xref: /dragonfly/sys/kern/vfs_mount.c (revision 6ab64ab6)
1 /*
2  * Copyright (c) 2004,2013 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 /*
68  * External virtual filesystem routines
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/mount.h>
76 #include <sys/proc.h>
77 #include <sys/vnode.h>
78 #include <sys/buf.h>
79 #include <sys/eventhandler.h>
80 #include <sys/kthread.h>
81 #include <sys/sysctl.h>
82 
83 #include <machine/limits.h>
84 
85 #include <sys/buf2.h>
86 #include <sys/thread2.h>
87 #include <sys/sysref2.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_object.h>
91 
92 struct mountscan_info {
93 	TAILQ_ENTRY(mountscan_info) msi_entry;
94 	int msi_how;
95 	struct mount *msi_node;
96 };
97 
98 struct vmntvnodescan_info {
99 	TAILQ_ENTRY(vmntvnodescan_info) entry;
100 	struct vnode *vp;
101 };
102 
103 struct vnlru_info {
104 	int	pass;
105 };
106 
107 static int vnlru_nowhere = 0;
108 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RD,
109 	    &vnlru_nowhere, 0,
110 	    "Number of times the vnlru process ran without success");
111 
112 
113 static struct lwkt_token mntid_token;
114 static struct mount dummymount;
115 
116 /* note: mountlist exported to pstat */
117 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
118 static TAILQ_HEAD(,mountscan_info) mountscan_list;
119 static struct lwkt_token mountlist_token;
120 
121 static TAILQ_HEAD(,bio_ops) bio_ops_list = TAILQ_HEAD_INITIALIZER(bio_ops_list);
122 
123 /*
124  * Called from vfsinit()
125  */
126 void
127 vfs_mount_init(void)
128 {
129 	lwkt_token_init(&mountlist_token, "mntlist");
130 	lwkt_token_init(&mntid_token, "mntid");
131 	TAILQ_INIT(&mountscan_list);
132 	mount_init(&dummymount);
133 	dummymount.mnt_flag |= MNT_RDONLY;
134 	dummymount.mnt_kern_flag |= MNTK_ALL_MPSAFE;
135 }
136 
137 /*
138  * Support function called to remove a vnode from the mountlist and
139  * deal with side effects for scans in progress.
140  *
141  * Target mnt_token is held on call.
142  */
143 static void
144 vremovevnodemnt(struct vnode *vp)
145 {
146         struct vmntvnodescan_info *info;
147 	struct mount *mp = vp->v_mount;
148 
149 	TAILQ_FOREACH(info, &mp->mnt_vnodescan_list, entry) {
150 		if (info->vp == vp)
151 			info->vp = TAILQ_NEXT(vp, v_nmntvnodes);
152 	}
153 	TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
154 }
155 
156 /*
157  * Allocate a new vnode and associate it with a tag, mount point, and
158  * operations vector.
159  *
160  * A VX locked and refd vnode is returned.  The caller should setup the
161  * remaining fields and vx_put() or, if he wishes to leave a vref,
162  * vx_unlock() the vnode.
163  */
164 int
165 getnewvnode(enum vtagtype tag, struct mount *mp,
166 		struct vnode **vpp, int lktimeout, int lkflags)
167 {
168 	struct vnode *vp;
169 
170 	KKASSERT(mp != NULL);
171 
172 	vp = allocvnode(lktimeout, lkflags);
173 	vp->v_tag = tag;
174 	vp->v_data = NULL;
175 
176 	/*
177 	 * By default the vnode is assigned the mount point's normal
178 	 * operations vector.
179 	 */
180 	vp->v_ops = &mp->mnt_vn_use_ops;
181 
182 	/*
183 	 * Placing the vnode on the mount point's queue makes it visible.
184 	 * VNON prevents it from being messed with, however.
185 	 */
186 	insmntque(vp, mp);
187 
188 	/*
189 	 * A VX locked & refd vnode is returned.
190 	 */
191 	*vpp = vp;
192 	return (0);
193 }
194 
195 /*
196  * This function creates vnodes with special operations vectors.  The
197  * mount point is optional.
198  *
199  * This routine is being phased out but is still used by vfs_conf to
200  * create vnodes for devices prior to the root mount (with mp == NULL).
201  */
202 int
203 getspecialvnode(enum vtagtype tag, struct mount *mp,
204 		struct vop_ops **ops,
205 		struct vnode **vpp, int lktimeout, int lkflags)
206 {
207 	struct vnode *vp;
208 
209 	vp = allocvnode(lktimeout, lkflags);
210 	vp->v_tag = tag;
211 	vp->v_data = NULL;
212 	vp->v_ops = ops;
213 
214 	if (mp == NULL)
215 		mp = &dummymount;
216 
217 	/*
218 	 * Placing the vnode on the mount point's queue makes it visible.
219 	 * VNON prevents it from being messed with, however.
220 	 */
221 	insmntque(vp, mp);
222 
223 	/*
224 	 * A VX locked & refd vnode is returned.
225 	 */
226 	*vpp = vp;
227 	return (0);
228 }
229 
230 /*
231  * Interlock against an unmount, return 0 on success, non-zero on failure.
232  *
233  * The passed flag may be 0 or LK_NOWAIT and is only used if an unmount
234  * is in-progress.
235  *
236  * If no unmount is in-progress LK_NOWAIT is ignored.  No other flag bits
237  * are used.  A shared locked will be obtained and the filesystem will not
238  * be unmountable until the lock is released.
239  */
240 int
241 vfs_busy(struct mount *mp, int flags)
242 {
243 	int lkflags;
244 
245 	atomic_add_int(&mp->mnt_refs, 1);
246 	lwkt_gettoken(&mp->mnt_token);
247 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
248 		if (flags & LK_NOWAIT) {
249 			lwkt_reltoken(&mp->mnt_token);
250 			atomic_add_int(&mp->mnt_refs, -1);
251 			return (ENOENT);
252 		}
253 		/* XXX not MP safe */
254 		mp->mnt_kern_flag |= MNTK_MWAIT;
255 		/*
256 		 * Since all busy locks are shared except the exclusive
257 		 * lock granted when unmounting, the only place that a
258 		 * wakeup needs to be done is at the release of the
259 		 * exclusive lock at the end of dounmount.
260 		 */
261 		tsleep((caddr_t)mp, 0, "vfs_busy", 0);
262 		lwkt_reltoken(&mp->mnt_token);
263 		atomic_add_int(&mp->mnt_refs, -1);
264 		return (ENOENT);
265 	}
266 	lkflags = LK_SHARED;
267 	if (lockmgr(&mp->mnt_lock, lkflags))
268 		panic("vfs_busy: unexpected lock failure");
269 	lwkt_reltoken(&mp->mnt_token);
270 	return (0);
271 }
272 
273 /*
274  * Free a busy filesystem.
275  *
276  * Decrement refs before releasing the lock so e.g. a pending umount
277  * doesn't give us an unexpected busy error.
278  */
279 void
280 vfs_unbusy(struct mount *mp)
281 {
282 	atomic_add_int(&mp->mnt_refs, -1);
283 	lockmgr(&mp->mnt_lock, LK_RELEASE);
284 }
285 
286 /*
287  * Lookup a filesystem type, and if found allocate and initialize
288  * a mount structure for it.
289  *
290  * Devname is usually updated by mount(8) after booting.
291  */
292 int
293 vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
294 {
295 	struct vfsconf *vfsp;
296 	struct mount *mp;
297 
298 	if (fstypename == NULL)
299 		return (ENODEV);
300 
301 	vfsp = vfsconf_find_by_name(fstypename);
302 	if (vfsp == NULL)
303 		return (ENODEV);
304 	mp = kmalloc(sizeof(struct mount), M_MOUNT, M_WAITOK | M_ZERO);
305 	mount_init(mp);
306 	lockinit(&mp->mnt_lock, "vfslock", VLKTIMEOUT, 0);
307 
308 	vfs_busy(mp, 0);
309 	mp->mnt_vfc = vfsp;
310 	mp->mnt_op = vfsp->vfc_vfsops;
311 	vfsp->vfc_refcount++;
312 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
313 	mp->mnt_flag |= MNT_RDONLY;
314 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
315 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
316 	copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
317 	*mpp = mp;
318 	return (0);
319 }
320 
321 /*
322  * Basic mount structure initialization
323  */
324 void
325 mount_init(struct mount *mp)
326 {
327 	lockinit(&mp->mnt_lock, "vfslock", hz*5, 0);
328 	lwkt_token_init(&mp->mnt_token, "permnt");
329 
330 	TAILQ_INIT(&mp->mnt_vnodescan_list);
331 	TAILQ_INIT(&mp->mnt_nvnodelist);
332 	TAILQ_INIT(&mp->mnt_reservedvnlist);
333 	TAILQ_INIT(&mp->mnt_jlist);
334 	mp->mnt_nvnodelistsize = 0;
335 	mp->mnt_flag = 0;
336 	mp->mnt_hold = 1;
337 	mp->mnt_iosize_max = MAXPHYS;
338 	vn_syncer_thr_create(mp);
339 }
340 
341 void
342 mount_hold(struct mount *mp)
343 {
344 	atomic_add_int(&mp->mnt_hold, 1);
345 }
346 
347 void
348 mount_drop(struct mount *mp)
349 {
350 	if (atomic_fetchadd_int(&mp->mnt_hold, -1) == 1)
351 		kfree(mp, M_MOUNT);
352 }
353 
354 /*
355  * Lookup a mount point by filesystem identifier.
356  */
357 struct mount *
358 vfs_getvfs(fsid_t *fsid)
359 {
360 	struct mount *mp;
361 
362 	lwkt_gettoken(&mountlist_token);
363 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
364 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
365 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
366 			break;
367 		}
368 	}
369 	lwkt_reltoken(&mountlist_token);
370 	return (mp);
371 }
372 
373 /*
374  * Get a new unique fsid.  Try to make its val[0] unique, since this value
375  * will be used to create fake device numbers for stat().  Also try (but
376  * not so hard) make its val[0] unique mod 2^16, since some emulators only
377  * support 16-bit device numbers.  We end up with unique val[0]'s for the
378  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
379  *
380  * Keep in mind that several mounts may be running in parallel.  Starting
381  * the search one past where the previous search terminated is both a
382  * micro-optimization and a defense against returning the same fsid to
383  * different mounts.
384  */
385 void
386 vfs_getnewfsid(struct mount *mp)
387 {
388 	static u_int16_t mntid_base;
389 	fsid_t tfsid;
390 	int mtype;
391 
392 	lwkt_gettoken(&mntid_token);
393 	mtype = mp->mnt_vfc->vfc_typenum;
394 	tfsid.val[1] = mtype;
395 	mtype = (mtype & 0xFF) << 24;
396 	for (;;) {
397 		tfsid.val[0] = makeudev(255,
398 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
399 		mntid_base++;
400 		if (vfs_getvfs(&tfsid) == NULL)
401 			break;
402 	}
403 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
404 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
405 	lwkt_reltoken(&mntid_token);
406 }
407 
408 /*
409  * Set the FSID for a new mount point to the template.  Adjust
410  * the FSID to avoid collisions.
411  */
412 int
413 vfs_setfsid(struct mount *mp, fsid_t *template)
414 {
415 	int didmunge = 0;
416 
417 	bzero(&mp->mnt_stat.f_fsid, sizeof(mp->mnt_stat.f_fsid));
418 	for (;;) {
419 		if (vfs_getvfs(template) == NULL)
420 			break;
421 		didmunge = 1;
422 		++template->val[1];
423 	}
424 	mp->mnt_stat.f_fsid = *template;
425 	return(didmunge);
426 }
427 
428 /*
429  * This routine is called when we have too many vnodes.  It attempts
430  * to free <count> vnodes and will potentially free vnodes that still
431  * have VM backing store (VM backing store is typically the cause
432  * of a vnode blowout so we want to do this).  Therefore, this operation
433  * is not considered cheap.
434  *
435  * A number of conditions may prevent a vnode from being reclaimed.
436  * the buffer cache may have references on the vnode, a directory
437  * vnode may still have references due to the namei cache representing
438  * underlying files, or the vnode may be in active use.   It is not
439  * desireable to reuse such vnodes.  These conditions may cause the
440  * number of vnodes to reach some minimum value regardless of what
441  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
442  */
443 
444 /*
445  * Attempt to recycle vnodes in a context that is always safe to block.
446  * Calling vlrurecycle() from the bowels of file system code has some
447  * interesting deadlock problems.
448  */
449 static struct thread *vnlruthread;
450 
451 static void
452 vnlru_proc(void)
453 {
454 	struct thread *td = curthread;
455 
456 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
457 			      SHUTDOWN_PRI_FIRST);
458 
459 	for (;;) {
460 		kproc_suspend_loop();
461 
462 		/*
463 		 * Try to free some vnodes if we have too many.  Trigger based
464 		 * on potentially freeable vnodes but calculate the count
465 		 * based on total vnodes.
466 		 *
467 		 * (long) -> deal with 64 bit machines, intermediate overflow
468 		 */
469 		if (numvnodes >= maxvnodes * 9 / 10 &&
470 		    cachedvnodes + inactivevnodes >= maxvnodes * 5 / 10) {
471 			int count = numvnodes - maxvnodes * 9 / 10;
472 
473 			if (count > (cachedvnodes + inactivevnodes) / 100)
474 				count = (cachedvnodes + inactivevnodes) / 100;
475 			if (count < 5)
476 				count = 5;
477 			freesomevnodes(count);
478 		}
479 
480 		/*
481 		 * Do non-critical-path (more robust) cache cleaning,
482 		 * even if vnode counts are nominal, to try to avoid
483 		 * having to do it in the critical path.
484 		 */
485 		cache_hysteresis(0);
486 
487 		/*
488 		 * Nothing to do if most of our vnodes are already on
489 		 * the free list.
490 		 */
491 		if (numvnodes <= maxvnodes * 9 / 10 ||
492 		    cachedvnodes + inactivevnodes <= maxvnodes * 5 / 10) {
493 			tsleep(vnlruthread, 0, "vlruwt", hz);
494 			continue;
495 		}
496 	}
497 }
498 
499 /*
500  * MOUNTLIST FUNCTIONS
501  */
502 
503 /*
504  * mountlist_insert (MP SAFE)
505  *
506  * Add a new mount point to the mount list.
507  */
508 void
509 mountlist_insert(struct mount *mp, int how)
510 {
511 	lwkt_gettoken(&mountlist_token);
512 	if (how == MNTINS_FIRST)
513 	    TAILQ_INSERT_HEAD(&mountlist, mp, mnt_list);
514 	else
515 	    TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
516 	lwkt_reltoken(&mountlist_token);
517 }
518 
519 /*
520  * mountlist_interlock (MP SAFE)
521  *
522  * Execute the specified interlock function with the mountlist token
523  * held.  The function will be called in a serialized fashion verses
524  * other functions called through this mechanism.
525  */
526 int
527 mountlist_interlock(int (*callback)(struct mount *), struct mount *mp)
528 {
529 	int error;
530 
531 	lwkt_gettoken(&mountlist_token);
532 	error = callback(mp);
533 	lwkt_reltoken(&mountlist_token);
534 	return (error);
535 }
536 
537 /*
538  * mountlist_boot_getfirst (DURING BOOT ONLY)
539  *
540  * This function returns the first mount on the mountlist, which is
541  * expected to be the root mount.  Since no interlocks are obtained
542  * this function is only safe to use during booting.
543  */
544 
545 struct mount *
546 mountlist_boot_getfirst(void)
547 {
548 	return(TAILQ_FIRST(&mountlist));
549 }
550 
551 /*
552  * mountlist_remove (MP SAFE)
553  *
554  * Remove a node from the mountlist.  If this node is the next scan node
555  * for any active mountlist scans, the active mountlist scan will be
556  * adjusted to skip the node, thus allowing removals during mountlist
557  * scans.
558  */
559 void
560 mountlist_remove(struct mount *mp)
561 {
562 	struct mountscan_info *msi;
563 
564 	lwkt_gettoken(&mountlist_token);
565 	TAILQ_FOREACH(msi, &mountscan_list, msi_entry) {
566 		if (msi->msi_node == mp) {
567 			if (msi->msi_how & MNTSCAN_FORWARD)
568 				msi->msi_node = TAILQ_NEXT(mp, mnt_list);
569 			else
570 				msi->msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
571 		}
572 	}
573 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
574 	lwkt_reltoken(&mountlist_token);
575 }
576 
577 /*
578  * mountlist_exists (MP SAFE)
579  *
580  * Checks if a node exists in the mountlist.
581  * This function is mainly used by VFS quota code to check if a
582  * cached nullfs struct mount pointer is still valid at use time
583  *
584  * FIXME: there is no warranty the mp passed to that function
585  * will be the same one used by VFS_ACCOUNT() later
586  */
587 int
588 mountlist_exists(struct mount *mp)
589 {
590 	int node_exists = 0;
591 	struct mount* lmp;
592 
593 	lwkt_gettoken(&mountlist_token);
594 	TAILQ_FOREACH(lmp, &mountlist, mnt_list) {
595 		if (lmp == mp) {
596 			node_exists = 1;
597 			break;
598 		}
599 	}
600 	lwkt_reltoken(&mountlist_token);
601 	return(node_exists);
602 }
603 
604 /*
605  * mountlist_scan (MP SAFE)
606  *
607  * Safely scan the mount points on the mount list.  Unless otherwise
608  * specified each mount point will be busied prior to the callback and
609  * unbusied afterwords.  The callback may safely remove any mount point
610  * without interfering with the scan.  If the current callback
611  * mount is removed the scanner will not attempt to unbusy it.
612  *
613  * If a mount node cannot be busied it is silently skipped.
614  *
615  * The callback return value is aggregated and a total is returned.  A return
616  * value of < 0 is not aggregated and will terminate the scan.
617  *
618  * MNTSCAN_FORWARD	- the mountlist is scanned in the forward direction
619  * MNTSCAN_REVERSE	- the mountlist is scanned in reverse
620  * MNTSCAN_NOBUSY	- the scanner will make the callback without busying
621  *			  the mount node.
622  *
623  * NOTE: mount_hold()/mount_drop() sequence primarily helps us avoid
624  *	 confusion for the unbusy check, particularly if a kfree/kmalloc
625  *	 occurs quickly (lots of processes mounting and unmounting at the
626  *	 same time).
627  */
628 int
629 mountlist_scan(int (*callback)(struct mount *, void *), void *data, int how)
630 {
631 	struct mountscan_info info;
632 	struct mount *mp;
633 	int count;
634 	int res;
635 
636 	lwkt_gettoken(&mountlist_token);
637 
638 	info.msi_how = how;
639 	info.msi_node = NULL;	/* paranoia */
640 	TAILQ_INSERT_TAIL(&mountscan_list, &info, msi_entry);
641 
642 	res = 0;
643 
644 	if (how & MNTSCAN_FORWARD) {
645 		info.msi_node = TAILQ_FIRST(&mountlist);
646 		while ((mp = info.msi_node) != NULL) {
647 			mount_hold(mp);
648 			if (how & MNTSCAN_NOBUSY) {
649 				count = callback(mp, data);
650 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
651 				count = callback(mp, data);
652 				if (mp == info.msi_node)
653 					vfs_unbusy(mp);
654 			} else {
655 				count = 0;
656 			}
657 			mount_drop(mp);
658 			if (count < 0)
659 				break;
660 			res += count;
661 			if (mp == info.msi_node)
662 				info.msi_node = TAILQ_NEXT(mp, mnt_list);
663 		}
664 	} else if (how & MNTSCAN_REVERSE) {
665 		info.msi_node = TAILQ_LAST(&mountlist, mntlist);
666 		while ((mp = info.msi_node) != NULL) {
667 			mount_hold(mp);
668 			if (how & MNTSCAN_NOBUSY) {
669 				count = callback(mp, data);
670 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
671 				count = callback(mp, data);
672 				if (mp == info.msi_node)
673 					vfs_unbusy(mp);
674 			} else {
675 				count = 0;
676 			}
677 			mount_drop(mp);
678 			if (count < 0)
679 				break;
680 			res += count;
681 			if (mp == info.msi_node)
682 				info.msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
683 		}
684 	}
685 	TAILQ_REMOVE(&mountscan_list, &info, msi_entry);
686 	lwkt_reltoken(&mountlist_token);
687 	return(res);
688 }
689 
690 /*
691  * MOUNT RELATED VNODE FUNCTIONS
692  */
693 
694 static struct kproc_desc vnlru_kp = {
695 	"vnlru",
696 	vnlru_proc,
697 	&vnlruthread
698 };
699 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp);
700 
701 /*
702  * Move a vnode from one mount queue to another.
703  */
704 void
705 insmntque(struct vnode *vp, struct mount *mp)
706 {
707 	struct mount *omp;
708 
709 	/*
710 	 * Delete from old mount point vnode list, if on one.
711 	 */
712 	if ((omp = vp->v_mount) != NULL) {
713 		lwkt_gettoken(&omp->mnt_token);
714 		KKASSERT(omp == vp->v_mount);
715 		KASSERT(omp->mnt_nvnodelistsize > 0,
716 			("bad mount point vnode list size"));
717 		vremovevnodemnt(vp);
718 		omp->mnt_nvnodelistsize--;
719 		lwkt_reltoken(&omp->mnt_token);
720 	}
721 
722 	/*
723 	 * Insert into list of vnodes for the new mount point, if available.
724 	 * The 'end' of the LRU list is the vnode prior to mp->mnt_syncer.
725 	 */
726 	if (mp == NULL) {
727 		vp->v_mount = NULL;
728 		return;
729 	}
730 	lwkt_gettoken(&mp->mnt_token);
731 	vp->v_mount = mp;
732 	if (mp->mnt_syncer) {
733 		TAILQ_INSERT_BEFORE(mp->mnt_syncer, vp, v_nmntvnodes);
734 	} else {
735 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
736 	}
737 	mp->mnt_nvnodelistsize++;
738 	lwkt_reltoken(&mp->mnt_token);
739 }
740 
741 
742 /*
743  * Scan the vnodes under a mount point and issue appropriate callbacks.
744  *
745  * The fastfunc() callback is called with just the mountlist token held
746  * (no vnode lock).  It may not block and the vnode may be undergoing
747  * modifications while the caller is processing it.  The vnode will
748  * not be entirely destroyed, however, due to the fact that the mountlist
749  * token is held.  A return value < 0 skips to the next vnode without calling
750  * the slowfunc(), a return value > 0 terminates the loop.
751  *
752  * WARNING! The fastfunc() should not indirect through vp->v_object, the vp
753  *	    data structure is unstable when called from fastfunc().
754  *
755  * The slowfunc() callback is called after the vnode has been successfully
756  * locked based on passed flags.  The vnode is skipped if it gets rearranged
757  * or destroyed while blocking on the lock.  A non-zero return value from
758  * the slow function terminates the loop.  The slow function is allowed to
759  * arbitrarily block.  The scanning code guarentees consistency of operation
760  * even if the slow function deletes or moves the node, or blocks and some
761  * other thread deletes or moves the node.
762  */
763 int
764 vmntvnodescan(
765     struct mount *mp,
766     int flags,
767     int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
768     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
769     void *data
770 ) {
771 	struct vmntvnodescan_info info;
772 	struct vnode *vp;
773 	int r = 0;
774 	int maxcount = mp->mnt_nvnodelistsize * 2;
775 	int stopcount = 0;
776 	int count = 0;
777 
778 	lwkt_gettoken(&mp->mnt_token);
779 
780 	/*
781 	 * If asked to do one pass stop after iterating available vnodes.
782 	 * Under heavy loads new vnodes can be added while we are scanning,
783 	 * so this isn't perfect.  Create a slop factor of 2x.
784 	 */
785 	if (flags & VMSC_ONEPASS)
786 		stopcount = mp->mnt_nvnodelistsize;
787 
788 	info.vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
789 	TAILQ_INSERT_TAIL(&mp->mnt_vnodescan_list, &info, entry);
790 
791 	while ((vp = info.vp) != NULL) {
792 		if (--maxcount == 0) {
793 			kprintf("Warning: excessive fssync iteration\n");
794 			maxcount = mp->mnt_nvnodelistsize * 2;
795 		}
796 
797 		/*
798 		 * Skip if visible but not ready, or special (e.g.
799 		 * mp->mnt_syncer)
800 		 */
801 		if (vp->v_type == VNON)
802 			goto next;
803 		KKASSERT(vp->v_mount == mp);
804 
805 		/*
806 		 * Quick test.  A negative return continues the loop without
807 		 * calling the slow test.  0 continues onto the slow test.
808 		 * A positive number aborts the loop.
809 		 */
810 		if (fastfunc) {
811 			if ((r = fastfunc(mp, vp, data)) < 0) {
812 				r = 0;
813 				goto next;
814 			}
815 			if (r)
816 				break;
817 		}
818 
819 		/*
820 		 * Get a vxlock on the vnode, retry if it has moved or isn't
821 		 * in the mountlist where we expect it.
822 		 */
823 		if (slowfunc) {
824 			int error;
825 
826 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
827 			case VMSC_GETVP:
828 				error = vget(vp, LK_EXCLUSIVE);
829 				break;
830 			case VMSC_GETVP|VMSC_NOWAIT:
831 				error = vget(vp, LK_EXCLUSIVE|LK_NOWAIT);
832 				break;
833 			case VMSC_GETVX:
834 				vx_get(vp);
835 				error = 0;
836 				break;
837 			default:
838 				error = 0;
839 				break;
840 			}
841 			if (error)
842 				goto next;
843 			/*
844 			 * Do not call the slow function if the vnode is
845 			 * invalid or if it was ripped out from under us
846 			 * while we (potentially) blocked.
847 			 */
848 			if (info.vp == vp && vp->v_type != VNON)
849 				r = slowfunc(mp, vp, data);
850 
851 			/*
852 			 * Cleanup
853 			 */
854 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
855 			case VMSC_GETVP:
856 			case VMSC_GETVP|VMSC_NOWAIT:
857 				vput(vp);
858 				break;
859 			case VMSC_GETVX:
860 				vx_put(vp);
861 				break;
862 			default:
863 				break;
864 			}
865 			if (r != 0)
866 				break;
867 		}
868 
869 next:
870 		/*
871 		 * Yield after some processing.  Depending on the number
872 		 * of vnodes, we might wind up running for a long time.
873 		 * Because threads are not preemptable, time critical
874 		 * userland processes might starve.  Give them a chance
875 		 * now and then.
876 		 */
877 		if (++count == 10000) {
878 			/*
879 			 * We really want to yield a bit, so we simply
880 			 * sleep a tick
881 			 */
882 			tsleep(mp, 0, "vnodescn", 1);
883 			count = 0;
884 		}
885 
886 		/*
887 		 * If doing one pass this decrements to zero.  If it starts
888 		 * at zero it is effectively unlimited for the purposes of
889 		 * this loop.
890 		 */
891 		if (--stopcount == 0)
892 			break;
893 
894 		/*
895 		 * Iterate.  If the vnode was ripped out from under us
896 		 * info.vp will already point to the next vnode, otherwise
897 		 * we have to obtain the next valid vnode ourselves.
898 		 */
899 		if (info.vp == vp)
900 			info.vp = TAILQ_NEXT(vp, v_nmntvnodes);
901 	}
902 
903 	TAILQ_REMOVE(&mp->mnt_vnodescan_list, &info, entry);
904 	lwkt_reltoken(&mp->mnt_token);
905 	return(r);
906 }
907 
908 /*
909  * Remove any vnodes in the vnode table belonging to mount point mp.
910  *
911  * If FORCECLOSE is not specified, there should not be any active ones,
912  * return error if any are found (nb: this is a user error, not a
913  * system error). If FORCECLOSE is specified, detach any active vnodes
914  * that are found.
915  *
916  * If WRITECLOSE is set, only flush out regular file vnodes open for
917  * writing.
918  *
919  * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
920  *
921  * `rootrefs' specifies the base reference count for the root vnode
922  * of this filesystem. The root vnode is considered busy if its
923  * v_refcnt exceeds this value. On a successful return, vflush()
924  * will call vrele() on the root vnode exactly rootrefs times.
925  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
926  * be zero.
927  */
928 #ifdef DIAGNOSTIC
929 static int busyprt = 0;		/* print out busy vnodes */
930 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
931 #endif
932 
933 static int vflush_scan(struct mount *mp, struct vnode *vp, void *data);
934 
935 struct vflush_info {
936 	int flags;
937 	int busy;
938 	thread_t td;
939 };
940 
941 int
942 vflush(struct mount *mp, int rootrefs, int flags)
943 {
944 	struct thread *td = curthread;	/* XXX */
945 	struct vnode *rootvp = NULL;
946 	int error;
947 	struct vflush_info vflush_info;
948 
949 	if (rootrefs > 0) {
950 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
951 		    ("vflush: bad args"));
952 		/*
953 		 * Get the filesystem root vnode. We can vput() it
954 		 * immediately, since with rootrefs > 0, it won't go away.
955 		 */
956 		if ((error = VFS_ROOT(mp, &rootvp)) != 0) {
957 			if ((flags & FORCECLOSE) == 0)
958 				return (error);
959 			rootrefs = 0;
960 			/* continue anyway */
961 		}
962 		if (rootrefs)
963 			vput(rootvp);
964 	}
965 
966 	vflush_info.busy = 0;
967 	vflush_info.flags = flags;
968 	vflush_info.td = td;
969 	vmntvnodescan(mp, VMSC_GETVX, NULL, vflush_scan, &vflush_info);
970 
971 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
972 		/*
973 		 * If just the root vnode is busy, and if its refcount
974 		 * is equal to `rootrefs', then go ahead and kill it.
975 		 */
976 		KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
977 		KASSERT(VREFCNT(rootvp) >= rootrefs, ("vflush: rootrefs"));
978 		if (vflush_info.busy == 1 && VREFCNT(rootvp) == rootrefs) {
979 			vx_lock(rootvp);
980 			vgone_vxlocked(rootvp);
981 			vx_unlock(rootvp);
982 			vflush_info.busy = 0;
983 		}
984 	}
985 	if (vflush_info.busy)
986 		return (EBUSY);
987 	for (; rootrefs > 0; rootrefs--)
988 		vrele(rootvp);
989 	return (0);
990 }
991 
992 /*
993  * The scan callback is made with an VX locked vnode.
994  */
995 static int
996 vflush_scan(struct mount *mp, struct vnode *vp, void *data)
997 {
998 	struct vflush_info *info = data;
999 	struct vattr vattr;
1000 	int flags = info->flags;
1001 
1002 	/*
1003 	 * Generally speaking try to deactivate on 0 refs (catch-all)
1004 	 */
1005 	atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1006 
1007 	/*
1008 	 * Skip over a vnodes marked VSYSTEM.
1009 	 */
1010 	if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1011 		return(0);
1012 	}
1013 
1014 	/*
1015 	 * Do not force-close VCHR or VBLK vnodes
1016 	 */
1017 	if (vp->v_type == VCHR || vp->v_type == VBLK)
1018 		flags &= ~(WRITECLOSE|FORCECLOSE);
1019 
1020 	/*
1021 	 * If WRITECLOSE is set, flush out unlinked but still open
1022 	 * files (even if open only for reading) and regular file
1023 	 * vnodes open for writing.
1024 	 */
1025 	if ((flags & WRITECLOSE) &&
1026 	    (vp->v_type == VNON ||
1027 	    (VOP_GETATTR(vp, &vattr) == 0 &&
1028 	    vattr.va_nlink > 0)) &&
1029 	    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1030 		return(0);
1031 	}
1032 
1033 	/*
1034 	 * If we are the only holder (refcnt of 1) or the vnode is in
1035 	 * termination (refcnt < 0), we can vgone the vnode.
1036 	 */
1037 	if (VREFCNT(vp) <= 1) {
1038 		vgone_vxlocked(vp);
1039 		return(0);
1040 	}
1041 
1042 	/*
1043 	 * If FORCECLOSE is set, forcibly destroy the vnode and then move
1044 	 * it to a dummymount structure so vop_*() functions don't deref
1045 	 * a NULL pointer.
1046 	 */
1047 	if (flags & FORCECLOSE) {
1048 		vhold(vp);
1049 		vgone_vxlocked(vp);
1050 		if (vp->v_mount == NULL)
1051 			insmntque(vp, &dummymount);
1052 		vdrop(vp);
1053 		return(0);
1054 	}
1055 	if (vp->v_type == VCHR || vp->v_type == VBLK)
1056 		kprintf("vflush: Warning, cannot destroy busy device vnode\n");
1057 #ifdef DIAGNOSTIC
1058 	if (busyprt)
1059 		vprint("vflush: busy vnode", vp);
1060 #endif
1061 	++info->busy;
1062 	return(0);
1063 }
1064 
1065 void
1066 add_bio_ops(struct bio_ops *ops)
1067 {
1068 	TAILQ_INSERT_TAIL(&bio_ops_list, ops, entry);
1069 }
1070 
1071 void
1072 rem_bio_ops(struct bio_ops *ops)
1073 {
1074 	TAILQ_REMOVE(&bio_ops_list, ops, entry);
1075 }
1076 
1077 /*
1078  * This calls the bio_ops io_sync function either for a mount point
1079  * or generally.
1080  *
1081  * WARNING: softdeps is weirdly coded and just isn't happy unless
1082  * io_sync is called with a NULL mount from the general syncing code.
1083  */
1084 void
1085 bio_ops_sync(struct mount *mp)
1086 {
1087 	struct bio_ops *ops;
1088 
1089 	if (mp) {
1090 		if ((ops = mp->mnt_bioops) != NULL)
1091 			ops->io_sync(mp);
1092 	} else {
1093 		TAILQ_FOREACH(ops, &bio_ops_list, entry) {
1094 			ops->io_sync(NULL);
1095 		}
1096 	}
1097 }
1098 
1099 /*
1100  * Lookup a mount point by nch
1101  */
1102 struct mount *
1103 mount_get_by_nc(struct namecache *ncp)
1104 {
1105 	struct mount *mp = NULL;
1106 
1107 	lwkt_gettoken(&mountlist_token);
1108 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1109 		if (ncp == mp->mnt_ncmountpt.ncp)
1110 			break;
1111 	}
1112 	lwkt_reltoken(&mountlist_token);
1113 	return (mp);
1114 }
1115 
1116