xref: /dragonfly/sys/kern/vfs_lock.c (revision 10f4bf95)
1 /*
2  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/vfs_lock.c,v 1.30 2008/06/30 03:57:41 dillon Exp $
35  */
36 
37 /*
38  * External virtual filesystem routines
39  */
40 #include "opt_ddb.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/mount.h>
47 #include <sys/proc.h>
48 #include <sys/vnode.h>
49 #include <sys/buf.h>
50 #include <sys/sysctl.h>
51 
52 #include <machine/limits.h>
53 
54 #include <vm/vm.h>
55 #include <vm/vm_object.h>
56 
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <sys/sysref2.h>
60 
61 static void vnode_terminate(struct vnode *vp);
62 static boolean_t vnode_ctor(void *obj, void *private, int ocflags);
63 static void vnode_dtor(void *obj, void *private);
64 
65 static MALLOC_DEFINE(M_VNODE, "vnodes", "vnode structures");
66 static struct sysref_class vnode_sysref_class = {
67 	.name =		"vnode",
68 	.mtype =	M_VNODE,
69 	.proto =	SYSREF_PROTO_VNODE,
70 	.offset =	offsetof(struct vnode, v_sysref),
71 	.objsize =	sizeof(struct vnode),
72 	.nom_cache =	256,
73 	.flags =	SRC_MANAGEDINIT,
74 	.ctor =		vnode_ctor,
75 	.dtor =		vnode_dtor,
76 	.ops = {
77 		.terminate = (sysref_terminate_func_t)vnode_terminate,
78 		.lock = (sysref_terminate_func_t)vx_lock,
79 		.unlock = (sysref_terminate_func_t)vx_unlock
80 	}
81 };
82 
83 /*
84  * The vnode free list hold inactive vnodes.  Aged inactive vnodes
85  * are inserted prior to the mid point, and otherwise inserted
86  * at the tail.
87  */
88 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
89 static struct vnode	vnode_free_mid1;
90 static struct vnode	vnode_free_mid2;
91 static struct vnode	vnode_free_rover;
92 static struct spinlock	vfs_spin = SPINLOCK_INITIALIZER(vfs_spin);
93 static enum { ROVER_MID1, ROVER_MID2 } rover_state = ROVER_MID2;
94 
95 int  freevnodes = 0;
96 SYSCTL_INT(_debug, OID_AUTO, freevnodes, CTLFLAG_RD,
97 	&freevnodes, 0, "Number of free nodes");
98 static int wantfreevnodes = 25;
99 SYSCTL_INT(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW,
100 	&wantfreevnodes, 0, "Desired number of free vnodes");
101 #ifdef TRACKVNODE
102 static ulong trackvnode;
103 SYSCTL_ULONG(_debug, OID_AUTO, trackvnode, CTLFLAG_RW,
104 		&trackvnode, 0, "");
105 #endif
106 
107 /*
108  * Called from vfsinit()
109  */
110 void
111 vfs_lock_init(void)
112 {
113 	TAILQ_INIT(&vnode_free_list);
114 	TAILQ_INSERT_TAIL(&vnode_free_list, &vnode_free_mid1, v_freelist);
115 	TAILQ_INSERT_TAIL(&vnode_free_list, &vnode_free_mid2, v_freelist);
116 	TAILQ_INSERT_TAIL(&vnode_free_list, &vnode_free_rover, v_freelist);
117 	spin_init(&vfs_spin);
118 	kmalloc_raise_limit(M_VNODE, 0);	/* unlimited */
119 }
120 
121 /*
122  * Misc functions
123  */
124 static __inline
125 void
126 _vsetflags(struct vnode *vp, int flags)
127 {
128 	atomic_set_int(&vp->v_flag, flags);
129 }
130 
131 static __inline
132 void
133 _vclrflags(struct vnode *vp, int flags)
134 {
135 	atomic_clear_int(&vp->v_flag, flags);
136 }
137 
138 void
139 vsetflags(struct vnode *vp, int flags)
140 {
141 	_vsetflags(vp, flags);
142 }
143 
144 void
145 vclrflags(struct vnode *vp, int flags)
146 {
147 	_vclrflags(vp, flags);
148 }
149 
150 /*
151  * Inline helper functions.
152  *
153  * WARNING: vbusy() may only be called while the vnode lock or VX lock
154  *	    is held.  The vnode spinlock need not be held.
155  *
156  * MPSAFE
157  */
158 static __inline
159 void
160 __vbusy_interlocked(struct vnode *vp)
161 {
162 	KKASSERT(vp->v_flag & VFREE);
163 	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
164 	freevnodes--;
165 	_vclrflags(vp, VFREE);
166 }
167 
168 static __inline
169 void
170 __vbusy(struct vnode *vp)
171 {
172 #ifdef TRACKVNODE
173 	if ((ulong)vp == trackvnode)
174 		kprintf("__vbusy %p %08x\n", vp, vp->v_flag);
175 #endif
176 	spin_lock(&vfs_spin);
177 	__vbusy_interlocked(vp);
178 	spin_unlock(&vfs_spin);
179 }
180 
181 /*
182  * Put a vnode on the free list.  The caller has cleared VCACHED or owns the
183  * implied sysref related to having removed the vnode from the freelist
184  * (and VCACHED is already clear in that case).
185  *
186  * MPSAFE
187  */
188 static __inline
189 void
190 __vfree(struct vnode *vp)
191 {
192 #ifdef TRACKVNODE
193 	if ((ulong)vp == trackvnode) {
194 		kprintf("__vfree %p %08x\n", vp, vp->v_flag);
195 		print_backtrace(-1);
196 	}
197 #endif
198 	spin_lock(&vfs_spin);
199 	KKASSERT((vp->v_flag & VFREE) == 0);
200 
201 	/*
202 	 * Distinguish between basically dead vnodes, vnodes with cached
203 	 * data, and vnodes without cached data.  A rover will shift the
204 	 * vnodes around as their cache status is lost.
205 	 */
206 	if (vp->v_flag & VRECLAIMED) {
207 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
208 	} else if (vp->v_object && vp->v_object->resident_page_count) {
209 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
210 	} else if (vp->v_object && vp->v_object->swblock_count) {
211 		TAILQ_INSERT_BEFORE(&vnode_free_mid2, vp, v_freelist);
212 	} else {
213 		TAILQ_INSERT_BEFORE(&vnode_free_mid1, vp, v_freelist);
214 	}
215 	freevnodes++;
216 	_vsetflags(vp, VFREE);
217 	spin_unlock(&vfs_spin);
218 }
219 
220 /*
221  * Put a vnode on the free list.  The caller has cleared VCACHED or owns the
222  * implied sysref related to having removed the vnode from the freelist
223  * (and VCACHED is already clear in that case).
224  *
225  * MPSAFE
226  */
227 static __inline
228 void
229 __vfreetail(struct vnode *vp)
230 {
231 #ifdef TRACKVNODE
232 	if ((ulong)vp == trackvnode)
233 		kprintf("__vfreetail %p %08x\n", vp, vp->v_flag);
234 #endif
235 	spin_lock(&vfs_spin);
236 	KKASSERT((vp->v_flag & VFREE) == 0);
237 	TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
238 	freevnodes++;
239 	_vsetflags(vp, VFREE);
240 	spin_unlock(&vfs_spin);
241 }
242 
243 /*
244  * Return a C boolean if we should put the vnode on the freelist (VFREE),
245  * or leave it / mark it as VCACHED.
246  *
247  * This routine is only valid if the vnode is already either VFREE or
248  * VCACHED, or if it can become VFREE or VCACHED via vnode_terminate().
249  *
250  * WARNING!  This functions is typically called with v_spinlock held.
251  *
252  * MPSAFE
253  */
254 static __inline boolean_t
255 vshouldfree(struct vnode *vp)
256 {
257 	return (vp->v_auxrefs == 0 &&
258 	    (vp->v_object == NULL || vp->v_object->resident_page_count == 0));
259 }
260 
261 /*
262  * Add a ref to an active vnode.  This function should never be called
263  * with an inactive vnode (use vget() instead).
264  *
265  * MPSAFE
266  */
267 void
268 vref(struct vnode *vp)
269 {
270 	KKASSERT(vp->v_sysref.refcnt > 0 &&
271 		 (vp->v_flag & (VFREE|VINACTIVE)) == 0);
272 	sysref_get(&vp->v_sysref);
273 }
274 
275 /*
276  * Release a ref on an active or inactive vnode.  The sysref termination
277  * function will be called when the active last active reference is released,
278  * and the vnode is returned to the objcache when the last inactive
279  * reference is released.
280  */
281 void
282 vrele(struct vnode *vp)
283 {
284 	sysref_put(&vp->v_sysref);
285 }
286 
287 /*
288  * Add an auxiliary data structure reference to the vnode.  Auxiliary
289  * references do not change the state of the vnode or prevent them
290  * from being deactivated, reclaimed, or placed on or removed from
291  * the free list.
292  *
293  * An auxiliary reference DOES prevent the vnode from being destroyed,
294  * allowing you to vx_lock() it, test state, etc.
295  *
296  * An auxiliary reference DOES NOT move a vnode out of the VFREE state
297  * once it has entered it.
298  *
299  * WARNING!  vhold() and vhold_interlocked() must not acquire v_spinlock.
300  *	     The spinlock may or may not already be held by the caller.
301  *	     vdrop() will clean up the free list state.
302  *
303  * MPSAFE
304  */
305 void
306 vhold(struct vnode *vp)
307 {
308 	KKASSERT(vp->v_sysref.refcnt != 0);
309 	atomic_add_int(&vp->v_auxrefs, 1);
310 }
311 
312 void
313 vhold_interlocked(struct vnode *vp)
314 {
315 	atomic_add_int(&vp->v_auxrefs, 1);
316 }
317 
318 /*
319  * Remove an auxiliary reference from the vnode.
320  *
321  * vdrop needs to check for a VCACHE->VFREE transition to catch cases
322  * where a vnode is held past its reclamation.  We use v_spinlock to
323  * interlock VCACHED -> !VCACHED transitions.
324  *
325  * MPSAFE
326  */
327 void
328 vdrop(struct vnode *vp)
329 {
330 	KKASSERT(vp->v_sysref.refcnt != 0 && vp->v_auxrefs > 0);
331 	spin_lock(&vp->v_spinlock);
332 	atomic_subtract_int(&vp->v_auxrefs, 1);
333 	if ((vp->v_flag & VCACHED) && vshouldfree(vp)) {
334 		_vclrflags(vp, VCACHED);
335 		__vfree(vp);
336 	}
337 	spin_unlock(&vp->v_spinlock);
338 }
339 
340 /*
341  * This function is called when the last active reference on the vnode
342  * is released, typically via vrele().  SYSREF will VX lock the vnode
343  * and then give the vnode a negative ref count, indicating that it is
344  * undergoing termination or is being set aside for the cache, and one
345  * final sysref_put() is required to actually return it to the memory
346  * subsystem.
347  *
348  * Additional inactive sysrefs may race us but that's ok.  Reactivations
349  * cannot race us because the sysref code interlocked with the VX lock
350  * (which is held on call).
351  *
352  * MPSAFE
353  */
354 void
355 vnode_terminate(struct vnode *vp)
356 {
357 	/*
358 	 * We own the VX lock, it should not be possible for someone else
359 	 * to have reactivated the vp.
360 	 */
361 	KKASSERT(sysref_isinactive(&vp->v_sysref));
362 
363 	/*
364 	 * Deactivate the vnode by marking it VFREE or VCACHED.
365 	 * The vnode can be reactivated from either state until
366 	 * reclaimed.  These states inherit the 'last' sysref on the
367 	 * vnode.
368 	 *
369 	 * NOTE: There may be additional inactive references from
370 	 * other entities blocking on the VX lock while we hold it,
371 	 * but this does not prevent us from changing the vnode's
372 	 * state.
373 	 *
374 	 * NOTE: The vnode could already be marked inactive.  XXX
375 	 *	 how?
376 	 *
377 	 * NOTE: v_mount may be NULL due to assignment to
378 	 *	 dead_vnode_vops
379 	 *
380 	 * NOTE: The vnode may be marked inactive with dirty buffers
381 	 *	 or dirty pages in its cached VM object still present.
382 	 *
383 	 * NOTE: VCACHED should not be set on entry.  We lose control
384 	 *	 of the sysref the instant the vnode is placed on the
385 	 *	 free list or when VCACHED is set.
386 	 *
387 	 *	 The VX lock is required when transitioning to
388 	 *	 +VCACHED but is not sufficient for the vshouldfree()
389 	 *	 interlocked test or when transitioning to -VCACHED.
390 	 */
391 	if ((vp->v_flag & VINACTIVE) == 0) {
392 		_vsetflags(vp, VINACTIVE);
393 		if (vp->v_mount)
394 			VOP_INACTIVE(vp);
395 	}
396 	spin_lock(&vp->v_spinlock);
397 	KKASSERT((vp->v_flag & (VFREE|VCACHED)) == 0);
398 	if (vshouldfree(vp))
399 		__vfree(vp);
400 	else
401 		_vsetflags(vp, VCACHED); /* inactive but not yet free*/
402 	spin_unlock(&vp->v_spinlock);
403 	vx_unlock(vp);
404 }
405 
406 /*
407  * Physical vnode constructor / destructor.  These are only executed on
408  * the backend of the objcache.  They are NOT executed on every vnode
409  * allocation or deallocation.
410  *
411  * MPSAFE
412  */
413 boolean_t
414 vnode_ctor(void *obj, void *private, int ocflags)
415 {
416 	struct vnode *vp = obj;
417 
418 	lwkt_token_init(&vp->v_token, "vnode");
419 	lockinit(&vp->v_lock, "vnode", 0, 0);
420 	ccms_dataspace_init(&vp->v_ccms);
421 	TAILQ_INIT(&vp->v_namecache);
422 	RB_INIT(&vp->v_rbclean_tree);
423 	RB_INIT(&vp->v_rbdirty_tree);
424 	RB_INIT(&vp->v_rbhash_tree);
425 	return(TRUE);
426 }
427 
428 /*
429  * MPSAFE
430  */
431 void
432 vnode_dtor(void *obj, void *private)
433 {
434 	struct vnode *vp = obj;
435 
436 	KKASSERT((vp->v_flag & (VCACHED|VFREE)) == 0);
437 	ccms_dataspace_destroy(&vp->v_ccms);
438 }
439 
440 /****************************************************************
441  *			VX LOCKING FUNCTIONS			*
442  ****************************************************************
443  *
444  * These functions lock vnodes for reclamation and deactivation related
445  * activities.  The caller must already be holding some sort of reference
446  * on the vnode.
447  *
448  * MPSAFE
449  */
450 void
451 vx_lock(struct vnode *vp)
452 {
453 	lockmgr(&vp->v_lock, LK_EXCLUSIVE);
454 }
455 
456 /*
457  * The non-blocking version also uses a slightly different mechanic.
458  * This function will explicitly fail not only if it cannot acquire
459  * the lock normally, but also if the caller already holds a lock.
460  *
461  * The adjusted mechanic is used to close a loophole where complex
462  * VOP_RECLAIM code can circle around recursively and allocate the
463  * same vnode it is trying to destroy from the freelist.
464  *
465  * Any filesystem (aka UFS) which puts LK_CANRECURSE in lk_flags can
466  * cause the incorrect behavior to occur.  If not for that lockmgr()
467  * would do the right thing.
468  */
469 static int
470 vx_lock_nonblock(struct vnode *vp)
471 {
472 	if (lockcountnb(&vp->v_lock))
473 		return(EBUSY);
474 	return(lockmgr(&vp->v_lock, LK_EXCLUSIVE | LK_NOWAIT | LK_NOSPINWAIT));
475 }
476 
477 void
478 vx_unlock(struct vnode *vp)
479 {
480 	lockmgr(&vp->v_lock, LK_RELEASE);
481 }
482 
483 /****************************************************************
484  *			VNODE ACQUISITION FUNCTIONS		*
485  ****************************************************************
486  *
487  * These functions must be used when accessing a vnode via an auxiliary
488  * reference such as the namecache or free list, or when you wish to
489  * do a combo ref+lock sequence.
490  *
491  * These functions are MANDATORY for any code chain accessing a vnode
492  * whos activation state is not known.
493  *
494  * vget() can be called with LK_NOWAIT and will return EBUSY if the
495  * lock cannot be immediately acquired.
496  *
497  * vget()/vput() are used when reactivation is desired.
498  *
499  * vx_get() and vx_put() are used when reactivation is not desired.
500  */
501 int
502 vget(struct vnode *vp, int flags)
503 {
504 	int error;
505 
506 	/*
507 	 * A lock type must be passed
508 	 */
509 	if ((flags & LK_TYPE_MASK) == 0) {
510 		panic("vget() called with no lock specified!");
511 		/* NOT REACHED */
512 	}
513 
514 	/*
515 	 * Reference the structure and then acquire the lock.  0->1
516 	 * transitions and refs during termination are allowed here so
517 	 * call sysref directly.
518 	 *
519 	 * NOTE: The requested lock might be a shared lock and does
520 	 *	 not protect our access to the refcnt or other fields.
521 	 */
522 	sysref_get(&vp->v_sysref);
523 	if ((error = vn_lock(vp, flags)) != 0) {
524 		/*
525 		 * The lock failed, undo and return an error.
526 		 */
527 		sysref_put(&vp->v_sysref);
528 	} else if (vp->v_flag & VRECLAIMED) {
529 		/*
530 		 * The node is being reclaimed and cannot be reactivated
531 		 * any more, undo and return ENOENT.
532 		 */
533 		vn_unlock(vp);
534 		vrele(vp);
535 		error = ENOENT;
536 	} else {
537 		/*
538 		 * If the vnode is marked VFREE or VCACHED it needs to be
539 		 * reactivated, otherwise it had better already be active.
540 		 * VINACTIVE must also be cleared.
541 		 *
542 		 * In the VFREE/VCACHED case we have to throw away the
543 		 * sysref that was earmarking those cases and preventing
544 		 * the vnode from being destroyed.  Our sysref is still held.
545 		 *
546 		 * We are allowed to reactivate the vnode while we hold
547 		 * the VX lock, assuming it can be reactivated.
548 		 */
549 		spin_lock(&vp->v_spinlock);
550 		if (vp->v_flag & VFREE) {
551 			__vbusy(vp);
552 			sysref_activate(&vp->v_sysref);
553 			spin_unlock(&vp->v_spinlock);
554 			sysref_put(&vp->v_sysref);
555 		} else if (vp->v_flag & VCACHED) {
556 			_vclrflags(vp, VCACHED);
557 			sysref_activate(&vp->v_sysref);
558 			spin_unlock(&vp->v_spinlock);
559 			sysref_put(&vp->v_sysref);
560 		} else {
561 			if (sysref_isinactive(&vp->v_sysref)) {
562 				sysref_activate(&vp->v_sysref);
563 				kprintf("Warning vp %p reactivation race\n",
564 					vp);
565 			}
566 			spin_unlock(&vp->v_spinlock);
567 		}
568 		_vclrflags(vp, VINACTIVE);
569 		error = 0;
570 	}
571 	return(error);
572 }
573 
574 /*
575  * MPSAFE
576  */
577 void
578 vput(struct vnode *vp)
579 {
580 	vn_unlock(vp);
581 	vrele(vp);
582 }
583 
584 /*
585  * XXX The vx_*() locks should use auxrefs, not the main reference counter.
586  *
587  * MPSAFE
588  */
589 void
590 vx_get(struct vnode *vp)
591 {
592 	sysref_get(&vp->v_sysref);
593 	lockmgr(&vp->v_lock, LK_EXCLUSIVE);
594 }
595 
596 /*
597  * MPSAFE
598  */
599 int
600 vx_get_nonblock(struct vnode *vp)
601 {
602 	int error;
603 
604 	sysref_get(&vp->v_sysref);
605 	error = lockmgr(&vp->v_lock, LK_EXCLUSIVE | LK_NOWAIT);
606 	if (error)
607 		sysref_put(&vp->v_sysref);
608 	return(error);
609 }
610 
611 /*
612  * Relase a VX lock that also held a ref on the vnode.
613  *
614  * vx_put needs to check for a VCACHED->VFREE transition to catch the
615  * case where e.g. vnlru issues a vgone*().
616  *
617  * MPSAFE
618  */
619 void
620 vx_put(struct vnode *vp)
621 {
622 	spin_lock(&vp->v_spinlock);
623 	if ((vp->v_flag & VCACHED) && vshouldfree(vp)) {
624 		_vclrflags(vp, VCACHED);
625 		__vfree(vp);
626 	}
627 	spin_unlock(&vp->v_spinlock);
628 	lockmgr(&vp->v_lock, LK_RELEASE);
629 	sysref_put(&vp->v_sysref);
630 }
631 
632 /*
633  * The rover looks for vnodes past the midline with no cached data and
634  * moves them to before the midline.  If we do not do this the midline
635  * can wind up in a degenerate state.
636  */
637 static
638 void
639 vnode_rover_locked(void)
640 {
641 	struct vnode *vp;
642 
643 	/*
644 	 * Get the vnode after the rover.  The rover roves between mid1 and
645 	 * the end so the only special vnode it can encounter is mid2.
646 	 */
647 	vp = TAILQ_NEXT(&vnode_free_rover, v_freelist);
648 	if (vp == &vnode_free_mid2) {
649 		vp = TAILQ_NEXT(vp, v_freelist);
650 		rover_state = ROVER_MID2;
651 	}
652 	KKASSERT(vp != &vnode_free_mid1);
653 
654 	/*
655 	 * Start over if we finished the scan.
656 	 */
657 	TAILQ_REMOVE(&vnode_free_list, &vnode_free_rover, v_freelist);
658 	if (vp == NULL) {
659 		TAILQ_INSERT_AFTER(&vnode_free_list, &vnode_free_mid1,
660 				   &vnode_free_rover, v_freelist);
661 		rover_state = ROVER_MID1;
662 		return;
663 	}
664 	TAILQ_INSERT_AFTER(&vnode_free_list, vp, &vnode_free_rover, v_freelist);
665 
666 	/*
667 	 * Shift vp if appropriate.
668 	 */
669 	if (vp->v_object && vp->v_object->resident_page_count) {
670 		/*
671 		 * Promote vnode with resident pages to section 3.
672 		 * (This case shouldn't happen).
673 		 */
674 		if (rover_state == ROVER_MID1) {
675 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
676 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
677 		}
678 	} else if (vp->v_object && vp->v_object->swblock_count) {
679 		/*
680 		 * Demote vnode with only swap pages to section 2
681 		 */
682 		if (rover_state == ROVER_MID2) {
683 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
684 			TAILQ_INSERT_BEFORE(&vnode_free_mid2, vp, v_freelist);
685 		}
686 	} else {
687 		/*
688 		 * Demote vnode with no cached data to section 1
689 		 */
690 		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
691 		TAILQ_INSERT_BEFORE(&vnode_free_mid1, vp, v_freelist);
692 	}
693 }
694 
695 /*
696  * Try to reuse a vnode from the free list.
697  *
698  * NOTE: The returned vnode is not completely initialized.
699  *
700  * WARNING: The freevnodes count can race, NULL can be returned even if
701  *	    freevnodes != 0.
702  *
703  * MPSAFE
704  */
705 static
706 struct vnode *
707 allocfreevnode(void)
708 {
709 	struct vnode *vp;
710 	int count;
711 
712 	for (count = 0; count < freevnodes; count++) {
713 		/*
714 		 * Try to lock the first vnode on the free list.
715 		 * Cycle if we can't.
716 		 *
717 		 * We use a bad hack in vx_lock_nonblock() which avoids
718 		 * the lock order reversal between vfs_spin and v_spinlock.
719 		 * This is very fragile code and I don't want to use
720 		 * vhold here.
721 		 */
722 		spin_lock(&vfs_spin);
723 		vnode_rover_locked();
724 		vnode_rover_locked();
725 		vp = TAILQ_FIRST(&vnode_free_list);
726 		while (vp == &vnode_free_mid1 || vp == &vnode_free_mid2 ||
727 		       vp == &vnode_free_rover) {
728 			vp = TAILQ_NEXT(vp, v_freelist);
729 		}
730 		if (vp == NULL)
731 			break;
732 		if (vx_lock_nonblock(vp)) {
733 			KKASSERT(vp->v_flag & VFREE);
734 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
735 			TAILQ_INSERT_TAIL(&vnode_free_list,
736 					  vp, v_freelist);
737 			spin_unlock(&vfs_spin);
738 			continue;
739 		}
740 
741 		/*
742 		 * We inherit the sysref associated the vnode on the free
743 		 * list.  Because VCACHED is clear the vnode will not
744 		 * be placed back on the free list.  We own the sysref
745 		 * free and clear and thus control the disposition of
746 		 * the vnode.
747 		 */
748 		__vbusy_interlocked(vp);
749 		spin_unlock(&vfs_spin);
750 #ifdef TRACKVNODE
751 		if ((ulong)vp == trackvnode)
752 			kprintf("allocfreevnode %p %08x\n", vp, vp->v_flag);
753 #endif
754 		/*
755 		 * Do not reclaim/reuse a vnode while auxillary refs exists.
756 		 * This includes namecache refs due to a related ncp being
757 		 * locked or having children.
758 		 *
759 		 * We will make this test several times as auxrefs can
760 		 * get incremented on us without any spinlocks being held
761 		 * until we have removed all namecache and inode references
762 		 * to the vnode.
763 		 *
764 		 * Because VCACHED is already in the correct state (cleared)
765 		 * we cannot race other vdrop()s occuring at the same time
766 		 * and can safely place vp on the free list.
767 		 *
768 		 * The free list association reinherits the sysref.
769 		 */
770 		if (vp->v_auxrefs) {
771 			__vfreetail(vp);
772 			vx_unlock(vp);
773 			continue;
774 		}
775 
776 		/*
777 		 * We inherit the reference that was previously associated
778 		 * with the vnode being on the free list.  VCACHED had better
779 		 * not be set because the reference and VX lock prevents
780 		 * the sysref from transitioning to an active state.
781 		 */
782 		KKASSERT((vp->v_flag & (VINACTIVE|VCACHED)) == VINACTIVE);
783 		KKASSERT(sysref_isinactive(&vp->v_sysref));
784 
785 		/*
786 		 * Holding the VX lock on an inactive vnode prevents it
787 		 * from being reactivated or reused.  New namecache
788 		 * associations can only be made using active vnodes.
789 		 *
790 		 * Another thread may be blocked on our vnode lock while
791 		 * holding a namecache lock.  We can only reuse this vnode
792 		 * if we can clear all namecache associations without
793 		 * blocking.
794 		 *
795 		 * Because VCACHED is already in the correct state (cleared)
796 		 * we cannot race other vdrop()s occuring at the same time
797 		 * and can safely place vp on the free list.
798 		 */
799 		if ((vp->v_flag & VRECLAIMED) == 0) {
800 			if (cache_inval_vp_nonblock(vp)) {
801 				__vfreetail(vp);
802 				vx_unlock(vp);
803 				continue;
804 			}
805 			vgone_vxlocked(vp);
806 			/* vnode is still VX locked */
807 		}
808 
809 		/*
810 		 * We can reuse the vnode if no primary or auxiliary
811 		 * references remain other then ours, else put it
812 		 * back on the free list and keep looking.
813 		 *
814 		 * Either the free list inherits the last reference
815 		 * or we fall through and sysref_activate() the last
816 		 * reference.
817 		 *
818 		 * Since the vnode is in a VRECLAIMED state, no new
819 		 * namecache associations could have been made.
820 		 */
821 		KKASSERT(TAILQ_EMPTY(&vp->v_namecache));
822 		if (vp->v_auxrefs ||
823 		    !sysref_islastdeactivation(&vp->v_sysref)) {
824 			__vfreetail(vp);
825 			vx_unlock(vp);
826 			continue;
827 		}
828 
829 		/*
830 		 * Return a VX locked vnode suitable for reuse.  The caller
831 		 * inherits the sysref.
832 		 */
833 		return(vp);
834 	}
835 	return(NULL);
836 }
837 
838 /*
839  * Obtain a new vnode from the freelist, allocating more if necessary.
840  * The returned vnode is VX locked & vrefd.
841  *
842  * All new vnodes set the VAGE flags.  An open() of the vnode will
843  * decrement the (2-bit) flags.  Vnodes which are opened several times
844  * are thus retained in the cache over vnodes which are merely stat()d.
845  *
846  * MPSAFE
847  */
848 struct vnode *
849 allocvnode(int lktimeout, int lkflags)
850 {
851 	struct vnode *vp;
852 
853 	/*
854 	 * Try to reuse vnodes if we hit the max.  This situation only
855 	 * occurs in certain large-memory (2G+) situations.  We cannot
856 	 * attempt to directly reclaim vnodes due to nasty recursion
857 	 * problems.
858 	 */
859 	while (numvnodes - freevnodes > desiredvnodes)
860 		vnlru_proc_wait();
861 
862 	/*
863 	 * Try to build up as many vnodes as we can before reallocating
864 	 * from the free list.  A vnode on the free list simply means
865 	 * that it is inactive with no resident pages.  It may or may not
866 	 * have been reclaimed and could have valuable information associated
867 	 * with it that we shouldn't throw away unless we really need to.
868 	 *
869 	 * HAMMER NOTE: Re-establishing a vnode is a fairly expensive
870 	 * operation for HAMMER but this should benefit UFS as well.
871 	 */
872 	if (freevnodes >= wantfreevnodes && numvnodes >= desiredvnodes)
873 		vp = allocfreevnode();
874 	else
875 		vp = NULL;
876 	if (vp == NULL) {
877 		vp = sysref_alloc(&vnode_sysref_class);
878 		KKASSERT((vp->v_flag & (VCACHED|VFREE)) == 0);
879 		lockmgr(&vp->v_lock, LK_EXCLUSIVE);
880 		numvnodes++;
881 	}
882 
883 	/*
884 	 * We are using a managed sysref class, vnode fields are only
885 	 * zerod on initial allocation from the backing store, not
886 	 * on reallocation.  Thus we have to clear these fields for both
887 	 * reallocation and reuse.
888 	 */
889 #ifdef INVARIANTS
890 	if (vp->v_data)
891 		panic("cleaned vnode isn't");
892 	if (bio_track_active(&vp->v_track_read) ||
893 	    bio_track_active(&vp->v_track_write)) {
894 		panic("Clean vnode has pending I/O's");
895 	}
896 	if (vp->v_flag & VONWORKLST)
897 		panic("Clean vnode still pending on syncer worklist!");
898 	if (!RB_EMPTY(&vp->v_rbdirty_tree))
899 		panic("Clean vnode still has dirty buffers!");
900 	if (!RB_EMPTY(&vp->v_rbclean_tree))
901 		panic("Clean vnode still has clean buffers!");
902 	if (!RB_EMPTY(&vp->v_rbhash_tree))
903 		panic("Clean vnode still on hash tree!");
904 	KKASSERT(vp->v_mount == NULL);
905 #endif
906 	vp->v_flag = VAGE0 | VAGE1;
907 	vp->v_lastw = 0;
908 	vp->v_lasta = 0;
909 	vp->v_cstart = 0;
910 	vp->v_clen = 0;
911 	vp->v_socket = 0;
912 	vp->v_opencount = 0;
913 	vp->v_writecount = 0;	/* XXX */
914 
915 	/*
916 	 * lktimeout only applies when LK_TIMELOCK is used, and only
917 	 * the pageout daemon uses it.  The timeout may not be zero
918 	 * or the pageout daemon can deadlock in low-VM situations.
919 	 */
920 	if (lktimeout == 0)
921 		lktimeout = hz / 10;
922 	lockreinit(&vp->v_lock, "vnode", lktimeout, lkflags);
923 	KKASSERT(TAILQ_EMPTY(&vp->v_namecache));
924 	/* exclusive lock still held */
925 
926 	/*
927 	 * Note: sysref needs to be activated to convert -0x40000000 to +1.
928 	 * The -0x40000000 comes from the last ref on reuse, and from
929 	 * sysref_init() on allocate.
930 	 */
931 	sysref_activate(&vp->v_sysref);
932 	vp->v_filesize = NOOFFSET;
933 	vp->v_type = VNON;
934 	vp->v_tag = 0;
935 	vp->v_ops = NULL;
936 	vp->v_data = NULL;
937 	KKASSERT(vp->v_mount == NULL);
938 
939 	return (vp);
940 }
941 
942 /*
943  * MPSAFE
944  */
945 int
946 freesomevnodes(int n)
947 {
948 	struct vnode *vp;
949 	int count = 0;
950 
951 	while (n) {
952 		--n;
953 		if ((vp = allocfreevnode()) == NULL)
954 			break;
955 		vx_put(vp);
956 		--numvnodes;
957 	}
958 	return(count);
959 }
960