xref: /dragonfly/sys/kern/vfs_mount.c (revision bc3d4063)
1 /*
2  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by the University of
53  *	California, Berkeley and its contributors.
54  * 4. Neither the name of the University nor the names of its contributors
55  *    may be used to endorse or promote products derived from this software
56  *    without specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68  * SUCH DAMAGE.
69  *
70  * $DragonFly: src/sys/kern/vfs_mount.c,v 1.36 2008/07/14 22:16:35 dillon Exp $
71  */
72 
73 /*
74  * External virtual filesystem routines
75  */
76 #include "opt_ddb.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/malloc.h>
82 #include <sys/mount.h>
83 #include <sys/proc.h>
84 #include <sys/vnode.h>
85 #include <sys/buf.h>
86 #include <sys/eventhandler.h>
87 #include <sys/kthread.h>
88 #include <sys/sysctl.h>
89 
90 #include <machine/limits.h>
91 
92 #include <sys/buf2.h>
93 #include <sys/thread2.h>
94 #include <sys/sysref2.h>
95 
96 #include <vm/vm.h>
97 #include <vm/vm_object.h>
98 
99 struct mountscan_info {
100 	TAILQ_ENTRY(mountscan_info) msi_entry;
101 	int msi_how;
102 	struct mount *msi_node;
103 };
104 
105 struct vmntvnodescan_info {
106 	TAILQ_ENTRY(vmntvnodescan_info) entry;
107 	struct vnode *vp;
108 };
109 
110 static int vnlru_nowhere = 0;
111 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RD,
112 	    &vnlru_nowhere, 0,
113 	    "Number of times the vnlru process ran without success");
114 
115 
116 static struct lwkt_token mntid_token;
117 
118 /* note: mountlist exported to pstat */
119 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
120 static TAILQ_HEAD(,mountscan_info) mountscan_list;
121 static struct lwkt_token mountlist_token;
122 static TAILQ_HEAD(,vmntvnodescan_info) mntvnodescan_list;
123 struct lwkt_token mntvnode_token;
124 
125 static TAILQ_HEAD(,bio_ops) bio_ops_list = TAILQ_HEAD_INITIALIZER(bio_ops_list);
126 
127 /*
128  * Called from vfsinit()
129  */
130 void
131 vfs_mount_init(void)
132 {
133 	lwkt_token_init(&mountlist_token);
134 	lwkt_token_init(&mntvnode_token);
135 	lwkt_token_init(&mntid_token);
136 	TAILQ_INIT(&mountscan_list);
137 	TAILQ_INIT(&mntvnodescan_list);
138 }
139 
140 /*
141  * Support function called with mntvnode_token held to remove a vnode
142  * from the mountlist.  We must update any list scans which are in progress.
143  */
144 static void
145 vremovevnodemnt(struct vnode *vp)
146 {
147         struct vmntvnodescan_info *info;
148 
149 	TAILQ_FOREACH(info, &mntvnodescan_list, entry) {
150 		if (info->vp == vp)
151 			info->vp = TAILQ_NEXT(vp, v_nmntvnodes);
152 	}
153 	TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
154 }
155 
156 /*
157  * Allocate a new vnode and associate it with a tag, mount point, and
158  * operations vector.
159  *
160  * A VX locked and refd vnode is returned.  The caller should setup the
161  * remaining fields and vx_put() or, if he wishes to leave a vref,
162  * vx_unlock() the vnode.
163  */
164 int
165 getnewvnode(enum vtagtype tag, struct mount *mp,
166 		struct vnode **vpp, int lktimeout, int lkflags)
167 {
168 	struct vnode *vp;
169 
170 	KKASSERT(mp != NULL);
171 
172 	vp = allocvnode(lktimeout, lkflags);
173 	vp->v_tag = tag;
174 	vp->v_data = NULL;
175 
176 	/*
177 	 * By default the vnode is assigned the mount point's normal
178 	 * operations vector.
179 	 */
180 	vp->v_ops = &mp->mnt_vn_use_ops;
181 
182 	/*
183 	 * Placing the vnode on the mount point's queue makes it visible.
184 	 * VNON prevents it from being messed with, however.
185 	 */
186 	insmntque(vp, mp);
187 
188 	/*
189 	 * A VX locked & refd vnode is returned.
190 	 */
191 	*vpp = vp;
192 	return (0);
193 }
194 
195 /*
196  * This function creates vnodes with special operations vectors.  The
197  * mount point is optional.
198  *
199  * This routine is being phased out.
200  */
201 int
202 getspecialvnode(enum vtagtype tag, struct mount *mp,
203 		struct vop_ops **ops,
204 		struct vnode **vpp, int lktimeout, int lkflags)
205 {
206 	struct vnode *vp;
207 
208 	vp = allocvnode(lktimeout, lkflags);
209 	vp->v_tag = tag;
210 	vp->v_data = NULL;
211 	vp->v_ops = ops;
212 
213 	/*
214 	 * Placing the vnode on the mount point's queue makes it visible.
215 	 * VNON prevents it from being messed with, however.
216 	 */
217 	insmntque(vp, mp);
218 
219 	/*
220 	 * A VX locked & refd vnode is returned.
221 	 */
222 	*vpp = vp;
223 	return (0);
224 }
225 
226 /*
227  * Interlock against an unmount, return 0 on success, non-zero on failure.
228  *
229  * The passed flag may be 0 or LK_NOWAIT and is only used if an unmount
230  * is in-progress.
231  *
232  * If no unmount is in-progress LK_NOWAIT is ignored.  No other flag bits
233  * are used.  A shared locked will be obtained and the filesystem will not
234  * be unmountable until the lock is released.
235  */
236 int
237 vfs_busy(struct mount *mp, int flags)
238 {
239 	int lkflags;
240 
241 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
242 		if (flags & LK_NOWAIT)
243 			return (ENOENT);
244 		/* XXX not MP safe */
245 		mp->mnt_kern_flag |= MNTK_MWAIT;
246 		/*
247 		 * Since all busy locks are shared except the exclusive
248 		 * lock granted when unmounting, the only place that a
249 		 * wakeup needs to be done is at the release of the
250 		 * exclusive lock at the end of dounmount.
251 		 */
252 		tsleep((caddr_t)mp, 0, "vfs_busy", 0);
253 		return (ENOENT);
254 	}
255 	lkflags = LK_SHARED;
256 	if (lockmgr(&mp->mnt_lock, lkflags))
257 		panic("vfs_busy: unexpected lock failure");
258 	return (0);
259 }
260 
261 /*
262  * Free a busy filesystem.
263  */
264 void
265 vfs_unbusy(struct mount *mp)
266 {
267 	lockmgr(&mp->mnt_lock, LK_RELEASE);
268 }
269 
270 /*
271  * Lookup a filesystem type, and if found allocate and initialize
272  * a mount structure for it.
273  *
274  * Devname is usually updated by mount(8) after booting.
275  */
276 int
277 vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
278 {
279 	struct vfsconf *vfsp;
280 	struct mount *mp;
281 
282 	if (fstypename == NULL)
283 		return (ENODEV);
284 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
285 		if (!strcmp(vfsp->vfc_name, fstypename))
286 			break;
287 	}
288 	if (vfsp == NULL)
289 		return (ENODEV);
290 	mp = kmalloc(sizeof(struct mount), M_MOUNT, M_WAITOK | M_ZERO);
291 	lockinit(&mp->mnt_lock, "vfslock", VLKTIMEOUT, 0);
292 	vfs_busy(mp, LK_NOWAIT);
293 	TAILQ_INIT(&mp->mnt_nvnodelist);
294 	TAILQ_INIT(&mp->mnt_reservedvnlist);
295 	TAILQ_INIT(&mp->mnt_jlist);
296 	mp->mnt_nvnodelistsize = 0;
297 	mp->mnt_vfc = vfsp;
298 	mp->mnt_op = vfsp->vfc_vfsops;
299 	mp->mnt_flag = MNT_RDONLY;
300 	vfsp->vfc_refcount++;
301 	mp->mnt_iosize_max = DFLTPHYS;
302 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
303 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
304 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
305 	copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
306 	*mpp = mp;
307 	return (0);
308 }
309 
310 /*
311  * Lookup a mount point by filesystem identifier.
312  */
313 struct mount *
314 vfs_getvfs(fsid_t *fsid)
315 {
316 	struct mount *mp;
317 	lwkt_tokref ilock;
318 
319 	lwkt_gettoken(&ilock, &mountlist_token);
320 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
321 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
322 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
323 			break;
324 		}
325 	}
326 	lwkt_reltoken(&ilock);
327 	return (mp);
328 }
329 
330 /*
331  * Get a new unique fsid.  Try to make its val[0] unique, since this value
332  * will be used to create fake device numbers for stat().  Also try (but
333  * not so hard) make its val[0] unique mod 2^16, since some emulators only
334  * support 16-bit device numbers.  We end up with unique val[0]'s for the
335  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
336  *
337  * Keep in mind that several mounts may be running in parallel.  Starting
338  * the search one past where the previous search terminated is both a
339  * micro-optimization and a defense against returning the same fsid to
340  * different mounts.
341  */
342 void
343 vfs_getnewfsid(struct mount *mp)
344 {
345 	static u_int16_t mntid_base;
346 	lwkt_tokref ilock;
347 	fsid_t tfsid;
348 	int mtype;
349 
350 	lwkt_gettoken(&ilock, &mntid_token);
351 	mtype = mp->mnt_vfc->vfc_typenum;
352 	tfsid.val[1] = mtype;
353 	mtype = (mtype & 0xFF) << 24;
354 	for (;;) {
355 		tfsid.val[0] = makeudev(255,
356 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
357 		mntid_base++;
358 		if (vfs_getvfs(&tfsid) == NULL)
359 			break;
360 	}
361 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
362 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
363 	lwkt_reltoken(&ilock);
364 }
365 
366 /*
367  * This routine is called when we have too many vnodes.  It attempts
368  * to free <count> vnodes and will potentially free vnodes that still
369  * have VM backing store (VM backing store is typically the cause
370  * of a vnode blowout so we want to do this).  Therefore, this operation
371  * is not considered cheap.
372  *
373  * A number of conditions may prevent a vnode from being reclaimed.
374  * the buffer cache may have references on the vnode, a directory
375  * vnode may still have references due to the namei cache representing
376  * underlying files, or the vnode may be in active use.   It is not
377  * desireable to reuse such vnodes.  These conditions may cause the
378  * number of vnodes to reach some minimum value regardless of what
379  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
380  */
381 
382 /*
383  * This is a quick non-blocking check to determine if the vnode is a good
384  * candidate for being (eventually) vgone()'d.  Returns 0 if the vnode is
385  * not a good candidate, 1 if it is.
386  */
387 static __inline int
388 vmightfree(struct vnode *vp, int page_count)
389 {
390 	if (vp->v_flag & VRECLAIMED)
391 		return (0);
392 #if 0
393 	if ((vp->v_flag & VFREE) && TAILQ_EMPTY(&vp->v_namecache))
394 		return (0);
395 #endif
396 	if (sysref_isactive(&vp->v_sysref))
397 		return (0);
398 	if (vp->v_object && vp->v_object->resident_page_count >= page_count)
399 		return (0);
400 	return (1);
401 }
402 
403 /*
404  * The vnode was found to be possibly vgone()able and the caller has locked it
405  * (thus the usecount should be 1 now).  Determine if the vnode is actually
406  * vgone()able, doing some cleanups in the process.  Returns 1 if the vnode
407  * can be vgone()'d, 0 otherwise.
408  *
409  * Note that v_auxrefs may be non-zero because (A) this vnode is not a leaf
410  * in the namecache topology and (B) this vnode has buffer cache bufs.
411  * We cannot remove vnodes with non-leaf namecache associations.  We do a
412  * tentitive leaf check prior to attempting to flush out any buffers but the
413  * 'real' test when all is said in done is that v_auxrefs must become 0 for
414  * the vnode to be freeable.
415  *
416  * We could theoretically just unconditionally flush when v_auxrefs != 0,
417  * but flushing data associated with non-leaf nodes (which are always
418  * directories), just throws it away for no benefit.  It is the buffer
419  * cache's responsibility to choose buffers to recycle from the cached
420  * data point of view.
421  */
422 static int
423 visleaf(struct vnode *vp)
424 {
425 	struct namecache *ncp;
426 
427 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
428 		if (!TAILQ_EMPTY(&ncp->nc_list))
429 			return(0);
430 	}
431 	return(1);
432 }
433 
434 /*
435  * Try to clean up the vnode to the point where it can be vgone()'d, returning
436  * 0 if it cannot be vgone()'d (or already has been), 1 if it can.  Unlike
437  * vmightfree() this routine may flush the vnode and block.  Vnodes marked
438  * VFREE are still candidates for vgone()ing because they may hold namecache
439  * resources and could be blocking the namecache directory hierarchy (and
440  * related vnodes) from being freed.
441  */
442 static int
443 vtrytomakegoneable(struct vnode *vp, int page_count)
444 {
445 	if (vp->v_flag & VRECLAIMED)
446 		return (0);
447 	if (vp->v_sysref.refcnt > 1)
448 		return (0);
449 	if (vp->v_object && vp->v_object->resident_page_count >= page_count)
450 		return (0);
451 	if (vp->v_auxrefs && visleaf(vp)) {
452 		vinvalbuf(vp, V_SAVE, 0, 0);
453 #if 0	/* DEBUG */
454 		kprintf((vp->v_auxrefs ? "vrecycle: vp %p failed: %s\n" :
455 			"vrecycle: vp %p succeeded: %s\n"), vp,
456 			(TAILQ_FIRST(&vp->v_namecache) ?
457 			    TAILQ_FIRST(&vp->v_namecache)->nc_name : "?"));
458 #endif
459 	}
460 
461 	/*
462 	 * This sequence may seem a little strange, but we need to optimize
463 	 * the critical path a bit.  We can't recycle vnodes with other
464 	 * references and because we are trying to recycle an otherwise
465 	 * perfectly fine vnode we have to invalidate the namecache in a
466 	 * way that avoids possible deadlocks (since the vnode lock is being
467 	 * held here).  Finally, we have to check for other references one
468 	 * last time in case something snuck in during the inval.
469 	 */
470 	if (vp->v_sysref.refcnt > 1 || vp->v_auxrefs != 0)
471 		return (0);
472 	if (cache_inval_vp_nonblock(vp))
473 		return (0);
474 	return (vp->v_sysref.refcnt <= 1 && vp->v_auxrefs == 0);
475 }
476 
477 /*
478  * Reclaim up to 1/10 of the vnodes associated with a mount point.  Try
479  * to avoid vnodes which have lots of resident pages (we are trying to free
480  * vnodes, not memory).
481  *
482  * This routine is a callback from the mountlist scan.  The mount point
483  * in question will be busied.
484  */
485 static int
486 vlrureclaim(struct mount *mp, void *data)
487 {
488 	struct vnode *vp;
489 	lwkt_tokref ilock;
490 	int done;
491 	int trigger;
492 	int usevnodes;
493 	int count;
494 	int trigger_mult = vnlru_nowhere;
495 
496 	/*
497 	 * Calculate the trigger point for the resident pages check.  The
498 	 * minimum trigger value is approximately the number of pages in
499 	 * the system divded by the number of vnodes.  However, due to
500 	 * various other system memory overheads unrelated to data caching
501 	 * it is a good idea to double the trigger (at least).
502 	 *
503 	 * trigger_mult starts at 0.  If the recycler is having problems
504 	 * finding enough freeable vnodes it will increase trigger_mult.
505 	 * This should not happen in normal operation, even on machines with
506 	 * low amounts of memory, but extraordinary memory use by the system
507 	 * verses the amount of cached data can trigger it.
508 	 */
509 	usevnodes = desiredvnodes;
510 	if (usevnodes <= 0)
511 		usevnodes = 1;
512 	trigger = vmstats.v_page_count * (trigger_mult + 2) / usevnodes;
513 
514 	done = 0;
515 	lwkt_gettoken(&ilock, &mntvnode_token);
516 	count = mp->mnt_nvnodelistsize / 10 + 1;
517 	while (count && mp->mnt_syncer) {
518 		/*
519 		 * Next vnode.  Use the special syncer vnode to placemark
520 		 * the LRU.  This way the LRU code does not interfere with
521 		 * vmntvnodescan().
522 		 */
523 		vp = TAILQ_NEXT(mp->mnt_syncer, v_nmntvnodes);
524 		TAILQ_REMOVE(&mp->mnt_nvnodelist, mp->mnt_syncer, v_nmntvnodes);
525 		if (vp) {
526 			TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp,
527 					   mp->mnt_syncer, v_nmntvnodes);
528 		} else {
529 			TAILQ_INSERT_HEAD(&mp->mnt_nvnodelist, mp->mnt_syncer,
530 					  v_nmntvnodes);
531 			vp = TAILQ_NEXT(mp->mnt_syncer, v_nmntvnodes);
532 			if (vp == NULL)
533 				break;
534 		}
535 
536 		/*
537 		 * __VNODESCAN__
538 		 *
539 		 * The VP will stick around while we hold mntvnode_token,
540 		 * at least until we block, so we can safely do an initial
541 		 * check, and then must check again after we lock the vnode.
542 		 */
543 		if (vp->v_type == VNON ||	/* syncer or indeterminant */
544 		    !vmightfree(vp, trigger)	/* critical path opt */
545 		) {
546 			--count;
547 			continue;
548 		}
549 
550 		/*
551 		 * VX get the candidate vnode.  If the VX get fails the
552 		 * vnode might still be on the mountlist.  Our loop depends
553 		 * on us at least cycling the vnode to the end of the
554 		 * mountlist.
555 		 */
556 		if (vx_get_nonblock(vp) != 0) {
557 			--count;
558 			continue;
559 		}
560 
561 		/*
562 		 * Since we blocked locking the vp, make sure it is still
563 		 * a candidate for reclamation.  That is, it has not already
564 		 * been reclaimed and only has our VX reference associated
565 		 * with it.
566 		 */
567 		if (vp->v_type == VNON ||	/* syncer or indeterminant */
568 		    (vp->v_flag & VRECLAIMED) ||
569 		    vp->v_mount != mp ||
570 		    !vtrytomakegoneable(vp, trigger)	/* critical path opt */
571 		) {
572 			--count;
573 			vx_put(vp);
574 			continue;
575 		}
576 
577 		/*
578 		 * All right, we are good, move the vp to the end of the
579 		 * mountlist and clean it out.  The vget will have returned
580 		 * an error if the vnode was destroyed (VRECLAIMED set), so we
581 		 * do not have to check again.  The vput() will move the
582 		 * vnode to the free list if the vgone() was successful.
583 		 */
584 		KKASSERT(vp->v_mount == mp);
585 		vgone_vxlocked(vp);
586 		vx_put(vp);
587 		++done;
588 		--count;
589 	}
590 	lwkt_reltoken(&ilock);
591 	return (done);
592 }
593 
594 /*
595  * Attempt to recycle vnodes in a context that is always safe to block.
596  * Calling vlrurecycle() from the bowels of file system code has some
597  * interesting deadlock problems.
598  */
599 static struct thread *vnlruthread;
600 static int vnlruproc_sig;
601 
602 void
603 vnlru_proc_wait(void)
604 {
605 	if (vnlruproc_sig == 0) {
606 		vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
607 		wakeup(vnlruthread);
608 	}
609 	tsleep(&vnlruproc_sig, 0, "vlruwk", hz);
610 }
611 
612 static void
613 vnlru_proc(void)
614 {
615 	struct thread *td = curthread;
616 	int done;
617 
618 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
619 	    SHUTDOWN_PRI_FIRST);
620 
621 	crit_enter();
622 	for (;;) {
623 		kproc_suspend_loop();
624 
625 		/*
626 		 * Try to free some vnodes if we have too many
627 		 */
628 		if (numvnodes > desiredvnodes &&
629 		    freevnodes > desiredvnodes * 2 / 10) {
630 			int count = numvnodes - desiredvnodes;
631 
632 			if (count > freevnodes / 100)
633 				count = freevnodes / 100;
634 			if (count < 5)
635 				count = 5;
636 			freesomevnodes(count);
637 		}
638 
639 		/*
640 		 * Nothing to do if most of our vnodes are already on
641 		 * the free list.
642 		 */
643 		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
644 			vnlruproc_sig = 0;
645 			wakeup(&vnlruproc_sig);
646 			tsleep(td, 0, "vlruwt", hz);
647 			continue;
648 		}
649 		cache_cleanneg(0);
650 		done = mountlist_scan(vlrureclaim, NULL, MNTSCAN_FORWARD);
651 
652 		/*
653 		 * The vlrureclaim() call only processes 1/10 of the vnodes
654 		 * on each mount.  If we couldn't find any repeat the loop
655 		 * at least enough times to cover all available vnodes before
656 		 * we start sleeping.  Complain if the failure extends past
657 		 * 30 second, every 30 seconds.
658 		 */
659 		if (done == 0) {
660 			++vnlru_nowhere;
661 			if (vnlru_nowhere % 10 == 0)
662 				tsleep(td, 0, "vlrup", hz * 3);
663 			if (vnlru_nowhere % 100 == 0)
664 				kprintf("vnlru_proc: vnode recycler stopped working!\n");
665 			if (vnlru_nowhere == 1000)
666 				vnlru_nowhere = 900;
667 		} else {
668 			vnlru_nowhere = 0;
669 		}
670 	}
671 	crit_exit();
672 }
673 
674 /*
675  * MOUNTLIST FUNCTIONS
676  */
677 
678 /*
679  * mountlist_insert (MP SAFE)
680  *
681  * Add a new mount point to the mount list.
682  */
683 void
684 mountlist_insert(struct mount *mp, int how)
685 {
686 	lwkt_tokref ilock;
687 
688 	lwkt_gettoken(&ilock, &mountlist_token);
689 	if (how == MNTINS_FIRST)
690 	    TAILQ_INSERT_HEAD(&mountlist, mp, mnt_list);
691 	else
692 	    TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
693 	lwkt_reltoken(&ilock);
694 }
695 
696 /*
697  * mountlist_interlock (MP SAFE)
698  *
699  * Execute the specified interlock function with the mountlist token
700  * held.  The function will be called in a serialized fashion verses
701  * other functions called through this mechanism.
702  */
703 int
704 mountlist_interlock(int (*callback)(struct mount *), struct mount *mp)
705 {
706 	lwkt_tokref ilock;
707 	int error;
708 
709 	lwkt_gettoken(&ilock, &mountlist_token);
710 	error = callback(mp);
711 	lwkt_reltoken(&ilock);
712 	return (error);
713 }
714 
715 /*
716  * mountlist_boot_getfirst (DURING BOOT ONLY)
717  *
718  * This function returns the first mount on the mountlist, which is
719  * expected to be the root mount.  Since no interlocks are obtained
720  * this function is only safe to use during booting.
721  */
722 
723 struct mount *
724 mountlist_boot_getfirst(void)
725 {
726 	return(TAILQ_FIRST(&mountlist));
727 }
728 
729 /*
730  * mountlist_remove (MP SAFE)
731  *
732  * Remove a node from the mountlist.  If this node is the next scan node
733  * for any active mountlist scans, the active mountlist scan will be
734  * adjusted to skip the node, thus allowing removals during mountlist
735  * scans.
736  */
737 void
738 mountlist_remove(struct mount *mp)
739 {
740 	struct mountscan_info *msi;
741 	lwkt_tokref ilock;
742 
743 	lwkt_gettoken(&ilock, &mountlist_token);
744 	TAILQ_FOREACH(msi, &mountscan_list, msi_entry) {
745 		if (msi->msi_node == mp) {
746 			if (msi->msi_how & MNTSCAN_FORWARD)
747 				msi->msi_node = TAILQ_NEXT(mp, mnt_list);
748 			else
749 				msi->msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
750 		}
751 	}
752 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
753 	lwkt_reltoken(&ilock);
754 }
755 
756 /*
757  * mountlist_scan (MP SAFE)
758  *
759  * Safely scan the mount points on the mount list.  Unless otherwise
760  * specified each mount point will be busied prior to the callback and
761  * unbusied afterwords.  The callback may safely remove any mount point
762  * without interfering with the scan.  If the current callback
763  * mount is removed the scanner will not attempt to unbusy it.
764  *
765  * If a mount node cannot be busied it is silently skipped.
766  *
767  * The callback return value is aggregated and a total is returned.  A return
768  * value of < 0 is not aggregated and will terminate the scan.
769  *
770  * MNTSCAN_FORWARD	- the mountlist is scanned in the forward direction
771  * MNTSCAN_REVERSE	- the mountlist is scanned in reverse
772  * MNTSCAN_NOBUSY	- the scanner will make the callback without busying
773  *			  the mount node.
774  */
775 int
776 mountlist_scan(int (*callback)(struct mount *, void *), void *data, int how)
777 {
778 	struct mountscan_info info;
779 	lwkt_tokref ilock;
780 	struct mount *mp;
781 	thread_t td;
782 	int count;
783 	int res;
784 
785 	lwkt_gettoken(&ilock, &mountlist_token);
786 
787 	info.msi_how = how;
788 	info.msi_node = NULL;	/* paranoia */
789 	TAILQ_INSERT_TAIL(&mountscan_list, &info, msi_entry);
790 
791 	res = 0;
792 	td = curthread;
793 
794 	if (how & MNTSCAN_FORWARD) {
795 		info.msi_node = TAILQ_FIRST(&mountlist);
796 		while ((mp = info.msi_node) != NULL) {
797 			if (how & MNTSCAN_NOBUSY) {
798 				count = callback(mp, data);
799 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
800 				count = callback(mp, data);
801 				if (mp == info.msi_node)
802 					vfs_unbusy(mp);
803 			} else {
804 				count = 0;
805 			}
806 			if (count < 0)
807 				break;
808 			res += count;
809 			if (mp == info.msi_node)
810 				info.msi_node = TAILQ_NEXT(mp, mnt_list);
811 		}
812 	} else if (how & MNTSCAN_REVERSE) {
813 		info.msi_node = TAILQ_LAST(&mountlist, mntlist);
814 		while ((mp = info.msi_node) != NULL) {
815 			if (how & MNTSCAN_NOBUSY) {
816 				count = callback(mp, data);
817 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
818 				count = callback(mp, data);
819 				if (mp == info.msi_node)
820 					vfs_unbusy(mp);
821 			} else {
822 				count = 0;
823 			}
824 			if (count < 0)
825 				break;
826 			res += count;
827 			if (mp == info.msi_node)
828 				info.msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
829 		}
830 	}
831 	TAILQ_REMOVE(&mountscan_list, &info, msi_entry);
832 	lwkt_reltoken(&ilock);
833 	return(res);
834 }
835 
836 /*
837  * MOUNT RELATED VNODE FUNCTIONS
838  */
839 
840 static struct kproc_desc vnlru_kp = {
841 	"vnlru",
842 	vnlru_proc,
843 	&vnlruthread
844 };
845 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
846 
847 /*
848  * Move a vnode from one mount queue to another.
849  */
850 void
851 insmntque(struct vnode *vp, struct mount *mp)
852 {
853 	lwkt_tokref ilock;
854 
855 	lwkt_gettoken(&ilock, &mntvnode_token);
856 	/*
857 	 * Delete from old mount point vnode list, if on one.
858 	 */
859 	if (vp->v_mount != NULL) {
860 		KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
861 			("bad mount point vnode list size"));
862 		vremovevnodemnt(vp);
863 		vp->v_mount->mnt_nvnodelistsize--;
864 	}
865 	/*
866 	 * Insert into list of vnodes for the new mount point, if available.
867 	 * The 'end' of the LRU list is the vnode prior to mp->mnt_syncer.
868 	 */
869 	if ((vp->v_mount = mp) == NULL) {
870 		lwkt_reltoken(&ilock);
871 		return;
872 	}
873 	if (mp->mnt_syncer) {
874 		TAILQ_INSERT_BEFORE(mp->mnt_syncer, vp, v_nmntvnodes);
875 	} else {
876 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
877 	}
878 	mp->mnt_nvnodelistsize++;
879 	lwkt_reltoken(&ilock);
880 }
881 
882 
883 /*
884  * Scan the vnodes under a mount point and issue appropriate callbacks.
885  *
886  * The fastfunc() callback is called with just the mountlist token held
887  * (no vnode lock).  It may not block and the vnode may be undergoing
888  * modifications while the caller is processing it.  The vnode will
889  * not be entirely destroyed, however, due to the fact that the mountlist
890  * token is held.  A return value < 0 skips to the next vnode without calling
891  * the slowfunc(), a return value > 0 terminates the loop.
892  *
893  * The slowfunc() callback is called after the vnode has been successfully
894  * locked based on passed flags.  The vnode is skipped if it gets rearranged
895  * or destroyed while blocking on the lock.  A non-zero return value from
896  * the slow function terminates the loop.  The slow function is allowed to
897  * arbitrarily block.  The scanning code guarentees consistency of operation
898  * even if the slow function deletes or moves the node, or blocks and some
899  * other thread deletes or moves the node.
900  */
901 int
902 vmntvnodescan(
903     struct mount *mp,
904     int flags,
905     int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
906     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
907     void *data
908 ) {
909 	struct vmntvnodescan_info info;
910 	lwkt_tokref ilock;
911 	struct vnode *vp;
912 	int r = 0;
913 	int maxcount = 1000000;
914 	int stopcount = 0;
915 	int count = 0;
916 
917 	lwkt_gettoken(&ilock, &mntvnode_token);
918 
919 	/*
920 	 * If asked to do one pass stop after iterating available vnodes.
921 	 * Under heavy loads new vnodes can be added while we are scanning,
922 	 * so this isn't perfect.  Create a slop factor of 2x.
923 	 */
924 	if (flags & VMSC_ONEPASS)
925 		stopcount = mp->mnt_nvnodelistsize * 2;
926 
927 	info.vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
928 	TAILQ_INSERT_TAIL(&mntvnodescan_list, &info, entry);
929 	while ((vp = info.vp) != NULL) {
930 		if (--maxcount == 0)
931 			panic("maxcount reached during vmntvnodescan");
932 
933 		/*
934 		 * Skip if visible but not ready, or special (e.g.
935 		 * mp->mnt_syncer)
936 		 */
937 		if (vp->v_type == VNON)
938 			goto next;
939 		KKASSERT(vp->v_mount == mp);
940 
941 		/*
942 		 * Quick test.  A negative return continues the loop without
943 		 * calling the slow test.  0 continues onto the slow test.
944 		 * A positive number aborts the loop.
945 		 */
946 		if (fastfunc) {
947 			if ((r = fastfunc(mp, vp, data)) < 0) {
948 				r = 0;
949 				goto next;
950 			}
951 			if (r)
952 				break;
953 		}
954 
955 		/*
956 		 * Get a vxlock on the vnode, retry if it has moved or isn't
957 		 * in the mountlist where we expect it.
958 		 */
959 		if (slowfunc) {
960 			int error;
961 
962 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
963 			case VMSC_GETVP:
964 				error = vget(vp, LK_EXCLUSIVE);
965 				break;
966 			case VMSC_GETVP|VMSC_NOWAIT:
967 				error = vget(vp, LK_EXCLUSIVE|LK_NOWAIT);
968 				break;
969 			case VMSC_GETVX:
970 				vx_get(vp);
971 				error = 0;
972 				break;
973 			default:
974 				error = 0;
975 				break;
976 			}
977 			if (error)
978 				goto next;
979 			/*
980 			 * Do not call the slow function if the vnode is
981 			 * invalid or if it was ripped out from under us
982 			 * while we (potentially) blocked.
983 			 */
984 			if (info.vp == vp && vp->v_type != VNON)
985 				r = slowfunc(mp, vp, data);
986 
987 			/*
988 			 * Cleanup
989 			 */
990 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
991 			case VMSC_GETVP:
992 			case VMSC_GETVP|VMSC_NOWAIT:
993 				vput(vp);
994 				break;
995 			case VMSC_GETVX:
996 				vx_put(vp);
997 				break;
998 			default:
999 				break;
1000 			}
1001 			if (r != 0)
1002 				break;
1003 		}
1004 
1005 next:
1006 		/*
1007 		 * Yield after some processing.  Depending on the number
1008 		 * of vnodes, we might wind up running for a long time.
1009 		 * Because threads are not preemptable, time critical
1010 		 * userland processes might starve.  Give them a chance
1011 		 * now and then.
1012 		 */
1013 		if (++count == 10000) {
1014 			/* We really want to yield a bit, so we simply sleep a tick */
1015 			tsleep(mp, 0, "vnodescn", 1);
1016 			count = 0;
1017 		}
1018 
1019 		/*
1020 		 * If doing one pass this decrements to zero.  If it starts
1021 		 * at zero it is effectively unlimited for the purposes of
1022 		 * this loop.
1023 		 */
1024 		if (--stopcount == 0)
1025 			break;
1026 
1027 		/*
1028 		 * Iterate.  If the vnode was ripped out from under us
1029 		 * info.vp will already point to the next vnode, otherwise
1030 		 * we have to obtain the next valid vnode ourselves.
1031 		 */
1032 		if (info.vp == vp)
1033 			info.vp = TAILQ_NEXT(vp, v_nmntvnodes);
1034 	}
1035 	TAILQ_REMOVE(&mntvnodescan_list, &info, entry);
1036 	lwkt_reltoken(&ilock);
1037 	return(r);
1038 }
1039 
1040 /*
1041  * Remove any vnodes in the vnode table belonging to mount point mp.
1042  *
1043  * If FORCECLOSE is not specified, there should not be any active ones,
1044  * return error if any are found (nb: this is a user error, not a
1045  * system error). If FORCECLOSE is specified, detach any active vnodes
1046  * that are found.
1047  *
1048  * If WRITECLOSE is set, only flush out regular file vnodes open for
1049  * writing.
1050  *
1051  * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1052  *
1053  * `rootrefs' specifies the base reference count for the root vnode
1054  * of this filesystem. The root vnode is considered busy if its
1055  * v_sysref.refcnt exceeds this value. On a successful return, vflush()
1056  * will call vrele() on the root vnode exactly rootrefs times.
1057  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1058  * be zero.
1059  */
1060 #ifdef DIAGNOSTIC
1061 static int busyprt = 0;		/* print out busy vnodes */
1062 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1063 #endif
1064 
1065 static int vflush_scan(struct mount *mp, struct vnode *vp, void *data);
1066 
1067 struct vflush_info {
1068 	int flags;
1069 	int busy;
1070 	thread_t td;
1071 };
1072 
1073 int
1074 vflush(struct mount *mp, int rootrefs, int flags)
1075 {
1076 	struct thread *td = curthread;	/* XXX */
1077 	struct vnode *rootvp = NULL;
1078 	int error;
1079 	struct vflush_info vflush_info;
1080 
1081 	if (rootrefs > 0) {
1082 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1083 		    ("vflush: bad args"));
1084 		/*
1085 		 * Get the filesystem root vnode. We can vput() it
1086 		 * immediately, since with rootrefs > 0, it won't go away.
1087 		 */
1088 		if ((error = VFS_ROOT(mp, &rootvp)) != 0)
1089 			return (error);
1090 		vput(rootvp);
1091 	}
1092 
1093 	vflush_info.busy = 0;
1094 	vflush_info.flags = flags;
1095 	vflush_info.td = td;
1096 	vmntvnodescan(mp, VMSC_GETVX, NULL, vflush_scan, &vflush_info);
1097 
1098 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1099 		/*
1100 		 * If just the root vnode is busy, and if its refcount
1101 		 * is equal to `rootrefs', then go ahead and kill it.
1102 		 */
1103 		KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
1104 		KASSERT(rootvp->v_sysref.refcnt >= rootrefs, ("vflush: rootrefs"));
1105 		if (vflush_info.busy == 1 && rootvp->v_sysref.refcnt == rootrefs) {
1106 			vx_lock(rootvp);
1107 			vgone_vxlocked(rootvp);
1108 			vx_unlock(rootvp);
1109 			vflush_info.busy = 0;
1110 		}
1111 	}
1112 	if (vflush_info.busy)
1113 		return (EBUSY);
1114 	for (; rootrefs > 0; rootrefs--)
1115 		vrele(rootvp);
1116 	return (0);
1117 }
1118 
1119 /*
1120  * The scan callback is made with an VX locked vnode.
1121  */
1122 static int
1123 vflush_scan(struct mount *mp, struct vnode *vp, void *data)
1124 {
1125 	struct vflush_info *info = data;
1126 	struct vattr vattr;
1127 
1128 	/*
1129 	 * Skip over a vnodes marked VSYSTEM.
1130 	 */
1131 	if ((info->flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1132 		return(0);
1133 	}
1134 
1135 	/*
1136 	 * If WRITECLOSE is set, flush out unlinked but still open
1137 	 * files (even if open only for reading) and regular file
1138 	 * vnodes open for writing.
1139 	 */
1140 	if ((info->flags & WRITECLOSE) &&
1141 	    (vp->v_type == VNON ||
1142 	    (VOP_GETATTR(vp, &vattr) == 0 &&
1143 	    vattr.va_nlink > 0)) &&
1144 	    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1145 		return(0);
1146 	}
1147 
1148 	/*
1149 	 * If we are the only holder (refcnt of 1) or the vnode is in
1150 	 * termination (refcnt < 0), we can vgone the vnode.
1151 	 */
1152 	if (vp->v_sysref.refcnt <= 1) {
1153 		vgone_vxlocked(vp);
1154 		return(0);
1155 	}
1156 
1157 	/*
1158 	 * If FORCECLOSE is set, forcibly close the vnode. For block
1159 	 * or character devices, revert to an anonymous device. For
1160 	 * all other files, just kill them.
1161 	 */
1162 	if (info->flags & FORCECLOSE) {
1163 		if (vp->v_type != VBLK && vp->v_type != VCHR) {
1164 			vgone_vxlocked(vp);
1165 		} else {
1166 			vclean_vxlocked(vp, 0);
1167 			vp->v_ops = &spec_vnode_vops_p;
1168 			insmntque(vp, NULL);
1169 		}
1170 		return(0);
1171 	}
1172 #ifdef DIAGNOSTIC
1173 	if (busyprt)
1174 		vprint("vflush: busy vnode", vp);
1175 #endif
1176 	++info->busy;
1177 	return(0);
1178 }
1179 
1180 void
1181 add_bio_ops(struct bio_ops *ops)
1182 {
1183 	TAILQ_INSERT_TAIL(&bio_ops_list, ops, entry);
1184 }
1185 
1186 void
1187 rem_bio_ops(struct bio_ops *ops)
1188 {
1189 	TAILQ_REMOVE(&bio_ops_list, ops, entry);
1190 }
1191 
1192 /*
1193  * This calls the bio_ops io_sync function either for a mount point
1194  * or generally.
1195  *
1196  * WARNING: softdeps is weirdly coded and just isn't happy unless
1197  * io_sync is called with a NULL mount from the general syncing code.
1198  */
1199 void
1200 bio_ops_sync(struct mount *mp)
1201 {
1202 	struct bio_ops *ops;
1203 
1204 	if (mp) {
1205 		if ((ops = mp->mnt_bioops) != NULL)
1206 			ops->io_sync(mp);
1207 	} else {
1208 		TAILQ_FOREACH(ops, &bio_ops_list, entry) {
1209 			ops->io_sync(NULL);
1210 		}
1211 	}
1212 }
1213 
1214