xref: /dragonfly/sys/kern/vfs_cluster.c (revision 36a3d1d6)
1 /*-
2  * Copyright (c) 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Modifications/enhancements:
5  * 	Copyright (c) 1995 John S. Dyson.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)vfs_cluster.c	8.7 (Berkeley) 2/13/94
36  * $FreeBSD: src/sys/kern/vfs_cluster.c,v 1.92.2.9 2001/11/18 07:10:59 dillon Exp $
37  * $DragonFly: src/sys/kern/vfs_cluster.c,v 1.40 2008/07/14 03:09:00 dillon Exp $
38  */
39 
40 #include "opt_debug_cluster.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/buf.h>
47 #include <sys/vnode.h>
48 #include <sys/malloc.h>
49 #include <sys/mount.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <vm/vm.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_page.h>
55 #include <sys/sysctl.h>
56 #include <sys/buf2.h>
57 #include <vm/vm_page2.h>
58 
59 #include <machine/limits.h>
60 
61 #if defined(CLUSTERDEBUG)
62 #include <sys/sysctl.h>
63 static int	rcluster= 0;
64 SYSCTL_INT(_debug, OID_AUTO, rcluster, CTLFLAG_RW, &rcluster, 0, "");
65 #endif
66 
67 static MALLOC_DEFINE(M_SEGMENT, "cluster_save", "cluster_save buffer");
68 
69 static struct cluster_save *
70 	cluster_collectbufs (struct vnode *vp, struct buf *last_bp,
71 			    int blksize);
72 static struct buf *
73 	cluster_rbuild (struct vnode *vp, off_t filesize, off_t loffset,
74 			    off_t doffset, int blksize, int run,
75 			    struct buf *fbp);
76 static void cluster_callback (struct bio *);
77 static void cluster_setram (struct buf *);
78 
79 static int write_behind = 1;
80 SYSCTL_INT(_vfs, OID_AUTO, write_behind, CTLFLAG_RW, &write_behind, 0, "");
81 static int max_readahead = 2 * 1024 * 1024;
82 SYSCTL_INT(_vfs, OID_AUTO, max_readahead, CTLFLAG_RW, &max_readahead, 0, "");
83 
84 extern vm_page_t	bogus_page;
85 
86 extern int cluster_pbuf_freecnt;
87 
88 /*
89  * This replaces bread.
90  *
91  * filesize	- read-ahead @ blksize will not cross this boundary
92  * loffset	- loffset for returned *bpp
93  * blksize	- blocksize for returned *bpp and read-ahead bps
94  * minreq	- minimum (not a hard minimum) in bytes, typically reflects
95  *		  a higher level uio resid.
96  * maxreq	- maximum (sequential heuristic) in bytes (highet typ ~2MB)
97  * bpp		- return buffer (*bpp) for (loffset,blksize)
98  */
99 int
100 cluster_read(struct vnode *vp, off_t filesize, off_t loffset,
101 	     int blksize, size_t minreq, size_t maxreq, struct buf **bpp)
102 {
103 	struct buf *bp, *rbp, *reqbp;
104 	off_t origoffset;
105 	off_t doffset;
106 	int error;
107 	int i;
108 	int maxra;
109 	int maxrbuild;
110 
111 	error = 0;
112 
113 	/*
114 	 * Calculate the desired read-ahead in blksize'd blocks (maxra).
115 	 * To do this we calculate maxreq.
116 	 *
117 	 * maxreq typically starts out as a sequential heuristic.  If the
118 	 * high level uio/resid is bigger (minreq), we pop maxreq up to
119 	 * minreq.  This represents the case where random I/O is being
120 	 * performed by the userland is issuing big read()'s.
121 	 *
122 	 * Then we limit maxreq to max_readahead to ensure it is a reasonable
123 	 * value.
124 	 *
125 	 * Finally we must ensure that (loffset + maxreq) does not cross the
126 	 * boundary (filesize) for the current blocksize.  If we allowed it
127 	 * to cross we could end up with buffers past the boundary with the
128 	 * wrong block size (HAMMER large-data areas use mixed block sizes).
129 	 * minreq is also absolutely limited to filesize.
130 	 */
131 	if (maxreq < minreq)
132 		maxreq = minreq;
133 	/* minreq not used beyond this point */
134 
135 	if (maxreq > max_readahead) {
136 		maxreq = max_readahead;
137 		if (maxreq > 16 * 1024 * 1024)
138 			maxreq = 16 * 1024 * 1024;
139 	}
140 	if (maxreq < blksize)
141 		maxreq = blksize;
142 	if (loffset + maxreq > filesize) {
143 		if (loffset > filesize)
144 			maxreq = 0;
145 		else
146 			maxreq = filesize - loffset;
147 	}
148 
149 	maxra = (int)(maxreq / blksize);
150 
151 	/*
152 	 * Get the requested block.
153 	 */
154 	*bpp = reqbp = bp = getblk(vp, loffset, blksize, 0, 0);
155 	origoffset = loffset;
156 
157 	/*
158 	 * Calculate the maximum cluster size for a single I/O, used
159 	 * by cluster_rbuild().
160 	 */
161 	maxrbuild = vmaxiosize(vp) / blksize;
162 
163 	/*
164 	 * if it is in the cache, then check to see if the reads have been
165 	 * sequential.  If they have, then try some read-ahead, otherwise
166 	 * back-off on prospective read-aheads.
167 	 */
168 	if (bp->b_flags & B_CACHE) {
169 		/*
170 		 * Not sequential, do not do any read-ahead
171 		 */
172 		if (maxra <= 1)
173 			return 0;
174 
175 		/*
176 		 * No read-ahead mark, do not do any read-ahead
177 		 * yet.
178 		 */
179 		if ((bp->b_flags & B_RAM) == 0)
180 			return 0;
181 
182 		/*
183 		 * We hit a read-ahead-mark, figure out how much read-ahead
184 		 * to do (maxra) and where to start (loffset).
185 		 *
186 		 * Shortcut the scan.  Typically the way this works is that
187 		 * we've built up all the blocks inbetween except for the
188 		 * last in previous iterations, so if the second-to-last
189 		 * block is present we just skip ahead to it.
190 		 *
191 		 * This algorithm has O(1) cpu in the steady state no
192 		 * matter how large maxra is.
193 		 */
194 		bp->b_flags &= ~B_RAM;
195 
196 		if (findblk(vp, loffset + (maxra - 2) * blksize, FINDBLK_TEST))
197 			i = maxra - 1;
198 		else
199 			i = 1;
200 		while (i < maxra) {
201 			if (findblk(vp, loffset + i * blksize,
202 				    FINDBLK_TEST) == NULL) {
203 				break;
204 			}
205 			++i;
206 		}
207 
208 		/*
209 		 * We got everything or everything is in the cache, no
210 		 * point continuing.
211 		 */
212 		if (i >= maxra)
213 			return 0;
214 		maxra -= i;
215 		loffset += i * blksize;
216 		reqbp = bp = NULL;
217 	} else {
218 		__debugvar off_t firstread = bp->b_loffset;
219 		int nblks;
220 
221 		/*
222 		 * Set-up synchronous read for bp.
223 		 */
224 		bp->b_cmd = BUF_CMD_READ;
225 		bp->b_bio1.bio_done = biodone_sync;
226 		bp->b_bio1.bio_flags |= BIO_SYNC;
227 
228 		KASSERT(firstread != NOOFFSET,
229 			("cluster_read: no buffer offset"));
230 
231 		/*
232 		 * nblks is our cluster_rbuild request size, limited
233 		 * primarily by the device.
234 		 */
235 		if ((nblks = maxra) > maxrbuild)
236 			nblks = maxrbuild;
237 
238 		if (nblks > 1) {
239 			int burstbytes;
240 
241 	    		error = VOP_BMAP(vp, loffset, &doffset,
242 					 &burstbytes, NULL, BUF_CMD_READ);
243 			if (error)
244 				goto single_block_read;
245 			if (nblks > burstbytes / blksize)
246 				nblks = burstbytes / blksize;
247 			if (doffset == NOOFFSET)
248 				goto single_block_read;
249 			if (nblks <= 1)
250 				goto single_block_read;
251 
252 			bp = cluster_rbuild(vp, filesize, loffset,
253 					    doffset, blksize, nblks, bp);
254 			loffset += bp->b_bufsize;
255 			maxra -= bp->b_bufsize / blksize;
256 		} else {
257 single_block_read:
258 			/*
259 			 * If it isn't in the cache, then get a chunk from
260 			 * disk if sequential, otherwise just get the block.
261 			 */
262 			cluster_setram(bp);
263 			loffset += blksize;
264 			--maxra;
265 		}
266 	}
267 
268 	/*
269 	 * If B_CACHE was not set issue bp.  bp will either be an
270 	 * asynchronous cluster buf or a synchronous single-buf.
271 	 * If it is a single buf it will be the same as reqbp.
272 	 *
273 	 * NOTE: Once an async cluster buf is issued bp becomes invalid.
274 	 */
275 	if (bp) {
276 #if defined(CLUSTERDEBUG)
277 		if (rcluster)
278 			kprintf("S(%012jx,%d,%d)\n",
279 			    (intmax_t)bp->b_loffset, bp->b_bcount, maxra);
280 #endif
281 		if ((bp->b_flags & B_CLUSTER) == 0)
282 			vfs_busy_pages(vp, bp);
283 		bp->b_flags &= ~(B_ERROR|B_INVAL);
284 		vn_strategy(vp, &bp->b_bio1);
285 		error = 0;
286 		/* bp invalid now */
287 	}
288 
289 	/*
290 	 * If we have been doing sequential I/O, then do some read-ahead.
291 	 * The code above us should have positioned us at the next likely
292 	 * offset.
293 	 *
294 	 * Only mess with buffers which we can immediately lock.  HAMMER
295 	 * will do device-readahead irrespective of what the blocks
296 	 * represent.
297 	 */
298 	while (error == 0 && maxra > 0) {
299 		int burstbytes;
300 		int tmp_error;
301 		int nblks;
302 
303 		rbp = getblk(vp, loffset, blksize,
304 			     GETBLK_SZMATCH|GETBLK_NOWAIT, 0);
305 		if (rbp == NULL)
306 			goto no_read_ahead;
307 		if ((rbp->b_flags & B_CACHE)) {
308 			bqrelse(rbp);
309 			goto no_read_ahead;
310 		}
311 
312 		/*
313 		 * An error from the read-ahead bmap has nothing to do
314 		 * with the caller's original request.
315 		 */
316 		tmp_error = VOP_BMAP(vp, loffset, &doffset,
317 				     &burstbytes, NULL, BUF_CMD_READ);
318 		if (tmp_error || doffset == NOOFFSET) {
319 			rbp->b_flags |= B_INVAL;
320 			brelse(rbp);
321 			rbp = NULL;
322 			goto no_read_ahead;
323 		}
324 		if ((nblks = maxra) > maxrbuild)
325 			nblks = maxrbuild;
326 		if (nblks > burstbytes / blksize)
327 			nblks = burstbytes / blksize;
328 
329 		/*
330 		 * rbp: async read
331 		 */
332 		rbp->b_cmd = BUF_CMD_READ;
333 		/*rbp->b_flags |= B_AGE*/;
334 		cluster_setram(rbp);
335 
336 		if (nblks > 1) {
337 			rbp = cluster_rbuild(vp, filesize, loffset,
338 					     doffset, blksize,
339 					     nblks, rbp);
340 		} else {
341 			rbp->b_bio2.bio_offset = doffset;
342 		}
343 
344 #if defined(CLUSTERDEBUG)
345 		if (rcluster) {
346 			if (bp) {
347 				kprintf("A+(%012jx,%d,%jd) "
348 					"doff=%012jx minr=%zd ra=%d\n",
349 				    (intmax_t)loffset, rbp->b_bcount,
350 				    (intmax_t)(loffset - origoffset),
351 				    (intmax_t)doffset, minreq, maxra);
352 			} else {
353 				kprintf("A-(%012jx,%d,%jd) "
354 					"doff=%012jx minr=%zd ra=%d\n",
355 				    (intmax_t)rbp->b_loffset, rbp->b_bcount,
356 				    (intmax_t)(loffset - origoffset),
357 				    (intmax_t)doffset, minreq, maxra);
358 			}
359 		}
360 #endif
361 		rbp->b_flags &= ~(B_ERROR|B_INVAL);
362 
363 		if ((rbp->b_flags & B_CLUSTER) == 0)
364 			vfs_busy_pages(vp, rbp);
365 		BUF_KERNPROC(rbp);
366 		loffset += rbp->b_bufsize;
367 		maxra -= rbp->b_bufsize / blksize;
368 		vn_strategy(vp, &rbp->b_bio1);
369 		/* rbp invalid now */
370 	}
371 
372 	/*
373 	 * Wait for our original buffer to complete its I/O.  reqbp will
374 	 * be NULL if the original buffer was B_CACHE.  We are returning
375 	 * (*bpp) which is the same as reqbp when reqbp != NULL.
376 	 */
377 no_read_ahead:
378 	if (reqbp) {
379 		KKASSERT(reqbp->b_bio1.bio_flags & BIO_SYNC);
380 		error = biowait(&reqbp->b_bio1, "clurd");
381 	}
382 	return (error);
383 }
384 
385 /*
386  * If blocks are contiguous on disk, use this to provide clustered
387  * read ahead.  We will read as many blocks as possible sequentially
388  * and then parcel them up into logical blocks in the buffer hash table.
389  *
390  * This function either returns a cluster buf or it returns fbp.  fbp is
391  * already expected to be set up as a synchronous or asynchronous request.
392  *
393  * If a cluster buf is returned it will always be async.
394  */
395 static struct buf *
396 cluster_rbuild(struct vnode *vp, off_t filesize, off_t loffset, off_t doffset,
397 	       int blksize, int run, struct buf *fbp)
398 {
399 	struct buf *bp, *tbp;
400 	off_t boffset;
401 	int i, j;
402 	int maxiosize = vmaxiosize(vp);
403 
404 	/*
405 	 * avoid a division
406 	 */
407 	while (loffset + run * blksize > filesize) {
408 		--run;
409 	}
410 
411 	tbp = fbp;
412 	tbp->b_bio2.bio_offset = doffset;
413 	if((tbp->b_flags & B_MALLOC) ||
414 	    ((tbp->b_flags & B_VMIO) == 0) || (run <= 1)) {
415 		return tbp;
416 	}
417 
418 	bp = trypbuf_kva(&cluster_pbuf_freecnt);
419 	if (bp == NULL) {
420 		return tbp;
421 	}
422 
423 	/*
424 	 * We are synthesizing a buffer out of vm_page_t's, but
425 	 * if the block size is not page aligned then the starting
426 	 * address may not be either.  Inherit the b_data offset
427 	 * from the original buffer.
428 	 */
429 	bp->b_data = (char *)((vm_offset_t)bp->b_data |
430 	    ((vm_offset_t)tbp->b_data & PAGE_MASK));
431 	bp->b_flags |= B_CLUSTER | B_VMIO;
432 	bp->b_cmd = BUF_CMD_READ;
433 	bp->b_bio1.bio_done = cluster_callback;		/* default to async */
434 	bp->b_bio1.bio_caller_info1.cluster_head = NULL;
435 	bp->b_bio1.bio_caller_info2.cluster_tail = NULL;
436 	bp->b_loffset = loffset;
437 	bp->b_bio2.bio_offset = doffset;
438 	KASSERT(bp->b_loffset != NOOFFSET,
439 		("cluster_rbuild: no buffer offset"));
440 
441 	bp->b_bcount = 0;
442 	bp->b_bufsize = 0;
443 	bp->b_xio.xio_npages = 0;
444 
445 	for (boffset = doffset, i = 0; i < run; ++i, boffset += blksize) {
446 		if (i) {
447 			if ((bp->b_xio.xio_npages * PAGE_SIZE) +
448 			    round_page(blksize) > maxiosize) {
449 				break;
450 			}
451 
452 			/*
453 			 * Shortcut some checks and try to avoid buffers that
454 			 * would block in the lock.  The same checks have to
455 			 * be made again after we officially get the buffer.
456 			 */
457 			tbp = getblk(vp, loffset + i * blksize, blksize,
458 				     GETBLK_SZMATCH|GETBLK_NOWAIT, 0);
459 			if (tbp == NULL)
460 				break;
461 			for (j = 0; j < tbp->b_xio.xio_npages; j++) {
462 				if (tbp->b_xio.xio_pages[j]->valid)
463 					break;
464 			}
465 			if (j != tbp->b_xio.xio_npages) {
466 				bqrelse(tbp);
467 				break;
468 			}
469 
470 			/*
471 			 * Stop scanning if the buffer is fuly valid
472 			 * (marked B_CACHE), or locked (may be doing a
473 			 * background write), or if the buffer is not
474 			 * VMIO backed.  The clustering code can only deal
475 			 * with VMIO-backed buffers.
476 			 */
477 			if ((tbp->b_flags & (B_CACHE|B_LOCKED)) ||
478 			    (tbp->b_flags & B_VMIO) == 0 ||
479 			    (LIST_FIRST(&tbp->b_dep) != NULL &&
480 			     buf_checkread(tbp))
481 			) {
482 				bqrelse(tbp);
483 				break;
484 			}
485 
486 			/*
487 			 * The buffer must be completely invalid in order to
488 			 * take part in the cluster.  If it is partially valid
489 			 * then we stop.
490 			 */
491 			for (j = 0;j < tbp->b_xio.xio_npages; j++) {
492 				if (tbp->b_xio.xio_pages[j]->valid)
493 					break;
494 			}
495 			if (j != tbp->b_xio.xio_npages) {
496 				bqrelse(tbp);
497 				break;
498 			}
499 
500 			/*
501 			 * Set a read-ahead mark as appropriate
502 			 */
503 			if (i == 1 || i == (run - 1))
504 				cluster_setram(tbp);
505 
506 			/*
507 			 * Depress the priority of buffers not explicitly
508 			 * requested.
509 			 */
510 			/* tbp->b_flags |= B_AGE; */
511 
512 			/*
513 			 * Set the block number if it isn't set, otherwise
514 			 * if it is make sure it matches the block number we
515 			 * expect.
516 			 */
517 			if (tbp->b_bio2.bio_offset == NOOFFSET) {
518 				tbp->b_bio2.bio_offset = boffset;
519 			} else if (tbp->b_bio2.bio_offset != boffset) {
520 				brelse(tbp);
521 				break;
522 			}
523 		}
524 
525 		/*
526 		 * The passed-in tbp (i == 0) will already be set up for
527 		 * async or sync operation.  All other tbp's acquire in
528 		 * our loop are set up for async operation.
529 		 */
530 		tbp->b_cmd = BUF_CMD_READ;
531 		BUF_KERNPROC(tbp);
532 		cluster_append(&bp->b_bio1, tbp);
533 		for (j = 0; j < tbp->b_xio.xio_npages; ++j) {
534 			vm_page_t m;
535 			m = tbp->b_xio.xio_pages[j];
536 			vm_page_io_start(m);
537 			vm_object_pip_add(m->object, 1);
538 			if ((bp->b_xio.xio_npages == 0) ||
539 				(bp->b_xio.xio_pages[bp->b_xio.xio_npages-1] != m)) {
540 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
541 				bp->b_xio.xio_npages++;
542 			}
543 			if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL)
544 				tbp->b_xio.xio_pages[j] = bogus_page;
545 		}
546 		/*
547 		 * XXX shouldn't this be += size for both, like in
548 		 * cluster_wbuild()?
549 		 *
550 		 * Don't inherit tbp->b_bufsize as it may be larger due to
551 		 * a non-page-aligned size.  Instead just aggregate using
552 		 * 'size'.
553 		 */
554 		if (tbp->b_bcount != blksize)
555 		    kprintf("warning: tbp->b_bcount wrong %d vs %d\n", tbp->b_bcount, blksize);
556 		if (tbp->b_bufsize != blksize)
557 		    kprintf("warning: tbp->b_bufsize wrong %d vs %d\n", tbp->b_bufsize, blksize);
558 		bp->b_bcount += blksize;
559 		bp->b_bufsize += blksize;
560 	}
561 
562 	/*
563 	 * Fully valid pages in the cluster are already good and do not need
564 	 * to be re-read from disk.  Replace the page with bogus_page
565 	 */
566 	for (j = 0; j < bp->b_xio.xio_npages; j++) {
567 		if ((bp->b_xio.xio_pages[j]->valid & VM_PAGE_BITS_ALL) ==
568 		    VM_PAGE_BITS_ALL) {
569 			bp->b_xio.xio_pages[j] = bogus_page;
570 		}
571 	}
572 	if (bp->b_bufsize > bp->b_kvasize) {
573 		panic("cluster_rbuild: b_bufsize(%d) > b_kvasize(%d)",
574 		    bp->b_bufsize, bp->b_kvasize);
575 	}
576 	pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
577 		(vm_page_t *)bp->b_xio.xio_pages, bp->b_xio.xio_npages);
578 	BUF_KERNPROC(bp);
579 	return (bp);
580 }
581 
582 /*
583  * Cleanup after a clustered read or write.
584  * This is complicated by the fact that any of the buffers might have
585  * extra memory (if there were no empty buffer headers at allocbuf time)
586  * that we will need to shift around.
587  *
588  * The returned bio is &bp->b_bio1
589  */
590 void
591 cluster_callback(struct bio *bio)
592 {
593 	struct buf *bp = bio->bio_buf;
594 	struct buf *tbp;
595 	int error = 0;
596 
597 	/*
598 	 * Must propogate errors to all the components.  A short read (EOF)
599 	 * is a critical error.
600 	 */
601 	if (bp->b_flags & B_ERROR) {
602 		error = bp->b_error;
603 	} else if (bp->b_bcount != bp->b_bufsize) {
604 		panic("cluster_callback: unexpected EOF on cluster %p!", bio);
605 	}
606 
607 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
608 	/*
609 	 * Move memory from the large cluster buffer into the component
610 	 * buffers and mark IO as done on these.  Since the memory map
611 	 * is the same, no actual copying is required.
612 	 */
613 	while ((tbp = bio->bio_caller_info1.cluster_head) != NULL) {
614 		bio->bio_caller_info1.cluster_head = tbp->b_cluster_next;
615 		if (error) {
616 			tbp->b_flags |= B_ERROR | B_IODEBUG;
617 			tbp->b_error = error;
618 		} else {
619 			tbp->b_dirtyoff = tbp->b_dirtyend = 0;
620 			tbp->b_flags &= ~(B_ERROR|B_INVAL);
621 			tbp->b_flags |= B_IODEBUG;
622 			/*
623 			 * XXX the bdwrite()/bqrelse() issued during
624 			 * cluster building clears B_RELBUF (see bqrelse()
625 			 * comment).  If direct I/O was specified, we have
626 			 * to restore it here to allow the buffer and VM
627 			 * to be freed.
628 			 */
629 			if (tbp->b_flags & B_DIRECT)
630 				tbp->b_flags |= B_RELBUF;
631 		}
632 		biodone(&tbp->b_bio1);
633 	}
634 	relpbuf(bp, &cluster_pbuf_freecnt);
635 }
636 
637 /*
638  *	cluster_wbuild_wb:
639  *
640  *	Implement modified write build for cluster.
641  *
642  *		write_behind = 0	write behind disabled
643  *		write_behind = 1	write behind normal (default)
644  *		write_behind = 2	write behind backed-off
645  */
646 
647 static __inline int
648 cluster_wbuild_wb(struct vnode *vp, int blksize, off_t start_loffset, int len)
649 {
650 	int r = 0;
651 
652 	switch(write_behind) {
653 	case 2:
654 		if (start_loffset < len)
655 			break;
656 		start_loffset -= len;
657 		/* fall through */
658 	case 1:
659 		r = cluster_wbuild(vp, blksize, start_loffset, len);
660 		/* fall through */
661 	default:
662 		/* fall through */
663 		break;
664 	}
665 	return(r);
666 }
667 
668 /*
669  * Do clustered write for FFS.
670  *
671  * Three cases:
672  *	1. Write is not sequential (write asynchronously)
673  *	Write is sequential:
674  *	2.	beginning of cluster - begin cluster
675  *	3.	middle of a cluster - add to cluster
676  *	4.	end of a cluster - asynchronously write cluster
677  */
678 void
679 cluster_write(struct buf *bp, off_t filesize, int blksize, int seqcount)
680 {
681 	struct vnode *vp;
682 	off_t loffset;
683 	int maxclen, cursize;
684 	int async;
685 
686 	vp = bp->b_vp;
687 	if (vp->v_type == VREG)
688 		async = vp->v_mount->mnt_flag & MNT_ASYNC;
689 	else
690 		async = 0;
691 	loffset = bp->b_loffset;
692 	KASSERT(bp->b_loffset != NOOFFSET,
693 		("cluster_write: no buffer offset"));
694 
695 	/* Initialize vnode to beginning of file. */
696 	if (loffset == 0)
697 		vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
698 
699 	if (vp->v_clen == 0 || loffset != vp->v_lastw + blksize ||
700 	    bp->b_bio2.bio_offset == NOOFFSET ||
701 	    (bp->b_bio2.bio_offset != vp->v_lasta + blksize)) {
702 		maxclen = vmaxiosize(vp);
703 		if (vp->v_clen != 0) {
704 			/*
705 			 * Next block is not sequential.
706 			 *
707 			 * If we are not writing at end of file, the process
708 			 * seeked to another point in the file since its last
709 			 * write, or we have reached our maximum cluster size,
710 			 * then push the previous cluster. Otherwise try
711 			 * reallocating to make it sequential.
712 			 *
713 			 * Change to algorithm: only push previous cluster if
714 			 * it was sequential from the point of view of the
715 			 * seqcount heuristic, otherwise leave the buffer
716 			 * intact so we can potentially optimize the I/O
717 			 * later on in the buf_daemon or update daemon
718 			 * flush.
719 			 */
720 			cursize = vp->v_lastw - vp->v_cstart + blksize;
721 			if (bp->b_loffset + blksize != filesize ||
722 			    loffset != vp->v_lastw + blksize || vp->v_clen <= cursize) {
723 				if (!async && seqcount > 0) {
724 					cluster_wbuild_wb(vp, blksize,
725 						vp->v_cstart, cursize);
726 				}
727 			} else {
728 				struct buf **bpp, **endbp;
729 				struct cluster_save *buflist;
730 
731 				buflist = cluster_collectbufs(vp, bp, blksize);
732 				endbp = &buflist->bs_children
733 				    [buflist->bs_nchildren - 1];
734 				if (VOP_REALLOCBLKS(vp, buflist)) {
735 					/*
736 					 * Failed, push the previous cluster
737 					 * if *really* writing sequentially
738 					 * in the logical file (seqcount > 1),
739 					 * otherwise delay it in the hopes that
740 					 * the low level disk driver can
741 					 * optimize the write ordering.
742 					 */
743 					for (bpp = buflist->bs_children;
744 					     bpp < endbp; bpp++)
745 						brelse(*bpp);
746 					kfree(buflist, M_SEGMENT);
747 					if (seqcount > 1) {
748 						cluster_wbuild_wb(vp,
749 						    blksize, vp->v_cstart,
750 						    cursize);
751 					}
752 				} else {
753 					/*
754 					 * Succeeded, keep building cluster.
755 					 */
756 					for (bpp = buflist->bs_children;
757 					     bpp <= endbp; bpp++)
758 						bdwrite(*bpp);
759 					kfree(buflist, M_SEGMENT);
760 					vp->v_lastw = loffset;
761 					vp->v_lasta = bp->b_bio2.bio_offset;
762 					return;
763 				}
764 			}
765 		}
766 		/*
767 		 * Consider beginning a cluster. If at end of file, make
768 		 * cluster as large as possible, otherwise find size of
769 		 * existing cluster.
770 		 */
771 		if ((vp->v_type == VREG) &&
772 		    bp->b_loffset + blksize != filesize &&
773 		    (bp->b_bio2.bio_offset == NOOFFSET) &&
774 		    (VOP_BMAP(vp, loffset, &bp->b_bio2.bio_offset, &maxclen, NULL, BUF_CMD_WRITE) ||
775 		     bp->b_bio2.bio_offset == NOOFFSET)) {
776 			bawrite(bp);
777 			vp->v_clen = 0;
778 			vp->v_lasta = bp->b_bio2.bio_offset;
779 			vp->v_cstart = loffset + blksize;
780 			vp->v_lastw = loffset;
781 			return;
782 		}
783 		if (maxclen > blksize)
784 			vp->v_clen = maxclen - blksize;
785 		else
786 			vp->v_clen = 0;
787 		if (!async && vp->v_clen == 0) { /* I/O not contiguous */
788 			vp->v_cstart = loffset + blksize;
789 			bawrite(bp);
790 		} else {	/* Wait for rest of cluster */
791 			vp->v_cstart = loffset;
792 			bdwrite(bp);
793 		}
794 	} else if (loffset == vp->v_cstart + vp->v_clen) {
795 		/*
796 		 * At end of cluster, write it out if seqcount tells us we
797 		 * are operating sequentially, otherwise let the buf or
798 		 * update daemon handle it.
799 		 */
800 		bdwrite(bp);
801 		if (seqcount > 1)
802 			cluster_wbuild_wb(vp, blksize, vp->v_cstart,
803 					  vp->v_clen + blksize);
804 		vp->v_clen = 0;
805 		vp->v_cstart = loffset + blksize;
806 	} else if (vm_page_count_severe()) {
807 		/*
808 		 * We are low on memory, get it going NOW
809 		 */
810 		bawrite(bp);
811 	} else {
812 		/*
813 		 * In the middle of a cluster, so just delay the I/O for now.
814 		 */
815 		bdwrite(bp);
816 	}
817 	vp->v_lastw = loffset;
818 	vp->v_lasta = bp->b_bio2.bio_offset;
819 }
820 
821 
822 /*
823  * This is an awful lot like cluster_rbuild...wish they could be combined.
824  * The last lbn argument is the current block on which I/O is being
825  * performed.  Check to see that it doesn't fall in the middle of
826  * the current block (if last_bp == NULL).
827  */
828 int
829 cluster_wbuild(struct vnode *vp, int blksize, off_t start_loffset, int bytes)
830 {
831 	struct buf *bp, *tbp;
832 	int i, j;
833 	int totalwritten = 0;
834 	int maxiosize = vmaxiosize(vp);
835 
836 	while (bytes > 0) {
837 		/*
838 		 * If the buffer is not delayed-write (i.e. dirty), or it
839 		 * is delayed-write but either locked or inval, it cannot
840 		 * partake in the clustered write.
841 		 */
842 		tbp = findblk(vp, start_loffset, FINDBLK_NBLOCK);
843 		if (tbp == NULL ||
844 		    (tbp->b_flags & (B_LOCKED | B_INVAL | B_DELWRI)) != B_DELWRI ||
845 		    (LIST_FIRST(&tbp->b_dep) && buf_checkwrite(tbp))) {
846 			if (tbp)
847 				BUF_UNLOCK(tbp);
848 			start_loffset += blksize;
849 			bytes -= blksize;
850 			continue;
851 		}
852 		bremfree(tbp);
853 		KKASSERT(tbp->b_cmd == BUF_CMD_DONE);
854 
855 		/*
856 		 * Extra memory in the buffer, punt on this buffer.
857 		 * XXX we could handle this in most cases, but we would
858 		 * have to push the extra memory down to after our max
859 		 * possible cluster size and then potentially pull it back
860 		 * up if the cluster was terminated prematurely--too much
861 		 * hassle.
862 		 */
863 		if (((tbp->b_flags & (B_CLUSTEROK|B_MALLOC)) != B_CLUSTEROK) ||
864 		    (tbp->b_bcount != tbp->b_bufsize) ||
865 		    (tbp->b_bcount != blksize) ||
866 		    (bytes == blksize) ||
867 		    ((bp = getpbuf_kva(&cluster_pbuf_freecnt)) == NULL)) {
868 			totalwritten += tbp->b_bufsize;
869 			bawrite(tbp);
870 			start_loffset += blksize;
871 			bytes -= blksize;
872 			continue;
873 		}
874 
875 		/*
876 		 * Set up the pbuf.  Track our append point with b_bcount
877 		 * and b_bufsize.  b_bufsize is not used by the device but
878 		 * our caller uses it to loop clusters and we use it to
879 		 * detect a premature EOF on the block device.
880 		 */
881 		bp->b_bcount = 0;
882 		bp->b_bufsize = 0;
883 		bp->b_xio.xio_npages = 0;
884 		bp->b_loffset = tbp->b_loffset;
885 		bp->b_bio2.bio_offset = tbp->b_bio2.bio_offset;
886 
887 		/*
888 		 * We are synthesizing a buffer out of vm_page_t's, but
889 		 * if the block size is not page aligned then the starting
890 		 * address may not be either.  Inherit the b_data offset
891 		 * from the original buffer.
892 		 */
893 		bp->b_data = (char *)((vm_offset_t)bp->b_data |
894 		    ((vm_offset_t)tbp->b_data & PAGE_MASK));
895 		bp->b_flags &= ~B_ERROR;
896 		bp->b_flags |= B_CLUSTER | B_BNOCLIP |
897 			(tbp->b_flags & (B_VMIO | B_NEEDCOMMIT));
898 		bp->b_bio1.bio_caller_info1.cluster_head = NULL;
899 		bp->b_bio1.bio_caller_info2.cluster_tail = NULL;
900 
901 		/*
902 		 * From this location in the file, scan forward to see
903 		 * if there are buffers with adjacent data that need to
904 		 * be written as well.
905 		 */
906 		for (i = 0; i < bytes; (i += blksize), (start_loffset += blksize)) {
907 			if (i != 0) { /* If not the first buffer */
908 				tbp = findblk(vp, start_loffset,
909 					      FINDBLK_NBLOCK);
910 				/*
911 				 * Buffer not found or could not be locked
912 				 * non-blocking.
913 				 */
914 				if (tbp == NULL)
915 					break;
916 
917 				/*
918 				 * If it IS in core, but has different
919 				 * characteristics, then don't cluster
920 				 * with it.
921 				 */
922 				if ((tbp->b_flags & (B_VMIO | B_CLUSTEROK |
923 				     B_INVAL | B_DELWRI | B_NEEDCOMMIT))
924 				    != (B_DELWRI | B_CLUSTEROK |
925 				     (bp->b_flags & (B_VMIO | B_NEEDCOMMIT))) ||
926 				    (tbp->b_flags & B_LOCKED) ||
927 				    (LIST_FIRST(&tbp->b_dep) &&
928 				     buf_checkwrite(tbp))
929 				) {
930 					BUF_UNLOCK(tbp);
931 					break;
932 				}
933 
934 				/*
935 				 * Check that the combined cluster
936 				 * would make sense with regard to pages
937 				 * and would not be too large
938 				 */
939 				if ((tbp->b_bcount != blksize) ||
940 				  ((bp->b_bio2.bio_offset + i) !=
941 				    tbp->b_bio2.bio_offset) ||
942 				  ((tbp->b_xio.xio_npages + bp->b_xio.xio_npages) >
943 				    (maxiosize / PAGE_SIZE))) {
944 					BUF_UNLOCK(tbp);
945 					break;
946 				}
947 				/*
948 				 * Ok, it's passed all the tests,
949 				 * so remove it from the free list
950 				 * and mark it busy. We will use it.
951 				 */
952 				bremfree(tbp);
953 				KKASSERT(tbp->b_cmd == BUF_CMD_DONE);
954 			} /* end of code for non-first buffers only */
955 
956 			/*
957 			 * If the IO is via the VM then we do some
958 			 * special VM hackery (yuck).  Since the buffer's
959 			 * block size may not be page-aligned it is possible
960 			 * for a page to be shared between two buffers.  We
961 			 * have to get rid of the duplication when building
962 			 * the cluster.
963 			 */
964 			if (tbp->b_flags & B_VMIO) {
965 				vm_page_t m;
966 
967 				if (i != 0) { /* if not first buffer */
968 					for (j = 0; j < tbp->b_xio.xio_npages; ++j) {
969 						m = tbp->b_xio.xio_pages[j];
970 						if (m->flags & PG_BUSY) {
971 							bqrelse(tbp);
972 							goto finishcluster;
973 						}
974 					}
975 				}
976 
977 				for (j = 0; j < tbp->b_xio.xio_npages; ++j) {
978 					m = tbp->b_xio.xio_pages[j];
979 					vm_page_io_start(m);
980 					vm_object_pip_add(m->object, 1);
981 					if ((bp->b_xio.xio_npages == 0) ||
982 					  (bp->b_xio.xio_pages[bp->b_xio.xio_npages - 1] != m)) {
983 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
984 						bp->b_xio.xio_npages++;
985 					}
986 				}
987 			}
988 			bp->b_bcount += blksize;
989 			bp->b_bufsize += blksize;
990 
991 			bundirty(tbp);
992 			tbp->b_flags &= ~B_ERROR;
993 			tbp->b_cmd = BUF_CMD_WRITE;
994 			BUF_KERNPROC(tbp);
995 			cluster_append(&bp->b_bio1, tbp);
996 
997 			/*
998 			 * check for latent dependencies to be handled
999 			 */
1000 			if (LIST_FIRST(&tbp->b_dep) != NULL)
1001 				buf_start(tbp);
1002 		}
1003 	finishcluster:
1004 		pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
1005 			(vm_page_t *) bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1006 		if (bp->b_bufsize > bp->b_kvasize) {
1007 			panic(
1008 			    "cluster_wbuild: b_bufsize(%d) > b_kvasize(%d)\n",
1009 			    bp->b_bufsize, bp->b_kvasize);
1010 		}
1011 		totalwritten += bp->b_bufsize;
1012 		bp->b_dirtyoff = 0;
1013 		bp->b_dirtyend = bp->b_bufsize;
1014 		bp->b_bio1.bio_done = cluster_callback;
1015 		bp->b_cmd = BUF_CMD_WRITE;
1016 
1017 		vfs_busy_pages(vp, bp);
1018 		bsetrunningbufspace(bp, bp->b_bufsize);
1019 		BUF_KERNPROC(bp);
1020 		vn_strategy(vp, &bp->b_bio1);
1021 
1022 		bytes -= i;
1023 	}
1024 	return totalwritten;
1025 }
1026 
1027 /*
1028  * Collect together all the buffers in a cluster.
1029  * Plus add one additional buffer.
1030  */
1031 static struct cluster_save *
1032 cluster_collectbufs(struct vnode *vp, struct buf *last_bp, int blksize)
1033 {
1034 	struct cluster_save *buflist;
1035 	struct buf *bp;
1036 	off_t loffset;
1037 	int i, len;
1038 
1039 	len = (int)(vp->v_lastw - vp->v_cstart + blksize) / blksize;
1040 	buflist = kmalloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist),
1041 			 M_SEGMENT, M_WAITOK);
1042 	buflist->bs_nchildren = 0;
1043 	buflist->bs_children = (struct buf **) (buflist + 1);
1044 	for (loffset = vp->v_cstart, i = 0; i < len; (loffset += blksize), i++) {
1045 		(void) bread(vp, loffset, last_bp->b_bcount, &bp);
1046 		buflist->bs_children[i] = bp;
1047 		if (bp->b_bio2.bio_offset == NOOFFSET) {
1048 			VOP_BMAP(bp->b_vp, bp->b_loffset,
1049 				 &bp->b_bio2.bio_offset,
1050 				 NULL, NULL, BUF_CMD_WRITE);
1051 		}
1052 	}
1053 	buflist->bs_children[i] = bp = last_bp;
1054 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1055 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1056 			 NULL, NULL, BUF_CMD_WRITE);
1057 	}
1058 	buflist->bs_nchildren = i + 1;
1059 	return (buflist);
1060 }
1061 
1062 void
1063 cluster_append(struct bio *bio, struct buf *tbp)
1064 {
1065 	tbp->b_cluster_next = NULL;
1066 	if (bio->bio_caller_info1.cluster_head == NULL) {
1067 		bio->bio_caller_info1.cluster_head = tbp;
1068 		bio->bio_caller_info2.cluster_tail = tbp;
1069 	} else {
1070 		bio->bio_caller_info2.cluster_tail->b_cluster_next = tbp;
1071 		bio->bio_caller_info2.cluster_tail = tbp;
1072 	}
1073 }
1074 
1075 static
1076 void
1077 cluster_setram (struct buf *bp)
1078 {
1079 	bp->b_flags |= B_RAM;
1080 	if (bp->b_xio.xio_npages)
1081 		vm_page_flag_set(bp->b_xio.xio_pages[0], PG_RAM);
1082 }
1083