xref: /dragonfly/sys/kern/vfs_lock.c (revision 04277bb2)
1 /*
2  * Copyright (c) 2004,2013-2017 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * External lock/ref-related vnode functions
37  *
38  * vs_state transition locking requirements:
39  *
40  *	INACTIVE -> CACHED|DYING	vx_lock(excl) + vi->spin
41  *	DYING    -> CACHED		vx_lock(excl)
42  *	ACTIVE   -> INACTIVE		(none)       + v_spin + vi->spin
43  *	INACTIVE -> ACTIVE		vn_lock(any) + v_spin + vi->spin
44  *	CACHED   -> ACTIVE		vn_lock(any) + v_spin + vi->spin
45  *
46  * NOTE: Switching to/from ACTIVE/INACTIVE requires v_spin and vi->spin,
47  *
48  *	 Switching into ACTIVE also requires a vref and vnode lock, however
49  *	 the vnode lock is allowed to be SHARED.
50  *
51  *	 Switching into a CACHED or DYING state requires an exclusive vnode
52  *	 lock or vx_lock (which is almost the same thing but not quite).
53  */
54 
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/malloc.h>
59 #include <sys/mount.h>
60 #include <sys/proc.h>
61 #include <sys/vnode.h>
62 #include <sys/spinlock2.h>
63 #include <sys/sysctl.h>
64 
65 #include <machine/limits.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_object.h>
69 
70 #define VACT_MAX	10
71 #define VACT_INC	2
72 
73 static void vnode_terminate(struct vnode *vp);
74 
75 static MALLOC_DEFINE(M_VNODE, "vnodes", "vnode structures");
76 
77 /*
78  * The vnode free list hold inactive vnodes.  Aged inactive vnodes
79  * are inserted prior to the mid point, and otherwise inserted
80  * at the tail.
81  *
82  * The vnode code goes to great lengths to avoid moving vnodes between
83  * lists, but sometimes it is unavoidable.  For this situation we try to
84  * avoid lock contention but we do not try very hard to avoid cache line
85  * congestion.  A modestly sized hash table is used.
86  */
87 #define VLIST_PRIME2	123462047LU
88 #define VLIST_XOR	(uintptr_t)0xab4582fa8322fb71LLU
89 
90 #define VLIST_HASH(vp)	(((uintptr_t)vp ^ VLIST_XOR) % \
91 			 VLIST_PRIME2 % (unsigned)ncpus)
92 
93 static struct vnode_index *vnode_list_hash;
94 
95 int  activevnodes = 0;
96 SYSCTL_INT(_debug, OID_AUTO, activevnodes, CTLFLAG_RD,
97 	&activevnodes, 0, "Number of active nodes");
98 int  cachedvnodes = 0;
99 SYSCTL_INT(_debug, OID_AUTO, cachedvnodes, CTLFLAG_RD,
100 	&cachedvnodes, 0, "Number of total cached nodes");
101 int  inactivevnodes = 0;
102 SYSCTL_INT(_debug, OID_AUTO, inactivevnodes, CTLFLAG_RD,
103 	&inactivevnodes, 0, "Number of inactive nodes");
104 static int batchfreevnodes = 5;
105 SYSCTL_INT(_debug, OID_AUTO, batchfreevnodes, CTLFLAG_RW,
106 	&batchfreevnodes, 0, "Number of vnodes to free at once");
107 #ifdef TRACKVNODE
108 static u_long trackvnode;
109 SYSCTL_ULONG(_debug, OID_AUTO, trackvnode, CTLFLAG_RW,
110 		&trackvnode, 0, "");
111 #endif
112 
113 /*
114  * Called from vfsinit()
115  */
116 void
117 vfs_lock_init(void)
118 {
119 	int i;
120 
121 	kmalloc_raise_limit(M_VNODE, 0);	/* unlimited */
122 	vnode_list_hash = kmalloc(sizeof(*vnode_list_hash) * ncpus,
123 				  M_VNODE, M_ZERO | M_WAITOK);
124 	for (i = 0; i < ncpus; ++i) {
125 		struct vnode_index *vi = &vnode_list_hash[i];
126 
127 		TAILQ_INIT(&vi->inactive_list);
128 		TAILQ_INIT(&vi->active_list);
129 		TAILQ_INSERT_TAIL(&vi->active_list, &vi->active_rover, v_list);
130 		spin_init(&vi->spin, "vfslock");
131 	}
132 }
133 
134 /*
135  * Misc functions
136  */
137 static __inline
138 void
139 _vsetflags(struct vnode *vp, int flags)
140 {
141 	atomic_set_int(&vp->v_flag, flags);
142 }
143 
144 static __inline
145 void
146 _vclrflags(struct vnode *vp, int flags)
147 {
148 	atomic_clear_int(&vp->v_flag, flags);
149 }
150 
151 void
152 vsetflags(struct vnode *vp, int flags)
153 {
154 	_vsetflags(vp, flags);
155 }
156 
157 void
158 vclrflags(struct vnode *vp, int flags)
159 {
160 	_vclrflags(vp, flags);
161 }
162 
163 /*
164  * Place the vnode on the active list.
165  *
166  * Caller must hold vp->v_spin
167  */
168 static __inline
169 void
170 _vactivate(struct vnode *vp)
171 {
172 	struct vnode_index *vi = &vnode_list_hash[VLIST_HASH(vp)];
173 
174 #ifdef TRACKVNODE
175 	if ((u_long)vp == trackvnode)
176 		kprintf("_vactivate %p %08x\n", vp, vp->v_flag);
177 #endif
178 	spin_lock(&vi->spin);
179 
180 	switch(vp->v_state) {
181 	case VS_ACTIVE:
182 		spin_unlock(&vi->spin);
183 		panic("_vactivate: already active");
184 		/* NOT REACHED */
185 		return;
186 	case VS_INACTIVE:
187 		TAILQ_REMOVE(&vi->inactive_list, vp, v_list);
188 		atomic_add_int(&mycpu->gd_inactivevnodes, -1);
189 		break;
190 	case VS_CACHED:
191 	case VS_DYING:
192 		break;
193 	}
194 	TAILQ_INSERT_TAIL(&vi->active_list, vp, v_list);
195 	vp->v_state = VS_ACTIVE;
196 	spin_unlock(&vi->spin);
197 	atomic_add_int(&mycpu->gd_activevnodes, 1);
198 }
199 
200 /*
201  * Put a vnode on the inactive list.
202  *
203  * Caller must hold v_spin
204  */
205 static __inline
206 void
207 _vinactive(struct vnode *vp)
208 {
209 	struct vnode_index *vi = &vnode_list_hash[VLIST_HASH(vp)];
210 
211 #ifdef TRACKVNODE
212 	if ((u_long)vp == trackvnode) {
213 		kprintf("_vinactive %p %08x\n", vp, vp->v_flag);
214 		print_backtrace(-1);
215 	}
216 #endif
217 	spin_lock(&vi->spin);
218 
219 	/*
220 	 * Remove from active list if it is sitting on it
221 	 */
222 	switch(vp->v_state) {
223 	case VS_ACTIVE:
224 		TAILQ_REMOVE(&vi->active_list, vp, v_list);
225 		atomic_add_int(&mycpu->gd_activevnodes, -1);
226 		break;
227 	case VS_INACTIVE:
228 		spin_unlock(&vi->spin);
229 		panic("_vinactive: already inactive");
230 		/* NOT REACHED */
231 		return;
232 	case VS_CACHED:
233 	case VS_DYING:
234 		break;
235 	}
236 
237 	/*
238 	 * Distinguish between basically dead vnodes, vnodes with cached
239 	 * data, and vnodes without cached data.  A rover will shift the
240 	 * vnodes around as their cache status is lost.
241 	 */
242 	if (vp->v_flag & VRECLAIMED) {
243 		TAILQ_INSERT_HEAD(&vi->inactive_list, vp, v_list);
244 	} else {
245 		TAILQ_INSERT_TAIL(&vi->inactive_list, vp, v_list);
246 	}
247 	vp->v_state = VS_INACTIVE;
248 	spin_unlock(&vi->spin);
249 	atomic_add_int(&mycpu->gd_inactivevnodes, 1);
250 }
251 
252 /*
253  * Add a ref to an active vnode.  This function should never be called
254  * with an inactive vnode (use vget() instead), but might be called
255  * with other states.
256  */
257 void
258 vref(struct vnode *vp)
259 {
260 	KASSERT((VREFCNT(vp) > 0 && vp->v_state != VS_INACTIVE),
261 		("vref: bad refcnt %08x %d", vp->v_refcnt, vp->v_state));
262 	atomic_add_int(&vp->v_refcnt, 1);
263 }
264 
265 void
266 vref_special(struct vnode *vp)
267 {
268 	if ((atomic_fetchadd_int(&vp->v_refcnt, 1) & VREF_MASK) == 0)
269 		atomic_add_int(&mycpu->gd_cachedvnodes, -1);
270 }
271 
272 void
273 synchronizevnodecount(void)
274 {
275 	int nca = 0;
276 	int act = 0;
277 	int ina = 0;
278 	int i;
279 
280 	for (i = 0; i < ncpus; ++i) {
281 		globaldata_t gd = globaldata_find(i);
282 		nca += gd->gd_cachedvnodes;
283 		act += gd->gd_activevnodes;
284 		ina += gd->gd_inactivevnodes;
285 	}
286 	cachedvnodes = nca;
287 	activevnodes = act;
288 	inactivevnodes = ina;
289 }
290 
291 /*
292  * Count number of cached vnodes.  This is middling expensive so be
293  * careful not to make this call in the critical path.  Each cpu tracks
294  * its own accumulator.  The individual accumulators must be summed
295  * together to get an accurate value.
296  */
297 int
298 countcachedvnodes(void)
299 {
300 	int i;
301 	int n = 0;
302 
303 	for (i = 0; i < ncpus; ++i) {
304 		globaldata_t gd = globaldata_find(i);
305 		n += gd->gd_cachedvnodes;
306 	}
307 	return n;
308 }
309 
310 int
311 countcachedandinactivevnodes(void)
312 {
313 	int i;
314 	int n = 0;
315 
316 	for (i = 0; i < ncpus; ++i) {
317 		globaldata_t gd = globaldata_find(i);
318 		n += gd->gd_cachedvnodes + gd->gd_inactivevnodes;
319 	}
320 	return n;
321 }
322 
323 /*
324  * Release a ref on an active or inactive vnode.
325  *
326  * Caller has no other requirements.
327  *
328  * If VREF_FINALIZE is set this will deactivate the vnode on the 1->0
329  * transition, otherwise we leave the vnode in the active list and
330  * do a lockless transition to 0, which is very important for the
331  * critical path.
332  *
333  * (vrele() is not called when a vnode is being destroyed w/kfree)
334  */
335 void
336 vrele(struct vnode *vp)
337 {
338 	int count;
339 
340 #if 1
341 	count = vp->v_refcnt;
342 	cpu_ccfence();
343 
344 	for (;;) {
345 		KKASSERT((count & VREF_MASK) > 0);
346 		KKASSERT(vp->v_state == VS_ACTIVE ||
347 			 vp->v_state == VS_INACTIVE);
348 
349 		/*
350 		 * 2+ case
351 		 */
352 		if ((count & VREF_MASK) > 1) {
353 			if (atomic_fcmpset_int(&vp->v_refcnt,
354 					       &count, count - 1)) {
355 				break;
356 			}
357 			continue;
358 		}
359 
360 		/*
361 		 * 1->0 transition case must handle possible finalization.
362 		 * When finalizing we transition 1->0x40000000.  Note that
363 		 * cachedvnodes is only adjusted on transitions to ->0.
364 		 *
365 		 * WARNING! VREF_TERMINATE can be cleared at any point
366 		 *	    when the refcnt is non-zero (by vget()) and
367 		 *	    the vnode has not been reclaimed.  Thus
368 		 *	    transitions out of VREF_TERMINATE do not have
369 		 *	    to mess with cachedvnodes.
370 		 */
371 		if (count & VREF_FINALIZE) {
372 			vx_lock(vp);
373 			if (atomic_fcmpset_int(&vp->v_refcnt,
374 					      &count, VREF_TERMINATE)) {
375 				vnode_terminate(vp);
376 				break;
377 			}
378 			vx_unlock(vp);
379 		} else {
380 			if (atomic_fcmpset_int(&vp->v_refcnt, &count, 0)) {
381 				atomic_add_int(&mycpu->gd_cachedvnodes, 1);
382 				break;
383 			}
384 		}
385 		cpu_pause();
386 		/* retry */
387 	}
388 #else
389 	/*
390 	 * XXX NOT YET WORKING!  Multiple threads can reference the vnode
391 	 * after dropping their count, racing destruction, because this
392 	 * code is not directly transitioning from 1->VREF_FINALIZE.
393 	 */
394         /*
395          * Drop the ref-count.  On the 1->0 transition we check VREF_FINALIZE
396          * and attempt to acquire VREF_TERMINATE if set.  It is possible for
397          * concurrent vref/vrele to race and bounce 0->1, 1->0, etc, but
398          * only one will be able to transition the vnode into the
399          * VREF_TERMINATE state.
400          *
401          * NOTE: VREF_TERMINATE is *in* VREF_MASK, so the vnode may only enter
402          *       this state once.
403          */
404         count = atomic_fetchadd_int(&vp->v_refcnt, -1);
405         if ((count & VREF_MASK) == 1) {
406                 atomic_add_int(&mycpu->gd_cachedvnodes, 1);
407                 --count;
408                 while ((count & (VREF_MASK | VREF_FINALIZE)) == VREF_FINALIZE) {
409                         vx_lock(vp);
410                         if (atomic_fcmpset_int(&vp->v_refcnt,
411                                                &count, VREF_TERMINATE)) {
412                                 atomic_add_int(&mycpu->gd_cachedvnodes, -1);
413                                 vnode_terminate(vp);
414                                 break;
415                         }
416                         vx_unlock(vp);
417                 }
418         }
419 #endif
420 }
421 
422 /*
423  * Add an auxiliary data structure reference to the vnode.  Auxiliary
424  * references do not change the state of the vnode or prevent deactivation
425  * or reclamation of the vnode, but will prevent the vnode from being
426  * destroyed (kfree()'d).
427  *
428  * WARNING!  vhold() must not acquire v_spin.  The spinlock may or may not
429  *	     already be held by the caller.  vdrop() will clean up the
430  *	     free list state.
431  */
432 void
433 vhold(struct vnode *vp)
434 {
435 	atomic_add_int(&vp->v_auxrefs, 1);
436 }
437 
438 /*
439  * Remove an auxiliary reference from the vnode.
440  */
441 void
442 vdrop(struct vnode *vp)
443 {
444 	atomic_add_int(&vp->v_auxrefs, -1);
445 }
446 
447 /*
448  * This function is called on the 1->0 transition (which is actually
449  * 1->VREF_TERMINATE) when VREF_FINALIZE is set, forcing deactivation
450  * of the vnode.
451  *
452  * Additional vrefs are allowed to race but will not result in a reentrant
453  * call to vnode_terminate() due to refcnt being VREF_TERMINATE.  This
454  * prevents additional 1->0 transitions.
455  *
456  * ONLY A VGET() CAN REACTIVATE THE VNODE.
457  *
458  * Caller must hold the VX lock.
459  *
460  * NOTE: v_mount may be NULL due to assigmment to dead_vnode_vops
461  *
462  * NOTE: The vnode may be marked inactive with dirty buffers
463  *	 or dirty pages in its cached VM object still present.
464  *
465  * NOTE: VS_FREE should not be set on entry (the vnode was expected to
466  *	 previously be active).  We lose control of the vnode the instant
467  *	 it is placed on the free list.
468  *
469  *	 The VX lock is required when transitioning to VS_CACHED but is
470  *	 not sufficient for the vshouldfree() interlocked test or when
471  *	 transitioning away from VS_CACHED.  v_spin is also required for
472  *	 those cases.
473  */
474 static
475 void
476 vnode_terminate(struct vnode *vp)
477 {
478 	KKASSERT(vp->v_state == VS_ACTIVE);
479 
480 	if ((vp->v_flag & VINACTIVE) == 0) {
481 		_vsetflags(vp, VINACTIVE);
482 		if (vp->v_mount)
483 			VOP_INACTIVE(vp);
484 	}
485 	spin_lock(&vp->v_spin);
486 	_vinactive(vp);
487 	spin_unlock(&vp->v_spin);
488 
489 	vx_unlock(vp);
490 }
491 
492 /****************************************************************
493  *			VX LOCKING FUNCTIONS			*
494  ****************************************************************
495  *
496  * These functions lock vnodes for reclamation and deactivation related
497  * activities.  The caller must already be holding some sort of reference
498  * on the vnode.
499  */
500 void
501 vx_lock(struct vnode *vp)
502 {
503 	lockmgr(&vp->v_lock, LK_EXCLUSIVE);
504 	spin_lock_update_only(&vp->v_spin);
505 }
506 
507 void
508 vx_unlock(struct vnode *vp)
509 {
510 	spin_unlock_update_only(&vp->v_spin);
511 	lockmgr(&vp->v_lock, LK_RELEASE);
512 }
513 
514 /*
515  * Downgrades a VX lock to a normal VN lock.  The lock remains EXCLUSIVE.
516  *
517  * Generally required after calling getnewvnode() if the intention is
518  * to return a normal locked vnode to the caller.
519  */
520 void
521 vx_downgrade(struct vnode *vp)
522 {
523 	spin_unlock_update_only(&vp->v_spin);
524 }
525 
526 /****************************************************************
527  *			VNODE ACQUISITION FUNCTIONS		*
528  ****************************************************************
529  *
530  * These functions must be used when accessing a vnode that has no
531  * chance of being destroyed in a SMP race.  That means the caller will
532  * usually either hold an auxiliary reference (such as the namecache)
533  * or hold some other lock that ensures that the vnode cannot be destroyed.
534  *
535  * These functions are MANDATORY for any code chain accessing a vnode
536  * whos activation state is not known.
537  *
538  * vget() can be called with LK_NOWAIT and will return EBUSY if the
539  * lock cannot be immediately acquired.
540  *
541  * vget()/vput() are used when reactivation is desired.
542  *
543  * vx_get() and vx_put() are used when reactivation is not desired.
544  */
545 int
546 vget(struct vnode *vp, int flags)
547 {
548 	int error;
549 
550 	/*
551 	 * A lock type must be passed
552 	 */
553 	if ((flags & LK_TYPE_MASK) == 0) {
554 		panic("vget() called with no lock specified!");
555 		/* NOT REACHED */
556 	}
557 
558 	/*
559 	 * Reference the structure and then acquire the lock.
560 	 *
561 	 * NOTE: The requested lock might be a shared lock and does
562 	 *	 not protect our access to the refcnt or other fields.
563 	 */
564 	if ((atomic_fetchadd_int(&vp->v_refcnt, 1) & VREF_MASK) == 0)
565 		atomic_add_int(&mycpu->gd_cachedvnodes, -1);
566 
567 	if ((error = vn_lock(vp, flags | LK_FAILRECLAIM)) != 0) {
568 		/*
569 		 * The lock failed, undo and return an error.  This will not
570 		 * normally trigger a termination.
571 		 */
572 		vrele(vp);
573 	} else if (vp->v_flag & VRECLAIMED) {
574 		/*
575 		 * The node is being reclaimed and cannot be reactivated
576 		 * any more, undo and return ENOENT.
577 		 */
578 		vn_unlock(vp);
579 		vrele(vp);
580 		error = ENOENT;
581 	} else if (vp->v_state == VS_ACTIVE) {
582 		/*
583 		 * A VS_ACTIVE vnode coupled with the fact that we have
584 		 * a vnode lock (even if shared) prevents v_state from
585 		 * changing.  Since the vnode is not in a VRECLAIMED state,
586 		 * we can safely clear VINACTIVE.
587 		 *
588 		 * It is possible for a shared lock to cause a race with
589 		 * another thread that is also in the process of clearing
590 		 * VREF_TERMINATE, meaning that we might return with it still
591 		 * set and then assert in a later vref().  The solution is to
592 		 * unconditionally clear VREF_TERMINATE here as well.
593 		 *
594 		 * NOTE! Multiple threads may clear VINACTIVE if this is
595 		 *	 shared lock.  This race is allowed.
596 		 */
597 		if (vp->v_flag & VINACTIVE)
598 			_vclrflags(vp, VINACTIVE);	/* SMP race ok */
599 		if (vp->v_act < VACT_MAX) {
600 			vp->v_act += VACT_INC;
601 			if (vp->v_act > VACT_MAX)	/* SMP race ok */
602 				vp->v_act = VACT_MAX;
603 		}
604 		error = 0;
605 		if (vp->v_refcnt & VREF_TERMINATE)	/* SMP race ok */
606 			atomic_clear_int(&vp->v_refcnt, VREF_TERMINATE);
607 	} else {
608 		/*
609 		 * If the vnode is not VS_ACTIVE it must be reactivated
610 		 * in addition to clearing VINACTIVE.  An exclusive spin_lock
611 		 * is needed to manipulate the vnode's list.
612 		 *
613 		 * Because the lockmgr lock might be shared, we might race
614 		 * another reactivation, which we handle.  In this situation,
615 		 * however, the refcnt prevents other v_state races.
616 		 *
617 		 * As with above, clearing VINACTIVE is allowed to race other
618 		 * clearings of VINACTIVE.
619 		 *
620 		 * VREF_TERMINATE and VREF_FINALIZE can only be cleared when
621 		 * the refcnt is non-zero and the vnode has not been
622 		 * reclaimed.  This also means that the transitions do
623 		 * not affect cachedvnodes.
624 		 *
625 		 * It is possible for a shared lock to cause a race with
626 		 * another thread that is also in the process of clearing
627 		 * VREF_TERMINATE, meaning that we might return with it still
628 		 * set and then assert in a later vref().  The solution is to
629 		 * unconditionally clear VREF_TERMINATE here as well.
630 		 */
631 		_vclrflags(vp, VINACTIVE);
632 		vp->v_act += VACT_INC;
633 		if (vp->v_act > VACT_MAX)	/* SMP race ok */
634 			vp->v_act = VACT_MAX;
635 		spin_lock(&vp->v_spin);
636 
637 		switch(vp->v_state) {
638 		case VS_INACTIVE:
639 			_vactivate(vp);
640 			atomic_clear_int(&vp->v_refcnt, VREF_TERMINATE |
641 							VREF_FINALIZE);
642 			spin_unlock(&vp->v_spin);
643 			break;
644 		case VS_CACHED:
645 			_vactivate(vp);
646 			atomic_clear_int(&vp->v_refcnt, VREF_TERMINATE |
647 							VREF_FINALIZE);
648 			spin_unlock(&vp->v_spin);
649 			break;
650 		case VS_ACTIVE:
651 			atomic_clear_int(&vp->v_refcnt, VREF_FINALIZE |
652 							VREF_TERMINATE);
653 			spin_unlock(&vp->v_spin);
654 			break;
655 		case VS_DYING:
656 			spin_unlock(&vp->v_spin);
657 			panic("Impossible VS_DYING state");
658 			break;
659 		}
660 		error = 0;
661 	}
662 	return(error);
663 }
664 
665 #ifdef DEBUG_VPUT
666 
667 void
668 debug_vput(struct vnode *vp, const char *filename, int line)
669 {
670 	kprintf("vput(%p) %s:%d\n", vp, filename, line);
671 	vn_unlock(vp);
672 	vrele(vp);
673 }
674 
675 #else
676 
677 void
678 vput(struct vnode *vp)
679 {
680 	vn_unlock(vp);
681 	vrele(vp);
682 }
683 
684 #endif
685 
686 /*
687  * Acquire the vnode lock unguarded.
688  *
689  * The non-blocking version also uses a slightly different mechanic.
690  * This function will explicitly fail not only if it cannot acquire
691  * the lock normally, but also if the caller already holds a lock.
692  *
693  * The adjusted mechanic is used to close a loophole where complex
694  * VOP_RECLAIM code can circle around recursively and allocate the
695  * same vnode it is trying to destroy from the freelist.
696  *
697  * Any filesystem (aka UFS) which puts LK_CANRECURSE in lk_flags can
698  * cause the incorrect behavior to occur.  If not for that lockmgr()
699  * would do the right thing.
700  *
701  * XXX The vx_*() locks should use auxrefs, not the main reference counter.
702  */
703 void
704 vx_get(struct vnode *vp)
705 {
706 	if ((atomic_fetchadd_int(&vp->v_refcnt, 1) & VREF_MASK) == 0)
707 		atomic_add_int(&mycpu->gd_cachedvnodes, -1);
708 	lockmgr(&vp->v_lock, LK_EXCLUSIVE);
709 	spin_lock_update_only(&vp->v_spin);
710 }
711 
712 int
713 vx_get_nonblock(struct vnode *vp)
714 {
715 	int error;
716 
717 	if (lockinuse(&vp->v_lock))
718 		return(EBUSY);
719 	error = lockmgr(&vp->v_lock, LK_EXCLUSIVE | LK_NOWAIT);
720 	if (error == 0) {
721 		spin_lock_update_only(&vp->v_spin);
722 		if ((atomic_fetchadd_int(&vp->v_refcnt, 1) & VREF_MASK) == 0)
723 			atomic_add_int(&mycpu->gd_cachedvnodes, -1);
724 	}
725 	return(error);
726 }
727 
728 /*
729  * Release a VX lock that also held a ref on the vnode.  vrele() will handle
730  * any needed state transitions.
731  *
732  * However, filesystems use this function to get rid of unwanted new vnodes
733  * so try to get the vnode on the correct queue in that case.
734  */
735 void
736 vx_put(struct vnode *vp)
737 {
738 	if (vp->v_type == VNON || vp->v_type == VBAD)
739 		atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
740 	spin_unlock_update_only(&vp->v_spin);
741 	lockmgr(&vp->v_lock, LK_RELEASE);
742 	vrele(vp);
743 }
744 
745 /*
746  * Try to reuse a vnode from the free list.  This function is somewhat
747  * advisory in that NULL can be returned as a normal case, even if free
748  * vnodes are present.
749  *
750  * The scan is limited because it can result in excessive CPU use during
751  * periods of extreme vnode use.
752  *
753  * NOTE: The returned vnode is not completely initialized.
754  *	 The returned vnode will be VX locked.
755  */
756 static
757 struct vnode *
758 cleanfreevnode(int maxcount)
759 {
760 	struct vnode_index *vi;
761 	struct vnode *vp;
762 	int count;
763 	int trigger = (long)vmstats.v_page_count / (activevnodes * 2 + 1);
764 	int ri;
765 	int cpu_count;
766 
767 	/*
768 	 * Try to deactivate some vnodes cached on the active list.
769 	 */
770 	if (countcachedvnodes() < inactivevnodes)
771 		goto skip;
772 
773 	ri = vnode_list_hash[mycpu->gd_cpuid].deac_rover + 1;
774 
775 	for (count = 0; count < maxcount * 2; ++count, ++ri) {
776 		vi = &vnode_list_hash[((unsigned)ri >> 4) % ncpus];
777 
778 		spin_lock(&vi->spin);
779 
780 		vp = TAILQ_NEXT(&vi->active_rover, v_list);
781 		TAILQ_REMOVE(&vi->active_list, &vi->active_rover, v_list);
782 		if (vp == NULL) {
783 			TAILQ_INSERT_HEAD(&vi->active_list,
784 					  &vi->active_rover, v_list);
785 		} else {
786 			TAILQ_INSERT_AFTER(&vi->active_list, vp,
787 					   &vi->active_rover, v_list);
788 		}
789 		if (vp == NULL) {
790 			spin_unlock(&vi->spin);
791 			continue;
792 		}
793 		if ((vp->v_refcnt & VREF_MASK) != 0) {
794 			spin_unlock(&vi->spin);
795 			vp->v_act += VACT_INC;
796 			if (vp->v_act > VACT_MAX)	/* SMP race ok */
797 				vp->v_act = VACT_MAX;
798 			continue;
799 		}
800 
801 		/*
802 		 * decrement by less if the vnode's object has a lot of
803 		 * VM pages.  XXX possible SMP races.
804 		 */
805 		if (vp->v_act > 0) {
806 			vm_object_t obj;
807 			if ((obj = vp->v_object) != NULL &&
808 			    obj->resident_page_count >= trigger) {
809 				vp->v_act -= 1;
810 			} else {
811 				vp->v_act -= VACT_INC;
812 			}
813 			if (vp->v_act < 0)
814 				vp->v_act = 0;
815 			spin_unlock(&vi->spin);
816 			continue;
817 		}
818 
819 		/*
820 		 * Try to deactivate the vnode.
821 		 */
822 		if ((atomic_fetchadd_int(&vp->v_refcnt, 1) & VREF_MASK) == 0)
823 			atomic_add_int(&mycpu->gd_cachedvnodes, -1);
824 		atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
825 
826 		spin_unlock(&vi->spin);
827 		vrele(vp);
828 	}
829 
830 	vnode_list_hash[mycpu->gd_cpuid].deac_rover = ri;
831 
832 skip:
833 	/*
834 	 * Loop trying to lock the first vnode on the free list.
835 	 * Cycle if we can't.
836 	 */
837 	cpu_count = ncpus;
838 	ri = vnode_list_hash[mycpu->gd_cpuid].free_rover + 1;
839 
840 	for (count = 0; count < maxcount; ++count, ++ri) {
841 		vi = &vnode_list_hash[((unsigned)ri >> 4) % ncpus];
842 
843 		spin_lock(&vi->spin);
844 
845 		vp = TAILQ_FIRST(&vi->inactive_list);
846 		if (vp == NULL) {
847 			spin_unlock(&vi->spin);
848 			if (--cpu_count == 0)
849 				break;
850 			ri = (ri + 16) & ~15;
851 			--ri;
852 			continue;
853 		}
854 
855 		/*
856 		 * non-blocking vx_get will also ref the vnode on success.
857 		 */
858 		if (vx_get_nonblock(vp)) {
859 			KKASSERT(vp->v_state == VS_INACTIVE);
860 			TAILQ_REMOVE(&vi->inactive_list, vp, v_list);
861 			TAILQ_INSERT_TAIL(&vi->inactive_list, vp, v_list);
862 			spin_unlock(&vi->spin);
863 			continue;
864 		}
865 
866 		/*
867 		 * Because we are holding vfs_spin the vnode should currently
868 		 * be inactive and VREF_TERMINATE should still be set.
869 		 *
870 		 * Once vfs_spin is released the vnode's state should remain
871 		 * unmodified due to both the lock and ref on it.
872 		 */
873 		KKASSERT(vp->v_state == VS_INACTIVE);
874 		spin_unlock(&vi->spin);
875 #ifdef TRACKVNODE
876 		if ((u_long)vp == trackvnode)
877 			kprintf("cleanfreevnode %p %08x\n", vp, vp->v_flag);
878 #endif
879 
880 		/*
881 		 * Do not reclaim/reuse a vnode while auxillary refs exists.
882 		 * This includes namecache refs due to a related ncp being
883 		 * locked or having children, a VM object association, or
884 		 * other hold users.
885 		 *
886 		 * Do not reclaim/reuse a vnode if someone else has a real
887 		 * ref on it.  This can occur if a filesystem temporarily
888 		 * releases the vnode lock during VOP_RECLAIM.
889 		 */
890 		if (vp->v_auxrefs != vp->v_namecache_count ||
891 		    (vp->v_refcnt & ~VREF_FINALIZE) != VREF_TERMINATE + 1) {
892 failed:
893 			if (vp->v_state == VS_INACTIVE) {
894 				spin_lock(&vi->spin);
895 				if (vp->v_state == VS_INACTIVE) {
896 					TAILQ_REMOVE(&vi->inactive_list,
897 						     vp, v_list);
898 					TAILQ_INSERT_TAIL(&vi->inactive_list,
899 							  vp, v_list);
900 				}
901 				spin_unlock(&vi->spin);
902 			}
903 			vx_put(vp);
904 			continue;
905 		}
906 
907 		/*
908 		 * VINACTIVE and VREF_TERMINATE are expected to both be set
909 		 * for vnodes pulled from the inactive list, and cannot be
910 		 * changed while we hold the vx lock.
911 		 *
912 		 * Try to reclaim the vnode.
913 		 *
914 		 * The cache_inval_vp() can fail if any of the namecache
915 		 * elements are actively locked, preventing the vnode from
916 		 * bring reclaimed.  This is desired operation as it gives
917 		 * the namecache code certain guarantees just by holding
918 		 * a ncp.
919 		 */
920 		KKASSERT(vp->v_flag & VINACTIVE);
921 		KKASSERT(vp->v_refcnt & VREF_TERMINATE);
922 
923 		if ((vp->v_flag & VRECLAIMED) == 0) {
924 			if (cache_inval_vp_nonblock(vp))
925 				goto failed;
926 			vgone_vxlocked(vp);
927 			/* vnode is still VX locked */
928 		}
929 
930 		/*
931 		 * At this point if there are no other refs or auxrefs on
932 		 * the vnode with the inactive list locked, and we remove
933 		 * the vnode from the inactive list, it should not be
934 		 * possible for anyone else to access the vnode any more.
935 		 *
936 		 * Since the vnode is in a VRECLAIMED state, no new
937 		 * namecache associations could have been made and the
938 		 * vnode should have already been removed from its mountlist.
939 		 *
940 		 * Since we hold a VX lock on the vnode it cannot have been
941 		 * reactivated (moved out of the inactive list).
942 		 */
943 		KKASSERT(TAILQ_EMPTY(&vp->v_namecache));
944 		spin_lock(&vi->spin);
945 		if (vp->v_auxrefs ||
946 		    (vp->v_refcnt & ~VREF_FINALIZE) != VREF_TERMINATE + 1) {
947 			spin_unlock(&vi->spin);
948 			goto failed;
949 		}
950 		KKASSERT(vp->v_state == VS_INACTIVE);
951 		TAILQ_REMOVE(&vi->inactive_list, vp, v_list);
952 		atomic_add_int(&mycpu->gd_inactivevnodes, -1);
953 		vp->v_state = VS_DYING;
954 		spin_unlock(&vi->spin);
955 
956 		/*
957 		 * Nothing should have been able to access this vp.  Only
958 		 * our ref should remain now.
959 		 */
960 		atomic_clear_int(&vp->v_refcnt, VREF_TERMINATE|VREF_FINALIZE);
961 		KASSERT(vp->v_refcnt == 1,
962 			("vp %p badrefs %08x", vp, vp->v_refcnt));
963 
964 		/*
965 		 * Return a VX locked vnode suitable for reuse.
966 		 */
967 		vnode_list_hash[mycpu->gd_cpuid].free_rover = ri;
968 		return(vp);
969 	}
970 	vnode_list_hash[mycpu->gd_cpuid].free_rover = ri;
971 	return(NULL);
972 }
973 
974 /*
975  * Obtain a new vnode.  The returned vnode is VX locked & vrefd.
976  *
977  * All new vnodes set the VAGE flags.  An open() of the vnode will
978  * decrement the (2-bit) flags.  Vnodes which are opened several times
979  * are thus retained in the cache over vnodes which are merely stat()d.
980  *
981  * We attempt to reuse an already-recycled vnode from our pcpu inactive
982  * queue first, and allocate otherwise.  Attempting to recycle inactive
983  * vnodes here can lead to numerous deadlocks, particularly with
984  * softupdates.
985  */
986 struct vnode *
987 allocvnode(int lktimeout, int lkflags)
988 {
989 	struct vnode *vp;
990 	struct vnode_index *vi;
991 
992 	/*
993 	 * lktimeout only applies when LK_TIMELOCK is used, and only
994 	 * the pageout daemon uses it.  The timeout may not be zero
995 	 * or the pageout daemon can deadlock in low-VM situations.
996 	 */
997 	if (lktimeout == 0)
998 		lktimeout = hz / 10;
999 
1000 	/*
1001 	 * Do not flag for synchronous recyclement unless there are enough
1002 	 * freeable vnodes to recycle and the number of vnodes has
1003 	 * significantly exceeded our target.  We want the normal vnlru
1004 	 * process to handle the cleaning (at 9/10's) before we are forced
1005 	 * to flag it here at 11/10's for userexit path processing.
1006 	 */
1007 	if (numvnodes >= maxvnodes * 11 / 10 &&
1008 	    cachedvnodes + inactivevnodes >= maxvnodes * 5 / 10) {
1009 		struct thread *td = curthread;
1010 		if (td->td_lwp)
1011 			atomic_set_int(&td->td_lwp->lwp_mpflags, LWP_MP_VNLRU);
1012 	}
1013 
1014 	/*
1015 	 * Try to trivially reuse a reclaimed vnode from the head of the
1016 	 * inactive list for this cpu.  Any vnode cycling which occurs
1017 	 * which terminates the vnode will cause it to be returned to the
1018 	 * same pcpu structure (e.g. unlink calls).
1019 	 */
1020 	vi = &vnode_list_hash[mycpuid];
1021 	spin_lock(&vi->spin);
1022 
1023 	vp = TAILQ_FIRST(&vi->inactive_list);
1024 	if (vp && (vp->v_flag & VRECLAIMED)) {
1025 		/*
1026 		 * non-blocking vx_get will also ref the vnode on success.
1027 		 */
1028 		if (vx_get_nonblock(vp)) {
1029 			KKASSERT(vp->v_state == VS_INACTIVE);
1030 			TAILQ_REMOVE(&vi->inactive_list, vp, v_list);
1031 			TAILQ_INSERT_TAIL(&vi->inactive_list, vp, v_list);
1032 			spin_unlock(&vi->spin);
1033 			goto slower;
1034 		}
1035 
1036 		/*
1037 		 * Because we are holding vfs_spin the vnode should currently
1038 		 * be inactive and VREF_TERMINATE should still be set.
1039 		 *
1040 		 * Once vfs_spin is released the vnode's state should remain
1041 		 * unmodified due to both the lock and ref on it.
1042 		 */
1043 		KKASSERT(vp->v_state == VS_INACTIVE);
1044 #ifdef TRACKVNODE
1045 		if ((u_long)vp == trackvnode)
1046 			kprintf("allocvnode %p %08x\n", vp, vp->v_flag);
1047 #endif
1048 
1049 		/*
1050 		 * Do not reclaim/reuse a vnode while auxillary refs exists.
1051 		 * This includes namecache refs due to a related ncp being
1052 		 * locked or having children, a VM object association, or
1053 		 * other hold users.
1054 		 *
1055 		 * Do not reclaim/reuse a vnode if someone else has a real
1056 		 * ref on it.  This can occur if a filesystem temporarily
1057 		 * releases the vnode lock during VOP_RECLAIM.
1058 		 */
1059 		if (vp->v_auxrefs ||
1060 		    (vp->v_refcnt & ~VREF_FINALIZE) != VREF_TERMINATE + 1) {
1061 			if (vp->v_state == VS_INACTIVE) {
1062 				TAILQ_REMOVE(&vi->inactive_list,
1063 					     vp, v_list);
1064 				TAILQ_INSERT_TAIL(&vi->inactive_list,
1065 						  vp, v_list);
1066 			}
1067 			spin_unlock(&vi->spin);
1068 			vx_put(vp);
1069 			goto slower;
1070 		}
1071 
1072 		/*
1073 		 * VINACTIVE and VREF_TERMINATE are expected to both be set
1074 		 * for vnodes pulled from the inactive list, and cannot be
1075 		 * changed while we hold the vx lock.
1076 		 *
1077 		 * Try to reclaim the vnode.
1078 		 */
1079 		KKASSERT(vp->v_flag & VINACTIVE);
1080 		KKASSERT(vp->v_refcnt & VREF_TERMINATE);
1081 
1082 		if ((vp->v_flag & VRECLAIMED) == 0) {
1083 			spin_unlock(&vi->spin);
1084 			vx_put(vp);
1085 			goto slower;
1086 		}
1087 
1088 		/*
1089 		 * At this point if there are no other refs or auxrefs on
1090 		 * the vnode with the inactive list locked, and we remove
1091 		 * the vnode from the inactive list, it should not be
1092 		 * possible for anyone else to access the vnode any more.
1093 		 *
1094 		 * Since the vnode is in a VRECLAIMED state, no new
1095 		 * namecache associations could have been made and the
1096 		 * vnode should have already been removed from its mountlist.
1097 		 *
1098 		 * Since we hold a VX lock on the vnode it cannot have been
1099 		 * reactivated (moved out of the inactive list).
1100 		 */
1101 		KKASSERT(TAILQ_EMPTY(&vp->v_namecache));
1102 		KKASSERT(vp->v_state == VS_INACTIVE);
1103 		TAILQ_REMOVE(&vi->inactive_list, vp, v_list);
1104 		atomic_add_int(&mycpu->gd_inactivevnodes, -1);
1105 		vp->v_state = VS_DYING;
1106 		spin_unlock(&vi->spin);
1107 
1108 		/*
1109 		 * Nothing should have been able to access this vp.  Only
1110 		 * our ref should remain now.
1111 		 *
1112 		 * At this point we can kfree() the vnode if we want to.
1113 		 * Instead, we reuse it for the allocation.
1114 		 */
1115 		atomic_clear_int(&vp->v_refcnt, VREF_TERMINATE|VREF_FINALIZE);
1116 		KASSERT(vp->v_refcnt == 1,
1117 			("vp %p badrefs %08x", vp, vp->v_refcnt));
1118 		vx_unlock(vp);		/* safety: keep the API clean */
1119 		bzero(vp, sizeof(*vp));
1120 	} else {
1121 		spin_unlock(&vi->spin);
1122 slower:
1123 		vp = kmalloc(sizeof(*vp), M_VNODE, M_ZERO | M_WAITOK);
1124 		atomic_add_int(&numvnodes, 1);
1125 	}
1126 
1127 	lwkt_token_init(&vp->v_token, "vnode");
1128 	lockinit(&vp->v_lock, "vnode", lktimeout, lkflags);
1129 	TAILQ_INIT(&vp->v_namecache);
1130 	RB_INIT(&vp->v_rbclean_tree);
1131 	RB_INIT(&vp->v_rbdirty_tree);
1132 	RB_INIT(&vp->v_rbhash_tree);
1133 	spin_init(&vp->v_spin, "allocvnode");
1134 
1135 	vx_lock(vp);
1136 	vp->v_refcnt = 1;
1137 	vp->v_flag = VAGE0 | VAGE1;
1138 	vp->v_pbuf_count = nswbuf_kva / NSWBUF_SPLIT;
1139 
1140 	KKASSERT(TAILQ_EMPTY(&vp->v_namecache));
1141 	/* exclusive lock still held */
1142 
1143 	vp->v_filesize = NOOFFSET;
1144 	vp->v_type = VNON;
1145 	vp->v_tag = 0;
1146 	vp->v_state = VS_CACHED;
1147 	_vactivate(vp);
1148 
1149 	return (vp);
1150 }
1151 
1152 /*
1153  * Called after a process has allocated a vnode via allocvnode()
1154  * and we detected that too many vnodes were present.
1155  *
1156  * This function is called just prior to a return to userland if the
1157  * process at some point had to allocate a new vnode during the last
1158  * system call and the vnode count was found to be excessive.
1159  *
1160  * This is a synchronous path that we do not normally want to execute.
1161  *
1162  * Flagged at >= 11/10's, runs if >= 10/10, vnlru runs at 9/10.
1163  *
1164  * WARNING: Sometimes numvnodes can blow out due to children being
1165  *	    present under directory vnodes in the namecache.  For the
1166  *	    moment use an if() instead of a while() and note that if
1167  *	    we were to use a while() we would still have to break out
1168  *	    if freesomevnodes() returned 0.  vnlru will also be trying
1169  *	    hard to free vnodes at the same time (with a lower trigger
1170  *	    pointer).
1171  */
1172 void
1173 allocvnode_gc(void)
1174 {
1175 	if (numvnodes >= maxvnodes &&
1176 	    countcachedandinactivevnodes() >= maxvnodes * 5 / 10) {
1177 		freesomevnodes(batchfreevnodes);
1178 	}
1179 }
1180 
1181 int
1182 freesomevnodes(int n)
1183 {
1184 	struct vnode *vp;
1185 	int count = 0;
1186 
1187 	while (n) {
1188 		if ((vp = cleanfreevnode(n)) == NULL)
1189 			break;
1190 		vx_unlock(vp);
1191 		--n;
1192 		++count;
1193 		kfree(vp, M_VNODE);
1194 		atomic_add_int(&numvnodes, -1);
1195 	}
1196 	return(count);
1197 }
1198