xref: /dragonfly/sys/kern/vfs_mount.c (revision 38b5d46c)
1 /*
2  * Copyright (c) 2004,2013 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 /*
68  * External virtual filesystem routines
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/mount.h>
76 #include <sys/proc.h>
77 #include <sys/vnode.h>
78 #include <sys/buf.h>
79 #include <sys/eventhandler.h>
80 #include <sys/kthread.h>
81 #include <sys/sysctl.h>
82 
83 #include <machine/limits.h>
84 
85 #include <sys/buf2.h>
86 #include <sys/thread2.h>
87 #include <sys/sysref2.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_object.h>
91 
92 struct mountscan_info {
93 	TAILQ_ENTRY(mountscan_info) msi_entry;
94 	int msi_how;
95 	struct mount *msi_node;
96 };
97 
98 struct vmntvnodescan_info {
99 	TAILQ_ENTRY(vmntvnodescan_info) entry;
100 	struct vnode *vp;
101 };
102 
103 struct vnlru_info {
104 	int	pass;
105 };
106 
107 static int vnlru_nowhere = 0;
108 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RD,
109 	    &vnlru_nowhere, 0,
110 	    "Number of times the vnlru process ran without success");
111 
112 
113 static struct lwkt_token mntid_token;
114 static struct mount dummymount;
115 
116 /* note: mountlist exported to pstat */
117 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
118 static TAILQ_HEAD(,mountscan_info) mountscan_list;
119 static struct lwkt_token mountlist_token;
120 
121 static TAILQ_HEAD(,bio_ops) bio_ops_list = TAILQ_HEAD_INITIALIZER(bio_ops_list);
122 
123 /*
124  * Called from vfsinit()
125  */
126 void
127 vfs_mount_init(void)
128 {
129 	lwkt_token_init(&mountlist_token, "mntlist");
130 	lwkt_token_init(&mntid_token, "mntid");
131 	TAILQ_INIT(&mountscan_list);
132 	mount_init(&dummymount);
133 	dummymount.mnt_flag |= MNT_RDONLY;
134 	dummymount.mnt_kern_flag |= MNTK_ALL_MPSAFE;
135 }
136 
137 /*
138  * Support function called to remove a vnode from the mountlist and
139  * deal with side effects for scans in progress.
140  *
141  * Target mnt_token is held on call.
142  */
143 static void
144 vremovevnodemnt(struct vnode *vp)
145 {
146         struct vmntvnodescan_info *info;
147 	struct mount *mp = vp->v_mount;
148 
149 	TAILQ_FOREACH(info, &mp->mnt_vnodescan_list, entry) {
150 		if (info->vp == vp)
151 			info->vp = TAILQ_NEXT(vp, v_nmntvnodes);
152 	}
153 	TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
154 }
155 
156 /*
157  * Allocate a new vnode and associate it with a tag, mount point, and
158  * operations vector.
159  *
160  * A VX locked and refd vnode is returned.  The caller should setup the
161  * remaining fields and vx_put() or, if he wishes to leave a vref,
162  * vx_unlock() the vnode.
163  */
164 int
165 getnewvnode(enum vtagtype tag, struct mount *mp,
166 		struct vnode **vpp, int lktimeout, int lkflags)
167 {
168 	struct vnode *vp;
169 
170 	KKASSERT(mp != NULL);
171 
172 	vp = allocvnode(lktimeout, lkflags);
173 	vp->v_tag = tag;
174 	vp->v_data = NULL;
175 
176 	/*
177 	 * By default the vnode is assigned the mount point's normal
178 	 * operations vector.
179 	 */
180 	vp->v_ops = &mp->mnt_vn_use_ops;
181 	vp->v_pbuf_count = nswbuf_kva / NSWBUF_SPLIT;
182 
183 	/*
184 	 * Placing the vnode on the mount point's queue makes it visible.
185 	 * VNON prevents it from being messed with, however.
186 	 */
187 	insmntque(vp, mp);
188 
189 	/*
190 	 * A VX locked & refd vnode is returned.
191 	 */
192 	*vpp = vp;
193 	return (0);
194 }
195 
196 /*
197  * This function creates vnodes with special operations vectors.  The
198  * mount point is optional.
199  *
200  * This routine is being phased out but is still used by vfs_conf to
201  * create vnodes for devices prior to the root mount (with mp == NULL).
202  */
203 int
204 getspecialvnode(enum vtagtype tag, struct mount *mp,
205 		struct vop_ops **ops,
206 		struct vnode **vpp, int lktimeout, int lkflags)
207 {
208 	struct vnode *vp;
209 
210 	vp = allocvnode(lktimeout, lkflags);
211 	vp->v_tag = tag;
212 	vp->v_data = NULL;
213 	vp->v_ops = ops;
214 
215 	if (mp == NULL)
216 		mp = &dummymount;
217 
218 	/*
219 	 * Placing the vnode on the mount point's queue makes it visible.
220 	 * VNON prevents it from being messed with, however.
221 	 */
222 	insmntque(vp, mp);
223 
224 	/*
225 	 * A VX locked & refd vnode is returned.
226 	 */
227 	*vpp = vp;
228 	return (0);
229 }
230 
231 /*
232  * Interlock against an unmount, return 0 on success, non-zero on failure.
233  *
234  * The passed flag may be 0 or LK_NOWAIT and is only used if an unmount
235  * is in-progress.
236  *
237  * If no unmount is in-progress LK_NOWAIT is ignored.  No other flag bits
238  * are used.  A shared locked will be obtained and the filesystem will not
239  * be unmountable until the lock is released.
240  */
241 int
242 vfs_busy(struct mount *mp, int flags)
243 {
244 	int lkflags;
245 
246 	atomic_add_int(&mp->mnt_refs, 1);
247 	lwkt_gettoken(&mp->mnt_token);
248 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
249 		if (flags & LK_NOWAIT) {
250 			lwkt_reltoken(&mp->mnt_token);
251 			atomic_add_int(&mp->mnt_refs, -1);
252 			return (ENOENT);
253 		}
254 		/* XXX not MP safe */
255 		mp->mnt_kern_flag |= MNTK_MWAIT;
256 		/*
257 		 * Since all busy locks are shared except the exclusive
258 		 * lock granted when unmounting, the only place that a
259 		 * wakeup needs to be done is at the release of the
260 		 * exclusive lock at the end of dounmount.
261 		 */
262 		tsleep((caddr_t)mp, 0, "vfs_busy", 0);
263 		lwkt_reltoken(&mp->mnt_token);
264 		atomic_add_int(&mp->mnt_refs, -1);
265 		return (ENOENT);
266 	}
267 	lkflags = LK_SHARED;
268 	if (lockmgr(&mp->mnt_lock, lkflags))
269 		panic("vfs_busy: unexpected lock failure");
270 	lwkt_reltoken(&mp->mnt_token);
271 	return (0);
272 }
273 
274 /*
275  * Free a busy filesystem.
276  *
277  * Decrement refs before releasing the lock so e.g. a pending umount
278  * doesn't give us an unexpected busy error.
279  */
280 void
281 vfs_unbusy(struct mount *mp)
282 {
283 	atomic_add_int(&mp->mnt_refs, -1);
284 	lockmgr(&mp->mnt_lock, LK_RELEASE);
285 }
286 
287 /*
288  * Lookup a filesystem type, and if found allocate and initialize
289  * a mount structure for it.
290  *
291  * Devname is usually updated by mount(8) after booting.
292  */
293 int
294 vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
295 {
296 	struct vfsconf *vfsp;
297 	struct mount *mp;
298 
299 	if (fstypename == NULL)
300 		return (ENODEV);
301 
302 	vfsp = vfsconf_find_by_name(fstypename);
303 	if (vfsp == NULL)
304 		return (ENODEV);
305 	mp = kmalloc(sizeof(struct mount), M_MOUNT, M_WAITOK | M_ZERO);
306 	mount_init(mp);
307 	lockinit(&mp->mnt_lock, "vfslock", VLKTIMEOUT, 0);
308 
309 	vfs_busy(mp, 0);
310 	mp->mnt_vfc = vfsp;
311 	mp->mnt_op = vfsp->vfc_vfsops;
312 	mp->mnt_pbuf_count = nswbuf_kva / NSWBUF_SPLIT;
313 	vfsp->vfc_refcount++;
314 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
315 	mp->mnt_flag |= MNT_RDONLY;
316 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
317 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
318 	copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
319 	*mpp = mp;
320 	return (0);
321 }
322 
323 /*
324  * Basic mount structure initialization
325  */
326 void
327 mount_init(struct mount *mp)
328 {
329 	lockinit(&mp->mnt_lock, "vfslock", hz*5, 0);
330 	lwkt_token_init(&mp->mnt_token, "permnt");
331 
332 	TAILQ_INIT(&mp->mnt_vnodescan_list);
333 	TAILQ_INIT(&mp->mnt_nvnodelist);
334 	TAILQ_INIT(&mp->mnt_reservedvnlist);
335 	TAILQ_INIT(&mp->mnt_jlist);
336 	mp->mnt_nvnodelistsize = 0;
337 	mp->mnt_flag = 0;
338 	mp->mnt_hold = 1;
339 	mp->mnt_iosize_max = MAXPHYS;
340 	vn_syncer_thr_create(mp);
341 }
342 
343 void
344 mount_hold(struct mount *mp)
345 {
346 	atomic_add_int(&mp->mnt_hold, 1);
347 }
348 
349 void
350 mount_drop(struct mount *mp)
351 {
352 	if (atomic_fetchadd_int(&mp->mnt_hold, -1) == 1)
353 		kfree(mp, M_MOUNT);
354 }
355 
356 /*
357  * Lookup a mount point by filesystem identifier.
358  */
359 struct mount *
360 vfs_getvfs(fsid_t *fsid)
361 {
362 	struct mount *mp;
363 
364 	lwkt_gettoken(&mountlist_token);
365 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
366 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
367 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
368 			break;
369 		}
370 	}
371 	lwkt_reltoken(&mountlist_token);
372 	return (mp);
373 }
374 
375 /*
376  * Get a new unique fsid.  Try to make its val[0] unique, since this value
377  * will be used to create fake device numbers for stat().  Also try (but
378  * not so hard) make its val[0] unique mod 2^16, since some emulators only
379  * support 16-bit device numbers.  We end up with unique val[0]'s for the
380  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
381  *
382  * Keep in mind that several mounts may be running in parallel.  Starting
383  * the search one past where the previous search terminated is both a
384  * micro-optimization and a defense against returning the same fsid to
385  * different mounts.
386  */
387 void
388 vfs_getnewfsid(struct mount *mp)
389 {
390 	static u_int16_t mntid_base;
391 	fsid_t tfsid;
392 	int mtype;
393 
394 	lwkt_gettoken(&mntid_token);
395 	mtype = mp->mnt_vfc->vfc_typenum;
396 	tfsid.val[1] = mtype;
397 	mtype = (mtype & 0xFF) << 24;
398 	for (;;) {
399 		tfsid.val[0] = makeudev(255,
400 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
401 		mntid_base++;
402 		if (vfs_getvfs(&tfsid) == NULL)
403 			break;
404 	}
405 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
406 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
407 	lwkt_reltoken(&mntid_token);
408 }
409 
410 /*
411  * Set the FSID for a new mount point to the template.  Adjust
412  * the FSID to avoid collisions.
413  */
414 int
415 vfs_setfsid(struct mount *mp, fsid_t *template)
416 {
417 	int didmunge = 0;
418 
419 	bzero(&mp->mnt_stat.f_fsid, sizeof(mp->mnt_stat.f_fsid));
420 	for (;;) {
421 		if (vfs_getvfs(template) == NULL)
422 			break;
423 		didmunge = 1;
424 		++template->val[1];
425 	}
426 	mp->mnt_stat.f_fsid = *template;
427 	return(didmunge);
428 }
429 
430 /*
431  * This routine is called when we have too many vnodes.  It attempts
432  * to free <count> vnodes and will potentially free vnodes that still
433  * have VM backing store (VM backing store is typically the cause
434  * of a vnode blowout so we want to do this).  Therefore, this operation
435  * is not considered cheap.
436  *
437  * A number of conditions may prevent a vnode from being reclaimed.
438  * the buffer cache may have references on the vnode, a directory
439  * vnode may still have references due to the namei cache representing
440  * underlying files, or the vnode may be in active use.   It is not
441  * desireable to reuse such vnodes.  These conditions may cause the
442  * number of vnodes to reach some minimum value regardless of what
443  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
444  */
445 
446 /*
447  * Attempt to recycle vnodes in a context that is always safe to block.
448  * Calling vlrurecycle() from the bowels of file system code has some
449  * interesting deadlock problems.
450  */
451 static struct thread *vnlruthread;
452 
453 static void
454 vnlru_proc(void)
455 {
456 	struct thread *td = curthread;
457 
458 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
459 			      SHUTDOWN_PRI_FIRST);
460 
461 	for (;;) {
462 		int ncached;
463 
464 		kproc_suspend_loop();
465 
466 		/*
467 		 * Try to free some vnodes if we have too many.  Trigger based
468 		 * on potentially freeable vnodes but calculate the count
469 		 * based on total vnodes.
470 		 *
471 		 * (long) -> deal with 64 bit machines, intermediate overflow
472 		 */
473 		ncached = countcachedvnodes(1);
474 		if (numvnodes >= maxvnodes * 9 / 10 &&
475 		    ncached + inactivevnodes >= maxvnodes * 5 / 10) {
476 			int count = numvnodes - maxvnodes * 9 / 10;
477 
478 			if (count > (ncached + inactivevnodes) / 100)
479 				count = (ncached + inactivevnodes) / 100;
480 			if (count < 5)
481 				count = 5;
482 			freesomevnodes(count);
483 		}
484 
485 		/*
486 		 * Do non-critical-path (more robust) cache cleaning,
487 		 * even if vnode counts are nominal, to try to avoid
488 		 * having to do it in the critical path.
489 		 */
490 		cache_hysteresis(0);
491 
492 		/*
493 		 * Nothing to do if most of our vnodes are already on
494 		 * the free list.
495 		 */
496 		ncached = countcachedvnodes(1);
497 		if (numvnodes <= maxvnodes * 9 / 10 ||
498 		    ncached + inactivevnodes <= maxvnodes * 5 / 10) {
499 			tsleep(vnlruthread, 0, "vlruwt", hz);
500 			continue;
501 		}
502 	}
503 }
504 
505 /*
506  * MOUNTLIST FUNCTIONS
507  */
508 
509 /*
510  * mountlist_insert (MP SAFE)
511  *
512  * Add a new mount point to the mount list.
513  */
514 void
515 mountlist_insert(struct mount *mp, int how)
516 {
517 	lwkt_gettoken(&mountlist_token);
518 	if (how == MNTINS_FIRST)
519 	    TAILQ_INSERT_HEAD(&mountlist, mp, mnt_list);
520 	else
521 	    TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
522 	lwkt_reltoken(&mountlist_token);
523 }
524 
525 /*
526  * mountlist_interlock (MP SAFE)
527  *
528  * Execute the specified interlock function with the mountlist token
529  * held.  The function will be called in a serialized fashion verses
530  * other functions called through this mechanism.
531  */
532 int
533 mountlist_interlock(int (*callback)(struct mount *), struct mount *mp)
534 {
535 	int error;
536 
537 	lwkt_gettoken(&mountlist_token);
538 	error = callback(mp);
539 	lwkt_reltoken(&mountlist_token);
540 	return (error);
541 }
542 
543 /*
544  * mountlist_boot_getfirst (DURING BOOT ONLY)
545  *
546  * This function returns the first mount on the mountlist, which is
547  * expected to be the root mount.  Since no interlocks are obtained
548  * this function is only safe to use during booting.
549  */
550 
551 struct mount *
552 mountlist_boot_getfirst(void)
553 {
554 	return(TAILQ_FIRST(&mountlist));
555 }
556 
557 /*
558  * mountlist_remove (MP SAFE)
559  *
560  * Remove a node from the mountlist.  If this node is the next scan node
561  * for any active mountlist scans, the active mountlist scan will be
562  * adjusted to skip the node, thus allowing removals during mountlist
563  * scans.
564  */
565 void
566 mountlist_remove(struct mount *mp)
567 {
568 	struct mountscan_info *msi;
569 
570 	lwkt_gettoken(&mountlist_token);
571 	TAILQ_FOREACH(msi, &mountscan_list, msi_entry) {
572 		if (msi->msi_node == mp) {
573 			if (msi->msi_how & MNTSCAN_FORWARD)
574 				msi->msi_node = TAILQ_NEXT(mp, mnt_list);
575 			else
576 				msi->msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
577 		}
578 	}
579 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
580 	lwkt_reltoken(&mountlist_token);
581 }
582 
583 /*
584  * mountlist_exists (MP SAFE)
585  *
586  * Checks if a node exists in the mountlist.
587  * This function is mainly used by VFS quota code to check if a
588  * cached nullfs struct mount pointer is still valid at use time
589  *
590  * FIXME: there is no warranty the mp passed to that function
591  * will be the same one used by VFS_ACCOUNT() later
592  */
593 int
594 mountlist_exists(struct mount *mp)
595 {
596 	int node_exists = 0;
597 	struct mount* lmp;
598 
599 	lwkt_gettoken(&mountlist_token);
600 	TAILQ_FOREACH(lmp, &mountlist, mnt_list) {
601 		if (lmp == mp) {
602 			node_exists = 1;
603 			break;
604 		}
605 	}
606 	lwkt_reltoken(&mountlist_token);
607 	return(node_exists);
608 }
609 
610 /*
611  * mountlist_scan (MP SAFE)
612  *
613  * Safely scan the mount points on the mount list.  Unless otherwise
614  * specified each mount point will be busied prior to the callback and
615  * unbusied afterwords.  The callback may safely remove any mount point
616  * without interfering with the scan.  If the current callback
617  * mount is removed the scanner will not attempt to unbusy it.
618  *
619  * If a mount node cannot be busied it is silently skipped.
620  *
621  * The callback return value is aggregated and a total is returned.  A return
622  * value of < 0 is not aggregated and will terminate the scan.
623  *
624  * MNTSCAN_FORWARD	- the mountlist is scanned in the forward direction
625  * MNTSCAN_REVERSE	- the mountlist is scanned in reverse
626  * MNTSCAN_NOBUSY	- the scanner will make the callback without busying
627  *			  the mount node.
628  *
629  * NOTE: mount_hold()/mount_drop() sequence primarily helps us avoid
630  *	 confusion for the unbusy check, particularly if a kfree/kmalloc
631  *	 occurs quickly (lots of processes mounting and unmounting at the
632  *	 same time).
633  */
634 int
635 mountlist_scan(int (*callback)(struct mount *, void *), void *data, int how)
636 {
637 	struct mountscan_info info;
638 	struct mount *mp;
639 	int count;
640 	int res;
641 
642 	lwkt_gettoken(&mountlist_token);
643 
644 	info.msi_how = how;
645 	info.msi_node = NULL;	/* paranoia */
646 	TAILQ_INSERT_TAIL(&mountscan_list, &info, msi_entry);
647 
648 	res = 0;
649 
650 	if (how & MNTSCAN_FORWARD) {
651 		info.msi_node = TAILQ_FIRST(&mountlist);
652 		while ((mp = info.msi_node) != NULL) {
653 			mount_hold(mp);
654 			if (how & MNTSCAN_NOBUSY) {
655 				count = callback(mp, data);
656 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
657 				count = callback(mp, data);
658 				if (mp == info.msi_node)
659 					vfs_unbusy(mp);
660 			} else {
661 				count = 0;
662 			}
663 			mount_drop(mp);
664 			if (count < 0)
665 				break;
666 			res += count;
667 			if (mp == info.msi_node)
668 				info.msi_node = TAILQ_NEXT(mp, mnt_list);
669 		}
670 	} else if (how & MNTSCAN_REVERSE) {
671 		info.msi_node = TAILQ_LAST(&mountlist, mntlist);
672 		while ((mp = info.msi_node) != NULL) {
673 			mount_hold(mp);
674 			if (how & MNTSCAN_NOBUSY) {
675 				count = callback(mp, data);
676 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
677 				count = callback(mp, data);
678 				if (mp == info.msi_node)
679 					vfs_unbusy(mp);
680 			} else {
681 				count = 0;
682 			}
683 			mount_drop(mp);
684 			if (count < 0)
685 				break;
686 			res += count;
687 			if (mp == info.msi_node)
688 				info.msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
689 		}
690 	}
691 	TAILQ_REMOVE(&mountscan_list, &info, msi_entry);
692 	lwkt_reltoken(&mountlist_token);
693 	return(res);
694 }
695 
696 /*
697  * MOUNT RELATED VNODE FUNCTIONS
698  */
699 
700 static struct kproc_desc vnlru_kp = {
701 	"vnlru",
702 	vnlru_proc,
703 	&vnlruthread
704 };
705 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp);
706 
707 /*
708  * Move a vnode from one mount queue to another.
709  */
710 void
711 insmntque(struct vnode *vp, struct mount *mp)
712 {
713 	struct mount *omp;
714 
715 	/*
716 	 * Delete from old mount point vnode list, if on one.
717 	 */
718 	if ((omp = vp->v_mount) != NULL) {
719 		lwkt_gettoken(&omp->mnt_token);
720 		KKASSERT(omp == vp->v_mount);
721 		KASSERT(omp->mnt_nvnodelistsize > 0,
722 			("bad mount point vnode list size"));
723 		vremovevnodemnt(vp);
724 		omp->mnt_nvnodelistsize--;
725 		lwkt_reltoken(&omp->mnt_token);
726 	}
727 
728 	/*
729 	 * Insert into list of vnodes for the new mount point, if available.
730 	 * The 'end' of the LRU list is the vnode prior to mp->mnt_syncer.
731 	 */
732 	if (mp == NULL) {
733 		vp->v_mount = NULL;
734 		return;
735 	}
736 	lwkt_gettoken(&mp->mnt_token);
737 	vp->v_mount = mp;
738 	if (mp->mnt_syncer) {
739 		TAILQ_INSERT_BEFORE(mp->mnt_syncer, vp, v_nmntvnodes);
740 	} else {
741 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
742 	}
743 	mp->mnt_nvnodelistsize++;
744 	lwkt_reltoken(&mp->mnt_token);
745 }
746 
747 
748 /*
749  * Scan the vnodes under a mount point and issue appropriate callbacks.
750  *
751  * The fastfunc() callback is called with just the mountlist token held
752  * (no vnode lock).  It may not block and the vnode may be undergoing
753  * modifications while the caller is processing it.  The vnode will
754  * not be entirely destroyed, however, due to the fact that the mountlist
755  * token is held.  A return value < 0 skips to the next vnode without calling
756  * the slowfunc(), a return value > 0 terminates the loop.
757  *
758  * WARNING! The fastfunc() should not indirect through vp->v_object, the vp
759  *	    data structure is unstable when called from fastfunc().
760  *
761  * The slowfunc() callback is called after the vnode has been successfully
762  * locked based on passed flags.  The vnode is skipped if it gets rearranged
763  * or destroyed while blocking on the lock.  A non-zero return value from
764  * the slow function terminates the loop.  The slow function is allowed to
765  * arbitrarily block.  The scanning code guarentees consistency of operation
766  * even if the slow function deletes or moves the node, or blocks and some
767  * other thread deletes or moves the node.
768  */
769 int
770 vmntvnodescan(
771     struct mount *mp,
772     int flags,
773     int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
774     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
775     void *data
776 ) {
777 	struct vmntvnodescan_info info;
778 	struct vnode *vp;
779 	int r = 0;
780 	int maxcount = mp->mnt_nvnodelistsize * 2;
781 	int stopcount = 0;
782 	int count = 0;
783 
784 	lwkt_gettoken(&mp->mnt_token);
785 
786 	/*
787 	 * If asked to do one pass stop after iterating available vnodes.
788 	 * Under heavy loads new vnodes can be added while we are scanning,
789 	 * so this isn't perfect.  Create a slop factor of 2x.
790 	 */
791 	if (flags & VMSC_ONEPASS)
792 		stopcount = mp->mnt_nvnodelistsize;
793 
794 	info.vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
795 	TAILQ_INSERT_TAIL(&mp->mnt_vnodescan_list, &info, entry);
796 
797 	while ((vp = info.vp) != NULL) {
798 		if (--maxcount == 0) {
799 			kprintf("Warning: excessive fssync iteration\n");
800 			maxcount = mp->mnt_nvnodelistsize * 2;
801 		}
802 
803 		/*
804 		 * Skip if visible but not ready, or special (e.g.
805 		 * mp->mnt_syncer)
806 		 */
807 		if (vp->v_type == VNON)
808 			goto next;
809 		KKASSERT(vp->v_mount == mp);
810 
811 		/*
812 		 * Quick test.  A negative return continues the loop without
813 		 * calling the slow test.  0 continues onto the slow test.
814 		 * A positive number aborts the loop.
815 		 */
816 		if (fastfunc) {
817 			if ((r = fastfunc(mp, vp, data)) < 0) {
818 				r = 0;
819 				goto next;
820 			}
821 			if (r)
822 				break;
823 		}
824 
825 		/*
826 		 * Get a vxlock on the vnode, retry if it has moved or isn't
827 		 * in the mountlist where we expect it.
828 		 */
829 		if (slowfunc) {
830 			int error;
831 
832 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
833 			case VMSC_GETVP:
834 				error = vget(vp, LK_EXCLUSIVE);
835 				break;
836 			case VMSC_GETVP|VMSC_NOWAIT:
837 				error = vget(vp, LK_EXCLUSIVE|LK_NOWAIT);
838 				break;
839 			case VMSC_GETVX:
840 				vx_get(vp);
841 				error = 0;
842 				break;
843 			default:
844 				error = 0;
845 				break;
846 			}
847 			if (error)
848 				goto next;
849 			/*
850 			 * Do not call the slow function if the vnode is
851 			 * invalid or if it was ripped out from under us
852 			 * while we (potentially) blocked.
853 			 */
854 			if (info.vp == vp && vp->v_type != VNON)
855 				r = slowfunc(mp, vp, data);
856 
857 			/*
858 			 * Cleanup
859 			 */
860 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
861 			case VMSC_GETVP:
862 			case VMSC_GETVP|VMSC_NOWAIT:
863 				vput(vp);
864 				break;
865 			case VMSC_GETVX:
866 				vx_put(vp);
867 				break;
868 			default:
869 				break;
870 			}
871 			if (r != 0)
872 				break;
873 		}
874 
875 next:
876 		/*
877 		 * Yield after some processing.  Depending on the number
878 		 * of vnodes, we might wind up running for a long time.
879 		 * Because threads are not preemptable, time critical
880 		 * userland processes might starve.  Give them a chance
881 		 * now and then.
882 		 */
883 		if (++count == 10000) {
884 			/*
885 			 * We really want to yield a bit, so we simply
886 			 * sleep a tick
887 			 */
888 			tsleep(mp, 0, "vnodescn", 1);
889 			count = 0;
890 		}
891 
892 		/*
893 		 * If doing one pass this decrements to zero.  If it starts
894 		 * at zero it is effectively unlimited for the purposes of
895 		 * this loop.
896 		 */
897 		if (--stopcount == 0)
898 			break;
899 
900 		/*
901 		 * Iterate.  If the vnode was ripped out from under us
902 		 * info.vp will already point to the next vnode, otherwise
903 		 * we have to obtain the next valid vnode ourselves.
904 		 */
905 		if (info.vp == vp)
906 			info.vp = TAILQ_NEXT(vp, v_nmntvnodes);
907 	}
908 
909 	TAILQ_REMOVE(&mp->mnt_vnodescan_list, &info, entry);
910 	lwkt_reltoken(&mp->mnt_token);
911 	return(r);
912 }
913 
914 /*
915  * Remove any vnodes in the vnode table belonging to mount point mp.
916  *
917  * If FORCECLOSE is not specified, there should not be any active ones,
918  * return error if any are found (nb: this is a user error, not a
919  * system error). If FORCECLOSE is specified, detach any active vnodes
920  * that are found.
921  *
922  * If WRITECLOSE is set, only flush out regular file vnodes open for
923  * writing.
924  *
925  * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
926  *
927  * `rootrefs' specifies the base reference count for the root vnode
928  * of this filesystem. The root vnode is considered busy if its
929  * v_refcnt exceeds this value. On a successful return, vflush()
930  * will call vrele() on the root vnode exactly rootrefs times.
931  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
932  * be zero.
933  */
934 #ifdef DIAGNOSTIC
935 static int busyprt = 0;		/* print out busy vnodes */
936 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
937 #endif
938 
939 static int vflush_scan(struct mount *mp, struct vnode *vp, void *data);
940 
941 struct vflush_info {
942 	int flags;
943 	int busy;
944 	thread_t td;
945 };
946 
947 int
948 vflush(struct mount *mp, int rootrefs, int flags)
949 {
950 	struct thread *td = curthread;	/* XXX */
951 	struct vnode *rootvp = NULL;
952 	int error;
953 	struct vflush_info vflush_info;
954 
955 	if (rootrefs > 0) {
956 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
957 		    ("vflush: bad args"));
958 		/*
959 		 * Get the filesystem root vnode. We can vput() it
960 		 * immediately, since with rootrefs > 0, it won't go away.
961 		 */
962 		if ((error = VFS_ROOT(mp, &rootvp)) != 0) {
963 			if ((flags & FORCECLOSE) == 0)
964 				return (error);
965 			rootrefs = 0;
966 			/* continue anyway */
967 		}
968 		if (rootrefs)
969 			vput(rootvp);
970 	}
971 
972 	vflush_info.busy = 0;
973 	vflush_info.flags = flags;
974 	vflush_info.td = td;
975 	vmntvnodescan(mp, VMSC_GETVX, NULL, vflush_scan, &vflush_info);
976 
977 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
978 		/*
979 		 * If just the root vnode is busy, and if its refcount
980 		 * is equal to `rootrefs', then go ahead and kill it.
981 		 */
982 		KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
983 		KASSERT(VREFCNT(rootvp) >= rootrefs, ("vflush: rootrefs"));
984 		if (vflush_info.busy == 1 && VREFCNT(rootvp) == rootrefs) {
985 			vx_lock(rootvp);
986 			vgone_vxlocked(rootvp);
987 			vx_unlock(rootvp);
988 			vflush_info.busy = 0;
989 		}
990 	}
991 	if (vflush_info.busy)
992 		return (EBUSY);
993 	for (; rootrefs > 0; rootrefs--)
994 		vrele(rootvp);
995 	return (0);
996 }
997 
998 /*
999  * The scan callback is made with an VX locked vnode.
1000  */
1001 static int
1002 vflush_scan(struct mount *mp, struct vnode *vp, void *data)
1003 {
1004 	struct vflush_info *info = data;
1005 	struct vattr vattr;
1006 	int flags = info->flags;
1007 
1008 	/*
1009 	 * Generally speaking try to deactivate on 0 refs (catch-all)
1010 	 */
1011 	atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1012 
1013 	/*
1014 	 * Skip over a vnodes marked VSYSTEM.
1015 	 */
1016 	if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1017 		return(0);
1018 	}
1019 
1020 	/*
1021 	 * Do not force-close VCHR or VBLK vnodes
1022 	 */
1023 	if (vp->v_type == VCHR || vp->v_type == VBLK)
1024 		flags &= ~(WRITECLOSE|FORCECLOSE);
1025 
1026 	/*
1027 	 * If WRITECLOSE is set, flush out unlinked but still open
1028 	 * files (even if open only for reading) and regular file
1029 	 * vnodes open for writing.
1030 	 */
1031 	if ((flags & WRITECLOSE) &&
1032 	    (vp->v_type == VNON ||
1033 	    (VOP_GETATTR(vp, &vattr) == 0 &&
1034 	    vattr.va_nlink > 0)) &&
1035 	    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1036 		return(0);
1037 	}
1038 
1039 	/*
1040 	 * If we are the only holder (refcnt of 1) or the vnode is in
1041 	 * termination (refcnt < 0), we can vgone the vnode.
1042 	 */
1043 	if (VREFCNT(vp) <= 1) {
1044 		vgone_vxlocked(vp);
1045 		return(0);
1046 	}
1047 
1048 	/*
1049 	 * If FORCECLOSE is set, forcibly destroy the vnode and then move
1050 	 * it to a dummymount structure so vop_*() functions don't deref
1051 	 * a NULL pointer.
1052 	 */
1053 	if (flags & FORCECLOSE) {
1054 		vhold(vp);
1055 		vgone_vxlocked(vp);
1056 		if (vp->v_mount == NULL)
1057 			insmntque(vp, &dummymount);
1058 		vdrop(vp);
1059 		return(0);
1060 	}
1061 	if (vp->v_type == VCHR || vp->v_type == VBLK)
1062 		kprintf("vflush: Warning, cannot destroy busy device vnode\n");
1063 #ifdef DIAGNOSTIC
1064 	if (busyprt)
1065 		vprint("vflush: busy vnode", vp);
1066 #endif
1067 	++info->busy;
1068 	return(0);
1069 }
1070 
1071 void
1072 add_bio_ops(struct bio_ops *ops)
1073 {
1074 	TAILQ_INSERT_TAIL(&bio_ops_list, ops, entry);
1075 }
1076 
1077 void
1078 rem_bio_ops(struct bio_ops *ops)
1079 {
1080 	TAILQ_REMOVE(&bio_ops_list, ops, entry);
1081 }
1082 
1083 /*
1084  * This calls the bio_ops io_sync function either for a mount point
1085  * or generally.
1086  *
1087  * WARNING: softdeps is weirdly coded and just isn't happy unless
1088  * io_sync is called with a NULL mount from the general syncing code.
1089  */
1090 void
1091 bio_ops_sync(struct mount *mp)
1092 {
1093 	struct bio_ops *ops;
1094 
1095 	if (mp) {
1096 		if ((ops = mp->mnt_bioops) != NULL)
1097 			ops->io_sync(mp);
1098 	} else {
1099 		TAILQ_FOREACH(ops, &bio_ops_list, entry) {
1100 			ops->io_sync(NULL);
1101 		}
1102 	}
1103 }
1104 
1105 /*
1106  * Lookup a mount point by nch
1107  */
1108 struct mount *
1109 mount_get_by_nc(struct namecache *ncp)
1110 {
1111 	struct mount *mp = NULL;
1112 
1113 	lwkt_gettoken(&mountlist_token);
1114 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1115 		if (ncp == mp->mnt_ncmountpt.ncp)
1116 			break;
1117 	}
1118 	lwkt_reltoken(&mountlist_token);
1119 	return (mp);
1120 }
1121 
1122