xref: /dragonfly/sys/kern/vfs_mount.c (revision b7367ef6)
1 /*
2  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by the University of
53  *	California, Berkeley and its contributors.
54  * 4. Neither the name of the University nor the names of its contributors
55  *    may be used to endorse or promote products derived from this software
56  *    without specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68  * SUCH DAMAGE.
69  *
70  * $DragonFly: src/sys/kern/vfs_mount.c,v 1.28 2007/06/14 02:55:23 dillon Exp $
71  */
72 
73 /*
74  * External virtual filesystem routines
75  */
76 #include "opt_ddb.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/malloc.h>
82 #include <sys/mount.h>
83 #include <sys/proc.h>
84 #include <sys/vnode.h>
85 #include <sys/buf.h>
86 #include <sys/eventhandler.h>
87 #include <sys/kthread.h>
88 #include <sys/sysctl.h>
89 
90 #include <machine/limits.h>
91 
92 #include <sys/buf2.h>
93 #include <sys/thread2.h>
94 #include <sys/sysref2.h>
95 
96 #include <vm/vm.h>
97 #include <vm/vm_object.h>
98 
99 struct mountscan_info {
100 	TAILQ_ENTRY(mountscan_info) msi_entry;
101 	int msi_how;
102 	struct mount *msi_node;
103 };
104 
105 struct vmntvnodescan_info {
106 	TAILQ_ENTRY(vmntvnodescan_info) entry;
107 	struct vnode *vp;
108 };
109 
110 static int vnlru_nowhere = 0;
111 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RD,
112 	    &vnlru_nowhere, 0,
113 	    "Number of times the vnlru process ran without success");
114 
115 
116 static struct lwkt_token mntid_token;
117 
118 /* note: mountlist exported to pstat */
119 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
120 static TAILQ_HEAD(,mountscan_info) mountscan_list;
121 static struct lwkt_token mountlist_token;
122 static TAILQ_HEAD(,vmntvnodescan_info) mntvnodescan_list;
123 struct lwkt_token mntvnode_token;
124 
125 /*
126  * Called from vfsinit()
127  */
128 void
129 vfs_mount_init(void)
130 {
131 	lwkt_token_init(&mountlist_token);
132 	lwkt_token_init(&mntvnode_token);
133 	lwkt_token_init(&mntid_token);
134 	TAILQ_INIT(&mountscan_list);
135 	TAILQ_INIT(&mntvnodescan_list);
136 }
137 
138 /*
139  * Support function called with mntvnode_token held to remove a vnode
140  * from the mountlist.  We must update any list scans which are in progress.
141  */
142 static void
143 vremovevnodemnt(struct vnode *vp)
144 {
145         struct vmntvnodescan_info *info;
146 
147 	TAILQ_FOREACH(info, &mntvnodescan_list, entry) {
148 		if (info->vp == vp)
149 			info->vp = TAILQ_NEXT(vp, v_nmntvnodes);
150 	}
151 	TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
152 }
153 
154 /*
155  * Support function called with mntvnode_token held to move a vnode to
156  * the end of the list.
157  */
158 static void
159 vmovevnodetoend(struct mount *mp, struct vnode *vp)
160 {
161 	vremovevnodemnt(vp);
162 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
163 }
164 
165 
166 /*
167  * Allocate a new vnode and associate it with a tag, mount point, and
168  * operations vector.
169  *
170  * A VX locked and refd vnode is returned.  The caller should setup the
171  * remaining fields and vx_put() or, if he wishes to leave a vref,
172  * vx_unlock() the vnode.
173  */
174 int
175 getnewvnode(enum vtagtype tag, struct mount *mp,
176 		struct vnode **vpp, int lktimeout, int lkflags)
177 {
178 	struct vnode *vp;
179 
180 	KKASSERT(mp != NULL);
181 
182 	vp = allocvnode(lktimeout, lkflags);
183 	vp->v_tag = tag;
184 	vp->v_data = NULL;
185 
186 	/*
187 	 * By default the vnode is assigned the mount point's normal
188 	 * operations vector.
189 	 */
190 	vp->v_ops = &mp->mnt_vn_use_ops;
191 
192 	/*
193 	 * Placing the vnode on the mount point's queue makes it visible.
194 	 * VNON prevents it from being messed with, however.
195 	 */
196 	insmntque(vp, mp);
197 
198 	/*
199 	 * A VX locked & refd vnode is returned.
200 	 */
201 	*vpp = vp;
202 	return (0);
203 }
204 
205 /*
206  * This function creates vnodes with special operations vectors.  The
207  * mount point is optional.
208  *
209  * This routine is being phased out.
210  */
211 int
212 getspecialvnode(enum vtagtype tag, struct mount *mp,
213 		struct vop_ops **ops,
214 		struct vnode **vpp, int lktimeout, int lkflags)
215 {
216 	struct vnode *vp;
217 
218 	vp = allocvnode(lktimeout, lkflags);
219 	vp->v_tag = tag;
220 	vp->v_data = NULL;
221 	vp->v_ops = ops;
222 
223 	/*
224 	 * Placing the vnode on the mount point's queue makes it visible.
225 	 * VNON prevents it from being messed with, however.
226 	 */
227 	insmntque(vp, mp);
228 
229 	/*
230 	 * A VX locked & refd vnode is returned.
231 	 */
232 	*vpp = vp;
233 	return (0);
234 }
235 
236 /*
237  * Interlock against an unmount, return 0 on success, non-zero on failure.
238  *
239  * The passed flag may be 0 or LK_NOWAIT and is only used if an unmount
240  * is in-progress.
241  *
242  * If no unmount is in-progress LK_NOWAIT is ignored.  No other flag bits
243  * are used.  A shared locked will be obtained and the filesystem will not
244  * be unmountable until the lock is released.
245  */
246 int
247 vfs_busy(struct mount *mp, int flags)
248 {
249 	int lkflags;
250 
251 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
252 		if (flags & LK_NOWAIT)
253 			return (ENOENT);
254 		/* XXX not MP safe */
255 		mp->mnt_kern_flag |= MNTK_MWAIT;
256 		/*
257 		 * Since all busy locks are shared except the exclusive
258 		 * lock granted when unmounting, the only place that a
259 		 * wakeup needs to be done is at the release of the
260 		 * exclusive lock at the end of dounmount.
261 		 */
262 		tsleep((caddr_t)mp, 0, "vfs_busy", 0);
263 		return (ENOENT);
264 	}
265 	lkflags = LK_SHARED;
266 	if (lockmgr(&mp->mnt_lock, lkflags))
267 		panic("vfs_busy: unexpected lock failure");
268 	return (0);
269 }
270 
271 /*
272  * Free a busy filesystem.
273  */
274 void
275 vfs_unbusy(struct mount *mp)
276 {
277 	lockmgr(&mp->mnt_lock, LK_RELEASE);
278 }
279 
280 /*
281  * Lookup a filesystem type, and if found allocate and initialize
282  * a mount structure for it.
283  *
284  * Devname is usually updated by mount(8) after booting.
285  */
286 int
287 vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
288 {
289 	struct vfsconf *vfsp;
290 	struct mount *mp;
291 
292 	if (fstypename == NULL)
293 		return (ENODEV);
294 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
295 		if (!strcmp(vfsp->vfc_name, fstypename))
296 			break;
297 	}
298 	if (vfsp == NULL)
299 		return (ENODEV);
300 	mp = kmalloc(sizeof(struct mount), M_MOUNT, M_WAITOK);
301 	bzero((char *)mp, (u_long)sizeof(struct mount));
302 	lockinit(&mp->mnt_lock, "vfslock", VLKTIMEOUT, 0);
303 	vfs_busy(mp, LK_NOWAIT);
304 	TAILQ_INIT(&mp->mnt_nvnodelist);
305 	TAILQ_INIT(&mp->mnt_reservedvnlist);
306 	TAILQ_INIT(&mp->mnt_jlist);
307 	mp->mnt_nvnodelistsize = 0;
308 	mp->mnt_vfc = vfsp;
309 	mp->mnt_op = vfsp->vfc_vfsops;
310 	mp->mnt_flag = MNT_RDONLY;
311 	vfsp->vfc_refcount++;
312 	mp->mnt_iosize_max = DFLTPHYS;
313 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
314 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
315 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
316 	copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
317 	*mpp = mp;
318 	return (0);
319 }
320 
321 /*
322  * Lookup a mount point by filesystem identifier.
323  */
324 struct mount *
325 vfs_getvfs(fsid_t *fsid)
326 {
327 	struct mount *mp;
328 	lwkt_tokref ilock;
329 
330 	lwkt_gettoken(&ilock, &mountlist_token);
331 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
332 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
333 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
334 			break;
335 	    }
336 	}
337 	lwkt_reltoken(&ilock);
338 	return (mp);
339 }
340 
341 /*
342  * Get a new unique fsid.  Try to make its val[0] unique, since this value
343  * will be used to create fake device numbers for stat().  Also try (but
344  * not so hard) make its val[0] unique mod 2^16, since some emulators only
345  * support 16-bit device numbers.  We end up with unique val[0]'s for the
346  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
347  *
348  * Keep in mind that several mounts may be running in parallel.  Starting
349  * the search one past where the previous search terminated is both a
350  * micro-optimization and a defense against returning the same fsid to
351  * different mounts.
352  */
353 void
354 vfs_getnewfsid(struct mount *mp)
355 {
356 	static u_int16_t mntid_base;
357 	lwkt_tokref ilock;
358 	fsid_t tfsid;
359 	int mtype;
360 
361 	lwkt_gettoken(&ilock, &mntid_token);
362 	mtype = mp->mnt_vfc->vfc_typenum;
363 	tfsid.val[1] = mtype;
364 	mtype = (mtype & 0xFF) << 24;
365 	for (;;) {
366 		tfsid.val[0] = makeudev(255,
367 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
368 		mntid_base++;
369 		if (vfs_getvfs(&tfsid) == NULL)
370 			break;
371 	}
372 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
373 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
374 	lwkt_reltoken(&ilock);
375 }
376 
377 /*
378  * This routine is called when we have too many vnodes.  It attempts
379  * to free <count> vnodes and will potentially free vnodes that still
380  * have VM backing store (VM backing store is typically the cause
381  * of a vnode blowout so we want to do this).  Therefore, this operation
382  * is not considered cheap.
383  *
384  * A number of conditions may prevent a vnode from being reclaimed.
385  * the buffer cache may have references on the vnode, a directory
386  * vnode may still have references due to the namei cache representing
387  * underlying files, or the vnode may be in active use.   It is not
388  * desireable to reuse such vnodes.  These conditions may cause the
389  * number of vnodes to reach some minimum value regardless of what
390  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
391  */
392 
393 /*
394  * This is a quick non-blocking check to determine if the vnode is a good
395  * candidate for being (eventually) vgone()'d.  Returns 0 if the vnode is
396  * not a good candidate, 1 if it is.
397  */
398 static __inline int
399 vmightfree(struct vnode *vp, int page_count)
400 {
401 	if (vp->v_flag & VRECLAIMED)
402 		return (0);
403 #if 0
404 	if ((vp->v_flag & VFREE) && TAILQ_EMPTY(&vp->v_namecache))
405 		return (0);
406 #endif
407 	if (sysref_isactive(&vp->v_sysref))
408 		return (0);
409 	if (vp->v_object && vp->v_object->resident_page_count >= page_count)
410 		return (0);
411 	return (1);
412 }
413 
414 /*
415  * The vnode was found to be possibly vgone()able and the caller has locked it
416  * (thus the usecount should be 1 now).  Determine if the vnode is actually
417  * vgone()able, doing some cleanups in the process.  Returns 1 if the vnode
418  * can be vgone()'d, 0 otherwise.
419  *
420  * Note that v_auxrefs may be non-zero because (A) this vnode is not a leaf
421  * in the namecache topology and (B) this vnode has buffer cache bufs.
422  * We cannot remove vnodes with non-leaf namecache associations.  We do a
423  * tentitive leaf check prior to attempting to flush out any buffers but the
424  * 'real' test when all is said in done is that v_auxrefs must become 0 for
425  * the vnode to be freeable.
426  *
427  * We could theoretically just unconditionally flush when v_auxrefs != 0,
428  * but flushing data associated with non-leaf nodes (which are always
429  * directories), just throws it away for no benefit.  It is the buffer
430  * cache's responsibility to choose buffers to recycle from the cached
431  * data point of view.
432  */
433 static int
434 visleaf(struct vnode *vp)
435 {
436 	struct namecache *ncp;
437 
438 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
439 		if (!TAILQ_EMPTY(&ncp->nc_list))
440 			return(0);
441 	}
442 	return(1);
443 }
444 
445 /*
446  * Try to clean up the vnode to the point where it can be vgone()'d, returning
447  * 0 if it cannot be vgone()'d (or already has been), 1 if it can.  Unlike
448  * vmightfree() this routine may flush the vnode and block.  Vnodes marked
449  * VFREE are still candidates for vgone()ing because they may hold namecache
450  * resources and could be blocking the namecache directory hierarchy (and
451  * related vnodes) from being freed.
452  */
453 static int
454 vtrytomakegoneable(struct vnode *vp, int page_count)
455 {
456 	if (vp->v_flag & VRECLAIMED)
457 		return (0);
458 	if (vp->v_sysref.refcnt > 1)
459 		return (0);
460 	if (vp->v_object && vp->v_object->resident_page_count >= page_count)
461 		return (0);
462 	if (vp->v_auxrefs && visleaf(vp)) {
463 		vinvalbuf(vp, V_SAVE, 0, 0);
464 #if 0	/* DEBUG */
465 		kprintf((vp->v_auxrefs ? "vrecycle: vp %p failed: %s\n" :
466 			"vrecycle: vp %p succeeded: %s\n"), vp,
467 			(TAILQ_FIRST(&vp->v_namecache) ?
468 			    TAILQ_FIRST(&vp->v_namecache)->nc_name : "?"));
469 #endif
470 	}
471 
472 	/*
473 	 * This sequence may seem a little strange, but we need to optimize
474 	 * the critical path a bit.  We can't recycle vnodes with other
475 	 * references and because we are trying to recycle an otherwise
476 	 * perfectly fine vnode we have to invalidate the namecache in a
477 	 * way that avoids possible deadlocks (since the vnode lock is being
478 	 * held here).  Finally, we have to check for other references one
479 	 * last time in case something snuck in during the inval.
480 	 */
481 	if (vp->v_sysref.refcnt > 1 || vp->v_auxrefs != 0)
482 		return (0);
483 	if (cache_inval_vp_nonblock(vp))
484 		return (0);
485 	return (vp->v_sysref.refcnt <= 1 && vp->v_auxrefs == 0);
486 }
487 
488 /*
489  * Reclaim up to 1/10 of the vnodes associated with a mount point.  Try
490  * to avoid vnodes which have lots of resident pages (we are trying to free
491  * vnodes, not memory).
492  *
493  * This routine is a callback from the mountlist scan.  The mount point
494  * in question will be busied.
495  */
496 static int
497 vlrureclaim(struct mount *mp, void *data)
498 {
499 	struct vnode *vp;
500 	lwkt_tokref ilock;
501 	int done;
502 	int trigger;
503 	int usevnodes;
504 	int count;
505 	int trigger_mult = vnlru_nowhere;
506 
507 	/*
508 	 * Calculate the trigger point for the resident pages check.  The
509 	 * minimum trigger value is approximately the number of pages in
510 	 * the system divded by the number of vnodes.  However, due to
511 	 * various other system memory overheads unrelated to data caching
512 	 * it is a good idea to double the trigger (at least).
513 	 *
514 	 * trigger_mult starts at 0.  If the recycler is having problems
515 	 * finding enough freeable vnodes it will increase trigger_mult.
516 	 * This should not happen in normal operation, even on machines with
517 	 * low amounts of memory, but extraordinary memory use by the system
518 	 * verses the amount of cached data can trigger it.
519 	 */
520 	usevnodes = desiredvnodes;
521 	if (usevnodes <= 0)
522 		usevnodes = 1;
523 	trigger = vmstats.v_page_count * (trigger_mult + 2) / usevnodes;
524 
525 	done = 0;
526 	lwkt_gettoken(&ilock, &mntvnode_token);
527 	count = mp->mnt_nvnodelistsize / 10 + 1;
528 	while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
529 		/*
530 		 * __VNODESCAN__
531 		 *
532 		 * The VP will stick around while we hold mntvnode_token,
533 		 * at least until we block, so we can safely do an initial
534 		 * check, and then must check again after we lock the vnode.
535 		 */
536 		if (vp->v_type == VNON ||	/* syncer or indeterminant */
537 		    !vmightfree(vp, trigger)	/* critical path opt */
538 		) {
539 			vmovevnodetoend(mp, vp);
540 			--count;
541 			continue;
542 		}
543 
544 		/*
545 		 * VX get the candidate vnode.  If the VX get fails the
546 		 * vnode might still be on the mountlist.  Our loop depends
547 		 * on us at least cycling the vnode to the end of the
548 		 * mountlist.
549 		 */
550 		if (vx_get_nonblock(vp) != 0) {
551 			if (vp->v_mount == mp)
552 				vmovevnodetoend(mp, vp);
553 			--count;
554 			continue;
555 		}
556 
557 		/*
558 		 * Since we blocked locking the vp, make sure it is still
559 		 * a candidate for reclamation.  That is, it has not already
560 		 * been reclaimed and only has our VX reference associated
561 		 * with it.
562 		 */
563 		if (vp->v_type == VNON ||	/* syncer or indeterminant */
564 		    (vp->v_flag & VRECLAIMED) ||
565 		    vp->v_mount != mp ||
566 		    !vtrytomakegoneable(vp, trigger)	/* critical path opt */
567 		) {
568 			if (vp->v_mount == mp)
569 				vmovevnodetoend(mp, vp);
570 			--count;
571 			vx_put(vp);
572 			continue;
573 		}
574 
575 		/*
576 		 * All right, we are good, move the vp to the end of the
577 		 * mountlist and clean it out.  The vget will have returned
578 		 * an error if the vnode was destroyed (VRECLAIMED set), so we
579 		 * do not have to check again.  The vput() will move the
580 		 * vnode to the free list if the vgone() was successful.
581 		 */
582 		KKASSERT(vp->v_mount == mp);
583 		vmovevnodetoend(mp, vp);
584 		vgone_vxlocked(vp);
585 		vx_put(vp);
586 		++done;
587 		--count;
588 	}
589 	lwkt_reltoken(&ilock);
590 	return (done);
591 }
592 
593 /*
594  * Attempt to recycle vnodes in a context that is always safe to block.
595  * Calling vlrurecycle() from the bowels of file system code has some
596  * interesting deadlock problems.
597  */
598 static struct thread *vnlruthread;
599 static int vnlruproc_sig;
600 
601 void
602 vnlru_proc_wait(void)
603 {
604 	if (vnlruproc_sig == 0) {
605 		vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
606 		wakeup(vnlruthread);
607 	}
608 	tsleep(&vnlruproc_sig, 0, "vlruwk", hz);
609 }
610 
611 static void
612 vnlru_proc(void)
613 {
614 	struct thread *td = curthread;
615 	int done;
616 
617 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
618 	    SHUTDOWN_PRI_FIRST);
619 
620 	crit_enter();
621 	for (;;) {
622 		kproc_suspend_loop();
623 
624 		/*
625 		 * Try to free some vnodes if we have too many
626 		 */
627 		if (numvnodes > desiredvnodes &&
628 		    freevnodes > desiredvnodes * 2 / 10) {
629 			int count = numvnodes - desiredvnodes;
630 
631 			if (count > freevnodes / 100)
632 				count = freevnodes / 100;
633 			if (count < 5)
634 				count = 5;
635 			freesomevnodes(count);
636 		}
637 
638 		/*
639 		 * Nothing to do if most of our vnodes are already on
640 		 * the free list.
641 		 */
642 		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
643 			vnlruproc_sig = 0;
644 			wakeup(&vnlruproc_sig);
645 			tsleep(td, 0, "vlruwt", hz);
646 			continue;
647 		}
648 		cache_cleanneg(0);
649 		done = mountlist_scan(vlrureclaim, NULL, MNTSCAN_FORWARD);
650 
651 		/*
652 		 * The vlrureclaim() call only processes 1/10 of the vnodes
653 		 * on each mount.  If we couldn't find any repeat the loop
654 		 * at least enough times to cover all available vnodes before
655 		 * we start sleeping.  Complain if the failure extends past
656 		 * 30 second, every 30 seconds.
657 		 */
658 		if (done == 0) {
659 			++vnlru_nowhere;
660 			if (vnlru_nowhere % 10 == 0)
661 				tsleep(td, 0, "vlrup", hz * 3);
662 			if (vnlru_nowhere % 100 == 0)
663 				kprintf("vnlru_proc: vnode recycler stopped working!\n");
664 			if (vnlru_nowhere == 1000)
665 				vnlru_nowhere = 900;
666 		} else {
667 			vnlru_nowhere = 0;
668 		}
669 	}
670 	crit_exit();
671 }
672 
673 /*
674  * MOUNTLIST FUNCTIONS
675  */
676 
677 /*
678  * mountlist_insert (MP SAFE)
679  *
680  * Add a new mount point to the mount list.
681  */
682 void
683 mountlist_insert(struct mount *mp, int how)
684 {
685 	lwkt_tokref ilock;
686 
687 	lwkt_gettoken(&ilock, &mountlist_token);
688 	if (how == MNTINS_FIRST)
689 	    TAILQ_INSERT_HEAD(&mountlist, mp, mnt_list);
690 	else
691 	    TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
692 	lwkt_reltoken(&ilock);
693 }
694 
695 /*
696  * mountlist_interlock (MP SAFE)
697  *
698  * Execute the specified interlock function with the mountlist token
699  * held.  The function will be called in a serialized fashion verses
700  * other functions called through this mechanism.
701  */
702 int
703 mountlist_interlock(int (*callback)(struct mount *), struct mount *mp)
704 {
705 	lwkt_tokref ilock;
706 	int error;
707 
708 	lwkt_gettoken(&ilock, &mountlist_token);
709 	error = callback(mp);
710 	lwkt_reltoken(&ilock);
711 	return (error);
712 }
713 
714 /*
715  * mountlist_boot_getfirst (DURING BOOT ONLY)
716  *
717  * This function returns the first mount on the mountlist, which is
718  * expected to be the root mount.  Since no interlocks are obtained
719  * this function is only safe to use during booting.
720  */
721 
722 struct mount *
723 mountlist_boot_getfirst(void)
724 {
725 	return(TAILQ_FIRST(&mountlist));
726 }
727 
728 /*
729  * mountlist_remove (MP SAFE)
730  *
731  * Remove a node from the mountlist.  If this node is the next scan node
732  * for any active mountlist scans, the active mountlist scan will be
733  * adjusted to skip the node, thus allowing removals during mountlist
734  * scans.
735  */
736 void
737 mountlist_remove(struct mount *mp)
738 {
739 	struct mountscan_info *msi;
740 	lwkt_tokref ilock;
741 
742 	lwkt_gettoken(&ilock, &mountlist_token);
743 	TAILQ_FOREACH(msi, &mountscan_list, msi_entry) {
744 		if (msi->msi_node == mp) {
745 			if (msi->msi_how & MNTSCAN_FORWARD)
746 				msi->msi_node = TAILQ_NEXT(mp, mnt_list);
747 			else
748 				msi->msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
749 		}
750 	}
751 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
752 	lwkt_reltoken(&ilock);
753 }
754 
755 /*
756  * mountlist_scan (MP SAFE)
757  *
758  * Safely scan the mount points on the mount list.  Unless otherwise
759  * specified each mount point will be busied prior to the callback and
760  * unbusied afterwords.  The callback may safely remove any mount point
761  * without interfering with the scan.  If the current callback
762  * mount is removed the scanner will not attempt to unbusy it.
763  *
764  * If a mount node cannot be busied it is silently skipped.
765  *
766  * The callback return value is aggregated and a total is returned.  A return
767  * value of < 0 is not aggregated and will terminate the scan.
768  *
769  * MNTSCAN_FORWARD	- the mountlist is scanned in the forward direction
770  * MNTSCAN_REVERSE	- the mountlist is scanned in reverse
771  * MNTSCAN_NOBUSY	- the scanner will make the callback without busying
772  *			  the mount node.
773  */
774 int
775 mountlist_scan(int (*callback)(struct mount *, void *), void *data, int how)
776 {
777 	struct mountscan_info info;
778 	lwkt_tokref ilock;
779 	struct mount *mp;
780 	thread_t td;
781 	int count;
782 	int res;
783 
784 	lwkt_gettoken(&ilock, &mountlist_token);
785 
786 	info.msi_how = how;
787 	info.msi_node = NULL;	/* paranoia */
788 	TAILQ_INSERT_TAIL(&mountscan_list, &info, msi_entry);
789 
790 	res = 0;
791 	td = curthread;
792 
793 	if (how & MNTSCAN_FORWARD) {
794 		info.msi_node = TAILQ_FIRST(&mountlist);
795 		while ((mp = info.msi_node) != NULL) {
796 			if (how & MNTSCAN_NOBUSY) {
797 				count = callback(mp, data);
798 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
799 				count = callback(mp, data);
800 				if (mp == info.msi_node)
801 					vfs_unbusy(mp);
802 			} else {
803 				count = 0;
804 			}
805 			if (count < 0)
806 				break;
807 			res += count;
808 			if (mp == info.msi_node)
809 				info.msi_node = TAILQ_NEXT(mp, mnt_list);
810 		}
811 	} else if (how & MNTSCAN_REVERSE) {
812 		info.msi_node = TAILQ_LAST(&mountlist, mntlist);
813 		while ((mp = info.msi_node) != NULL) {
814 			if (how & MNTSCAN_NOBUSY) {
815 				count = callback(mp, data);
816 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
817 				count = callback(mp, data);
818 				if (mp == info.msi_node)
819 					vfs_unbusy(mp);
820 			} else {
821 				count = 0;
822 			}
823 			if (count < 0)
824 				break;
825 			res += count;
826 			if (mp == info.msi_node)
827 				info.msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
828 		}
829 	}
830 	TAILQ_REMOVE(&mountscan_list, &info, msi_entry);
831 	lwkt_reltoken(&ilock);
832 	return(res);
833 }
834 
835 /*
836  * MOUNT RELATED VNODE FUNCTIONS
837  */
838 
839 static struct kproc_desc vnlru_kp = {
840 	"vnlru",
841 	vnlru_proc,
842 	&vnlruthread
843 };
844 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
845 
846 /*
847  * Move a vnode from one mount queue to another.
848  */
849 void
850 insmntque(struct vnode *vp, struct mount *mp)
851 {
852 	lwkt_tokref ilock;
853 
854 	lwkt_gettoken(&ilock, &mntvnode_token);
855 	/*
856 	 * Delete from old mount point vnode list, if on one.
857 	 */
858 	if (vp->v_mount != NULL) {
859 		KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
860 			("bad mount point vnode list size"));
861 		vremovevnodemnt(vp);
862 		vp->v_mount->mnt_nvnodelistsize--;
863 	}
864 	/*
865 	 * Insert into list of vnodes for the new mount point, if available.
866 	 */
867 	if ((vp->v_mount = mp) == NULL) {
868 		lwkt_reltoken(&ilock);
869 		return;
870 	}
871 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
872 	mp->mnt_nvnodelistsize++;
873 	lwkt_reltoken(&ilock);
874 }
875 
876 
877 /*
878  * Scan the vnodes under a mount point and issue appropriate callbacks.
879  *
880  * The fastfunc() callback is called with just the mountlist token held
881  * (no vnode lock).  It may not block and the vnode may be undergoing
882  * modifications while the caller is processing it.  The vnode will
883  * not be entirely destroyed, however, due to the fact that the mountlist
884  * token is held.  A return value < 0 skips to the next vnode without calling
885  * the slowfunc(), a return value > 0 terminates the loop.
886  *
887  * The slowfunc() callback is called after the vnode has been successfully
888  * locked based on passed flags.  The vnode is skipped if it gets rearranged
889  * or destroyed while blocking on the lock.  A non-zero return value from
890  * the slow function terminates the loop.  The slow function is allowed to
891  * arbitrarily block.  The scanning code guarentees consistency of operation
892  * even if the slow function deletes or moves the node, or blocks and some
893  * other thread deletes or moves the node.
894  */
895 int
896 vmntvnodescan(
897     struct mount *mp,
898     int flags,
899     int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
900     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
901     void *data
902 ) {
903 	struct vmntvnodescan_info info;
904 	lwkt_tokref ilock;
905 	struct vnode *vp;
906 	int r = 0;
907 	int maxcount = 1000000;
908 
909 	lwkt_gettoken(&ilock, &mntvnode_token);
910 
911 	info.vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
912 	TAILQ_INSERT_TAIL(&mntvnodescan_list, &info, entry);
913 	while ((vp = info.vp) != NULL) {
914 		if (--maxcount == 0)
915 			panic("maxcount reached during vmntvnodescan");
916 
917 		if (vp->v_type == VNON)		/* visible but not ready */
918 			goto next;
919 		KKASSERT(vp->v_mount == mp);
920 
921 		/*
922 		 * Quick test.  A negative return continues the loop without
923 		 * calling the slow test.  0 continues onto the slow test.
924 		 * A positive number aborts the loop.
925 		 */
926 		if (fastfunc) {
927 			if ((r = fastfunc(mp, vp, data)) < 0)
928 				goto next;
929 			if (r)
930 				break;
931 		}
932 
933 		/*
934 		 * Get a vxlock on the vnode, retry if it has moved or isn't
935 		 * in the mountlist where we expect it.
936 		 */
937 		if (slowfunc) {
938 			int error;
939 
940 			switch(flags) {
941 			case VMSC_GETVP:
942 				error = vget(vp, LK_EXCLUSIVE);
943 				break;
944 			case VMSC_GETVP|VMSC_NOWAIT:
945 				error = vget(vp, LK_EXCLUSIVE|LK_NOWAIT);
946 				break;
947 			case VMSC_GETVX:
948 				vx_get(vp);
949 				error = 0;
950 				break;
951 			default:
952 				error = 0;
953 				break;
954 			}
955 			if (error)
956 				goto next;
957 			/*
958 			 * Do not call the slow function if the vnode is
959 			 * invalid or if it was ripped out from under us
960 			 * while we (potentially) blocked.
961 			 */
962 			if (info.vp == vp && vp->v_type != VNON)
963 				r = slowfunc(mp, vp, data);
964 
965 			/*
966 			 * Cleanup
967 			 */
968 			switch(flags) {
969 			case VMSC_GETVP:
970 			case VMSC_GETVP|VMSC_NOWAIT:
971 				vput(vp);
972 				break;
973 			case VMSC_GETVX:
974 				vx_put(vp);
975 				break;
976 			default:
977 				break;
978 			}
979 			if (r != 0)
980 				break;
981 		}
982 
983 		/*
984 		 * Iterate.  If the vnode was ripped out from under us
985 		 * info.vp will already point to the next vnode, otherwise
986 		 * we have to obtain the next valid vnode ourselves.
987 		 */
988 next:
989 		if (info.vp == vp)
990 			info.vp = TAILQ_NEXT(vp, v_nmntvnodes);
991 	}
992 	TAILQ_REMOVE(&mntvnodescan_list, &info, entry);
993 	lwkt_reltoken(&ilock);
994 	return(r);
995 }
996 
997 /*
998  * Remove any vnodes in the vnode table belonging to mount point mp.
999  *
1000  * If FORCECLOSE is not specified, there should not be any active ones,
1001  * return error if any are found (nb: this is a user error, not a
1002  * system error). If FORCECLOSE is specified, detach any active vnodes
1003  * that are found.
1004  *
1005  * If WRITECLOSE is set, only flush out regular file vnodes open for
1006  * writing.
1007  *
1008  * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1009  *
1010  * `rootrefs' specifies the base reference count for the root vnode
1011  * of this filesystem. The root vnode is considered busy if its
1012  * v_sysref.refcnt exceeds this value. On a successful return, vflush()
1013  * will call vrele() on the root vnode exactly rootrefs times.
1014  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1015  * be zero.
1016  */
1017 #ifdef DIAGNOSTIC
1018 static int busyprt = 0;		/* print out busy vnodes */
1019 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1020 #endif
1021 
1022 static int vflush_scan(struct mount *mp, struct vnode *vp, void *data);
1023 
1024 struct vflush_info {
1025 	int flags;
1026 	int busy;
1027 	thread_t td;
1028 };
1029 
1030 int
1031 vflush(struct mount *mp, int rootrefs, int flags)
1032 {
1033 	struct thread *td = curthread;	/* XXX */
1034 	struct vnode *rootvp = NULL;
1035 	int error;
1036 	struct vflush_info vflush_info;
1037 
1038 	if (rootrefs > 0) {
1039 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1040 		    ("vflush: bad args"));
1041 		/*
1042 		 * Get the filesystem root vnode. We can vput() it
1043 		 * immediately, since with rootrefs > 0, it won't go away.
1044 		 */
1045 		if ((error = VFS_ROOT(mp, &rootvp)) != 0)
1046 			return (error);
1047 		vput(rootvp);
1048 	}
1049 
1050 	vflush_info.busy = 0;
1051 	vflush_info.flags = flags;
1052 	vflush_info.td = td;
1053 	vmntvnodescan(mp, VMSC_GETVX, NULL, vflush_scan, &vflush_info);
1054 
1055 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1056 		/*
1057 		 * If just the root vnode is busy, and if its refcount
1058 		 * is equal to `rootrefs', then go ahead and kill it.
1059 		 */
1060 		KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
1061 		KASSERT(rootvp->v_sysref.refcnt >= rootrefs, ("vflush: rootrefs"));
1062 		if (vflush_info.busy == 1 && rootvp->v_sysref.refcnt == rootrefs) {
1063 			vx_lock(rootvp);
1064 			vgone_vxlocked(rootvp);
1065 			vx_unlock(rootvp);
1066 			vflush_info.busy = 0;
1067 		}
1068 	}
1069 	if (vflush_info.busy)
1070 		return (EBUSY);
1071 	for (; rootrefs > 0; rootrefs--)
1072 		vrele(rootvp);
1073 	return (0);
1074 }
1075 
1076 /*
1077  * The scan callback is made with an VX locked vnode.
1078  */
1079 static int
1080 vflush_scan(struct mount *mp, struct vnode *vp, void *data)
1081 {
1082 	struct vflush_info *info = data;
1083 	struct vattr vattr;
1084 
1085 	/*
1086 	 * Skip over a vnodes marked VSYSTEM.
1087 	 */
1088 	if ((info->flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1089 		return(0);
1090 	}
1091 
1092 	/*
1093 	 * If WRITECLOSE is set, flush out unlinked but still open
1094 	 * files (even if open only for reading) and regular file
1095 	 * vnodes open for writing.
1096 	 */
1097 	if ((info->flags & WRITECLOSE) &&
1098 	    (vp->v_type == VNON ||
1099 	    (VOP_GETATTR(vp, &vattr) == 0 &&
1100 	    vattr.va_nlink > 0)) &&
1101 	    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1102 		return(0);
1103 	}
1104 
1105 	/*
1106 	 * If we are the only holder (refcnt of 1) or the vnode is in
1107 	 * termination (refcnt < 0), we can vgone the vnode.
1108 	 */
1109 	if (vp->v_sysref.refcnt <= 1) {
1110 		vgone_vxlocked(vp);
1111 		return(0);
1112 	}
1113 
1114 	/*
1115 	 * If FORCECLOSE is set, forcibly close the vnode. For block
1116 	 * or character devices, revert to an anonymous device. For
1117 	 * all other files, just kill them.
1118 	 */
1119 	if (info->flags & FORCECLOSE) {
1120 		if (vp->v_type != VBLK && vp->v_type != VCHR) {
1121 			vgone_vxlocked(vp);
1122 		} else {
1123 			vclean_vxlocked(vp, 0);
1124 			vp->v_ops = &spec_vnode_vops_p;
1125 			insmntque(vp, NULL);
1126 		}
1127 		return(0);
1128 	}
1129 #ifdef DIAGNOSTIC
1130 	if (busyprt)
1131 		vprint("vflush: busy vnode", vp);
1132 #endif
1133 	++info->busy;
1134 	return(0);
1135 }
1136 
1137