xref: /dragonfly/sys/kern/vfs_journal.c (revision 9b5a9965)
1 /*
2  * Copyright (c) 2004-2006 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/vfs_journal.c,v 1.33 2007/05/09 00:53:34 dillon Exp $
35  */
36 /*
37  * The journaling protocol is intended to evolve into a two-way stream
38  * whereby transaction IDs can be acknowledged by the journaling target
39  * when the data has been committed to hard storage.  Both implicit and
40  * explicit acknowledgement schemes will be supported, depending on the
41  * sophistication of the journaling stream, plus resynchronization and
42  * restart when a journaling stream is interrupted.  This information will
43  * also be made available to journaling-aware filesystems to allow better
44  * management of their own physical storage synchronization mechanisms as
45  * well as to allow such filesystems to take direct advantage of the kernel's
46  * journaling layer so they don't have to roll their own.
47  *
48  * In addition, the worker thread will have access to much larger
49  * spooling areas then the memory buffer is able to provide by e.g.
50  * reserving swap space, in order to absorb potentially long interruptions
51  * of off-site journaling streams, and to prevent 'slow' off-site linkages
52  * from radically slowing down local filesystem operations.
53  *
54  * Because of the non-trivial algorithms the journaling system will be
55  * required to support, use of a worker thread is mandatory.  Efficiencies
56  * are maintained by utilitizing the memory FIFO to batch transactions when
57  * possible, reducing the number of gratuitous thread switches and taking
58  * advantage of cpu caches through the use of shorter batched code paths
59  * rather then trying to do everything in the context of the process
60  * originating the filesystem op.  In the future the memory FIFO can be
61  * made per-cpu to remove BGL or other locking requirements.
62  */
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/buf.h>
66 #include <sys/conf.h>
67 #include <sys/kernel.h>
68 #include <sys/queue.h>
69 #include <sys/lock.h>
70 #include <sys/malloc.h>
71 #include <sys/mount.h>
72 #include <sys/unistd.h>
73 #include <sys/vnode.h>
74 #include <sys/poll.h>
75 #include <sys/mountctl.h>
76 #include <sys/journal.h>
77 #include <sys/file.h>
78 #include <sys/proc.h>
79 #include <sys/msfbuf.h>
80 #include <sys/socket.h>
81 #include <sys/socketvar.h>
82 
83 #include <machine/limits.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vnode_pager.h>
90 
91 #include <sys/file2.h>
92 #include <sys/thread2.h>
93 
94 static void journal_wthread(void *info);
95 static void journal_rthread(void *info);
96 
97 static void *journal_reserve(struct journal *jo,
98                         struct journal_rawrecbeg **rawpp,
99                         int16_t streamid, int bytes);
100 static void *journal_extend(struct journal *jo,
101                         struct journal_rawrecbeg **rawpp,
102                         int truncbytes, int bytes, int *newstreamrecp);
103 static void journal_abort(struct journal *jo,
104                         struct journal_rawrecbeg **rawpp);
105 static void journal_commit(struct journal *jo,
106                         struct journal_rawrecbeg **rawpp,
107                         int bytes, int closeout);
108 
109 
110 MALLOC_DEFINE(M_JOURNAL, "journal", "Journaling structures");
111 MALLOC_DEFINE(M_JFIFO, "journal-fifo", "Journal FIFO");
112 
113 void
114 journal_create_threads(struct journal *jo)
115 {
116 	jo->flags &= ~(MC_JOURNAL_STOP_REQ | MC_JOURNAL_STOP_IMM);
117 	jo->flags |= MC_JOURNAL_WACTIVE;
118 	lwkt_create(journal_wthread, jo, NULL, &jo->wthread,
119 			TDF_STOPREQ, -1, "journal w:%.*s", JIDMAX, jo->id);
120 	lwkt_setpri(&jo->wthread, TDPRI_KERN_DAEMON);
121 	lwkt_schedule(&jo->wthread);
122 
123 	if (jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) {
124 	    jo->flags |= MC_JOURNAL_RACTIVE;
125 	    lwkt_create(journal_rthread, jo, NULL, &jo->rthread,
126 			TDF_STOPREQ, -1, "journal r:%.*s", JIDMAX, jo->id);
127 	    lwkt_setpri(&jo->rthread, TDPRI_KERN_DAEMON);
128 	    lwkt_schedule(&jo->rthread);
129 	}
130 }
131 
132 void
133 journal_destroy_threads(struct journal *jo, int flags)
134 {
135     int wcount;
136 
137     jo->flags |= MC_JOURNAL_STOP_REQ | (flags & MC_JOURNAL_STOP_IMM);
138     wakeup(&jo->fifo);
139     wcount = 0;
140     while (jo->flags & (MC_JOURNAL_WACTIVE | MC_JOURNAL_RACTIVE)) {
141 	tsleep(jo, 0, "jwait", hz);
142 	if (++wcount % 10 == 0) {
143 	    kprintf("Warning: journal %s waiting for descriptors to close\n",
144 		jo->id);
145 	}
146     }
147 
148     /*
149      * XXX SMP - threads should move to cpu requesting the restart or
150      * termination before finishing up to properly interlock.
151      */
152     tsleep(jo, 0, "jwait", hz);
153     lwkt_free_thread(&jo->wthread);
154     if (jo->flags & MC_JOURNAL_WANT_FULLDUPLEX)
155 	lwkt_free_thread(&jo->rthread);
156 }
157 
158 /*
159  * The per-journal worker thread is responsible for writing out the
160  * journal's FIFO to the target stream.
161  */
162 static void
163 journal_wthread(void *info)
164 {
165     struct journal *jo = info;
166     struct journal_rawrecbeg *rawp;
167     int bytes;
168     int error;
169     int avail;
170     int res;
171 
172     for (;;) {
173 	/*
174 	 * Calculate the number of bytes available to write.  This buffer
175 	 * area may contain reserved records so we can't just write it out
176 	 * without further checks.
177 	 */
178 	bytes = jo->fifo.windex - jo->fifo.rindex;
179 
180 	/*
181 	 * sleep if no bytes are available or if an incomplete record is
182 	 * encountered (it needs to be filled in before we can write it
183 	 * out), and skip any pad records that we encounter.
184 	 */
185 	if (bytes == 0) {
186 	    if (jo->flags & MC_JOURNAL_STOP_REQ)
187 		break;
188 	    tsleep(&jo->fifo, 0, "jfifo", hz);
189 	    continue;
190 	}
191 
192 	/*
193 	 * Sleep if we can not go any further due to hitting an incomplete
194 	 * record.  This case should occur rarely but may have to be better
195 	 * optimized XXX.
196 	 */
197 	rawp = (void *)(jo->fifo.membase + (jo->fifo.rindex & jo->fifo.mask));
198 	if (rawp->begmagic == JREC_INCOMPLETEMAGIC) {
199 	    tsleep(&jo->fifo, 0, "jpad", hz);
200 	    continue;
201 	}
202 
203 	/*
204 	 * Skip any pad records.  We do not write out pad records if we can
205 	 * help it.
206 	 */
207 	if (rawp->streamid == JREC_STREAMID_PAD) {
208 	    if ((jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) == 0) {
209 		if (jo->fifo.rindex == jo->fifo.xindex) {
210 		    jo->fifo.xindex += (rawp->recsize + 15) & ~15;
211 		    jo->total_acked += (rawp->recsize + 15) & ~15;
212 		}
213 	    }
214 	    jo->fifo.rindex += (rawp->recsize + 15) & ~15;
215 	    jo->total_acked += bytes;
216 	    KKASSERT(jo->fifo.windex - jo->fifo.rindex >= 0);
217 	    continue;
218 	}
219 
220 	/*
221 	 * 'bytes' is the amount of data that can potentially be written out.
222 	 * Calculate 'res', the amount of data that can actually be written
223 	 * out.  res is bounded either by hitting the end of the physical
224 	 * memory buffer or by hitting an incomplete record.  Incomplete
225 	 * records often occur due to the way the space reservation model
226 	 * works.
227 	 */
228 	res = 0;
229 	avail = jo->fifo.size - (jo->fifo.rindex & jo->fifo.mask);
230 	while (res < bytes && rawp->begmagic == JREC_BEGMAGIC) {
231 	    res += (rawp->recsize + 15) & ~15;
232 	    if (res >= avail) {
233 		KKASSERT(res == avail);
234 		break;
235 	    }
236 	    rawp = (void *)((char *)rawp + ((rawp->recsize + 15) & ~15));
237 	}
238 
239 	/*
240 	 * Issue the write and deal with any errors or other conditions.
241 	 * For now assume blocking I/O.  Since we are record-aware the
242 	 * code cannot yet handle partial writes.
243 	 *
244 	 * We bump rindex prior to issuing the write to avoid racing
245 	 * the acknowledgement coming back (which could prevent the ack
246 	 * from bumping xindex).  Restarts are always based on xindex so
247 	 * we do not try to undo the rindex if an error occurs.
248 	 *
249 	 * XXX EWOULDBLOCK/NBIO
250 	 * XXX notification on failure
251 	 * XXX permanent verses temporary failures
252 	 * XXX two-way acknowledgement stream in the return direction / xindex
253 	 */
254 	bytes = res;
255 	jo->fifo.rindex += bytes;
256 	error = fp_write(jo->fp,
257 			jo->fifo.membase + ((jo->fifo.rindex - bytes) & jo->fifo.mask),
258 			bytes, &res, UIO_SYSSPACE);
259 	if (error) {
260 	    kprintf("journal_thread(%s) write, error %d\n", jo->id, error);
261 	    /* XXX */
262 	} else {
263 	    KKASSERT(res == bytes);
264 	}
265 
266 	/*
267 	 * Advance rindex.  If the journal stream is not full duplex we also
268 	 * advance xindex, otherwise the rjournal thread is responsible for
269 	 * advancing xindex.
270 	 */
271 	if ((jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) == 0) {
272 	    jo->fifo.xindex += bytes;
273 	    jo->total_acked += bytes;
274 	}
275 	KKASSERT(jo->fifo.windex - jo->fifo.rindex >= 0);
276 	if ((jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) == 0) {
277 	    if (jo->flags & MC_JOURNAL_WWAIT) {
278 		jo->flags &= ~MC_JOURNAL_WWAIT;	/* XXX hysteresis */
279 		wakeup(&jo->fifo.windex);
280 	    }
281 	}
282     }
283     fp_shutdown(jo->fp, SHUT_WR);
284     jo->flags &= ~MC_JOURNAL_WACTIVE;
285     wakeup(jo);
286     wakeup(&jo->fifo.windex);
287 }
288 
289 /*
290  * A second per-journal worker thread is created for two-way journaling
291  * streams to deal with the return acknowledgement stream.
292  */
293 static void
294 journal_rthread(void *info)
295 {
296     struct journal_rawrecbeg *rawp;
297     struct journal_ackrecord ack;
298     struct journal *jo = info;
299     int64_t transid;
300     int error;
301     int count;
302     int bytes;
303 
304     transid = 0;
305     error = 0;
306 
307     for (;;) {
308 	/*
309 	 * We have been asked to stop
310 	 */
311 	if (jo->flags & MC_JOURNAL_STOP_REQ)
312 		break;
313 
314 	/*
315 	 * If we have no active transaction id, get one from the return
316 	 * stream.
317 	 */
318 	if (transid == 0) {
319 	    error = fp_read(jo->fp, &ack, sizeof(ack), &count,
320 			    1, UIO_SYSSPACE);
321 #if 0
322 	    kprintf("fp_read ack error %d count %d\n", error, count);
323 #endif
324 	    if (error || count != sizeof(ack))
325 		break;
326 	    if (error) {
327 		kprintf("read error %d on receive stream\n", error);
328 		break;
329 	    }
330 	    if (ack.rbeg.begmagic != JREC_BEGMAGIC ||
331 		ack.rend.endmagic != JREC_ENDMAGIC
332 	    ) {
333 		kprintf("bad begmagic or endmagic on receive stream\n");
334 		break;
335 	    }
336 	    transid = ack.rbeg.transid;
337 	}
338 
339 	/*
340 	 * Calculate the number of unacknowledged bytes.  If there are no
341 	 * unacknowledged bytes then unsent data was acknowledged, report,
342 	 * sleep a bit, and loop in that case.  This should not happen
343 	 * normally.  The ack record is thrown away.
344 	 */
345 	bytes = jo->fifo.rindex - jo->fifo.xindex;
346 
347 	if (bytes == 0) {
348 	    kprintf("warning: unsent data acknowledged transid %08llx\n", transid);
349 	    tsleep(&jo->fifo.xindex, 0, "jrseq", hz);
350 	    transid = 0;
351 	    continue;
352 	}
353 
354 	/*
355 	 * Since rindex has advanced, the record pointed to by xindex
356 	 * must be a valid record.
357 	 */
358 	rawp = (void *)(jo->fifo.membase + (jo->fifo.xindex & jo->fifo.mask));
359 	KKASSERT(rawp->begmagic == JREC_BEGMAGIC);
360 	KKASSERT(rawp->recsize <= bytes);
361 
362 	/*
363 	 * The target can acknowledge several records at once.
364 	 */
365 	if (rawp->transid < transid) {
366 #if 1
367 	    kprintf("ackskip %08llx/%08llx\n", rawp->transid, transid);
368 #endif
369 	    jo->fifo.xindex += (rawp->recsize + 15) & ~15;
370 	    jo->total_acked += (rawp->recsize + 15) & ~15;
371 	    if (jo->flags & MC_JOURNAL_WWAIT) {
372 		jo->flags &= ~MC_JOURNAL_WWAIT;	/* XXX hysteresis */
373 		wakeup(&jo->fifo.windex);
374 	    }
375 	    continue;
376 	}
377 	if (rawp->transid == transid) {
378 #if 1
379 	    kprintf("ackskip %08llx/%08llx\n", rawp->transid, transid);
380 #endif
381 	    jo->fifo.xindex += (rawp->recsize + 15) & ~15;
382 	    jo->total_acked += (rawp->recsize + 15) & ~15;
383 	    if (jo->flags & MC_JOURNAL_WWAIT) {
384 		jo->flags &= ~MC_JOURNAL_WWAIT;	/* XXX hysteresis */
385 		wakeup(&jo->fifo.windex);
386 	    }
387 	    transid = 0;
388 	    continue;
389 	}
390 	kprintf("warning: unsent data(2) acknowledged transid %08llx\n", transid);
391 	transid = 0;
392     }
393     jo->flags &= ~MC_JOURNAL_RACTIVE;
394     wakeup(jo);
395     wakeup(&jo->fifo.windex);
396 }
397 
398 /*
399  * This builds a pad record which the journaling thread will skip over.  Pad
400  * records are required when we are unable to reserve sufficient stream space
401  * due to insufficient space at the end of the physical memory fifo.
402  *
403  * Even though the record is not transmitted, a normal transid must be
404  * assigned to it so link recovery operations after a failure work properly.
405  */
406 static
407 void
408 journal_build_pad(struct journal_rawrecbeg *rawp, int recsize, int64_t transid)
409 {
410     struct journal_rawrecend *rendp;
411 
412     KKASSERT((recsize & 15) == 0 && recsize >= 16);
413 
414     rawp->streamid = JREC_STREAMID_PAD;
415     rawp->recsize = recsize;	/* must be 16-byte aligned */
416     rawp->transid = transid;
417     /*
418      * WARNING, rendp may overlap rawp->transid.  This is necessary to
419      * allow PAD records to fit in 16 bytes.  Use cpu_ccfence() to
420      * hopefully cause the compiler to not make any assumptions.
421      */
422     rendp = (void *)((char *)rawp + rawp->recsize - sizeof(*rendp));
423     rendp->endmagic = JREC_ENDMAGIC;
424     rendp->check = 0;
425     rendp->recsize = rawp->recsize;
426 
427     /*
428      * Set the begin magic last.  This is what will allow the journal
429      * thread to write the record out.  Use a store fence to prevent
430      * compiler and cpu reordering of the writes.
431      */
432     cpu_sfence();
433     rawp->begmagic = JREC_BEGMAGIC;
434 }
435 
436 /*
437  * Wake up the worker thread if the FIFO is more then half full or if
438  * someone is waiting for space to be freed up.  Otherwise let the
439  * heartbeat deal with it.  Being able to avoid waking up the worker
440  * is the key to the journal's cpu performance.
441  */
442 static __inline
443 void
444 journal_commit_wakeup(struct journal *jo)
445 {
446     int avail;
447 
448     avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex);
449     KKASSERT(avail >= 0);
450     if ((avail < (jo->fifo.size >> 1)) || (jo->flags & MC_JOURNAL_WWAIT))
451 	wakeup(&jo->fifo);
452 }
453 
454 /*
455  * Create a new BEGIN stream record with the specified streamid and the
456  * specified amount of payload space.  *rawpp will be set to point to the
457  * base of the new stream record and a pointer to the base of the payload
458  * space will be returned.  *rawpp does not need to be pre-NULLd prior to
459  * making this call.  The raw record header will be partially initialized.
460  *
461  * A stream can be extended, aborted, or committed by other API calls
462  * below.  This may result in a sequence of potentially disconnected
463  * stream records to be output to the journaling target.  The first record
464  * (the one created by this function) will be marked JREC_STREAMCTL_BEGIN,
465  * while the last record on commit or abort will be marked JREC_STREAMCTL_END
466  * (and possibly also JREC_STREAMCTL_ABORTED).  The last record could wind
467  * up being the same as the first, in which case the bits are all set in
468  * the first record.
469  *
470  * The stream record is created in an incomplete state by setting the begin
471  * magic to JREC_INCOMPLETEMAGIC.  This prevents the worker thread from
472  * flushing the fifo past our record until we have finished populating it.
473  * Other threads can reserve and operate on their own space without stalling
474  * but the stream output will stall until we have completed operations.  The
475  * memory FIFO is intended to be large enough to absorb such situations
476  * without stalling out other threads.
477  */
478 static
479 void *
480 journal_reserve(struct journal *jo, struct journal_rawrecbeg **rawpp,
481 		int16_t streamid, int bytes)
482 {
483     struct journal_rawrecbeg *rawp;
484     int avail;
485     int availtoend;
486     int req;
487 
488     /*
489      * Add header and trailer overheads to the passed payload.  Note that
490      * the passed payload size need not be aligned in any way.
491      */
492     bytes += sizeof(struct journal_rawrecbeg);
493     bytes += sizeof(struct journal_rawrecend);
494 
495     for (;;) {
496 	/*
497 	 * First, check boundary conditions.  If the request would wrap around
498 	 * we have to skip past the ending block and return to the beginning
499 	 * of the FIFO's buffer.  Calculate 'req' which is the actual number
500 	 * of bytes being reserved, including wrap-around dead space.
501 	 *
502 	 * Neither 'bytes' or 'req' are aligned.
503 	 *
504 	 * Note that availtoend is not truncated to avail and so cannot be
505 	 * used to determine whether the reservation is possible by itself.
506 	 * Also, since all fifo ops are 16-byte aligned, we can check
507 	 * the size before calculating the aligned size.
508 	 */
509 	availtoend = jo->fifo.size - (jo->fifo.windex & jo->fifo.mask);
510 	KKASSERT((availtoend & 15) == 0);
511 	if (bytes > availtoend)
512 	    req = bytes + availtoend;	/* add pad to end */
513 	else
514 	    req = bytes;
515 
516 	/*
517 	 * Next calculate the total available space and see if it is
518 	 * sufficient.  We cannot overwrite previously buffered data
519 	 * past xindex because otherwise we would not be able to restart
520 	 * a broken link at the target's last point of commit.
521 	 */
522 	avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex);
523 	KKASSERT(avail >= 0 && (avail & 15) == 0);
524 
525 	if (avail < req) {
526 	    /* XXX MC_JOURNAL_STOP_IMM */
527 	    jo->flags |= MC_JOURNAL_WWAIT;
528 	    ++jo->fifostalls;
529 	    tsleep(&jo->fifo.windex, 0, "jwrite", 0);
530 	    continue;
531 	}
532 
533 	/*
534 	 * Create a pad record for any dead space and create an incomplete
535 	 * record for the live space, then return a pointer to the
536 	 * contiguous buffer space that was requested.
537 	 *
538 	 * NOTE: The worker thread will not flush past an incomplete
539 	 * record, so the reserved space can be filled in at-will.  The
540 	 * journaling code must also be aware the reserved sections occuring
541 	 * after this one will also not be written out even if completed
542 	 * until this one is completed.
543 	 *
544 	 * The transaction id must accomodate real and potential pad creation.
545 	 */
546 	rawp = (void *)(jo->fifo.membase + (jo->fifo.windex & jo->fifo.mask));
547 	if (req != bytes) {
548 	    journal_build_pad(rawp, availtoend, jo->transid);
549 	    ++jo->transid;
550 	    rawp = (void *)jo->fifo.membase;
551 	}
552 	rawp->begmagic = JREC_INCOMPLETEMAGIC;	/* updated by abort/commit */
553 	rawp->recsize = bytes;			/* (unaligned size) */
554 	rawp->streamid = streamid | JREC_STREAMCTL_BEGIN;
555 	rawp->transid = jo->transid;
556 	jo->transid += 2;
557 
558 	/*
559 	 * Issue a memory barrier to guarentee that the record data has been
560 	 * properly initialized before we advance the write index and return
561 	 * a pointer to the reserved record.  Otherwise the worker thread
562 	 * could accidently run past us.
563 	 *
564 	 * Note that stream records are always 16-byte aligned.
565 	 */
566 	cpu_sfence();
567 	jo->fifo.windex += (req + 15) & ~15;
568 	*rawpp = rawp;
569 	return(rawp + 1);
570     }
571     /* not reached */
572     *rawpp = NULL;
573     return(NULL);
574 }
575 
576 /*
577  * Attempt to extend the stream record by <bytes> worth of payload space.
578  *
579  * If it is possible to extend the existing stream record no truncation
580  * occurs and the record is extended as specified.  A pointer to the
581  * truncation offset within the payload space is returned.
582  *
583  * If it is not possible to do this the existing stream record is truncated
584  * and committed, and a new stream record of size <bytes> is created.  A
585  * pointer to the base of the new stream record's payload space is returned.
586  *
587  * *rawpp is set to the new reservation in the case of a new record but
588  * the caller cannot depend on a comparison with the old rawp to determine if
589  * this case occurs because we could end up using the same memory FIFO
590  * offset for the new stream record.  Use *newstreamrecp instead.
591  */
592 static void *
593 journal_extend(struct journal *jo, struct journal_rawrecbeg **rawpp,
594 		int truncbytes, int bytes, int *newstreamrecp)
595 {
596     struct journal_rawrecbeg *rawp;
597     int16_t streamid;
598     int availtoend;
599     int avail;
600     int osize;
601     int nsize;
602     int wbase;
603     void *rptr;
604 
605     *newstreamrecp = 0;
606     rawp = *rawpp;
607     osize = (rawp->recsize + 15) & ~15;
608     nsize = (rawp->recsize + bytes + 15) & ~15;
609     wbase = (char *)rawp - jo->fifo.membase;
610 
611     /*
612      * If the aligned record size does not change we can trivially adjust
613      * the record size.
614      */
615     if (nsize == osize) {
616 	rawp->recsize += bytes;
617 	return((char *)(rawp + 1) + truncbytes);
618     }
619 
620     /*
621      * If the fifo's write index hasn't been modified since we made the
622      * reservation and we do not hit any boundary conditions, we can
623      * trivially make the record smaller or larger.
624      */
625     if ((jo->fifo.windex & jo->fifo.mask) == wbase + osize) {
626 	availtoend = jo->fifo.size - wbase;
627 	avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex) + osize;
628 	KKASSERT((availtoend & 15) == 0);
629 	KKASSERT((avail & 15) == 0);
630 	if (nsize <= avail && nsize <= availtoend) {
631 	    jo->fifo.windex += nsize - osize;
632 	    rawp->recsize += bytes;
633 	    return((char *)(rawp + 1) + truncbytes);
634 	}
635     }
636 
637     /*
638      * It was not possible to extend the buffer.  Commit the current
639      * buffer and create a new one.  We manually clear the BEGIN mark that
640      * journal_reserve() creates (because this is a continuing record, not
641      * the start of a new stream).
642      */
643     streamid = rawp->streamid & JREC_STREAMID_MASK;
644     journal_commit(jo, rawpp, truncbytes, 0);
645     rptr = journal_reserve(jo, rawpp, streamid, bytes);
646     rawp = *rawpp;
647     rawp->streamid &= ~JREC_STREAMCTL_BEGIN;
648     *newstreamrecp = 1;
649     return(rptr);
650 }
651 
652 /*
653  * Abort a journal record.  If the transaction record represents a stream
654  * BEGIN and we can reverse the fifo's write index we can simply reverse
655  * index the entire record, as if it were never reserved in the first place.
656  *
657  * Otherwise we set the JREC_STREAMCTL_ABORTED bit and commit the record
658  * with the payload truncated to 0 bytes.
659  */
660 static void
661 journal_abort(struct journal *jo, struct journal_rawrecbeg **rawpp)
662 {
663     struct journal_rawrecbeg *rawp;
664     int osize;
665 
666     rawp = *rawpp;
667     osize = (rawp->recsize + 15) & ~15;
668 
669     if ((rawp->streamid & JREC_STREAMCTL_BEGIN) &&
670 	(jo->fifo.windex & jo->fifo.mask) ==
671 	 (char *)rawp - jo->fifo.membase + osize)
672     {
673 	jo->fifo.windex -= osize;
674 	*rawpp = NULL;
675     } else {
676 	rawp->streamid |= JREC_STREAMCTL_ABORTED;
677 	journal_commit(jo, rawpp, 0, 1);
678     }
679 }
680 
681 /*
682  * Commit a journal record and potentially truncate it to the specified
683  * number of payload bytes.  If you do not want to truncate the record,
684  * simply pass -1 for the bytes parameter.  Do not pass rawp->recsize, that
685  * field includes header and trailer and will not be correct.  Note that
686  * passing 0 will truncate the entire data payload of the record.
687  *
688  * The logical stream is terminated by this function.
689  *
690  * If truncation occurs, and it is not possible to physically optimize the
691  * memory FIFO due to other threads having reserved space after ours,
692  * the remaining reserved space will be covered by a pad record.
693  */
694 static void
695 journal_commit(struct journal *jo, struct journal_rawrecbeg **rawpp,
696 		int bytes, int closeout)
697 {
698     struct journal_rawrecbeg *rawp;
699     struct journal_rawrecend *rendp;
700     int osize;
701     int nsize;
702 
703     rawp = *rawpp;
704     *rawpp = NULL;
705 
706     KKASSERT((char *)rawp >= jo->fifo.membase &&
707 	     (char *)rawp + rawp->recsize <= jo->fifo.membase + jo->fifo.size);
708     KKASSERT(((intptr_t)rawp & 15) == 0);
709 
710     /*
711      * Truncate the record if necessary.  If the FIFO write index as still
712      * at the end of our record we can optimally backindex it.  Otherwise
713      * we have to insert a pad record to cover the dead space.
714      *
715      * We calculate osize which is the 16-byte-aligned original recsize.
716      * We calculate nsize which is the 16-byte-aligned new recsize.
717      *
718      * Due to alignment issues or in case the passed truncation bytes is
719      * the same as the original payload, nsize may be equal to osize even
720      * if the committed bytes is less then the originally reserved bytes.
721      */
722     if (bytes >= 0) {
723 	KKASSERT(bytes >= 0 && bytes <= rawp->recsize - sizeof(struct journal_rawrecbeg) - sizeof(struct journal_rawrecend));
724 	osize = (rawp->recsize + 15) & ~15;
725 	rawp->recsize = bytes + sizeof(struct journal_rawrecbeg) +
726 			sizeof(struct journal_rawrecend);
727 	nsize = (rawp->recsize + 15) & ~15;
728 	KKASSERT(nsize <= osize);
729 	if (osize == nsize) {
730 	    /* do nothing */
731 	} else if ((jo->fifo.windex & jo->fifo.mask) == (char *)rawp - jo->fifo.membase + osize) {
732 	    /* we are able to backindex the fifo */
733 	    jo->fifo.windex -= osize - nsize;
734 	} else {
735 	    /* we cannot backindex the fifo, emplace a pad in the dead space */
736 	    journal_build_pad((void *)((char *)rawp + nsize), osize - nsize,
737 				rawp->transid + 1);
738 	}
739     }
740 
741     /*
742      * Fill in the trailer.  Note that unlike pad records, the trailer will
743      * never overlap the header.
744      */
745     rendp = (void *)((char *)rawp +
746 	    ((rawp->recsize + 15) & ~15) - sizeof(*rendp));
747     rendp->endmagic = JREC_ENDMAGIC;
748     rendp->recsize = rawp->recsize;
749     rendp->check = 0;		/* XXX check word, disabled for now */
750 
751     /*
752      * Fill in begmagic last.  This will allow the worker thread to proceed.
753      * Use a memory barrier to guarentee write ordering.  Mark the stream
754      * as terminated if closeout is set.  This is the typical case.
755      */
756     if (closeout)
757 	rawp->streamid |= JREC_STREAMCTL_END;
758     cpu_sfence();		/* memory and compiler barrier */
759     rawp->begmagic = JREC_BEGMAGIC;
760 
761     journal_commit_wakeup(jo);
762 }
763 
764 /************************************************************************
765  *			TRANSACTION SUPPORT ROUTINES			*
766  ************************************************************************
767  *
768  * JRECORD_*() - routines to create subrecord transactions and embed them
769  *		 in the logical streams managed by the journal_*() routines.
770  */
771 
772 /*
773  * Initialize the passed jrecord structure and start a new stream transaction
774  * by reserving an initial build space in the journal's memory FIFO.
775  */
776 void
777 jrecord_init(struct journal *jo, struct jrecord *jrec, int16_t streamid)
778 {
779     bzero(jrec, sizeof(*jrec));
780     jrec->jo = jo;
781     jrec->streamid = streamid;
782     jrec->stream_residual = JREC_DEFAULTSIZE;
783     jrec->stream_reserved = jrec->stream_residual;
784     jrec->stream_ptr =
785 	journal_reserve(jo, &jrec->rawp, streamid, jrec->stream_reserved);
786 }
787 
788 /*
789  * Push a recursive record type.  All pushes should have matching pops.
790  * The old parent is returned and the newly pushed record becomes the
791  * new parent.  Note that the old parent's pointer may already be invalid
792  * or may become invalid if jrecord_write() had to build a new stream
793  * record, so the caller should not mess with the returned pointer in
794  * any way other then to save it.
795  */
796 struct journal_subrecord *
797 jrecord_push(struct jrecord *jrec, int16_t rectype)
798 {
799     struct journal_subrecord *save;
800 
801     save = jrec->parent;
802     jrec->parent = jrecord_write(jrec, rectype|JMASK_NESTED, 0);
803     jrec->last = NULL;
804     KKASSERT(jrec->parent != NULL);
805     ++jrec->pushcount;
806     ++jrec->pushptrgood;	/* cleared on flush */
807     return(save);
808 }
809 
810 /*
811  * Pop a previously pushed sub-transaction.  We must set JMASK_LAST
812  * on the last record written within the subtransaction.  If the last
813  * record written is not accessible or if the subtransaction is empty,
814  * we must write out a pad record with JMASK_LAST set before popping.
815  *
816  * When popping a subtransaction the parent record's recsize field
817  * will be properly set.  If the parent pointer is no longer valid
818  * (which can occur if the data has already been flushed out to the
819  * stream), the protocol spec allows us to leave it 0.
820  *
821  * The saved parent pointer which we restore may or may not be valid,
822  * and if not valid may or may not be NULL, depending on the value
823  * of pushptrgood.
824  */
825 void
826 jrecord_pop(struct jrecord *jrec, struct journal_subrecord *save)
827 {
828     struct journal_subrecord *last;
829 
830     KKASSERT(jrec->pushcount > 0);
831     KKASSERT(jrec->residual == 0);
832 
833     /*
834      * Set JMASK_LAST on the last record we wrote at the current
835      * level.  If last is NULL we either no longer have access to the
836      * record or the subtransaction was empty and we must write out a pad
837      * record.
838      */
839     if ((last = jrec->last) == NULL) {
840 	jrecord_write(jrec, JLEAF_PAD|JMASK_LAST, 0);
841 	last = jrec->last;	/* reload after possible flush */
842     } else {
843 	last->rectype |= JMASK_LAST;
844     }
845 
846     /*
847      * pushptrgood tells us how many levels of parent record pointers
848      * are valid.  The jrec only stores the current parent record pointer
849      * (and it is only valid if pushptrgood != 0).  The higher level parent
850      * record pointers are saved by the routines calling jrecord_push() and
851      * jrecord_pop().  These pointers may become stale and we determine
852      * that fact by tracking the count of valid parent pointers with
853      * pushptrgood.  Pointers become invalid when their related stream
854      * record gets pushed out.
855      *
856      * If no pointer is available (the data has already been pushed out),
857      * then no fixup of e.g. the length field is possible for non-leaf
858      * nodes.  The protocol allows for this situation by placing a larger
859      * burden on the program scanning the stream on the other end.
860      *
861      * [parentA]
862      *	  [node X]
863      *    [parentB]
864      *	     [node Y]
865      *	     [node Z]
866      *    (pop B)	see NOTE B
867      * (pop A)		see NOTE A
868      *
869      * NOTE B:	This pop sets LAST in node Z if the node is still accessible,
870      *		else a PAD record is appended and LAST is set in that.
871      *
872      *		This pop sets the record size in parentB if parentB is still
873      *		accessible, else the record size is left 0 (the scanner must
874      *		deal with that).
875      *
876      *		This pop sets the new 'last' record to parentB, the pointer
877      *		to which may or may not still be accessible.
878      *
879      * NOTE A:	This pop sets LAST in parentB if the node is still accessible,
880      *		else a PAD record is appended and LAST is set in that.
881      *
882      *		This pop sets the record size in parentA if parentA is still
883      *		accessible, else the record size is left 0 (the scanner must
884      *		deal with that).
885      *
886      *		This pop sets the new 'last' record to parentA, the pointer
887      *		to which may or may not still be accessible.
888      *
889      * Also note that the last record in the stream transaction, which in
890      * the above example is parentA, does not currently have the LAST bit
891      * set.
892      *
893      * The current parent becomes the last record relative to the
894      * saved parent passed into us.  It's validity is based on
895      * whether pushptrgood is non-zero prior to decrementing.  The saved
896      * parent becomes the new parent, and its validity is based on whether
897      * pushptrgood is non-zero after decrementing.
898      *
899      * The old jrec->parent may be NULL if it is no longer accessible.
900      * If pushptrgood is non-zero, however, it is guarenteed to not
901      * be NULL (since no flush occured).
902      */
903     jrec->last = jrec->parent;
904     --jrec->pushcount;
905     if (jrec->pushptrgood) {
906 	KKASSERT(jrec->last != NULL && last != NULL);
907 	if (--jrec->pushptrgood == 0) {
908 	    jrec->parent = NULL;	/* 'save' contains garbage or NULL */
909 	} else {
910 	    KKASSERT(save != NULL);
911 	    jrec->parent = save;	/* 'save' must not be NULL */
912 	}
913 
914 	/*
915 	 * Set the record size in the old parent.  'last' still points to
916 	 * the original last record in the subtransaction being popped,
917 	 * jrec->last points to the old parent (which became the last
918 	 * record relative to the new parent being popped into).
919 	 */
920 	jrec->last->recsize = (char *)last + last->recsize - (char *)jrec->last;
921     } else {
922 	jrec->parent = NULL;
923 	KKASSERT(jrec->last == NULL);
924     }
925 }
926 
927 /*
928  * Write out a leaf record, including associated data.
929  */
930 void
931 jrecord_leaf(struct jrecord *jrec, int16_t rectype, void *ptr, int bytes)
932 {
933     jrecord_write(jrec, rectype, bytes);
934     jrecord_data(jrec, ptr, bytes);
935 }
936 
937 /*
938  * Write a leaf record out and return a pointer to its base.  The leaf
939  * record may contain potentially megabytes of data which is supplied
940  * in jrecord_data() calls.  The exact amount must be specified in this
941  * call.
942  *
943  * THE RETURNED SUBRECORD POINTER IS ONLY VALID IMMEDIATELY AFTER THE
944  * CALL AND MAY BECOME INVALID AT ANY TIME.  ONLY THE PUSH/POP CODE SHOULD
945  * USE THE RETURN VALUE.
946  */
947 struct journal_subrecord *
948 jrecord_write(struct jrecord *jrec, int16_t rectype, int bytes)
949 {
950     struct journal_subrecord *last;
951     int pusheditout;
952 
953     /*
954      * Try to catch some obvious errors.  Nesting records must specify a
955      * size of 0, and there should be no left-overs from previous operations
956      * (such as incomplete data writeouts).
957      */
958     KKASSERT(bytes == 0 || (rectype & JMASK_NESTED) == 0);
959     KKASSERT(jrec->residual == 0);
960 
961     /*
962      * Check to see if the current stream record has enough room for
963      * the new subrecord header.  If it doesn't we extend the current
964      * stream record.
965      *
966      * This may have the side effect of pushing out the current stream record
967      * and creating a new one.  We must adjust our stream tracking fields
968      * accordingly.
969      */
970     if (jrec->stream_residual < sizeof(struct journal_subrecord)) {
971 	jrec->stream_ptr = journal_extend(jrec->jo, &jrec->rawp,
972 				jrec->stream_reserved - jrec->stream_residual,
973 				JREC_DEFAULTSIZE, &pusheditout);
974 	if (pusheditout) {
975 	    /*
976 	     * If a pushout occured, the pushed out stream record was
977 	     * truncated as specified and the new record is exactly the
978 	     * extension size specified.
979 	     */
980 	    jrec->stream_reserved = JREC_DEFAULTSIZE;
981 	    jrec->stream_residual = JREC_DEFAULTSIZE;
982 	    jrec->parent = NULL;	/* no longer accessible */
983 	    jrec->pushptrgood = 0;	/* restored parents in pops no good */
984 	} else {
985 	    /*
986 	     * If no pushout occured the stream record is NOT truncated and
987 	     * IS extended.
988 	     */
989 	    jrec->stream_reserved += JREC_DEFAULTSIZE;
990 	    jrec->stream_residual += JREC_DEFAULTSIZE;
991 	}
992     }
993     last = (void *)jrec->stream_ptr;
994     last->rectype = rectype;
995     last->reserved = 0;
996 
997     /*
998      * We may not know the record size for recursive records and the
999      * header may become unavailable due to limited FIFO space.  Write
1000      * -1 to indicate this special case.
1001      */
1002     if ((rectype & JMASK_NESTED) && bytes == 0)
1003 	last->recsize = -1;
1004     else
1005 	last->recsize = sizeof(struct journal_subrecord) + bytes;
1006     jrec->last = last;
1007     jrec->residual = bytes;		/* remaining data to be posted */
1008     jrec->residual_align = -bytes & 7;	/* post-data alignment required */
1009     jrec->stream_ptr += sizeof(*last);	/* current write pointer */
1010     jrec->stream_residual -= sizeof(*last); /* space remaining in stream */
1011     return(last);
1012 }
1013 
1014 /*
1015  * Write out the data associated with a leaf record.  Any number of calls
1016  * to this routine may be made as long as the byte count adds up to the
1017  * amount originally specified in jrecord_write().
1018  *
1019  * The act of writing out the leaf data may result in numerous stream records
1020  * being pushed out.   Callers should be aware that even the associated
1021  * subrecord header may become inaccessible due to stream record pushouts.
1022  */
1023 void
1024 jrecord_data(struct jrecord *jrec, const void *buf, int bytes)
1025 {
1026     int pusheditout;
1027     int extsize;
1028 
1029     KKASSERT(bytes >= 0 && bytes <= jrec->residual);
1030 
1031     /*
1032      * Push out stream records as long as there is insufficient room to hold
1033      * the remaining data.
1034      */
1035     while (jrec->stream_residual < bytes) {
1036 	/*
1037 	 * Fill in any remaining space in the current stream record.
1038 	 */
1039 	bcopy(buf, jrec->stream_ptr, jrec->stream_residual);
1040 	buf = (const char *)buf + jrec->stream_residual;
1041 	bytes -= jrec->stream_residual;
1042 	/*jrec->stream_ptr += jrec->stream_residual;*/
1043 	jrec->residual -= jrec->stream_residual;
1044 	jrec->stream_residual = 0;
1045 
1046 	/*
1047 	 * Try to extend the current stream record, but no more then 1/4
1048 	 * the size of the FIFO.
1049 	 */
1050 	extsize = jrec->jo->fifo.size >> 2;
1051 	if (extsize > bytes)
1052 	    extsize = (bytes + 15) & ~15;
1053 
1054 	jrec->stream_ptr = journal_extend(jrec->jo, &jrec->rawp,
1055 				jrec->stream_reserved - jrec->stream_residual,
1056 				extsize, &pusheditout);
1057 	if (pusheditout) {
1058 	    jrec->stream_reserved = extsize;
1059 	    jrec->stream_residual = extsize;
1060 	    jrec->parent = NULL;	/* no longer accessible */
1061 	    jrec->last = NULL;		/* no longer accessible */
1062 	    jrec->pushptrgood = 0;	/* restored parents in pops no good */
1063 	} else {
1064 	    jrec->stream_reserved += extsize;
1065 	    jrec->stream_residual += extsize;
1066 	}
1067     }
1068 
1069     /*
1070      * Push out any remaining bytes into the current stream record.
1071      */
1072     if (bytes) {
1073 	bcopy(buf, jrec->stream_ptr, bytes);
1074 	jrec->stream_ptr += bytes;
1075 	jrec->stream_residual -= bytes;
1076 	jrec->residual -= bytes;
1077     }
1078 
1079     /*
1080      * Handle data alignment requirements for the subrecord.  Because the
1081      * stream record's data space is more strictly aligned, it must already
1082      * have sufficient space to hold any subrecord alignment slop.
1083      */
1084     if (jrec->residual == 0 && jrec->residual_align) {
1085 	KKASSERT(jrec->residual_align <= jrec->stream_residual);
1086 	bzero(jrec->stream_ptr, jrec->residual_align);
1087 	jrec->stream_ptr += jrec->residual_align;
1088 	jrec->stream_residual -= jrec->residual_align;
1089 	jrec->residual_align = 0;
1090     }
1091 }
1092 
1093 /*
1094  * We are finished with the transaction.  This closes the transaction created
1095  * by jrecord_init().
1096  *
1097  * NOTE: If abortit is not set then we must be at the top level with no
1098  *	 residual subrecord data left to output.
1099  *
1100  *	 If abortit is set then we can be in any state, all pushes will be
1101  *	 popped and it is ok for there to be residual data.  This works
1102  *	 because the virtual stream itself is truncated.  Scanners must deal
1103  *	 with this situation.
1104  *
1105  * The stream record will be committed or aborted as specified and jrecord
1106  * resources will be cleaned up.
1107  */
1108 void
1109 jrecord_done(struct jrecord *jrec, int abortit)
1110 {
1111     KKASSERT(jrec->rawp != NULL);
1112 
1113     if (abortit) {
1114 	journal_abort(jrec->jo, &jrec->rawp);
1115     } else {
1116 	KKASSERT(jrec->pushcount == 0 && jrec->residual == 0);
1117 	journal_commit(jrec->jo, &jrec->rawp,
1118 			jrec->stream_reserved - jrec->stream_residual, 1);
1119     }
1120 
1121     /*
1122      * jrec should not be used beyond this point without another init,
1123      * but clean up some fields to ensure that we panic if it is.
1124      *
1125      * Note that jrec->rawp is NULLd out by journal_abort/journal_commit.
1126      */
1127     jrec->jo = NULL;
1128     jrec->stream_ptr = NULL;
1129 }
1130 
1131 /************************************************************************
1132  *			LOW LEVEL RECORD SUPPORT ROUTINES		*
1133  ************************************************************************
1134  *
1135  * These routine create low level recursive and leaf subrecords representing
1136  * common filesystem structures.
1137  */
1138 
1139 /*
1140  * Write out a filename path relative to the base of the mount point.
1141  * rectype is typically JLEAF_PATH{1,2,3,4}.
1142  */
1143 void
1144 jrecord_write_path(struct jrecord *jrec, int16_t rectype, struct namecache *ncp)
1145 {
1146     char buf[64];	/* local buffer if it fits, else malloced */
1147     char *base;
1148     int pathlen;
1149     int index;
1150     struct namecache *scan;
1151 
1152     /*
1153      * Pass 1 - figure out the number of bytes required.  Include terminating
1154      * 	       \0 on last element and '/' separator on other elements.
1155      *
1156      * The namecache topology terminates at the root of the filesystem
1157      * (the normal lookup code would then continue by using the mount
1158      * structure to figure out what it was mounted on).
1159      */
1160 again:
1161     pathlen = 0;
1162     for (scan = ncp; scan; scan = scan->nc_parent) {
1163 	if (scan->nc_nlen > 0)
1164 	    pathlen += scan->nc_nlen + 1;
1165     }
1166 
1167     if (pathlen <= sizeof(buf))
1168 	base = buf;
1169     else
1170 	base = kmalloc(pathlen, M_TEMP, M_INTWAIT);
1171 
1172     /*
1173      * Pass 2 - generate the path buffer
1174      */
1175     index = pathlen;
1176     for (scan = ncp; scan; scan = scan->nc_parent) {
1177 	if (scan->nc_nlen == 0)
1178 	    continue;
1179 	if (scan->nc_nlen >= index) {
1180 	    if (base != buf)
1181 		kfree(base, M_TEMP);
1182 	    goto again;
1183 	}
1184 	if (index == pathlen)
1185 	    base[--index] = 0;
1186 	else
1187 	    base[--index] = '/';
1188 	index -= scan->nc_nlen;
1189 	bcopy(scan->nc_name, base + index, scan->nc_nlen);
1190     }
1191     jrecord_leaf(jrec, rectype, base + index, pathlen - index);
1192     if (base != buf)
1193 	kfree(base, M_TEMP);
1194 }
1195 
1196 /*
1197  * Write out a file attribute structure.  While somewhat inefficient, using
1198  * a recursive data structure is the most portable and extensible way.
1199  */
1200 void
1201 jrecord_write_vattr(struct jrecord *jrec, struct vattr *vat)
1202 {
1203     void *save;
1204 
1205     save = jrecord_push(jrec, JTYPE_VATTR);
1206     if (vat->va_type != VNON)
1207 	jrecord_leaf(jrec, JLEAF_VTYPE, &vat->va_type, sizeof(vat->va_type));
1208     if (vat->va_mode != (mode_t)VNOVAL)
1209 	jrecord_leaf(jrec, JLEAF_MODES, &vat->va_mode, sizeof(vat->va_mode));
1210     if (vat->va_nlink != VNOVAL)
1211 	jrecord_leaf(jrec, JLEAF_NLINK, &vat->va_nlink, sizeof(vat->va_nlink));
1212     if (vat->va_uid != VNOVAL)
1213 	jrecord_leaf(jrec, JLEAF_UID, &vat->va_uid, sizeof(vat->va_uid));
1214     if (vat->va_gid != VNOVAL)
1215 	jrecord_leaf(jrec, JLEAF_GID, &vat->va_gid, sizeof(vat->va_gid));
1216     if (vat->va_fsid != VNOVAL)
1217 	jrecord_leaf(jrec, JLEAF_FSID, &vat->va_fsid, sizeof(vat->va_fsid));
1218     if (vat->va_fileid != VNOVAL)
1219 	jrecord_leaf(jrec, JLEAF_INUM, &vat->va_fileid, sizeof(vat->va_fileid));
1220     if (vat->va_size != VNOVAL)
1221 	jrecord_leaf(jrec, JLEAF_SIZE, &vat->va_size, sizeof(vat->va_size));
1222     if (vat->va_atime.tv_sec != VNOVAL)
1223 	jrecord_leaf(jrec, JLEAF_ATIME, &vat->va_atime, sizeof(vat->va_atime));
1224     if (vat->va_mtime.tv_sec != VNOVAL)
1225 	jrecord_leaf(jrec, JLEAF_MTIME, &vat->va_mtime, sizeof(vat->va_mtime));
1226     if (vat->va_ctime.tv_sec != VNOVAL)
1227 	jrecord_leaf(jrec, JLEAF_CTIME, &vat->va_ctime, sizeof(vat->va_ctime));
1228     if (vat->va_gen != VNOVAL)
1229 	jrecord_leaf(jrec, JLEAF_GEN, &vat->va_gen, sizeof(vat->va_gen));
1230     if (vat->va_flags != VNOVAL)
1231 	jrecord_leaf(jrec, JLEAF_FLAGS, &vat->va_flags, sizeof(vat->va_flags));
1232     if (vat->va_rmajor != VNOVAL) {
1233 	udev_t rdev = makeudev(vat->va_rmajor, vat->va_rminor);
1234 	jrecord_leaf(jrec, JLEAF_UDEV, &rdev, sizeof(rdev));
1235 	jrecord_leaf(jrec, JLEAF_UMAJOR, &vat->va_rmajor, sizeof(vat->va_rmajor));
1236 	jrecord_leaf(jrec, JLEAF_UMINOR, &vat->va_rminor, sizeof(vat->va_rminor));
1237     }
1238 #if 0
1239     if (vat->va_filerev != VNOVAL)
1240 	jrecord_leaf(jrec, JLEAF_FILEREV, &vat->va_filerev, sizeof(vat->va_filerev));
1241 #endif
1242     jrecord_pop(jrec, save);
1243 }
1244 
1245 /*
1246  * Write out the creds used to issue a file operation.  If a process is
1247  * available write out additional tracking information related to the
1248  * process.
1249  *
1250  * XXX additional tracking info
1251  * XXX tty line info
1252  */
1253 void
1254 jrecord_write_cred(struct jrecord *jrec, struct thread *td, struct ucred *cred)
1255 {
1256     void *save;
1257     struct proc *p;
1258 
1259     save = jrecord_push(jrec, JTYPE_CRED);
1260     jrecord_leaf(jrec, JLEAF_UID, &cred->cr_uid, sizeof(cred->cr_uid));
1261     jrecord_leaf(jrec, JLEAF_GID, &cred->cr_gid, sizeof(cred->cr_gid));
1262     if (td && (p = td->td_proc) != NULL) {
1263 	jrecord_leaf(jrec, JLEAF_PID, &p->p_pid, sizeof(p->p_pid));
1264 	jrecord_leaf(jrec, JLEAF_COMM, p->p_comm, sizeof(p->p_comm));
1265     }
1266     jrecord_pop(jrec, save);
1267 }
1268 
1269 /*
1270  * Write out information required to identify a vnode
1271  *
1272  * XXX this needs work.  We should write out the inode number as well,
1273  * and in fact avoid writing out the file path for seqential writes
1274  * occuring within e.g. a certain period of time.
1275  */
1276 void
1277 jrecord_write_vnode_ref(struct jrecord *jrec, struct vnode *vp)
1278 {
1279     struct namecache *ncp;
1280 
1281     TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1282 	if ((ncp->nc_flag & (NCF_UNRESOLVED|NCF_DESTROYED)) == 0)
1283 	    break;
1284     }
1285     if (ncp)
1286 	jrecord_write_path(jrec, JLEAF_PATH_REF, ncp);
1287 }
1288 
1289 void
1290 jrecord_write_vnode_link(struct jrecord *jrec, struct vnode *vp,
1291 			 struct namecache *notncp)
1292 {
1293     struct namecache *ncp;
1294 
1295     TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1296 	if (ncp == notncp)
1297 	    continue;
1298 	if ((ncp->nc_flag & (NCF_UNRESOLVED|NCF_DESTROYED)) == 0)
1299 	    break;
1300     }
1301     if (ncp)
1302 	jrecord_write_path(jrec, JLEAF_PATH_REF, ncp);
1303 }
1304 
1305 /*
1306  * Write out the data represented by a pagelist
1307  */
1308 void
1309 jrecord_write_pagelist(struct jrecord *jrec, int16_t rectype,
1310 			struct vm_page **pglist, int *rtvals, int pgcount,
1311 			off_t offset)
1312 {
1313     struct msf_buf *msf;
1314     int error;
1315     int b;
1316     int i;
1317 
1318     i = 0;
1319     while (i < pgcount) {
1320 	/*
1321 	 * Find the next valid section.  Skip any invalid elements
1322 	 */
1323 	if (rtvals[i] != VM_PAGER_OK) {
1324 	    ++i;
1325 	    offset += PAGE_SIZE;
1326 	    continue;
1327 	}
1328 
1329 	/*
1330 	 * Figure out how big the valid section is, capping I/O at what the
1331 	 * MSFBUF can represent.
1332 	 */
1333 	b = i;
1334 	while (i < pgcount && i - b != XIO_INTERNAL_PAGES &&
1335 	       rtvals[i] == VM_PAGER_OK
1336 	) {
1337 	    ++i;
1338 	}
1339 
1340 	/*
1341 	 * And write it out.
1342 	 */
1343 	if (i - b) {
1344 	    error = msf_map_pagelist(&msf, pglist + b, i - b, 0);
1345 	    if (error == 0) {
1346 		kprintf("RECORD PUTPAGES %d\n", msf_buf_bytes(msf));
1347 		jrecord_leaf(jrec, JLEAF_SEEKPOS, &offset, sizeof(offset));
1348 		jrecord_leaf(jrec, rectype,
1349 			     msf_buf_kva(msf), msf_buf_bytes(msf));
1350 		msf_buf_free(msf);
1351 	    } else {
1352 		kprintf("jrecord_write_pagelist: mapping failure\n");
1353 	    }
1354 	    offset += (off_t)(i - b) << PAGE_SHIFT;
1355 	}
1356     }
1357 }
1358 
1359 /*
1360  * Write out the data represented by a UIO.
1361  */
1362 struct jwuio_info {
1363     struct jrecord *jrec;
1364     int16_t rectype;
1365 };
1366 
1367 static int jrecord_write_uio_callback(void *info, char *buf, int bytes);
1368 
1369 void
1370 jrecord_write_uio(struct jrecord *jrec, int16_t rectype, struct uio *uio)
1371 {
1372     struct jwuio_info info = { jrec, rectype };
1373     int error;
1374 
1375     if (uio->uio_segflg != UIO_NOCOPY) {
1376 	jrecord_leaf(jrec, JLEAF_SEEKPOS, &uio->uio_offset,
1377 		     sizeof(uio->uio_offset));
1378 	error = msf_uio_iterate(uio, jrecord_write_uio_callback, &info);
1379 	if (error)
1380 	    kprintf("XXX warning uio iterate failed %d\n", error);
1381     }
1382 }
1383 
1384 static int
1385 jrecord_write_uio_callback(void *info_arg, char *buf, int bytes)
1386 {
1387     struct jwuio_info *info = info_arg;
1388 
1389     jrecord_leaf(info->jrec, info->rectype, buf, bytes);
1390     return(0);
1391 }
1392 
1393 void
1394 jrecord_file_data(struct jrecord *jrec, struct vnode *vp,
1395 		  off_t off, off_t bytes)
1396 {
1397     const int bufsize = 8192;
1398     char *buf;
1399     int error;
1400     int n;
1401 
1402     buf = kmalloc(bufsize, M_JOURNAL, M_WAITOK);
1403     jrecord_leaf(jrec, JLEAF_SEEKPOS, &off, sizeof(off));
1404     while (bytes) {
1405 	n = (bytes > bufsize) ? bufsize : (int)bytes;
1406 	error = vn_rdwr(UIO_READ, vp, buf, n, off, UIO_SYSSPACE, IO_NODELOCKED,
1407 			proc0.p_ucred, NULL);
1408 	if (error) {
1409 	    jrecord_leaf(jrec, JLEAF_ERROR, &error, sizeof(error));
1410 	    break;
1411 	}
1412 	jrecord_leaf(jrec, JLEAF_FILEDATA, buf, n);
1413 	bytes -= n;
1414 	off += n;
1415     }
1416     kfree(buf, M_JOURNAL);
1417 }
1418 
1419