xref: /dragonfly/sys/kern/vfs_mount.c (revision 944cd60c)
1 /*
2  * Copyright (c) 2004,2013-2019 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 /*
68  * External virtual filesystem routines
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/mount.h>
76 #include <sys/proc.h>
77 #include <sys/vnode.h>
78 #include <sys/spinlock2.h>
79 #include <sys/eventhandler.h>
80 #include <sys/kthread.h>
81 #include <sys/sysctl.h>
82 
83 #include <machine/limits.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_object.h>
87 
88 struct mountscan_info {
89 	TAILQ_ENTRY(mountscan_info) msi_entry;
90 	int msi_how;
91 	struct mount *msi_node;
92 };
93 
94 struct vmntvnodescan_info {
95 	TAILQ_ENTRY(vmntvnodescan_info) entry;
96 	struct vnode *vp;
97 };
98 
99 struct vnlru_info {
100 	int	pass;
101 };
102 
103 static int
104 mount_cmp(struct mount *mnt1, struct mount *mnt2)
105 {
106 	if (mnt1->mnt_stat.f_fsid.val[0] < mnt2->mnt_stat.f_fsid.val[0])
107 		return -1;
108 	if (mnt1->mnt_stat.f_fsid.val[0] > mnt2->mnt_stat.f_fsid.val[0])
109 		return 1;
110 	if (mnt1->mnt_stat.f_fsid.val[1] < mnt2->mnt_stat.f_fsid.val[1])
111 		return -1;
112 	if (mnt1->mnt_stat.f_fsid.val[1] > mnt2->mnt_stat.f_fsid.val[1])
113 		return 1;
114 	return 0;
115 }
116 
117 static int
118 mount_fsid_cmp(fsid_t *fsid, struct mount *mnt)
119 {
120 	if (fsid->val[0] < mnt->mnt_stat.f_fsid.val[0])
121 		return -1;
122 	if (fsid->val[0] > mnt->mnt_stat.f_fsid.val[0])
123 		return 1;
124 	if (fsid->val[1] < mnt->mnt_stat.f_fsid.val[1])
125 		return -1;
126 	if (fsid->val[1] > mnt->mnt_stat.f_fsid.val[1])
127 		return 1;
128 	return 0;
129 }
130 
131 RB_HEAD(mount_rb_tree, mount);
132 RB_PROTOTYPEX(mount_rb_tree, FSID, mount, mnt_node, mount_cmp, fsid_t *);
133 RB_GENERATE(mount_rb_tree, mount, mnt_node, mount_cmp);
134 RB_GENERATE_XLOOKUP(mount_rb_tree, FSID, mount, mnt_node,
135 			mount_fsid_cmp, fsid_t *);
136 
137 static int vnlru_nowhere = 0;
138 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RD,
139 	    &vnlru_nowhere, 0,
140 	    "Number of times the vnlru process ran without success");
141 
142 
143 static struct lwkt_token mntid_token;
144 static struct mount dummymount;
145 
146 /* note: mountlist exported to pstat */
147 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
148 struct mount_rb_tree mounttree = RB_INITIALIZER(dev_tree_mounttree);
149 static TAILQ_HEAD(,mountscan_info) mountscan_list;
150 static struct lwkt_token mountlist_token;
151 
152 static TAILQ_HEAD(,bio_ops) bio_ops_list = TAILQ_HEAD_INITIALIZER(bio_ops_list);
153 
154 /*
155  * Called from vfsinit()
156  */
157 void
158 vfs_mount_init(void)
159 {
160 	lwkt_token_init(&mountlist_token, "mntlist");
161 	lwkt_token_init(&mntid_token, "mntid");
162 	TAILQ_INIT(&mountscan_list);
163 	mount_init(&dummymount);
164 	dummymount.mnt_flag |= MNT_RDONLY;
165 	dummymount.mnt_kern_flag |= MNTK_ALL_MPSAFE;
166 }
167 
168 /*
169  * Support function called to remove a vnode from the mountlist and
170  * deal with side effects for scans in progress.
171  *
172  * Target mnt_token is held on call.
173  */
174 static void
175 vremovevnodemnt(struct vnode *vp)
176 {
177         struct vmntvnodescan_info *info;
178 	struct mount *mp = vp->v_mount;
179 
180 	TAILQ_FOREACH(info, &mp->mnt_vnodescan_list, entry) {
181 		if (info->vp == vp)
182 			info->vp = TAILQ_NEXT(vp, v_nmntvnodes);
183 	}
184 	TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
185 }
186 
187 /*
188  * Allocate a new vnode and associate it with a tag, mount point, and
189  * operations vector.
190  *
191  * A VX locked and refd vnode is returned.  The caller should setup the
192  * remaining fields and vx_put() or, if he wishes to leave a vref,
193  * vx_unlock() the vnode.
194  */
195 int
196 getnewvnode(enum vtagtype tag, struct mount *mp,
197 		struct vnode **vpp, int lktimeout, int lkflags)
198 {
199 	struct vnode *vp;
200 
201 	KKASSERT(mp != NULL);
202 
203 	vp = allocvnode(lktimeout, lkflags);
204 	vp->v_tag = tag;
205 	vp->v_data = NULL;
206 
207 	/*
208 	 * By default the vnode is assigned the mount point's normal
209 	 * operations vector.
210 	 */
211 	vp->v_ops = &mp->mnt_vn_use_ops;
212 	vp->v_pbuf_count = nswbuf_kva / NSWBUF_SPLIT;
213 
214 	/*
215 	 * Placing the vnode on the mount point's queue makes it visible.
216 	 * VNON prevents it from being messed with, however.
217 	 */
218 	insmntque(vp, mp);
219 
220 	/*
221 	 * A VX locked & refd vnode is returned.
222 	 */
223 	*vpp = vp;
224 	return (0);
225 }
226 
227 /*
228  * This function creates vnodes with special operations vectors.  The
229  * mount point is optional.
230  *
231  * This routine is being phased out but is still used by vfs_conf to
232  * create vnodes for devices prior to the root mount (with mp == NULL).
233  */
234 int
235 getspecialvnode(enum vtagtype tag, struct mount *mp,
236 		struct vop_ops **ops,
237 		struct vnode **vpp, int lktimeout, int lkflags)
238 {
239 	struct vnode *vp;
240 
241 	vp = allocvnode(lktimeout, lkflags);
242 	vp->v_tag = tag;
243 	vp->v_data = NULL;
244 	vp->v_ops = ops;
245 
246 	if (mp == NULL)
247 		mp = &dummymount;
248 
249 	/*
250 	 * Placing the vnode on the mount point's queue makes it visible.
251 	 * VNON prevents it from being messed with, however.
252 	 */
253 	insmntque(vp, mp);
254 
255 	/*
256 	 * A VX locked & refd vnode is returned.
257 	 */
258 	*vpp = vp;
259 	return (0);
260 }
261 
262 /*
263  * Interlock against an unmount, return 0 on success, non-zero on failure.
264  *
265  * The passed flag may be 0 or LK_NOWAIT and is only used if an unmount
266  * is in-progress.
267  *
268  * If no unmount is in-progress LK_NOWAIT is ignored.  No other flag bits
269  * are used.  A shared locked will be obtained and the filesystem will not
270  * be unmountable until the lock is released.
271  */
272 int
273 vfs_busy(struct mount *mp, int flags)
274 {
275 	int lkflags;
276 
277 	atomic_add_int(&mp->mnt_refs, 1);
278 	lwkt_gettoken(&mp->mnt_token);
279 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
280 		if (flags & LK_NOWAIT) {
281 			lwkt_reltoken(&mp->mnt_token);
282 			atomic_add_int(&mp->mnt_refs, -1);
283 			return (ENOENT);
284 		}
285 		/* XXX not MP safe */
286 		mp->mnt_kern_flag |= MNTK_MWAIT;
287 
288 		/*
289 		 * Since all busy locks are shared except the exclusive
290 		 * lock granted when unmounting, the only place that a
291 		 * wakeup needs to be done is at the release of the
292 		 * exclusive lock at the end of dounmount.
293 		 *
294 		 * WARNING! mp can potentially go away once we release
295 		 *	    our ref.
296 		 */
297 		tsleep((caddr_t)mp, 0, "vfs_busy", 0);
298 		lwkt_reltoken(&mp->mnt_token);
299 		atomic_add_int(&mp->mnt_refs, -1);
300 		return (ENOENT);
301 	}
302 	lkflags = LK_SHARED;
303 	if (lockmgr(&mp->mnt_lock, lkflags))
304 		panic("vfs_busy: unexpected lock failure");
305 	lwkt_reltoken(&mp->mnt_token);
306 	return (0);
307 }
308 
309 /*
310  * Free a busy filesystem.
311  *
312  * Once refs is decremented the mount point can potentially get ripped
313  * out from under us, but we want to clean up our refs before unlocking
314  * so do a hold/drop around the whole mess.
315  *
316  * This is not in the critical path (I hope).
317  */
318 void
319 vfs_unbusy(struct mount *mp)
320 {
321 	mount_hold(mp);
322 	atomic_add_int(&mp->mnt_refs, -1);
323 	lockmgr(&mp->mnt_lock, LK_RELEASE);
324 	mount_drop(mp);
325 }
326 
327 /*
328  * Lookup a filesystem type, and if found allocate and initialize
329  * a mount structure for it.
330  *
331  * Devname is usually updated by mount(8) after booting.
332  */
333 int
334 vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
335 {
336 	struct vfsconf *vfsp;
337 	struct mount *mp;
338 
339 	if (fstypename == NULL)
340 		return (ENODEV);
341 
342 	vfsp = vfsconf_find_by_name(fstypename);
343 	if (vfsp == NULL)
344 		return (ENODEV);
345 	mp = kmalloc(sizeof(struct mount), M_MOUNT, M_WAITOK | M_ZERO);
346 	mount_init(mp);
347 	lockinit(&mp->mnt_lock, "vfslock", VLKTIMEOUT, 0);
348 
349 	vfs_busy(mp, 0);
350 	mp->mnt_vfc = vfsp;
351 	mp->mnt_op = vfsp->vfc_vfsops;
352 	mp->mnt_pbuf_count = nswbuf_kva / NSWBUF_SPLIT;
353 	vfsp->vfc_refcount++;
354 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
355 	mp->mnt_flag |= MNT_RDONLY;
356 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
357 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
358 	copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
359 
360 	/*
361 	 * Pre-set MPSAFE flags for VFS_MOUNT() call.
362 	 */
363 	if (vfsp->vfc_flags & VFCF_MPSAFE)
364 		mp->mnt_kern_flag |= MNTK_ALL_MPSAFE;
365 
366 	*mpp = mp;
367 
368 	return (0);
369 }
370 
371 /*
372  * Basic mount structure initialization
373  */
374 void
375 mount_init(struct mount *mp)
376 {
377 	lockinit(&mp->mnt_lock, "vfslock", hz*5, 0);
378 	lwkt_token_init(&mp->mnt_token, "permnt");
379 
380 	TAILQ_INIT(&mp->mnt_vnodescan_list);
381 	TAILQ_INIT(&mp->mnt_nvnodelist);
382 	TAILQ_INIT(&mp->mnt_reservedvnlist);
383 	TAILQ_INIT(&mp->mnt_jlist);
384 	mp->mnt_nvnodelistsize = 0;
385 	mp->mnt_flag = 0;
386 	mp->mnt_hold = 1;		/* hold for umount last drop */
387 	mp->mnt_iosize_max = MAXPHYS;
388 	vn_syncer_thr_create(mp);
389 }
390 
391 void
392 mount_hold(struct mount *mp)
393 {
394 	atomic_add_int(&mp->mnt_hold, 1);
395 }
396 
397 void
398 mount_drop(struct mount *mp)
399 {
400 	if (atomic_fetchadd_int(&mp->mnt_hold, -1) == 1) {
401 		KKASSERT(mp->mnt_refs == 0);
402 		kfree(mp, M_MOUNT);
403 	}
404 }
405 
406 /*
407  * Lookup a mount point by filesystem identifier.
408  *
409  * If not NULL, the returned mp is held and the caller is expected to drop
410  * it via mount_drop().
411  */
412 struct mount *
413 vfs_getvfs(fsid_t *fsid)
414 {
415 	struct mount *mp;
416 
417 	lwkt_gettoken_shared(&mountlist_token);
418 	mp = mount_rb_tree_RB_LOOKUP_FSID(&mounttree, fsid);
419 	if (mp)
420 		mount_hold(mp);
421 	lwkt_reltoken(&mountlist_token);
422 	return (mp);
423 }
424 
425 /*
426  * Generate a FSID based on the mountpt.  The FSID will be adjusted to avoid
427  * collisions when the mount is added to mountlist.
428  *
429  * May only be called prior to the mount succeeding.
430  *
431  * OLD:
432  *
433  * Get a new unique fsid.  Try to make its val[0] unique, since this value
434  * will be used to create fake device numbers for stat().  Also try (but
435  * not so hard) make its val[0] unique mod 2^16, since some emulators only
436  * support 16-bit device numbers.  We end up with unique val[0]'s for the
437  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
438  */
439 void
440 vfs_getnewfsid(struct mount *mp)
441 {
442 	fsid_t tfsid;
443 	int mtype;
444 	int error;
445 	char *retbuf;
446 	char *freebuf;
447 
448 	mtype = mp->mnt_vfc->vfc_typenum;
449 	tfsid.val[1] = mtype;
450 	error = cache_fullpath(NULL, &mp->mnt_ncmounton, NULL,
451 			       &retbuf, &freebuf, 0);
452 	if (error) {
453 		tfsid.val[0] = makeudev(255, 0);
454 	} else {
455 		tfsid.val[0] = makeudev(255,
456 					iscsi_crc32(retbuf, strlen(retbuf)) &
457 					~makeudev(255, 0));
458 		kfree(freebuf, M_TEMP);
459 	}
460 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
461 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
462 }
463 
464 /*
465  * Set the FSID for a new mount point to the template.
466  *
467  * The FSID will be adjusted to avoid collisions when the mount is
468  * added to mountlist.
469  *
470  * May only be called prior to the mount succeeding.
471  */
472 void
473 vfs_setfsid(struct mount *mp, fsid_t *template)
474 {
475 	bzero(&mp->mnt_stat.f_fsid, sizeof(mp->mnt_stat.f_fsid));
476 
477 #if 0
478 	struct mount *mptmp;
479 
480 	lwkt_gettoken(&mntid_token);
481 	for (;;) {
482 		mptmp = vfs_getvfs(template);
483 		if (mptmp == NULL)
484 			break;
485 		mount_drop(mptmp);
486 		++template->val[1];
487 	}
488 	lwkt_reltoken(&mntid_token);
489 #endif
490 	mp->mnt_stat.f_fsid = *template;
491 }
492 
493 /*
494  * This routine is called when we have too many vnodes.  It attempts
495  * to free <count> vnodes and will potentially free vnodes that still
496  * have VM backing store (VM backing store is typically the cause
497  * of a vnode blowout so we want to do this).  Therefore, this operation
498  * is not considered cheap.
499  *
500  * A number of conditions may prevent a vnode from being reclaimed.
501  * the buffer cache may have references on the vnode, a directory
502  * vnode may still have references due to the namei cache representing
503  * underlying files, or the vnode may be in active use.   It is not
504  * desireable to reuse such vnodes.  These conditions may cause the
505  * number of vnodes to reach some minimum value regardless of what
506  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
507  */
508 
509 /*
510  * Attempt to recycle vnodes in a context that is always safe to block.
511  * Calling vlrurecycle() from the bowels of file system code has some
512  * interesting deadlock problems.
513  */
514 static struct thread *vnlruthread;
515 
516 static void
517 vnlru_proc(void)
518 {
519 	struct thread *td = curthread;
520 
521 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
522 			      SHUTDOWN_PRI_FIRST);
523 
524 	for (;;) {
525 		int ncachedandinactive;
526 
527 		kproc_suspend_loop();
528 
529 		/*
530 		 * Try to free some vnodes if we have too many.  Trigger based
531 		 * on potentially freeable vnodes but calculate the count
532 		 * based on total vnodes.
533 		 *
534 		 * (long) -> deal with 64 bit machines, intermediate overflow
535 		 */
536 		synchronizevnodecount();
537 		ncachedandinactive = countcachedandinactivevnodes();
538 		if (numvnodes >= maxvnodes * 9 / 10 &&
539 		    ncachedandinactive >= maxvnodes * 5 / 10) {
540 			int count = numvnodes - maxvnodes * 9 / 10;
541 
542 			if (count > (ncachedandinactive) / 100)
543 				count = (ncachedandinactive) / 100;
544 			if (count < 5)
545 				count = 5;
546 			freesomevnodes(count);
547 		}
548 
549 		/*
550 		 * Do non-critical-path (more robust) cache cleaning,
551 		 * even if vnode counts are nominal, to try to avoid
552 		 * having to do it in the critical path.
553 		 */
554 		cache_hysteresis(0);
555 
556 		/*
557 		 * Nothing to do if most of our vnodes are already on
558 		 * the free list.
559 		 */
560 		synchronizevnodecount();
561 		ncachedandinactive = countcachedandinactivevnodes();
562 		if (numvnodes <= maxvnodes * 9 / 10 ||
563 		    ncachedandinactive <= maxvnodes * 5 / 10) {
564 			tsleep(vnlruthread, 0, "vlruwt", hz);
565 			continue;
566 		}
567 	}
568 }
569 
570 /*
571  * MOUNTLIST FUNCTIONS
572  */
573 
574 /*
575  * mountlist_insert (MP SAFE)
576  *
577  * Add a new mount point to the mount list.  Filesystem should attempt to
578  * supply a unique fsid but if a duplicate occurs adjust the fsid to ensure
579  * uniqueness.
580  */
581 void
582 mountlist_insert(struct mount *mp, int how)
583 {
584 	int lim = 0x01000000;
585 
586 	lwkt_gettoken(&mountlist_token);
587 	if (how == MNTINS_FIRST)
588 		TAILQ_INSERT_HEAD(&mountlist, mp, mnt_list);
589 	else
590 		TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
591 	while (mount_rb_tree_RB_INSERT(&mounttree, mp)) {
592 		int32_t val;
593 
594 		/*
595 		 * minor device mask: 0xFFFF00FF
596 		 */
597 		val = mp->mnt_stat.f_fsid.val[0];
598 		val = ((val & 0xFFFF0000) >> 8) | (val & 0x000000FF);
599 		++val;
600 		val = ((val << 8) & 0xFFFF0000) | (val & 0x000000FF);
601 		mp->mnt_stat.f_fsid.val[0] = val;
602 		if (--lim == 0) {
603 			lim = 0x01000000;
604 			mp->mnt_stat.f_fsid.val[1] += 0x0100;
605 			kprintf("mountlist_insert: fsid collision, "
606 				"too many mounts\n");
607 		}
608 	}
609 	lwkt_reltoken(&mountlist_token);
610 }
611 
612 /*
613  * mountlist_interlock (MP SAFE)
614  *
615  * Execute the specified interlock function with the mountlist token
616  * held.  The function will be called in a serialized fashion verses
617  * other functions called through this mechanism.
618  *
619  * The function is expected to be very short-lived.
620  */
621 int
622 mountlist_interlock(int (*callback)(struct mount *), struct mount *mp)
623 {
624 	int error;
625 
626 	lwkt_gettoken(&mountlist_token);
627 	error = callback(mp);
628 	lwkt_reltoken(&mountlist_token);
629 	return (error);
630 }
631 
632 /*
633  * mountlist_boot_getfirst (DURING BOOT ONLY)
634  *
635  * This function returns the first mount on the mountlist, which is
636  * expected to be the root mount.  Since no interlocks are obtained
637  * this function is only safe to use during booting.
638  */
639 
640 struct mount *
641 mountlist_boot_getfirst(void)
642 {
643 	return(TAILQ_FIRST(&mountlist));
644 }
645 
646 /*
647  * mountlist_remove (MP SAFE)
648  *
649  * Remove a node from the mountlist.  If this node is the next scan node
650  * for any active mountlist scans, the active mountlist scan will be
651  * adjusted to skip the node, thus allowing removals during mountlist
652  * scans.
653  */
654 void
655 mountlist_remove(struct mount *mp)
656 {
657 	struct mountscan_info *msi;
658 
659 	lwkt_gettoken(&mountlist_token);
660 	TAILQ_FOREACH(msi, &mountscan_list, msi_entry) {
661 		if (msi->msi_node == mp) {
662 			if (msi->msi_how & MNTSCAN_FORWARD)
663 				msi->msi_node = TAILQ_NEXT(mp, mnt_list);
664 			else
665 				msi->msi_node = TAILQ_PREV(mp, mntlist,
666 							   mnt_list);
667 		}
668 	}
669 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
670 	mount_rb_tree_RB_REMOVE(&mounttree, mp);
671 	lwkt_reltoken(&mountlist_token);
672 }
673 
674 /*
675  * mountlist_exists (MP SAFE)
676  *
677  * Checks if a node exists in the mountlist.
678  * This function is mainly used by VFS quota code to check if a
679  * cached nullfs struct mount pointer is still valid at use time
680  *
681  * FIXME: there is no warranty the mp passed to that function
682  * will be the same one used by VFS_ACCOUNT() later
683  */
684 int
685 mountlist_exists(struct mount *mp)
686 {
687 	int node_exists = 0;
688 	struct mount* lmp;
689 
690 	lwkt_gettoken_shared(&mountlist_token);
691 	TAILQ_FOREACH(lmp, &mountlist, mnt_list) {
692 		if (lmp == mp) {
693 			node_exists = 1;
694 			break;
695 		}
696 	}
697 	lwkt_reltoken(&mountlist_token);
698 
699 	return(node_exists);
700 }
701 
702 /*
703  * mountlist_scan
704  *
705  * Safely scan the mount points on the mount list.  Each mountpoint
706  * is held across the callback.  The callback is responsible for
707  * acquiring any further tokens or locks.
708  *
709  * Unless otherwise specified each mount point will be busied prior to the
710  * callback and unbusied afterwords.  The callback may safely remove any
711  * mount point without interfering with the scan.  If the current callback
712  * mount is removed the scanner will not attempt to unbusy it.
713  *
714  * If a mount node cannot be busied it is silently skipped.
715  *
716  * The callback return value is aggregated and a total is returned.  A return
717  * value of < 0 is not aggregated and will terminate the scan.
718  *
719  * MNTSCAN_FORWARD	- the mountlist is scanned in the forward direction
720  * MNTSCAN_REVERSE	- the mountlist is scanned in reverse
721  * MNTSCAN_NOBUSY	- the scanner will make the callback without busying
722  *			  the mount node.
723  *
724  * NOTE: mountlist_token is not held across the callback.
725  */
726 int
727 mountlist_scan(int (*callback)(struct mount *, void *), void *data, int how)
728 {
729 	struct mountscan_info info;
730 	struct mount *mp;
731 	int count;
732 	int res;
733 
734 	lwkt_gettoken(&mountlist_token);
735 	info.msi_how = how;
736 	info.msi_node = NULL;	/* paranoia */
737 	TAILQ_INSERT_TAIL(&mountscan_list, &info, msi_entry);
738 	lwkt_reltoken(&mountlist_token);
739 
740 	res = 0;
741 	lwkt_gettoken_shared(&mountlist_token);
742 
743 	if (how & MNTSCAN_FORWARD) {
744 		info.msi_node = TAILQ_FIRST(&mountlist);
745 		while ((mp = info.msi_node) != NULL) {
746 			mount_hold(mp);
747 			if (how & MNTSCAN_NOBUSY) {
748 				lwkt_reltoken(&mountlist_token);
749 				count = callback(mp, data);
750 				lwkt_gettoken_shared(&mountlist_token);
751 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
752 				lwkt_reltoken(&mountlist_token);
753 				count = callback(mp, data);
754 				lwkt_gettoken_shared(&mountlist_token);
755 				if (mp == info.msi_node)
756 					vfs_unbusy(mp);
757 			} else {
758 				count = 0;
759 			}
760 			mount_drop(mp);
761 			if (count < 0)
762 				break;
763 			res += count;
764 			if (mp == info.msi_node)
765 				info.msi_node = TAILQ_NEXT(mp, mnt_list);
766 		}
767 	} else if (how & MNTSCAN_REVERSE) {
768 		info.msi_node = TAILQ_LAST(&mountlist, mntlist);
769 		while ((mp = info.msi_node) != NULL) {
770 			mount_hold(mp);
771 			if (how & MNTSCAN_NOBUSY) {
772 				lwkt_reltoken(&mountlist_token);
773 				count = callback(mp, data);
774 				lwkt_gettoken_shared(&mountlist_token);
775 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
776 				lwkt_reltoken(&mountlist_token);
777 				count = callback(mp, data);
778 				lwkt_gettoken_shared(&mountlist_token);
779 				if (mp == info.msi_node)
780 					vfs_unbusy(mp);
781 			} else {
782 				count = 0;
783 			}
784 			mount_drop(mp);
785 			if (count < 0)
786 				break;
787 			res += count;
788 			if (mp == info.msi_node)
789 				info.msi_node = TAILQ_PREV(mp, mntlist,
790 							   mnt_list);
791 		}
792 	}
793 	lwkt_reltoken(&mountlist_token);
794 
795 	lwkt_gettoken(&mountlist_token);
796 	TAILQ_REMOVE(&mountscan_list, &info, msi_entry);
797 	lwkt_reltoken(&mountlist_token);
798 
799 	return(res);
800 }
801 
802 /*
803  * MOUNT RELATED VNODE FUNCTIONS
804  */
805 
806 static struct kproc_desc vnlru_kp = {
807 	"vnlru",
808 	vnlru_proc,
809 	&vnlruthread
810 };
811 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp);
812 
813 /*
814  * Move a vnode from one mount queue to another.
815  */
816 void
817 insmntque(struct vnode *vp, struct mount *mp)
818 {
819 	struct mount *omp;
820 
821 	/*
822 	 * Delete from old mount point vnode list, if on one.
823 	 */
824 	if ((omp = vp->v_mount) != NULL) {
825 		lwkt_gettoken(&omp->mnt_token);
826 		KKASSERT(omp == vp->v_mount);
827 		KASSERT(omp->mnt_nvnodelistsize > 0,
828 			("bad mount point vnode list size"));
829 		vremovevnodemnt(vp);
830 		omp->mnt_nvnodelistsize--;
831 		lwkt_reltoken(&omp->mnt_token);
832 	}
833 
834 	/*
835 	 * Insert into list of vnodes for the new mount point, if available.
836 	 * The 'end' of the LRU list is the vnode prior to mp->mnt_syncer.
837 	 */
838 	if (mp == NULL) {
839 		vp->v_mount = NULL;
840 		return;
841 	}
842 	lwkt_gettoken(&mp->mnt_token);
843 	vp->v_mount = mp;
844 	if (mp->mnt_syncer) {
845 		TAILQ_INSERT_BEFORE(mp->mnt_syncer, vp, v_nmntvnodes);
846 	} else {
847 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
848 	}
849 	mp->mnt_nvnodelistsize++;
850 	lwkt_reltoken(&mp->mnt_token);
851 }
852 
853 
854 /*
855  * Scan the vnodes under a mount point and issue appropriate callbacks.
856  *
857  * The fastfunc() callback is called with just the mountlist token held
858  * (no vnode lock).  It may not block and the vnode may be undergoing
859  * modifications while the caller is processing it.  The vnode will
860  * not be entirely destroyed, however, due to the fact that the mountlist
861  * token is held.  A return value < 0 skips to the next vnode without calling
862  * the slowfunc(), a return value > 0 terminates the loop.
863  *
864  * WARNING! The fastfunc() should not indirect through vp->v_object, the vp
865  *	    data structure is unstable when called from fastfunc().
866  *
867  * The slowfunc() callback is called after the vnode has been successfully
868  * locked based on passed flags.  The vnode is skipped if it gets rearranged
869  * or destroyed while blocking on the lock.  A non-zero return value from
870  * the slow function terminates the loop.  The slow function is allowed to
871  * arbitrarily block.  The scanning code guarentees consistency of operation
872  * even if the slow function deletes or moves the node, or blocks and some
873  * other thread deletes or moves the node.
874  */
875 int
876 vmntvnodescan(
877     struct mount *mp,
878     int flags,
879     int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
880     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
881     void *data
882 ) {
883 	struct vmntvnodescan_info info;
884 	struct vnode *vp;
885 	int r = 0;
886 	int maxcount = mp->mnt_nvnodelistsize * 2;
887 	int stopcount = 0;
888 	int count = 0;
889 
890 	lwkt_gettoken(&mp->mnt_token);
891 
892 	/*
893 	 * If asked to do one pass stop after iterating available vnodes.
894 	 * Under heavy loads new vnodes can be added while we are scanning,
895 	 * so this isn't perfect.  Create a slop factor of 2x.
896 	 */
897 	if (flags & VMSC_ONEPASS)
898 		stopcount = mp->mnt_nvnodelistsize;
899 
900 	info.vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
901 	TAILQ_INSERT_TAIL(&mp->mnt_vnodescan_list, &info, entry);
902 
903 	while ((vp = info.vp) != NULL) {
904 		if (--maxcount == 0) {
905 			kprintf("Warning: excessive fssync iteration\n");
906 			maxcount = mp->mnt_nvnodelistsize * 2;
907 		}
908 
909 		/*
910 		 * Skip if visible but not ready, or special (e.g.
911 		 * mp->mnt_syncer)
912 		 */
913 		if (vp->v_type == VNON)
914 			goto next;
915 		KKASSERT(vp->v_mount == mp);
916 
917 		/*
918 		 * Quick test.  A negative return continues the loop without
919 		 * calling the slow test.  0 continues onto the slow test.
920 		 * A positive number aborts the loop.
921 		 */
922 		if (fastfunc) {
923 			if ((r = fastfunc(mp, vp, data)) < 0) {
924 				r = 0;
925 				goto next;
926 			}
927 			if (r)
928 				break;
929 		}
930 
931 		/*
932 		 * Get a vxlock on the vnode, retry if it has moved or isn't
933 		 * in the mountlist where we expect it.
934 		 */
935 		if (slowfunc) {
936 			int error;
937 
938 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
939 			case VMSC_GETVP:
940 				error = vget(vp, LK_EXCLUSIVE);
941 				break;
942 			case VMSC_GETVP|VMSC_NOWAIT:
943 				error = vget(vp, LK_EXCLUSIVE|LK_NOWAIT);
944 				break;
945 			case VMSC_GETVX:
946 				vx_get(vp);
947 				error = 0;
948 				break;
949 			default:
950 				error = 0;
951 				break;
952 			}
953 			if (error)
954 				goto next;
955 			/*
956 			 * Do not call the slow function if the vnode is
957 			 * invalid or if it was ripped out from under us
958 			 * while we (potentially) blocked.
959 			 */
960 			if (info.vp == vp && vp->v_type != VNON)
961 				r = slowfunc(mp, vp, data);
962 
963 			/*
964 			 * Cleanup
965 			 */
966 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
967 			case VMSC_GETVP:
968 			case VMSC_GETVP|VMSC_NOWAIT:
969 				vput(vp);
970 				break;
971 			case VMSC_GETVX:
972 				vx_put(vp);
973 				break;
974 			default:
975 				break;
976 			}
977 			if (r != 0)
978 				break;
979 		}
980 
981 next:
982 		/*
983 		 * Yield after some processing.  Depending on the number
984 		 * of vnodes, we might wind up running for a long time.
985 		 * Because threads are not preemptable, time critical
986 		 * userland processes might starve.  Give them a chance
987 		 * now and then.
988 		 */
989 		if (++count == 10000) {
990 			/*
991 			 * We really want to yield a bit, so we simply
992 			 * sleep a tick
993 			 */
994 			tsleep(mp, 0, "vnodescn", 1);
995 			count = 0;
996 		}
997 
998 		/*
999 		 * If doing one pass this decrements to zero.  If it starts
1000 		 * at zero it is effectively unlimited for the purposes of
1001 		 * this loop.
1002 		 */
1003 		if (--stopcount == 0)
1004 			break;
1005 
1006 		/*
1007 		 * Iterate.  If the vnode was ripped out from under us
1008 		 * info.vp will already point to the next vnode, otherwise
1009 		 * we have to obtain the next valid vnode ourselves.
1010 		 */
1011 		if (info.vp == vp)
1012 			info.vp = TAILQ_NEXT(vp, v_nmntvnodes);
1013 	}
1014 
1015 	TAILQ_REMOVE(&mp->mnt_vnodescan_list, &info, entry);
1016 	lwkt_reltoken(&mp->mnt_token);
1017 	return(r);
1018 }
1019 
1020 /*
1021  * Remove any vnodes in the vnode table belonging to mount point mp.
1022  *
1023  * If FORCECLOSE is not specified, there should not be any active ones,
1024  * return error if any are found (nb: this is a user error, not a
1025  * system error). If FORCECLOSE is specified, detach any active vnodes
1026  * that are found.
1027  *
1028  * If WRITECLOSE is set, only flush out regular file vnodes open for
1029  * writing.
1030  *
1031  * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1032  *
1033  * `rootrefs' specifies the base reference count for the root vnode
1034  * of this filesystem. The root vnode is considered busy if its
1035  * v_refcnt exceeds this value. On a successful return, vflush()
1036  * will call vrele() on the root vnode exactly rootrefs times.
1037  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1038  * be zero.
1039  */
1040 static int debug_busyprt = 0;		/* print out busy vnodes */
1041 SYSCTL_INT(_vfs, OID_AUTO, debug_busyprt, CTLFLAG_RW, &debug_busyprt, 0, "");
1042 
1043 static int vflush_scan(struct mount *mp, struct vnode *vp, void *data);
1044 
1045 struct vflush_info {
1046 	int flags;
1047 	int busy;
1048 	thread_t td;
1049 };
1050 
1051 int
1052 vflush(struct mount *mp, int rootrefs, int flags)
1053 {
1054 	struct thread *td = curthread;	/* XXX */
1055 	struct vnode *rootvp = NULL;
1056 	int error;
1057 	struct vflush_info vflush_info;
1058 
1059 	if (rootrefs > 0) {
1060 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1061 		    ("vflush: bad args"));
1062 		/*
1063 		 * Get the filesystem root vnode. We can vput() it
1064 		 * immediately, since with rootrefs > 0, it won't go away.
1065 		 */
1066 		if ((error = VFS_ROOT(mp, &rootvp)) != 0) {
1067 			if ((flags & FORCECLOSE) == 0)
1068 				return (error);
1069 			rootrefs = 0;
1070 			/* continue anyway */
1071 		}
1072 		if (rootrefs)
1073 			vput(rootvp);
1074 	}
1075 
1076 	vflush_info.busy = 0;
1077 	vflush_info.flags = flags;
1078 	vflush_info.td = td;
1079 	vmntvnodescan(mp, VMSC_GETVX, NULL, vflush_scan, &vflush_info);
1080 
1081 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1082 		/*
1083 		 * If just the root vnode is busy, and if its refcount
1084 		 * is equal to `rootrefs', then go ahead and kill it.
1085 		 */
1086 		KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
1087 		KASSERT(VREFCNT(rootvp) >= rootrefs, ("vflush: rootrefs"));
1088 		if (vflush_info.busy == 1 && VREFCNT(rootvp) == rootrefs) {
1089 			vx_lock(rootvp);
1090 			vgone_vxlocked(rootvp);
1091 			vx_unlock(rootvp);
1092 			vflush_info.busy = 0;
1093 		}
1094 	}
1095 	if (vflush_info.busy)
1096 		return (EBUSY);
1097 	for (; rootrefs > 0; rootrefs--)
1098 		vrele(rootvp);
1099 	return (0);
1100 }
1101 
1102 /*
1103  * The scan callback is made with an VX locked vnode.
1104  */
1105 static int
1106 vflush_scan(struct mount *mp, struct vnode *vp, void *data)
1107 {
1108 	struct vflush_info *info = data;
1109 	struct vattr vattr;
1110 	int flags = info->flags;
1111 
1112 	/*
1113 	 * Generally speaking try to deactivate on 0 refs (catch-all)
1114 	 */
1115 	atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1116 
1117 	/*
1118 	 * Skip over a vnodes marked VSYSTEM.
1119 	 */
1120 	if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1121 		return(0);
1122 	}
1123 
1124 	/*
1125 	 * Do not force-close VCHR or VBLK vnodes
1126 	 */
1127 	if (vp->v_type == VCHR || vp->v_type == VBLK)
1128 		flags &= ~(WRITECLOSE|FORCECLOSE);
1129 
1130 	/*
1131 	 * If WRITECLOSE is set, flush out unlinked but still open
1132 	 * files (even if open only for reading) and regular file
1133 	 * vnodes open for writing.
1134 	 */
1135 	if ((flags & WRITECLOSE) &&
1136 	    (vp->v_type == VNON ||
1137 	    (VOP_GETATTR(vp, &vattr) == 0 &&
1138 	    vattr.va_nlink > 0)) &&
1139 	    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1140 		return(0);
1141 	}
1142 
1143 	/*
1144 	 * If we are the only holder (refcnt of 1) or the vnode is in
1145 	 * termination (refcnt < 0), we can vgone the vnode.
1146 	 */
1147 	if (VREFCNT(vp) <= 1) {
1148 		vgone_vxlocked(vp);
1149 		return(0);
1150 	}
1151 
1152 	/*
1153 	 * If FORCECLOSE is set, forcibly destroy the vnode and then move
1154 	 * it to a dummymount structure so vop_*() functions don't deref
1155 	 * a NULL pointer.
1156 	 */
1157 	if (flags & FORCECLOSE) {
1158 		vhold(vp);
1159 		vgone_vxlocked(vp);
1160 		if (vp->v_mount == NULL)
1161 			insmntque(vp, &dummymount);
1162 		vdrop(vp);
1163 		return(0);
1164 	}
1165 	if (vp->v_type == VCHR || vp->v_type == VBLK)
1166 		kprintf("vflush: Warning, cannot destroy busy device vnode\n");
1167 	if (debug_busyprt) {
1168 		const char *filename;
1169 
1170 		spin_lock(&vp->v_spin);
1171 		filename = TAILQ_FIRST(&vp->v_namecache) ?
1172 			   TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
1173 		spin_unlock(&vp->v_spin);
1174 		kprintf("vflush: busy vnode (%p) %s\n", vp, filename);
1175 	}
1176 	++info->busy;
1177 	return(0);
1178 }
1179 
1180 void
1181 add_bio_ops(struct bio_ops *ops)
1182 {
1183 	TAILQ_INSERT_TAIL(&bio_ops_list, ops, entry);
1184 }
1185 
1186 void
1187 rem_bio_ops(struct bio_ops *ops)
1188 {
1189 	TAILQ_REMOVE(&bio_ops_list, ops, entry);
1190 }
1191 
1192 /*
1193  * This calls the bio_ops io_sync function either for a mount point
1194  * or generally.
1195  *
1196  * WARNING: softdeps is weirdly coded and just isn't happy unless
1197  * io_sync is called with a NULL mount from the general syncing code.
1198  */
1199 void
1200 bio_ops_sync(struct mount *mp)
1201 {
1202 	struct bio_ops *ops;
1203 
1204 	if (mp) {
1205 		if ((ops = mp->mnt_bioops) != NULL)
1206 			ops->io_sync(mp);
1207 	} else {
1208 		TAILQ_FOREACH(ops, &bio_ops_list, entry) {
1209 			ops->io_sync(NULL);
1210 		}
1211 	}
1212 }
1213 
1214 /*
1215  * Lookup a mount point by nch
1216  */
1217 struct mount *
1218 mount_get_by_nc(struct namecache *ncp)
1219 {
1220 	struct mount *mp = NULL;
1221 
1222 	lwkt_gettoken_shared(&mountlist_token);
1223 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1224 		if (ncp == mp->mnt_ncmountpt.ncp)
1225 			break;
1226 	}
1227 	lwkt_reltoken(&mountlist_token);
1228 
1229 	return (mp);
1230 }
1231 
1232