;
2870 	struct namecache *ncp;
2871 	struct namecache *new_ncp;
2872 	struct nchash_head *nchpp;
2873 	struct mount *mp;
2874 	u_int32_t hash;
2875 	globaldata_t gd;
2876 	int par_locked;
2877 
2878 	numcalls++;
2879 	gd = mycpu;
2880 	mp = par_nch->mount;
2881 	par_locked = 0;
2882 
2883 	/*
2884 	 * Try to locate an existing entry
2885 	 */
2886 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2887 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2888 	new_ncp = NULL;
2889 	nchpp = NCHHASH(hash);
2890 restart:
2891 	spin_lock(&nchpp->spin);
2892 	LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2893 		numchecks++;
2894 
2895 		/*
2896 		 * Break out if we find a matching entry.  Note that
2897 		 * UNRESOLVED entries may match, but DESTROYED entries
2898 		 * do not.
2899 		 */
2900 		if (ncp->nc_parent == par_nch->ncp &&
2901 		    ncp->nc_nlen == nlc->nlc_namelen &&
2902 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2903 		    (ncp->nc_flag & NCF_DESTROYED) == 0
2904 		) {
2905 			_cache_hold(ncp);
2906 			spin_unlock(&nchpp->spin);
2907 			if (par_locked) {
2908 				_cache_unlock(par_nch->ncp);
2909 				par_locked = 0;
2910 			}
2911 			if (_cache_lock_special(ncp) == 0) {
2912 				_cache_auto_unresolve(mp, ncp);
2913 				if (new_ncp) {
2914 					_cache_free(new_ncp);
2915 					new_ncp = NULL;
2916 				}
2917 				goto found;
2918 			}
2919 			_cache_drop(ncp);
2920 			goto failed;
2921 		}
2922 	}
2923 
2924 	/*
2925 	 * We failed to locate an entry, create a new entry and add it to
2926 	 * the cache.  The parent ncp must also be locked so we
2927 	 * can link into it.
2928 	 *
2929 	 * We have to relookup after possibly blocking in kmalloc or
2930 	 * when locking par_nch.
2931 	 *
2932 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
2933 	 *	 mount case, in which case nc_name will be NULL.
2934 	 */
2935 	if (new_ncp == NULL) {
2936 		spin_unlock(&nchpp->spin);
2937 		new_ncp = cache_alloc(nlc->nlc_namelen);
2938 		if (nlc->nlc_namelen) {
2939 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
2940 			      nlc->nlc_namelen);
2941 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
2942 		}
2943 		goto restart;
2944 	}
2945 	if (par_locked == 0) {
2946 		spin_unlock(&nchpp->spin);
2947 		if (_cache_lock_nonblock(par_nch->ncp) == 0) {
2948 			par_locked = 1;
2949 			goto restart;
2950 		}
2951 		goto failed;
2952 	}
2953 
2954 	/*
2955 	 * WARNING!  We still hold the spinlock.  We have to set the hash
2956 	 *	     table entry atomically.
2957 	 */
2958 	ncp = new_ncp;
2959 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
2960 	spin_unlock(&nchpp->spin);
2961 	_cache_unlock(par_nch->ncp);
2962 	/* par_locked = 0 - not used */
2963 found:
2964 	/*
2965 	 * stats and namecache size management
2966 	 */
2967 	if (ncp->nc_flag & NCF_UNRESOLVED)
2968 		++gd->gd_nchstats->ncs_miss;
2969 	else if (ncp->nc_vp)
2970 		++gd->gd_nchstats->ncs_goodhits;
2971 	else
2972 		++gd->gd_nchstats->ncs_neghits;
2973 	nch.mount = mp;
2974 	nch.ncp = ncp;
2975 	atomic_add_int(&nch.mount->mnt_refs, 1);
2976 	return(nch);
2977 failed:
2978 	if (new_ncp) {
2979 		_cache_free(new_ncp);
2980 		new_ncp = NULL;
2981 	}
2982 	nch.mount = NULL;
2983 	nch.ncp = NULL;
2984 	return(nch);
2985 }
2986 
2987 /*
2988  * The namecache entry is marked as being used as a mount point.
2989  * Locate the mount if it is visible to the caller.  The DragonFly
2990  * mount system allows arbitrary loops in the topology and disentangles
2991  * those loops by matching against (mp, ncp) rather than just (ncp).
2992  * This means any given ncp can dive any number of mounts, depending
2993  * on the relative mount (e.g. nullfs) the caller is at in the topology.
2994  *
2995  * We use a very simple frontend cache to reduce SMP conflicts,
2996  * which we have to do because the mountlist scan needs an exclusive
2997  * lock around its ripout info list.  Not to mention that there might
2998  * be a lot of mounts.
2999  */
3000 struct findmount_info {
3001 	struct mount *result;
3002 	struct mount *nch_mount;
3003 	struct namecache *nch_ncp;
3004 };
3005 
3006 static
3007 struct ncmount_cache *
3008 ncmount_cache_lookup(struct mount *mp, struct namecache *ncp)
3009 {
3010 	int hash;
3011 
3012 	hash = ((int)(intptr_t)mp / sizeof(*mp)) ^
3013 	       ((int)(intptr_t)ncp / sizeof(*ncp));
3014 	hash = (hash & 0x7FFFFFFF) % NCMOUNT_NUMCACHE;
3015 	return (&ncmount_cache[hash]);
3016 }
3017 
3018 static
3019 int
3020 cache_findmount_callback(struct mount *mp, void *data)
3021 {
3022 	struct findmount_info *info = data;
3023 
3024 	/*
3025 	 * Check the mount's mounted-on point against the passed nch.
3026 	 */
3027 	if (mp->mnt_ncmounton.mount == info->nch_mount &&
3028 	    mp->mnt_ncmounton.ncp == info->nch_ncp
3029 	) {
3030 	    info->result = mp;
3031 	    atomic_add_int(&mp->mnt_refs, 1);
3032 	    return(-1);
3033 	}
3034 	return(0);
3035 }
3036 
3037 struct mount *
3038 cache_findmount(struct nchandle *nch)
3039 {
3040 	struct findmount_info info;
3041 	struct ncmount_cache *ncc;
3042 	struct mount *mp;
3043 
3044 	/*
3045 	 * Fast
3046 	 */
3047 	if (ncmount_cache_enable == 0) {
3048 		ncc = NULL;
3049 		goto skip;
3050 	}
3051 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3052 	if (ncc->ncp == nch->ncp) {
3053 		spin_lock_shared(&ncc->spin);
3054 		if (ncc->isneg == 0 &&
3055 		    ncc->ncp == nch->ncp && (mp = ncc->mp) != NULL) {
3056 			if (mp->mnt_ncmounton.mount == nch->mount &&
3057 			    mp->mnt_ncmounton.ncp == nch->ncp) {
3058 				/*
3059 				 * Cache hit (positive)
3060 				 */
3061 				atomic_add_int(&mp->mnt_refs, 1);
3062 				spin_unlock_shared(&ncc->spin);
3063 				++ncmount_cache_hit;
3064 				return(mp);
3065 			}
3066 			/* else cache miss */
3067 		}
3068 		if (ncc->isneg &&
3069 		    ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3070 			/*
3071 			 * Cache hit (negative)
3072 			 */
3073 			spin_unlock_shared(&ncc->spin);
3074 			++ncmount_cache_hit;
3075 			return(NULL);
3076 		}
3077 		spin_unlock_shared(&ncc->spin);
3078 	}
3079 skip:
3080 
3081 	/*
3082 	 * Slow
3083 	 */
3084 	info.result = NULL;
3085 	info.nch_mount = nch->mount;
3086 	info.nch_ncp = nch->ncp;
3087 	mountlist_scan(cache_findmount_callback, &info,
3088 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
3089 
3090 	/*
3091 	 * Cache the result.
3092 	 *
3093 	 * Negative lookups: We cache the originating {ncp,mp}. (mp) is
3094 	 *		     only used for pointer comparisons and is not
3095 	 *		     referenced (otherwise there would be dangling
3096 	 *		     refs).
3097 	 *
3098 	 * Positive lookups: We cache the originating {ncp} and the target
3099 	 *		     (mp).  (mp) is referenced.
3100 	 *
3101 	 * Indeterminant:    If the match is undergoing an unmount we do
3102 	 *		     not cache it to avoid racing cache_unmounting(),
3103 	 *		     but still return the match.
3104 	 */
3105 	if (ncc) {
3106 		spin_lock(&ncc->spin);
3107 		if (info.result == NULL) {
3108 			if (ncc->isneg == 0 && ncc->mp)
3109 				atomic_add_int(&ncc->mp->mnt_refs, -1);
3110 			ncc->ncp = nch->ncp;
3111 			ncc->mp = nch->mount;
3112 			ncc->isneg = 1;
3113 			spin_unlock(&ncc->spin);
3114 			++ncmount_cache_overwrite;
3115 		} else if ((info.result->mnt_kern_flag & MNTK_UNMOUNT) == 0) {
3116 			if (ncc->isneg == 0 && ncc->mp)
3117 				atomic_add_int(&ncc->mp->mnt_refs, -1);
3118 			atomic_add_int(&info.result->mnt_refs, 1);
3119 			ncc->ncp = nch->ncp;
3120 			ncc->mp = info.result;
3121 			ncc->isneg = 0;
3122 			spin_unlock(&ncc->spin);
3123 			++ncmount_cache_overwrite;
3124 		} else {
3125 			spin_unlock(&ncc->spin);
3126 		}
3127 		++ncmount_cache_miss;
3128 	}
3129 	return(info.result);
3130 }
3131 
3132 void
3133 cache_dropmount(struct mount *mp)
3134 {
3135 	atomic_add_int(&mp->mnt_refs, -1);
3136 }
3137 
3138 void
3139 cache_ismounting(struct mount *mp)
3140 {
3141 	struct nchandle *nch = &mp->mnt_ncmounton;
3142 	struct ncmount_cache *ncc;
3143 
3144 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3145 	if (ncc->isneg &&
3146 	    ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3147 		spin_lock(&ncc->spin);
3148 		if (ncc->isneg &&
3149 		    ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3150 			ncc->ncp = NULL;
3151 			ncc->mp = NULL;
3152 		}
3153 		spin_unlock(&ncc->spin);
3154 	}
3155 }
3156 
3157 void
3158 cache_unmounting(struct mount *mp)
3159 {
3160 	struct nchandle *nch = &mp->mnt_ncmounton;
3161 	struct ncmount_cache *ncc;
3162 
3163 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3164 	if (ncc->isneg == 0 &&
3165 	    ncc->ncp == nch->ncp && ncc->mp == mp) {
3166 		spin_lock(&ncc->spin);
3167 		if (ncc->isneg == 0 &&
3168 		    ncc->ncp == nch->ncp && ncc->mp == mp) {
3169 			atomic_add_int(&mp->mnt_refs, -1);
3170 			ncc->ncp = NULL;
3171 			ncc->mp = NULL;
3172 		}
3173 		spin_unlock(&ncc->spin);
3174 	}
3175 }
3176 
3177 /*
3178  * Resolve an unresolved namecache entry, generally by looking it up.
3179  * The passed ncp must be locked and refd.
3180  *
3181  * Theoretically since a vnode cannot be recycled while held, and since
3182  * the nc_parent chain holds its vnode as long as children exist, the
3183  * direct parent of the cache entry we are trying to resolve should
3184  * have a valid vnode.  If not then generate an error that we can
3185  * determine is related to a resolver bug.
3186  *
3187  * However, if a vnode was in the middle of a recyclement when the NCP
3188  * got locked, ncp->nc_vp might point to a vnode that is about to become
3189  * invalid.  cache_resolve() handles this case by unresolving the entry
3190  * and then re-resolving it.
3191  *
3192  * Note that successful resolution does not necessarily return an error
3193  * code of 0.  If the ncp resolves to a negative cache hit then ENOENT
3194  * will be returned.
3195  */
3196 int
3197 cache_resolve(struct nchandle *nch, struct ucred *cred)
3198 {
3199 	struct namecache *par_tmp;
3200 	struct namecache *par;
3201 	struct namecache *ncp;
3202 	struct nchandle nctmp;
3203 	struct mount *mp;
3204 	struct vnode *dvp;
3205 	int error;
3206 
3207 	ncp = nch->ncp;
3208 	mp = nch->mount;
3209 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
3210 restart:
3211 	/*
3212 	 * If the ncp is already resolved we have nothing to do.  However,
3213 	 * we do want to guarentee that a usable vnode is returned when
3214 	 * a vnode is present, so make sure it hasn't been reclaimed.
3215 	 */
3216 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3217 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
3218 			_cache_setunresolved(ncp);
3219 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
3220 			return (ncp->nc_error);
3221 	}
3222 
3223 	/*
3224 	 * If the ncp was destroyed it will never resolve again.  This
3225 	 * can basically only happen when someone is chdir'd into an
3226 	 * empty directory which is then rmdir'd.  We want to catch this
3227 	 * here and not dive the VFS because the VFS might actually
3228 	 * have a way to re-resolve the disconnected ncp, which will
3229 	 * result in inconsistencies in the cdir/nch for proc->p_fd.
3230 	 */
3231 	if (ncp->nc_flag & NCF_DESTROYED) {
3232 		kprintf("Warning: cache_resolve: ncp '%s' was unlinked\n",
3233 			ncp->nc_name);
3234 		return(EINVAL);
3235 	}
3236 
3237 	/*
3238 	 * Mount points need special handling because the parent does not
3239 	 * belong to the same filesystem as the ncp.
3240 	 */
3241 	if (ncp == mp->mnt_ncmountpt.ncp)
3242 		return (cache_resolve_mp(mp));
3243 
3244 	/*
3245 	 * We expect an unbroken chain of ncps to at least the mount point,
3246 	 * and even all the way to root (but this code doesn't have to go
3247 	 * past the mount point).
3248 	 */
3249 	if (ncp->nc_parent == NULL) {
3250 		kprintf("EXDEV case 1 %p %*.*s\n", ncp,
3251 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
3252 		ncp->nc_error = EXDEV;
3253 		return(ncp->nc_error);
3254 	}
3255 
3256 	/*
3257 	 * The vp's of the parent directories in the chain are held via vhold()
3258 	 * due to the existance of the child, and should not disappear.
3259 	 * However, there are cases where they can disappear:
3260 	 *
3261 	 *	- due to filesystem I/O errors.
3262 	 *	- due to NFS being stupid about tracking the namespace and
3263 	 *	  destroys the namespace for entire directories quite often.
3264 	 *	- due to forced unmounts.
3265 	 *	- due to an rmdir (parent will be marked DESTROYED)
3266 	 *
3267 	 * When this occurs we have to track the chain backwards and resolve
3268 	 * it, looping until the resolver catches up to the current node.  We
3269 	 * could recurse here but we might run ourselves out of kernel stack
3270 	 * so we do it in a more painful manner.  This situation really should
3271 	 * not occur all that often, or if it does not have to go back too
3272 	 * many nodes to resolve the ncp.
3273 	 */
3274 	while ((dvp = cache_dvpref(ncp)) == NULL) {
3275 		/*
3276 		 * This case can occur if a process is CD'd into a
3277 		 * directory which is then rmdir'd.  If the parent is marked
3278 		 * destroyed there is no point trying to resolve it.
3279 		 */
3280 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
3281 			return(ENOENT);
3282 		par = ncp->nc_parent;
3283 		_cache_hold(par);
3284 		_cache_lock(par);
3285 		while ((par_tmp = par->nc_parent) != NULL &&
3286 		       par_tmp->nc_vp == NULL) {
3287 			_cache_hold(par_tmp);
3288 			_cache_lock(par_tmp);
3289 			_cache_put(par);
3290 			par = par_tmp;
3291 		}
3292 		if (par->nc_parent == NULL) {
3293 			kprintf("EXDEV case 2 %*.*s\n",
3294 				par->nc_nlen, par->nc_nlen, par->nc_name);
3295 			_cache_put(par);
3296 			return (EXDEV);
3297 		}
3298 		kprintf("[diagnostic] cache_resolve: had to recurse on %*.*s\n",
3299 			par->nc_nlen, par->nc_nlen, par->nc_name);
3300 		/*
3301 		 * The parent is not set in stone, ref and lock it to prevent
3302 		 * it from disappearing.  Also note that due to renames it
3303 		 * is possible for our ncp to move and for par to no longer
3304 		 * be one of its parents.  We resolve it anyway, the loop
3305 		 * will handle any moves.
3306 		 */
3307 		_cache_get(par);	/* additional hold/lock */
3308 		_cache_put(par);	/* from earlier hold/lock */
3309 		if (par == nch->mount->mnt_ncmountpt.ncp) {
3310 			cache_resolve_mp(nch->mount);
3311 		} else if ((dvp = cache_dvpref(par)) == NULL) {
3312 			kprintf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name);
3313 			_cache_put(par);
3314 			continue;
3315 		} else {
3316 			if (par->nc_flag & NCF_UNRESOLVED) {
3317 				nctmp.mount = mp;
3318 				nctmp.ncp = par;
3319 				par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
3320 			}
3321 			vrele(dvp);
3322 		}
3323 		if ((error = par->nc_error) != 0) {
3324 			if (par->nc_error != EAGAIN) {
3325 				kprintf("EXDEV case 3 %*.*s error %d\n",
3326 				    par->nc_nlen, par->nc_nlen, par->nc_name,
3327 				    par->nc_error);
3328 				_cache_put(par);
3329 				return(error);
3330 			}
3331 			kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
3332 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
3333 		}
3334 		_cache_put(par);
3335 		/* loop */
3336 	}
3337 
3338 	/*
3339 	 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
3340 	 * ncp's and reattach them.  If this occurs the original ncp is marked
3341 	 * EAGAIN to force a relookup.
3342 	 *
3343 	 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
3344 	 * ncp must already be resolved.
3345 	 */
3346 	if (dvp) {
3347 		nctmp.mount = mp;
3348 		nctmp.ncp = ncp;
3349 		ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
3350 		vrele(dvp);
3351 	} else {
3352 		ncp->nc_error = EPERM;
3353 	}
3354 	if (ncp->nc_error == EAGAIN) {
3355 		kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
3356 			ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
3357 		goto restart;
3358 	}
3359 	return(ncp->nc_error);
3360 }
3361 
3362 /*
3363  * Resolve the ncp associated with a mount point.  Such ncp's almost always
3364  * remain resolved and this routine is rarely called.  NFS MPs tends to force
3365  * re-resolution more often due to its mac-truck-smash-the-namecache
3366  * method of tracking namespace changes.
3367  *
3368  * The semantics for this call is that the passed ncp must be locked on
3369  * entry and will be locked on return.  However, if we actually have to
3370  * resolve the mount point we temporarily unlock the entry in order to
3371  * avoid race-to-root deadlocks due to e.g. dead NFS mounts.  Because of
3372  * the unlock we have to recheck the flags after we relock.
3373  */
3374 static int
3375 cache_resolve_mp(struct mount *mp)
3376 {
3377 	struct namecache *ncp = mp->mnt_ncmountpt.ncp;
3378 	struct vnode *vp;
3379 	int error;
3380 
3381 	KKASSERT(mp != NULL);
3382 
3383 	/*
3384 	 * If the ncp is already resolved we have nothing to do.  However,
3385 	 * we do want to guarentee that a usable vnode is returned when
3386 	 * a vnode is present, so make sure it hasn't been reclaimed.
3387 	 */
3388 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3389 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
3390 			_cache_setunresolved(ncp);
3391 	}
3392 
3393 	if (ncp->nc_flag & NCF_UNRESOLVED) {
3394 		_cache_unlock(ncp);
3395 		while (vfs_busy(mp, 0))
3396 			;
3397 		error = VFS_ROOT(mp, &vp);
3398 		_cache_lock(ncp);
3399 
3400 		/*
3401 		 * recheck the ncp state after relocking.
3402 		 */
3403 		if (ncp->nc_flag & NCF_UNRESOLVED) {
3404 			ncp->nc_error = error;
3405 			if (error == 0) {
3406 				_cache_setvp(mp, ncp, vp);
3407 				vput(vp);
3408 			} else {
3409 				kprintf("[diagnostic] cache_resolve_mp: failed"
3410 					" to resolve mount %p err=%d ncp=%p\n",
3411 					mp, error, ncp);
3412 				_cache_setvp(mp, ncp, NULL);
3413 			}
3414 		} else if (error == 0) {
3415 			vput(vp);
3416 		}
3417 		vfs_unbusy(mp);
3418 	}
3419 	return(ncp->nc_error);
3420 }
3421 
3422 /*
3423  * Clean out negative cache entries when too many have accumulated.
3424  */
3425 static void
3426 _cache_cleanneg(int count)
3427 {
3428 	struct namecache *ncp;
3429 
3430 	/*
3431 	 * Attempt to clean out the specified number of negative cache
3432 	 * entries.
3433 	 */
3434 	while (count) {
3435 		spin_lock(&ncspin);
3436 		ncp = TAILQ_FIRST(&ncneglist);
3437 		if (ncp == NULL) {
3438 			spin_unlock(&ncspin);
3439 			break;
3440 		}
3441 		TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
3442 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
3443 		_cache_hold(ncp);
3444 		spin_unlock(&ncspin);
3445 
3446 		/*
3447 		 * This can race, so we must re-check that the ncp
3448 		 * is on the ncneglist after successfully locking it.
3449 		 */
3450 		if (_cache_lock_special(ncp) == 0) {
3451 			if (ncp->nc_vp == NULL &&
3452 			    (ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3453 				ncp = cache_zap(ncp, 1);
3454 				if (ncp)
3455 					_cache_drop(ncp);
3456 			} else {
3457 				kprintf("cache_cleanneg: race avoided\n");
3458 				_cache_unlock(ncp);
3459 			}
3460 		} else {
3461 			_cache_drop(ncp);
3462 		}
3463 		--count;
3464 	}
3465 }
3466 
3467 /*
3468  * Clean out positive cache entries when too many have accumulated.
3469  */
3470 static void
3471 _cache_cleanpos(int count)
3472 {
3473 	static volatile int rover;
3474 	struct nchash_head *nchpp;
3475 	struct namecache *ncp;
3476 	int rover_copy;
3477 
3478 	/*
3479 	 * Attempt to clean out the specified number of negative cache
3480 	 * entries.
3481 	 */
3482 	while (count) {
3483 		rover_copy = ++rover;	/* MPSAFEENOUGH */
3484 		cpu_ccfence();
3485 		nchpp = NCHHASH(rover_copy);
3486 
3487 		spin_lock(&nchpp->spin);
3488 		ncp = LIST_FIRST(&nchpp->list);
3489 		while (ncp && (ncp->nc_flag & NCF_DESTROYED))
3490 			ncp = LIST_NEXT(ncp, nc_hash);
3491 		if (ncp)
3492 			_cache_hold(ncp);
3493 		spin_unlock(&nchpp->spin);
3494 
3495 		if (ncp) {
3496 			if (_cache_lock_special(ncp) == 0) {
3497 				ncp = cache_zap(ncp, 1);
3498 				if (ncp)
3499 					_cache_drop(ncp);
3500 			} else {
3501 				_cache_drop(ncp);
3502 			}
3503 		}
3504 		--count;
3505 	}
3506 }
3507 
3508 /*
3509  * This is a kitchen sink function to clean out ncps which we
3510  * tried to zap from cache_drop() but failed because we were
3511  * unable to acquire the parent lock.
3512  *
3513  * Such entries can also be removed via cache_inval_vp(), such
3514  * as when unmounting.
3515  */
3516 static void
3517 _cache_cleandefered(void)
3518 {
3519 	struct nchash_head *nchpp;
3520 	struct namecache *ncp;
3521 	struct namecache dummy;
3522 	int i;
3523 
3524 	numdefered = 0;
3525 	bzero(&dummy, sizeof(dummy));
3526 	dummy.nc_flag = NCF_DESTROYED;
3527 	dummy.nc_refs = 1;
3528 
3529 	for (i = 0; i <= nchash; ++i) {
3530 		nchpp = &nchashtbl[i];
3531 
3532 		spin_lock(&nchpp->spin);
3533 		LIST_INSERT_HEAD(&nchpp->list, &dummy, nc_hash);
3534 		ncp = &dummy;
3535 		while ((ncp = LIST_NEXT(ncp, nc_hash)) != NULL) {
3536 			if ((ncp->nc_flag & NCF_DEFEREDZAP) == 0)
3537 				continue;
3538 			LIST_REMOVE(&dummy, nc_hash);
3539 			LIST_INSERT_AFTER(ncp, &dummy, nc_hash);
3540 			_cache_hold(ncp);
3541 			spin_unlock(&nchpp->spin);
3542 			if (_cache_lock_nonblock(ncp) == 0) {
3543 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
3544 				_cache_unlock(ncp);
3545 			}
3546 			_cache_drop(ncp);
3547 			spin_lock(&nchpp->spin);
3548 			ncp = &dummy;
3549 		}
3550 		LIST_REMOVE(&dummy, nc_hash);
3551 		spin_unlock(&nchpp->spin);
3552 	}
3553 }
3554 
3555 /*
3556  * Name cache initialization, from vfsinit() when we are booting
3557  */
3558 void
3559 nchinit(void)
3560 {
3561 	int i;
3562 	globaldata_t gd;
3563 
3564 	/* initialise per-cpu namecache effectiveness statistics. */
3565 	for (i = 0; i < ncpus; ++i) {
3566 		gd = globaldata_find(i);
3567 		gd->gd_nchstats = &nchstats[i];
3568 	}
3569 	TAILQ_INIT(&ncneglist);
3570 	spin_init(&ncspin);
3571 	nchashtbl = hashinit_ext(desiredvnodes / 2,
3572 				 sizeof(struct nchash_head),
3573 				 M_VFSCACHE, &nchash);
3574 	for (i = 0; i <= (int)nchash; ++i) {
3575 		LIST_INIT(&nchashtbl[i].list);
3576 		spin_init(&nchashtbl[i].spin);
3577 	}
3578 	for (i = 0; i < NCMOUNT_NUMCACHE; ++i)
3579 		spin_init(&ncmount_cache[i].spin);
3580 	nclockwarn = 5 * hz;
3581 }
3582 
3583 /*
3584  * Called from start_init() to bootstrap the root filesystem.  Returns
3585  * a referenced, unlocked namecache record.
3586  */
3587 void
3588 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
3589 {
3590 	nch->ncp = cache_alloc(0);
3591 	nch->mount = mp;
3592 	atomic_add_int(&mp->mnt_refs, 1);
3593 	if (vp)
3594 		_cache_setvp(nch->mount, nch->ncp, vp);
3595 }
3596 
3597 /*
3598  * vfs_cache_setroot()
3599  *
3600  *	Create an association between the root of our namecache and
3601  *	the root vnode.  This routine may be called several times during
3602  *	booting.
3603  *
3604  *	If the caller intends to save the returned namecache pointer somewhere
3605  *	it must cache_hold() it.
3606  */
3607 void
3608 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
3609 {
3610 	struct vnode *ovp;
3611 	struct nchandle onch;
3612 
3613 	ovp = rootvnode;
3614 	onch = rootnch;
3615 	rootvnode = nvp;
3616 	if (nch)
3617 		rootnch = *nch;
3618 	else
3619 		cache_zero(&rootnch);
3620 	if (ovp)
3621 		vrele(ovp);
3622 	if (onch.ncp)
3623 		cache_drop(&onch);
3624 }
3625 
3626 /*
3627  * XXX OLD API COMPAT FUNCTION.  This really messes up the new namecache
3628  * topology and is being removed as quickly as possible.  The new VOP_N*()
3629  * API calls are required to make specific adjustments using the supplied
3630  * ncp pointers rather then just bogusly purging random vnodes.
3631  *
3632  * Invalidate all namecache entries to a particular vnode as well as
3633  * any direct children of that vnode in the namecache.  This is a
3634  * 'catch all' purge used by filesystems that do not know any better.
3635  *
3636  * Note that the linkage between the vnode and its namecache entries will
3637  * be removed, but the namecache entries themselves might stay put due to
3638  * active references from elsewhere in the system or due to the existance of
3639  * the children.   The namecache topology is left intact even if we do not
3640  * know what the vnode association is.  Such entries will be marked
3641  * NCF_UNRESOLVED.
3642  */
3643 void
3644 cache_purge(struct vnode *vp)
3645 {
3646 	cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
3647 }
3648 
3649 /*
3650  * Flush all entries referencing a particular filesystem.
3651  *
3652  * Since we need to check it anyway, we will flush all the invalid
3653  * entries at the same time.
3654  */
3655 #if 0
3656 
3657 void
3658 cache_purgevfs(struct mount *mp)
3659 {
3660 	struct nchash_head *nchpp;
3661 	struct namecache *ncp, *nnp;
3662 
3663 	/*
3664 	 * Scan hash tables for applicable entries.
3665 	 */
3666 	for (nchpp = &nchashtbl[nchash]; nchpp >= nchashtbl; nchpp--) {
3667 		spin_lock_wr(&nchpp->spin); XXX
3668 		ncp = LIST_FIRST(&nchpp->list);
3669 		if (ncp)
3670 			_cache_hold(ncp);
3671 		while (ncp) {
3672 			nnp = LIST_NEXT(ncp, nc_hash);
3673 			if (nnp)
3674 				_cache_hold(nnp);
3675 			if (ncp->nc_mount == mp) {
3676 				_cache_lock(ncp);
3677 				ncp = cache_zap(ncp, 0);
3678 				if (ncp)
3679 					_cache_drop(ncp);
3680 			} else {
3681 				_cache_drop(ncp);
3682 			}
3683 			ncp = nnp;
3684 		}
3685 		spin_unlock_wr(&nchpp->spin); XXX
3686 	}
3687 }
3688 
3689 #endif
3690 
3691 static int disablecwd;
3692 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0,
3693     "Disable getcwd");
3694 
3695 static u_long numcwdcalls;
3696 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdcalls, CTLFLAG_RD, &numcwdcalls, 0,
3697     "Number of current directory resolution calls");
3698 static u_long numcwdfailnf;
3699 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfailnf, CTLFLAG_RD, &numcwdfailnf, 0,
3700     "Number of current directory failures due to lack of file");
3701 static u_long numcwdfailsz;
3702 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfailsz, CTLFLAG_RD, &numcwdfailsz, 0,
3703     "Number of current directory failures due to large result");
3704 static u_long numcwdfound;
3705 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfound, CTLFLAG_RD, &numcwdfound, 0,
3706     "Number of current directory resolution successes");
3707 
3708 /*
3709  * MPALMOSTSAFE
3710  */
3711 int
3712 sys___getcwd(struct __getcwd_args *uap)
3713 {
3714 	u_int buflen;
3715 	int error;
3716 	char *buf;
3717 	char *bp;
3718 
3719 	if (disablecwd)
3720 		return (ENODEV);
3721 
3722 	buflen = uap->buflen;
3723 	if (buflen == 0)
3724 		return (EINVAL);
3725 	if (buflen > MAXPATHLEN)
3726 		buflen = MAXPATHLEN;
3727 
3728 	buf = kmalloc(buflen, M_TEMP, M_WAITOK);
3729 	bp = kern_getcwd(buf, buflen, &error);
3730 	if (error == 0)
3731 		error = copyout(bp, uap->buf, strlen(bp) + 1);
3732 	kfree(buf, M_TEMP);
3733 	return (error);
3734 }
3735 
3736 char *
3737 kern_getcwd(char *buf, size_t buflen, int *error)
3738 {
3739 	struct proc *p = curproc;
3740 	char *bp;
3741 	int i, slash_prefixed;
3742 	struct filedesc *fdp;
3743 	struct nchandle nch;
3744 	struct namecache *ncp;
3745 
3746 	numcwdcalls++;
3747 	bp = buf;
3748 	bp += buflen - 1;
3749 	*bp = '\0';
3750 	fdp = p->p_fd;
3751 	slash_prefixed = 0;
3752 
3753 	nch = fdp->fd_ncdir;
3754 	ncp = nch.ncp;
3755 	if (ncp)
3756 		_cache_hold(ncp);
3757 
3758 	while (ncp && (ncp != fdp->fd_nrdir.ncp ||
3759 	       nch.mount != fdp->fd_nrdir.mount)
3760 	) {
3761 		/*
3762 		 * While traversing upwards if we encounter the root
3763 		 * of the current mount we have to skip to the mount point
3764 		 * in the underlying filesystem.
3765 		 */
3766 		if (ncp == nch.mount->mnt_ncmountpt.ncp) {
3767 			nch = nch.mount->mnt_ncmounton;
3768 			_cache_drop(ncp);
3769 			ncp = nch.ncp;
3770 			if (ncp)
3771 				_cache_hold(ncp);
3772 			continue;
3773 		}
3774 
3775 		/*
3776 		 * Prepend the path segment
3777 		 */
3778 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
3779 			if (bp == buf) {
3780 				numcwdfailsz++;
3781 				*error = ERANGE;
3782 				bp = NULL;
3783 				goto done;
3784 			}
3785 			*--bp = ncp->nc_name[i];
3786 		}
3787 		if (bp == buf) {
3788 			numcwdfailsz++;
3789 			*error = ERANGE;
3790 			bp = NULL;
3791 			goto done;
3792 		}
3793 		*--bp = '/';
3794 		slash_prefixed = 1;
3795 
3796 		/*
3797 		 * Go up a directory.  This isn't a mount point so we don't
3798 		 * have to check again.
3799 		 */
3800 		while ((nch.ncp = ncp->nc_parent) != NULL) {
3801 			if (ncp_shared_lock_disable)
3802 				_cache_lock(ncp);
3803 			else
3804 				_cache_lock_shared(ncp);
3805 			if (nch.ncp != ncp->nc_parent) {
3806 				_cache_unlock(ncp);
3807 				continue;
3808 			}
3809 			_cache_hold(nch.ncp);
3810 			_cache_unlock(ncp);
3811 			break;
3812 		}
3813 		_cache_drop(ncp);
3814 		ncp = nch.ncp;
3815 	}
3816 	if (ncp == NULL) {
3817 		numcwdfailnf++;
3818 		*error = ENOENT;
3819 		bp = NULL;
3820 		goto done;
3821 	}
3822 	if (!slash_prefixed) {
3823 		if (bp == buf) {
3824 			numcwdfailsz++;
3825 			*error = ERANGE;
3826 			bp = NULL;
3827 			goto done;
3828 		}
3829 		*--bp = '/';
3830 	}
3831 	numcwdfound++;
3832 	*error = 0;
3833 done:
3834 	if (ncp)
3835 		_cache_drop(ncp);
3836 	return (bp);
3837 }
3838 
3839 /*
3840  * Thus begins the fullpath magic.
3841  *
3842  * The passed nchp is referenced but not locked.
3843  */
3844 static int disablefullpath;
3845 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
3846     &disablefullpath, 0,
3847     "Disable fullpath lookups");
3848 
3849 static u_int numfullpathcalls;
3850 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathcalls, CTLFLAG_RD,
3851     &numfullpathcalls, 0,
3852     "Number of full path resolutions in progress");
3853 static u_int numfullpathfailnf;
3854 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfailnf, CTLFLAG_RD,
3855     &numfullpathfailnf, 0,
3856     "Number of full path resolution failures due to lack of file");
3857 static u_int numfullpathfailsz;
3858 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfailsz, CTLFLAG_RD,
3859     &numfullpathfailsz, 0,
3860     "Number of full path resolution failures due to insufficient memory");
3861 static u_int numfullpathfound;
3862 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfound, CTLFLAG_RD,
3863     &numfullpathfound, 0,
3864     "Number of full path resolution successes");
3865 
3866 int
3867 cache_fullpath(struct proc *p, struct nchandle *nchp, struct nchandle *nchbase,
3868 	       char **retbuf, char **freebuf, int guess)
3869 {
3870 	struct nchandle fd_nrdir;
3871 	struct nchandle nch;
3872 	struct namecache *ncp;
3873 	struct mount *mp, *new_mp;
3874 	char *bp, *buf;
3875 	int slash_prefixed;
3876 	int error = 0;
3877 	int i;
3878 
3879 	atomic_add_int(&numfullpathcalls, -1);
3880 
3881 	*retbuf = NULL;
3882 	*freebuf = NULL;
3883 
3884 	buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
3885 	bp = buf + MAXPATHLEN - 1;
3886 	*bp = '\0';
3887 	if (nchbase)
3888 		fd_nrdir = *nchbase;
3889 	else if (p != NULL)
3890 		fd_nrdir = p->p_fd->fd_nrdir;
3891 	else
3892 		fd_nrdir = rootnch;
3893 	slash_prefixed = 0;
3894 	nch = *nchp;
3895 	ncp = nch.ncp;
3896 	if (ncp)
3897 		_cache_hold(ncp);
3898 	mp = nch.mount;
3899 
3900 	while (ncp && (ncp != fd_nrdir.ncp || mp != fd_nrdir.mount)) {
3901 		new_mp = NULL;
3902 
3903 		/*
3904 		 * If we are asked to guess the upwards path, we do so whenever
3905 		 * we encounter an ncp marked as a mountpoint. We try to find
3906 		 * the actual mountpoint by finding the mountpoint with this
3907 		 * ncp.
3908 		 */
3909 		if (guess && (ncp->nc_flag & NCF_ISMOUNTPT)) {
3910 			new_mp = mount_get_by_nc(ncp);
3911 		}
3912 		/*
3913 		 * While traversing upwards if we encounter the root
3914 		 * of the current mount we have to skip to the mount point.
3915 		 */
3916 		if (ncp == mp->mnt_ncmountpt.ncp) {
3917 			new_mp = mp;
3918 		}
3919 		if (new_mp) {
3920 			nch = new_mp->mnt_ncmounton;
3921 			_cache_drop(ncp);
3922 			ncp = nch.ncp;
3923 			if (ncp)
3924 				_cache_hold(ncp);
3925 			mp = nch.mount;
3926 			continue;
3927 		}
3928 
3929 		/*
3930 		 * Prepend the path segment
3931 		 */
3932 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
3933 			if (bp == buf) {
3934 				numfullpathfailsz++;
3935 				kfree(buf, M_TEMP);
3936 				error = ENOMEM;
3937 				goto done;
3938 			}
3939 			*--bp = ncp->nc_name[i];
3940 		}
3941 		if (bp == buf) {
3942 			numfullpathfailsz++;
3943 			kfree(buf, M_TEMP);
3944 			error = ENOMEM;
3945 			goto done;
3946 		}
3947 		*--bp = '/';
3948 		slash_prefixed = 1;
3949 
3950 		/*
3951 		 * Go up a directory.  This isn't a mount point so we don't
3952 		 * have to check again.
3953 		 *
3954 		 * We can only safely access nc_parent with ncp held locked.
3955 		 */
3956 		while ((nch.ncp = ncp->nc_parent) != NULL) {
3957 			_cache_lock(ncp);
3958 			if (nch.ncp != ncp->nc_parent) {
3959 				_cache_unlock(ncp);
3960 				continue;
3961 			}
3962 			_cache_hold(nch.ncp);
3963 			_cache_unlock(ncp);
3964 			break;
3965 		}
3966 		_cache_drop(ncp);
3967 		ncp = nch.ncp;
3968 	}
3969 	if (ncp == NULL) {
3970 		numfullpathfailnf++;
3971 		kfree(buf, M_TEMP);
3972 		error = ENOENT;
3973 		goto done;
3974 	}
3975 
3976 	if (!slash_prefixed) {
3977 		if (bp == buf) {
3978 			numfullpathfailsz++;
3979 			kfree(buf, M_TEMP);
3980 			error = ENOMEM;
3981 			goto done;
3982 		}
3983 		*--bp = '/';
3984 	}
3985 	numfullpathfound++;
3986 	*retbuf = bp;
3987 	*freebuf = buf;
3988 	error = 0;
3989 done:
3990 	if (ncp)
3991 		_cache_drop(ncp);
3992 	return(error);
3993 }
3994 
3995 int
3996 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf, char **freebuf,
3997     int guess)
3998 {
3999 	struct namecache *ncp;
4000 	struct nchandle nch;
4001 	int error;
4002 
4003 	*freebuf = NULL;
4004 	atomic_add_int(&numfullpathcalls, 1);
4005 	if (disablefullpath)
4006 		return (ENODEV);
4007 
4008 	if (p == NULL)
4009 		return (EINVAL);
4010 
4011 	/* vn is NULL, client wants us to use p->p_textvp */
4012 	if (vn == NULL) {
4013 		if ((vn = p->p_textvp) == NULL)
4014 			return (EINVAL);
4015 	}
4016 	spin_lock(&vn->v_spin);
4017 	TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
4018 		if (ncp->nc_nlen)
4019 			break;
4020 	}
4021 	if (ncp == NULL) {
4022 		spin_unlock(&vn->v_spin);
4023 		return (EINVAL);
4024 	}
4025 	_cache_hold(ncp);
4026 	spin_unlock(&vn->v_spin);
4027 
4028 	atomic_add_int(&numfullpathcalls, -1);
4029 	nch.ncp = ncp;
4030 	nch.mount = vn->v_mount;
4031 	error = cache_fullpath(p, &nch, NULL, retbuf, freebuf, guess);
4032 	_cache_drop(ncp);
4033 	return (error);
4034 }
4035