xref: /dragonfly/sys/kern/vfs_mount.c (revision 9ddb8543)
1 /*
2  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by the University of
53  *	California, Berkeley and its contributors.
54  * 4. Neither the name of the University nor the names of its contributors
55  *    may be used to endorse or promote products derived from this software
56  *    without specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68  * SUCH DAMAGE.
69  *
70  * $DragonFly: src/sys/kern/vfs_mount.c,v 1.37 2008/09/17 21:44:18 dillon Exp $
71  */
72 
73 /*
74  * External virtual filesystem routines
75  */
76 #include "opt_ddb.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/malloc.h>
82 #include <sys/mount.h>
83 #include <sys/proc.h>
84 #include <sys/vnode.h>
85 #include <sys/buf.h>
86 #include <sys/eventhandler.h>
87 #include <sys/kthread.h>
88 #include <sys/sysctl.h>
89 
90 #include <machine/limits.h>
91 
92 #include <sys/buf2.h>
93 #include <sys/thread2.h>
94 #include <sys/sysref2.h>
95 
96 #include <vm/vm.h>
97 #include <vm/vm_object.h>
98 
99 struct mountscan_info {
100 	TAILQ_ENTRY(mountscan_info) msi_entry;
101 	int msi_how;
102 	struct mount *msi_node;
103 };
104 
105 struct vmntvnodescan_info {
106 	TAILQ_ENTRY(vmntvnodescan_info) entry;
107 	struct vnode *vp;
108 };
109 
110 static int vnlru_nowhere = 0;
111 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RD,
112 	    &vnlru_nowhere, 0,
113 	    "Number of times the vnlru process ran without success");
114 
115 
116 static struct lwkt_token mntid_token;
117 
118 /* note: mountlist exported to pstat */
119 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
120 static TAILQ_HEAD(,mountscan_info) mountscan_list;
121 static struct lwkt_token mountlist_token;
122 static TAILQ_HEAD(,vmntvnodescan_info) mntvnodescan_list;
123 struct lwkt_token mntvnode_token;
124 
125 static TAILQ_HEAD(,bio_ops) bio_ops_list = TAILQ_HEAD_INITIALIZER(bio_ops_list);
126 
127 /*
128  * Called from vfsinit()
129  */
130 void
131 vfs_mount_init(void)
132 {
133 	lwkt_token_init(&mountlist_token);
134 	lwkt_token_init(&mntvnode_token);
135 	lwkt_token_init(&mntid_token);
136 	TAILQ_INIT(&mountscan_list);
137 	TAILQ_INIT(&mntvnodescan_list);
138 }
139 
140 /*
141  * Support function called with mntvnode_token held to remove a vnode
142  * from the mountlist.  We must update any list scans which are in progress.
143  */
144 static void
145 vremovevnodemnt(struct vnode *vp)
146 {
147         struct vmntvnodescan_info *info;
148 
149 	TAILQ_FOREACH(info, &mntvnodescan_list, entry) {
150 		if (info->vp == vp)
151 			info->vp = TAILQ_NEXT(vp, v_nmntvnodes);
152 	}
153 	TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
154 }
155 
156 /*
157  * Allocate a new vnode and associate it with a tag, mount point, and
158  * operations vector.
159  *
160  * A VX locked and refd vnode is returned.  The caller should setup the
161  * remaining fields and vx_put() or, if he wishes to leave a vref,
162  * vx_unlock() the vnode.
163  */
164 int
165 getnewvnode(enum vtagtype tag, struct mount *mp,
166 		struct vnode **vpp, int lktimeout, int lkflags)
167 {
168 	struct vnode *vp;
169 
170 	KKASSERT(mp != NULL);
171 
172 	vp = allocvnode(lktimeout, lkflags);
173 	vp->v_tag = tag;
174 	vp->v_data = NULL;
175 
176 	/*
177 	 * By default the vnode is assigned the mount point's normal
178 	 * operations vector.
179 	 */
180 	vp->v_ops = &mp->mnt_vn_use_ops;
181 
182 	/*
183 	 * Placing the vnode on the mount point's queue makes it visible.
184 	 * VNON prevents it from being messed with, however.
185 	 */
186 	insmntque(vp, mp);
187 
188 	/*
189 	 * A VX locked & refd vnode is returned.
190 	 */
191 	*vpp = vp;
192 	return (0);
193 }
194 
195 /*
196  * This function creates vnodes with special operations vectors.  The
197  * mount point is optional.
198  *
199  * This routine is being phased out.
200  */
201 int
202 getspecialvnode(enum vtagtype tag, struct mount *mp,
203 		struct vop_ops **ops,
204 		struct vnode **vpp, int lktimeout, int lkflags)
205 {
206 	struct vnode *vp;
207 
208 	vp = allocvnode(lktimeout, lkflags);
209 	vp->v_tag = tag;
210 	vp->v_data = NULL;
211 	vp->v_ops = ops;
212 
213 	/*
214 	 * Placing the vnode on the mount point's queue makes it visible.
215 	 * VNON prevents it from being messed with, however.
216 	 */
217 	insmntque(vp, mp);
218 
219 	/*
220 	 * A VX locked & refd vnode is returned.
221 	 */
222 	*vpp = vp;
223 	return (0);
224 }
225 
226 /*
227  * Interlock against an unmount, return 0 on success, non-zero on failure.
228  *
229  * The passed flag may be 0 or LK_NOWAIT and is only used if an unmount
230  * is in-progress.
231  *
232  * If no unmount is in-progress LK_NOWAIT is ignored.  No other flag bits
233  * are used.  A shared locked will be obtained and the filesystem will not
234  * be unmountable until the lock is released.
235  */
236 int
237 vfs_busy(struct mount *mp, int flags)
238 {
239 	int lkflags;
240 
241 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
242 		if (flags & LK_NOWAIT)
243 			return (ENOENT);
244 		/* XXX not MP safe */
245 		mp->mnt_kern_flag |= MNTK_MWAIT;
246 		/*
247 		 * Since all busy locks are shared except the exclusive
248 		 * lock granted when unmounting, the only place that a
249 		 * wakeup needs to be done is at the release of the
250 		 * exclusive lock at the end of dounmount.
251 		 */
252 		tsleep((caddr_t)mp, 0, "vfs_busy", 0);
253 		return (ENOENT);
254 	}
255 	lkflags = LK_SHARED;
256 	if (lockmgr(&mp->mnt_lock, lkflags))
257 		panic("vfs_busy: unexpected lock failure");
258 	return (0);
259 }
260 
261 /*
262  * Free a busy filesystem.
263  */
264 void
265 vfs_unbusy(struct mount *mp)
266 {
267 	lockmgr(&mp->mnt_lock, LK_RELEASE);
268 }
269 
270 /*
271  * Lookup a filesystem type, and if found allocate and initialize
272  * a mount structure for it.
273  *
274  * Devname is usually updated by mount(8) after booting.
275  */
276 int
277 vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
278 {
279 	struct vfsconf *vfsp;
280 	struct mount *mp;
281 
282 	if (fstypename == NULL)
283 		return (ENODEV);
284 
285 	vfsp = vfsconf_find_by_name(fstypename);
286 	if (vfsp == NULL)
287 		return (ENODEV);
288 	mp = kmalloc(sizeof(struct mount), M_MOUNT, M_WAITOK | M_ZERO);
289 	lockinit(&mp->mnt_lock, "vfslock", VLKTIMEOUT, 0);
290 	vfs_busy(mp, LK_NOWAIT);
291 	TAILQ_INIT(&mp->mnt_nvnodelist);
292 	TAILQ_INIT(&mp->mnt_reservedvnlist);
293 	TAILQ_INIT(&mp->mnt_jlist);
294 	mp->mnt_nvnodelistsize = 0;
295 	mp->mnt_vfc = vfsp;
296 	mp->mnt_op = vfsp->vfc_vfsops;
297 	mp->mnt_flag = MNT_RDONLY;
298 	vfsp->vfc_refcount++;
299 	mp->mnt_iosize_max = DFLTPHYS;
300 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
301 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
302 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
303 	copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
304 	*mpp = mp;
305 	return (0);
306 }
307 
308 /*
309  * Lookup a mount point by filesystem identifier.
310  */
311 struct mount *
312 vfs_getvfs(fsid_t *fsid)
313 {
314 	struct mount *mp;
315 	lwkt_tokref ilock;
316 
317 	lwkt_gettoken(&ilock, &mountlist_token);
318 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
319 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
320 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
321 			break;
322 		}
323 	}
324 	lwkt_reltoken(&ilock);
325 	return (mp);
326 }
327 
328 /*
329  * Get a new unique fsid.  Try to make its val[0] unique, since this value
330  * will be used to create fake device numbers for stat().  Also try (but
331  * not so hard) make its val[0] unique mod 2^16, since some emulators only
332  * support 16-bit device numbers.  We end up with unique val[0]'s for the
333  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
334  *
335  * Keep in mind that several mounts may be running in parallel.  Starting
336  * the search one past where the previous search terminated is both a
337  * micro-optimization and a defense against returning the same fsid to
338  * different mounts.
339  */
340 void
341 vfs_getnewfsid(struct mount *mp)
342 {
343 	static u_int16_t mntid_base;
344 	lwkt_tokref ilock;
345 	fsid_t tfsid;
346 	int mtype;
347 
348 	lwkt_gettoken(&ilock, &mntid_token);
349 	mtype = mp->mnt_vfc->vfc_typenum;
350 	tfsid.val[1] = mtype;
351 	mtype = (mtype & 0xFF) << 24;
352 	for (;;) {
353 		tfsid.val[0] = makeudev(255,
354 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
355 		mntid_base++;
356 		if (vfs_getvfs(&tfsid) == NULL)
357 			break;
358 	}
359 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
360 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
361 	lwkt_reltoken(&ilock);
362 }
363 
364 /*
365  * Set the FSID for a new mount point to the template.  Adjust
366  * the FSID to avoid collisions.
367  */
368 int
369 vfs_setfsid(struct mount *mp, fsid_t *template)
370 {
371 	int didmunge = 0;
372 
373 	bzero(&mp->mnt_stat.f_fsid, sizeof(mp->mnt_stat.f_fsid));
374 	for (;;) {
375 		if (vfs_getvfs(template) == NULL)
376 			break;
377 		didmunge = 1;
378 		++template->val[1];
379 	}
380 	mp->mnt_stat.f_fsid = *template;
381 	return(didmunge);
382 }
383 
384 /*
385  * This routine is called when we have too many vnodes.  It attempts
386  * to free <count> vnodes and will potentially free vnodes that still
387  * have VM backing store (VM backing store is typically the cause
388  * of a vnode blowout so we want to do this).  Therefore, this operation
389  * is not considered cheap.
390  *
391  * A number of conditions may prevent a vnode from being reclaimed.
392  * the buffer cache may have references on the vnode, a directory
393  * vnode may still have references due to the namei cache representing
394  * underlying files, or the vnode may be in active use.   It is not
395  * desireable to reuse such vnodes.  These conditions may cause the
396  * number of vnodes to reach some minimum value regardless of what
397  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
398  */
399 
400 /*
401  * This is a quick non-blocking check to determine if the vnode is a good
402  * candidate for being (eventually) vgone()'d.  Returns 0 if the vnode is
403  * not a good candidate, 1 if it is.
404  */
405 static __inline int
406 vmightfree(struct vnode *vp, int page_count)
407 {
408 	if (vp->v_flag & VRECLAIMED)
409 		return (0);
410 #if 0
411 	if ((vp->v_flag & VFREE) && TAILQ_EMPTY(&vp->v_namecache))
412 		return (0);
413 #endif
414 	if (sysref_isactive(&vp->v_sysref))
415 		return (0);
416 	if (vp->v_object && vp->v_object->resident_page_count >= page_count)
417 		return (0);
418 	return (1);
419 }
420 
421 /*
422  * The vnode was found to be possibly vgone()able and the caller has locked it
423  * (thus the usecount should be 1 now).  Determine if the vnode is actually
424  * vgone()able, doing some cleanups in the process.  Returns 1 if the vnode
425  * can be vgone()'d, 0 otherwise.
426  *
427  * Note that v_auxrefs may be non-zero because (A) this vnode is not a leaf
428  * in the namecache topology and (B) this vnode has buffer cache bufs.
429  * We cannot remove vnodes with non-leaf namecache associations.  We do a
430  * tentitive leaf check prior to attempting to flush out any buffers but the
431  * 'real' test when all is said in done is that v_auxrefs must become 0 for
432  * the vnode to be freeable.
433  *
434  * We could theoretically just unconditionally flush when v_auxrefs != 0,
435  * but flushing data associated with non-leaf nodes (which are always
436  * directories), just throws it away for no benefit.  It is the buffer
437  * cache's responsibility to choose buffers to recycle from the cached
438  * data point of view.
439  */
440 static int
441 visleaf(struct vnode *vp)
442 {
443 	struct namecache *ncp;
444 
445 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
446 		if (!TAILQ_EMPTY(&ncp->nc_list))
447 			return(0);
448 	}
449 	return(1);
450 }
451 
452 /*
453  * Try to clean up the vnode to the point where it can be vgone()'d, returning
454  * 0 if it cannot be vgone()'d (or already has been), 1 if it can.  Unlike
455  * vmightfree() this routine may flush the vnode and block.  Vnodes marked
456  * VFREE are still candidates for vgone()ing because they may hold namecache
457  * resources and could be blocking the namecache directory hierarchy (and
458  * related vnodes) from being freed.
459  */
460 static int
461 vtrytomakegoneable(struct vnode *vp, int page_count)
462 {
463 	if (vp->v_flag & VRECLAIMED)
464 		return (0);
465 	if (vp->v_sysref.refcnt > 1)
466 		return (0);
467 	if (vp->v_object && vp->v_object->resident_page_count >= page_count)
468 		return (0);
469 	if (vp->v_auxrefs && visleaf(vp)) {
470 		vinvalbuf(vp, V_SAVE, 0, 0);
471 #if 0	/* DEBUG */
472 		kprintf((vp->v_auxrefs ? "vrecycle: vp %p failed: %s\n" :
473 			"vrecycle: vp %p succeeded: %s\n"), vp,
474 			(TAILQ_FIRST(&vp->v_namecache) ?
475 			    TAILQ_FIRST(&vp->v_namecache)->nc_name : "?"));
476 #endif
477 	}
478 
479 	/*
480 	 * This sequence may seem a little strange, but we need to optimize
481 	 * the critical path a bit.  We can't recycle vnodes with other
482 	 * references and because we are trying to recycle an otherwise
483 	 * perfectly fine vnode we have to invalidate the namecache in a
484 	 * way that avoids possible deadlocks (since the vnode lock is being
485 	 * held here).  Finally, we have to check for other references one
486 	 * last time in case something snuck in during the inval.
487 	 */
488 	if (vp->v_sysref.refcnt > 1 || vp->v_auxrefs != 0)
489 		return (0);
490 	if (cache_inval_vp_nonblock(vp))
491 		return (0);
492 	return (vp->v_sysref.refcnt <= 1 && vp->v_auxrefs == 0);
493 }
494 
495 /*
496  * Reclaim up to 1/10 of the vnodes associated with a mount point.  Try
497  * to avoid vnodes which have lots of resident pages (we are trying to free
498  * vnodes, not memory).
499  *
500  * This routine is a callback from the mountlist scan.  The mount point
501  * in question will be busied.
502  */
503 static int
504 vlrureclaim(struct mount *mp, void *data)
505 {
506 	struct vnode *vp;
507 	lwkt_tokref ilock;
508 	int done;
509 	int trigger;
510 	int usevnodes;
511 	int count;
512 	int trigger_mult = vnlru_nowhere;
513 
514 	/*
515 	 * Calculate the trigger point for the resident pages check.  The
516 	 * minimum trigger value is approximately the number of pages in
517 	 * the system divded by the number of vnodes.  However, due to
518 	 * various other system memory overheads unrelated to data caching
519 	 * it is a good idea to double the trigger (at least).
520 	 *
521 	 * trigger_mult starts at 0.  If the recycler is having problems
522 	 * finding enough freeable vnodes it will increase trigger_mult.
523 	 * This should not happen in normal operation, even on machines with
524 	 * low amounts of memory, but extraordinary memory use by the system
525 	 * verses the amount of cached data can trigger it.
526 	 */
527 	usevnodes = desiredvnodes;
528 	if (usevnodes <= 0)
529 		usevnodes = 1;
530 	trigger = vmstats.v_page_count * (trigger_mult + 2) / usevnodes;
531 
532 	done = 0;
533 	lwkt_gettoken(&ilock, &mntvnode_token);
534 	count = mp->mnt_nvnodelistsize / 10 + 1;
535 	while (count && mp->mnt_syncer) {
536 		/*
537 		 * Next vnode.  Use the special syncer vnode to placemark
538 		 * the LRU.  This way the LRU code does not interfere with
539 		 * vmntvnodescan().
540 		 */
541 		vp = TAILQ_NEXT(mp->mnt_syncer, v_nmntvnodes);
542 		TAILQ_REMOVE(&mp->mnt_nvnodelist, mp->mnt_syncer, v_nmntvnodes);
543 		if (vp) {
544 			TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp,
545 					   mp->mnt_syncer, v_nmntvnodes);
546 		} else {
547 			TAILQ_INSERT_HEAD(&mp->mnt_nvnodelist, mp->mnt_syncer,
548 					  v_nmntvnodes);
549 			vp = TAILQ_NEXT(mp->mnt_syncer, v_nmntvnodes);
550 			if (vp == NULL)
551 				break;
552 		}
553 
554 		/*
555 		 * __VNODESCAN__
556 		 *
557 		 * The VP will stick around while we hold mntvnode_token,
558 		 * at least until we block, so we can safely do an initial
559 		 * check, and then must check again after we lock the vnode.
560 		 */
561 		if (vp->v_type == VNON ||	/* syncer or indeterminant */
562 		    !vmightfree(vp, trigger)	/* critical path opt */
563 		) {
564 			--count;
565 			continue;
566 		}
567 
568 		/*
569 		 * VX get the candidate vnode.  If the VX get fails the
570 		 * vnode might still be on the mountlist.  Our loop depends
571 		 * on us at least cycling the vnode to the end of the
572 		 * mountlist.
573 		 */
574 		if (vx_get_nonblock(vp) != 0) {
575 			--count;
576 			continue;
577 		}
578 
579 		/*
580 		 * Since we blocked locking the vp, make sure it is still
581 		 * a candidate for reclamation.  That is, it has not already
582 		 * been reclaimed and only has our VX reference associated
583 		 * with it.
584 		 */
585 		if (vp->v_type == VNON ||	/* syncer or indeterminant */
586 		    (vp->v_flag & VRECLAIMED) ||
587 		    vp->v_mount != mp ||
588 		    !vtrytomakegoneable(vp, trigger)	/* critical path opt */
589 		) {
590 			--count;
591 			vx_put(vp);
592 			continue;
593 		}
594 
595 		/*
596 		 * All right, we are good, move the vp to the end of the
597 		 * mountlist and clean it out.  The vget will have returned
598 		 * an error if the vnode was destroyed (VRECLAIMED set), so we
599 		 * do not have to check again.  The vput() will move the
600 		 * vnode to the free list if the vgone() was successful.
601 		 */
602 		KKASSERT(vp->v_mount == mp);
603 		vgone_vxlocked(vp);
604 		vx_put(vp);
605 		++done;
606 		--count;
607 	}
608 	lwkt_reltoken(&ilock);
609 	return (done);
610 }
611 
612 /*
613  * Attempt to recycle vnodes in a context that is always safe to block.
614  * Calling vlrurecycle() from the bowels of file system code has some
615  * interesting deadlock problems.
616  */
617 static struct thread *vnlruthread;
618 static int vnlruproc_sig;
619 
620 void
621 vnlru_proc_wait(void)
622 {
623 	if (vnlruproc_sig == 0) {
624 		vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
625 		wakeup(vnlruthread);
626 	}
627 	tsleep(&vnlruproc_sig, 0, "vlruwk", hz);
628 }
629 
630 static void
631 vnlru_proc(void)
632 {
633 	struct thread *td = curthread;
634 	int done;
635 
636 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
637 	    SHUTDOWN_PRI_FIRST);
638 
639 	crit_enter();
640 	for (;;) {
641 		kproc_suspend_loop();
642 
643 		/*
644 		 * Try to free some vnodes if we have too many
645 		 */
646 		if (numvnodes > desiredvnodes &&
647 		    freevnodes > desiredvnodes * 2 / 10) {
648 			int count = numvnodes - desiredvnodes;
649 
650 			if (count > freevnodes / 100)
651 				count = freevnodes / 100;
652 			if (count < 5)
653 				count = 5;
654 			freesomevnodes(count);
655 		}
656 
657 		/*
658 		 * Nothing to do if most of our vnodes are already on
659 		 * the free list.
660 		 */
661 		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
662 			vnlruproc_sig = 0;
663 			wakeup(&vnlruproc_sig);
664 			tsleep(td, 0, "vlruwt", hz);
665 			continue;
666 		}
667 		cache_cleanneg(0);
668 		done = mountlist_scan(vlrureclaim, NULL, MNTSCAN_FORWARD);
669 
670 		/*
671 		 * The vlrureclaim() call only processes 1/10 of the vnodes
672 		 * on each mount.  If we couldn't find any repeat the loop
673 		 * at least enough times to cover all available vnodes before
674 		 * we start sleeping.  Complain if the failure extends past
675 		 * 30 second, every 30 seconds.
676 		 */
677 		if (done == 0) {
678 			++vnlru_nowhere;
679 			if (vnlru_nowhere % 10 == 0)
680 				tsleep(td, 0, "vlrup", hz * 3);
681 			if (vnlru_nowhere % 100 == 0)
682 				kprintf("vnlru_proc: vnode recycler stopped working!\n");
683 			if (vnlru_nowhere == 1000)
684 				vnlru_nowhere = 900;
685 		} else {
686 			vnlru_nowhere = 0;
687 		}
688 	}
689 	crit_exit();
690 }
691 
692 /*
693  * MOUNTLIST FUNCTIONS
694  */
695 
696 /*
697  * mountlist_insert (MP SAFE)
698  *
699  * Add a new mount point to the mount list.
700  */
701 void
702 mountlist_insert(struct mount *mp, int how)
703 {
704 	lwkt_tokref ilock;
705 
706 	lwkt_gettoken(&ilock, &mountlist_token);
707 	if (how == MNTINS_FIRST)
708 	    TAILQ_INSERT_HEAD(&mountlist, mp, mnt_list);
709 	else
710 	    TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
711 	lwkt_reltoken(&ilock);
712 }
713 
714 /*
715  * mountlist_interlock (MP SAFE)
716  *
717  * Execute the specified interlock function with the mountlist token
718  * held.  The function will be called in a serialized fashion verses
719  * other functions called through this mechanism.
720  */
721 int
722 mountlist_interlock(int (*callback)(struct mount *), struct mount *mp)
723 {
724 	lwkt_tokref ilock;
725 	int error;
726 
727 	lwkt_gettoken(&ilock, &mountlist_token);
728 	error = callback(mp);
729 	lwkt_reltoken(&ilock);
730 	return (error);
731 }
732 
733 /*
734  * mountlist_boot_getfirst (DURING BOOT ONLY)
735  *
736  * This function returns the first mount on the mountlist, which is
737  * expected to be the root mount.  Since no interlocks are obtained
738  * this function is only safe to use during booting.
739  */
740 
741 struct mount *
742 mountlist_boot_getfirst(void)
743 {
744 	return(TAILQ_FIRST(&mountlist));
745 }
746 
747 /*
748  * mountlist_remove (MP SAFE)
749  *
750  * Remove a node from the mountlist.  If this node is the next scan node
751  * for any active mountlist scans, the active mountlist scan will be
752  * adjusted to skip the node, thus allowing removals during mountlist
753  * scans.
754  */
755 void
756 mountlist_remove(struct mount *mp)
757 {
758 	struct mountscan_info *msi;
759 	lwkt_tokref ilock;
760 
761 	lwkt_gettoken(&ilock, &mountlist_token);
762 	TAILQ_FOREACH(msi, &mountscan_list, msi_entry) {
763 		if (msi->msi_node == mp) {
764 			if (msi->msi_how & MNTSCAN_FORWARD)
765 				msi->msi_node = TAILQ_NEXT(mp, mnt_list);
766 			else
767 				msi->msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
768 		}
769 	}
770 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
771 	lwkt_reltoken(&ilock);
772 }
773 
774 /*
775  * mountlist_scan (MP SAFE)
776  *
777  * Safely scan the mount points on the mount list.  Unless otherwise
778  * specified each mount point will be busied prior to the callback and
779  * unbusied afterwords.  The callback may safely remove any mount point
780  * without interfering with the scan.  If the current callback
781  * mount is removed the scanner will not attempt to unbusy it.
782  *
783  * If a mount node cannot be busied it is silently skipped.
784  *
785  * The callback return value is aggregated and a total is returned.  A return
786  * value of < 0 is not aggregated and will terminate the scan.
787  *
788  * MNTSCAN_FORWARD	- the mountlist is scanned in the forward direction
789  * MNTSCAN_REVERSE	- the mountlist is scanned in reverse
790  * MNTSCAN_NOBUSY	- the scanner will make the callback without busying
791  *			  the mount node.
792  */
793 int
794 mountlist_scan(int (*callback)(struct mount *, void *), void *data, int how)
795 {
796 	struct mountscan_info info;
797 	lwkt_tokref ilock;
798 	struct mount *mp;
799 	thread_t td;
800 	int count;
801 	int res;
802 
803 	lwkt_gettoken(&ilock, &mountlist_token);
804 
805 	info.msi_how = how;
806 	info.msi_node = NULL;	/* paranoia */
807 	TAILQ_INSERT_TAIL(&mountscan_list, &info, msi_entry);
808 
809 	res = 0;
810 	td = curthread;
811 
812 	if (how & MNTSCAN_FORWARD) {
813 		info.msi_node = TAILQ_FIRST(&mountlist);
814 		while ((mp = info.msi_node) != NULL) {
815 			if (how & MNTSCAN_NOBUSY) {
816 				count = callback(mp, data);
817 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
818 				count = callback(mp, data);
819 				if (mp == info.msi_node)
820 					vfs_unbusy(mp);
821 			} else {
822 				count = 0;
823 			}
824 			if (count < 0)
825 				break;
826 			res += count;
827 			if (mp == info.msi_node)
828 				info.msi_node = TAILQ_NEXT(mp, mnt_list);
829 		}
830 	} else if (how & MNTSCAN_REVERSE) {
831 		info.msi_node = TAILQ_LAST(&mountlist, mntlist);
832 		while ((mp = info.msi_node) != NULL) {
833 			if (how & MNTSCAN_NOBUSY) {
834 				count = callback(mp, data);
835 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
836 				count = callback(mp, data);
837 				if (mp == info.msi_node)
838 					vfs_unbusy(mp);
839 			} else {
840 				count = 0;
841 			}
842 			if (count < 0)
843 				break;
844 			res += count;
845 			if (mp == info.msi_node)
846 				info.msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
847 		}
848 	}
849 	TAILQ_REMOVE(&mountscan_list, &info, msi_entry);
850 	lwkt_reltoken(&ilock);
851 	return(res);
852 }
853 
854 /*
855  * MOUNT RELATED VNODE FUNCTIONS
856  */
857 
858 static struct kproc_desc vnlru_kp = {
859 	"vnlru",
860 	vnlru_proc,
861 	&vnlruthread
862 };
863 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
864 
865 /*
866  * Move a vnode from one mount queue to another.
867  */
868 void
869 insmntque(struct vnode *vp, struct mount *mp)
870 {
871 	lwkt_tokref ilock;
872 
873 	lwkt_gettoken(&ilock, &mntvnode_token);
874 	/*
875 	 * Delete from old mount point vnode list, if on one.
876 	 */
877 	if (vp->v_mount != NULL) {
878 		KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
879 			("bad mount point vnode list size"));
880 		vremovevnodemnt(vp);
881 		vp->v_mount->mnt_nvnodelistsize--;
882 	}
883 	/*
884 	 * Insert into list of vnodes for the new mount point, if available.
885 	 * The 'end' of the LRU list is the vnode prior to mp->mnt_syncer.
886 	 */
887 	if ((vp->v_mount = mp) == NULL) {
888 		lwkt_reltoken(&ilock);
889 		return;
890 	}
891 	if (mp->mnt_syncer) {
892 		TAILQ_INSERT_BEFORE(mp->mnt_syncer, vp, v_nmntvnodes);
893 	} else {
894 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
895 	}
896 	mp->mnt_nvnodelistsize++;
897 	lwkt_reltoken(&ilock);
898 }
899 
900 
901 /*
902  * Scan the vnodes under a mount point and issue appropriate callbacks.
903  *
904  * The fastfunc() callback is called with just the mountlist token held
905  * (no vnode lock).  It may not block and the vnode may be undergoing
906  * modifications while the caller is processing it.  The vnode will
907  * not be entirely destroyed, however, due to the fact that the mountlist
908  * token is held.  A return value < 0 skips to the next vnode without calling
909  * the slowfunc(), a return value > 0 terminates the loop.
910  *
911  * The slowfunc() callback is called after the vnode has been successfully
912  * locked based on passed flags.  The vnode is skipped if it gets rearranged
913  * or destroyed while blocking on the lock.  A non-zero return value from
914  * the slow function terminates the loop.  The slow function is allowed to
915  * arbitrarily block.  The scanning code guarentees consistency of operation
916  * even if the slow function deletes or moves the node, or blocks and some
917  * other thread deletes or moves the node.
918  */
919 int
920 vmntvnodescan(
921     struct mount *mp,
922     int flags,
923     int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
924     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
925     void *data
926 ) {
927 	struct vmntvnodescan_info info;
928 	lwkt_tokref ilock;
929 	struct vnode *vp;
930 	int r = 0;
931 	int maxcount = 1000000;
932 	int stopcount = 0;
933 	int count = 0;
934 
935 	lwkt_gettoken(&ilock, &mntvnode_token);
936 
937 	/*
938 	 * If asked to do one pass stop after iterating available vnodes.
939 	 * Under heavy loads new vnodes can be added while we are scanning,
940 	 * so this isn't perfect.  Create a slop factor of 2x.
941 	 */
942 	if (flags & VMSC_ONEPASS)
943 		stopcount = mp->mnt_nvnodelistsize * 2;
944 
945 	info.vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
946 	TAILQ_INSERT_TAIL(&mntvnodescan_list, &info, entry);
947 	while ((vp = info.vp) != NULL) {
948 		if (--maxcount == 0)
949 			panic("maxcount reached during vmntvnodescan");
950 
951 		/*
952 		 * Skip if visible but not ready, or special (e.g.
953 		 * mp->mnt_syncer)
954 		 */
955 		if (vp->v_type == VNON)
956 			goto next;
957 		KKASSERT(vp->v_mount == mp);
958 
959 		/*
960 		 * Quick test.  A negative return continues the loop without
961 		 * calling the slow test.  0 continues onto the slow test.
962 		 * A positive number aborts the loop.
963 		 */
964 		if (fastfunc) {
965 			if ((r = fastfunc(mp, vp, data)) < 0) {
966 				r = 0;
967 				goto next;
968 			}
969 			if (r)
970 				break;
971 		}
972 
973 		/*
974 		 * Get a vxlock on the vnode, retry if it has moved or isn't
975 		 * in the mountlist where we expect it.
976 		 */
977 		if (slowfunc) {
978 			int error;
979 
980 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
981 			case VMSC_GETVP:
982 				error = vget(vp, LK_EXCLUSIVE);
983 				break;
984 			case VMSC_GETVP|VMSC_NOWAIT:
985 				error = vget(vp, LK_EXCLUSIVE|LK_NOWAIT);
986 				break;
987 			case VMSC_GETVX:
988 				vx_get(vp);
989 				error = 0;
990 				break;
991 			default:
992 				error = 0;
993 				break;
994 			}
995 			if (error)
996 				goto next;
997 			/*
998 			 * Do not call the slow function if the vnode is
999 			 * invalid or if it was ripped out from under us
1000 			 * while we (potentially) blocked.
1001 			 */
1002 			if (info.vp == vp && vp->v_type != VNON)
1003 				r = slowfunc(mp, vp, data);
1004 
1005 			/*
1006 			 * Cleanup
1007 			 */
1008 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
1009 			case VMSC_GETVP:
1010 			case VMSC_GETVP|VMSC_NOWAIT:
1011 				vput(vp);
1012 				break;
1013 			case VMSC_GETVX:
1014 				vx_put(vp);
1015 				break;
1016 			default:
1017 				break;
1018 			}
1019 			if (r != 0)
1020 				break;
1021 		}
1022 
1023 next:
1024 		/*
1025 		 * Yield after some processing.  Depending on the number
1026 		 * of vnodes, we might wind up running for a long time.
1027 		 * Because threads are not preemptable, time critical
1028 		 * userland processes might starve.  Give them a chance
1029 		 * now and then.
1030 		 */
1031 		if (++count == 10000) {
1032 			/* We really want to yield a bit, so we simply sleep a tick */
1033 			tsleep(mp, 0, "vnodescn", 1);
1034 			count = 0;
1035 		}
1036 
1037 		/*
1038 		 * If doing one pass this decrements to zero.  If it starts
1039 		 * at zero it is effectively unlimited for the purposes of
1040 		 * this loop.
1041 		 */
1042 		if (--stopcount == 0)
1043 			break;
1044 
1045 		/*
1046 		 * Iterate.  If the vnode was ripped out from under us
1047 		 * info.vp will already point to the next vnode, otherwise
1048 		 * we have to obtain the next valid vnode ourselves.
1049 		 */
1050 		if (info.vp == vp)
1051 			info.vp = TAILQ_NEXT(vp, v_nmntvnodes);
1052 	}
1053 	TAILQ_REMOVE(&mntvnodescan_list, &info, entry);
1054 	lwkt_reltoken(&ilock);
1055 	return(r);
1056 }
1057 
1058 /*
1059  * Remove any vnodes in the vnode table belonging to mount point mp.
1060  *
1061  * If FORCECLOSE is not specified, there should not be any active ones,
1062  * return error if any are found (nb: this is a user error, not a
1063  * system error). If FORCECLOSE is specified, detach any active vnodes
1064  * that are found.
1065  *
1066  * If WRITECLOSE is set, only flush out regular file vnodes open for
1067  * writing.
1068  *
1069  * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1070  *
1071  * `rootrefs' specifies the base reference count for the root vnode
1072  * of this filesystem. The root vnode is considered busy if its
1073  * v_sysref.refcnt exceeds this value. On a successful return, vflush()
1074  * will call vrele() on the root vnode exactly rootrefs times.
1075  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1076  * be zero.
1077  */
1078 #ifdef DIAGNOSTIC
1079 static int busyprt = 0;		/* print out busy vnodes */
1080 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1081 #endif
1082 
1083 static int vflush_scan(struct mount *mp, struct vnode *vp, void *data);
1084 
1085 struct vflush_info {
1086 	int flags;
1087 	int busy;
1088 	thread_t td;
1089 };
1090 
1091 int
1092 vflush(struct mount *mp, int rootrefs, int flags)
1093 {
1094 	struct thread *td = curthread;	/* XXX */
1095 	struct vnode *rootvp = NULL;
1096 	int error;
1097 	struct vflush_info vflush_info;
1098 
1099 	if (rootrefs > 0) {
1100 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1101 		    ("vflush: bad args"));
1102 		/*
1103 		 * Get the filesystem root vnode. We can vput() it
1104 		 * immediately, since with rootrefs > 0, it won't go away.
1105 		 */
1106 		if ((error = VFS_ROOT(mp, &rootvp)) != 0) {
1107 			if ((flags & FORCECLOSE) == 0)
1108 				return (error);
1109 			rootrefs = 0;
1110 			/* continue anyway */
1111 		}
1112 		if (rootrefs)
1113 			vput(rootvp);
1114 	}
1115 
1116 	vflush_info.busy = 0;
1117 	vflush_info.flags = flags;
1118 	vflush_info.td = td;
1119 	vmntvnodescan(mp, VMSC_GETVX, NULL, vflush_scan, &vflush_info);
1120 
1121 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1122 		/*
1123 		 * If just the root vnode is busy, and if its refcount
1124 		 * is equal to `rootrefs', then go ahead and kill it.
1125 		 */
1126 		KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
1127 		KASSERT(rootvp->v_sysref.refcnt >= rootrefs, ("vflush: rootrefs"));
1128 		if (vflush_info.busy == 1 && rootvp->v_sysref.refcnt == rootrefs) {
1129 			vx_lock(rootvp);
1130 			vgone_vxlocked(rootvp);
1131 			vx_unlock(rootvp);
1132 			vflush_info.busy = 0;
1133 		}
1134 	}
1135 	if (vflush_info.busy)
1136 		return (EBUSY);
1137 	for (; rootrefs > 0; rootrefs--)
1138 		vrele(rootvp);
1139 	return (0);
1140 }
1141 
1142 /*
1143  * The scan callback is made with an VX locked vnode.
1144  */
1145 static int
1146 vflush_scan(struct mount *mp, struct vnode *vp, void *data)
1147 {
1148 	struct vflush_info *info = data;
1149 	struct vattr vattr;
1150 
1151 	/*
1152 	 * Skip over a vnodes marked VSYSTEM.
1153 	 */
1154 	if ((info->flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1155 		return(0);
1156 	}
1157 
1158 	/*
1159 	 * If WRITECLOSE is set, flush out unlinked but still open
1160 	 * files (even if open only for reading) and regular file
1161 	 * vnodes open for writing.
1162 	 */
1163 	if ((info->flags & WRITECLOSE) &&
1164 	    (vp->v_type == VNON ||
1165 	    (VOP_GETATTR(vp, &vattr) == 0 &&
1166 	    vattr.va_nlink > 0)) &&
1167 	    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1168 		return(0);
1169 	}
1170 
1171 	/*
1172 	 * If we are the only holder (refcnt of 1) or the vnode is in
1173 	 * termination (refcnt < 0), we can vgone the vnode.
1174 	 */
1175 	if (vp->v_sysref.refcnt <= 1) {
1176 		vgone_vxlocked(vp);
1177 		return(0);
1178 	}
1179 
1180 	/*
1181 	 * If FORCECLOSE is set, forcibly close the vnode. For block
1182 	 * or character devices we just clean and leave the vp
1183 	 * associated with devfs.  For all other files, just kill them.
1184 	 *
1185 	 * XXX we need to do something about devfs here, I'd rather not
1186 	 *     blow away device associations.
1187 	 */
1188 	if (info->flags & FORCECLOSE) {
1189 		vgone_vxlocked(vp);
1190 #if 0
1191 		if (vp->v_type != VBLK && vp->v_type != VCHR) {
1192 			vgone_vxlocked(vp);
1193 		} else {
1194 			vclean_vxlocked(vp, 0);
1195 			/*vp->v_ops = &devfs_vnode_dev_vops_p;*/
1196 			insmntque(vp, NULL);
1197 		}
1198 #endif
1199 		return(0);
1200 	}
1201 #ifdef DIAGNOSTIC
1202 	if (busyprt)
1203 		vprint("vflush: busy vnode", vp);
1204 #endif
1205 	++info->busy;
1206 	return(0);
1207 }
1208 
1209 void
1210 add_bio_ops(struct bio_ops *ops)
1211 {
1212 	TAILQ_INSERT_TAIL(&bio_ops_list, ops, entry);
1213 }
1214 
1215 void
1216 rem_bio_ops(struct bio_ops *ops)
1217 {
1218 	TAILQ_REMOVE(&bio_ops_list, ops, entry);
1219 }
1220 
1221 /*
1222  * This calls the bio_ops io_sync function either for a mount point
1223  * or generally.
1224  *
1225  * WARNING: softdeps is weirdly coded and just isn't happy unless
1226  * io_sync is called with a NULL mount from the general syncing code.
1227  */
1228 void
1229 bio_ops_sync(struct mount *mp)
1230 {
1231 	struct bio_ops *ops;
1232 
1233 	if (mp) {
1234 		if ((ops = mp->mnt_bioops) != NULL)
1235 			ops->io_sync(mp);
1236 	} else {
1237 		TAILQ_FOREACH(ops, &bio_ops_list, entry) {
1238 			ops->io_sync(NULL);
1239 		}
1240 	}
1241 }
1242 
1243