xref: /dragonfly/sys/kern/vfs_mount.c (revision 70705abf)
1 /*
2  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by the University of
53  *	California, Berkeley and its contributors.
54  * 4. Neither the name of the University nor the names of its contributors
55  *    may be used to endorse or promote products derived from this software
56  *    without specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68  * SUCH DAMAGE.
69  *
70  * $DragonFly: src/sys/kern/vfs_mount.c,v 1.29 2007/11/06 03:49:58 dillon Exp $
71  */
72 
73 /*
74  * External virtual filesystem routines
75  */
76 #include "opt_ddb.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/malloc.h>
82 #include <sys/mount.h>
83 #include <sys/proc.h>
84 #include <sys/vnode.h>
85 #include <sys/buf.h>
86 #include <sys/eventhandler.h>
87 #include <sys/kthread.h>
88 #include <sys/sysctl.h>
89 
90 #include <machine/limits.h>
91 
92 #include <sys/buf2.h>
93 #include <sys/thread2.h>
94 #include <sys/sysref2.h>
95 
96 #include <vm/vm.h>
97 #include <vm/vm_object.h>
98 
99 struct mountscan_info {
100 	TAILQ_ENTRY(mountscan_info) msi_entry;
101 	int msi_how;
102 	struct mount *msi_node;
103 };
104 
105 struct vmntvnodescan_info {
106 	TAILQ_ENTRY(vmntvnodescan_info) entry;
107 	struct vnode *vp;
108 };
109 
110 static int vnlru_nowhere = 0;
111 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RD,
112 	    &vnlru_nowhere, 0,
113 	    "Number of times the vnlru process ran without success");
114 
115 
116 static struct lwkt_token mntid_token;
117 
118 /* note: mountlist exported to pstat */
119 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
120 static TAILQ_HEAD(,mountscan_info) mountscan_list;
121 static struct lwkt_token mountlist_token;
122 static TAILQ_HEAD(,vmntvnodescan_info) mntvnodescan_list;
123 struct lwkt_token mntvnode_token;
124 
125 static TAILQ_HEAD(,bio_ops) bio_ops_list = TAILQ_HEAD_INITIALIZER(bio_ops_list);
126 
127 /*
128  * Called from vfsinit()
129  */
130 void
131 vfs_mount_init(void)
132 {
133 	lwkt_token_init(&mountlist_token);
134 	lwkt_token_init(&mntvnode_token);
135 	lwkt_token_init(&mntid_token);
136 	TAILQ_INIT(&mountscan_list);
137 	TAILQ_INIT(&mntvnodescan_list);
138 }
139 
140 /*
141  * Support function called with mntvnode_token held to remove a vnode
142  * from the mountlist.  We must update any list scans which are in progress.
143  */
144 static void
145 vremovevnodemnt(struct vnode *vp)
146 {
147         struct vmntvnodescan_info *info;
148 
149 	TAILQ_FOREACH(info, &mntvnodescan_list, entry) {
150 		if (info->vp == vp)
151 			info->vp = TAILQ_NEXT(vp, v_nmntvnodes);
152 	}
153 	TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
154 }
155 
156 /*
157  * Support function called with mntvnode_token held to move a vnode to
158  * the end of the list.
159  */
160 static void
161 vmovevnodetoend(struct mount *mp, struct vnode *vp)
162 {
163 	vremovevnodemnt(vp);
164 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
165 }
166 
167 
168 /*
169  * Allocate a new vnode and associate it with a tag, mount point, and
170  * operations vector.
171  *
172  * A VX locked and refd vnode is returned.  The caller should setup the
173  * remaining fields and vx_put() or, if he wishes to leave a vref,
174  * vx_unlock() the vnode.
175  */
176 int
177 getnewvnode(enum vtagtype tag, struct mount *mp,
178 		struct vnode **vpp, int lktimeout, int lkflags)
179 {
180 	struct vnode *vp;
181 
182 	KKASSERT(mp != NULL);
183 
184 	vp = allocvnode(lktimeout, lkflags);
185 	vp->v_tag = tag;
186 	vp->v_data = NULL;
187 
188 	/*
189 	 * By default the vnode is assigned the mount point's normal
190 	 * operations vector.
191 	 */
192 	vp->v_ops = &mp->mnt_vn_use_ops;
193 
194 	/*
195 	 * Placing the vnode on the mount point's queue makes it visible.
196 	 * VNON prevents it from being messed with, however.
197 	 */
198 	insmntque(vp, mp);
199 
200 	/*
201 	 * A VX locked & refd vnode is returned.
202 	 */
203 	*vpp = vp;
204 	return (0);
205 }
206 
207 /*
208  * This function creates vnodes with special operations vectors.  The
209  * mount point is optional.
210  *
211  * This routine is being phased out.
212  */
213 int
214 getspecialvnode(enum vtagtype tag, struct mount *mp,
215 		struct vop_ops **ops,
216 		struct vnode **vpp, int lktimeout, int lkflags)
217 {
218 	struct vnode *vp;
219 
220 	vp = allocvnode(lktimeout, lkflags);
221 	vp->v_tag = tag;
222 	vp->v_data = NULL;
223 	vp->v_ops = ops;
224 
225 	/*
226 	 * Placing the vnode on the mount point's queue makes it visible.
227 	 * VNON prevents it from being messed with, however.
228 	 */
229 	insmntque(vp, mp);
230 
231 	/*
232 	 * A VX locked & refd vnode is returned.
233 	 */
234 	*vpp = vp;
235 	return (0);
236 }
237 
238 /*
239  * Interlock against an unmount, return 0 on success, non-zero on failure.
240  *
241  * The passed flag may be 0 or LK_NOWAIT and is only used if an unmount
242  * is in-progress.
243  *
244  * If no unmount is in-progress LK_NOWAIT is ignored.  No other flag bits
245  * are used.  A shared locked will be obtained and the filesystem will not
246  * be unmountable until the lock is released.
247  */
248 int
249 vfs_busy(struct mount *mp, int flags)
250 {
251 	int lkflags;
252 
253 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
254 		if (flags & LK_NOWAIT)
255 			return (ENOENT);
256 		/* XXX not MP safe */
257 		mp->mnt_kern_flag |= MNTK_MWAIT;
258 		/*
259 		 * Since all busy locks are shared except the exclusive
260 		 * lock granted when unmounting, the only place that a
261 		 * wakeup needs to be done is at the release of the
262 		 * exclusive lock at the end of dounmount.
263 		 */
264 		tsleep((caddr_t)mp, 0, "vfs_busy", 0);
265 		return (ENOENT);
266 	}
267 	lkflags = LK_SHARED;
268 	if (lockmgr(&mp->mnt_lock, lkflags))
269 		panic("vfs_busy: unexpected lock failure");
270 	return (0);
271 }
272 
273 /*
274  * Free a busy filesystem.
275  */
276 void
277 vfs_unbusy(struct mount *mp)
278 {
279 	lockmgr(&mp->mnt_lock, LK_RELEASE);
280 }
281 
282 /*
283  * Lookup a filesystem type, and if found allocate and initialize
284  * a mount structure for it.
285  *
286  * Devname is usually updated by mount(8) after booting.
287  */
288 int
289 vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
290 {
291 	struct vfsconf *vfsp;
292 	struct mount *mp;
293 
294 	if (fstypename == NULL)
295 		return (ENODEV);
296 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
297 		if (!strcmp(vfsp->vfc_name, fstypename))
298 			break;
299 	}
300 	if (vfsp == NULL)
301 		return (ENODEV);
302 	mp = kmalloc(sizeof(struct mount), M_MOUNT, M_WAITOK);
303 	bzero((char *)mp, (u_long)sizeof(struct mount));
304 	lockinit(&mp->mnt_lock, "vfslock", VLKTIMEOUT, 0);
305 	vfs_busy(mp, LK_NOWAIT);
306 	TAILQ_INIT(&mp->mnt_nvnodelist);
307 	TAILQ_INIT(&mp->mnt_reservedvnlist);
308 	TAILQ_INIT(&mp->mnt_jlist);
309 	mp->mnt_nvnodelistsize = 0;
310 	mp->mnt_vfc = vfsp;
311 	mp->mnt_op = vfsp->vfc_vfsops;
312 	mp->mnt_flag = MNT_RDONLY;
313 	vfsp->vfc_refcount++;
314 	mp->mnt_iosize_max = DFLTPHYS;
315 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
316 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
317 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
318 	copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
319 	*mpp = mp;
320 	return (0);
321 }
322 
323 /*
324  * Lookup a mount point by filesystem identifier.
325  */
326 struct mount *
327 vfs_getvfs(fsid_t *fsid)
328 {
329 	struct mount *mp;
330 	lwkt_tokref ilock;
331 
332 	lwkt_gettoken(&ilock, &mountlist_token);
333 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
334 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
335 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
336 			break;
337 	    }
338 	}
339 	lwkt_reltoken(&ilock);
340 	return (mp);
341 }
342 
343 /*
344  * Get a new unique fsid.  Try to make its val[0] unique, since this value
345  * will be used to create fake device numbers for stat().  Also try (but
346  * not so hard) make its val[0] unique mod 2^16, since some emulators only
347  * support 16-bit device numbers.  We end up with unique val[0]'s for the
348  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
349  *
350  * Keep in mind that several mounts may be running in parallel.  Starting
351  * the search one past where the previous search terminated is both a
352  * micro-optimization and a defense against returning the same fsid to
353  * different mounts.
354  */
355 void
356 vfs_getnewfsid(struct mount *mp)
357 {
358 	static u_int16_t mntid_base;
359 	lwkt_tokref ilock;
360 	fsid_t tfsid;
361 	int mtype;
362 
363 	lwkt_gettoken(&ilock, &mntid_token);
364 	mtype = mp->mnt_vfc->vfc_typenum;
365 	tfsid.val[1] = mtype;
366 	mtype = (mtype & 0xFF) << 24;
367 	for (;;) {
368 		tfsid.val[0] = makeudev(255,
369 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
370 		mntid_base++;
371 		if (vfs_getvfs(&tfsid) == NULL)
372 			break;
373 	}
374 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
375 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
376 	lwkt_reltoken(&ilock);
377 }
378 
379 /*
380  * This routine is called when we have too many vnodes.  It attempts
381  * to free <count> vnodes and will potentially free vnodes that still
382  * have VM backing store (VM backing store is typically the cause
383  * of a vnode blowout so we want to do this).  Therefore, this operation
384  * is not considered cheap.
385  *
386  * A number of conditions may prevent a vnode from being reclaimed.
387  * the buffer cache may have references on the vnode, a directory
388  * vnode may still have references due to the namei cache representing
389  * underlying files, or the vnode may be in active use.   It is not
390  * desireable to reuse such vnodes.  These conditions may cause the
391  * number of vnodes to reach some minimum value regardless of what
392  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
393  */
394 
395 /*
396  * This is a quick non-blocking check to determine if the vnode is a good
397  * candidate for being (eventually) vgone()'d.  Returns 0 if the vnode is
398  * not a good candidate, 1 if it is.
399  */
400 static __inline int
401 vmightfree(struct vnode *vp, int page_count)
402 {
403 	if (vp->v_flag & VRECLAIMED)
404 		return (0);
405 #if 0
406 	if ((vp->v_flag & VFREE) && TAILQ_EMPTY(&vp->v_namecache))
407 		return (0);
408 #endif
409 	if (sysref_isactive(&vp->v_sysref))
410 		return (0);
411 	if (vp->v_object && vp->v_object->resident_page_count >= page_count)
412 		return (0);
413 	return (1);
414 }
415 
416 /*
417  * The vnode was found to be possibly vgone()able and the caller has locked it
418  * (thus the usecount should be 1 now).  Determine if the vnode is actually
419  * vgone()able, doing some cleanups in the process.  Returns 1 if the vnode
420  * can be vgone()'d, 0 otherwise.
421  *
422  * Note that v_auxrefs may be non-zero because (A) this vnode is not a leaf
423  * in the namecache topology and (B) this vnode has buffer cache bufs.
424  * We cannot remove vnodes with non-leaf namecache associations.  We do a
425  * tentitive leaf check prior to attempting to flush out any buffers but the
426  * 'real' test when all is said in done is that v_auxrefs must become 0 for
427  * the vnode to be freeable.
428  *
429  * We could theoretically just unconditionally flush when v_auxrefs != 0,
430  * but flushing data associated with non-leaf nodes (which are always
431  * directories), just throws it away for no benefit.  It is the buffer
432  * cache's responsibility to choose buffers to recycle from the cached
433  * data point of view.
434  */
435 static int
436 visleaf(struct vnode *vp)
437 {
438 	struct namecache *ncp;
439 
440 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
441 		if (!TAILQ_EMPTY(&ncp->nc_list))
442 			return(0);
443 	}
444 	return(1);
445 }
446 
447 /*
448  * Try to clean up the vnode to the point where it can be vgone()'d, returning
449  * 0 if it cannot be vgone()'d (or already has been), 1 if it can.  Unlike
450  * vmightfree() this routine may flush the vnode and block.  Vnodes marked
451  * VFREE are still candidates for vgone()ing because they may hold namecache
452  * resources and could be blocking the namecache directory hierarchy (and
453  * related vnodes) from being freed.
454  */
455 static int
456 vtrytomakegoneable(struct vnode *vp, int page_count)
457 {
458 	if (vp->v_flag & VRECLAIMED)
459 		return (0);
460 	if (vp->v_sysref.refcnt > 1)
461 		return (0);
462 	if (vp->v_object && vp->v_object->resident_page_count >= page_count)
463 		return (0);
464 	if (vp->v_auxrefs && visleaf(vp)) {
465 		vinvalbuf(vp, V_SAVE, 0, 0);
466 #if 0	/* DEBUG */
467 		kprintf((vp->v_auxrefs ? "vrecycle: vp %p failed: %s\n" :
468 			"vrecycle: vp %p succeeded: %s\n"), vp,
469 			(TAILQ_FIRST(&vp->v_namecache) ?
470 			    TAILQ_FIRST(&vp->v_namecache)->nc_name : "?"));
471 #endif
472 	}
473 
474 	/*
475 	 * This sequence may seem a little strange, but we need to optimize
476 	 * the critical path a bit.  We can't recycle vnodes with other
477 	 * references and because we are trying to recycle an otherwise
478 	 * perfectly fine vnode we have to invalidate the namecache in a
479 	 * way that avoids possible deadlocks (since the vnode lock is being
480 	 * held here).  Finally, we have to check for other references one
481 	 * last time in case something snuck in during the inval.
482 	 */
483 	if (vp->v_sysref.refcnt > 1 || vp->v_auxrefs != 0)
484 		return (0);
485 	if (cache_inval_vp_nonblock(vp))
486 		return (0);
487 	return (vp->v_sysref.refcnt <= 1 && vp->v_auxrefs == 0);
488 }
489 
490 /*
491  * Reclaim up to 1/10 of the vnodes associated with a mount point.  Try
492  * to avoid vnodes which have lots of resident pages (we are trying to free
493  * vnodes, not memory).
494  *
495  * This routine is a callback from the mountlist scan.  The mount point
496  * in question will be busied.
497  */
498 static int
499 vlrureclaim(struct mount *mp, void *data)
500 {
501 	struct vnode *vp;
502 	lwkt_tokref ilock;
503 	int done;
504 	int trigger;
505 	int usevnodes;
506 	int count;
507 	int trigger_mult = vnlru_nowhere;
508 
509 	/*
510 	 * Calculate the trigger point for the resident pages check.  The
511 	 * minimum trigger value is approximately the number of pages in
512 	 * the system divded by the number of vnodes.  However, due to
513 	 * various other system memory overheads unrelated to data caching
514 	 * it is a good idea to double the trigger (at least).
515 	 *
516 	 * trigger_mult starts at 0.  If the recycler is having problems
517 	 * finding enough freeable vnodes it will increase trigger_mult.
518 	 * This should not happen in normal operation, even on machines with
519 	 * low amounts of memory, but extraordinary memory use by the system
520 	 * verses the amount of cached data can trigger it.
521 	 */
522 	usevnodes = desiredvnodes;
523 	if (usevnodes <= 0)
524 		usevnodes = 1;
525 	trigger = vmstats.v_page_count * (trigger_mult + 2) / usevnodes;
526 
527 	done = 0;
528 	lwkt_gettoken(&ilock, &mntvnode_token);
529 	count = mp->mnt_nvnodelistsize / 10 + 1;
530 	while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
531 		/*
532 		 * __VNODESCAN__
533 		 *
534 		 * The VP will stick around while we hold mntvnode_token,
535 		 * at least until we block, so we can safely do an initial
536 		 * check, and then must check again after we lock the vnode.
537 		 */
538 		if (vp->v_type == VNON ||	/* syncer or indeterminant */
539 		    !vmightfree(vp, trigger)	/* critical path opt */
540 		) {
541 			vmovevnodetoend(mp, vp);
542 			--count;
543 			continue;
544 		}
545 
546 		/*
547 		 * VX get the candidate vnode.  If the VX get fails the
548 		 * vnode might still be on the mountlist.  Our loop depends
549 		 * on us at least cycling the vnode to the end of the
550 		 * mountlist.
551 		 */
552 		if (vx_get_nonblock(vp) != 0) {
553 			if (vp->v_mount == mp)
554 				vmovevnodetoend(mp, vp);
555 			--count;
556 			continue;
557 		}
558 
559 		/*
560 		 * Since we blocked locking the vp, make sure it is still
561 		 * a candidate for reclamation.  That is, it has not already
562 		 * been reclaimed and only has our VX reference associated
563 		 * with it.
564 		 */
565 		if (vp->v_type == VNON ||	/* syncer or indeterminant */
566 		    (vp->v_flag & VRECLAIMED) ||
567 		    vp->v_mount != mp ||
568 		    !vtrytomakegoneable(vp, trigger)	/* critical path opt */
569 		) {
570 			if (vp->v_mount == mp)
571 				vmovevnodetoend(mp, vp);
572 			--count;
573 			vx_put(vp);
574 			continue;
575 		}
576 
577 		/*
578 		 * All right, we are good, move the vp to the end of the
579 		 * mountlist and clean it out.  The vget will have returned
580 		 * an error if the vnode was destroyed (VRECLAIMED set), so we
581 		 * do not have to check again.  The vput() will move the
582 		 * vnode to the free list if the vgone() was successful.
583 		 */
584 		KKASSERT(vp->v_mount == mp);
585 		vmovevnodetoend(mp, vp);
586 		vgone_vxlocked(vp);
587 		vx_put(vp);
588 		++done;
589 		--count;
590 	}
591 	lwkt_reltoken(&ilock);
592 	return (done);
593 }
594 
595 /*
596  * Attempt to recycle vnodes in a context that is always safe to block.
597  * Calling vlrurecycle() from the bowels of file system code has some
598  * interesting deadlock problems.
599  */
600 static struct thread *vnlruthread;
601 static int vnlruproc_sig;
602 
603 void
604 vnlru_proc_wait(void)
605 {
606 	if (vnlruproc_sig == 0) {
607 		vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
608 		wakeup(vnlruthread);
609 	}
610 	tsleep(&vnlruproc_sig, 0, "vlruwk", hz);
611 }
612 
613 static void
614 vnlru_proc(void)
615 {
616 	struct thread *td = curthread;
617 	int done;
618 
619 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
620 	    SHUTDOWN_PRI_FIRST);
621 
622 	crit_enter();
623 	for (;;) {
624 		kproc_suspend_loop();
625 
626 		/*
627 		 * Try to free some vnodes if we have too many
628 		 */
629 		if (numvnodes > desiredvnodes &&
630 		    freevnodes > desiredvnodes * 2 / 10) {
631 			int count = numvnodes - desiredvnodes;
632 
633 			if (count > freevnodes / 100)
634 				count = freevnodes / 100;
635 			if (count < 5)
636 				count = 5;
637 			freesomevnodes(count);
638 		}
639 
640 		/*
641 		 * Nothing to do if most of our vnodes are already on
642 		 * the free list.
643 		 */
644 		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
645 			vnlruproc_sig = 0;
646 			wakeup(&vnlruproc_sig);
647 			tsleep(td, 0, "vlruwt", hz);
648 			continue;
649 		}
650 		cache_cleanneg(0);
651 		done = mountlist_scan(vlrureclaim, NULL, MNTSCAN_FORWARD);
652 
653 		/*
654 		 * The vlrureclaim() call only processes 1/10 of the vnodes
655 		 * on each mount.  If we couldn't find any repeat the loop
656 		 * at least enough times to cover all available vnodes before
657 		 * we start sleeping.  Complain if the failure extends past
658 		 * 30 second, every 30 seconds.
659 		 */
660 		if (done == 0) {
661 			++vnlru_nowhere;
662 			if (vnlru_nowhere % 10 == 0)
663 				tsleep(td, 0, "vlrup", hz * 3);
664 			if (vnlru_nowhere % 100 == 0)
665 				kprintf("vnlru_proc: vnode recycler stopped working!\n");
666 			if (vnlru_nowhere == 1000)
667 				vnlru_nowhere = 900;
668 		} else {
669 			vnlru_nowhere = 0;
670 		}
671 	}
672 	crit_exit();
673 }
674 
675 /*
676  * MOUNTLIST FUNCTIONS
677  */
678 
679 /*
680  * mountlist_insert (MP SAFE)
681  *
682  * Add a new mount point to the mount list.
683  */
684 void
685 mountlist_insert(struct mount *mp, int how)
686 {
687 	lwkt_tokref ilock;
688 
689 	lwkt_gettoken(&ilock, &mountlist_token);
690 	if (how == MNTINS_FIRST)
691 	    TAILQ_INSERT_HEAD(&mountlist, mp, mnt_list);
692 	else
693 	    TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
694 	lwkt_reltoken(&ilock);
695 }
696 
697 /*
698  * mountlist_interlock (MP SAFE)
699  *
700  * Execute the specified interlock function with the mountlist token
701  * held.  The function will be called in a serialized fashion verses
702  * other functions called through this mechanism.
703  */
704 int
705 mountlist_interlock(int (*callback)(struct mount *), struct mount *mp)
706 {
707 	lwkt_tokref ilock;
708 	int error;
709 
710 	lwkt_gettoken(&ilock, &mountlist_token);
711 	error = callback(mp);
712 	lwkt_reltoken(&ilock);
713 	return (error);
714 }
715 
716 /*
717  * mountlist_boot_getfirst (DURING BOOT ONLY)
718  *
719  * This function returns the first mount on the mountlist, which is
720  * expected to be the root mount.  Since no interlocks are obtained
721  * this function is only safe to use during booting.
722  */
723 
724 struct mount *
725 mountlist_boot_getfirst(void)
726 {
727 	return(TAILQ_FIRST(&mountlist));
728 }
729 
730 /*
731  * mountlist_remove (MP SAFE)
732  *
733  * Remove a node from the mountlist.  If this node is the next scan node
734  * for any active mountlist scans, the active mountlist scan will be
735  * adjusted to skip the node, thus allowing removals during mountlist
736  * scans.
737  */
738 void
739 mountlist_remove(struct mount *mp)
740 {
741 	struct mountscan_info *msi;
742 	lwkt_tokref ilock;
743 
744 	lwkt_gettoken(&ilock, &mountlist_token);
745 	TAILQ_FOREACH(msi, &mountscan_list, msi_entry) {
746 		if (msi->msi_node == mp) {
747 			if (msi->msi_how & MNTSCAN_FORWARD)
748 				msi->msi_node = TAILQ_NEXT(mp, mnt_list);
749 			else
750 				msi->msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
751 		}
752 	}
753 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
754 	lwkt_reltoken(&ilock);
755 }
756 
757 /*
758  * mountlist_scan (MP SAFE)
759  *
760  * Safely scan the mount points on the mount list.  Unless otherwise
761  * specified each mount point will be busied prior to the callback and
762  * unbusied afterwords.  The callback may safely remove any mount point
763  * without interfering with the scan.  If the current callback
764  * mount is removed the scanner will not attempt to unbusy it.
765  *
766  * If a mount node cannot be busied it is silently skipped.
767  *
768  * The callback return value is aggregated and a total is returned.  A return
769  * value of < 0 is not aggregated and will terminate the scan.
770  *
771  * MNTSCAN_FORWARD	- the mountlist is scanned in the forward direction
772  * MNTSCAN_REVERSE	- the mountlist is scanned in reverse
773  * MNTSCAN_NOBUSY	- the scanner will make the callback without busying
774  *			  the mount node.
775  */
776 int
777 mountlist_scan(int (*callback)(struct mount *, void *), void *data, int how)
778 {
779 	struct mountscan_info info;
780 	lwkt_tokref ilock;
781 	struct mount *mp;
782 	thread_t td;
783 	int count;
784 	int res;
785 
786 	lwkt_gettoken(&ilock, &mountlist_token);
787 
788 	info.msi_how = how;
789 	info.msi_node = NULL;	/* paranoia */
790 	TAILQ_INSERT_TAIL(&mountscan_list, &info, msi_entry);
791 
792 	res = 0;
793 	td = curthread;
794 
795 	if (how & MNTSCAN_FORWARD) {
796 		info.msi_node = TAILQ_FIRST(&mountlist);
797 		while ((mp = info.msi_node) != NULL) {
798 			if (how & MNTSCAN_NOBUSY) {
799 				count = callback(mp, data);
800 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
801 				count = callback(mp, data);
802 				if (mp == info.msi_node)
803 					vfs_unbusy(mp);
804 			} else {
805 				count = 0;
806 			}
807 			if (count < 0)
808 				break;
809 			res += count;
810 			if (mp == info.msi_node)
811 				info.msi_node = TAILQ_NEXT(mp, mnt_list);
812 		}
813 	} else if (how & MNTSCAN_REVERSE) {
814 		info.msi_node = TAILQ_LAST(&mountlist, mntlist);
815 		while ((mp = info.msi_node) != NULL) {
816 			if (how & MNTSCAN_NOBUSY) {
817 				count = callback(mp, data);
818 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
819 				count = callback(mp, data);
820 				if (mp == info.msi_node)
821 					vfs_unbusy(mp);
822 			} else {
823 				count = 0;
824 			}
825 			if (count < 0)
826 				break;
827 			res += count;
828 			if (mp == info.msi_node)
829 				info.msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
830 		}
831 	}
832 	TAILQ_REMOVE(&mountscan_list, &info, msi_entry);
833 	lwkt_reltoken(&ilock);
834 	return(res);
835 }
836 
837 /*
838  * MOUNT RELATED VNODE FUNCTIONS
839  */
840 
841 static struct kproc_desc vnlru_kp = {
842 	"vnlru",
843 	vnlru_proc,
844 	&vnlruthread
845 };
846 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
847 
848 /*
849  * Move a vnode from one mount queue to another.
850  */
851 void
852 insmntque(struct vnode *vp, struct mount *mp)
853 {
854 	lwkt_tokref ilock;
855 
856 	lwkt_gettoken(&ilock, &mntvnode_token);
857 	/*
858 	 * Delete from old mount point vnode list, if on one.
859 	 */
860 	if (vp->v_mount != NULL) {
861 		KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
862 			("bad mount point vnode list size"));
863 		vremovevnodemnt(vp);
864 		vp->v_mount->mnt_nvnodelistsize--;
865 	}
866 	/*
867 	 * Insert into list of vnodes for the new mount point, if available.
868 	 */
869 	if ((vp->v_mount = mp) == NULL) {
870 		lwkt_reltoken(&ilock);
871 		return;
872 	}
873 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
874 	mp->mnt_nvnodelistsize++;
875 	lwkt_reltoken(&ilock);
876 }
877 
878 
879 /*
880  * Scan the vnodes under a mount point and issue appropriate callbacks.
881  *
882  * The fastfunc() callback is called with just the mountlist token held
883  * (no vnode lock).  It may not block and the vnode may be undergoing
884  * modifications while the caller is processing it.  The vnode will
885  * not be entirely destroyed, however, due to the fact that the mountlist
886  * token is held.  A return value < 0 skips to the next vnode without calling
887  * the slowfunc(), a return value > 0 terminates the loop.
888  *
889  * The slowfunc() callback is called after the vnode has been successfully
890  * locked based on passed flags.  The vnode is skipped if it gets rearranged
891  * or destroyed while blocking on the lock.  A non-zero return value from
892  * the slow function terminates the loop.  The slow function is allowed to
893  * arbitrarily block.  The scanning code guarentees consistency of operation
894  * even if the slow function deletes or moves the node, or blocks and some
895  * other thread deletes or moves the node.
896  */
897 int
898 vmntvnodescan(
899     struct mount *mp,
900     int flags,
901     int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
902     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
903     void *data
904 ) {
905 	struct vmntvnodescan_info info;
906 	lwkt_tokref ilock;
907 	struct vnode *vp;
908 	int r = 0;
909 	int maxcount = 1000000;
910 
911 	lwkt_gettoken(&ilock, &mntvnode_token);
912 
913 	info.vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
914 	TAILQ_INSERT_TAIL(&mntvnodescan_list, &info, entry);
915 	while ((vp = info.vp) != NULL) {
916 		if (--maxcount == 0)
917 			panic("maxcount reached during vmntvnodescan");
918 
919 		if (vp->v_type == VNON)		/* visible but not ready */
920 			goto next;
921 		KKASSERT(vp->v_mount == mp);
922 
923 		/*
924 		 * Quick test.  A negative return continues the loop without
925 		 * calling the slow test.  0 continues onto the slow test.
926 		 * A positive number aborts the loop.
927 		 */
928 		if (fastfunc) {
929 			if ((r = fastfunc(mp, vp, data)) < 0)
930 				goto next;
931 			if (r)
932 				break;
933 		}
934 
935 		/*
936 		 * Get a vxlock on the vnode, retry if it has moved or isn't
937 		 * in the mountlist where we expect it.
938 		 */
939 		if (slowfunc) {
940 			int error;
941 
942 			switch(flags) {
943 			case VMSC_GETVP:
944 				error = vget(vp, LK_EXCLUSIVE);
945 				break;
946 			case VMSC_GETVP|VMSC_NOWAIT:
947 				error = vget(vp, LK_EXCLUSIVE|LK_NOWAIT);
948 				break;
949 			case VMSC_GETVX:
950 				vx_get(vp);
951 				error = 0;
952 				break;
953 			default:
954 				error = 0;
955 				break;
956 			}
957 			if (error)
958 				goto next;
959 			/*
960 			 * Do not call the slow function if the vnode is
961 			 * invalid or if it was ripped out from under us
962 			 * while we (potentially) blocked.
963 			 */
964 			if (info.vp == vp && vp->v_type != VNON)
965 				r = slowfunc(mp, vp, data);
966 
967 			/*
968 			 * Cleanup
969 			 */
970 			switch(flags) {
971 			case VMSC_GETVP:
972 			case VMSC_GETVP|VMSC_NOWAIT:
973 				vput(vp);
974 				break;
975 			case VMSC_GETVX:
976 				vx_put(vp);
977 				break;
978 			default:
979 				break;
980 			}
981 			if (r != 0)
982 				break;
983 		}
984 
985 		/*
986 		 * Iterate.  If the vnode was ripped out from under us
987 		 * info.vp will already point to the next vnode, otherwise
988 		 * we have to obtain the next valid vnode ourselves.
989 		 */
990 next:
991 		if (info.vp == vp)
992 			info.vp = TAILQ_NEXT(vp, v_nmntvnodes);
993 	}
994 	TAILQ_REMOVE(&mntvnodescan_list, &info, entry);
995 	lwkt_reltoken(&ilock);
996 	return(r);
997 }
998 
999 /*
1000  * Remove any vnodes in the vnode table belonging to mount point mp.
1001  *
1002  * If FORCECLOSE is not specified, there should not be any active ones,
1003  * return error if any are found (nb: this is a user error, not a
1004  * system error). If FORCECLOSE is specified, detach any active vnodes
1005  * that are found.
1006  *
1007  * If WRITECLOSE is set, only flush out regular file vnodes open for
1008  * writing.
1009  *
1010  * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1011  *
1012  * `rootrefs' specifies the base reference count for the root vnode
1013  * of this filesystem. The root vnode is considered busy if its
1014  * v_sysref.refcnt exceeds this value. On a successful return, vflush()
1015  * will call vrele() on the root vnode exactly rootrefs times.
1016  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1017  * be zero.
1018  */
1019 #ifdef DIAGNOSTIC
1020 static int busyprt = 0;		/* print out busy vnodes */
1021 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1022 #endif
1023 
1024 static int vflush_scan(struct mount *mp, struct vnode *vp, void *data);
1025 
1026 struct vflush_info {
1027 	int flags;
1028 	int busy;
1029 	thread_t td;
1030 };
1031 
1032 int
1033 vflush(struct mount *mp, int rootrefs, int flags)
1034 {
1035 	struct thread *td = curthread;	/* XXX */
1036 	struct vnode *rootvp = NULL;
1037 	int error;
1038 	struct vflush_info vflush_info;
1039 
1040 	if (rootrefs > 0) {
1041 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1042 		    ("vflush: bad args"));
1043 		/*
1044 		 * Get the filesystem root vnode. We can vput() it
1045 		 * immediately, since with rootrefs > 0, it won't go away.
1046 		 */
1047 		if ((error = VFS_ROOT(mp, &rootvp)) != 0)
1048 			return (error);
1049 		vput(rootvp);
1050 	}
1051 
1052 	vflush_info.busy = 0;
1053 	vflush_info.flags = flags;
1054 	vflush_info.td = td;
1055 	vmntvnodescan(mp, VMSC_GETVX, NULL, vflush_scan, &vflush_info);
1056 
1057 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1058 		/*
1059 		 * If just the root vnode is busy, and if its refcount
1060 		 * is equal to `rootrefs', then go ahead and kill it.
1061 		 */
1062 		KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
1063 		KASSERT(rootvp->v_sysref.refcnt >= rootrefs, ("vflush: rootrefs"));
1064 		if (vflush_info.busy == 1 && rootvp->v_sysref.refcnt == rootrefs) {
1065 			vx_lock(rootvp);
1066 			vgone_vxlocked(rootvp);
1067 			vx_unlock(rootvp);
1068 			vflush_info.busy = 0;
1069 		}
1070 	}
1071 	if (vflush_info.busy)
1072 		return (EBUSY);
1073 	for (; rootrefs > 0; rootrefs--)
1074 		vrele(rootvp);
1075 	return (0);
1076 }
1077 
1078 /*
1079  * The scan callback is made with an VX locked vnode.
1080  */
1081 static int
1082 vflush_scan(struct mount *mp, struct vnode *vp, void *data)
1083 {
1084 	struct vflush_info *info = data;
1085 	struct vattr vattr;
1086 
1087 	/*
1088 	 * Skip over a vnodes marked VSYSTEM.
1089 	 */
1090 	if ((info->flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1091 		return(0);
1092 	}
1093 
1094 	/*
1095 	 * If WRITECLOSE is set, flush out unlinked but still open
1096 	 * files (even if open only for reading) and regular file
1097 	 * vnodes open for writing.
1098 	 */
1099 	if ((info->flags & WRITECLOSE) &&
1100 	    (vp->v_type == VNON ||
1101 	    (VOP_GETATTR(vp, &vattr) == 0 &&
1102 	    vattr.va_nlink > 0)) &&
1103 	    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1104 		return(0);
1105 	}
1106 
1107 	/*
1108 	 * If we are the only holder (refcnt of 1) or the vnode is in
1109 	 * termination (refcnt < 0), we can vgone the vnode.
1110 	 */
1111 	if (vp->v_sysref.refcnt <= 1) {
1112 		vgone_vxlocked(vp);
1113 		return(0);
1114 	}
1115 
1116 	/*
1117 	 * If FORCECLOSE is set, forcibly close the vnode. For block
1118 	 * or character devices, revert to an anonymous device. For
1119 	 * all other files, just kill them.
1120 	 */
1121 	if (info->flags & FORCECLOSE) {
1122 		if (vp->v_type != VBLK && vp->v_type != VCHR) {
1123 			vgone_vxlocked(vp);
1124 		} else {
1125 			vclean_vxlocked(vp, 0);
1126 			vp->v_ops = &spec_vnode_vops_p;
1127 			insmntque(vp, NULL);
1128 		}
1129 		return(0);
1130 	}
1131 #ifdef DIAGNOSTIC
1132 	if (busyprt)
1133 		vprint("vflush: busy vnode", vp);
1134 #endif
1135 	++info->busy;
1136 	return(0);
1137 }
1138 
1139 void
1140 add_bio_ops(struct bio_ops *ops)
1141 {
1142 	TAILQ_INSERT_TAIL(&bio_ops_list, ops, entry);
1143 }
1144 
1145 void
1146 rem_bio_ops(struct bio_ops *ops)
1147 {
1148 	TAILQ_REMOVE(&bio_ops_list, ops, entry);
1149 }
1150 
1151 /*
1152  * This calls the bio_ops io_sync function either for a mount point
1153  * or generally.
1154  *
1155  * WARNING: softdeps is weirdly coded and just isn't happy unless
1156  * io_sync is called with a NULL mount from the general syncing code.
1157  */
1158 void
1159 bio_ops_sync(struct mount *mp)
1160 {
1161 	struct bio_ops *ops;
1162 
1163 	if (mp) {
1164 		if ((ops = mp->mnt_bioops) != NULL)
1165 			ops->io_sync(mp);
1166 	} else {
1167 		TAILQ_FOREACH(ops, &bio_ops_list, entry) {
1168 			ops->io_sync(NULL);
1169 		}
1170 	}
1171 }
1172 
1173