xref: /dragonfly/sys/kern/vfs_cache.c (revision ebde9bc1)
1 /*
2  * Copyright (c) 2003,2004,2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993, 1995
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * Poul-Henning Kamp of the FreeBSD Project.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. Neither the name of the University nor the names of its contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/uio.h>
68 #include <sys/kernel.h>
69 #include <sys/sysctl.h>
70 #include <sys/mount.h>
71 #include <sys/vnode.h>
72 #include <sys/malloc.h>
73 #include <sys/sysproto.h>
74 #include <sys/spinlock.h>
75 #include <sys/proc.h>
76 #include <sys/namei.h>
77 #include <sys/nlookup.h>
78 #include <sys/filedesc.h>
79 #include <sys/fnv_hash.h>
80 #include <sys/globaldata.h>
81 #include <sys/kern_syscall.h>
82 #include <sys/dirent.h>
83 #include <ddb/ddb.h>
84 
85 #include <sys/spinlock2.h>
86 
87 #define MAX_RECURSION_DEPTH	64
88 
89 /*
90  * Random lookups in the cache are accomplished with a hash table using
91  * a hash key of (nc_src_vp, name).  Each hash chain has its own spin lock.
92  *
93  * Negative entries may exist and correspond to resolved namecache
94  * structures where nc_vp is NULL.  In a negative entry, NCF_WHITEOUT
95  * will be set if the entry corresponds to a whited-out directory entry
96  * (verses simply not finding the entry at all).   pcpu_ncache[n].neg_list
97  * is locked via pcpu_ncache[n].neg_spin;
98  *
99  * MPSAFE RULES:
100  *
101  * (1) A ncp must be referenced before it can be locked.
102  *
103  * (2) A ncp must be locked in order to modify it.
104  *
105  * (3) ncp locks are always ordered child -> parent.  That may seem
106  *     backwards but forward scans use the hash table and thus can hold
107  *     the parent unlocked when traversing downward.
108  *
109  *     This allows insert/rename/delete/dot-dot and other operations
110  *     to use ncp->nc_parent links.
111  *
112  *     This also prevents a locked up e.g. NFS node from creating a
113  *     chain reaction all the way back to the root vnode / namecache.
114  *
115  * (4) parent linkages require both the parent and child to be locked.
116  */
117 
118 /*
119  * Structures associated with name cacheing.
120  */
121 #define NCHHASH(hash)		(&nchashtbl[(hash) & nchash])
122 #define MINNEG			1024
123 #define MINPOS			1024
124 #define NCMOUNT_NUMCACHE	16301	/* prime number */
125 
126 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
127 
128 TAILQ_HEAD(nchash_list, namecache);
129 
130 /*
131  * Don't cachealign, but at least pad to 32 bytes so entries
132  * don't cross a cache line.
133  */
134 struct nchash_head {
135        struct nchash_list list;	/* 16 bytes */
136        struct spinlock	spin;	/* 8 bytes */
137        long	pad01;		/* 8 bytes */
138 };
139 
140 struct ncmount_cache {
141 	struct spinlock	spin;
142 	struct namecache *ncp;
143 	struct mount *mp;
144 	int isneg;		/* if != 0 mp is originator and not target */
145 } __cachealign;
146 
147 struct pcpu_ncache {
148 	struct spinlock		neg_spin;	/* for neg_list and neg_count */
149 	struct namecache_list	neg_list;
150 	long			neg_count;
151 	long			vfscache_negs;
152 	long			vfscache_count;
153 	long			vfscache_leafs;
154 	long			numdefered;
155 } __cachealign;
156 
157 __read_mostly static struct nchash_head	*nchashtbl;
158 __read_mostly static struct pcpu_ncache	*pcpu_ncache;
159 static struct ncmount_cache	ncmount_cache[NCMOUNT_NUMCACHE];
160 
161 /*
162  * ncvp_debug - debug cache_fromvp().  This is used by the NFS server
163  * to create the namecache infrastructure leading to a dangling vnode.
164  *
165  * 0	Only errors are reported
166  * 1	Successes are reported
167  * 2	Successes + the whole directory scan is reported
168  * 3	Force the directory scan code run as if the parent vnode did not
169  *	have a namecache record, even if it does have one.
170  */
171 __read_mostly static int	ncvp_debug;
172 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0,
173     "Namecache debug level (0-3)");
174 
175 __read_mostly static u_long nchash;		/* size of hash table */
176 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
177     "Size of namecache hash table");
178 
179 __read_mostly static int ncnegflush = 10;	/* burst for negative flush */
180 SYSCTL_INT(_debug, OID_AUTO, ncnegflush, CTLFLAG_RW, &ncnegflush, 0,
181     "Batch flush negative entries");
182 
183 __read_mostly static int ncposflush = 10;	/* burst for positive flush */
184 SYSCTL_INT(_debug, OID_AUTO, ncposflush, CTLFLAG_RW, &ncposflush, 0,
185     "Batch flush positive entries");
186 
187 __read_mostly static int ncnegfactor = 16;	/* ratio of negative entries */
188 SYSCTL_INT(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0,
189     "Ratio of namecache negative entries");
190 
191 __read_mostly static int nclockwarn;	/* warn on locked entries in ticks */
192 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0,
193     "Warn on locked namecache entries in ticks");
194 
195 __read_mostly static int ncposlimit;	/* number of cache entries allocated */
196 SYSCTL_INT(_debug, OID_AUTO, ncposlimit, CTLFLAG_RW, &ncposlimit, 0,
197     "Number of cache entries allocated");
198 
199 __read_mostly static int ncp_shared_lock_disable = 0;
200 SYSCTL_INT(_debug, OID_AUTO, ncp_shared_lock_disable, CTLFLAG_RW,
201 	   &ncp_shared_lock_disable, 0, "Disable shared namecache locks");
202 
203 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode),
204     "sizeof(struct vnode)");
205 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache),
206     "sizeof(struct namecache)");
207 
208 __read_mostly static int ncmount_cache_enable = 1;
209 SYSCTL_INT(_debug, OID_AUTO, ncmount_cache_enable, CTLFLAG_RW,
210 	   &ncmount_cache_enable, 0, "mount point cache");
211 
212 static __inline void _cache_drop(struct namecache *ncp);
213 static int cache_resolve_mp(struct mount *mp);
214 static struct vnode *cache_dvpref(struct namecache *ncp);
215 static void _cache_lock(struct namecache *ncp);
216 static void _cache_setunresolved(struct namecache *ncp);
217 static void _cache_cleanneg(long count);
218 static void _cache_cleanpos(long count);
219 static void _cache_cleandefered(void);
220 static void _cache_unlink(struct namecache *ncp);
221 #if 0
222 static void vfscache_rollup_all(void);
223 #endif
224 
225 /*
226  * The new name cache statistics (these are rolled up globals and not
227  * modified in the critical path, see struct pcpu_ncache).
228  */
229 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
230 static long vfscache_negs;
231 SYSCTL_LONG(_vfs_cache, OID_AUTO, numneg, CTLFLAG_RD, &vfscache_negs, 0,
232     "Number of negative namecache entries");
233 static long vfscache_count;
234 SYSCTL_LONG(_vfs_cache, OID_AUTO, numcache, CTLFLAG_RD, &vfscache_count, 0,
235     "Number of namecaches entries");
236 static long vfscache_leafs;
237 SYSCTL_LONG(_vfs_cache, OID_AUTO, numleafs, CTLFLAG_RD, &vfscache_leafs, 0,
238     "Number of namecaches entries");
239 static long	numdefered;
240 SYSCTL_LONG(_debug, OID_AUTO, numdefered, CTLFLAG_RD, &numdefered, 0,
241     "Number of cache entries allocated");
242 
243 
244 struct nchstats nchstats[SMP_MAXCPU];
245 /*
246  * Export VFS cache effectiveness statistics to user-land.
247  *
248  * The statistics are left for aggregation to user-land so
249  * neat things can be achieved, like observing per-CPU cache
250  * distribution.
251  */
252 static int
253 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
254 {
255 	struct globaldata *gd;
256 	int i, error;
257 
258 	error = 0;
259 	for (i = 0; i < ncpus; ++i) {
260 		gd = globaldata_find(i);
261 		if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
262 			sizeof(struct nchstats))))
263 			break;
264 	}
265 
266 	return (error);
267 }
268 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
269   0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
270 
271 static struct namecache *cache_zap(struct namecache *ncp, int nonblock);
272 
273 /*
274  * Cache mount points and namecache records in order to avoid unnecessary
275  * atomic ops on mnt_refs and ncp->refs.  This improves concurrent SMP
276  * performance and is particularly important on multi-socket systems to
277  * reduce cache-line ping-ponging.
278  *
279  * Try to keep the pcpu structure within one cache line (~64 bytes).
280  */
281 #define MNTCACHE_COUNT      5
282 
283 struct mntcache {
284 	struct mount	*mntary[MNTCACHE_COUNT];
285 	struct namecache *ncp1;
286 	struct namecache *ncp2;
287 	struct nchandle  ncdir;
288 	int		iter;
289 	int		unused01;
290 } __cachealign;
291 
292 static struct mntcache	pcpu_mntcache[MAXCPU];
293 
294 static
295 void
296 _cache_mntref(struct mount *mp)
297 {
298 	struct mntcache *cache = &pcpu_mntcache[mycpu->gd_cpuid];
299 	int i;
300 
301 	for (i = 0; i < MNTCACHE_COUNT; ++i) {
302 		if (cache->mntary[i] != mp)
303 			continue;
304 		if (atomic_cmpset_ptr((void *)&cache->mntary[i], mp, NULL))
305 			return;
306 	}
307 	atomic_add_int(&mp->mnt_refs, 1);
308 }
309 
310 static
311 void
312 _cache_mntrel(struct mount *mp)
313 {
314 	struct mntcache *cache = &pcpu_mntcache[mycpu->gd_cpuid];
315 	int i;
316 
317 	for (i = 0; i < MNTCACHE_COUNT; ++i) {
318 		if (cache->mntary[i] == NULL) {
319 			mp = atomic_swap_ptr((void *)&cache->mntary[i], mp);
320 			if (mp == NULL)
321 				return;
322 		}
323 	}
324 	i = (int)((uint32_t)++cache->iter % (uint32_t)MNTCACHE_COUNT);
325 	mp = atomic_swap_ptr((void *)&cache->mntary[i], mp);
326 	if (mp)
327 		atomic_add_int(&mp->mnt_refs, -1);
328 }
329 
330 /*
331  * Clears all cached mount points on all cpus.  This routine should only
332  * be called when we are waiting for a mount to clear, e.g. so we can
333  * unmount.
334  */
335 void
336 cache_clearmntcache(void)
337 {
338 	int n;
339 
340 	for (n = 0; n < ncpus; ++n) {
341 		struct mntcache *cache = &pcpu_mntcache[n];
342 		struct namecache *ncp;
343 		struct mount *mp;
344 		int i;
345 
346 		for (i = 0; i < MNTCACHE_COUNT; ++i) {
347 			if (cache->mntary[i]) {
348 				mp = atomic_swap_ptr(
349 					(void *)&cache->mntary[i], NULL);
350 				if (mp)
351 					atomic_add_int(&mp->mnt_refs, -1);
352 			}
353 		}
354 		if (cache->ncp1) {
355 			ncp = atomic_swap_ptr((void *)&cache->ncp1, NULL);
356 			if (ncp)
357 				_cache_drop(ncp);
358 		}
359 		if (cache->ncp2) {
360 			ncp = atomic_swap_ptr((void *)&cache->ncp2, NULL);
361 			if (ncp)
362 				_cache_drop(ncp);
363 		}
364 		if (cache->ncdir.ncp) {
365 			ncp = atomic_swap_ptr((void *)&cache->ncdir.ncp, NULL);
366 			if (ncp)
367 				_cache_drop(ncp);
368 		}
369 		if (cache->ncdir.mount) {
370 			mp = atomic_swap_ptr((void *)&cache->ncdir.mount, NULL);
371 			if (mp)
372 				atomic_add_int(&mp->mnt_refs, -1);
373 		}
374 	}
375 }
376 
377 
378 /*
379  * Namespace locking.  The caller must already hold a reference to the
380  * namecache structure in order to lock/unlock it.  This function prevents
381  * the namespace from being created or destroyed by accessors other then
382  * the lock holder.
383  *
384  * Note that holding a locked namecache structure prevents other threads
385  * from making namespace changes (e.g. deleting or creating), prevents
386  * vnode association state changes by other threads, and prevents the
387  * namecache entry from being resolved or unresolved by other threads.
388  *
389  * An exclusive lock owner has full authority to associate/disassociate
390  * vnodes and resolve/unresolve the locked ncp.
391  *
392  * A shared lock owner only has authority to acquire the underlying vnode,
393  * if any.
394  *
395  * The primary lock field is nc_lockstatus.  nc_locktd is set after the
396  * fact (when locking) or cleared prior to unlocking.
397  *
398  * WARNING!  Holding a locked ncp will prevent a vnode from being destroyed
399  *	     or recycled, but it does NOT help you if the vnode had already
400  *	     initiated a recyclement.  If this is important, use cache_get()
401  *	     rather then cache_lock() (and deal with the differences in the
402  *	     way the refs counter is handled).  Or, alternatively, make an
403  *	     unconditional call to cache_validate() or cache_resolve()
404  *	     after cache_lock() returns.
405  */
406 static
407 void
408 _cache_lock(struct namecache *ncp)
409 {
410 	thread_t td;
411 	int didwarn;
412 	int begticks;
413 	int error;
414 	u_int count;
415 
416 	KKASSERT(ncp->nc_refs != 0);
417 	didwarn = 0;
418 	begticks = 0;
419 	td = curthread;
420 
421 	for (;;) {
422 		count = ncp->nc_lockstatus;
423 		cpu_ccfence();
424 
425 		if ((count & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 0) {
426 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
427 					      count, count + 1)) {
428 				/*
429 				 * The vp associated with a locked ncp must
430 				 * be held to prevent it from being recycled.
431 				 *
432 				 * WARNING!  If VRECLAIMED is set the vnode
433 				 * could already be in the middle of a recycle.
434 				 * Callers must use cache_vref() or
435 				 * cache_vget() on the locked ncp to
436 				 * validate the vp or set the cache entry
437 				 * to unresolved.
438 				 *
439 				 * NOTE! vhold() is allowed if we hold a
440 				 *	 lock on the ncp (which we do).
441 				 */
442 				ncp->nc_locktd = td;
443 				if (ncp->nc_vp)
444 					vhold(ncp->nc_vp);
445 				break;
446 			}
447 			/* cmpset failed */
448 			continue;
449 		}
450 		if (ncp->nc_locktd == td) {
451 			KKASSERT((count & NC_SHLOCK_FLAG) == 0);
452 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
453 					      count, count + 1)) {
454 				break;
455 			}
456 			/* cmpset failed */
457 			continue;
458 		}
459 		tsleep_interlock(&ncp->nc_locktd, 0);
460 		if (atomic_cmpset_int(&ncp->nc_lockstatus, count,
461 				      count | NC_EXLOCK_REQ) == 0) {
462 			/* cmpset failed */
463 			continue;
464 		}
465 		if (begticks == 0)
466 			begticks = ticks;
467 		error = tsleep(&ncp->nc_locktd, PINTERLOCKED,
468 			       "clock", nclockwarn);
469 		if (error == EWOULDBLOCK) {
470 			if (didwarn == 0) {
471 				didwarn = ticks;
472 				kprintf("[diagnostic] cache_lock: "
473 					"%s blocked on %p %08x",
474 					td->td_comm, ncp, count);
475 				kprintf(" \"%*.*s\"\n",
476 					ncp->nc_nlen, ncp->nc_nlen,
477 					ncp->nc_name);
478 			}
479 		}
480 		/* loop */
481 	}
482 	if (didwarn) {
483 		kprintf("[diagnostic] cache_lock: %s unblocked %*.*s after "
484 			"%d secs\n",
485 			td->td_comm,
486 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
487 			(int)(ticks + (hz / 2) - begticks) / hz);
488 	}
489 }
490 
491 /*
492  * The shared lock works similarly to the exclusive lock except
493  * nc_locktd is left NULL and we need an interlock (VHOLD) to
494  * prevent vhold() races, since the moment our cmpset_int succeeds
495  * another cpu can come in and get its own shared lock.
496  *
497  * A critical section is needed to prevent interruption during the
498  * VHOLD interlock.
499  */
500 static
501 void
502 _cache_lock_shared(struct namecache *ncp)
503 {
504 	int didwarn;
505 	int error;
506 	u_int count;
507 	u_int optreq = NC_EXLOCK_REQ;
508 
509 	KKASSERT(ncp->nc_refs != 0);
510 	didwarn = 0;
511 
512 	for (;;) {
513 		count = ncp->nc_lockstatus;
514 		cpu_ccfence();
515 
516 		if ((count & ~NC_SHLOCK_REQ) == 0) {
517 			crit_enter();
518 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
519 				      count,
520 				      (count + 1) | NC_SHLOCK_FLAG |
521 						    NC_SHLOCK_VHOLD)) {
522 				/*
523 				 * The vp associated with a locked ncp must
524 				 * be held to prevent it from being recycled.
525 				 *
526 				 * WARNING!  If VRECLAIMED is set the vnode
527 				 * could already be in the middle of a recycle.
528 				 * Callers must use cache_vref() or
529 				 * cache_vget() on the locked ncp to
530 				 * validate the vp or set the cache entry
531 				 * to unresolved.
532 				 *
533 				 * NOTE! vhold() is allowed if we hold a
534 				 *	 lock on the ncp (which we do).
535 				 */
536 				if (ncp->nc_vp)
537 					vhold(ncp->nc_vp);
538 				atomic_clear_int(&ncp->nc_lockstatus,
539 						 NC_SHLOCK_VHOLD);
540 				crit_exit();
541 				break;
542 			}
543 			/* cmpset failed */
544 			crit_exit();
545 			continue;
546 		}
547 
548 		/*
549 		 * If already held shared we can just bump the count, but
550 		 * only allow this if nobody is trying to get the lock
551 		 * exclusively.  If we are blocking too long ignore excl
552 		 * requests (which can race/deadlock us).
553 		 *
554 		 * VHOLD is a bit of a hack.  Even though we successfully
555 		 * added another shared ref, the cpu that got the first
556 		 * shared ref might not yet have held the vnode.
557 		 */
558 		if ((count & (optreq|NC_SHLOCK_FLAG)) == NC_SHLOCK_FLAG) {
559 			KKASSERT((count & ~(NC_EXLOCK_REQ |
560 					    NC_SHLOCK_REQ |
561 					    NC_SHLOCK_FLAG)) > 0);
562 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
563 					      count, count + 1)) {
564 				while (ncp->nc_lockstatus & NC_SHLOCK_VHOLD)
565 					cpu_pause();
566 				break;
567 			}
568 			continue;
569 		}
570 		tsleep_interlock(ncp, 0);
571 		if (atomic_cmpset_int(&ncp->nc_lockstatus, count,
572 				      count | NC_SHLOCK_REQ) == 0) {
573 			/* cmpset failed */
574 			continue;
575 		}
576 		error = tsleep(ncp, PINTERLOCKED, "clocksh", nclockwarn);
577 		if (error == EWOULDBLOCK) {
578 			optreq = 0;
579 			if (didwarn == 0) {
580 				didwarn = ticks - nclockwarn;
581 				kprintf("[diagnostic] cache_lock_shared: "
582 					"%s blocked on %p %08x "
583 					"\"%*.*s\"\n",
584 					curthread->td_comm, ncp, count,
585 					ncp->nc_nlen, ncp->nc_nlen,
586 					ncp->nc_name);
587 			}
588 		}
589 		/* loop */
590 	}
591 	if (didwarn) {
592 		kprintf("[diagnostic] cache_lock_shared: "
593 			"%s unblocked %*.*s after %d secs\n",
594 			curthread->td_comm,
595 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
596 			(int)(ticks - didwarn) / hz);
597 	}
598 }
599 
600 /*
601  * Lock ncp exclusively, return 0 on success.
602  *
603  * NOTE: nc_refs may be zero if the ncp is interlocked by circumstance,
604  *	 such as the case where one of its children is locked.
605  */
606 static
607 int
608 _cache_lock_nonblock(struct namecache *ncp)
609 {
610 	thread_t td;
611 	u_int count;
612 
613 	td = curthread;
614 
615 	for (;;) {
616 		count = ncp->nc_lockstatus;
617 
618 		if ((count & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 0) {
619 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
620 					      count, count + 1)) {
621 				/*
622 				 * The vp associated with a locked ncp must
623 				 * be held to prevent it from being recycled.
624 				 *
625 				 * WARNING!  If VRECLAIMED is set the vnode
626 				 * could already be in the middle of a recycle.
627 				 * Callers must use cache_vref() or
628 				 * cache_vget() on the locked ncp to
629 				 * validate the vp or set the cache entry
630 				 * to unresolved.
631 				 *
632 				 * NOTE! vhold() is allowed if we hold a
633 				 *	 lock on the ncp (which we do).
634 				 */
635 				ncp->nc_locktd = td;
636 				if (ncp->nc_vp)
637 					vhold(ncp->nc_vp);
638 				break;
639 			}
640 			/* cmpset failed */
641 			continue;
642 		}
643 		if (ncp->nc_locktd == td) {
644 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
645 					      count, count + 1)) {
646 				break;
647 			}
648 			/* cmpset failed */
649 			continue;
650 		}
651 		return(EWOULDBLOCK);
652 	}
653 	return(0);
654 }
655 
656 /*
657  * The shared lock works similarly to the exclusive lock except
658  * nc_locktd is left NULL and we need an interlock (VHOLD) to
659  * prevent vhold() races, since the moment our cmpset_int succeeds
660  * another cpu can come in and get its own shared lock.
661  *
662  * A critical section is needed to prevent interruption during the
663  * VHOLD interlock.
664  */
665 static
666 int
667 _cache_lock_shared_nonblock(struct namecache *ncp)
668 {
669 	u_int count;
670 
671 	for (;;) {
672 		count = ncp->nc_lockstatus;
673 
674 		if ((count & ~NC_SHLOCK_REQ) == 0) {
675 			crit_enter();
676 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
677 				      count,
678 				      (count + 1) | NC_SHLOCK_FLAG |
679 						    NC_SHLOCK_VHOLD)) {
680 				/*
681 				 * The vp associated with a locked ncp must
682 				 * be held to prevent it from being recycled.
683 				 *
684 				 * WARNING!  If VRECLAIMED is set the vnode
685 				 * could already be in the middle of a recycle.
686 				 * Callers must use cache_vref() or
687 				 * cache_vget() on the locked ncp to
688 				 * validate the vp or set the cache entry
689 				 * to unresolved.
690 				 *
691 				 * NOTE! vhold() is allowed if we hold a
692 				 *	 lock on the ncp (which we do).
693 				 */
694 				if (ncp->nc_vp)
695 					vhold(ncp->nc_vp);
696 				atomic_clear_int(&ncp->nc_lockstatus,
697 						 NC_SHLOCK_VHOLD);
698 				crit_exit();
699 				break;
700 			}
701 			/* cmpset failed */
702 			crit_exit();
703 			continue;
704 		}
705 
706 		/*
707 		 * If already held shared we can just bump the count, but
708 		 * only allow this if nobody is trying to get the lock
709 		 * exclusively.
710 		 *
711 		 * VHOLD is a bit of a hack.  Even though we successfully
712 		 * added another shared ref, the cpu that got the first
713 		 * shared ref might not yet have held the vnode.
714 		 */
715 		if ((count & (NC_EXLOCK_REQ|NC_SHLOCK_FLAG)) ==
716 		    NC_SHLOCK_FLAG) {
717 			KKASSERT((count & ~(NC_EXLOCK_REQ |
718 					    NC_SHLOCK_REQ |
719 					    NC_SHLOCK_FLAG)) > 0);
720 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
721 					      count, count + 1)) {
722 				while (ncp->nc_lockstatus & NC_SHLOCK_VHOLD)
723 					cpu_pause();
724 				break;
725 			}
726 			continue;
727 		}
728 		return(EWOULDBLOCK);
729 	}
730 	return(0);
731 }
732 
733 /*
734  * Helper function
735  *
736  * NOTE: nc_refs can be 0 (degenerate case during _cache_drop).
737  *
738  *	 nc_locktd must be NULLed out prior to nc_lockstatus getting cleared.
739  */
740 static
741 void
742 _cache_unlock(struct namecache *ncp)
743 {
744 	thread_t td __debugvar = curthread;
745 	u_int count;
746 	u_int ncount;
747 	struct vnode *dropvp;
748 
749 	KKASSERT(ncp->nc_refs >= 0);
750 	KKASSERT((ncp->nc_lockstatus & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) > 0);
751 	KKASSERT((ncp->nc_lockstatus & NC_SHLOCK_FLAG) || ncp->nc_locktd == td);
752 
753 	count = ncp->nc_lockstatus;
754 	cpu_ccfence();
755 
756 	/*
757 	 * Clear nc_locktd prior to the atomic op (excl lock only)
758 	 */
759 	if ((count & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 1)
760 		ncp->nc_locktd = NULL;
761 	dropvp = NULL;
762 
763 	for (;;) {
764 		if ((count &
765 		     ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ|NC_SHLOCK_FLAG)) == 1) {
766 			dropvp = ncp->nc_vp;
767 			if (count & NC_EXLOCK_REQ)
768 				ncount = count & NC_SHLOCK_REQ; /* cnt->0 */
769 			else
770 				ncount = 0;
771 
772 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
773 					      count, ncount)) {
774 				if (count & NC_EXLOCK_REQ)
775 					wakeup(&ncp->nc_locktd);
776 				else if (count & NC_SHLOCK_REQ)
777 					wakeup(ncp);
778 				break;
779 			}
780 			dropvp = NULL;
781 		} else {
782 			KKASSERT((count & NC_SHLOCK_VHOLD) == 0);
783 			KKASSERT((count & ~(NC_EXLOCK_REQ |
784 					    NC_SHLOCK_REQ |
785 					    NC_SHLOCK_FLAG)) > 1);
786 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
787 					      count, count - 1)) {
788 				break;
789 			}
790 		}
791 		count = ncp->nc_lockstatus;
792 		cpu_ccfence();
793 	}
794 
795 	/*
796 	 * Don't actually drop the vp until we successfully clean out
797 	 * the lock, otherwise we may race another shared lock.
798 	 */
799 	if (dropvp)
800 		vdrop(dropvp);
801 }
802 
803 static
804 int
805 _cache_lockstatus(struct namecache *ncp)
806 {
807 	if (ncp->nc_locktd == curthread)
808 		return(LK_EXCLUSIVE);
809 	if (ncp->nc_lockstatus & NC_SHLOCK_FLAG)
810 		return(LK_SHARED);
811 	return(-1);
812 }
813 
814 /*
815  * cache_hold() and cache_drop() prevent the premature deletion of a
816  * namecache entry but do not prevent operations (such as zapping) on
817  * that namecache entry.
818  *
819  * This routine may only be called from outside this source module if
820  * nc_refs is already at least 1.
821  *
822  * This is a rare case where callers are allowed to hold a spinlock,
823  * so we can't ourselves.
824  */
825 static __inline
826 struct namecache *
827 _cache_hold(struct namecache *ncp)
828 {
829 	atomic_add_int(&ncp->nc_refs, 1);
830 	return(ncp);
831 }
832 
833 /*
834  * Drop a cache entry, taking care to deal with races.
835  *
836  * For potential 1->0 transitions we must hold the ncp lock to safely
837  * test its flags.  An unresolved entry with no children must be zapped
838  * to avoid leaks.
839  *
840  * The call to cache_zap() itself will handle all remaining races and
841  * will decrement the ncp's refs regardless.  If we are resolved or
842  * have children nc_refs can safely be dropped to 0 without having to
843  * zap the entry.
844  *
845  * NOTE: cache_zap() will re-check nc_refs and nc_list in a MPSAFE fashion.
846  *
847  * NOTE: cache_zap() may return a non-NULL referenced parent which must
848  *	 be dropped in a loop.
849  */
850 static __inline
851 void
852 _cache_drop(struct namecache *ncp)
853 {
854 	int refs;
855 
856 	while (ncp) {
857 		KKASSERT(ncp->nc_refs > 0);
858 		refs = ncp->nc_refs;
859 
860 		if (refs == 1) {
861 			if (_cache_lock_nonblock(ncp) == 0) {
862 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
863 				if ((ncp->nc_flag & NCF_UNRESOLVED) &&
864 				    TAILQ_EMPTY(&ncp->nc_list)) {
865 					ncp = cache_zap(ncp, 1);
866 					continue;
867 				}
868 				if (atomic_cmpset_int(&ncp->nc_refs, 1, 0)) {
869 					_cache_unlock(ncp);
870 					break;
871 				}
872 				_cache_unlock(ncp);
873 			}
874 		} else {
875 			if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1))
876 				break;
877 		}
878 		cpu_pause();
879 	}
880 }
881 
882 /*
883  * Link a new namecache entry to its parent and to the hash table.  Be
884  * careful to avoid races if vhold() blocks in the future.
885  *
886  * Both ncp and par must be referenced and locked.
887  *
888  * NOTE: The hash table spinlock is held during this call, we can't do
889  *	 anything fancy.
890  */
891 static void
892 _cache_link_parent(struct namecache *ncp, struct namecache *par,
893 		   struct nchash_head *nchpp)
894 {
895 	struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
896 
897 	KKASSERT(ncp->nc_parent == NULL);
898 	ncp->nc_parent = par;
899 	ncp->nc_head = nchpp;
900 
901 	/*
902 	 * Set inheritance flags.  Note that the parent flags may be
903 	 * stale due to getattr potentially not having been run yet
904 	 * (it gets run during nlookup()'s).
905 	 */
906 	ncp->nc_flag &= ~(NCF_SF_PNOCACHE | NCF_UF_PCACHE);
907 	if (par->nc_flag & (NCF_SF_NOCACHE | NCF_SF_PNOCACHE))
908 		ncp->nc_flag |= NCF_SF_PNOCACHE;
909 	if (par->nc_flag & (NCF_UF_CACHE | NCF_UF_PCACHE))
910 		ncp->nc_flag |= NCF_UF_PCACHE;
911 
912 	/*
913 	 * Add to hash table and parent, adjust accounting
914 	 */
915 	TAILQ_INSERT_HEAD(&nchpp->list, ncp, nc_hash);
916 	atomic_add_long(&pn->vfscache_count, 1);
917 	if (TAILQ_EMPTY(&ncp->nc_list))
918 		atomic_add_long(&pn->vfscache_leafs, 1);
919 
920 	if (TAILQ_EMPTY(&par->nc_list)) {
921 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
922 		atomic_add_long(&pn->vfscache_leafs, -1);
923 		/*
924 		 * Any vp associated with an ncp which has children must
925 		 * be held to prevent it from being recycled.
926 		 */
927 		if (par->nc_vp)
928 			vhold(par->nc_vp);
929 	} else {
930 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
931 	}
932 }
933 
934 /*
935  * Remove the parent and hash associations from a namecache structure.
936  * If this is the last child of the parent the cache_drop(par) will
937  * attempt to recursively zap the parent.
938  *
939  * ncp must be locked.  This routine will acquire a temporary lock on
940  * the parent as wlel as the appropriate hash chain.
941  */
942 static void
943 _cache_unlink_parent(struct namecache *ncp)
944 {
945 	struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
946 	struct namecache *par;
947 	struct vnode *dropvp;
948 
949 	if ((par = ncp->nc_parent) != NULL) {
950 		KKASSERT(ncp->nc_parent == par);
951 		_cache_hold(par);
952 		_cache_lock(par);
953 		spin_lock(&ncp->nc_head->spin);
954 
955 		/*
956 		 * Remove from hash table and parent, adjust accounting
957 		 */
958 		TAILQ_REMOVE(&ncp->nc_head->list, ncp, nc_hash);
959 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
960 		atomic_add_long(&pn->vfscache_count, -1);
961 		if (TAILQ_EMPTY(&ncp->nc_list))
962 			atomic_add_long(&pn->vfscache_leafs, -1);
963 
964 		dropvp = NULL;
965 		if (TAILQ_EMPTY(&par->nc_list)) {
966 			atomic_add_long(&pn->vfscache_leafs, 1);
967 			if (par->nc_vp)
968 				dropvp = par->nc_vp;
969 		}
970 		spin_unlock(&ncp->nc_head->spin);
971 		ncp->nc_parent = NULL;
972 		ncp->nc_head = NULL;
973 		_cache_unlock(par);
974 		_cache_drop(par);
975 
976 		/*
977 		 * We can only safely vdrop with no spinlocks held.
978 		 */
979 		if (dropvp)
980 			vdrop(dropvp);
981 	}
982 }
983 
984 /*
985  * Allocate a new namecache structure.  Most of the code does not require
986  * zero-termination of the string but it makes vop_compat_ncreate() easier.
987  */
988 static struct namecache *
989 cache_alloc(int nlen)
990 {
991 	struct namecache *ncp;
992 
993 	ncp = kmalloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
994 	if (nlen)
995 		ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHE, M_WAITOK);
996 	ncp->nc_nlen = nlen;
997 	ncp->nc_flag = NCF_UNRESOLVED;
998 	ncp->nc_error = ENOTCONN;	/* needs to be resolved */
999 	ncp->nc_refs = 1;
1000 
1001 	TAILQ_INIT(&ncp->nc_list);
1002 	_cache_lock(ncp);
1003 	return(ncp);
1004 }
1005 
1006 /*
1007  * Can only be called for the case where the ncp has never been
1008  * associated with anything (so no spinlocks are needed).
1009  */
1010 static void
1011 _cache_free(struct namecache *ncp)
1012 {
1013 	KKASSERT(ncp->nc_refs == 1 && ncp->nc_lockstatus == 1);
1014 	if (ncp->nc_name)
1015 		kfree(ncp->nc_name, M_VFSCACHE);
1016 	kfree(ncp, M_VFSCACHE);
1017 }
1018 
1019 /*
1020  * [re]initialize a nchandle.
1021  */
1022 void
1023 cache_zero(struct nchandle *nch)
1024 {
1025 	nch->ncp = NULL;
1026 	nch->mount = NULL;
1027 }
1028 
1029 /*
1030  * Ref and deref a namecache structure.
1031  *
1032  * The caller must specify a stable ncp pointer, typically meaning the
1033  * ncp is already referenced but this can also occur indirectly through
1034  * e.g. holding a lock on a direct child.
1035  *
1036  * WARNING: Caller may hold an unrelated read spinlock, which means we can't
1037  *	    use read spinlocks here.
1038  */
1039 struct nchandle *
1040 cache_hold(struct nchandle *nch)
1041 {
1042 	_cache_hold(nch->ncp);
1043 	_cache_mntref(nch->mount);
1044 	return(nch);
1045 }
1046 
1047 /*
1048  * Create a copy of a namecache handle for an already-referenced
1049  * entry.
1050  */
1051 void
1052 cache_copy(struct nchandle *nch, struct nchandle *target)
1053 {
1054 	struct mntcache *cache = &pcpu_mntcache[mycpu->gd_cpuid];
1055 	struct namecache *ncp;
1056 
1057 	*target = *nch;
1058 	_cache_mntref(target->mount);
1059 	ncp = target->ncp;
1060 	if (ncp) {
1061 		if (ncp == cache->ncp1) {
1062 			if (atomic_cmpset_ptr((void *)&cache->ncp1, ncp, NULL))
1063 				return;
1064 		}
1065 		if (ncp == cache->ncp2) {
1066 			if (atomic_cmpset_ptr((void *)&cache->ncp2, ncp, NULL))
1067 				return;
1068 		}
1069 		_cache_hold(ncp);
1070 	}
1071 }
1072 
1073 /*
1074  * Caller wants to copy the current directory, copy it out from our
1075  * pcpu cache if possible (the entire critical path is just two localized
1076  * cmpset ops).  If the pcpu cache has a snapshot at all it will be a
1077  * valid one, so we don't have to lock p->p_fd even though we are loading
1078  * two fields.
1079  *
1080  * This has a limited effect since nlookup must still ref and shlock the
1081  * vnode to check perms.  We do avoid the per-proc spin-lock though, which
1082  * can aid threaded programs.
1083  */
1084 void
1085 cache_copy_ncdir(struct proc *p, struct nchandle *target)
1086 {
1087 	struct mntcache *cache = &pcpu_mntcache[mycpu->gd_cpuid];
1088 
1089 	*target = p->p_fd->fd_ncdir;
1090 	if (target->ncp == cache->ncdir.ncp &&
1091 	    target->mount == cache->ncdir.mount) {
1092 		if (atomic_cmpset_ptr((void *)&cache->ncdir.ncp,
1093 				      target->ncp, NULL)) {
1094 			if (atomic_cmpset_ptr((void *)&cache->ncdir.mount,
1095 					      target->mount, NULL)) {
1096 				/* CRITICAL PATH */
1097 				return;
1098 			}
1099 			_cache_drop(target->ncp);
1100 		}
1101 	}
1102 	spin_lock_shared(&p->p_fd->fd_spin);
1103 	cache_copy(&p->p_fd->fd_ncdir, target);
1104 	spin_unlock_shared(&p->p_fd->fd_spin);
1105 }
1106 
1107 void
1108 cache_changemount(struct nchandle *nch, struct mount *mp)
1109 {
1110 	_cache_mntref(mp);
1111 	_cache_mntrel(nch->mount);
1112 	nch->mount = mp;
1113 }
1114 
1115 void
1116 cache_drop(struct nchandle *nch)
1117 {
1118 	_cache_mntrel(nch->mount);
1119 	_cache_drop(nch->ncp);
1120 	nch->ncp = NULL;
1121 	nch->mount = NULL;
1122 }
1123 
1124 /*
1125  * Drop the nchandle, but try to cache the ref to avoid global atomic
1126  * ops.  This is typically done on the system root and jail root nchandles.
1127  */
1128 void
1129 cache_drop_and_cache(struct nchandle *nch)
1130 {
1131 	struct mntcache *cache = &pcpu_mntcache[mycpu->gd_cpuid];
1132 	struct namecache *ncp;
1133 
1134 	_cache_mntrel(nch->mount);
1135 	ncp = nch->ncp;
1136 	if (cache->ncp1 == NULL) {
1137 		ncp = atomic_swap_ptr((void *)&cache->ncp1, ncp);
1138 		if (ncp == NULL)
1139 			goto done;
1140 	}
1141 	if (cache->ncp2 == NULL) {
1142 		ncp = atomic_swap_ptr((void *)&cache->ncp2, ncp);
1143 		if (ncp == NULL)
1144 			goto done;
1145 	}
1146 	if (++cache->iter & 1)
1147 		ncp = atomic_swap_ptr((void *)&cache->ncp2, ncp);
1148 	else
1149 		ncp = atomic_swap_ptr((void *)&cache->ncp1, ncp);
1150 	if (ncp)
1151 		_cache_drop(ncp);
1152 done:
1153 	nch->ncp = NULL;
1154 	nch->mount = NULL;
1155 }
1156 
1157 /*
1158  * We are dropping what the caller believes is the current directory,
1159  * unconditionally store it in our pcpu cache.  Anything already in
1160  * the cache will be discarded.
1161  */
1162 void
1163 cache_drop_ncdir(struct nchandle *nch)
1164 {
1165 	struct mntcache *cache = &pcpu_mntcache[mycpu->gd_cpuid];
1166 
1167 	nch->ncp = atomic_swap_ptr((void *)&cache->ncdir.ncp, nch->ncp);
1168 	nch->mount = atomic_swap_ptr((void *)&cache->ncdir.mount, nch->mount);
1169 	if (nch->ncp)
1170 		_cache_drop(nch->ncp);
1171 	if (nch->mount)
1172 		_cache_mntrel(nch->mount);
1173 	nch->ncp = NULL;
1174 	nch->mount = NULL;
1175 }
1176 
1177 int
1178 cache_lockstatus(struct nchandle *nch)
1179 {
1180 	return(_cache_lockstatus(nch->ncp));
1181 }
1182 
1183 void
1184 cache_lock(struct nchandle *nch)
1185 {
1186 	_cache_lock(nch->ncp);
1187 }
1188 
1189 void
1190 cache_lock_maybe_shared(struct nchandle *nch, int excl)
1191 {
1192 	struct namecache *ncp = nch->ncp;
1193 
1194 	if (ncp_shared_lock_disable || excl ||
1195 	    (ncp->nc_flag & NCF_UNRESOLVED)) {
1196 		_cache_lock(ncp);
1197 	} else {
1198 		_cache_lock_shared(ncp);
1199 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1200 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
1201 				_cache_unlock(ncp);
1202 				_cache_lock(ncp);
1203 			}
1204 		} else {
1205 			_cache_unlock(ncp);
1206 			_cache_lock(ncp);
1207 		}
1208 	}
1209 }
1210 
1211 /*
1212  * Relock nch1 given an unlocked nch1 and a locked nch2.  The caller
1213  * is responsible for checking both for validity on return as they
1214  * may have become invalid.
1215  *
1216  * We have to deal with potential deadlocks here, just ping pong
1217  * the lock until we get it (we will always block somewhere when
1218  * looping so this is not cpu-intensive).
1219  *
1220  * which = 0	nch1 not locked, nch2 is locked
1221  * which = 1	nch1 is locked, nch2 is not locked
1222  */
1223 void
1224 cache_relock(struct nchandle *nch1, struct ucred *cred1,
1225 	     struct nchandle *nch2, struct ucred *cred2)
1226 {
1227 	int which;
1228 
1229 	which = 0;
1230 
1231 	for (;;) {
1232 		if (which == 0) {
1233 			if (cache_lock_nonblock(nch1) == 0) {
1234 				cache_resolve(nch1, cred1);
1235 				break;
1236 			}
1237 			cache_unlock(nch2);
1238 			cache_lock(nch1);
1239 			cache_resolve(nch1, cred1);
1240 			which = 1;
1241 		} else {
1242 			if (cache_lock_nonblock(nch2) == 0) {
1243 				cache_resolve(nch2, cred2);
1244 				break;
1245 			}
1246 			cache_unlock(nch1);
1247 			cache_lock(nch2);
1248 			cache_resolve(nch2, cred2);
1249 			which = 0;
1250 		}
1251 	}
1252 }
1253 
1254 int
1255 cache_lock_nonblock(struct nchandle *nch)
1256 {
1257 	return(_cache_lock_nonblock(nch->ncp));
1258 }
1259 
1260 void
1261 cache_unlock(struct nchandle *nch)
1262 {
1263 	_cache_unlock(nch->ncp);
1264 }
1265 
1266 /*
1267  * ref-and-lock, unlock-and-deref functions.
1268  *
1269  * This function is primarily used by nlookup.  Even though cache_lock
1270  * holds the vnode, it is possible that the vnode may have already
1271  * initiated a recyclement.
1272  *
1273  * We want cache_get() to return a definitively usable vnode or a
1274  * definitively unresolved ncp.
1275  */
1276 static
1277 struct namecache *
1278 _cache_get(struct namecache *ncp)
1279 {
1280 	_cache_hold(ncp);
1281 	_cache_lock(ncp);
1282 	if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1283 		_cache_setunresolved(ncp);
1284 	return(ncp);
1285 }
1286 
1287 /*
1288  * Attempt to obtain a shared lock on the ncp.  A shared lock will only
1289  * be obtained if the ncp is resolved and the vnode (if not ENOENT) is
1290  * valid.  Otherwise an exclusive lock will be acquired instead.
1291  */
1292 static
1293 struct namecache *
1294 _cache_get_maybe_shared(struct namecache *ncp, int excl)
1295 {
1296 	if (ncp_shared_lock_disable || excl ||
1297 	    (ncp->nc_flag & NCF_UNRESOLVED)) {
1298 		return(_cache_get(ncp));
1299 	}
1300 	_cache_hold(ncp);
1301 	_cache_lock_shared(ncp);
1302 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1303 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
1304 			_cache_unlock(ncp);
1305 			ncp = _cache_get(ncp);
1306 			_cache_drop(ncp);
1307 		}
1308 	} else {
1309 		_cache_unlock(ncp);
1310 		ncp = _cache_get(ncp);
1311 		_cache_drop(ncp);
1312 	}
1313 	return(ncp);
1314 }
1315 
1316 /*
1317  * This is a special form of _cache_lock() which only succeeds if
1318  * it can get a pristine, non-recursive lock.  The caller must have
1319  * already ref'd the ncp.
1320  *
1321  * On success the ncp will be locked, on failure it will not.  The
1322  * ref count does not change either way.
1323  *
1324  * We want _cache_lock_special() (on success) to return a definitively
1325  * usable vnode or a definitively unresolved ncp.
1326  */
1327 static int
1328 _cache_lock_special(struct namecache *ncp)
1329 {
1330 	if (_cache_lock_nonblock(ncp) == 0) {
1331 		if ((ncp->nc_lockstatus &
1332 		     ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 1) {
1333 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1334 				_cache_setunresolved(ncp);
1335 			return(0);
1336 		}
1337 		_cache_unlock(ncp);
1338 	}
1339 	return(EWOULDBLOCK);
1340 }
1341 
1342 /*
1343  * This function tries to get a shared lock but will back-off to an exclusive
1344  * lock if:
1345  *
1346  * (1) Some other thread is trying to obtain an exclusive lock
1347  *     (to prevent the exclusive requester from getting livelocked out
1348  *     by many shared locks).
1349  *
1350  * (2) The current thread already owns an exclusive lock (to avoid
1351  *     deadlocking).
1352  *
1353  * WARNING! On machines with lots of cores we really want to try hard to
1354  *	    get a shared lock or concurrent path lookups can chain-react
1355  *	    into a very high-latency exclusive lock.
1356  */
1357 static int
1358 _cache_lock_shared_special(struct namecache *ncp)
1359 {
1360 	/*
1361 	 * Only honor a successful shared lock (returning 0) if there is
1362 	 * no exclusive request pending and the vnode, if present, is not
1363 	 * in a reclaimed state.
1364 	 */
1365 	if (_cache_lock_shared_nonblock(ncp) == 0) {
1366 		if ((ncp->nc_lockstatus & NC_EXLOCK_REQ) == 0) {
1367 			if (ncp->nc_vp == NULL ||
1368 			    (ncp->nc_vp->v_flag & VRECLAIMED) == 0) {
1369 				return(0);
1370 			}
1371 		}
1372 		_cache_unlock(ncp);
1373 		return(EWOULDBLOCK);
1374 	}
1375 
1376 	/*
1377 	 * Non-blocking shared lock failed.  If we already own the exclusive
1378 	 * lock just acquire another exclusive lock (instead of deadlocking).
1379 	 * Otherwise acquire a shared lock.
1380 	 */
1381 	if (ncp->nc_locktd == curthread) {
1382 		_cache_lock(ncp);
1383 		return(0);
1384 	}
1385 	_cache_lock_shared(ncp);
1386 	return(0);
1387 }
1388 
1389 
1390 /*
1391  * NOTE: The same nchandle can be passed for both arguments.
1392  */
1393 void
1394 cache_get(struct nchandle *nch, struct nchandle *target)
1395 {
1396 	KKASSERT(nch->ncp->nc_refs > 0);
1397 	target->mount = nch->mount;
1398 	target->ncp = _cache_get(nch->ncp);
1399 	_cache_mntref(target->mount);
1400 }
1401 
1402 void
1403 cache_get_maybe_shared(struct nchandle *nch, struct nchandle *target, int excl)
1404 {
1405 	KKASSERT(nch->ncp->nc_refs > 0);
1406 	target->mount = nch->mount;
1407 	target->ncp = _cache_get_maybe_shared(nch->ncp, excl);
1408 	_cache_mntref(target->mount);
1409 }
1410 
1411 /*
1412  *
1413  */
1414 static __inline
1415 void
1416 _cache_put(struct namecache *ncp)
1417 {
1418 	_cache_unlock(ncp);
1419 	_cache_drop(ncp);
1420 }
1421 
1422 /*
1423  *
1424  */
1425 void
1426 cache_put(struct nchandle *nch)
1427 {
1428 	_cache_mntrel(nch->mount);
1429 	_cache_put(nch->ncp);
1430 	nch->ncp = NULL;
1431 	nch->mount = NULL;
1432 }
1433 
1434 /*
1435  * Resolve an unresolved ncp by associating a vnode with it.  If the
1436  * vnode is NULL, a negative cache entry is created.
1437  *
1438  * The ncp should be locked on entry and will remain locked on return.
1439  */
1440 static
1441 void
1442 _cache_setvp(struct mount *mp, struct namecache *ncp, struct vnode *vp)
1443 {
1444 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
1445 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
1446 
1447 	if (vp != NULL) {
1448 		/*
1449 		 * Any vp associated with an ncp which has children must
1450 		 * be held.  Any vp associated with a locked ncp must be held.
1451 		 */
1452 		if (!TAILQ_EMPTY(&ncp->nc_list))
1453 			vhold(vp);
1454 		spin_lock(&vp->v_spin);
1455 		ncp->nc_vp = vp;
1456 		TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
1457 		spin_unlock(&vp->v_spin);
1458 		if (ncp->nc_lockstatus & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ))
1459 			vhold(vp);
1460 
1461 		/*
1462 		 * Set auxiliary flags
1463 		 */
1464 		switch(vp->v_type) {
1465 		case VDIR:
1466 			ncp->nc_flag |= NCF_ISDIR;
1467 			break;
1468 		case VLNK:
1469 			ncp->nc_flag |= NCF_ISSYMLINK;
1470 			/* XXX cache the contents of the symlink */
1471 			break;
1472 		default:
1473 			break;
1474 		}
1475 		ncp->nc_error = 0;
1476 		/* XXX: this is a hack to work-around the lack of a real pfs vfs
1477 		 * implementation*/
1478 		if (mp != NULL)
1479 			if (strncmp(mp->mnt_stat.f_fstypename, "null", 5) == 0)
1480 				vp->v_pfsmp = mp;
1481 	} else {
1482 		/*
1483 		 * When creating a negative cache hit we set the
1484 		 * namecache_gen.  A later resolve will clean out the
1485 		 * negative cache hit if the mount point's namecache_gen
1486 		 * has changed.  Used by devfs, could also be used by
1487 		 * other remote FSs.
1488 		 */
1489 		struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
1490 
1491 		ncp->nc_vp = NULL;
1492 		ncp->nc_negcpu = mycpu->gd_cpuid;
1493 		spin_lock(&pn->neg_spin);
1494 		TAILQ_INSERT_TAIL(&pn->neg_list, ncp, nc_vnode);
1495 		++pn->neg_count;
1496 		spin_unlock(&pn->neg_spin);
1497 		atomic_add_long(&pn->vfscache_negs, 1);
1498 
1499 		ncp->nc_error = ENOENT;
1500 		if (mp)
1501 			VFS_NCPGEN_SET(mp, ncp);
1502 	}
1503 	ncp->nc_flag &= ~(NCF_UNRESOLVED | NCF_DEFEREDZAP);
1504 }
1505 
1506 /*
1507  *
1508  */
1509 void
1510 cache_setvp(struct nchandle *nch, struct vnode *vp)
1511 {
1512 	_cache_setvp(nch->mount, nch->ncp, vp);
1513 }
1514 
1515 /*
1516  *
1517  */
1518 void
1519 cache_settimeout(struct nchandle *nch, int nticks)
1520 {
1521 	struct namecache *ncp = nch->ncp;
1522 
1523 	if ((ncp->nc_timeout = ticks + nticks) == 0)
1524 		ncp->nc_timeout = 1;
1525 }
1526 
1527 /*
1528  * Disassociate the vnode or negative-cache association and mark a
1529  * namecache entry as unresolved again.  Note that the ncp is still
1530  * left in the hash table and still linked to its parent.
1531  *
1532  * The ncp should be locked and refd on entry and will remain locked and refd
1533  * on return.
1534  *
1535  * This routine is normally never called on a directory containing children.
1536  * However, NFS often does just that in its rename() code as a cop-out to
1537  * avoid complex namespace operations.  This disconnects a directory vnode
1538  * from its namecache and can cause the OLDAPI and NEWAPI to get out of
1539  * sync.
1540  *
1541  */
1542 static
1543 void
1544 _cache_setunresolved(struct namecache *ncp)
1545 {
1546 	struct vnode *vp;
1547 
1548 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1549 		ncp->nc_flag |= NCF_UNRESOLVED;
1550 		ncp->nc_timeout = 0;
1551 		ncp->nc_error = ENOTCONN;
1552 		if ((vp = ncp->nc_vp) != NULL) {
1553 			spin_lock(&vp->v_spin);
1554 			ncp->nc_vp = NULL;
1555 			TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
1556 			spin_unlock(&vp->v_spin);
1557 
1558 			/*
1559 			 * Any vp associated with an ncp with children is
1560 			 * held by that ncp.  Any vp associated with a locked
1561 			 * ncp is held by that ncp.  These conditions must be
1562 			 * undone when the vp is cleared out from the ncp.
1563 			 */
1564 			if (!TAILQ_EMPTY(&ncp->nc_list))
1565 				vdrop(vp);
1566 			if (ncp->nc_lockstatus & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ))
1567 				vdrop(vp);
1568 		} else {
1569 			struct pcpu_ncache *pn;
1570 
1571 			pn = &pcpu_ncache[ncp->nc_negcpu];
1572 
1573 			atomic_add_long(&pn->vfscache_negs, -1);
1574 			spin_lock(&pn->neg_spin);
1575 			TAILQ_REMOVE(&pn->neg_list, ncp, nc_vnode);
1576 			--pn->neg_count;
1577 			spin_unlock(&pn->neg_spin);
1578 		}
1579 		ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK);
1580 	}
1581 }
1582 
1583 /*
1584  * The cache_nresolve() code calls this function to automatically
1585  * set a resolved cache element to unresolved if it has timed out
1586  * or if it is a negative cache hit and the mount point namecache_gen
1587  * has changed.
1588  */
1589 static __inline int
1590 _cache_auto_unresolve_test(struct mount *mp, struct namecache *ncp)
1591 {
1592 	/*
1593 	 * Try to zap entries that have timed out.  We have
1594 	 * to be careful here because locked leafs may depend
1595 	 * on the vnode remaining intact in a parent, so only
1596 	 * do this under very specific conditions.
1597 	 */
1598 	if (ncp->nc_timeout && (int)(ncp->nc_timeout - ticks) < 0 &&
1599 	    TAILQ_EMPTY(&ncp->nc_list)) {
1600 		return 1;
1601 	}
1602 
1603 	/*
1604 	 * If a resolved negative cache hit is invalid due to
1605 	 * the mount's namecache generation being bumped, zap it.
1606 	 */
1607 	if (ncp->nc_vp == NULL && VFS_NCPGEN_TEST(mp, ncp)) {
1608 		return 1;
1609 	}
1610 
1611 	/*
1612 	 * Otherwise we are good
1613 	 */
1614 	return 0;
1615 }
1616 
1617 static __inline void
1618 _cache_auto_unresolve(struct mount *mp, struct namecache *ncp)
1619 {
1620 	/*
1621 	 * Already in an unresolved state, nothing to do.
1622 	 */
1623 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1624 		if (_cache_auto_unresolve_test(mp, ncp))
1625 			_cache_setunresolved(ncp);
1626 	}
1627 }
1628 
1629 /*
1630  *
1631  */
1632 void
1633 cache_setunresolved(struct nchandle *nch)
1634 {
1635 	_cache_setunresolved(nch->ncp);
1636 }
1637 
1638 /*
1639  * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
1640  * looking for matches.  This flag tells the lookup code when it must
1641  * check for a mount linkage and also prevents the directories in question
1642  * from being deleted or renamed.
1643  */
1644 static
1645 int
1646 cache_clrmountpt_callback(struct mount *mp, void *data)
1647 {
1648 	struct nchandle *nch = data;
1649 
1650 	if (mp->mnt_ncmounton.ncp == nch->ncp)
1651 		return(1);
1652 	if (mp->mnt_ncmountpt.ncp == nch->ncp)
1653 		return(1);
1654 	return(0);
1655 }
1656 
1657 /*
1658  * Clear NCF_ISMOUNTPT on nch->ncp if it is no longer associated
1659  * with a mount point.
1660  */
1661 void
1662 cache_clrmountpt(struct nchandle *nch)
1663 {
1664 	int count;
1665 
1666 	count = mountlist_scan(cache_clrmountpt_callback, nch,
1667 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1668 	if (count == 0)
1669 		nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
1670 }
1671 
1672 /*
1673  * Invalidate portions of the namecache topology given a starting entry.
1674  * The passed ncp is set to an unresolved state and:
1675  *
1676  * The passed ncp must be referencxed and locked.  The routine may unlock
1677  * and relock ncp several times, and will recheck the children and loop
1678  * to catch races.  When done the passed ncp will be returned with the
1679  * reference and lock intact.
1680  *
1681  * CINV_DESTROY		- Set a flag in the passed ncp entry indicating
1682  *			  that the physical underlying nodes have been
1683  *			  destroyed... as in deleted.  For example, when
1684  *			  a directory is removed.  This will cause record
1685  *			  lookups on the name to no longer be able to find
1686  *			  the record and tells the resolver to return failure
1687  *			  rather then trying to resolve through the parent.
1688  *
1689  *			  The topology itself, including ncp->nc_name,
1690  *			  remains intact.
1691  *
1692  *			  This only applies to the passed ncp, if CINV_CHILDREN
1693  *			  is specified the children are not flagged.
1694  *
1695  * CINV_CHILDREN	- Set all children (recursively) to an unresolved
1696  *			  state as well.
1697  *
1698  *			  Note that this will also have the side effect of
1699  *			  cleaning out any unreferenced nodes in the topology
1700  *			  from the leaves up as the recursion backs out.
1701  *
1702  * Note that the topology for any referenced nodes remains intact, but
1703  * the nodes will be marked as having been destroyed and will be set
1704  * to an unresolved state.
1705  *
1706  * It is possible for cache_inval() to race a cache_resolve(), meaning that
1707  * the namecache entry may not actually be invalidated on return if it was
1708  * revalidated while recursing down into its children.  This code guarentees
1709  * that the node(s) will go through an invalidation cycle, but does not
1710  * guarentee that they will remain in an invalidated state.
1711  *
1712  * Returns non-zero if a revalidation was detected during the invalidation
1713  * recursion, zero otherwise.  Note that since only the original ncp is
1714  * locked the revalidation ultimately can only indicate that the original ncp
1715  * *MIGHT* no have been reresolved.
1716  *
1717  * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
1718  * have to avoid blowing out the kernel stack.  We do this by saving the
1719  * deep namecache node and aborting the recursion, then re-recursing at that
1720  * node using a depth-first algorithm in order to allow multiple deep
1721  * recursions to chain through each other, then we restart the invalidation
1722  * from scratch.
1723  */
1724 
1725 struct cinvtrack {
1726 	struct namecache *resume_ncp;
1727 	int depth;
1728 };
1729 
1730 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
1731 
1732 static
1733 int
1734 _cache_inval(struct namecache *ncp, int flags)
1735 {
1736 	struct cinvtrack track;
1737 	struct namecache *ncp2;
1738 	int r;
1739 
1740 	track.depth = 0;
1741 	track.resume_ncp = NULL;
1742 
1743 	for (;;) {
1744 		r = _cache_inval_internal(ncp, flags, &track);
1745 		if (track.resume_ncp == NULL)
1746 			break;
1747 		_cache_unlock(ncp);
1748 		while ((ncp2 = track.resume_ncp) != NULL) {
1749 			track.resume_ncp = NULL;
1750 			_cache_lock(ncp2);
1751 			_cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
1752 					     &track);
1753 			_cache_put(ncp2);
1754 		}
1755 		_cache_lock(ncp);
1756 	}
1757 	return(r);
1758 }
1759 
1760 int
1761 cache_inval(struct nchandle *nch, int flags)
1762 {
1763 	return(_cache_inval(nch->ncp, flags));
1764 }
1765 
1766 /*
1767  * Helper for _cache_inval().  The passed ncp is refd and locked and
1768  * remains that way on return, but may be unlocked/relocked multiple
1769  * times by the routine.
1770  */
1771 static int
1772 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
1773 {
1774 	struct namecache *nextkid;
1775 	int rcnt = 0;
1776 
1777 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
1778 
1779 	_cache_setunresolved(ncp);
1780 	if (flags & CINV_DESTROY) {
1781 		ncp->nc_flag |= NCF_DESTROYED;
1782 		++ncp->nc_generation;
1783 	}
1784 	while ((flags & CINV_CHILDREN) &&
1785 	       (nextkid = TAILQ_FIRST(&ncp->nc_list)) != NULL
1786 	) {
1787 		struct namecache *kid;
1788 		int restart;
1789 
1790 		restart = 0;
1791 		_cache_hold(nextkid);
1792 		if (++track->depth > MAX_RECURSION_DEPTH) {
1793 			track->resume_ncp = ncp;
1794 			_cache_hold(ncp);
1795 			++rcnt;
1796 		}
1797 		while ((kid = nextkid) != NULL) {
1798 			/*
1799 			 * Parent (ncp) must be locked for the iteration.
1800 			 */
1801 			nextkid = NULL;
1802 			if (kid->nc_parent != ncp) {
1803 				_cache_drop(kid);
1804 				kprintf("cache_inval_internal restartA %s\n",
1805 					ncp->nc_name);
1806 				restart = 1;
1807 				break;
1808 			}
1809 			if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
1810 				_cache_hold(nextkid);
1811 
1812 			/*
1813 			 * Parent unlocked for this section to avoid
1814 			 * deadlocks.
1815 			 */
1816 			_cache_unlock(ncp);
1817 			if (track->resume_ncp) {
1818 				_cache_drop(kid);
1819 				_cache_lock(ncp);
1820 				break;
1821 			}
1822 			if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
1823 			    TAILQ_FIRST(&kid->nc_list)
1824 			) {
1825 				_cache_lock(kid);
1826 				if (kid->nc_parent != ncp) {
1827 					kprintf("cache_inval_internal "
1828 						"restartB %s\n",
1829 						ncp->nc_name);
1830 					restart = 1;
1831 					_cache_unlock(kid);
1832 					_cache_drop(kid);
1833 					_cache_lock(ncp);
1834 					break;
1835 				}
1836 
1837 				rcnt += _cache_inval_internal(kid, flags & ~CINV_DESTROY, track);
1838 				_cache_unlock(kid);
1839 			}
1840 			_cache_drop(kid);
1841 			_cache_lock(ncp);
1842 		}
1843 		if (nextkid)
1844 			_cache_drop(nextkid);
1845 		--track->depth;
1846 		if (restart == 0)
1847 			break;
1848 	}
1849 
1850 	/*
1851 	 * Someone could have gotten in there while ncp was unlocked,
1852 	 * retry if so.
1853 	 */
1854 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1855 		++rcnt;
1856 	return (rcnt);
1857 }
1858 
1859 /*
1860  * Invalidate a vnode's namecache associations.  To avoid races against
1861  * the resolver we do not invalidate a node which we previously invalidated
1862  * but which was then re-resolved while we were in the invalidation loop.
1863  *
1864  * Returns non-zero if any namecache entries remain after the invalidation
1865  * loop completed.
1866  *
1867  * NOTE: Unlike the namecache topology which guarentees that ncp's will not
1868  *	 be ripped out of the topology while held, the vnode's v_namecache
1869  *	 list has no such restriction.  NCP's can be ripped out of the list
1870  *	 at virtually any time if not locked, even if held.
1871  *
1872  *	 In addition, the v_namecache list itself must be locked via
1873  *	 the vnode's spinlock.
1874  */
1875 int
1876 cache_inval_vp(struct vnode *vp, int flags)
1877 {
1878 	struct namecache *ncp;
1879 	struct namecache *next;
1880 
1881 restart:
1882 	spin_lock(&vp->v_spin);
1883 	ncp = TAILQ_FIRST(&vp->v_namecache);
1884 	if (ncp)
1885 		_cache_hold(ncp);
1886 	while (ncp) {
1887 		/* loop entered with ncp held and vp spin-locked */
1888 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1889 			_cache_hold(next);
1890 		spin_unlock(&vp->v_spin);
1891 		_cache_lock(ncp);
1892 		if (ncp->nc_vp != vp) {
1893 			kprintf("Warning: cache_inval_vp: race-A detected on "
1894 				"%s\n", ncp->nc_name);
1895 			_cache_put(ncp);
1896 			if (next)
1897 				_cache_drop(next);
1898 			goto restart;
1899 		}
1900 		_cache_inval(ncp, flags);
1901 		_cache_put(ncp);		/* also releases reference */
1902 		ncp = next;
1903 		spin_lock(&vp->v_spin);
1904 		if (ncp && ncp->nc_vp != vp) {
1905 			spin_unlock(&vp->v_spin);
1906 			kprintf("Warning: cache_inval_vp: race-B detected on "
1907 				"%s\n", ncp->nc_name);
1908 			_cache_drop(ncp);
1909 			goto restart;
1910 		}
1911 	}
1912 	spin_unlock(&vp->v_spin);
1913 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1914 }
1915 
1916 /*
1917  * This routine is used instead of the normal cache_inval_vp() when we
1918  * are trying to recycle otherwise good vnodes.
1919  *
1920  * Return 0 on success, non-zero if not all namecache records could be
1921  * disassociated from the vnode (for various reasons).
1922  */
1923 int
1924 cache_inval_vp_nonblock(struct vnode *vp)
1925 {
1926 	struct namecache *ncp;
1927 	struct namecache *next;
1928 
1929 	spin_lock(&vp->v_spin);
1930 	ncp = TAILQ_FIRST(&vp->v_namecache);
1931 	if (ncp)
1932 		_cache_hold(ncp);
1933 	while (ncp) {
1934 		/* loop entered with ncp held */
1935 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1936 			_cache_hold(next);
1937 		spin_unlock(&vp->v_spin);
1938 		if (_cache_lock_nonblock(ncp)) {
1939 			_cache_drop(ncp);
1940 			if (next)
1941 				_cache_drop(next);
1942 			goto done;
1943 		}
1944 		if (ncp->nc_vp != vp) {
1945 			kprintf("Warning: cache_inval_vp: race-A detected on "
1946 				"%s\n", ncp->nc_name);
1947 			_cache_put(ncp);
1948 			if (next)
1949 				_cache_drop(next);
1950 			goto done;
1951 		}
1952 		_cache_inval(ncp, 0);
1953 		_cache_put(ncp);		/* also releases reference */
1954 		ncp = next;
1955 		spin_lock(&vp->v_spin);
1956 		if (ncp && ncp->nc_vp != vp) {
1957 			spin_unlock(&vp->v_spin);
1958 			kprintf("Warning: cache_inval_vp: race-B detected on "
1959 				"%s\n", ncp->nc_name);
1960 			_cache_drop(ncp);
1961 			goto done;
1962 		}
1963 	}
1964 	spin_unlock(&vp->v_spin);
1965 done:
1966 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1967 }
1968 
1969 /*
1970  * Clears the universal directory search 'ok' flag.  This flag allows
1971  * nlookup() to bypass normal vnode checks.  This flag is a cached flag
1972  * so clearing it simply forces revalidation.
1973  */
1974 void
1975 cache_inval_wxok(struct vnode *vp)
1976 {
1977 	struct namecache *ncp;
1978 
1979 	spin_lock(&vp->v_spin);
1980 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1981 		if (ncp->nc_flag & NCF_WXOK)
1982 			atomic_clear_short(&ncp->nc_flag, NCF_WXOK);
1983 	}
1984 	spin_unlock(&vp->v_spin);
1985 }
1986 
1987 /*
1988  * The source ncp has been renamed to the target ncp.  Both fncp and tncp
1989  * must be locked.  The target ncp is destroyed (as a normal rename-over
1990  * would destroy the target file or directory).
1991  *
1992  * Because there may be references to the source ncp we cannot copy its
1993  * contents to the target.  Instead the source ncp is relinked as the target
1994  * and the target ncp is removed from the namecache topology.
1995  */
1996 void
1997 cache_rename(struct nchandle *fnch, struct nchandle *tnch)
1998 {
1999 	struct namecache *fncp = fnch->ncp;
2000 	struct namecache *tncp = tnch->ncp;
2001 	struct namecache *tncp_par;
2002 	struct nchash_head *nchpp;
2003 	u_int32_t hash;
2004 	char *oname;
2005 	char *nname;
2006 
2007 	++fncp->nc_generation;
2008 	++tncp->nc_generation;
2009 	if (tncp->nc_nlen) {
2010 		nname = kmalloc(tncp->nc_nlen + 1, M_VFSCACHE, M_WAITOK);
2011 		bcopy(tncp->nc_name, nname, tncp->nc_nlen);
2012 		nname[tncp->nc_nlen] = 0;
2013 	} else {
2014 		nname = NULL;
2015 	}
2016 
2017 	/*
2018 	 * Rename fncp (unlink)
2019 	 */
2020 	_cache_unlink_parent(fncp);
2021 	oname = fncp->nc_name;
2022 	fncp->nc_name = nname;
2023 	fncp->nc_nlen = tncp->nc_nlen;
2024 	if (oname)
2025 		kfree(oname, M_VFSCACHE);
2026 
2027 	tncp_par = tncp->nc_parent;
2028 	_cache_hold(tncp_par);
2029 	_cache_lock(tncp_par);
2030 
2031 	/*
2032 	 * Rename fncp (relink)
2033 	 */
2034 	hash = fnv_32_buf(fncp->nc_name, fncp->nc_nlen, FNV1_32_INIT);
2035 	hash = fnv_32_buf(&tncp_par, sizeof(tncp_par), hash);
2036 	nchpp = NCHHASH(hash);
2037 
2038 	spin_lock(&nchpp->spin);
2039 	_cache_link_parent(fncp, tncp_par, nchpp);
2040 	spin_unlock(&nchpp->spin);
2041 
2042 	_cache_put(tncp_par);
2043 
2044 	/*
2045 	 * Get rid of the overwritten tncp (unlink)
2046 	 */
2047 	_cache_unlink(tncp);
2048 }
2049 
2050 /*
2051  * Perform actions consistent with unlinking a file.  The passed-in ncp
2052  * must be locked.
2053  *
2054  * The ncp is marked DESTROYED so it no longer shows up in searches,
2055  * and will be physically deleted when the vnode goes away.
2056  *
2057  * If the related vnode has no refs then we cycle it through vget()/vput()
2058  * to (possibly if we don't have a ref race) trigger a deactivation,
2059  * allowing the VFS to trivially detect and recycle the deleted vnode
2060  * via VOP_INACTIVE().
2061  *
2062  * NOTE: _cache_rename() will automatically call _cache_unlink() on the
2063  *	 target ncp.
2064  */
2065 void
2066 cache_unlink(struct nchandle *nch)
2067 {
2068 	_cache_unlink(nch->ncp);
2069 }
2070 
2071 static void
2072 _cache_unlink(struct namecache *ncp)
2073 {
2074 	struct vnode *vp;
2075 
2076 	/*
2077 	 * Causes lookups to fail and allows another ncp with the same
2078 	 * name to be created under ncp->nc_parent.
2079 	 */
2080 	ncp->nc_flag |= NCF_DESTROYED;
2081 	++ncp->nc_generation;
2082 
2083 	/*
2084 	 * Attempt to trigger a deactivation.  Set VREF_FINALIZE to
2085 	 * force action on the 1->0 transition.
2086 	 */
2087 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
2088 	    (vp = ncp->nc_vp) != NULL) {
2089 		atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
2090 		if (VREFCNT(vp) <= 0) {
2091 			if (vget(vp, LK_SHARED) == 0)
2092 				vput(vp);
2093 		}
2094 	}
2095 }
2096 
2097 /*
2098  * Return non-zero if the nch might be associated with an open and/or mmap()'d
2099  * file.  The easy solution is to just return non-zero if the vnode has refs.
2100  * Used to interlock hammer2 reclaims (VREF_FINALIZE should already be set to
2101  * force the reclaim).
2102  */
2103 int
2104 cache_isopen(struct nchandle *nch)
2105 {
2106 	struct vnode *vp;
2107 	struct namecache *ncp = nch->ncp;
2108 
2109 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
2110 	    (vp = ncp->nc_vp) != NULL &&
2111 	    VREFCNT(vp)) {
2112 		return 1;
2113 	}
2114 	return 0;
2115 }
2116 
2117 
2118 /*
2119  * vget the vnode associated with the namecache entry.  Resolve the namecache
2120  * entry if necessary.  The passed ncp must be referenced and locked.  If
2121  * the ncp is resolved it might be locked shared.
2122  *
2123  * lk_type may be LK_SHARED, LK_EXCLUSIVE.  A ref'd, possibly locked
2124  * (depending on the passed lk_type) will be returned in *vpp with an error
2125  * of 0, or NULL will be returned in *vpp with a non-0 error code.  The
2126  * most typical error is ENOENT, meaning that the ncp represents a negative
2127  * cache hit and there is no vnode to retrieve, but other errors can occur
2128  * too.
2129  *
2130  * The vget() can race a reclaim.  If this occurs we re-resolve the
2131  * namecache entry.
2132  *
2133  * There are numerous places in the kernel where vget() is called on a
2134  * vnode while one or more of its namecache entries is locked.  Releasing
2135  * a vnode never deadlocks against locked namecache entries (the vnode
2136  * will not get recycled while referenced ncp's exist).  This means we
2137  * can safely acquire the vnode.  In fact, we MUST NOT release the ncp
2138  * lock when acquiring the vp lock or we might cause a deadlock.
2139  *
2140  * NOTE: The passed-in ncp must be locked exclusively if it is initially
2141  *	 unresolved.  If a reclaim race occurs the passed-in ncp will be
2142  *	 relocked exclusively before being re-resolved.
2143  */
2144 int
2145 cache_vget(struct nchandle *nch, struct ucred *cred,
2146 	   int lk_type, struct vnode **vpp)
2147 {
2148 	struct namecache *ncp;
2149 	struct vnode *vp;
2150 	int error;
2151 
2152 	ncp = nch->ncp;
2153 again:
2154 	vp = NULL;
2155 	if (ncp->nc_flag & NCF_UNRESOLVED)
2156 		error = cache_resolve(nch, cred);
2157 	else
2158 		error = 0;
2159 
2160 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
2161 		error = vget(vp, lk_type);
2162 		if (error) {
2163 			/*
2164 			 * VRECLAIM race
2165 			 *
2166 			 * The ncp may have been locked shared, we must relock
2167 			 * it exclusively before we can set it to unresolved.
2168 			 */
2169 			if (error == ENOENT) {
2170 				kprintf("Warning: vnode reclaim race detected "
2171 					"in cache_vget on %p (%s)\n",
2172 					vp, ncp->nc_name);
2173 				_cache_unlock(ncp);
2174 				_cache_lock(ncp);
2175 				_cache_setunresolved(ncp);
2176 				goto again;
2177 			}
2178 
2179 			/*
2180 			 * Not a reclaim race, some other error.
2181 			 */
2182 			KKASSERT(ncp->nc_vp == vp);
2183 			vp = NULL;
2184 		} else {
2185 			KKASSERT(ncp->nc_vp == vp);
2186 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
2187 		}
2188 	}
2189 	if (error == 0 && vp == NULL)
2190 		error = ENOENT;
2191 	*vpp = vp;
2192 	return(error);
2193 }
2194 
2195 /*
2196  * Similar to cache_vget() but only acquires a ref on the vnode.
2197  *
2198  * NOTE: The passed-in ncp must be locked exclusively if it is initially
2199  *	 unresolved.  If a reclaim race occurs the passed-in ncp will be
2200  *	 relocked exclusively before being re-resolved.
2201  */
2202 int
2203 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
2204 {
2205 	struct namecache *ncp;
2206 	struct vnode *vp;
2207 	int error;
2208 
2209 	ncp = nch->ncp;
2210 again:
2211 	vp = NULL;
2212 	if (ncp->nc_flag & NCF_UNRESOLVED)
2213 		error = cache_resolve(nch, cred);
2214 	else
2215 		error = 0;
2216 
2217 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
2218 		error = vget(vp, LK_SHARED);
2219 		if (error) {
2220 			/*
2221 			 * VRECLAIM race
2222 			 */
2223 			if (error == ENOENT) {
2224 				kprintf("Warning: vnode reclaim race detected "
2225 					"in cache_vget on %p (%s)\n",
2226 					vp, ncp->nc_name);
2227 				_cache_unlock(ncp);
2228 				_cache_lock(ncp);
2229 				_cache_setunresolved(ncp);
2230 				goto again;
2231 			}
2232 
2233 			/*
2234 			 * Not a reclaim race, some other error.
2235 			 */
2236 			KKASSERT(ncp->nc_vp == vp);
2237 			vp = NULL;
2238 		} else {
2239 			KKASSERT(ncp->nc_vp == vp);
2240 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
2241 			/* caller does not want a lock */
2242 			vn_unlock(vp);
2243 		}
2244 	}
2245 	if (error == 0 && vp == NULL)
2246 		error = ENOENT;
2247 	*vpp = vp;
2248 	return(error);
2249 }
2250 
2251 /*
2252  * Return a referenced vnode representing the parent directory of
2253  * ncp.
2254  *
2255  * Because the caller has locked the ncp it should not be possible for
2256  * the parent ncp to go away.  However, the parent can unresolve its
2257  * dvp at any time so we must be able to acquire a lock on the parent
2258  * to safely access nc_vp.
2259  *
2260  * We have to leave par unlocked when vget()ing dvp to avoid a deadlock,
2261  * so use vhold()/vdrop() while holding the lock to prevent dvp from
2262  * getting destroyed.
2263  *
2264  * NOTE: vhold() is allowed when dvp has 0 refs if we hold a
2265  *	 lock on the ncp in question..
2266  */
2267 static struct vnode *
2268 cache_dvpref(struct namecache *ncp)
2269 {
2270 	struct namecache *par;
2271 	struct vnode *dvp;
2272 
2273 	dvp = NULL;
2274 	if ((par = ncp->nc_parent) != NULL) {
2275 		_cache_hold(par);
2276 		_cache_lock(par);
2277 		if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
2278 			if ((dvp = par->nc_vp) != NULL)
2279 				vhold(dvp);
2280 		}
2281 		_cache_unlock(par);
2282 		if (dvp) {
2283 			if (vget(dvp, LK_SHARED) == 0) {
2284 				vn_unlock(dvp);
2285 				vdrop(dvp);
2286 				/* return refd, unlocked dvp */
2287 			} else {
2288 				vdrop(dvp);
2289 				dvp = NULL;
2290 			}
2291 		}
2292 		_cache_drop(par);
2293 	}
2294 	return(dvp);
2295 }
2296 
2297 /*
2298  * Convert a directory vnode to a namecache record without any other
2299  * knowledge of the topology.  This ONLY works with directory vnodes and
2300  * is ONLY used by the NFS server.  dvp must be refd but unlocked, and the
2301  * returned ncp (if not NULL) will be held and unlocked.
2302  *
2303  * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
2304  * If 'makeit' is 1 we attempt to track-down and create the namecache topology
2305  * for dvp.  This will fail only if the directory has been deleted out from
2306  * under the caller.
2307  *
2308  * Callers must always check for a NULL return no matter the value of 'makeit'.
2309  *
2310  * To avoid underflowing the kernel stack each recursive call increments
2311  * the makeit variable.
2312  */
2313 
2314 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
2315 				  struct vnode *dvp, char *fakename);
2316 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
2317 				  struct vnode **saved_dvp);
2318 
2319 int
2320 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
2321 	      struct nchandle *nch)
2322 {
2323 	struct vnode *saved_dvp;
2324 	struct vnode *pvp;
2325 	char *fakename;
2326 	int error;
2327 
2328 	nch->ncp = NULL;
2329 	nch->mount = dvp->v_mount;
2330 	saved_dvp = NULL;
2331 	fakename = NULL;
2332 
2333 	/*
2334 	 * Handle the makeit == 0 degenerate case
2335 	 */
2336 	if (makeit == 0) {
2337 		spin_lock_shared(&dvp->v_spin);
2338 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
2339 		if (nch->ncp)
2340 			cache_hold(nch);
2341 		spin_unlock_shared(&dvp->v_spin);
2342 	}
2343 
2344 	/*
2345 	 * Loop until resolution, inside code will break out on error.
2346 	 */
2347 	while (makeit) {
2348 		/*
2349 		 * Break out if we successfully acquire a working ncp.
2350 		 */
2351 		spin_lock_shared(&dvp->v_spin);
2352 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
2353 		if (nch->ncp) {
2354 			cache_hold(nch);
2355 			spin_unlock_shared(&dvp->v_spin);
2356 			break;
2357 		}
2358 		spin_unlock_shared(&dvp->v_spin);
2359 
2360 		/*
2361 		 * If dvp is the root of its filesystem it should already
2362 		 * have a namecache pointer associated with it as a side
2363 		 * effect of the mount, but it may have been disassociated.
2364 		 */
2365 		if (dvp->v_flag & VROOT) {
2366 			nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
2367 			error = cache_resolve_mp(nch->mount);
2368 			_cache_put(nch->ncp);
2369 			if (ncvp_debug) {
2370 				kprintf("cache_fromdvp: resolve root of mount %p error %d",
2371 					dvp->v_mount, error);
2372 			}
2373 			if (error) {
2374 				if (ncvp_debug)
2375 					kprintf(" failed\n");
2376 				nch->ncp = NULL;
2377 				break;
2378 			}
2379 			if (ncvp_debug)
2380 				kprintf(" succeeded\n");
2381 			continue;
2382 		}
2383 
2384 		/*
2385 		 * If we are recursed too deeply resort to an O(n^2)
2386 		 * algorithm to resolve the namecache topology.  The
2387 		 * resolved pvp is left referenced in saved_dvp to
2388 		 * prevent the tree from being destroyed while we loop.
2389 		 */
2390 		if (makeit > 20) {
2391 			error = cache_fromdvp_try(dvp, cred, &saved_dvp);
2392 			if (error) {
2393 				kprintf("lookupdotdot(longpath) failed %d "
2394 				       "dvp %p\n", error, dvp);
2395 				nch->ncp = NULL;
2396 				break;
2397 			}
2398 			continue;
2399 		}
2400 
2401 		/*
2402 		 * Get the parent directory and resolve its ncp.
2403 		 */
2404 		if (fakename) {
2405 			kfree(fakename, M_TEMP);
2406 			fakename = NULL;
2407 		}
2408 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2409 					  &fakename);
2410 		if (error) {
2411 			kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
2412 			break;
2413 		}
2414 		vn_unlock(pvp);
2415 
2416 		/*
2417 		 * Reuse makeit as a recursion depth counter.  On success
2418 		 * nch will be fully referenced.
2419 		 */
2420 		cache_fromdvp(pvp, cred, makeit + 1, nch);
2421 		vrele(pvp);
2422 		if (nch->ncp == NULL)
2423 			break;
2424 
2425 		/*
2426 		 * Do an inefficient scan of pvp (embodied by ncp) to look
2427 		 * for dvp.  This will create a namecache record for dvp on
2428 		 * success.  We loop up to recheck on success.
2429 		 *
2430 		 * ncp and dvp are both held but not locked.
2431 		 */
2432 		error = cache_inefficient_scan(nch, cred, dvp, fakename);
2433 		if (error) {
2434 			kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
2435 				pvp, nch->ncp->nc_name, dvp);
2436 			cache_drop(nch);
2437 			/* nch was NULLed out, reload mount */
2438 			nch->mount = dvp->v_mount;
2439 			break;
2440 		}
2441 		if (ncvp_debug) {
2442 			kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
2443 				pvp, nch->ncp->nc_name);
2444 		}
2445 		cache_drop(nch);
2446 		/* nch was NULLed out, reload mount */
2447 		nch->mount = dvp->v_mount;
2448 	}
2449 
2450 	/*
2451 	 * If nch->ncp is non-NULL it will have been held already.
2452 	 */
2453 	if (fakename)
2454 		kfree(fakename, M_TEMP);
2455 	if (saved_dvp)
2456 		vrele(saved_dvp);
2457 	if (nch->ncp)
2458 		return (0);
2459 	return (EINVAL);
2460 }
2461 
2462 /*
2463  * Go up the chain of parent directories until we find something
2464  * we can resolve into the namecache.  This is very inefficient.
2465  */
2466 static
2467 int
2468 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
2469 		  struct vnode **saved_dvp)
2470 {
2471 	struct nchandle nch;
2472 	struct vnode *pvp;
2473 	int error;
2474 	static time_t last_fromdvp_report;
2475 	char *fakename;
2476 
2477 	/*
2478 	 * Loop getting the parent directory vnode until we get something we
2479 	 * can resolve in the namecache.
2480 	 */
2481 	vref(dvp);
2482 	nch.mount = dvp->v_mount;
2483 	nch.ncp = NULL;
2484 	fakename = NULL;
2485 
2486 	for (;;) {
2487 		if (fakename) {
2488 			kfree(fakename, M_TEMP);
2489 			fakename = NULL;
2490 		}
2491 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2492 					  &fakename);
2493 		if (error) {
2494 			vrele(dvp);
2495 			break;
2496 		}
2497 		vn_unlock(pvp);
2498 		spin_lock_shared(&pvp->v_spin);
2499 		if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
2500 			_cache_hold(nch.ncp);
2501 			spin_unlock_shared(&pvp->v_spin);
2502 			vrele(pvp);
2503 			break;
2504 		}
2505 		spin_unlock_shared(&pvp->v_spin);
2506 		if (pvp->v_flag & VROOT) {
2507 			nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
2508 			error = cache_resolve_mp(nch.mount);
2509 			_cache_unlock(nch.ncp);
2510 			vrele(pvp);
2511 			if (error) {
2512 				_cache_drop(nch.ncp);
2513 				nch.ncp = NULL;
2514 				vrele(dvp);
2515 			}
2516 			break;
2517 		}
2518 		vrele(dvp);
2519 		dvp = pvp;
2520 	}
2521 	if (error == 0) {
2522 		if (last_fromdvp_report != time_uptime) {
2523 			last_fromdvp_report = time_uptime;
2524 			kprintf("Warning: extremely inefficient path "
2525 				"resolution on %s\n",
2526 				nch.ncp->nc_name);
2527 		}
2528 		error = cache_inefficient_scan(&nch, cred, dvp, fakename);
2529 
2530 		/*
2531 		 * Hopefully dvp now has a namecache record associated with
2532 		 * it.  Leave it referenced to prevent the kernel from
2533 		 * recycling the vnode.  Otherwise extremely long directory
2534 		 * paths could result in endless recycling.
2535 		 */
2536 		if (*saved_dvp)
2537 		    vrele(*saved_dvp);
2538 		*saved_dvp = dvp;
2539 		_cache_drop(nch.ncp);
2540 	}
2541 	if (fakename)
2542 		kfree(fakename, M_TEMP);
2543 	return (error);
2544 }
2545 
2546 /*
2547  * Do an inefficient scan of the directory represented by ncp looking for
2548  * the directory vnode dvp.  ncp must be held but not locked on entry and
2549  * will be held on return.  dvp must be refd but not locked on entry and
2550  * will remain refd on return.
2551  *
2552  * Why do this at all?  Well, due to its stateless nature the NFS server
2553  * converts file handles directly to vnodes without necessarily going through
2554  * the namecache ops that would otherwise create the namecache topology
2555  * leading to the vnode.  We could either (1) Change the namecache algorithms
2556  * to allow disconnect namecache records that are re-merged opportunistically,
2557  * or (2) Make the NFS server backtrack and scan to recover a connected
2558  * namecache topology in order to then be able to issue new API lookups.
2559  *
2560  * It turns out that (1) is a huge mess.  It takes a nice clean set of
2561  * namecache algorithms and introduces a lot of complication in every subsystem
2562  * that calls into the namecache to deal with the re-merge case, especially
2563  * since we are using the namecache to placehold negative lookups and the
2564  * vnode might not be immediately assigned. (2) is certainly far less
2565  * efficient then (1), but since we are only talking about directories here
2566  * (which are likely to remain cached), the case does not actually run all
2567  * that often and has the supreme advantage of not polluting the namecache
2568  * algorithms.
2569  *
2570  * If a fakename is supplied just construct a namecache entry using the
2571  * fake name.
2572  */
2573 static int
2574 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
2575 		       struct vnode *dvp, char *fakename)
2576 {
2577 	struct nlcomponent nlc;
2578 	struct nchandle rncp;
2579 	struct dirent *den;
2580 	struct vnode *pvp;
2581 	struct vattr vat;
2582 	struct iovec iov;
2583 	struct uio uio;
2584 	int blksize;
2585 	int eofflag;
2586 	int bytes;
2587 	char *rbuf;
2588 	int error;
2589 
2590 	vat.va_blocksize = 0;
2591 	if ((error = VOP_GETATTR(dvp, &vat)) != 0)
2592 		return (error);
2593 	cache_lock(nch);
2594 	error = cache_vref(nch, cred, &pvp);
2595 	cache_unlock(nch);
2596 	if (error)
2597 		return (error);
2598 	if (ncvp_debug) {
2599 		kprintf("inefficient_scan of (%p,%s): directory iosize %ld "
2600 			"vattr fileid = %lld\n",
2601 			nch->ncp, nch->ncp->nc_name,
2602 			vat.va_blocksize,
2603 			(long long)vat.va_fileid);
2604 	}
2605 
2606 	/*
2607 	 * Use the supplied fakename if not NULL.  Fake names are typically
2608 	 * not in the actual filesystem hierarchy.  This is used by HAMMER
2609 	 * to glue @@timestamp recursions together.
2610 	 */
2611 	if (fakename) {
2612 		nlc.nlc_nameptr = fakename;
2613 		nlc.nlc_namelen = strlen(fakename);
2614 		rncp = cache_nlookup(nch, &nlc);
2615 		goto done;
2616 	}
2617 
2618 	if ((blksize = vat.va_blocksize) == 0)
2619 		blksize = DEV_BSIZE;
2620 	rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
2621 	rncp.ncp = NULL;
2622 
2623 	eofflag = 0;
2624 	uio.uio_offset = 0;
2625 again:
2626 	iov.iov_base = rbuf;
2627 	iov.iov_len = blksize;
2628 	uio.uio_iov = &iov;
2629 	uio.uio_iovcnt = 1;
2630 	uio.uio_resid = blksize;
2631 	uio.uio_segflg = UIO_SYSSPACE;
2632 	uio.uio_rw = UIO_READ;
2633 	uio.uio_td = curthread;
2634 
2635 	if (ncvp_debug >= 2)
2636 		kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
2637 	error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
2638 	if (error == 0) {
2639 		den = (struct dirent *)rbuf;
2640 		bytes = blksize - uio.uio_resid;
2641 
2642 		while (bytes > 0) {
2643 			if (ncvp_debug >= 2) {
2644 				kprintf("cache_inefficient_scan: %*.*s\n",
2645 					den->d_namlen, den->d_namlen,
2646 					den->d_name);
2647 			}
2648 			if (den->d_type != DT_WHT &&
2649 			    den->d_ino == vat.va_fileid) {
2650 				if (ncvp_debug) {
2651 					kprintf("cache_inefficient_scan: "
2652 					       "MATCHED inode %lld path %s/%*.*s\n",
2653 					       (long long)vat.va_fileid,
2654 					       nch->ncp->nc_name,
2655 					       den->d_namlen, den->d_namlen,
2656 					       den->d_name);
2657 				}
2658 				nlc.nlc_nameptr = den->d_name;
2659 				nlc.nlc_namelen = den->d_namlen;
2660 				rncp = cache_nlookup(nch, &nlc);
2661 				KKASSERT(rncp.ncp != NULL);
2662 				break;
2663 			}
2664 			bytes -= _DIRENT_DIRSIZ(den);
2665 			den = _DIRENT_NEXT(den);
2666 		}
2667 		if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
2668 			goto again;
2669 	}
2670 	kfree(rbuf, M_TEMP);
2671 done:
2672 	vrele(pvp);
2673 	if (rncp.ncp) {
2674 		if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
2675 			_cache_setvp(rncp.mount, rncp.ncp, dvp);
2676 			if (ncvp_debug >= 2) {
2677 				kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
2678 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
2679 			}
2680 		} else {
2681 			if (ncvp_debug >= 2) {
2682 				kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
2683 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
2684 					rncp.ncp->nc_vp);
2685 			}
2686 		}
2687 		if (rncp.ncp->nc_vp == NULL)
2688 			error = rncp.ncp->nc_error;
2689 		/*
2690 		 * Release rncp after a successful nlookup.  rncp was fully
2691 		 * referenced.
2692 		 */
2693 		cache_put(&rncp);
2694 	} else {
2695 		kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
2696 			dvp, nch->ncp->nc_name);
2697 		error = ENOENT;
2698 	}
2699 	return (error);
2700 }
2701 
2702 /*
2703  * Zap a namecache entry.  The ncp is unconditionally set to an unresolved
2704  * state, which disassociates it from its vnode or pcpu_ncache[n].neg_list.
2705  *
2706  * Then, if there are no additional references to the ncp and no children,
2707  * the ncp is removed from the topology and destroyed.
2708  *
2709  * References and/or children may exist if the ncp is in the middle of the
2710  * topology, preventing the ncp from being destroyed.
2711  *
2712  * This function must be called with the ncp held and locked and will unlock
2713  * and drop it during zapping.
2714  *
2715  * If nonblock is non-zero and the parent ncp cannot be locked we give up.
2716  * This case can occur in the cache_drop() path.
2717  *
2718  * This function may returned a held (but NOT locked) parent node which the
2719  * caller must drop.  We do this so _cache_drop() can loop, to avoid
2720  * blowing out the kernel stack.
2721  *
2722  * WARNING!  For MPSAFE operation this routine must acquire up to three
2723  *	     spin locks to be able to safely test nc_refs.  Lock order is
2724  *	     very important.
2725  *
2726  *	     hash spinlock if on hash list
2727  *	     parent spinlock if child of parent
2728  *	     (the ncp is unresolved so there is no vnode association)
2729  */
2730 static struct namecache *
2731 cache_zap(struct namecache *ncp, int nonblock)
2732 {
2733 	struct namecache *par;
2734 	struct vnode *dropvp;
2735 	struct nchash_head *nchpp;
2736 	int refs;
2737 
2738 	/*
2739 	 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
2740 	 */
2741 	_cache_setunresolved(ncp);
2742 
2743 	/*
2744 	 * Try to scrap the entry and possibly tail-recurse on its parent.
2745 	 * We only scrap unref'd (other then our ref) unresolved entries,
2746 	 * we do not scrap 'live' entries.
2747 	 *
2748 	 * Note that once the spinlocks are acquired if nc_refs == 1 no
2749 	 * other references are possible.  If it isn't, however, we have
2750 	 * to decrement but also be sure to avoid a 1->0 transition.
2751 	 */
2752 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
2753 	KKASSERT(ncp->nc_refs > 0);
2754 
2755 	/*
2756 	 * Acquire locks.  Note that the parent can't go away while we hold
2757 	 * a child locked.
2758 	 */
2759 	nchpp = NULL;
2760 	if ((par = ncp->nc_parent) != NULL) {
2761 		if (nonblock) {
2762 			for (;;) {
2763 				if (_cache_lock_nonblock(par) == 0)
2764 					break;
2765 				refs = ncp->nc_refs;
2766 				ncp->nc_flag |= NCF_DEFEREDZAP;
2767 				atomic_add_long(
2768 				    &pcpu_ncache[mycpu->gd_cpuid].numdefered,
2769 				    1);
2770 				if (atomic_cmpset_int(&ncp->nc_refs,
2771 						      refs, refs - 1)) {
2772 					_cache_unlock(ncp);
2773 					return(NULL);
2774 				}
2775 				cpu_pause();
2776 			}
2777 			_cache_hold(par);
2778 		} else {
2779 			_cache_hold(par);
2780 			_cache_lock(par);
2781 		}
2782 		nchpp = ncp->nc_head;
2783 		spin_lock(&nchpp->spin);
2784 	}
2785 
2786 	/*
2787 	 * At this point if we find refs == 1 it should not be possible for
2788 	 * anyone else to have access to the ncp.  We are holding the only
2789 	 * possible access point left (nchpp) spin-locked.
2790 	 *
2791 	 * If someone other then us has a ref or we have children
2792 	 * we cannot zap the entry.  The 1->0 transition and any
2793 	 * further list operation is protected by the spinlocks
2794 	 * we have acquired but other transitions are not.
2795 	 */
2796 	for (;;) {
2797 		refs = ncp->nc_refs;
2798 		cpu_ccfence();
2799 		if (refs == 1 && TAILQ_EMPTY(&ncp->nc_list))
2800 			break;
2801 		if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1)) {
2802 			if (par) {
2803 				spin_unlock(&nchpp->spin);
2804 				_cache_put(par);
2805 			}
2806 			_cache_unlock(ncp);
2807 			return(NULL);
2808 		}
2809 		cpu_pause();
2810 	}
2811 
2812 	/*
2813 	 * We are the only ref and with the spinlocks held no further
2814 	 * refs can be acquired by others.
2815 	 *
2816 	 * Remove us from the hash list and parent list.  We have to
2817 	 * drop a ref on the parent's vp if the parent's list becomes
2818 	 * empty.
2819 	 */
2820 	dropvp = NULL;
2821 	if (par) {
2822 		struct pcpu_ncache *pn = &pcpu_ncache[mycpu->gd_cpuid];
2823 
2824 		KKASSERT(nchpp == ncp->nc_head);
2825 		TAILQ_REMOVE(&ncp->nc_head->list, ncp, nc_hash);
2826 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
2827 		atomic_add_long(&pn->vfscache_count, -1);
2828 		if (TAILQ_EMPTY(&ncp->nc_list))
2829 			atomic_add_long(&pn->vfscache_leafs, -1);
2830 
2831 		if (TAILQ_EMPTY(&par->nc_list)) {
2832 			atomic_add_long(&pn->vfscache_leafs, 1);
2833 			if (par->nc_vp)
2834 				dropvp = par->nc_vp;
2835 		}
2836 		ncp->nc_head = NULL;
2837 		ncp->nc_parent = NULL;
2838 		spin_unlock(&nchpp->spin);
2839 		_cache_unlock(par);
2840 	} else {
2841 		KKASSERT(ncp->nc_head == NULL);
2842 	}
2843 
2844 	/*
2845 	 * ncp should not have picked up any refs.  Physically
2846 	 * destroy the ncp.
2847 	 */
2848 	if (ncp->nc_refs != 1) {
2849 		int save_refs = ncp->nc_refs;
2850 		cpu_ccfence();
2851 		panic("cache_zap: %p bad refs %d (%d)\n",
2852 			ncp, save_refs, atomic_fetchadd_int(&ncp->nc_refs, 0));
2853 	}
2854 	KKASSERT(ncp->nc_refs == 1);
2855 	/* _cache_unlock(ncp) not required */
2856 	ncp->nc_refs = -1;	/* safety */
2857 	if (ncp->nc_name)
2858 		kfree(ncp->nc_name, M_VFSCACHE);
2859 	kfree(ncp, M_VFSCACHE);
2860 
2861 	/*
2862 	 * Delayed drop (we had to release our spinlocks)
2863 	 *
2864 	 * The refed parent (if not  NULL) must be dropped.  The
2865 	 * caller is responsible for looping.
2866 	 */
2867 	if (dropvp)
2868 		vdrop(dropvp);
2869 	return(par);
2870 }
2871 
2872 /*
2873  * Clean up dangling negative cache and defered-drop entries in the
2874  * namecache.
2875  *
2876  * This routine is called in the critical path and also called from
2877  * vnlru().  When called from vnlru we use a lower limit to try to
2878  * deal with the negative cache before the critical path has to start
2879  * dealing with it.
2880  */
2881 typedef enum { CHI_LOW, CHI_HIGH } cache_hs_t;
2882 
2883 static cache_hs_t neg_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
2884 static cache_hs_t pos_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
2885 
2886 void
2887 cache_hysteresis(int critpath)
2888 {
2889 	long poslimit;
2890 	long neglimit = maxvnodes / ncnegfactor;
2891 	long xnumcache = vfscache_leafs;
2892 
2893 	if (critpath == 0)
2894 		neglimit = neglimit * 8 / 10;
2895 
2896 	/*
2897 	 * Don't cache too many negative hits.  We use hysteresis to reduce
2898 	 * the impact on the critical path.
2899 	 */
2900 	switch(neg_cache_hysteresis_state[critpath]) {
2901 	case CHI_LOW:
2902 		if (vfscache_negs > MINNEG && vfscache_negs > neglimit) {
2903 			if (critpath)
2904 				_cache_cleanneg(ncnegflush);
2905 			else
2906 				_cache_cleanneg(ncnegflush +
2907 						vfscache_negs - neglimit);
2908 			neg_cache_hysteresis_state[critpath] = CHI_HIGH;
2909 		}
2910 		break;
2911 	case CHI_HIGH:
2912 		if (vfscache_negs > MINNEG * 9 / 10 &&
2913 		    vfscache_negs * 9 / 10 > neglimit
2914 		) {
2915 			if (critpath)
2916 				_cache_cleanneg(ncnegflush);
2917 			else
2918 				_cache_cleanneg(ncnegflush +
2919 						vfscache_negs * 9 / 10 -
2920 						neglimit);
2921 		} else {
2922 			neg_cache_hysteresis_state[critpath] = CHI_LOW;
2923 		}
2924 		break;
2925 	}
2926 
2927 	/*
2928 	 * Don't cache too many positive hits.  We use hysteresis to reduce
2929 	 * the impact on the critical path.
2930 	 *
2931 	 * Excessive positive hits can accumulate due to large numbers of
2932 	 * hardlinks (the vnode cache will not prevent hl ncps from growing
2933 	 * into infinity).
2934 	 */
2935 	if ((poslimit = ncposlimit) == 0)
2936 		poslimit = maxvnodes * 2;
2937 	if (critpath == 0)
2938 		poslimit = poslimit * 8 / 10;
2939 
2940 	switch(pos_cache_hysteresis_state[critpath]) {
2941 	case CHI_LOW:
2942 		if (xnumcache > poslimit && xnumcache > MINPOS) {
2943 			if (critpath)
2944 				_cache_cleanpos(ncposflush);
2945 			else
2946 				_cache_cleanpos(ncposflush +
2947 						xnumcache - poslimit);
2948 			pos_cache_hysteresis_state[critpath] = CHI_HIGH;
2949 		}
2950 		break;
2951 	case CHI_HIGH:
2952 		if (xnumcache > poslimit * 5 / 6 && xnumcache > MINPOS) {
2953 			if (critpath)
2954 				_cache_cleanpos(ncposflush);
2955 			else
2956 				_cache_cleanpos(ncposflush +
2957 						xnumcache - poslimit * 5 / 6);
2958 		} else {
2959 			pos_cache_hysteresis_state[critpath] = CHI_LOW;
2960 		}
2961 		break;
2962 	}
2963 
2964 	/*
2965 	 * Clean out dangling defered-zap ncps which could not be cleanly
2966 	 * dropped if too many build up.  Note that numdefered is
2967 	 * heuristical.  Make sure we are real-time for the current cpu,
2968 	 * plus the global rollup.
2969 	 */
2970 	if (pcpu_ncache[mycpu->gd_cpuid].numdefered + numdefered > neglimit) {
2971 		_cache_cleandefered();
2972 	}
2973 }
2974 
2975 /*
2976  * NEW NAMECACHE LOOKUP API
2977  *
2978  * Lookup an entry in the namecache.  The passed par_nch must be referenced
2979  * and unlocked.  A referenced and locked nchandle with a non-NULL nch.ncp
2980  * is ALWAYS returned, eve if the supplied component is illegal.
2981  *
2982  * The resulting namecache entry should be returned to the system with
2983  * cache_put() or cache_unlock() + cache_drop().
2984  *
2985  * namecache locks are recursive but care must be taken to avoid lock order
2986  * reversals (hence why the passed par_nch must be unlocked).  Locking
2987  * rules are to order for parent traversals, not for child traversals.
2988  *
2989  * Nobody else will be able to manipulate the associated namespace (e.g.
2990  * create, delete, rename, rename-target) until the caller unlocks the
2991  * entry.
2992  *
2993  * The returned entry will be in one of three states:  positive hit (non-null
2994  * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
2995  * Unresolved entries must be resolved through the filesystem to associate the
2996  * vnode and/or determine whether a positive or negative hit has occured.
2997  *
2998  * It is not necessary to lock a directory in order to lock namespace under
2999  * that directory.  In fact, it is explicitly not allowed to do that.  A
3000  * directory is typically only locked when being created, renamed, or
3001  * destroyed.
3002  *
3003  * The directory (par) may be unresolved, in which case any returned child
3004  * will likely also be marked unresolved.  Likely but not guarenteed.  Since
3005  * the filesystem lookup requires a resolved directory vnode the caller is
3006  * responsible for resolving the namecache chain top-down.  This API
3007  * specifically allows whole chains to be created in an unresolved state.
3008  */
3009 struct nchandle
3010 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
3011 {
3012 	struct nchandle nch;
3013 	struct namecache *ncp;
3014 	struct namecache *new_ncp;
3015 	struct namecache *rep_ncp;	/* reuse a destroyed ncp */
3016 	struct nchash_head *nchpp;
3017 	struct mount *mp;
3018 	u_int32_t hash;
3019 	globaldata_t gd;
3020 	int par_locked;
3021 
3022 	gd = mycpu;
3023 	mp = par_nch->mount;
3024 	par_locked = 0;
3025 
3026 	/*
3027 	 * This is a good time to call it, no ncp's are locked by
3028 	 * the caller or us.
3029 	 */
3030 	cache_hysteresis(1);
3031 
3032 	/*
3033 	 * Try to locate an existing entry
3034 	 */
3035 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3036 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3037 	new_ncp = NULL;
3038 	nchpp = NCHHASH(hash);
3039 restart:
3040 	rep_ncp = NULL;
3041 	if (new_ncp)
3042 		spin_lock(&nchpp->spin);
3043 	else
3044 		spin_lock_shared(&nchpp->spin);
3045 
3046 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
3047 		/*
3048 		 * Break out if we find a matching entry.  Note that
3049 		 * UNRESOLVED entries may match, but DESTROYED entries
3050 		 * do not.
3051 		 *
3052 		 * We may be able to reuse DESTROYED entries that we come
3053 		 * across, even if the name does not match, as long as
3054 		 * nc_nlen is correct.
3055 		 */
3056 		if (ncp->nc_parent == par_nch->ncp &&
3057 		    ncp->nc_nlen == nlc->nlc_namelen) {
3058 			if (ncp->nc_flag & NCF_DESTROYED) {
3059 				if (ncp->nc_refs == 0 && rep_ncp == NULL)
3060 					rep_ncp = ncp;
3061 				continue;
3062 			}
3063 			if (bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen))
3064 				continue;
3065 			_cache_hold(ncp);
3066 			if (new_ncp)
3067 				spin_unlock(&nchpp->spin);
3068 			else
3069 				spin_unlock_shared(&nchpp->spin);
3070 			if (par_locked) {
3071 				_cache_unlock(par_nch->ncp);
3072 				par_locked = 0;
3073 			}
3074 			if (_cache_lock_special(ncp) == 0) {
3075 				/*
3076 				 * Successfully locked but we must re-test
3077 				 * conditions that might have changed since
3078 				 * we did not have the lock before.
3079 				 */
3080 				if (ncp->nc_parent != par_nch->ncp ||
3081 				    ncp->nc_nlen != nlc->nlc_namelen ||
3082 				    bcmp(ncp->nc_name, nlc->nlc_nameptr,
3083 					 ncp->nc_nlen) ||
3084 				    (ncp->nc_flag & NCF_DESTROYED)) {
3085 					_cache_put(ncp);
3086 					goto restart;
3087 				}
3088 				_cache_auto_unresolve(mp, ncp);
3089 				if (new_ncp)
3090 					_cache_free(new_ncp);
3091 				goto found;
3092 			}
3093 			_cache_get(ncp);	/* cycle the lock to block */
3094 			_cache_put(ncp);
3095 			_cache_drop(ncp);
3096 			goto restart;
3097 		}
3098 	}
3099 
3100 	/*
3101 	 * We failed to locate the entry, try to resurrect a destroyed
3102 	 * entry that we did find that is already correctly linked into
3103 	 * nchpp and the parent.  We must re-test conditions after
3104 	 * successfully locking rep_ncp.
3105 	 *
3106 	 * This case can occur under heavy loads due to not being able
3107 	 * to safely lock the parent in cache_zap().  Nominally a repeated
3108 	 * create/unlink load, but only the namelen needs to match.
3109 	 */
3110 	if (rep_ncp && new_ncp == NULL) {
3111 		if (_cache_lock_nonblock(rep_ncp) == 0) {
3112 			_cache_hold(rep_ncp);
3113 			if (rep_ncp->nc_parent == par_nch->ncp &&
3114 			    rep_ncp->nc_nlen == nlc->nlc_namelen &&
3115 			    (rep_ncp->nc_flag & NCF_DESTROYED)) {
3116 				/*
3117 				 * Update nc_name as reuse as new.
3118 				 */
3119 				ncp = rep_ncp;
3120 				bcopy(nlc->nlc_nameptr, ncp->nc_name,
3121 				      nlc->nlc_namelen);
3122 				spin_unlock_shared(&nchpp->spin);
3123 				_cache_setunresolved(ncp);
3124 				ncp->nc_flag = NCF_UNRESOLVED;
3125 				ncp->nc_error = ENOTCONN;
3126 				goto found;
3127 			}
3128 			_cache_put(rep_ncp);
3129 		}
3130 	}
3131 
3132 	/*
3133 	 * Otherwise create a new entry and add it to the cache.  The parent
3134 	 * ncp must also be locked so we can link into it.
3135 	 *
3136 	 * We have to relookup after possibly blocking in kmalloc or
3137 	 * when locking par_nch.
3138 	 *
3139 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
3140 	 *	 mount case, in which case nc_name will be NULL.
3141 	 */
3142 	if (new_ncp == NULL) {
3143 		spin_unlock_shared(&nchpp->spin);
3144 		new_ncp = cache_alloc(nlc->nlc_namelen);
3145 		if (nlc->nlc_namelen) {
3146 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
3147 			      nlc->nlc_namelen);
3148 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
3149 		}
3150 		goto restart;
3151 	}
3152 
3153 	/*
3154 	 * NOTE! The spinlock is held exclusively here because new_ncp
3155 	 *	 is non-NULL.
3156 	 */
3157 	if (par_locked == 0) {
3158 		spin_unlock(&nchpp->spin);
3159 		_cache_lock(par_nch->ncp);
3160 		par_locked = 1;
3161 		goto restart;
3162 	}
3163 
3164 	/*
3165 	 * WARNING!  We still hold the spinlock.  We have to set the hash
3166 	 *	     table entry atomically.
3167 	 */
3168 	ncp = new_ncp;
3169 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
3170 	spin_unlock(&nchpp->spin);
3171 	_cache_unlock(par_nch->ncp);
3172 	/* par_locked = 0 - not used */
3173 found:
3174 	/*
3175 	 * stats and namecache size management
3176 	 */
3177 	if (ncp->nc_flag & NCF_UNRESOLVED)
3178 		++gd->gd_nchstats->ncs_miss;
3179 	else if (ncp->nc_vp)
3180 		++gd->gd_nchstats->ncs_goodhits;
3181 	else
3182 		++gd->gd_nchstats->ncs_neghits;
3183 	nch.mount = mp;
3184 	nch.ncp = ncp;
3185 	_cache_mntref(nch.mount);
3186 
3187 	return(nch);
3188 }
3189 
3190 /*
3191  * Attempt to lookup a namecache entry and return with a shared namecache
3192  * lock.
3193  */
3194 int
3195 cache_nlookup_maybe_shared(struct nchandle *par_nch, struct nlcomponent *nlc,
3196 			   int excl, struct nchandle *res_nch)
3197 {
3198 	struct namecache *ncp;
3199 	struct nchash_head *nchpp;
3200 	struct mount *mp;
3201 	u_int32_t hash;
3202 	globaldata_t gd;
3203 
3204 	/*
3205 	 * If exclusive requested or shared namecache locks are disabled,
3206 	 * return failure.
3207 	 */
3208 	if (ncp_shared_lock_disable || excl)
3209 		return(EWOULDBLOCK);
3210 
3211 	gd = mycpu;
3212 	mp = par_nch->mount;
3213 
3214 	/*
3215 	 * This is a good time to call it, no ncp's are locked by
3216 	 * the caller or us.
3217 	 */
3218 	cache_hysteresis(1);
3219 
3220 	/*
3221 	 * Try to locate an existing entry
3222 	 */
3223 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3224 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3225 	nchpp = NCHHASH(hash);
3226 
3227 	spin_lock_shared(&nchpp->spin);
3228 
3229 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
3230 		/*
3231 		 * Break out if we find a matching entry.  Note that
3232 		 * UNRESOLVED entries may match, but DESTROYED entries
3233 		 * do not.
3234 		 */
3235 		if (ncp->nc_parent == par_nch->ncp &&
3236 		    ncp->nc_nlen == nlc->nlc_namelen &&
3237 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
3238 		    (ncp->nc_flag & NCF_DESTROYED) == 0
3239 		) {
3240 			_cache_hold(ncp);
3241 			spin_unlock_shared(&nchpp->spin);
3242 			if (_cache_lock_shared_special(ncp) == 0) {
3243 				if (ncp->nc_parent == par_nch->ncp &&
3244 				    ncp->nc_nlen == nlc->nlc_namelen &&
3245 				    bcmp(ncp->nc_name, nlc->nlc_nameptr,
3246 					 ncp->nc_nlen) == 0 &&
3247 				    (ncp->nc_flag & NCF_DESTROYED) == 0 &&
3248 				    (ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
3249 				    _cache_auto_unresolve_test(mp, ncp) == 0) {
3250 					goto found;
3251 				}
3252 				_cache_unlock(ncp);
3253 			}
3254 			_cache_drop(ncp);
3255 			spin_lock_shared(&nchpp->spin);
3256 			break;
3257 		}
3258 	}
3259 
3260 	/*
3261 	 * Failure
3262 	 */
3263 	spin_unlock_shared(&nchpp->spin);
3264 	return(EWOULDBLOCK);
3265 
3266 	/*
3267 	 * Success
3268 	 *
3269 	 * Note that nc_error might be non-zero (e.g ENOENT).
3270 	 */
3271 found:
3272 	res_nch->mount = mp;
3273 	res_nch->ncp = ncp;
3274 	++gd->gd_nchstats->ncs_goodhits;
3275 	_cache_mntref(res_nch->mount);
3276 
3277 	KKASSERT(ncp->nc_error != EWOULDBLOCK);
3278 	return(ncp->nc_error);
3279 }
3280 
3281 /*
3282  * This is a non-blocking verison of cache_nlookup() used by
3283  * nfs_readdirplusrpc_uio().  It can fail for any reason and
3284  * will return nch.ncp == NULL in that case.
3285  */
3286 struct nchandle
3287 cache_nlookup_nonblock(struct nchandle *par_nch, struct nlcomponent *nlc)
3288 {
3289 	struct nchandle nch;
3290 	struct namecache *ncp;
3291 	struct namecache *new_ncp;
3292 	struct nchash_head *nchpp;
3293 	struct mount *mp;
3294 	u_int32_t hash;
3295 	globaldata_t gd;
3296 	int par_locked;
3297 
3298 	gd = mycpu;
3299 	mp = par_nch->mount;
3300 	par_locked = 0;
3301 
3302 	/*
3303 	 * Try to locate an existing entry
3304 	 */
3305 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3306 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3307 	new_ncp = NULL;
3308 	nchpp = NCHHASH(hash);
3309 restart:
3310 	spin_lock(&nchpp->spin);
3311 	TAILQ_FOREACH(ncp, &nchpp->list, nc_hash) {
3312 		/*
3313 		 * Break out if we find a matching entry.  Note that
3314 		 * UNRESOLVED entries may match, but DESTROYED entries
3315 		 * do not.
3316 		 */
3317 		if (ncp->nc_parent == par_nch->ncp &&
3318 		    ncp->nc_nlen == nlc->nlc_namelen &&
3319 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
3320 		    (ncp->nc_flag & NCF_DESTROYED) == 0
3321 		) {
3322 			_cache_hold(ncp);
3323 			spin_unlock(&nchpp->spin);
3324 			if (par_locked) {
3325 				_cache_unlock(par_nch->ncp);
3326 				par_locked = 0;
3327 			}
3328 			if (_cache_lock_special(ncp) == 0) {
3329 				if (ncp->nc_parent != par_nch->ncp ||
3330 				    ncp->nc_nlen != nlc->nlc_namelen ||
3331 				    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) ||
3332 				    (ncp->nc_flag & NCF_DESTROYED)) {
3333 					kprintf("cache_lookup_nonblock: "
3334 						"ncp-race %p %*.*s\n",
3335 						ncp,
3336 						nlc->nlc_namelen,
3337 						nlc->nlc_namelen,
3338 						nlc->nlc_nameptr);
3339 					_cache_unlock(ncp);
3340 					_cache_drop(ncp);
3341 					goto failed;
3342 				}
3343 				_cache_auto_unresolve(mp, ncp);
3344 				if (new_ncp) {
3345 					_cache_free(new_ncp);
3346 					new_ncp = NULL;
3347 				}
3348 				goto found;
3349 			}
3350 			_cache_drop(ncp);
3351 			goto failed;
3352 		}
3353 	}
3354 
3355 	/*
3356 	 * We failed to locate an entry, create a new entry and add it to
3357 	 * the cache.  The parent ncp must also be locked so we
3358 	 * can link into it.
3359 	 *
3360 	 * We have to relookup after possibly blocking in kmalloc or
3361 	 * when locking par_nch.
3362 	 *
3363 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
3364 	 *	 mount case, in which case nc_name will be NULL.
3365 	 */
3366 	if (new_ncp == NULL) {
3367 		spin_unlock(&nchpp->spin);
3368 		new_ncp = cache_alloc(nlc->nlc_namelen);
3369 		if (nlc->nlc_namelen) {
3370 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
3371 			      nlc->nlc_namelen);
3372 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
3373 		}
3374 		goto restart;
3375 	}
3376 	if (par_locked == 0) {
3377 		spin_unlock(&nchpp->spin);
3378 		if (_cache_lock_nonblock(par_nch->ncp) == 0) {
3379 			par_locked = 1;
3380 			goto restart;
3381 		}
3382 		goto failed;
3383 	}
3384 
3385 	/*
3386 	 * WARNING!  We still hold the spinlock.  We have to set the hash
3387 	 *	     table entry atomically.
3388 	 */
3389 	ncp = new_ncp;
3390 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
3391 	spin_unlock(&nchpp->spin);
3392 	_cache_unlock(par_nch->ncp);
3393 	/* par_locked = 0 - not used */
3394 found:
3395 	/*
3396 	 * stats and namecache size management
3397 	 */
3398 	if (ncp->nc_flag & NCF_UNRESOLVED)
3399 		++gd->gd_nchstats->ncs_miss;
3400 	else if (ncp->nc_vp)
3401 		++gd->gd_nchstats->ncs_goodhits;
3402 	else
3403 		++gd->gd_nchstats->ncs_neghits;
3404 	nch.mount = mp;
3405 	nch.ncp = ncp;
3406 	_cache_mntref(nch.mount);
3407 
3408 	return(nch);
3409 failed:
3410 	if (new_ncp) {
3411 		_cache_free(new_ncp);
3412 		new_ncp = NULL;
3413 	}
3414 	nch.mount = NULL;
3415 	nch.ncp = NULL;
3416 	return(nch);
3417 }
3418 
3419 /*
3420  * The namecache entry is marked as being used as a mount point.
3421  * Locate the mount if it is visible to the caller.  The DragonFly
3422  * mount system allows arbitrary loops in the topology and disentangles
3423  * those loops by matching against (mp, ncp) rather than just (ncp).
3424  * This means any given ncp can dive any number of mounts, depending
3425  * on the relative mount (e.g. nullfs) the caller is at in the topology.
3426  *
3427  * We use a very simple frontend cache to reduce SMP conflicts,
3428  * which we have to do because the mountlist scan needs an exclusive
3429  * lock around its ripout info list.  Not to mention that there might
3430  * be a lot of mounts.
3431  */
3432 struct findmount_info {
3433 	struct mount *result;
3434 	struct mount *nch_mount;
3435 	struct namecache *nch_ncp;
3436 };
3437 
3438 static
3439 struct ncmount_cache *
3440 ncmount_cache_lookup(struct mount *mp, struct namecache *ncp)
3441 {
3442 	uintptr_t hash;
3443 
3444 	hash = (uintptr_t)mp + ((uintptr_t)mp >> 18);
3445 	hash += (uintptr_t)ncp + ((uintptr_t)ncp >> 16);
3446 	hash = (hash >> 1) % NCMOUNT_NUMCACHE;
3447 
3448 	return (&ncmount_cache[hash]);
3449 }
3450 
3451 static
3452 int
3453 cache_findmount_callback(struct mount *mp, void *data)
3454 {
3455 	struct findmount_info *info = data;
3456 
3457 	/*
3458 	 * Check the mount's mounted-on point against the passed nch.
3459 	 */
3460 	if (mp->mnt_ncmounton.mount == info->nch_mount &&
3461 	    mp->mnt_ncmounton.ncp == info->nch_ncp
3462 	) {
3463 	    info->result = mp;
3464 	    _cache_mntref(mp);
3465 	    return(-1);
3466 	}
3467 	return(0);
3468 }
3469 
3470 struct mount *
3471 cache_findmount(struct nchandle *nch)
3472 {
3473 	struct findmount_info info;
3474 	struct ncmount_cache *ncc;
3475 	struct mount *mp;
3476 
3477 	/*
3478 	 * Fast
3479 	 */
3480 	if (ncmount_cache_enable == 0) {
3481 		ncc = NULL;
3482 		goto skip;
3483 	}
3484 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3485 	if (ncc->ncp == nch->ncp) {
3486 		spin_lock_shared(&ncc->spin);
3487 		if (ncc->isneg == 0 &&
3488 		    ncc->ncp == nch->ncp && (mp = ncc->mp) != NULL) {
3489 			if (mp->mnt_ncmounton.mount == nch->mount &&
3490 			    mp->mnt_ncmounton.ncp == nch->ncp) {
3491 				/*
3492 				 * Cache hit (positive)
3493 				 */
3494 				_cache_mntref(mp);
3495 				spin_unlock_shared(&ncc->spin);
3496 				return(mp);
3497 			}
3498 			/* else cache miss */
3499 		}
3500 		if (ncc->isneg &&
3501 		    ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3502 			/*
3503 			 * Cache hit (negative)
3504 			 */
3505 			spin_unlock_shared(&ncc->spin);
3506 			return(NULL);
3507 		}
3508 		spin_unlock_shared(&ncc->spin);
3509 	}
3510 skip:
3511 
3512 	/*
3513 	 * Slow
3514 	 */
3515 	info.result = NULL;
3516 	info.nch_mount = nch->mount;
3517 	info.nch_ncp = nch->ncp;
3518 	mountlist_scan(cache_findmount_callback, &info,
3519 		       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
3520 
3521 	/*
3522 	 * Cache the result.
3523 	 *
3524 	 * Negative lookups: We cache the originating {ncp,mp}. (mp) is
3525 	 *		     only used for pointer comparisons and is not
3526 	 *		     referenced (otherwise there would be dangling
3527 	 *		     refs).
3528 	 *
3529 	 * Positive lookups: We cache the originating {ncp} and the target
3530 	 *		     (mp).  (mp) is referenced.
3531 	 *
3532 	 * Indeterminant:    If the match is undergoing an unmount we do
3533 	 *		     not cache it to avoid racing cache_unmounting(),
3534 	 *		     but still return the match.
3535 	 */
3536 	if (ncc) {
3537 		spin_lock(&ncc->spin);
3538 		if (info.result == NULL) {
3539 			if (ncc->isneg == 0 && ncc->mp)
3540 				_cache_mntrel(ncc->mp);
3541 			ncc->ncp = nch->ncp;
3542 			ncc->mp = nch->mount;
3543 			ncc->isneg = 1;
3544 			spin_unlock(&ncc->spin);
3545 		} else if ((info.result->mnt_kern_flag & MNTK_UNMOUNT) == 0) {
3546 			if (ncc->isneg == 0 && ncc->mp)
3547 				_cache_mntrel(ncc->mp);
3548 			_cache_mntref(info.result);
3549 			ncc->ncp = nch->ncp;
3550 			ncc->mp = info.result;
3551 			ncc->isneg = 0;
3552 			spin_unlock(&ncc->spin);
3553 		} else {
3554 			spin_unlock(&ncc->spin);
3555 		}
3556 	}
3557 	return(info.result);
3558 }
3559 
3560 void
3561 cache_dropmount(struct mount *mp)
3562 {
3563 	_cache_mntrel(mp);
3564 }
3565 
3566 void
3567 cache_ismounting(struct mount *mp)
3568 {
3569 	struct nchandle *nch = &mp->mnt_ncmounton;
3570 	struct ncmount_cache *ncc;
3571 
3572 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3573 	if (ncc->isneg &&
3574 	    ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3575 		spin_lock(&ncc->spin);
3576 		if (ncc->isneg &&
3577 		    ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3578 			ncc->ncp = NULL;
3579 			ncc->mp = NULL;
3580 		}
3581 		spin_unlock(&ncc->spin);
3582 	}
3583 }
3584 
3585 void
3586 cache_unmounting(struct mount *mp)
3587 {
3588 	struct nchandle *nch = &mp->mnt_ncmounton;
3589 	struct ncmount_cache *ncc;
3590 
3591 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3592 	if (ncc->isneg == 0 &&
3593 	    ncc->ncp == nch->ncp && ncc->mp == mp) {
3594 		spin_lock(&ncc->spin);
3595 		if (ncc->isneg == 0 &&
3596 		    ncc->ncp == nch->ncp && ncc->mp == mp) {
3597 			_cache_mntrel(mp);
3598 			ncc->ncp = NULL;
3599 			ncc->mp = NULL;
3600 		}
3601 		spin_unlock(&ncc->spin);
3602 	}
3603 }
3604 
3605 /*
3606  * Resolve an unresolved namecache entry, generally by looking it up.
3607  * The passed ncp must be locked and refd.
3608  *
3609  * Theoretically since a vnode cannot be recycled while held, and since
3610  * the nc_parent chain holds its vnode as long as children exist, the
3611  * direct parent of the cache entry we are trying to resolve should
3612  * have a valid vnode.  If not then generate an error that we can
3613  * determine is related to a resolver bug.
3614  *
3615  * However, if a vnode was in the middle of a recyclement when the NCP
3616  * got locked, ncp->nc_vp might point to a vnode that is about to become
3617  * invalid.  cache_resolve() handles this case by unresolving the entry
3618  * and then re-resolving it.
3619  *
3620  * Note that successful resolution does not necessarily return an error
3621  * code of 0.  If the ncp resolves to a negative cache hit then ENOENT
3622  * will be returned.
3623  */
3624 int
3625 cache_resolve(struct nchandle *nch, struct ucred *cred)
3626 {
3627 	struct namecache *par_tmp;
3628 	struct namecache *par;
3629 	struct namecache *ncp;
3630 	struct nchandle nctmp;
3631 	struct mount *mp;
3632 	struct vnode *dvp;
3633 	int error;
3634 
3635 	ncp = nch->ncp;
3636 	mp = nch->mount;
3637 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
3638 restart:
3639 	/*
3640 	 * If the ncp is already resolved we have nothing to do.  However,
3641 	 * we do want to guarentee that a usable vnode is returned when
3642 	 * a vnode is present, so make sure it hasn't been reclaimed.
3643 	 */
3644 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3645 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
3646 			_cache_setunresolved(ncp);
3647 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
3648 			return (ncp->nc_error);
3649 	}
3650 
3651 	/*
3652 	 * If the ncp was destroyed it will never resolve again.  This
3653 	 * can basically only happen when someone is chdir'd into an
3654 	 * empty directory which is then rmdir'd.  We want to catch this
3655 	 * here and not dive the VFS because the VFS might actually
3656 	 * have a way to re-resolve the disconnected ncp, which will
3657 	 * result in inconsistencies in the cdir/nch for proc->p_fd.
3658 	 */
3659 	if (ncp->nc_flag & NCF_DESTROYED)
3660 		return(EINVAL);
3661 
3662 	/*
3663 	 * Mount points need special handling because the parent does not
3664 	 * belong to the same filesystem as the ncp.
3665 	 */
3666 	if (ncp == mp->mnt_ncmountpt.ncp)
3667 		return (cache_resolve_mp(mp));
3668 
3669 	/*
3670 	 * We expect an unbroken chain of ncps to at least the mount point,
3671 	 * and even all the way to root (but this code doesn't have to go
3672 	 * past the mount point).
3673 	 */
3674 	if (ncp->nc_parent == NULL) {
3675 		kprintf("EXDEV case 1 %p %*.*s\n", ncp,
3676 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
3677 		ncp->nc_error = EXDEV;
3678 		return(ncp->nc_error);
3679 	}
3680 
3681 	/*
3682 	 * The vp's of the parent directories in the chain are held via vhold()
3683 	 * due to the existance of the child, and should not disappear.
3684 	 * However, there are cases where they can disappear:
3685 	 *
3686 	 *	- due to filesystem I/O errors.
3687 	 *	- due to NFS being stupid about tracking the namespace and
3688 	 *	  destroys the namespace for entire directories quite often.
3689 	 *	- due to forced unmounts.
3690 	 *	- due to an rmdir (parent will be marked DESTROYED)
3691 	 *
3692 	 * When this occurs we have to track the chain backwards and resolve
3693 	 * it, looping until the resolver catches up to the current node.  We
3694 	 * could recurse here but we might run ourselves out of kernel stack
3695 	 * so we do it in a more painful manner.  This situation really should
3696 	 * not occur all that often, or if it does not have to go back too
3697 	 * many nodes to resolve the ncp.
3698 	 */
3699 	while ((dvp = cache_dvpref(ncp)) == NULL) {
3700 		/*
3701 		 * This case can occur if a process is CD'd into a
3702 		 * directory which is then rmdir'd.  If the parent is marked
3703 		 * destroyed there is no point trying to resolve it.
3704 		 */
3705 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
3706 			return(ENOENT);
3707 		par = ncp->nc_parent;
3708 		_cache_hold(par);
3709 		_cache_lock(par);
3710 		while ((par_tmp = par->nc_parent) != NULL &&
3711 		       par_tmp->nc_vp == NULL) {
3712 			_cache_hold(par_tmp);
3713 			_cache_lock(par_tmp);
3714 			_cache_put(par);
3715 			par = par_tmp;
3716 		}
3717 		if (par->nc_parent == NULL) {
3718 			kprintf("EXDEV case 2 %*.*s\n",
3719 				par->nc_nlen, par->nc_nlen, par->nc_name);
3720 			_cache_put(par);
3721 			return (EXDEV);
3722 		}
3723 		/*
3724 		 * The parent is not set in stone, ref and lock it to prevent
3725 		 * it from disappearing.  Also note that due to renames it
3726 		 * is possible for our ncp to move and for par to no longer
3727 		 * be one of its parents.  We resolve it anyway, the loop
3728 		 * will handle any moves.
3729 		 */
3730 		_cache_get(par);	/* additional hold/lock */
3731 		_cache_put(par);	/* from earlier hold/lock */
3732 		if (par == nch->mount->mnt_ncmountpt.ncp) {
3733 			cache_resolve_mp(nch->mount);
3734 		} else if ((dvp = cache_dvpref(par)) == NULL) {
3735 			kprintf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name);
3736 			_cache_put(par);
3737 			continue;
3738 		} else {
3739 			if (par->nc_flag & NCF_UNRESOLVED) {
3740 				nctmp.mount = mp;
3741 				nctmp.ncp = par;
3742 				par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
3743 			}
3744 			vrele(dvp);
3745 		}
3746 		if ((error = par->nc_error) != 0) {
3747 			if (par->nc_error != EAGAIN) {
3748 				kprintf("EXDEV case 3 %*.*s error %d\n",
3749 				    par->nc_nlen, par->nc_nlen, par->nc_name,
3750 				    par->nc_error);
3751 				_cache_put(par);
3752 				return(error);
3753 			}
3754 			kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
3755 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
3756 		}
3757 		_cache_put(par);
3758 		/* loop */
3759 	}
3760 
3761 	/*
3762 	 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
3763 	 * ncp's and reattach them.  If this occurs the original ncp is marked
3764 	 * EAGAIN to force a relookup.
3765 	 *
3766 	 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
3767 	 * ncp must already be resolved.
3768 	 */
3769 	if (dvp) {
3770 		nctmp.mount = mp;
3771 		nctmp.ncp = ncp;
3772 		ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
3773 		vrele(dvp);
3774 	} else {
3775 		ncp->nc_error = EPERM;
3776 	}
3777 	if (ncp->nc_error == EAGAIN) {
3778 		kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
3779 			ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
3780 		goto restart;
3781 	}
3782 	return(ncp->nc_error);
3783 }
3784 
3785 /*
3786  * Resolve the ncp associated with a mount point.  Such ncp's almost always
3787  * remain resolved and this routine is rarely called.  NFS MPs tends to force
3788  * re-resolution more often due to its mac-truck-smash-the-namecache
3789  * method of tracking namespace changes.
3790  *
3791  * The semantics for this call is that the passed ncp must be locked on
3792  * entry and will be locked on return.  However, if we actually have to
3793  * resolve the mount point we temporarily unlock the entry in order to
3794  * avoid race-to-root deadlocks due to e.g. dead NFS mounts.  Because of
3795  * the unlock we have to recheck the flags after we relock.
3796  */
3797 static int
3798 cache_resolve_mp(struct mount *mp)
3799 {
3800 	struct namecache *ncp = mp->mnt_ncmountpt.ncp;
3801 	struct vnode *vp;
3802 	int error;
3803 
3804 	KKASSERT(mp != NULL);
3805 
3806 	/*
3807 	 * If the ncp is already resolved we have nothing to do.  However,
3808 	 * we do want to guarentee that a usable vnode is returned when
3809 	 * a vnode is present, so make sure it hasn't been reclaimed.
3810 	 */
3811 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3812 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
3813 			_cache_setunresolved(ncp);
3814 	}
3815 
3816 	if (ncp->nc_flag & NCF_UNRESOLVED) {
3817 		_cache_unlock(ncp);
3818 		while (vfs_busy(mp, 0))
3819 			;
3820 		error = VFS_ROOT(mp, &vp);
3821 		_cache_lock(ncp);
3822 
3823 		/*
3824 		 * recheck the ncp state after relocking.
3825 		 */
3826 		if (ncp->nc_flag & NCF_UNRESOLVED) {
3827 			ncp->nc_error = error;
3828 			if (error == 0) {
3829 				_cache_setvp(mp, ncp, vp);
3830 				vput(vp);
3831 			} else {
3832 				kprintf("[diagnostic] cache_resolve_mp: failed"
3833 					" to resolve mount %p err=%d ncp=%p\n",
3834 					mp, error, ncp);
3835 				_cache_setvp(mp, ncp, NULL);
3836 			}
3837 		} else if (error == 0) {
3838 			vput(vp);
3839 		}
3840 		vfs_unbusy(mp);
3841 	}
3842 	return(ncp->nc_error);
3843 }
3844 
3845 /*
3846  * Clean out negative cache entries when too many have accumulated.
3847  */
3848 static void
3849 _cache_cleanneg(long count)
3850 {
3851 	struct pcpu_ncache *pn;
3852 	struct namecache *ncp;
3853 	static uint32_t neg_rover;
3854 	uint32_t n;
3855 	long vnegs;
3856 
3857 	n = neg_rover++;	/* SMP heuristical, race ok */
3858 	cpu_ccfence();
3859 	n = n % (uint32_t)ncpus;
3860 
3861 	/*
3862 	 * Normalize vfscache_negs and count.  count is sometimes based
3863 	 * on vfscache_negs.  vfscache_negs is heuristical and can sometimes
3864 	 * have crazy values.
3865 	 */
3866 	vnegs = vfscache_negs;
3867 	cpu_ccfence();
3868 	if (vnegs <= MINNEG)
3869 		vnegs = MINNEG;
3870 	if (count < 1)
3871 		count = 1;
3872 
3873 	pn = &pcpu_ncache[n];
3874 	spin_lock(&pn->neg_spin);
3875 	count = pn->neg_count * count / vnegs + 1;
3876 	spin_unlock(&pn->neg_spin);
3877 
3878 	/*
3879 	 * Attempt to clean out the specified number of negative cache
3880 	 * entries.
3881 	 */
3882 	while (count > 0) {
3883 		spin_lock(&pn->neg_spin);
3884 		ncp = TAILQ_FIRST(&pn->neg_list);
3885 		if (ncp == NULL) {
3886 			spin_unlock(&pn->neg_spin);
3887 			break;
3888 		}
3889 		TAILQ_REMOVE(&pn->neg_list, ncp, nc_vnode);
3890 		TAILQ_INSERT_TAIL(&pn->neg_list, ncp, nc_vnode);
3891 		_cache_hold(ncp);
3892 		spin_unlock(&pn->neg_spin);
3893 
3894 		/*
3895 		 * This can race, so we must re-check that the ncp
3896 		 * is on the ncneg.list after successfully locking it.
3897 		 */
3898 		if (_cache_lock_special(ncp) == 0) {
3899 			if (ncp->nc_vp == NULL &&
3900 			    (ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3901 				ncp = cache_zap(ncp, 1);
3902 				if (ncp)
3903 					_cache_drop(ncp);
3904 			} else {
3905 				_cache_unlock(ncp);
3906 				_cache_drop(ncp);
3907 			}
3908 		} else {
3909 			_cache_drop(ncp);
3910 		}
3911 		--count;
3912 	}
3913 }
3914 
3915 /*
3916  * Clean out positive cache entries when too many have accumulated.
3917  */
3918 static void
3919 _cache_cleanpos(long count)
3920 {
3921 	static volatile int rover;
3922 	struct nchash_head *nchpp;
3923 	struct namecache *ncp;
3924 	int rover_copy;
3925 
3926 	/*
3927 	 * Attempt to clean out the specified number of negative cache
3928 	 * entries.
3929 	 */
3930 	while (count > 0) {
3931 		rover_copy = ++rover;	/* MPSAFEENOUGH */
3932 		cpu_ccfence();
3933 		nchpp = NCHHASH(rover_copy);
3934 
3935 		if (TAILQ_FIRST(&nchpp->list) == NULL) {
3936 			--count;
3937 			continue;
3938 		}
3939 
3940 		/*
3941 		 * Cycle ncp on list, ignore and do not move DUMMY
3942 		 * ncps.  These are temporary list iterators.
3943 		 *
3944 		 * We must cycle the ncp to the end of the list to
3945 		 * ensure that all ncp's have an equal chance of
3946 		 * being removed.
3947 		 */
3948 		spin_lock(&nchpp->spin);
3949 		ncp = TAILQ_FIRST(&nchpp->list);
3950 		while (ncp && (ncp->nc_flag & NCF_DUMMY))
3951 			ncp = TAILQ_NEXT(ncp, nc_hash);
3952 		if (ncp) {
3953 			TAILQ_REMOVE(&nchpp->list, ncp, nc_hash);
3954 			TAILQ_INSERT_TAIL(&nchpp->list, ncp, nc_hash);
3955 			_cache_hold(ncp);
3956 		}
3957 		spin_unlock(&nchpp->spin);
3958 
3959 		if (ncp) {
3960 			if (_cache_lock_special(ncp) == 0) {
3961 				ncp = cache_zap(ncp, 1);
3962 				if (ncp)
3963 					_cache_drop(ncp);
3964 			} else {
3965 				_cache_drop(ncp);
3966 			}
3967 		}
3968 		--count;
3969 	}
3970 }
3971 
3972 /*
3973  * This is a kitchen sink function to clean out ncps which we
3974  * tried to zap from cache_drop() but failed because we were
3975  * unable to acquire the parent lock.
3976  *
3977  * Such entries can also be removed via cache_inval_vp(), such
3978  * as when unmounting.
3979  */
3980 static void
3981 _cache_cleandefered(void)
3982 {
3983 	struct nchash_head *nchpp;
3984 	struct namecache *ncp;
3985 	struct namecache dummy;
3986 	int i;
3987 
3988 	/*
3989 	 * Create a list iterator.  DUMMY indicates that this is a list
3990 	 * iterator, DESTROYED prevents matches by lookup functions.
3991 	 */
3992 	numdefered = 0;
3993 	pcpu_ncache[mycpu->gd_cpuid].numdefered = 0;
3994 	bzero(&dummy, sizeof(dummy));
3995 	dummy.nc_flag = NCF_DESTROYED | NCF_DUMMY;
3996 	dummy.nc_refs = 1;
3997 
3998 	for (i = 0; i <= nchash; ++i) {
3999 		nchpp = &nchashtbl[i];
4000 
4001 		spin_lock(&nchpp->spin);
4002 		TAILQ_INSERT_HEAD(&nchpp->list, &dummy, nc_hash);
4003 		ncp = &dummy;
4004 		while ((ncp = TAILQ_NEXT(ncp, nc_hash)) != NULL) {
4005 			if ((ncp->nc_flag & NCF_DEFEREDZAP) == 0)
4006 				continue;
4007 			TAILQ_REMOVE(&nchpp->list, &dummy, nc_hash);
4008 			TAILQ_INSERT_AFTER(&nchpp->list, ncp, &dummy, nc_hash);
4009 			_cache_hold(ncp);
4010 			spin_unlock(&nchpp->spin);
4011 			if (_cache_lock_nonblock(ncp) == 0) {
4012 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
4013 				_cache_unlock(ncp);
4014 			}
4015 			_cache_drop(ncp);
4016 			spin_lock(&nchpp->spin);
4017 			ncp = &dummy;
4018 		}
4019 		TAILQ_REMOVE(&nchpp->list, &dummy, nc_hash);
4020 		spin_unlock(&nchpp->spin);
4021 	}
4022 }
4023 
4024 /*
4025  * Name cache initialization, from vfsinit() when we are booting
4026  */
4027 void
4028 nchinit(void)
4029 {
4030 	struct pcpu_ncache *pn;
4031 	globaldata_t gd;
4032 	int i;
4033 
4034 	/*
4035 	 * Per-cpu accounting and negative hit list
4036 	 */
4037 	pcpu_ncache = kmalloc(sizeof(*pcpu_ncache) * ncpus,
4038 			      M_VFSCACHE, M_WAITOK|M_ZERO);
4039 	for (i = 0; i < ncpus; ++i) {
4040 		pn = &pcpu_ncache[i];
4041 		TAILQ_INIT(&pn->neg_list);
4042 		spin_init(&pn->neg_spin, "ncneg");
4043 	}
4044 
4045 	/*
4046 	 * Initialise per-cpu namecache effectiveness statistics.
4047 	 */
4048 	for (i = 0; i < ncpus; ++i) {
4049 		gd = globaldata_find(i);
4050 		gd->gd_nchstats = &nchstats[i];
4051 	}
4052 
4053 	/*
4054 	 * Create a generous namecache hash table
4055 	 */
4056 	nchashtbl = hashinit_ext(vfs_inodehashsize(),
4057 				 sizeof(struct nchash_head),
4058 				 M_VFSCACHE, &nchash);
4059 	for (i = 0; i <= (int)nchash; ++i) {
4060 		TAILQ_INIT(&nchashtbl[i].list);
4061 		spin_init(&nchashtbl[i].spin, "nchinit_hash");
4062 	}
4063 	for (i = 0; i < NCMOUNT_NUMCACHE; ++i)
4064 		spin_init(&ncmount_cache[i].spin, "nchinit_cache");
4065 	nclockwarn = 5 * hz;
4066 }
4067 
4068 /*
4069  * Called from start_init() to bootstrap the root filesystem.  Returns
4070  * a referenced, unlocked namecache record.
4071  */
4072 void
4073 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
4074 {
4075 	nch->ncp = cache_alloc(0);
4076 	nch->mount = mp;
4077 	_cache_mntref(mp);
4078 	if (vp)
4079 		_cache_setvp(nch->mount, nch->ncp, vp);
4080 }
4081 
4082 /*
4083  * vfs_cache_setroot()
4084  *
4085  *	Create an association between the root of our namecache and
4086  *	the root vnode.  This routine may be called several times during
4087  *	booting.
4088  *
4089  *	If the caller intends to save the returned namecache pointer somewhere
4090  *	it must cache_hold() it.
4091  */
4092 void
4093 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
4094 {
4095 	struct vnode *ovp;
4096 	struct nchandle onch;
4097 
4098 	ovp = rootvnode;
4099 	onch = rootnch;
4100 	rootvnode = nvp;
4101 	if (nch)
4102 		rootnch = *nch;
4103 	else
4104 		cache_zero(&rootnch);
4105 	if (ovp)
4106 		vrele(ovp);
4107 	if (onch.ncp)
4108 		cache_drop(&onch);
4109 }
4110 
4111 /*
4112  * XXX OLD API COMPAT FUNCTION.  This really messes up the new namecache
4113  * topology and is being removed as quickly as possible.  The new VOP_N*()
4114  * API calls are required to make specific adjustments using the supplied
4115  * ncp pointers rather then just bogusly purging random vnodes.
4116  *
4117  * Invalidate all namecache entries to a particular vnode as well as
4118  * any direct children of that vnode in the namecache.  This is a
4119  * 'catch all' purge used by filesystems that do not know any better.
4120  *
4121  * Note that the linkage between the vnode and its namecache entries will
4122  * be removed, but the namecache entries themselves might stay put due to
4123  * active references from elsewhere in the system or due to the existance of
4124  * the children.   The namecache topology is left intact even if we do not
4125  * know what the vnode association is.  Such entries will be marked
4126  * NCF_UNRESOLVED.
4127  */
4128 void
4129 cache_purge(struct vnode *vp)
4130 {
4131 	cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
4132 }
4133 
4134 static int disablecwd;
4135 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0,
4136     "Disable getcwd");
4137 
4138 static u_long numcwdcalls;
4139 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdcalls, CTLFLAG_RD, &numcwdcalls, 0,
4140     "Number of current directory resolution calls");
4141 static u_long numcwdfailnf;
4142 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfailnf, CTLFLAG_RD, &numcwdfailnf, 0,
4143     "Number of current directory failures due to lack of file");
4144 static u_long numcwdfailsz;
4145 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfailsz, CTLFLAG_RD, &numcwdfailsz, 0,
4146     "Number of current directory failures due to large result");
4147 static u_long numcwdfound;
4148 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfound, CTLFLAG_RD, &numcwdfound, 0,
4149     "Number of current directory resolution successes");
4150 
4151 /*
4152  * MPALMOSTSAFE
4153  */
4154 int
4155 sys___getcwd(struct __getcwd_args *uap)
4156 {
4157 	u_int buflen;
4158 	int error;
4159 	char *buf;
4160 	char *bp;
4161 
4162 	if (disablecwd)
4163 		return (ENODEV);
4164 
4165 	buflen = uap->buflen;
4166 	if (buflen == 0)
4167 		return (EINVAL);
4168 	if (buflen > MAXPATHLEN)
4169 		buflen = MAXPATHLEN;
4170 
4171 	buf = kmalloc(buflen, M_TEMP, M_WAITOK);
4172 	bp = kern_getcwd(buf, buflen, &error);
4173 	if (error == 0)
4174 		error = copyout(bp, uap->buf, strlen(bp) + 1);
4175 	kfree(buf, M_TEMP);
4176 	return (error);
4177 }
4178 
4179 char *
4180 kern_getcwd(char *buf, size_t buflen, int *error)
4181 {
4182 	struct proc *p = curproc;
4183 	char *bp;
4184 	int i, slash_prefixed;
4185 	struct filedesc *fdp;
4186 	struct nchandle nch;
4187 	struct namecache *ncp;
4188 
4189 	numcwdcalls++;
4190 	bp = buf;
4191 	bp += buflen - 1;
4192 	*bp = '\0';
4193 	fdp = p->p_fd;
4194 	slash_prefixed = 0;
4195 
4196 	nch = fdp->fd_ncdir;
4197 	ncp = nch.ncp;
4198 	if (ncp)
4199 		_cache_hold(ncp);
4200 
4201 	while (ncp && (ncp != fdp->fd_nrdir.ncp ||
4202 	       nch.mount != fdp->fd_nrdir.mount)
4203 	) {
4204 		/*
4205 		 * While traversing upwards if we encounter the root
4206 		 * of the current mount we have to skip to the mount point
4207 		 * in the underlying filesystem.
4208 		 */
4209 		if (ncp == nch.mount->mnt_ncmountpt.ncp) {
4210 			nch = nch.mount->mnt_ncmounton;
4211 			_cache_drop(ncp);
4212 			ncp = nch.ncp;
4213 			if (ncp)
4214 				_cache_hold(ncp);
4215 			continue;
4216 		}
4217 
4218 		/*
4219 		 * Prepend the path segment
4220 		 */
4221 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
4222 			if (bp == buf) {
4223 				numcwdfailsz++;
4224 				*error = ERANGE;
4225 				bp = NULL;
4226 				goto done;
4227 			}
4228 			*--bp = ncp->nc_name[i];
4229 		}
4230 		if (bp == buf) {
4231 			numcwdfailsz++;
4232 			*error = ERANGE;
4233 			bp = NULL;
4234 			goto done;
4235 		}
4236 		*--bp = '/';
4237 		slash_prefixed = 1;
4238 
4239 		/*
4240 		 * Go up a directory.  This isn't a mount point so we don't
4241 		 * have to check again.
4242 		 */
4243 		while ((nch.ncp = ncp->nc_parent) != NULL) {
4244 			if (ncp_shared_lock_disable)
4245 				_cache_lock(ncp);
4246 			else
4247 				_cache_lock_shared(ncp);
4248 			if (nch.ncp != ncp->nc_parent) {
4249 				_cache_unlock(ncp);
4250 				continue;
4251 			}
4252 			_cache_hold(nch.ncp);
4253 			_cache_unlock(ncp);
4254 			break;
4255 		}
4256 		_cache_drop(ncp);
4257 		ncp = nch.ncp;
4258 	}
4259 	if (ncp == NULL) {
4260 		numcwdfailnf++;
4261 		*error = ENOENT;
4262 		bp = NULL;
4263 		goto done;
4264 	}
4265 	if (!slash_prefixed) {
4266 		if (bp == buf) {
4267 			numcwdfailsz++;
4268 			*error = ERANGE;
4269 			bp = NULL;
4270 			goto done;
4271 		}
4272 		*--bp = '/';
4273 	}
4274 	numcwdfound++;
4275 	*error = 0;
4276 done:
4277 	if (ncp)
4278 		_cache_drop(ncp);
4279 	return (bp);
4280 }
4281 
4282 /*
4283  * Thus begins the fullpath magic.
4284  *
4285  * The passed nchp is referenced but not locked.
4286  */
4287 static int disablefullpath;
4288 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
4289     &disablefullpath, 0,
4290     "Disable fullpath lookups");
4291 
4292 int
4293 cache_fullpath(struct proc *p, struct nchandle *nchp, struct nchandle *nchbase,
4294 	       char **retbuf, char **freebuf, int guess)
4295 {
4296 	struct nchandle fd_nrdir;
4297 	struct nchandle nch;
4298 	struct namecache *ncp;
4299 	struct mount *mp, *new_mp;
4300 	char *bp, *buf;
4301 	int slash_prefixed;
4302 	int error = 0;
4303 	int i;
4304 
4305 	*retbuf = NULL;
4306 	*freebuf = NULL;
4307 
4308 	buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
4309 	bp = buf + MAXPATHLEN - 1;
4310 	*bp = '\0';
4311 	if (nchbase)
4312 		fd_nrdir = *nchbase;
4313 	else if (p != NULL)
4314 		fd_nrdir = p->p_fd->fd_nrdir;
4315 	else
4316 		fd_nrdir = rootnch;
4317 	slash_prefixed = 0;
4318 	nch = *nchp;
4319 	ncp = nch.ncp;
4320 	if (ncp)
4321 		_cache_hold(ncp);
4322 	mp = nch.mount;
4323 
4324 	while (ncp && (ncp != fd_nrdir.ncp || mp != fd_nrdir.mount)) {
4325 		new_mp = NULL;
4326 
4327 		/*
4328 		 * If we are asked to guess the upwards path, we do so whenever
4329 		 * we encounter an ncp marked as a mountpoint. We try to find
4330 		 * the actual mountpoint by finding the mountpoint with this
4331 		 * ncp.
4332 		 */
4333 		if (guess && (ncp->nc_flag & NCF_ISMOUNTPT)) {
4334 			new_mp = mount_get_by_nc(ncp);
4335 		}
4336 		/*
4337 		 * While traversing upwards if we encounter the root
4338 		 * of the current mount we have to skip to the mount point.
4339 		 */
4340 		if (ncp == mp->mnt_ncmountpt.ncp) {
4341 			new_mp = mp;
4342 		}
4343 		if (new_mp) {
4344 			nch = new_mp->mnt_ncmounton;
4345 			_cache_drop(ncp);
4346 			ncp = nch.ncp;
4347 			if (ncp)
4348 				_cache_hold(ncp);
4349 			mp = nch.mount;
4350 			continue;
4351 		}
4352 
4353 		/*
4354 		 * Prepend the path segment
4355 		 */
4356 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
4357 			if (bp == buf) {
4358 				kfree(buf, M_TEMP);
4359 				error = ENOMEM;
4360 				goto done;
4361 			}
4362 			*--bp = ncp->nc_name[i];
4363 		}
4364 		if (bp == buf) {
4365 			kfree(buf, M_TEMP);
4366 			error = ENOMEM;
4367 			goto done;
4368 		}
4369 		*--bp = '/';
4370 		slash_prefixed = 1;
4371 
4372 		/*
4373 		 * Go up a directory.  This isn't a mount point so we don't
4374 		 * have to check again.
4375 		 *
4376 		 * We can only safely access nc_parent with ncp held locked.
4377 		 */
4378 		while ((nch.ncp = ncp->nc_parent) != NULL) {
4379 			_cache_lock(ncp);
4380 			if (nch.ncp != ncp->nc_parent) {
4381 				_cache_unlock(ncp);
4382 				continue;
4383 			}
4384 			_cache_hold(nch.ncp);
4385 			_cache_unlock(ncp);
4386 			break;
4387 		}
4388 		_cache_drop(ncp);
4389 		ncp = nch.ncp;
4390 	}
4391 	if (ncp == NULL) {
4392 		kfree(buf, M_TEMP);
4393 		error = ENOENT;
4394 		goto done;
4395 	}
4396 
4397 	if (!slash_prefixed) {
4398 		if (bp == buf) {
4399 			kfree(buf, M_TEMP);
4400 			error = ENOMEM;
4401 			goto done;
4402 		}
4403 		*--bp = '/';
4404 	}
4405 	*retbuf = bp;
4406 	*freebuf = buf;
4407 	error = 0;
4408 done:
4409 	if (ncp)
4410 		_cache_drop(ncp);
4411 	return(error);
4412 }
4413 
4414 int
4415 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf,
4416 	    char **freebuf, int guess)
4417 {
4418 	struct namecache *ncp;
4419 	struct nchandle nch;
4420 	int error;
4421 
4422 	*freebuf = NULL;
4423 	if (disablefullpath)
4424 		return (ENODEV);
4425 
4426 	if (p == NULL)
4427 		return (EINVAL);
4428 
4429 	/* vn is NULL, client wants us to use p->p_textvp */
4430 	if (vn == NULL) {
4431 		if ((vn = p->p_textvp) == NULL)
4432 			return (EINVAL);
4433 	}
4434 	spin_lock_shared(&vn->v_spin);
4435 	TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
4436 		if (ncp->nc_nlen)
4437 			break;
4438 	}
4439 	if (ncp == NULL) {
4440 		spin_unlock_shared(&vn->v_spin);
4441 		return (EINVAL);
4442 	}
4443 	_cache_hold(ncp);
4444 	spin_unlock_shared(&vn->v_spin);
4445 
4446 	nch.ncp = ncp;
4447 	nch.mount = vn->v_mount;
4448 	error = cache_fullpath(p, &nch, NULL, retbuf, freebuf, guess);
4449 	_cache_drop(ncp);
4450 	return (error);
4451 }
4452 
4453 void
4454 vfscache_rollup_cpu(struct globaldata *gd)
4455 {
4456 	struct pcpu_ncache *pn;
4457 	long count;
4458 
4459 	if (pcpu_ncache == NULL)
4460 		return;
4461 	pn = &pcpu_ncache[gd->gd_cpuid];
4462 
4463 	if (pn->vfscache_count) {
4464 		count = atomic_swap_long(&pn->vfscache_count, 0);
4465 		atomic_add_long(&vfscache_count, count);
4466 	}
4467 	if (pn->vfscache_leafs) {
4468 		count = atomic_swap_long(&pn->vfscache_leafs, 0);
4469 		atomic_add_long(&vfscache_leafs, count);
4470 	}
4471 	if (pn->vfscache_negs) {
4472 		count = atomic_swap_long(&pn->vfscache_negs, 0);
4473 		atomic_add_long(&vfscache_negs, count);
4474 	}
4475 	if (pn->numdefered) {
4476 		count = atomic_swap_long(&pn->numdefered, 0);
4477 		atomic_add_long(&numdefered, count);
4478 	}
4479 }
4480 
4481 #if 0
4482 static void
4483 vfscache_rollup_all(void)
4484 {
4485 	int n;
4486 
4487 	for (n = 0; n < ncpus; ++n)
4488 		vfscache_rollup_cpu(globaldata_find(n));
4489 }
4490 #endif
4491