xref: /dragonfly/sys/kern/vfs_cluster.c (revision d600454b)
1 /*-
2  * Copyright (c) 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Modifications/enhancements:
5  * 	Copyright (c) 1995 John S. Dyson.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)vfs_cluster.c	8.7 (Berkeley) 2/13/94
36  * $FreeBSD: src/sys/kern/vfs_cluster.c,v 1.92.2.9 2001/11/18 07:10:59 dillon Exp $
37  * $DragonFly: src/sys/kern/vfs_cluster.c,v 1.15 2006/02/17 19:18:06 dillon Exp $
38  */
39 
40 #include "opt_debug_cluster.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/buf.h>
47 #include <sys/vnode.h>
48 #include <sys/malloc.h>
49 #include <sys/mount.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <vm/vm.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_page.h>
55 #include <sys/sysctl.h>
56 #include <sys/buf2.h>
57 #include <vm/vm_page2.h>
58 
59 #if defined(CLUSTERDEBUG)
60 #include <sys/sysctl.h>
61 static int	rcluster= 0;
62 SYSCTL_INT(_debug, OID_AUTO, rcluster, CTLFLAG_RW, &rcluster, 0, "");
63 #endif
64 
65 static MALLOC_DEFINE(M_SEGMENT, "cluster_save", "cluster_save buffer");
66 
67 static struct cluster_save *
68 	cluster_collectbufs (struct vnode *vp, struct buf *last_bp);
69 static struct buf *
70 	cluster_rbuild (struct vnode *vp, u_quad_t filesize, daddr_t lbn,
71 			    daddr_t blkno, long size, int run, struct buf *fbp);
72 static void cluster_callback (struct bio *);
73 
74 
75 static int write_behind = 1;
76 SYSCTL_INT(_vfs, OID_AUTO, write_behind, CTLFLAG_RW, &write_behind, 0, "");
77 
78 extern vm_page_t	bogus_page;
79 
80 extern int cluster_pbuf_freecnt;
81 
82 /*
83  * Maximum number of blocks for read-ahead.
84  */
85 #define MAXRA 32
86 
87 /*
88  * This replaces bread.
89  */
90 int
91 cluster_read(struct vnode *vp, u_quad_t filesize, daddr_t lblkno,
92 	long size, long totread, int seqcount, struct buf **bpp)
93 {
94 	struct buf *bp, *rbp, *reqbp;
95 	daddr_t blkno, origblkno;
96 	int error, num_ra;
97 	int i;
98 	int maxra, racluster;
99 	long origtotread;
100 
101 	error = 0;
102 
103 	/*
104 	 * Try to limit the amount of read-ahead by a few
105 	 * ad-hoc parameters.  This needs work!!!
106 	 */
107 	racluster = vp->v_mount->mnt_iosize_max / size;
108 	maxra = 2 * racluster + (totread / size);
109 	if (maxra > MAXRA)
110 		maxra = MAXRA;
111 	if (maxra > nbuf/8)
112 		maxra = nbuf/8;
113 
114 	/*
115 	 * get the requested block
116 	 */
117 	*bpp = reqbp = bp = getblk(vp, lblkno, size, 0, 0);
118 	origblkno = lblkno;
119 	origtotread = totread;
120 
121 	/*
122 	 * if it is in the cache, then check to see if the reads have been
123 	 * sequential.  If they have, then try some read-ahead, otherwise
124 	 * back-off on prospective read-aheads.
125 	 */
126 	if (bp->b_flags & B_CACHE) {
127 		if (!seqcount) {
128 			return 0;
129 		} else if ((bp->b_flags & B_RAM) == 0) {
130 			return 0;
131 		} else {
132 			struct buf *tbp;
133 			bp->b_flags &= ~B_RAM;
134 			/*
135 			 * We do the crit here so that there is no window
136 			 * between the incore and the b_usecount increment
137 			 * below.  We opt to keep the crit out of the loop
138 			 * for efficiency.
139 			 */
140 			crit_enter();
141 			for (i = 1; i < maxra; i++) {
142 
143 				if (!(tbp = incore(vp, lblkno+i))) {
144 					break;
145 				}
146 
147 				/*
148 				 * Set another read-ahead mark so we know
149 				 * to check again.
150 				 */
151 				if (((i % racluster) == (racluster - 1)) ||
152 					(i == (maxra - 1)))
153 					tbp->b_flags |= B_RAM;
154 			}
155 			crit_exit();
156 			if (i >= maxra) {
157 				return 0;
158 			}
159 			lblkno += i;
160 		}
161 		reqbp = bp = NULL;
162 	} else {
163 		off_t firstread = bp->b_loffset;
164 
165 		KASSERT(firstread != NOOFFSET,
166 			("cluster_read: no buffer offset"));
167 		if (firstread + totread > filesize)
168 			totread = filesize - firstread;
169 		if (totread > size) {
170 			int nblks = 0;
171 			int ncontigafter;
172 			while (totread > 0) {
173 				nblks++;
174 				totread -= size;
175 			}
176 			if (nblks == 1)
177 				goto single_block_read;
178 			if (nblks > racluster)
179 				nblks = racluster;
180 
181 	    		error = VOP_BMAP(vp, lblkno, NULL,
182 				&blkno, &ncontigafter, NULL);
183 			if (error)
184 				goto single_block_read;
185 			if (blkno == -1)
186 				goto single_block_read;
187 			if (ncontigafter == 0)
188 				goto single_block_read;
189 			if (ncontigafter + 1 < nblks)
190 				nblks = ncontigafter + 1;
191 
192 			bp = cluster_rbuild(vp, filesize, lblkno,
193 				blkno, size, nblks, bp);
194 			lblkno += (bp->b_bufsize / size);
195 		} else {
196 single_block_read:
197 			/*
198 			 * if it isn't in the cache, then get a chunk from
199 			 * disk if sequential, otherwise just get the block.
200 			 */
201 			bp->b_flags |= B_READ | B_RAM;
202 			lblkno += 1;
203 		}
204 	}
205 
206 	/*
207 	 * if we have been doing sequential I/O, then do some read-ahead
208 	 */
209 	rbp = NULL;
210 	if (seqcount && (lblkno < (origblkno + seqcount))) {
211 		/*
212 		 * we now build the read-ahead buffer if it is desirable.
213 		 */
214 		if (((u_quad_t)(lblkno + 1) * size) <= filesize &&
215 		    !(error = VOP_BMAP(vp, lblkno, NULL, &blkno, &num_ra, NULL)) &&
216 		    blkno != -1) {
217 			int nblksread;
218 			int ntoread = num_ra + 1;
219 			nblksread = (origtotread + size - 1) / size;
220 			if (seqcount < nblksread)
221 				seqcount = nblksread;
222 			if (seqcount < ntoread)
223 				ntoread = seqcount;
224 			if (num_ra) {
225 				rbp = cluster_rbuild(vp, filesize, lblkno,
226 					blkno, size, ntoread, NULL);
227 			} else {
228 				rbp = getblk(vp, lblkno, size, 0, 0);
229 				rbp->b_flags |= B_READ | B_ASYNC | B_RAM;
230 				rbp->b_bio2.bio_blkno = blkno;
231 			}
232 		}
233 	}
234 
235 	/*
236 	 * handle the synchronous read
237 	 */
238 	if (bp) {
239 #if defined(CLUSTERDEBUG)
240 		if (rcluster)
241 			printf("S(%ld,%ld,%d) ",
242 			    (long)bp->b_lblkno, bp->b_bcount, seqcount);
243 #endif
244 		if ((bp->b_flags & B_CLUSTER) == 0) {
245 			vfs_busy_pages(bp, 0);
246 		}
247 		bp->b_flags &= ~(B_ERROR|B_INVAL);
248 		if ((bp->b_flags & B_ASYNC) || bp->b_bio1.bio_done != NULL)
249 			BUF_KERNPROC(bp);
250 		vn_strategy(vp, &bp->b_bio1);
251 		error = bp->b_error;
252 	}
253 
254 	/*
255 	 * and if we have read-aheads, do them too
256 	 */
257 	if (rbp) {
258 		if (error) {
259 			rbp->b_flags &= ~(B_ASYNC | B_READ);
260 			brelse(rbp);
261 		} else if (rbp->b_flags & B_CACHE) {
262 			rbp->b_flags &= ~(B_ASYNC | B_READ);
263 			bqrelse(rbp);
264 		} else {
265 #if defined(CLUSTERDEBUG)
266 			if (rcluster) {
267 				if (bp)
268 					printf("A+(%ld,%ld,%ld,%d) ",
269 					    (long)rbp->b_lblkno, rbp->b_bcount,
270 					    (long)(rbp->b_lblkno - origblkno),
271 					    seqcount);
272 				else
273 					printf("A(%ld,%ld,%ld,%d) ",
274 					    (long)rbp->b_lblkno, rbp->b_bcount,
275 					    (long)(rbp->b_lblkno - origblkno),
276 					    seqcount);
277 			}
278 #endif
279 
280 			if ((rbp->b_flags & B_CLUSTER) == 0) {
281 				vfs_busy_pages(rbp, 0);
282 			}
283 			rbp->b_flags &= ~(B_ERROR|B_INVAL);
284 			if ((rbp->b_flags & B_ASYNC) || rbp->b_bio1.bio_done != NULL)
285 				BUF_KERNPROC(rbp);
286 			vn_strategy(vp, &rbp->b_bio1);
287 		}
288 	}
289 	if (reqbp)
290 		return (biowait(reqbp));
291 	else
292 		return (error);
293 }
294 
295 /*
296  * If blocks are contiguous on disk, use this to provide clustered
297  * read ahead.  We will read as many blocks as possible sequentially
298  * and then parcel them up into logical blocks in the buffer hash table.
299  */
300 static struct buf *
301 cluster_rbuild(struct vnode *vp, u_quad_t filesize, daddr_t lbn,
302 	daddr_t blkno, long size, int run, struct buf *fbp)
303 {
304 	struct buf *bp, *tbp;
305 	daddr_t bn;
306 	int i, inc, j;
307 
308 	KASSERT(size == vp->v_mount->mnt_stat.f_iosize,
309 	    ("cluster_rbuild: size %ld != filesize %ld\n",
310 	    size, vp->v_mount->mnt_stat.f_iosize));
311 
312 	/*
313 	 * avoid a division
314 	 */
315 	while ((u_quad_t) size * (lbn + run) > filesize) {
316 		--run;
317 	}
318 
319 	if (fbp) {
320 		tbp = fbp;
321 		tbp->b_flags |= B_READ;
322 	} else {
323 		tbp = getblk(vp, lbn, size, 0, 0);
324 		if (tbp->b_flags & B_CACHE)
325 			return tbp;
326 		tbp->b_flags |= B_ASYNC | B_READ | B_RAM;
327 	}
328 
329 	tbp->b_bio2.bio_blkno = blkno;
330 	if( (tbp->b_flags & B_MALLOC) ||
331 		((tbp->b_flags & B_VMIO) == 0) || (run <= 1) )
332 		return tbp;
333 
334 	bp = trypbuf(&cluster_pbuf_freecnt);
335 	if (bp == 0)
336 		return tbp;
337 
338 	/*
339 	 * We are synthesizing a buffer out of vm_page_t's, but
340 	 * if the block size is not page aligned then the starting
341 	 * address may not be either.  Inherit the b_data offset
342 	 * from the original buffer.
343 	 */
344 	bp->b_data = (char *)((vm_offset_t)bp->b_data |
345 	    ((vm_offset_t)tbp->b_data & PAGE_MASK));
346 	bp->b_flags = B_ASYNC | B_READ | B_CLUSTER | B_VMIO;
347 	bp->b_bio1.bio_done = cluster_callback;
348 	bp->b_bio1.bio_caller_info1.cluster_head = NULL;
349 	bp->b_bio1.bio_caller_info2.cluster_tail = NULL;
350 	bp->b_lblkno = lbn;
351 	bp->b_loffset = tbp->b_loffset;
352 	bp->b_bio2.bio_blkno = (daddr_t)-1;
353 	KASSERT(bp->b_loffset != NOOFFSET,
354 		("cluster_rbuild: no buffer offset"));
355 	pbgetvp(vp, bp);
356 
357 	bp->b_bcount = 0;
358 	bp->b_bufsize = 0;
359 	bp->b_xio.xio_npages = 0;
360 
361 	inc = btodb(size);
362 	for (bn = blkno, i = 0; i < run; ++i, bn += inc) {
363 		if (i != 0) {
364 			if ((bp->b_xio.xio_npages * PAGE_SIZE) +
365 			    round_page(size) > vp->v_mount->mnt_iosize_max) {
366 				break;
367 			}
368 
369 			/*
370 			 * Shortcut some checks and try to avoid buffers that
371 			 * would block in the lock.  The same checks have to
372 			 * be made again after we officially get the buffer.
373 			 */
374 			if ((tbp = incore(vp, lbn + i)) != NULL) {
375 				if (BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT))
376 					break;
377 				BUF_UNLOCK(tbp);
378 
379 				for (j = 0; j < tbp->b_xio.xio_npages; j++) {
380 					if (tbp->b_xio.xio_pages[j]->valid)
381 						break;
382 				}
383 
384 				if (j != tbp->b_xio.xio_npages)
385 					break;
386 
387 				if (tbp->b_bcount != size)
388 					break;
389 			}
390 
391 			tbp = getblk(vp, lbn + i, size, 0, 0);
392 
393 			/*
394 			 * Stop scanning if the buffer is fuly valid
395 			 * (marked B_CACHE), or locked (may be doing a
396 			 * background write), or if the buffer is not
397 			 * VMIO backed.  The clustering code can only deal
398 			 * with VMIO-backed buffers.
399 			 */
400 			if ((tbp->b_flags & (B_CACHE|B_LOCKED)) ||
401 			    (tbp->b_flags & B_VMIO) == 0) {
402 				bqrelse(tbp);
403 				break;
404 			}
405 
406 			/*
407 			 * The buffer must be completely invalid in order to
408 			 * take part in the cluster.  If it is partially valid
409 			 * then we stop.
410 			 */
411 			for (j = 0;j < tbp->b_xio.xio_npages; j++) {
412 				if (tbp->b_xio.xio_pages[j]->valid)
413 					break;
414 			}
415 			if (j != tbp->b_xio.xio_npages) {
416 				bqrelse(tbp);
417 				break;
418 			}
419 
420 			/*
421 			 * Set a read-ahead mark as appropriate
422 			 */
423 			if ((fbp && (i == 1)) || (i == (run - 1)))
424 				tbp->b_flags |= B_RAM;
425 
426 			/*
427 			 * Set the buffer up for an async read (XXX should
428 			 * we do this only if we do not wind up brelse()ing?).
429 			 * Set the block number if it isn't set, otherwise
430 			 * if it is make sure it matches the block number we
431 			 * expect.
432 			 */
433 			tbp->b_flags |= B_READ | B_ASYNC;
434 			if (tbp->b_bio2.bio_blkno == (daddr_t)-1) {
435 				tbp->b_bio2.bio_blkno = bn;
436 			} else if (tbp->b_bio2.bio_blkno != bn) {
437 				brelse(tbp);
438 				break;
439 			}
440 		}
441 		/*
442 		 * XXX fbp from caller may not be B_ASYNC, but we are going
443 		 * to biodone() it in cluster_callback() anyway
444 		 */
445 		BUF_KERNPROC(tbp);
446 		cluster_append(&bp->b_bio1, tbp);
447 		for (j = 0; j < tbp->b_xio.xio_npages; j += 1) {
448 			vm_page_t m;
449 			m = tbp->b_xio.xio_pages[j];
450 			vm_page_io_start(m);
451 			vm_object_pip_add(m->object, 1);
452 			if ((bp->b_xio.xio_npages == 0) ||
453 				(bp->b_xio.xio_pages[bp->b_xio.xio_npages-1] != m)) {
454 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
455 				bp->b_xio.xio_npages++;
456 			}
457 			if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL)
458 				tbp->b_xio.xio_pages[j] = bogus_page;
459 		}
460 		/*
461 		 * XXX shouldn't this be += size for both, like in
462 		 * cluster_wbuild()?
463 		 *
464 		 * Don't inherit tbp->b_bufsize as it may be larger due to
465 		 * a non-page-aligned size.  Instead just aggregate using
466 		 * 'size'.
467 		 */
468 		if (tbp->b_bcount != size)
469 		    printf("warning: tbp->b_bcount wrong %ld vs %ld\n", tbp->b_bcount, size);
470 		if (tbp->b_bufsize != size)
471 		    printf("warning: tbp->b_bufsize wrong %ld vs %ld\n", tbp->b_bufsize, size);
472 		bp->b_bcount += size;
473 		bp->b_bufsize += size;
474 	}
475 
476 	/*
477 	 * Fully valid pages in the cluster are already good and do not need
478 	 * to be re-read from disk.  Replace the page with bogus_page
479 	 */
480 	for (j = 0; j < bp->b_xio.xio_npages; j++) {
481 		if ((bp->b_xio.xio_pages[j]->valid & VM_PAGE_BITS_ALL) ==
482 		    VM_PAGE_BITS_ALL) {
483 			bp->b_xio.xio_pages[j] = bogus_page;
484 		}
485 	}
486 	if (bp->b_bufsize > bp->b_kvasize)
487 		panic("cluster_rbuild: b_bufsize(%ld) > b_kvasize(%d)",
488 		    bp->b_bufsize, bp->b_kvasize);
489 	bp->b_kvasize = bp->b_bufsize;
490 
491 	pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
492 		(vm_page_t *)bp->b_xio.xio_pages, bp->b_xio.xio_npages);
493 	return (bp);
494 }
495 
496 /*
497  * Cleanup after a clustered read or write.
498  * This is complicated by the fact that any of the buffers might have
499  * extra memory (if there were no empty buffer headers at allocbuf time)
500  * that we will need to shift around.
501  *
502  * The returned bio is &bp->b_bio1
503  */
504 void
505 cluster_callback(struct bio *bio)
506 {
507 	struct buf *bp = bio->bio_buf;
508 	struct buf *tbp;
509 	int error = 0;
510 
511 	/*
512 	 * Must propogate errors to all the components.
513 	 */
514 	if (bp->b_flags & B_ERROR)
515 		error = bp->b_error;
516 
517 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
518 	/*
519 	 * Move memory from the large cluster buffer into the component
520 	 * buffers and mark IO as done on these.  Since the memory map
521 	 * is the same, no actual copying is required.
522 	 */
523 	while ((tbp = bio->bio_caller_info1.cluster_head) != NULL) {
524 		bio->bio_caller_info1.cluster_head = tbp->b_cluster_next;
525 		if (error) {
526 			tbp->b_flags |= B_ERROR;
527 			tbp->b_error = error;
528 		} else {
529 			tbp->b_dirtyoff = tbp->b_dirtyend = 0;
530 			tbp->b_flags &= ~(B_ERROR|B_INVAL);
531 			/*
532 			 * XXX the bdwrite()/bqrelse() issued during
533 			 * cluster building clears B_RELBUF (see bqrelse()
534 			 * comment).  If direct I/O was specified, we have
535 			 * to restore it here to allow the buffer and VM
536 			 * to be freed.
537 			 */
538 			if (tbp->b_flags & B_DIRECT)
539 				tbp->b_flags |= B_RELBUF;
540 		}
541 		biodone(&tbp->b_bio1);
542 	}
543 	relpbuf(bp, &cluster_pbuf_freecnt);
544 }
545 
546 /*
547  *	cluster_wbuild_wb:
548  *
549  *	Implement modified write build for cluster.
550  *
551  *		write_behind = 0	write behind disabled
552  *		write_behind = 1	write behind normal (default)
553  *		write_behind = 2	write behind backed-off
554  */
555 
556 static __inline int
557 cluster_wbuild_wb(struct vnode *vp, long size, daddr_t start_lbn, int len)
558 {
559 	int r = 0;
560 
561 	switch(write_behind) {
562 	case 2:
563 		if (start_lbn < len)
564 			break;
565 		start_lbn -= len;
566 		/* fall through */
567 	case 1:
568 		r = cluster_wbuild(vp, size, start_lbn, len);
569 		/* fall through */
570 	default:
571 		/* fall through */
572 		break;
573 	}
574 	return(r);
575 }
576 
577 /*
578  * Do clustered write for FFS.
579  *
580  * Three cases:
581  *	1. Write is not sequential (write asynchronously)
582  *	Write is sequential:
583  *	2.	beginning of cluster - begin cluster
584  *	3.	middle of a cluster - add to cluster
585  *	4.	end of a cluster - asynchronously write cluster
586  */
587 void
588 cluster_write(struct buf *bp, u_quad_t filesize, int seqcount)
589 {
590 	struct vnode *vp;
591 	daddr_t lbn;
592 	int maxclen, cursize;
593 	int lblocksize;
594 	int async;
595 
596 	vp = bp->b_vp;
597 	if (vp->v_type == VREG) {
598 		async = vp->v_mount->mnt_flag & MNT_ASYNC;
599 		lblocksize = vp->v_mount->mnt_stat.f_iosize;
600 	} else {
601 		async = 0;
602 		lblocksize = bp->b_bufsize;
603 	}
604 	lbn = bp->b_lblkno;
605 	KASSERT(bp->b_loffset != NOOFFSET,
606 		("cluster_write: no buffer offset"));
607 
608 	/* Initialize vnode to beginning of file. */
609 	if (lbn == 0)
610 		vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
611 
612 	if (vp->v_clen == 0 || lbn != vp->v_lastw + 1 ||
613 	    bp->b_bio2.bio_blkno == (daddr_t)-1 ||
614 	    (bp->b_bio2.bio_blkno != vp->v_lasta + btodb(lblocksize))) {
615 		maxclen = vp->v_mount->mnt_iosize_max / lblocksize - 1;
616 		if (vp->v_clen != 0) {
617 			/*
618 			 * Next block is not sequential.
619 			 *
620 			 * If we are not writing at end of file, the process
621 			 * seeked to another point in the file since its last
622 			 * write, or we have reached our maximum cluster size,
623 			 * then push the previous cluster. Otherwise try
624 			 * reallocating to make it sequential.
625 			 *
626 			 * Change to algorithm: only push previous cluster if
627 			 * it was sequential from the point of view of the
628 			 * seqcount heuristic, otherwise leave the buffer
629 			 * intact so we can potentially optimize the I/O
630 			 * later on in the buf_daemon or update daemon
631 			 * flush.
632 			 */
633 			cursize = vp->v_lastw - vp->v_cstart + 1;
634 			if (((u_quad_t) bp->b_loffset + lblocksize) != filesize ||
635 			    lbn != vp->v_lastw + 1 || vp->v_clen <= cursize) {
636 				if (!async && seqcount > 0) {
637 					cluster_wbuild_wb(vp, lblocksize,
638 						vp->v_cstart, cursize);
639 				}
640 			} else {
641 				struct buf **bpp, **endbp;
642 				struct cluster_save *buflist;
643 
644 				buflist = cluster_collectbufs(vp, bp);
645 				endbp = &buflist->bs_children
646 				    [buflist->bs_nchildren - 1];
647 				if (VOP_REALLOCBLKS(vp, buflist)) {
648 					/*
649 					 * Failed, push the previous cluster
650 					 * if *really* writing sequentially
651 					 * in the logical file (seqcount > 1),
652 					 * otherwise delay it in the hopes that
653 					 * the low level disk driver can
654 					 * optimize the write ordering.
655 					 */
656 					for (bpp = buflist->bs_children;
657 					     bpp < endbp; bpp++)
658 						brelse(*bpp);
659 					free(buflist, M_SEGMENT);
660 					if (seqcount > 1) {
661 						cluster_wbuild_wb(vp,
662 						    lblocksize, vp->v_cstart,
663 						    cursize);
664 					}
665 				} else {
666 					/*
667 					 * Succeeded, keep building cluster.
668 					 */
669 					for (bpp = buflist->bs_children;
670 					     bpp <= endbp; bpp++)
671 						bdwrite(*bpp);
672 					free(buflist, M_SEGMENT);
673 					vp->v_lastw = lbn;
674 					vp->v_lasta = bp->b_bio2.bio_blkno;
675 					return;
676 				}
677 			}
678 		}
679 		/*
680 		 * Consider beginning a cluster. If at end of file, make
681 		 * cluster as large as possible, otherwise find size of
682 		 * existing cluster.
683 		 */
684 		if ((vp->v_type == VREG) &&
685 			((u_quad_t) bp->b_loffset + lblocksize) != filesize &&
686 		    (bp->b_bio2.bio_blkno == (daddr_t)-1) &&
687 		    (VOP_BMAP(vp, lbn, NULL, &bp->b_bio2.bio_blkno, &maxclen, NULL) ||
688 		     bp->b_bio2.bio_blkno == (daddr_t)-1)) {
689 			bawrite(bp);
690 			vp->v_clen = 0;
691 			vp->v_lasta = bp->b_bio2.bio_blkno;
692 			vp->v_cstart = lbn + 1;
693 			vp->v_lastw = lbn;
694 			return;
695 		}
696 		vp->v_clen = maxclen;
697 		if (!async && maxclen == 0) {	/* I/O not contiguous */
698 			vp->v_cstart = lbn + 1;
699 			bawrite(bp);
700 		} else {	/* Wait for rest of cluster */
701 			vp->v_cstart = lbn;
702 			bdwrite(bp);
703 		}
704 	} else if (lbn == vp->v_cstart + vp->v_clen) {
705 		/*
706 		 * At end of cluster, write it out if seqcount tells us we
707 		 * are operating sequentially, otherwise let the buf or
708 		 * update daemon handle it.
709 		 */
710 		bdwrite(bp);
711 		if (seqcount > 1)
712 			cluster_wbuild_wb(vp, lblocksize, vp->v_cstart, vp->v_clen + 1);
713 		vp->v_clen = 0;
714 		vp->v_cstart = lbn + 1;
715 	} else if (vm_page_count_severe()) {
716 		/*
717 		 * We are low on memory, get it going NOW
718 		 */
719 		bawrite(bp);
720 	} else {
721 		/*
722 		 * In the middle of a cluster, so just delay the I/O for now.
723 		 */
724 		bdwrite(bp);
725 	}
726 	vp->v_lastw = lbn;
727 	vp->v_lasta = bp->b_bio2.bio_blkno;
728 }
729 
730 
731 /*
732  * This is an awful lot like cluster_rbuild...wish they could be combined.
733  * The last lbn argument is the current block on which I/O is being
734  * performed.  Check to see that it doesn't fall in the middle of
735  * the current block (if last_bp == NULL).
736  */
737 int
738 cluster_wbuild(struct vnode *vp, long size, daddr_t start_lbn, int len)
739 {
740 	struct buf *bp, *tbp;
741 	int i, j;
742 	int totalwritten = 0;
743 	int dbsize = btodb(size);
744 
745 	while (len > 0) {
746 		crit_enter();
747 		/*
748 		 * If the buffer is not delayed-write (i.e. dirty), or it
749 		 * is delayed-write but either locked or inval, it cannot
750 		 * partake in the clustered write.
751 		 */
752 		if (((tbp = gbincore(vp, start_lbn)) == NULL) ||
753 		  ((tbp->b_flags & (B_LOCKED | B_INVAL | B_DELWRI)) != B_DELWRI) ||
754 		  BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) {
755 			++start_lbn;
756 			--len;
757 			crit_exit();
758 			continue;
759 		}
760 		bremfree(tbp);
761 		tbp->b_flags &= ~B_DONE;
762 		crit_exit();
763 
764 		/*
765 		 * Extra memory in the buffer, punt on this buffer.
766 		 * XXX we could handle this in most cases, but we would
767 		 * have to push the extra memory down to after our max
768 		 * possible cluster size and then potentially pull it back
769 		 * up if the cluster was terminated prematurely--too much
770 		 * hassle.
771 		 */
772 		if (((tbp->b_flags & (B_CLUSTEROK|B_MALLOC)) != B_CLUSTEROK) ||
773 		  (tbp->b_bcount != tbp->b_bufsize) ||
774 		  (tbp->b_bcount != size) ||
775 		  (len == 1) ||
776 		  ((bp = getpbuf(&cluster_pbuf_freecnt)) == NULL)) {
777 			totalwritten += tbp->b_bufsize;
778 			bawrite(tbp);
779 			++start_lbn;
780 			--len;
781 			continue;
782 		}
783 
784 		/*
785 		 * We got a pbuf to make the cluster in.
786 		 * so initialise it.
787 		 */
788 		bp->b_bcount = 0;
789 		bp->b_bufsize = 0;
790 		bp->b_xio.xio_npages = 0;
791 		bp->b_lblkno = tbp->b_lblkno;
792 		bp->b_loffset = tbp->b_loffset;
793 		bp->b_bio2.bio_blkno = tbp->b_bio2.bio_blkno;
794 
795 		/*
796 		 * We are synthesizing a buffer out of vm_page_t's, but
797 		 * if the block size is not page aligned then the starting
798 		 * address may not be either.  Inherit the b_data offset
799 		 * from the original buffer.
800 		 */
801 		bp->b_data = (char *)((vm_offset_t)bp->b_data |
802 		    ((vm_offset_t)tbp->b_data & PAGE_MASK));
803 		bp->b_flags |= B_CLUSTER |
804 			(tbp->b_flags & (B_VMIO | B_NEEDCOMMIT | B_NOWDRAIN));
805 		bp->b_bio1.bio_done = cluster_callback;
806 		bp->b_bio1.bio_caller_info1.cluster_head = NULL;
807 		bp->b_bio1.bio_caller_info2.cluster_tail = NULL;
808 		pbgetvp(vp, bp);
809 		/*
810 		 * From this location in the file, scan forward to see
811 		 * if there are buffers with adjacent data that need to
812 		 * be written as well.
813 		 */
814 		for (i = 0; i < len; ++i, ++start_lbn) {
815 			if (i != 0) { /* If not the first buffer */
816 				crit_enter();
817 				/*
818 				 * If the adjacent data is not even in core it
819 				 * can't need to be written.
820 				 */
821 				if ((tbp = gbincore(vp, start_lbn)) == NULL) {
822 					crit_exit();
823 					break;
824 				}
825 
826 				/*
827 				 * If it IS in core, but has different
828 				 * characteristics, or is locked (which
829 				 * means it could be undergoing a background
830 				 * I/O or be in a weird state), then don't
831 				 * cluster with it.
832 				 */
833 				if ((tbp->b_flags & (B_VMIO | B_CLUSTEROK |
834 				    B_INVAL | B_DELWRI | B_NEEDCOMMIT))
835 				  != (B_DELWRI | B_CLUSTEROK |
836 				    (bp->b_flags & (B_VMIO | B_NEEDCOMMIT))) ||
837 				    (tbp->b_flags & B_LOCKED) ||
838 				    BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) {
839 					crit_exit();
840 					break;
841 				}
842 
843 				/*
844 				 * Check that the combined cluster
845 				 * would make sense with regard to pages
846 				 * and would not be too large
847 				 */
848 				if ((tbp->b_bcount != size) ||
849 				  ((bp->b_bio2.bio_blkno + (dbsize * i)) !=
850 				    tbp->b_bio2.bio_blkno) ||
851 				  ((tbp->b_xio.xio_npages + bp->b_xio.xio_npages) >
852 				    (vp->v_mount->mnt_iosize_max / PAGE_SIZE))) {
853 					BUF_UNLOCK(tbp);
854 					crit_exit();
855 					break;
856 				}
857 				/*
858 				 * Ok, it's passed all the tests,
859 				 * so remove it from the free list
860 				 * and mark it busy. We will use it.
861 				 */
862 				bremfree(tbp);
863 				tbp->b_flags &= ~B_DONE;
864 				crit_exit();
865 			} /* end of code for non-first buffers only */
866 
867 			/*
868 			 * check for latent dependencies to be handled
869 			 */
870 			if (LIST_FIRST(&tbp->b_dep) != NULL && bioops.io_start)
871 				(*bioops.io_start)(tbp);
872 
873 			/*
874 			 * If the IO is via the VM then we do some
875 			 * special VM hackery (yuck).  Since the buffer's
876 			 * block size may not be page-aligned it is possible
877 			 * for a page to be shared between two buffers.  We
878 			 * have to get rid of the duplication when building
879 			 * the cluster.
880 			 */
881 			if (tbp->b_flags & B_VMIO) {
882 				vm_page_t m;
883 
884 				if (i != 0) { /* if not first buffer */
885 					for (j = 0; j < tbp->b_xio.xio_npages; j += 1) {
886 						m = tbp->b_xio.xio_pages[j];
887 						if (m->flags & PG_BUSY) {
888 							bqrelse(tbp);
889 							goto finishcluster;
890 						}
891 					}
892 				}
893 
894 				for (j = 0; j < tbp->b_xio.xio_npages; j += 1) {
895 					m = tbp->b_xio.xio_pages[j];
896 					vm_page_io_start(m);
897 					vm_object_pip_add(m->object, 1);
898 					if ((bp->b_xio.xio_npages == 0) ||
899 					  (bp->b_xio.xio_pages[bp->b_xio.xio_npages - 1] != m)) {
900 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
901 						bp->b_xio.xio_npages++;
902 					}
903 				}
904 			}
905 			bp->b_bcount += size;
906 			bp->b_bufsize += size;
907 
908 			crit_enter();
909 			bundirty(tbp);
910 			tbp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
911 			tbp->b_flags |= B_ASYNC;
912 			reassignbuf(tbp, tbp->b_vp);	/* put on clean list */
913 			crit_exit();
914 			BUF_KERNPROC(tbp);
915 			cluster_append(&bp->b_bio1, tbp);
916 		}
917 	finishcluster:
918 		pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
919 			(vm_page_t *) bp->b_xio.xio_pages, bp->b_xio.xio_npages);
920 		if (bp->b_bufsize > bp->b_kvasize)
921 			panic(
922 			    "cluster_wbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
923 			    bp->b_bufsize, bp->b_kvasize);
924 		bp->b_kvasize = bp->b_bufsize;
925 		totalwritten += bp->b_bufsize;
926 		bp->b_dirtyoff = 0;
927 		bp->b_dirtyend = bp->b_bufsize;
928 		bawrite(bp);
929 
930 		len -= i;
931 	}
932 	return totalwritten;
933 }
934 
935 /*
936  * Collect together all the buffers in a cluster.
937  * Plus add one additional buffer.
938  */
939 static struct cluster_save *
940 cluster_collectbufs(struct vnode *vp, struct buf *last_bp)
941 {
942 	struct cluster_save *buflist;
943 	struct buf *bp;
944 	daddr_t lbn;
945 	int i, len;
946 
947 	len = vp->v_lastw - vp->v_cstart + 1;
948 	buflist = malloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist),
949 	    M_SEGMENT, M_WAITOK);
950 	buflist->bs_nchildren = 0;
951 	buflist->bs_children = (struct buf **) (buflist + 1);
952 	for (lbn = vp->v_cstart, i = 0; i < len; lbn++, i++) {
953 		(void) bread(vp, lbn, last_bp->b_bcount, &bp);
954 		buflist->bs_children[i] = bp;
955 		if (bp->b_bio2.bio_blkno == (daddr_t)-1)
956 			VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_bio2.bio_blkno,
957 				NULL, NULL);
958 	}
959 	buflist->bs_children[i] = bp = last_bp;
960 	if (bp->b_bio2.bio_blkno == (daddr_t)-1)
961 		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_bio2.bio_blkno,
962 			NULL, NULL);
963 	buflist->bs_nchildren = i + 1;
964 	return (buflist);
965 }
966 
967 void
968 cluster_append(struct bio *bio, struct buf *tbp)
969 {
970 	tbp->b_cluster_next = NULL;
971 	if (bio->bio_caller_info1.cluster_head == NULL) {
972 		bio->bio_caller_info1.cluster_head = tbp;
973 		bio->bio_caller_info2.cluster_tail = tbp;
974 	} else {
975 		bio->bio_caller_info2.cluster_tail->b_cluster_next = tbp;
976 		bio->bio_caller_info2.cluster_tail = tbp;
977 	}
978 }
979 
980