xref: /dragonfly/sys/kern/vfs_mount.c (revision b2920380)
1 /*
2  * Copyright (c) 2004,2013 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 /*
68  * External virtual filesystem routines
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/mount.h>
76 #include <sys/proc.h>
77 #include <sys/vnode.h>
78 #include <sys/buf.h>
79 #include <sys/eventhandler.h>
80 #include <sys/kthread.h>
81 #include <sys/sysctl.h>
82 
83 #include <machine/limits.h>
84 
85 #include <sys/buf2.h>
86 #include <sys/thread2.h>
87 #include <sys/sysref2.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_object.h>
91 
92 struct mountscan_info {
93 	TAILQ_ENTRY(mountscan_info) msi_entry;
94 	int msi_how;
95 	struct mount *msi_node;
96 };
97 
98 struct vmntvnodescan_info {
99 	TAILQ_ENTRY(vmntvnodescan_info) entry;
100 	struct vnode *vp;
101 };
102 
103 struct vnlru_info {
104 	int	pass;
105 };
106 
107 static int vnlru_nowhere = 0;
108 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RD,
109 	    &vnlru_nowhere, 0,
110 	    "Number of times the vnlru process ran without success");
111 
112 
113 static struct lwkt_token mntid_token;
114 static struct mount dummymount;
115 
116 /* note: mountlist exported to pstat */
117 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
118 static TAILQ_HEAD(,mountscan_info) mountscan_list;
119 static struct lwkt_token mountlist_token;
120 
121 static TAILQ_HEAD(,bio_ops) bio_ops_list = TAILQ_HEAD_INITIALIZER(bio_ops_list);
122 
123 /*
124  * Called from vfsinit()
125  */
126 void
127 vfs_mount_init(void)
128 {
129 	lwkt_token_init(&mountlist_token, "mntlist");
130 	lwkt_token_init(&mntid_token, "mntid");
131 	TAILQ_INIT(&mountscan_list);
132 	mount_init(&dummymount);
133 	dummymount.mnt_flag |= MNT_RDONLY;
134 	dummymount.mnt_kern_flag |= MNTK_ALL_MPSAFE;
135 }
136 
137 /*
138  * Support function called to remove a vnode from the mountlist and
139  * deal with side effects for scans in progress.
140  *
141  * Target mnt_token is held on call.
142  */
143 static void
144 vremovevnodemnt(struct vnode *vp)
145 {
146         struct vmntvnodescan_info *info;
147 	struct mount *mp = vp->v_mount;
148 
149 	TAILQ_FOREACH(info, &mp->mnt_vnodescan_list, entry) {
150 		if (info->vp == vp)
151 			info->vp = TAILQ_NEXT(vp, v_nmntvnodes);
152 	}
153 	TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
154 }
155 
156 /*
157  * Allocate a new vnode and associate it with a tag, mount point, and
158  * operations vector.
159  *
160  * A VX locked and refd vnode is returned.  The caller should setup the
161  * remaining fields and vx_put() or, if he wishes to leave a vref,
162  * vx_unlock() the vnode.
163  */
164 int
165 getnewvnode(enum vtagtype tag, struct mount *mp,
166 		struct vnode **vpp, int lktimeout, int lkflags)
167 {
168 	struct vnode *vp;
169 
170 	KKASSERT(mp != NULL);
171 
172 	vp = allocvnode(lktimeout, lkflags);
173 	vp->v_tag = tag;
174 	vp->v_data = NULL;
175 
176 	/*
177 	 * By default the vnode is assigned the mount point's normal
178 	 * operations vector.
179 	 */
180 	vp->v_ops = &mp->mnt_vn_use_ops;
181 	vp->v_pbuf_count = nswbuf_kva / NSWBUF_SPLIT;
182 
183 	/*
184 	 * Placing the vnode on the mount point's queue makes it visible.
185 	 * VNON prevents it from being messed with, however.
186 	 */
187 	insmntque(vp, mp);
188 
189 	/*
190 	 * A VX locked & refd vnode is returned.
191 	 */
192 	*vpp = vp;
193 	return (0);
194 }
195 
196 /*
197  * This function creates vnodes with special operations vectors.  The
198  * mount point is optional.
199  *
200  * This routine is being phased out but is still used by vfs_conf to
201  * create vnodes for devices prior to the root mount (with mp == NULL).
202  */
203 int
204 getspecialvnode(enum vtagtype tag, struct mount *mp,
205 		struct vop_ops **ops,
206 		struct vnode **vpp, int lktimeout, int lkflags)
207 {
208 	struct vnode *vp;
209 
210 	vp = allocvnode(lktimeout, lkflags);
211 	vp->v_tag = tag;
212 	vp->v_data = NULL;
213 	vp->v_ops = ops;
214 
215 	if (mp == NULL)
216 		mp = &dummymount;
217 
218 	/*
219 	 * Placing the vnode on the mount point's queue makes it visible.
220 	 * VNON prevents it from being messed with, however.
221 	 */
222 	insmntque(vp, mp);
223 
224 	/*
225 	 * A VX locked & refd vnode is returned.
226 	 */
227 	*vpp = vp;
228 	return (0);
229 }
230 
231 /*
232  * Interlock against an unmount, return 0 on success, non-zero on failure.
233  *
234  * The passed flag may be 0 or LK_NOWAIT and is only used if an unmount
235  * is in-progress.
236  *
237  * If no unmount is in-progress LK_NOWAIT is ignored.  No other flag bits
238  * are used.  A shared locked will be obtained and the filesystem will not
239  * be unmountable until the lock is released.
240  */
241 int
242 vfs_busy(struct mount *mp, int flags)
243 {
244 	int lkflags;
245 
246 	atomic_add_int(&mp->mnt_refs, 1);
247 	lwkt_gettoken(&mp->mnt_token);
248 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
249 		if (flags & LK_NOWAIT) {
250 			lwkt_reltoken(&mp->mnt_token);
251 			atomic_add_int(&mp->mnt_refs, -1);
252 			return (ENOENT);
253 		}
254 		/* XXX not MP safe */
255 		mp->mnt_kern_flag |= MNTK_MWAIT;
256 		/*
257 		 * Since all busy locks are shared except the exclusive
258 		 * lock granted when unmounting, the only place that a
259 		 * wakeup needs to be done is at the release of the
260 		 * exclusive lock at the end of dounmount.
261 		 */
262 		tsleep((caddr_t)mp, 0, "vfs_busy", 0);
263 		lwkt_reltoken(&mp->mnt_token);
264 		atomic_add_int(&mp->mnt_refs, -1);
265 		return (ENOENT);
266 	}
267 	lkflags = LK_SHARED;
268 	if (lockmgr(&mp->mnt_lock, lkflags))
269 		panic("vfs_busy: unexpected lock failure");
270 	lwkt_reltoken(&mp->mnt_token);
271 	return (0);
272 }
273 
274 /*
275  * Free a busy filesystem.
276  *
277  * Decrement refs before releasing the lock so e.g. a pending umount
278  * doesn't give us an unexpected busy error.
279  */
280 void
281 vfs_unbusy(struct mount *mp)
282 {
283 	atomic_add_int(&mp->mnt_refs, -1);
284 	lockmgr(&mp->mnt_lock, LK_RELEASE);
285 }
286 
287 /*
288  * Lookup a filesystem type, and if found allocate and initialize
289  * a mount structure for it.
290  *
291  * Devname is usually updated by mount(8) after booting.
292  */
293 int
294 vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
295 {
296 	struct vfsconf *vfsp;
297 	struct mount *mp;
298 
299 	if (fstypename == NULL)
300 		return (ENODEV);
301 
302 	vfsp = vfsconf_find_by_name(fstypename);
303 	if (vfsp == NULL)
304 		return (ENODEV);
305 	mp = kmalloc(sizeof(struct mount), M_MOUNT, M_WAITOK | M_ZERO);
306 	mount_init(mp);
307 	lockinit(&mp->mnt_lock, "vfslock", VLKTIMEOUT, 0);
308 
309 	vfs_busy(mp, 0);
310 	mp->mnt_vfc = vfsp;
311 	mp->mnt_op = vfsp->vfc_vfsops;
312 	mp->mnt_pbuf_count = nswbuf_kva / NSWBUF_SPLIT;
313 	vfsp->vfc_refcount++;
314 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
315 	mp->mnt_flag |= MNT_RDONLY;
316 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
317 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
318 	copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
319 
320 	/*
321 	 * Pre-set MPSAFE flags for VFS_MOUNT() call.
322 	 */
323 	if (vfsp->vfc_flags & VFCF_MPSAFE)
324 		mp->mnt_kern_flag |= MNTK_ALL_MPSAFE;
325 
326 	*mpp = mp;
327 
328 	return (0);
329 }
330 
331 /*
332  * Basic mount structure initialization
333  */
334 void
335 mount_init(struct mount *mp)
336 {
337 	lockinit(&mp->mnt_lock, "vfslock", hz*5, 0);
338 	lwkt_token_init(&mp->mnt_token, "permnt");
339 
340 	TAILQ_INIT(&mp->mnt_vnodescan_list);
341 	TAILQ_INIT(&mp->mnt_nvnodelist);
342 	TAILQ_INIT(&mp->mnt_reservedvnlist);
343 	TAILQ_INIT(&mp->mnt_jlist);
344 	mp->mnt_nvnodelistsize = 0;
345 	mp->mnt_flag = 0;
346 	mp->mnt_hold = 1;
347 	mp->mnt_iosize_max = MAXPHYS;
348 	vn_syncer_thr_create(mp);
349 }
350 
351 void
352 mount_hold(struct mount *mp)
353 {
354 	atomic_add_int(&mp->mnt_hold, 1);
355 }
356 
357 void
358 mount_drop(struct mount *mp)
359 {
360 	if (atomic_fetchadd_int(&mp->mnt_hold, -1) == 1)
361 		kfree(mp, M_MOUNT);
362 }
363 
364 /*
365  * Lookup a mount point by filesystem identifier.
366  */
367 struct mount *
368 vfs_getvfs(fsid_t *fsid)
369 {
370 	struct mount *mp;
371 
372 	lwkt_gettoken(&mountlist_token);
373 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
374 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
375 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
376 			break;
377 		}
378 	}
379 	lwkt_reltoken(&mountlist_token);
380 	return (mp);
381 }
382 
383 /*
384  * Get a new unique fsid.  Try to make its val[0] unique, since this value
385  * will be used to create fake device numbers for stat().  Also try (but
386  * not so hard) make its val[0] unique mod 2^16, since some emulators only
387  * support 16-bit device numbers.  We end up with unique val[0]'s for the
388  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
389  *
390  * Keep in mind that several mounts may be running in parallel.  Starting
391  * the search one past where the previous search terminated is both a
392  * micro-optimization and a defense against returning the same fsid to
393  * different mounts.
394  */
395 void
396 vfs_getnewfsid(struct mount *mp)
397 {
398 	static u_int16_t mntid_base;
399 	fsid_t tfsid;
400 	int mtype;
401 
402 	lwkt_gettoken(&mntid_token);
403 	mtype = mp->mnt_vfc->vfc_typenum;
404 	tfsid.val[1] = mtype;
405 	mtype = (mtype & 0xFF) << 24;
406 	for (;;) {
407 		tfsid.val[0] = makeudev(255,
408 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
409 		mntid_base++;
410 		if (vfs_getvfs(&tfsid) == NULL)
411 			break;
412 	}
413 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
414 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
415 	lwkt_reltoken(&mntid_token);
416 }
417 
418 /*
419  * Set the FSID for a new mount point to the template.  Adjust
420  * the FSID to avoid collisions.
421  */
422 int
423 vfs_setfsid(struct mount *mp, fsid_t *template)
424 {
425 	int didmunge = 0;
426 
427 	bzero(&mp->mnt_stat.f_fsid, sizeof(mp->mnt_stat.f_fsid));
428 	for (;;) {
429 		if (vfs_getvfs(template) == NULL)
430 			break;
431 		didmunge = 1;
432 		++template->val[1];
433 	}
434 	mp->mnt_stat.f_fsid = *template;
435 	return(didmunge);
436 }
437 
438 /*
439  * This routine is called when we have too many vnodes.  It attempts
440  * to free <count> vnodes and will potentially free vnodes that still
441  * have VM backing store (VM backing store is typically the cause
442  * of a vnode blowout so we want to do this).  Therefore, this operation
443  * is not considered cheap.
444  *
445  * A number of conditions may prevent a vnode from being reclaimed.
446  * the buffer cache may have references on the vnode, a directory
447  * vnode may still have references due to the namei cache representing
448  * underlying files, or the vnode may be in active use.   It is not
449  * desireable to reuse such vnodes.  These conditions may cause the
450  * number of vnodes to reach some minimum value regardless of what
451  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
452  */
453 
454 /*
455  * Attempt to recycle vnodes in a context that is always safe to block.
456  * Calling vlrurecycle() from the bowels of file system code has some
457  * interesting deadlock problems.
458  */
459 static struct thread *vnlruthread;
460 
461 static void
462 vnlru_proc(void)
463 {
464 	struct thread *td = curthread;
465 
466 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
467 			      SHUTDOWN_PRI_FIRST);
468 
469 	for (;;) {
470 		int ncached;
471 
472 		kproc_suspend_loop();
473 
474 		/*
475 		 * Try to free some vnodes if we have too many.  Trigger based
476 		 * on potentially freeable vnodes but calculate the count
477 		 * based on total vnodes.
478 		 *
479 		 * (long) -> deal with 64 bit machines, intermediate overflow
480 		 */
481 		ncached = countcachedvnodes(1);
482 		if (numvnodes >= maxvnodes * 9 / 10 &&
483 		    ncached + inactivevnodes >= maxvnodes * 5 / 10) {
484 			int count = numvnodes - maxvnodes * 9 / 10;
485 
486 			if (count > (ncached + inactivevnodes) / 100)
487 				count = (ncached + inactivevnodes) / 100;
488 			if (count < 5)
489 				count = 5;
490 			freesomevnodes(count);
491 		}
492 
493 		/*
494 		 * Do non-critical-path (more robust) cache cleaning,
495 		 * even if vnode counts are nominal, to try to avoid
496 		 * having to do it in the critical path.
497 		 */
498 		cache_hysteresis(0);
499 
500 		/*
501 		 * Nothing to do if most of our vnodes are already on
502 		 * the free list.
503 		 */
504 		ncached = countcachedvnodes(1);
505 		if (numvnodes <= maxvnodes * 9 / 10 ||
506 		    ncached + inactivevnodes <= maxvnodes * 5 / 10) {
507 			tsleep(vnlruthread, 0, "vlruwt", hz);
508 			continue;
509 		}
510 	}
511 }
512 
513 /*
514  * MOUNTLIST FUNCTIONS
515  */
516 
517 /*
518  * mountlist_insert (MP SAFE)
519  *
520  * Add a new mount point to the mount list.
521  */
522 void
523 mountlist_insert(struct mount *mp, int how)
524 {
525 	lwkt_gettoken(&mountlist_token);
526 	if (how == MNTINS_FIRST)
527 	    TAILQ_INSERT_HEAD(&mountlist, mp, mnt_list);
528 	else
529 	    TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
530 	lwkt_reltoken(&mountlist_token);
531 }
532 
533 /*
534  * mountlist_interlock (MP SAFE)
535  *
536  * Execute the specified interlock function with the mountlist token
537  * held.  The function will be called in a serialized fashion verses
538  * other functions called through this mechanism.
539  */
540 int
541 mountlist_interlock(int (*callback)(struct mount *), struct mount *mp)
542 {
543 	int error;
544 
545 	lwkt_gettoken(&mountlist_token);
546 	error = callback(mp);
547 	lwkt_reltoken(&mountlist_token);
548 	return (error);
549 }
550 
551 /*
552  * mountlist_boot_getfirst (DURING BOOT ONLY)
553  *
554  * This function returns the first mount on the mountlist, which is
555  * expected to be the root mount.  Since no interlocks are obtained
556  * this function is only safe to use during booting.
557  */
558 
559 struct mount *
560 mountlist_boot_getfirst(void)
561 {
562 	return(TAILQ_FIRST(&mountlist));
563 }
564 
565 /*
566  * mountlist_remove (MP SAFE)
567  *
568  * Remove a node from the mountlist.  If this node is the next scan node
569  * for any active mountlist scans, the active mountlist scan will be
570  * adjusted to skip the node, thus allowing removals during mountlist
571  * scans.
572  */
573 void
574 mountlist_remove(struct mount *mp)
575 {
576 	struct mountscan_info *msi;
577 
578 	lwkt_gettoken(&mountlist_token);
579 	TAILQ_FOREACH(msi, &mountscan_list, msi_entry) {
580 		if (msi->msi_node == mp) {
581 			if (msi->msi_how & MNTSCAN_FORWARD)
582 				msi->msi_node = TAILQ_NEXT(mp, mnt_list);
583 			else
584 				msi->msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
585 		}
586 	}
587 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
588 	lwkt_reltoken(&mountlist_token);
589 }
590 
591 /*
592  * mountlist_exists (MP SAFE)
593  *
594  * Checks if a node exists in the mountlist.
595  * This function is mainly used by VFS quota code to check if a
596  * cached nullfs struct mount pointer is still valid at use time
597  *
598  * FIXME: there is no warranty the mp passed to that function
599  * will be the same one used by VFS_ACCOUNT() later
600  */
601 int
602 mountlist_exists(struct mount *mp)
603 {
604 	int node_exists = 0;
605 	struct mount* lmp;
606 
607 	lwkt_gettoken(&mountlist_token);
608 	TAILQ_FOREACH(lmp, &mountlist, mnt_list) {
609 		if (lmp == mp) {
610 			node_exists = 1;
611 			break;
612 		}
613 	}
614 	lwkt_reltoken(&mountlist_token);
615 	return(node_exists);
616 }
617 
618 /*
619  * mountlist_scan (MP SAFE)
620  *
621  * Safely scan the mount points on the mount list.  Unless otherwise
622  * specified each mount point will be busied prior to the callback and
623  * unbusied afterwords.  The callback may safely remove any mount point
624  * without interfering with the scan.  If the current callback
625  * mount is removed the scanner will not attempt to unbusy it.
626  *
627  * If a mount node cannot be busied it is silently skipped.
628  *
629  * The callback return value is aggregated and a total is returned.  A return
630  * value of < 0 is not aggregated and will terminate the scan.
631  *
632  * MNTSCAN_FORWARD	- the mountlist is scanned in the forward direction
633  * MNTSCAN_REVERSE	- the mountlist is scanned in reverse
634  * MNTSCAN_NOBUSY	- the scanner will make the callback without busying
635  *			  the mount node.
636  *
637  * NOTE: mount_hold()/mount_drop() sequence primarily helps us avoid
638  *	 confusion for the unbusy check, particularly if a kfree/kmalloc
639  *	 occurs quickly (lots of processes mounting and unmounting at the
640  *	 same time).
641  */
642 int
643 mountlist_scan(int (*callback)(struct mount *, void *), void *data, int how)
644 {
645 	struct mountscan_info info;
646 	struct mount *mp;
647 	int count;
648 	int res;
649 
650 	lwkt_gettoken(&mountlist_token);
651 
652 	info.msi_how = how;
653 	info.msi_node = NULL;	/* paranoia */
654 	TAILQ_INSERT_TAIL(&mountscan_list, &info, msi_entry);
655 
656 	res = 0;
657 
658 	if (how & MNTSCAN_FORWARD) {
659 		info.msi_node = TAILQ_FIRST(&mountlist);
660 		while ((mp = info.msi_node) != NULL) {
661 			mount_hold(mp);
662 			if (how & MNTSCAN_NOBUSY) {
663 				count = callback(mp, data);
664 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
665 				count = callback(mp, data);
666 				if (mp == info.msi_node)
667 					vfs_unbusy(mp);
668 			} else {
669 				count = 0;
670 			}
671 			mount_drop(mp);
672 			if (count < 0)
673 				break;
674 			res += count;
675 			if (mp == info.msi_node)
676 				info.msi_node = TAILQ_NEXT(mp, mnt_list);
677 		}
678 	} else if (how & MNTSCAN_REVERSE) {
679 		info.msi_node = TAILQ_LAST(&mountlist, mntlist);
680 		while ((mp = info.msi_node) != NULL) {
681 			mount_hold(mp);
682 			if (how & MNTSCAN_NOBUSY) {
683 				count = callback(mp, data);
684 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
685 				count = callback(mp, data);
686 				if (mp == info.msi_node)
687 					vfs_unbusy(mp);
688 			} else {
689 				count = 0;
690 			}
691 			mount_drop(mp);
692 			if (count < 0)
693 				break;
694 			res += count;
695 			if (mp == info.msi_node)
696 				info.msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
697 		}
698 	}
699 	TAILQ_REMOVE(&mountscan_list, &info, msi_entry);
700 	lwkt_reltoken(&mountlist_token);
701 	return(res);
702 }
703 
704 /*
705  * MOUNT RELATED VNODE FUNCTIONS
706  */
707 
708 static struct kproc_desc vnlru_kp = {
709 	"vnlru",
710 	vnlru_proc,
711 	&vnlruthread
712 };
713 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp);
714 
715 /*
716  * Move a vnode from one mount queue to another.
717  */
718 void
719 insmntque(struct vnode *vp, struct mount *mp)
720 {
721 	struct mount *omp;
722 
723 	/*
724 	 * Delete from old mount point vnode list, if on one.
725 	 */
726 	if ((omp = vp->v_mount) != NULL) {
727 		lwkt_gettoken(&omp->mnt_token);
728 		KKASSERT(omp == vp->v_mount);
729 		KASSERT(omp->mnt_nvnodelistsize > 0,
730 			("bad mount point vnode list size"));
731 		vremovevnodemnt(vp);
732 		omp->mnt_nvnodelistsize--;
733 		lwkt_reltoken(&omp->mnt_token);
734 	}
735 
736 	/*
737 	 * Insert into list of vnodes for the new mount point, if available.
738 	 * The 'end' of the LRU list is the vnode prior to mp->mnt_syncer.
739 	 */
740 	if (mp == NULL) {
741 		vp->v_mount = NULL;
742 		return;
743 	}
744 	lwkt_gettoken(&mp->mnt_token);
745 	vp->v_mount = mp;
746 	if (mp->mnt_syncer) {
747 		TAILQ_INSERT_BEFORE(mp->mnt_syncer, vp, v_nmntvnodes);
748 	} else {
749 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
750 	}
751 	mp->mnt_nvnodelistsize++;
752 	lwkt_reltoken(&mp->mnt_token);
753 }
754 
755 
756 /*
757  * Scan the vnodes under a mount point and issue appropriate callbacks.
758  *
759  * The fastfunc() callback is called with just the mountlist token held
760  * (no vnode lock).  It may not block and the vnode may be undergoing
761  * modifications while the caller is processing it.  The vnode will
762  * not be entirely destroyed, however, due to the fact that the mountlist
763  * token is held.  A return value < 0 skips to the next vnode without calling
764  * the slowfunc(), a return value > 0 terminates the loop.
765  *
766  * WARNING! The fastfunc() should not indirect through vp->v_object, the vp
767  *	    data structure is unstable when called from fastfunc().
768  *
769  * The slowfunc() callback is called after the vnode has been successfully
770  * locked based on passed flags.  The vnode is skipped if it gets rearranged
771  * or destroyed while blocking on the lock.  A non-zero return value from
772  * the slow function terminates the loop.  The slow function is allowed to
773  * arbitrarily block.  The scanning code guarentees consistency of operation
774  * even if the slow function deletes or moves the node, or blocks and some
775  * other thread deletes or moves the node.
776  */
777 int
778 vmntvnodescan(
779     struct mount *mp,
780     int flags,
781     int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
782     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
783     void *data
784 ) {
785 	struct vmntvnodescan_info info;
786 	struct vnode *vp;
787 	int r = 0;
788 	int maxcount = mp->mnt_nvnodelistsize * 2;
789 	int stopcount = 0;
790 	int count = 0;
791 
792 	lwkt_gettoken(&mp->mnt_token);
793 
794 	/*
795 	 * If asked to do one pass stop after iterating available vnodes.
796 	 * Under heavy loads new vnodes can be added while we are scanning,
797 	 * so this isn't perfect.  Create a slop factor of 2x.
798 	 */
799 	if (flags & VMSC_ONEPASS)
800 		stopcount = mp->mnt_nvnodelistsize;
801 
802 	info.vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
803 	TAILQ_INSERT_TAIL(&mp->mnt_vnodescan_list, &info, entry);
804 
805 	while ((vp = info.vp) != NULL) {
806 		if (--maxcount == 0) {
807 			kprintf("Warning: excessive fssync iteration\n");
808 			maxcount = mp->mnt_nvnodelistsize * 2;
809 		}
810 
811 		/*
812 		 * Skip if visible but not ready, or special (e.g.
813 		 * mp->mnt_syncer)
814 		 */
815 		if (vp->v_type == VNON)
816 			goto next;
817 		KKASSERT(vp->v_mount == mp);
818 
819 		/*
820 		 * Quick test.  A negative return continues the loop without
821 		 * calling the slow test.  0 continues onto the slow test.
822 		 * A positive number aborts the loop.
823 		 */
824 		if (fastfunc) {
825 			if ((r = fastfunc(mp, vp, data)) < 0) {
826 				r = 0;
827 				goto next;
828 			}
829 			if (r)
830 				break;
831 		}
832 
833 		/*
834 		 * Get a vxlock on the vnode, retry if it has moved or isn't
835 		 * in the mountlist where we expect it.
836 		 */
837 		if (slowfunc) {
838 			int error;
839 
840 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
841 			case VMSC_GETVP:
842 				error = vget(vp, LK_EXCLUSIVE);
843 				break;
844 			case VMSC_GETVP|VMSC_NOWAIT:
845 				error = vget(vp, LK_EXCLUSIVE|LK_NOWAIT);
846 				break;
847 			case VMSC_GETVX:
848 				vx_get(vp);
849 				error = 0;
850 				break;
851 			default:
852 				error = 0;
853 				break;
854 			}
855 			if (error)
856 				goto next;
857 			/*
858 			 * Do not call the slow function if the vnode is
859 			 * invalid or if it was ripped out from under us
860 			 * while we (potentially) blocked.
861 			 */
862 			if (info.vp == vp && vp->v_type != VNON)
863 				r = slowfunc(mp, vp, data);
864 
865 			/*
866 			 * Cleanup
867 			 */
868 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
869 			case VMSC_GETVP:
870 			case VMSC_GETVP|VMSC_NOWAIT:
871 				vput(vp);
872 				break;
873 			case VMSC_GETVX:
874 				vx_put(vp);
875 				break;
876 			default:
877 				break;
878 			}
879 			if (r != 0)
880 				break;
881 		}
882 
883 next:
884 		/*
885 		 * Yield after some processing.  Depending on the number
886 		 * of vnodes, we might wind up running for a long time.
887 		 * Because threads are not preemptable, time critical
888 		 * userland processes might starve.  Give them a chance
889 		 * now and then.
890 		 */
891 		if (++count == 10000) {
892 			/*
893 			 * We really want to yield a bit, so we simply
894 			 * sleep a tick
895 			 */
896 			tsleep(mp, 0, "vnodescn", 1);
897 			count = 0;
898 		}
899 
900 		/*
901 		 * If doing one pass this decrements to zero.  If it starts
902 		 * at zero it is effectively unlimited for the purposes of
903 		 * this loop.
904 		 */
905 		if (--stopcount == 0)
906 			break;
907 
908 		/*
909 		 * Iterate.  If the vnode was ripped out from under us
910 		 * info.vp will already point to the next vnode, otherwise
911 		 * we have to obtain the next valid vnode ourselves.
912 		 */
913 		if (info.vp == vp)
914 			info.vp = TAILQ_NEXT(vp, v_nmntvnodes);
915 	}
916 
917 	TAILQ_REMOVE(&mp->mnt_vnodescan_list, &info, entry);
918 	lwkt_reltoken(&mp->mnt_token);
919 	return(r);
920 }
921 
922 /*
923  * Remove any vnodes in the vnode table belonging to mount point mp.
924  *
925  * If FORCECLOSE is not specified, there should not be any active ones,
926  * return error if any are found (nb: this is a user error, not a
927  * system error). If FORCECLOSE is specified, detach any active vnodes
928  * that are found.
929  *
930  * If WRITECLOSE is set, only flush out regular file vnodes open for
931  * writing.
932  *
933  * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
934  *
935  * `rootrefs' specifies the base reference count for the root vnode
936  * of this filesystem. The root vnode is considered busy if its
937  * v_refcnt exceeds this value. On a successful return, vflush()
938  * will call vrele() on the root vnode exactly rootrefs times.
939  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
940  * be zero.
941  */
942 #ifdef DIAGNOSTIC
943 static int busyprt = 0;		/* print out busy vnodes */
944 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
945 #endif
946 
947 static int vflush_scan(struct mount *mp, struct vnode *vp, void *data);
948 
949 struct vflush_info {
950 	int flags;
951 	int busy;
952 	thread_t td;
953 };
954 
955 int
956 vflush(struct mount *mp, int rootrefs, int flags)
957 {
958 	struct thread *td = curthread;	/* XXX */
959 	struct vnode *rootvp = NULL;
960 	int error;
961 	struct vflush_info vflush_info;
962 
963 	if (rootrefs > 0) {
964 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
965 		    ("vflush: bad args"));
966 		/*
967 		 * Get the filesystem root vnode. We can vput() it
968 		 * immediately, since with rootrefs > 0, it won't go away.
969 		 */
970 		if ((error = VFS_ROOT(mp, &rootvp)) != 0) {
971 			if ((flags & FORCECLOSE) == 0)
972 				return (error);
973 			rootrefs = 0;
974 			/* continue anyway */
975 		}
976 		if (rootrefs)
977 			vput(rootvp);
978 	}
979 
980 	vflush_info.busy = 0;
981 	vflush_info.flags = flags;
982 	vflush_info.td = td;
983 	vmntvnodescan(mp, VMSC_GETVX, NULL, vflush_scan, &vflush_info);
984 
985 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
986 		/*
987 		 * If just the root vnode is busy, and if its refcount
988 		 * is equal to `rootrefs', then go ahead and kill it.
989 		 */
990 		KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
991 		KASSERT(VREFCNT(rootvp) >= rootrefs, ("vflush: rootrefs"));
992 		if (vflush_info.busy == 1 && VREFCNT(rootvp) == rootrefs) {
993 			vx_lock(rootvp);
994 			vgone_vxlocked(rootvp);
995 			vx_unlock(rootvp);
996 			vflush_info.busy = 0;
997 		}
998 	}
999 	if (vflush_info.busy)
1000 		return (EBUSY);
1001 	for (; rootrefs > 0; rootrefs--)
1002 		vrele(rootvp);
1003 	return (0);
1004 }
1005 
1006 /*
1007  * The scan callback is made with an VX locked vnode.
1008  */
1009 static int
1010 vflush_scan(struct mount *mp, struct vnode *vp, void *data)
1011 {
1012 	struct vflush_info *info = data;
1013 	struct vattr vattr;
1014 	int flags = info->flags;
1015 
1016 	/*
1017 	 * Generally speaking try to deactivate on 0 refs (catch-all)
1018 	 */
1019 	atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1020 
1021 	/*
1022 	 * Skip over a vnodes marked VSYSTEM.
1023 	 */
1024 	if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1025 		return(0);
1026 	}
1027 
1028 	/*
1029 	 * Do not force-close VCHR or VBLK vnodes
1030 	 */
1031 	if (vp->v_type == VCHR || vp->v_type == VBLK)
1032 		flags &= ~(WRITECLOSE|FORCECLOSE);
1033 
1034 	/*
1035 	 * If WRITECLOSE is set, flush out unlinked but still open
1036 	 * files (even if open only for reading) and regular file
1037 	 * vnodes open for writing.
1038 	 */
1039 	if ((flags & WRITECLOSE) &&
1040 	    (vp->v_type == VNON ||
1041 	    (VOP_GETATTR(vp, &vattr) == 0 &&
1042 	    vattr.va_nlink > 0)) &&
1043 	    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1044 		return(0);
1045 	}
1046 
1047 	/*
1048 	 * If we are the only holder (refcnt of 1) or the vnode is in
1049 	 * termination (refcnt < 0), we can vgone the vnode.
1050 	 */
1051 	if (VREFCNT(vp) <= 1) {
1052 		vgone_vxlocked(vp);
1053 		return(0);
1054 	}
1055 
1056 	/*
1057 	 * If FORCECLOSE is set, forcibly destroy the vnode and then move
1058 	 * it to a dummymount structure so vop_*() functions don't deref
1059 	 * a NULL pointer.
1060 	 */
1061 	if (flags & FORCECLOSE) {
1062 		vhold(vp);
1063 		vgone_vxlocked(vp);
1064 		if (vp->v_mount == NULL)
1065 			insmntque(vp, &dummymount);
1066 		vdrop(vp);
1067 		return(0);
1068 	}
1069 	if (vp->v_type == VCHR || vp->v_type == VBLK)
1070 		kprintf("vflush: Warning, cannot destroy busy device vnode\n");
1071 #ifdef DIAGNOSTIC
1072 	if (busyprt)
1073 		vprint("vflush: busy vnode", vp);
1074 #endif
1075 	++info->busy;
1076 	return(0);
1077 }
1078 
1079 void
1080 add_bio_ops(struct bio_ops *ops)
1081 {
1082 	TAILQ_INSERT_TAIL(&bio_ops_list, ops, entry);
1083 }
1084 
1085 void
1086 rem_bio_ops(struct bio_ops *ops)
1087 {
1088 	TAILQ_REMOVE(&bio_ops_list, ops, entry);
1089 }
1090 
1091 /*
1092  * This calls the bio_ops io_sync function either for a mount point
1093  * or generally.
1094  *
1095  * WARNING: softdeps is weirdly coded and just isn't happy unless
1096  * io_sync is called with a NULL mount from the general syncing code.
1097  */
1098 void
1099 bio_ops_sync(struct mount *mp)
1100 {
1101 	struct bio_ops *ops;
1102 
1103 	if (mp) {
1104 		if ((ops = mp->mnt_bioops) != NULL)
1105 			ops->io_sync(mp);
1106 	} else {
1107 		TAILQ_FOREACH(ops, &bio_ops_list, entry) {
1108 			ops->io_sync(NULL);
1109 		}
1110 	}
1111 }
1112 
1113 /*
1114  * Lookup a mount point by nch
1115  */
1116 struct mount *
1117 mount_get_by_nc(struct namecache *ncp)
1118 {
1119 	struct mount *mp = NULL;
1120 
1121 	lwkt_gettoken(&mountlist_token);
1122 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1123 		if (ncp == mp->mnt_ncmountpt.ncp)
1124 			break;
1125 	}
1126 	lwkt_reltoken(&mountlist_token);
1127 	return (mp);
1128 }
1129 
1130