xref: /dragonfly/sys/kern/vfs_mount.c (revision cb740add)
1 /*
2  * Copyright (c) 2004,2013 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 /*
68  * External virtual filesystem routines
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/mount.h>
76 #include <sys/proc.h>
77 #include <sys/vnode.h>
78 #include <sys/buf.h>
79 #include <sys/eventhandler.h>
80 #include <sys/kthread.h>
81 #include <sys/sysctl.h>
82 
83 #include <machine/limits.h>
84 
85 #include <sys/buf2.h>
86 #include <sys/thread2.h>
87 #include <sys/sysref2.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_object.h>
91 
92 struct mountscan_info {
93 	TAILQ_ENTRY(mountscan_info) msi_entry;
94 	int msi_how;
95 	struct mount *msi_node;
96 };
97 
98 struct vmntvnodescan_info {
99 	TAILQ_ENTRY(vmntvnodescan_info) entry;
100 	struct vnode *vp;
101 };
102 
103 struct vnlru_info {
104 	int	pass;
105 };
106 
107 static int vnlru_nowhere = 0;
108 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RD,
109 	    &vnlru_nowhere, 0,
110 	    "Number of times the vnlru process ran without success");
111 
112 
113 static struct lwkt_token mntid_token;
114 static struct mount dummymount;
115 
116 /* note: mountlist exported to pstat */
117 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
118 static TAILQ_HEAD(,mountscan_info) mountscan_list;
119 static struct lwkt_token mountlist_token;
120 
121 static TAILQ_HEAD(,bio_ops) bio_ops_list = TAILQ_HEAD_INITIALIZER(bio_ops_list);
122 
123 /*
124  * Called from vfsinit()
125  */
126 void
127 vfs_mount_init(void)
128 {
129 	lwkt_token_init(&mountlist_token, "mntlist");
130 	lwkt_token_init(&mntid_token, "mntid");
131 	TAILQ_INIT(&mountscan_list);
132 	mount_init(&dummymount);
133 	dummymount.mnt_flag |= MNT_RDONLY;
134 	dummymount.mnt_kern_flag |= MNTK_ALL_MPSAFE;
135 }
136 
137 /*
138  * Support function called to remove a vnode from the mountlist and
139  * deal with side effects for scans in progress.
140  *
141  * Target mnt_token is held on call.
142  */
143 static void
144 vremovevnodemnt(struct vnode *vp)
145 {
146         struct vmntvnodescan_info *info;
147 	struct mount *mp = vp->v_mount;
148 
149 	TAILQ_FOREACH(info, &mp->mnt_vnodescan_list, entry) {
150 		if (info->vp == vp)
151 			info->vp = TAILQ_NEXT(vp, v_nmntvnodes);
152 	}
153 	TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
154 }
155 
156 /*
157  * Allocate a new vnode and associate it with a tag, mount point, and
158  * operations vector.
159  *
160  * A VX locked and refd vnode is returned.  The caller should setup the
161  * remaining fields and vx_put() or, if he wishes to leave a vref,
162  * vx_unlock() the vnode.
163  */
164 int
165 getnewvnode(enum vtagtype tag, struct mount *mp,
166 		struct vnode **vpp, int lktimeout, int lkflags)
167 {
168 	struct vnode *vp;
169 
170 	KKASSERT(mp != NULL);
171 
172 	vp = allocvnode(lktimeout, lkflags);
173 	vp->v_tag = tag;
174 	vp->v_data = NULL;
175 
176 	/*
177 	 * By default the vnode is assigned the mount point's normal
178 	 * operations vector.
179 	 */
180 	vp->v_ops = &mp->mnt_vn_use_ops;
181 	vp->v_pbuf_count = nswbuf_kva / NSWBUF_SPLIT;
182 
183 	/*
184 	 * Placing the vnode on the mount point's queue makes it visible.
185 	 * VNON prevents it from being messed with, however.
186 	 */
187 	insmntque(vp, mp);
188 
189 	/*
190 	 * A VX locked & refd vnode is returned.
191 	 */
192 	*vpp = vp;
193 	return (0);
194 }
195 
196 /*
197  * This function creates vnodes with special operations vectors.  The
198  * mount point is optional.
199  *
200  * This routine is being phased out but is still used by vfs_conf to
201  * create vnodes for devices prior to the root mount (with mp == NULL).
202  */
203 int
204 getspecialvnode(enum vtagtype tag, struct mount *mp,
205 		struct vop_ops **ops,
206 		struct vnode **vpp, int lktimeout, int lkflags)
207 {
208 	struct vnode *vp;
209 
210 	vp = allocvnode(lktimeout, lkflags);
211 	vp->v_tag = tag;
212 	vp->v_data = NULL;
213 	vp->v_ops = ops;
214 
215 	if (mp == NULL)
216 		mp = &dummymount;
217 
218 	/*
219 	 * Placing the vnode on the mount point's queue makes it visible.
220 	 * VNON prevents it from being messed with, however.
221 	 */
222 	insmntque(vp, mp);
223 
224 	/*
225 	 * A VX locked & refd vnode is returned.
226 	 */
227 	*vpp = vp;
228 	return (0);
229 }
230 
231 /*
232  * Interlock against an unmount, return 0 on success, non-zero on failure.
233  *
234  * The passed flag may be 0 or LK_NOWAIT and is only used if an unmount
235  * is in-progress.
236  *
237  * If no unmount is in-progress LK_NOWAIT is ignored.  No other flag bits
238  * are used.  A shared locked will be obtained and the filesystem will not
239  * be unmountable until the lock is released.
240  */
241 int
242 vfs_busy(struct mount *mp, int flags)
243 {
244 	int lkflags;
245 
246 	atomic_add_int(&mp->mnt_refs, 1);
247 	lwkt_gettoken(&mp->mnt_token);
248 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
249 		if (flags & LK_NOWAIT) {
250 			lwkt_reltoken(&mp->mnt_token);
251 			atomic_add_int(&mp->mnt_refs, -1);
252 			return (ENOENT);
253 		}
254 		/* XXX not MP safe */
255 		mp->mnt_kern_flag |= MNTK_MWAIT;
256 
257 		/*
258 		 * Since all busy locks are shared except the exclusive
259 		 * lock granted when unmounting, the only place that a
260 		 * wakeup needs to be done is at the release of the
261 		 * exclusive lock at the end of dounmount.
262 		 *
263 		 * WARNING! mp can potentially go away once we release
264 		 *	    our ref.
265 		 */
266 		tsleep((caddr_t)mp, 0, "vfs_busy", 0);
267 		lwkt_reltoken(&mp->mnt_token);
268 		atomic_add_int(&mp->mnt_refs, -1);
269 		return (ENOENT);
270 	}
271 	lkflags = LK_SHARED;
272 	if (lockmgr(&mp->mnt_lock, lkflags))
273 		panic("vfs_busy: unexpected lock failure");
274 	lwkt_reltoken(&mp->mnt_token);
275 	return (0);
276 }
277 
278 /*
279  * Free a busy filesystem.
280  *
281  * Once refs is decremented the mount point can potentially get ripped
282  * out from under us, but we want to clean up our refs before unlocking
283  * so do a hold/drop around the whole mess.
284  *
285  * This is not in the critical path (I hope).
286  */
287 void
288 vfs_unbusy(struct mount *mp)
289 {
290 	mount_hold(mp);
291 	atomic_add_int(&mp->mnt_refs, -1);
292 	lockmgr(&mp->mnt_lock, LK_RELEASE);
293 	mount_drop(mp);
294 }
295 
296 /*
297  * Lookup a filesystem type, and if found allocate and initialize
298  * a mount structure for it.
299  *
300  * Devname is usually updated by mount(8) after booting.
301  */
302 int
303 vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
304 {
305 	struct vfsconf *vfsp;
306 	struct mount *mp;
307 
308 	if (fstypename == NULL)
309 		return (ENODEV);
310 
311 	vfsp = vfsconf_find_by_name(fstypename);
312 	if (vfsp == NULL)
313 		return (ENODEV);
314 	mp = kmalloc(sizeof(struct mount), M_MOUNT, M_WAITOK | M_ZERO);
315 	mount_init(mp);
316 	lockinit(&mp->mnt_lock, "vfslock", VLKTIMEOUT, 0);
317 
318 	vfs_busy(mp, 0);
319 	mp->mnt_vfc = vfsp;
320 	mp->mnt_op = vfsp->vfc_vfsops;
321 	mp->mnt_pbuf_count = nswbuf_kva / NSWBUF_SPLIT;
322 	vfsp->vfc_refcount++;
323 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
324 	mp->mnt_flag |= MNT_RDONLY;
325 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
326 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
327 	copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
328 
329 	/*
330 	 * Pre-set MPSAFE flags for VFS_MOUNT() call.
331 	 */
332 	if (vfsp->vfc_flags & VFCF_MPSAFE)
333 		mp->mnt_kern_flag |= MNTK_ALL_MPSAFE;
334 
335 	*mpp = mp;
336 
337 	return (0);
338 }
339 
340 /*
341  * Basic mount structure initialization
342  */
343 void
344 mount_init(struct mount *mp)
345 {
346 	lockinit(&mp->mnt_lock, "vfslock", hz*5, 0);
347 	lwkt_token_init(&mp->mnt_token, "permnt");
348 
349 	TAILQ_INIT(&mp->mnt_vnodescan_list);
350 	TAILQ_INIT(&mp->mnt_nvnodelist);
351 	TAILQ_INIT(&mp->mnt_reservedvnlist);
352 	TAILQ_INIT(&mp->mnt_jlist);
353 	mp->mnt_nvnodelistsize = 0;
354 	mp->mnt_flag = 0;
355 	mp->mnt_hold = 1;		/* hold for umount last drop */
356 	mp->mnt_iosize_max = MAXPHYS;
357 	vn_syncer_thr_create(mp);
358 }
359 
360 void
361 mount_hold(struct mount *mp)
362 {
363 	atomic_add_int(&mp->mnt_hold, 1);
364 }
365 
366 void
367 mount_drop(struct mount *mp)
368 {
369 	if (atomic_fetchadd_int(&mp->mnt_hold, -1) == 1) {
370 		KKASSERT(mp->mnt_refs == 0);
371 		kfree(mp, M_MOUNT);
372 	}
373 }
374 
375 /*
376  * Lookup a mount point by filesystem identifier.
377  */
378 struct mount *
379 vfs_getvfs(fsid_t *fsid)
380 {
381 	struct mount *mp;
382 
383 	lwkt_gettoken(&mountlist_token);
384 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
385 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
386 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
387 			break;
388 		}
389 	}
390 	lwkt_reltoken(&mountlist_token);
391 	return (mp);
392 }
393 
394 /*
395  * Get a new unique fsid.  Try to make its val[0] unique, since this value
396  * will be used to create fake device numbers for stat().  Also try (but
397  * not so hard) make its val[0] unique mod 2^16, since some emulators only
398  * support 16-bit device numbers.  We end up with unique val[0]'s for the
399  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
400  *
401  * Keep in mind that several mounts may be running in parallel.  Starting
402  * the search one past where the previous search terminated is both a
403  * micro-optimization and a defense against returning the same fsid to
404  * different mounts.
405  */
406 void
407 vfs_getnewfsid(struct mount *mp)
408 {
409 	static u_int16_t mntid_base;
410 	fsid_t tfsid;
411 	int mtype;
412 
413 	lwkt_gettoken(&mntid_token);
414 	mtype = mp->mnt_vfc->vfc_typenum;
415 	tfsid.val[1] = mtype;
416 	mtype = (mtype & 0xFF) << 24;
417 	for (;;) {
418 		tfsid.val[0] = makeudev(255,
419 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
420 		mntid_base++;
421 		if (vfs_getvfs(&tfsid) == NULL)
422 			break;
423 	}
424 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
425 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
426 	lwkt_reltoken(&mntid_token);
427 }
428 
429 /*
430  * Set the FSID for a new mount point to the template.  Adjust
431  * the FSID to avoid collisions.
432  */
433 int
434 vfs_setfsid(struct mount *mp, fsid_t *template)
435 {
436 	int didmunge = 0;
437 
438 	bzero(&mp->mnt_stat.f_fsid, sizeof(mp->mnt_stat.f_fsid));
439 	for (;;) {
440 		if (vfs_getvfs(template) == NULL)
441 			break;
442 		didmunge = 1;
443 		++template->val[1];
444 	}
445 	mp->mnt_stat.f_fsid = *template;
446 	return(didmunge);
447 }
448 
449 /*
450  * This routine is called when we have too many vnodes.  It attempts
451  * to free <count> vnodes and will potentially free vnodes that still
452  * have VM backing store (VM backing store is typically the cause
453  * of a vnode blowout so we want to do this).  Therefore, this operation
454  * is not considered cheap.
455  *
456  * A number of conditions may prevent a vnode from being reclaimed.
457  * the buffer cache may have references on the vnode, a directory
458  * vnode may still have references due to the namei cache representing
459  * underlying files, or the vnode may be in active use.   It is not
460  * desireable to reuse such vnodes.  These conditions may cause the
461  * number of vnodes to reach some minimum value regardless of what
462  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
463  */
464 
465 /*
466  * Attempt to recycle vnodes in a context that is always safe to block.
467  * Calling vlrurecycle() from the bowels of file system code has some
468  * interesting deadlock problems.
469  */
470 static struct thread *vnlruthread;
471 
472 static void
473 vnlru_proc(void)
474 {
475 	struct thread *td = curthread;
476 
477 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
478 			      SHUTDOWN_PRI_FIRST);
479 
480 	for (;;) {
481 		int ncached;
482 
483 		kproc_suspend_loop();
484 
485 		/*
486 		 * Try to free some vnodes if we have too many.  Trigger based
487 		 * on potentially freeable vnodes but calculate the count
488 		 * based on total vnodes.
489 		 *
490 		 * (long) -> deal with 64 bit machines, intermediate overflow
491 		 */
492 		ncached = countcachedvnodes(1);
493 		if (numvnodes >= maxvnodes * 9 / 10 &&
494 		    ncached + inactivevnodes >= maxvnodes * 5 / 10) {
495 			int count = numvnodes - maxvnodes * 9 / 10;
496 
497 			if (count > (ncached + inactivevnodes) / 100)
498 				count = (ncached + inactivevnodes) / 100;
499 			if (count < 5)
500 				count = 5;
501 			freesomevnodes(count);
502 		}
503 
504 		/*
505 		 * Do non-critical-path (more robust) cache cleaning,
506 		 * even if vnode counts are nominal, to try to avoid
507 		 * having to do it in the critical path.
508 		 */
509 		cache_hysteresis(0);
510 
511 		/*
512 		 * Nothing to do if most of our vnodes are already on
513 		 * the free list.
514 		 */
515 		ncached = countcachedvnodes(1);
516 		if (numvnodes <= maxvnodes * 9 / 10 ||
517 		    ncached + inactivevnodes <= maxvnodes * 5 / 10) {
518 			tsleep(vnlruthread, 0, "vlruwt", hz);
519 			continue;
520 		}
521 	}
522 }
523 
524 /*
525  * MOUNTLIST FUNCTIONS
526  */
527 
528 /*
529  * mountlist_insert (MP SAFE)
530  *
531  * Add a new mount point to the mount list.
532  */
533 void
534 mountlist_insert(struct mount *mp, int how)
535 {
536 	lwkt_gettoken(&mountlist_token);
537 	if (how == MNTINS_FIRST)
538 	    TAILQ_INSERT_HEAD(&mountlist, mp, mnt_list);
539 	else
540 	    TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
541 	lwkt_reltoken(&mountlist_token);
542 }
543 
544 /*
545  * mountlist_interlock (MP SAFE)
546  *
547  * Execute the specified interlock function with the mountlist token
548  * held.  The function will be called in a serialized fashion verses
549  * other functions called through this mechanism.
550  */
551 int
552 mountlist_interlock(int (*callback)(struct mount *), struct mount *mp)
553 {
554 	int error;
555 
556 	lwkt_gettoken(&mountlist_token);
557 	error = callback(mp);
558 	lwkt_reltoken(&mountlist_token);
559 	return (error);
560 }
561 
562 /*
563  * mountlist_boot_getfirst (DURING BOOT ONLY)
564  *
565  * This function returns the first mount on the mountlist, which is
566  * expected to be the root mount.  Since no interlocks are obtained
567  * this function is only safe to use during booting.
568  */
569 
570 struct mount *
571 mountlist_boot_getfirst(void)
572 {
573 	return(TAILQ_FIRST(&mountlist));
574 }
575 
576 /*
577  * mountlist_remove (MP SAFE)
578  *
579  * Remove a node from the mountlist.  If this node is the next scan node
580  * for any active mountlist scans, the active mountlist scan will be
581  * adjusted to skip the node, thus allowing removals during mountlist
582  * scans.
583  */
584 void
585 mountlist_remove(struct mount *mp)
586 {
587 	struct mountscan_info *msi;
588 
589 	lwkt_gettoken(&mountlist_token);
590 	TAILQ_FOREACH(msi, &mountscan_list, msi_entry) {
591 		if (msi->msi_node == mp) {
592 			if (msi->msi_how & MNTSCAN_FORWARD)
593 				msi->msi_node = TAILQ_NEXT(mp, mnt_list);
594 			else
595 				msi->msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
596 		}
597 	}
598 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
599 	lwkt_reltoken(&mountlist_token);
600 }
601 
602 /*
603  * mountlist_exists (MP SAFE)
604  *
605  * Checks if a node exists in the mountlist.
606  * This function is mainly used by VFS quota code to check if a
607  * cached nullfs struct mount pointer is still valid at use time
608  *
609  * FIXME: there is no warranty the mp passed to that function
610  * will be the same one used by VFS_ACCOUNT() later
611  */
612 int
613 mountlist_exists(struct mount *mp)
614 {
615 	int node_exists = 0;
616 	struct mount* lmp;
617 
618 	lwkt_gettoken(&mountlist_token);
619 	TAILQ_FOREACH(lmp, &mountlist, mnt_list) {
620 		if (lmp == mp) {
621 			node_exists = 1;
622 			break;
623 		}
624 	}
625 	lwkt_reltoken(&mountlist_token);
626 	return(node_exists);
627 }
628 
629 /*
630  * mountlist_scan (MP SAFE)
631  *
632  * Safely scan the mount points on the mount list.  Unless otherwise
633  * specified each mount point will be busied prior to the callback and
634  * unbusied afterwords.  The callback may safely remove any mount point
635  * without interfering with the scan.  If the current callback
636  * mount is removed the scanner will not attempt to unbusy it.
637  *
638  * If a mount node cannot be busied it is silently skipped.
639  *
640  * The callback return value is aggregated and a total is returned.  A return
641  * value of < 0 is not aggregated and will terminate the scan.
642  *
643  * MNTSCAN_FORWARD	- the mountlist is scanned in the forward direction
644  * MNTSCAN_REVERSE	- the mountlist is scanned in reverse
645  * MNTSCAN_NOBUSY	- the scanner will make the callback without busying
646  *			  the mount node.
647  *
648  * NOTE: mount_hold()/mount_drop() sequence primarily helps us avoid
649  *	 confusion for the unbusy check, particularly if a kfree/kmalloc
650  *	 occurs quickly (lots of processes mounting and unmounting at the
651  *	 same time).
652  */
653 int
654 mountlist_scan(int (*callback)(struct mount *, void *), void *data, int how)
655 {
656 	struct mountscan_info info;
657 	struct mount *mp;
658 	int count;
659 	int res;
660 
661 	lwkt_gettoken(&mountlist_token);
662 
663 	info.msi_how = how;
664 	info.msi_node = NULL;	/* paranoia */
665 	TAILQ_INSERT_TAIL(&mountscan_list, &info, msi_entry);
666 
667 	res = 0;
668 
669 	if (how & MNTSCAN_FORWARD) {
670 		info.msi_node = TAILQ_FIRST(&mountlist);
671 		while ((mp = info.msi_node) != NULL) {
672 			mount_hold(mp);
673 			if (how & MNTSCAN_NOBUSY) {
674 				count = callback(mp, data);
675 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
676 				count = callback(mp, data);
677 				if (mp == info.msi_node)
678 					vfs_unbusy(mp);
679 			} else {
680 				count = 0;
681 			}
682 			mount_drop(mp);
683 			if (count < 0)
684 				break;
685 			res += count;
686 			if (mp == info.msi_node)
687 				info.msi_node = TAILQ_NEXT(mp, mnt_list);
688 		}
689 	} else if (how & MNTSCAN_REVERSE) {
690 		info.msi_node = TAILQ_LAST(&mountlist, mntlist);
691 		while ((mp = info.msi_node) != NULL) {
692 			mount_hold(mp);
693 			if (how & MNTSCAN_NOBUSY) {
694 				count = callback(mp, data);
695 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
696 				count = callback(mp, data);
697 				if (mp == info.msi_node)
698 					vfs_unbusy(mp);
699 			} else {
700 				count = 0;
701 			}
702 			mount_drop(mp);
703 			if (count < 0)
704 				break;
705 			res += count;
706 			if (mp == info.msi_node)
707 				info.msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
708 		}
709 	}
710 	TAILQ_REMOVE(&mountscan_list, &info, msi_entry);
711 	lwkt_reltoken(&mountlist_token);
712 	return(res);
713 }
714 
715 /*
716  * MOUNT RELATED VNODE FUNCTIONS
717  */
718 
719 static struct kproc_desc vnlru_kp = {
720 	"vnlru",
721 	vnlru_proc,
722 	&vnlruthread
723 };
724 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp);
725 
726 /*
727  * Move a vnode from one mount queue to another.
728  */
729 void
730 insmntque(struct vnode *vp, struct mount *mp)
731 {
732 	struct mount *omp;
733 
734 	/*
735 	 * Delete from old mount point vnode list, if on one.
736 	 */
737 	if ((omp = vp->v_mount) != NULL) {
738 		lwkt_gettoken(&omp->mnt_token);
739 		KKASSERT(omp == vp->v_mount);
740 		KASSERT(omp->mnt_nvnodelistsize > 0,
741 			("bad mount point vnode list size"));
742 		vremovevnodemnt(vp);
743 		omp->mnt_nvnodelistsize--;
744 		lwkt_reltoken(&omp->mnt_token);
745 	}
746 
747 	/*
748 	 * Insert into list of vnodes for the new mount point, if available.
749 	 * The 'end' of the LRU list is the vnode prior to mp->mnt_syncer.
750 	 */
751 	if (mp == NULL) {
752 		vp->v_mount = NULL;
753 		return;
754 	}
755 	lwkt_gettoken(&mp->mnt_token);
756 	vp->v_mount = mp;
757 	if (mp->mnt_syncer) {
758 		TAILQ_INSERT_BEFORE(mp->mnt_syncer, vp, v_nmntvnodes);
759 	} else {
760 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
761 	}
762 	mp->mnt_nvnodelistsize++;
763 	lwkt_reltoken(&mp->mnt_token);
764 }
765 
766 
767 /*
768  * Scan the vnodes under a mount point and issue appropriate callbacks.
769  *
770  * The fastfunc() callback is called with just the mountlist token held
771  * (no vnode lock).  It may not block and the vnode may be undergoing
772  * modifications while the caller is processing it.  The vnode will
773  * not be entirely destroyed, however, due to the fact that the mountlist
774  * token is held.  A return value < 0 skips to the next vnode without calling
775  * the slowfunc(), a return value > 0 terminates the loop.
776  *
777  * WARNING! The fastfunc() should not indirect through vp->v_object, the vp
778  *	    data structure is unstable when called from fastfunc().
779  *
780  * The slowfunc() callback is called after the vnode has been successfully
781  * locked based on passed flags.  The vnode is skipped if it gets rearranged
782  * or destroyed while blocking on the lock.  A non-zero return value from
783  * the slow function terminates the loop.  The slow function is allowed to
784  * arbitrarily block.  The scanning code guarentees consistency of operation
785  * even if the slow function deletes or moves the node, or blocks and some
786  * other thread deletes or moves the node.
787  */
788 int
789 vmntvnodescan(
790     struct mount *mp,
791     int flags,
792     int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
793     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
794     void *data
795 ) {
796 	struct vmntvnodescan_info info;
797 	struct vnode *vp;
798 	int r = 0;
799 	int maxcount = mp->mnt_nvnodelistsize * 2;
800 	int stopcount = 0;
801 	int count = 0;
802 
803 	lwkt_gettoken(&mp->mnt_token);
804 
805 	/*
806 	 * If asked to do one pass stop after iterating available vnodes.
807 	 * Under heavy loads new vnodes can be added while we are scanning,
808 	 * so this isn't perfect.  Create a slop factor of 2x.
809 	 */
810 	if (flags & VMSC_ONEPASS)
811 		stopcount = mp->mnt_nvnodelistsize;
812 
813 	info.vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
814 	TAILQ_INSERT_TAIL(&mp->mnt_vnodescan_list, &info, entry);
815 
816 	while ((vp = info.vp) != NULL) {
817 		if (--maxcount == 0) {
818 			kprintf("Warning: excessive fssync iteration\n");
819 			maxcount = mp->mnt_nvnodelistsize * 2;
820 		}
821 
822 		/*
823 		 * Skip if visible but not ready, or special (e.g.
824 		 * mp->mnt_syncer)
825 		 */
826 		if (vp->v_type == VNON)
827 			goto next;
828 		KKASSERT(vp->v_mount == mp);
829 
830 		/*
831 		 * Quick test.  A negative return continues the loop without
832 		 * calling the slow test.  0 continues onto the slow test.
833 		 * A positive number aborts the loop.
834 		 */
835 		if (fastfunc) {
836 			if ((r = fastfunc(mp, vp, data)) < 0) {
837 				r = 0;
838 				goto next;
839 			}
840 			if (r)
841 				break;
842 		}
843 
844 		/*
845 		 * Get a vxlock on the vnode, retry if it has moved or isn't
846 		 * in the mountlist where we expect it.
847 		 */
848 		if (slowfunc) {
849 			int error;
850 
851 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
852 			case VMSC_GETVP:
853 				error = vget(vp, LK_EXCLUSIVE);
854 				break;
855 			case VMSC_GETVP|VMSC_NOWAIT:
856 				error = vget(vp, LK_EXCLUSIVE|LK_NOWAIT);
857 				break;
858 			case VMSC_GETVX:
859 				vx_get(vp);
860 				error = 0;
861 				break;
862 			default:
863 				error = 0;
864 				break;
865 			}
866 			if (error)
867 				goto next;
868 			/*
869 			 * Do not call the slow function if the vnode is
870 			 * invalid or if it was ripped out from under us
871 			 * while we (potentially) blocked.
872 			 */
873 			if (info.vp == vp && vp->v_type != VNON)
874 				r = slowfunc(mp, vp, data);
875 
876 			/*
877 			 * Cleanup
878 			 */
879 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
880 			case VMSC_GETVP:
881 			case VMSC_GETVP|VMSC_NOWAIT:
882 				vput(vp);
883 				break;
884 			case VMSC_GETVX:
885 				vx_put(vp);
886 				break;
887 			default:
888 				break;
889 			}
890 			if (r != 0)
891 				break;
892 		}
893 
894 next:
895 		/*
896 		 * Yield after some processing.  Depending on the number
897 		 * of vnodes, we might wind up running for a long time.
898 		 * Because threads are not preemptable, time critical
899 		 * userland processes might starve.  Give them a chance
900 		 * now and then.
901 		 */
902 		if (++count == 10000) {
903 			/*
904 			 * We really want to yield a bit, so we simply
905 			 * sleep a tick
906 			 */
907 			tsleep(mp, 0, "vnodescn", 1);
908 			count = 0;
909 		}
910 
911 		/*
912 		 * If doing one pass this decrements to zero.  If it starts
913 		 * at zero it is effectively unlimited for the purposes of
914 		 * this loop.
915 		 */
916 		if (--stopcount == 0)
917 			break;
918 
919 		/*
920 		 * Iterate.  If the vnode was ripped out from under us
921 		 * info.vp will already point to the next vnode, otherwise
922 		 * we have to obtain the next valid vnode ourselves.
923 		 */
924 		if (info.vp == vp)
925 			info.vp = TAILQ_NEXT(vp, v_nmntvnodes);
926 	}
927 
928 	TAILQ_REMOVE(&mp->mnt_vnodescan_list, &info, entry);
929 	lwkt_reltoken(&mp->mnt_token);
930 	return(r);
931 }
932 
933 /*
934  * Remove any vnodes in the vnode table belonging to mount point mp.
935  *
936  * If FORCECLOSE is not specified, there should not be any active ones,
937  * return error if any are found (nb: this is a user error, not a
938  * system error). If FORCECLOSE is specified, detach any active vnodes
939  * that are found.
940  *
941  * If WRITECLOSE is set, only flush out regular file vnodes open for
942  * writing.
943  *
944  * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
945  *
946  * `rootrefs' specifies the base reference count for the root vnode
947  * of this filesystem. The root vnode is considered busy if its
948  * v_refcnt exceeds this value. On a successful return, vflush()
949  * will call vrele() on the root vnode exactly rootrefs times.
950  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
951  * be zero.
952  */
953 #ifdef DIAGNOSTIC
954 static int busyprt = 0;		/* print out busy vnodes */
955 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
956 #endif
957 
958 static int vflush_scan(struct mount *mp, struct vnode *vp, void *data);
959 
960 struct vflush_info {
961 	int flags;
962 	int busy;
963 	thread_t td;
964 };
965 
966 int
967 vflush(struct mount *mp, int rootrefs, int flags)
968 {
969 	struct thread *td = curthread;	/* XXX */
970 	struct vnode *rootvp = NULL;
971 	int error;
972 	struct vflush_info vflush_info;
973 
974 	if (rootrefs > 0) {
975 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
976 		    ("vflush: bad args"));
977 		/*
978 		 * Get the filesystem root vnode. We can vput() it
979 		 * immediately, since with rootrefs > 0, it won't go away.
980 		 */
981 		if ((error = VFS_ROOT(mp, &rootvp)) != 0) {
982 			if ((flags & FORCECLOSE) == 0)
983 				return (error);
984 			rootrefs = 0;
985 			/* continue anyway */
986 		}
987 		if (rootrefs)
988 			vput(rootvp);
989 	}
990 
991 	vflush_info.busy = 0;
992 	vflush_info.flags = flags;
993 	vflush_info.td = td;
994 	vmntvnodescan(mp, VMSC_GETVX, NULL, vflush_scan, &vflush_info);
995 
996 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
997 		/*
998 		 * If just the root vnode is busy, and if its refcount
999 		 * is equal to `rootrefs', then go ahead and kill it.
1000 		 */
1001 		KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
1002 		KASSERT(VREFCNT(rootvp) >= rootrefs, ("vflush: rootrefs"));
1003 		if (vflush_info.busy == 1 && VREFCNT(rootvp) == rootrefs) {
1004 			vx_lock(rootvp);
1005 			vgone_vxlocked(rootvp);
1006 			vx_unlock(rootvp);
1007 			vflush_info.busy = 0;
1008 		}
1009 	}
1010 	if (vflush_info.busy)
1011 		return (EBUSY);
1012 	for (; rootrefs > 0; rootrefs--)
1013 		vrele(rootvp);
1014 	return (0);
1015 }
1016 
1017 /*
1018  * The scan callback is made with an VX locked vnode.
1019  */
1020 static int
1021 vflush_scan(struct mount *mp, struct vnode *vp, void *data)
1022 {
1023 	struct vflush_info *info = data;
1024 	struct vattr vattr;
1025 	int flags = info->flags;
1026 
1027 	/*
1028 	 * Generally speaking try to deactivate on 0 refs (catch-all)
1029 	 */
1030 	atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1031 
1032 	/*
1033 	 * Skip over a vnodes marked VSYSTEM.
1034 	 */
1035 	if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1036 		return(0);
1037 	}
1038 
1039 	/*
1040 	 * Do not force-close VCHR or VBLK vnodes
1041 	 */
1042 	if (vp->v_type == VCHR || vp->v_type == VBLK)
1043 		flags &= ~(WRITECLOSE|FORCECLOSE);
1044 
1045 	/*
1046 	 * If WRITECLOSE is set, flush out unlinked but still open
1047 	 * files (even if open only for reading) and regular file
1048 	 * vnodes open for writing.
1049 	 */
1050 	if ((flags & WRITECLOSE) &&
1051 	    (vp->v_type == VNON ||
1052 	    (VOP_GETATTR(vp, &vattr) == 0 &&
1053 	    vattr.va_nlink > 0)) &&
1054 	    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1055 		return(0);
1056 	}
1057 
1058 	/*
1059 	 * If we are the only holder (refcnt of 1) or the vnode is in
1060 	 * termination (refcnt < 0), we can vgone the vnode.
1061 	 */
1062 	if (VREFCNT(vp) <= 1) {
1063 		vgone_vxlocked(vp);
1064 		return(0);
1065 	}
1066 
1067 	/*
1068 	 * If FORCECLOSE is set, forcibly destroy the vnode and then move
1069 	 * it to a dummymount structure so vop_*() functions don't deref
1070 	 * a NULL pointer.
1071 	 */
1072 	if (flags & FORCECLOSE) {
1073 		vhold(vp);
1074 		vgone_vxlocked(vp);
1075 		if (vp->v_mount == NULL)
1076 			insmntque(vp, &dummymount);
1077 		vdrop(vp);
1078 		return(0);
1079 	}
1080 	if (vp->v_type == VCHR || vp->v_type == VBLK)
1081 		kprintf("vflush: Warning, cannot destroy busy device vnode\n");
1082 #ifdef DIAGNOSTIC
1083 	if (busyprt)
1084 		vprint("vflush: busy vnode", vp);
1085 #endif
1086 	++info->busy;
1087 	return(0);
1088 }
1089 
1090 void
1091 add_bio_ops(struct bio_ops *ops)
1092 {
1093 	TAILQ_INSERT_TAIL(&bio_ops_list, ops, entry);
1094 }
1095 
1096 void
1097 rem_bio_ops(struct bio_ops *ops)
1098 {
1099 	TAILQ_REMOVE(&bio_ops_list, ops, entry);
1100 }
1101 
1102 /*
1103  * This calls the bio_ops io_sync function either for a mount point
1104  * or generally.
1105  *
1106  * WARNING: softdeps is weirdly coded and just isn't happy unless
1107  * io_sync is called with a NULL mount from the general syncing code.
1108  */
1109 void
1110 bio_ops_sync(struct mount *mp)
1111 {
1112 	struct bio_ops *ops;
1113 
1114 	if (mp) {
1115 		if ((ops = mp->mnt_bioops) != NULL)
1116 			ops->io_sync(mp);
1117 	} else {
1118 		TAILQ_FOREACH(ops, &bio_ops_list, entry) {
1119 			ops->io_sync(NULL);
1120 		}
1121 	}
1122 }
1123 
1124 /*
1125  * Lookup a mount point by nch
1126  */
1127 struct mount *
1128 mount_get_by_nc(struct namecache *ncp)
1129 {
1130 	struct mount *mp = NULL;
1131 
1132 	lwkt_gettoken(&mountlist_token);
1133 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1134 		if (ncp == mp->mnt_ncmountpt.ncp)
1135 			break;
1136 	}
1137 	lwkt_reltoken(&mountlist_token);
1138 	return (mp);
1139 }
1140 
1141